9 äî 04.03.200 . Ïëîùàäü II . Problem 1 (1 áàëë). Ñåðåäèíû ñòîðîí âûïóêëîãî ÷åòûð¼õóãîëüíèêà ïîñëåäîâàòåëüíî ñîåäèíåíû îòðåçêàìè. Äîêàæèòå, ÷òî ïëîùàäü ïîëó÷åííîãî ÷åòûð¼õóãîëüíèêà âäîå ìåíüøå ïëîùàäè èñõîäíîãî. Problem 2 (1 áàëë). Äîêàæèòå, ÷òî åñëè äèàãîíàëü êàêîãî-íèáóäü ÷åòûð¼õóãîëüíèêà äåëèò äðóãóþ äèàãîíàëü ïîïîëàì, òî îíà ðàçáèâàåò ýòîò ÷åòûð¼õóãîëüíèê íà äâå ðàâíîâåëèêèå ÷àñòè. Problem 3 (1 áàëë). Íà ïðîäîëæåíèÿõ ñòîðîí AB, BC, CD è DA âûïóêëîãî ÷åòûð¼õóãîëüíèêà ABCD ñîîòâåòñòâåííî çà òî÷êè B, C, D, A îòëîæåíû îòðåçêè BB1 , CC1 , DD1 è AA1 , ðàâíûå ýòèì ñòîðîíàì. Íàéäèòå ïëîùàäü ÷åòûð¼õóãîëüíèêà A1 B1 C1 D1 , åñëè ïëîùàäü ÷åòûð¼õóãîëüíèêà ABCD ðàâíà s. Problem 4 (1 áàëë). Äîêàæèòå, ÷òî ñóììà ðàññòîÿíèé îò ïðîèçâîëüíîé òî÷êè íà îñíîâàíèè ðàâíî- áåäðåííîãî òðåóãîëüíèêà äî åãî áîêîâûõ ñòîðîí âñåãäà îäíà è òà æå, ò.å. íå çàâèñèò îò ïîëîæåíèÿ òî÷êè. Problem 5 (1 áàëë). Ñòîðîíû AB è AC òðåóãîüíèêà ABC ðàâíû ñîîòâåòñòâåííî a è b. Íà ìåäèàíå, ïðîâåä¼ííîé ê ñòîðîíå BC , âçÿòà òî÷êà M . Ñóììà ðàññòîÿíèé îò ýòîé òî÷êè äî ïðÿìûõ AB è AC ðàâíà c. Íàéäèòå ýòè ðàññòîÿíèÿ. Problem 6 (2 áàëëà). Íàéäèòå ïëîùàäü ïðÿìîóãîëüíîãî òðåóãîëüíèêà ñ ãèïîòåíóçîé, ðàâíîé c, è îñòðûì óãëîì 15◦ . Problem 7 (1 áàëë). Òî÷êè K, L, M è N ñåðåäèíû ñòîðîí ñîîòâåòñòâåííî AB, BC, CD è AD ïàðàëëåëîãðàììà ABCD, ïëîùàäü êîòîðîãî ðàâíà 1. Íàéäèòå ïëîùàäü ïàðàëëåëîãðàììà, îáðàçîâàííîãî ïåðåñå÷åíèÿìè ïðÿìûõ AL, BM, CN è DK . Problem 8 (3 áàëëà). Äàí òðåóãîëüíè ABC . Íàéäèòå ãåîìåòðè÷åñêîå ìåñòî òîêèõ òî÷åê M , äëÿ êîòîðûõ: à) òðåóãîëüíèêè AM B è ABC ðàâíîâåëèêè; á) òðåóãîëüíèêè AM B è AM C ðàâíîâåëèêè; c) òðåóãîëüíèêè AM B, AM C è BM C ðàâíîâåëèêè. Problem 9 (1 áàëë). Îòðåçîê, ñîåäèíÿþùèé ñåðåäèíû äâóõ ïðîòèâîïîëîæíûõ ñòîðîí âûïóêëîãî ÷åòûð¼õóãîëüíèêà, ðàçäåëèë åãî íà äâà ÷åòûð¼õóãîëüíèêà, èìåþùèõ ðàâíûå ïëîùàäè. Äîêàæèòå, ÷òî ýòè ñòîðîíû ïàðàëëåëüíû. Problem 10 (2 áàëëà). Äàí óãîë XAY è òî÷êà O âíóòðè íåãî. Ïðîâåäèòå ÷åðåç òî÷êó O ïðÿìóþ, îòñåêàþùóþ îò äàííîãî óãëà òðåóãîëüíèê íàèìåíüøåé ïëîùàäè. Problem 11 (2 áàëëà). Ïóñòü M è N ñåðåäèíû ïðîòèâîïîëîæíûõ ñòîðîí BC è AD âûïóêëîãî ÷åòûð¼õóãîëüíèêà ABCD, îòðåçêè AM è BN ïåðåñåêàþòñÿ â òî÷êå P , à îòðåçêè DM è CN â òî÷êå Q. Äîêàæèòå, ÷òî ñóììà ïëîùàäåé òðåóãîëüíèêîâ AP B è CQD ðàâíà ïëîùàäè ÷åòûð¼õóãîëüíèêà M P N Q. Problem 12 (2 áàëëà). Èç ñåðåäèíû êàæäîé ñòîðîíû îñòðîóãîëüíîãî òðåóãîëüíèêà îïóùåíû ïåðïåí- äèêóëÿðû íà äâå äðóãèå ñòîðîíû. Äîêàæèòå, ÷òî ïëîùàäü îãðàíè÷åííîãî èìè øåñòèóãîëüíèêà ðàâíà ïîëîâèíå ïëîùàäè òðåóãîëüíèêà. Íàáðàëè ≥ 7 áàëëîâ ïîëó÷àåòå 3; Íàáðàëè ≥ 12 áàëëîâ ïîëó÷àåòå 4; Íàáðàëè ≥ 15 áàëëîâ ïîëó÷àåòå 5;