c ÌàòÁþðî ðåøåíèå çàäà÷ ïî âûñøåé ìàòåìàòèêå, òåîðèè âåðîÿòíîñòåé Òåîðèÿ ïîëÿ Ãðàäèåíòîì ñêàëÿðíîãî ïîëÿ u = u(x, y, z) íàçûâàåòñÿ ñëåäóþùèé âåêòîð (íàïðàâëåíèÿ íàèñêîðåéøåãî ðîñòà u): ∂u ∂u ∂u grad u = ∇u = , , . ∂x ∂y ∂z Ïðîèçâîäíàÿ ñêàëÿðíîãî ïîëÿ u = u(x, y, z) ïî íàïðàâëåíèþ l âû÷èñëÿåòñÿ ïî ôîðìóëå ∂u 1 = ∇u · l. ∂l |l| Ïóñòü P = P (x, y, z), Q = Q(x, y, z), R = R(x, y, z) íåïðåðûâíûå ñî âìåñòå ñî ñâîèìè ÷àñòíûìè ïðîèçâîäíûìè ïåðâîãî ïîðÿäêà ôóíêöèè. Ïîòîêîì âåêòîðíîãî ïîëÿ F = (P, Q, R) ÷åðåç ïîâåðõíîñòü S íàçûâàåòñÿ ïîâåðõíîñòíûé èíòåãðàë ZZ ZZ ZZ Π= F · n dS = (P cos α + Q cos β + R cos γ) dS = P dy dz + Q dx dz + R dx dy. S S S Äèâåðãåíöèåé âåêòîðíîãî ïîëÿ F = (P, Q, R) íàçûâàåòñÿ ñêàëÿð div F = ∂P ∂Q ∂R + + . ∂x ∂y ∂z Åñëè div F (M0 ) > 0, òî òî÷êà M0 íàçûâàåòñÿ èñòî÷íèêîì, åñëè div F (M0 ) < 0, òî òî÷êà M0 íàçûâàåòñÿ ñòîêîì. Âåêòîðíîå ïîëå, âî âñåõ òî÷êàõ êîòîðîãî äèâåðãåíöèÿ ðàâíà íóëþ íàçûâàåòñÿ ñîëåíîèäàëüíûì. Ïîòîê òàêîãî ïîëÿ ÷åðåç ëþáóþ ïîâåðõíîñòü ðàâåí íóëþ. Ëèíåéíûì èíòåãðàëîì îò âåêòîðà F ïî îðèåíòèðîâàííîé êðèâîé K íàçûâàåòñÿ êðèâîëèíåéíûé èíòåãðàë (ðàáîòà ïîëÿ âäîëü êðèâîé K ) Z Z F dr = P dx + Q dy + R dz. K K Åñëè êîíòóð C çàìêíóòûé, òî ëèíåéíûé èíòåãðàë I I F dr = P dx + Q dy + R dz. C C íàçûâàåòñÿ öèðêóëÿöèåé âåêòîðíîãî ïîëÿ âäîëü êîíòóðà C . Âèõðåì (ðîòîðîì) âåêòîðíîãî ïîëÿ F = (P, Q, R) íàçûâàåòñÿ âåêòîð ∂R ∂Q ∂R ∂P ∂Q ∂P rot F = − − − , , ∂y ∂z ∂z ∂x ∂x ∂y Åñëè äëÿ âñåõ òî÷åê ïîëÿ ðîòîð ðàâåí íóëþ, òî òàêîå ïîëå íàçûâàåòñÿ ïîòåíöèàëüíûì (áåçâèõðåâûì).  ïîòåíöèàëüíîì ïîëå öèðêóëÿöèÿ âñåãäà ðàâíà íóëþ. 1 Ôîðìóëà Ñòîêñà. C çàìêíóòûé êîíòóð, îãðàíè÷èâàþùèé ïîâåðõíîñòü S . Íàïðàâ- ëÿþùèå êîñèíóñû íîðìàëè ê ïîâåðõíîñòè S cos α, cos β , cos γ (ñî ñòîðîíû íîðìàëè îáõîä ïî êîíòóðó C îñóùåñòâëÿåòñÿ ïðîòèâ ÷àñîâîé ñòðåëêè). I Z Z ∂R ∂Q ∂P ∂R ∂Q ∂P R dx+Q dy+R dz = − cos α + − cos β + − cos γ dS. ∂y ∂z ∂z ∂x ∂x ∂y C S Ôîðìóëà Ñòîêñà â âåêòîðíîé ôîðìå: öèðêóëÿöèÿ âåêòîðà âäîëü çàìêíóòîãî êîíòóðà C , îãðàíè÷èâàþùåãî íåêîòîðóþ ïîâåðõíîñòü S , ðàâíà ïîòîêó âèõðÿ ÷åðåç ýòó ïîâåðõíîñòü. I ZZ F dr = n · rot F dS. C S Ôîðìóëà Ãàóññà-Îñòðîãðàäñêîãî. T çàìêíóòàÿ îáëàñòü îãðàíè÷åííàÿ çàìêíóòîé ãëàäêîé ïîâåðõíîñòüþ S . cos α, cos β , cos γ íàïðàâëÿþùèå êîñèíóñû âíåøíåé íîðìàëè ê ïîâåðõíîñòè S . ZZ ZZZ ∂P ∂Q ∂R dx dy dz. (P cos α + Q cos β + R cos γ)dS = + + ∂x ∂y ∂z S T Ôîðìóëà Ãàóññà-Îñòðîãðàäñêîãî â âåêòîðíîé ôîðìå: èíòåãðàë îò äèâåðãåíöèè âåêòîðíîãî ïîëÿ F , ðàñïðîñòðàíåííûé ïî íåêîòîðîìó îáúåìó T , ðàâåí ïîòîêó âåêòîðà ÷åðåç ïîâåðõíîñòü S , îãðàíè÷èâàþùóþ äàííûé îáúåì. ZZ ZZZ F · n dS = div F dV. S T Ôîðìóëà Ãðèíà. C ãðàíèöà îáëàñòè D è ôóíêöèè P (x, y), Q(x, y) íåïðåðûâíû ñî ñâîèìè ÷àñòíûìè ïðîèçâîäíûìè ∂Q/∂x è ∂P/∂y íåïðåðûâíû â çàìêíóòîé îáëàñòè D. I ZZ ∂Q ∂P P dx + Q dy = − dx dy. ∂x ∂y C D 2