Метод сеток для решения уравнений параболического и гиперболического типа. Варианты задач Свободные члены в уравнении, начальных и граничных условиях следует получать, подставляя точное решение, на котором тестируется задача. Вариант 1 ∂u ∂ 2 u + f (x, t), = ∂t ∂x2 u(x, 0) = ϕ(x), 0 ≤ x ≤ 1, u(0, t) = α(t), u(1, t) = β(t), 0 ≤ t ≤ 0.1. Вариант 2 ! ∂u (x + 1) + f (x, t), ∂x ∂u = ψ(x), 0 ≤ x ≤ 1, u(x, 0) = ϕ(x), ∂t t=0 ∂u = α(t), u(1, t) = β(t), 0 ≤ t ≤ 1. ∂x ∂ ∂2u = 2 ∂t ∂x x=0 Вариант 3 ∂u ∂ 2 u ∂u = + f (x, t), + ∂t ∂x2 ∂x u(x, 0) = ϕ(x), 0 ≤ x ≤ 1, ∂u u(0, t) = α(t), = β(t), 0 ≤ t ≤ 0.1. ∂x x=1 Вариант 4 ! ∂u ∂u (x + 2) + + f (x, t), ∂x ∂x ∂u u(x, 0) = ϕ(x), = ψ(x), 0 ≤ x ≤ 1, ∂t ∂2u ∂ = 2 ∂t ∂x t=0 ∂u u(0, t) − ∂x = α(t), u(1, t) = β(t), 0 ≤ t ≤ 1. x=0 Вариант 5 ∂u ∂u ∂ 2 u = + (x2 + 1) + f (x, t), ∂t ∂x2 ∂x u(x, 0) = ϕ(x), 0 ≤ x ≤ 1, ∂u ∂u = α(t), = β(t), 0 ≤ t ≤ 0.1. ∂x ∂x x=0 x=1 1 Вариант 6 ∂2u ∂u ∂2u = cos x +x + f (x, t), 2 2 ∂t ∂x ∂x ∂u = ψ(x), 0 ≤ x ≤ 1, u(x, 0) = ϕ(x), ∂t t=0 ∂u ∂u = α(t), u(1, t) + = β(t), 0 ≤ t ≤ 1. ∂x ∂x x=0 x=1 Вариант 7 ! ∂u (x + 3) + xu + f (x, t), ∂x ∂u ∂ = ∂t ∂x u(x, 0) = ϕ(x), 0 ≤ x ≤ 1, ∂u = α(t), u(1, t) = β(t), 0 ≤ t ≤ 0.1. ∂x x=0 Вариант 8 ! ∂u ∂u (x + 1) + u + f (x, t), + ∂x ∂x ∂u u(x, 0) = ϕ(x), = ψ(x), 0 ≤ x ≤ 1, ∂t ∂2u ∂ = 2 ∂t ∂x t=0 u(0, t) = α(t), ∂u u(1, t) + ∂x = β(t), 0 ≤ t ≤ 1. x=1 Вариант 9 ∂u ∂ 2 u = + sin x u + f (x, t), ∂t ∂x2 u(x, 0) = ϕ(x), 0 ≤ x ≤ 1, ∂u ∂u u(0, t) − = α(t), u(0, t) + ∂x ∂x x=0 = β(t), 0 ≤ t ≤ 0.1. x=1 Вариант 10 ∂2u ∂2u ∂u = + sin x + f (x, t), ∂t2 ∂x2 ∂x ∂u u(x, 0) = ϕ(x), = ψ(x), 0 ≤ x ≤ 1, ∂t t=0 ∂u u(0, t) − ∂x u(1, t) = β(t), 0 ≤ t ≤ 1. = α(t), x=0 2 Вариант 11 ∂2u ∂u = cos(x) 2 + f (x, t), ∂t ∂x u(x, 0) = ϕ(x), 0 ≤ x ≤ 1, ∂u = β(t), 0 ≤ t ≤ 0.1. u(0, t) = α(t), ∂x x=1 Вариант 12 ! ∂u (x + 2) + f (x, t), ∂x ∂u = ψ(x), 0 ≤ x ≤ 1, u(x, 0) = ϕ(x), ∂t t=0 ∂u u(0, t) = α(t), u(1, t) + = β(t), 0 ≤ t ≤ 1. ∂x ∂2u ∂ = 2 ∂t ∂x x=1 Вариант 13 ∂u ∂ 2 u + f (x, t), = ∂t ∂x2 u(x, 0) = ϕ(x), 0 ≤ x ≤ 1, ∂u ∂u u(0, t) − = α(t), ∂x ∂x x=0 = β(t), 0 ≤ t ≤ 0.1. x=1 Вариант 14 ∂2u ∂2u = cos x + f (x, t), ∂t2 ∂x2 ∂u = ψ(x), 0 ≤ x ≤ 1, u(x, 0) = ϕ(x), ∂t t=0 ∂u ∂x = α(t), u(1, t) = β(t), 0 ≤ t ≤ 1. x=0 3