рекомендации по математике

реклама
1.
2.
3.
4.
5.
6.
7.
8.
Основные математические понятия и факты.
Арифметика и алгебра.
Натуральные числа и нуль. Чтение и запись натуральных чисел. Сравнение натуральных
чисел. Сложение, вычитание, умножение и деление натуральных чисел. Квадрат и куб
числа.
Делимость натуральных чисел. Делители кратные натурального числа. Четные и не четные
числа. Признаки делимости на 2, 5, 10, 3 и 9. Простые и составные числа. Разложение
натурального числа на простые множители.
Обыкновенная дробь. Чтение и запись дробных чисел. Сравнение обыкновенных дробей.
Основные свойство дроби. Сокращение дробей. Среднее арифметическое нескольких
чисел. Основные задачи на дроби.
Десятичные дробь. Чтение и запись десятичных дробей. Сравнение десятичных дробей.
Приближенное значение числа. Округление чисел. Проценты. Основные задачи на
проценты.
Положительные и отрицательные числа. Противоположные числа. Модуль числа, его
геометрический смысл. Сравнение положительных и отрицательных чисел. Сложение,
вычитание, умножение и деление положительных и отрицательных чисел.
Понятие о числе как результате изменения. Рациональные числа.
Числовые выражения. Применение букв для записи выражений. Числовые значения
буквенного выражения. Вычисления по формулам. Простейшие преобразования
выражений: раскрытие скобок, приведение подобных слагаемых.
Пропорция. Основное свойство пропорции. Понятие о прямой и обратной
пропорциональности величин. Решение задач с помощью пропорций.
1. Основные теоремы и формулы.
Алгебра.
1. Степень с рациональным показателем и ее свойства.
2. Корень n-й степени и его свойства.
3. Формула n- го члена арифметической прогрессии.
4. Формула n- го члена геометрической прогрессии.
5. Функция y=kx, ее свойства и график.
6. Функция y=kx+b, ее свойства и график.
7. Функция y=xn, ее свойства и график.
8. Функция y=ax2+dx+c, ее свойства и график.
9. Решение квадратных уравнений. Формулы корней квадратного уравнения.
10. Разложение квадратного трехчлена на множители.
11. Формулы сокращенного умножения.
12. Решение линейных уравнений и сводящихся к ним (на конкретных примерах).
13. Решение линейных неравенств и систем линейных неравенств ( на конкретных примерах).
14. Решение системы уравнений. a1 x+b1 y=c1
a2 x+b2 y=c2
1.
2.
3.
4.
5.
6.
Геометрия
Свойства равнобедренного треугольника.
Свойства биссектрисы угла.
Признаки параллельности прямых.
Теорема о сумме углов.
Признаки равенства треугольников.
Признаки подобия треугольников.
Геометрические фигуры и их свойства.
1. Начальные понятия планиметрии. Геометрические фигуры. Понятия об аксиомах и
теоремах. Понятие об обратных теоремах.
2. Смежные и вертикальные углы и их свойства. Пересекающиеся и параллельные прямые.
Признаки параллельности прямых. Перпендикулярные прямые. Теоремы о параллельности
и перпендикулярности прямых.
3. Треугольник. Свойства равнобедренного треугольника. Сумма углов треугольника.
Теорема Пифагора.
4. Параллелограмм и его свойства. Признаки параллелограмма. Прямоугольник, ромб,
квадрат, их свойства. Трапеция. Правильные многоугольники.
5. Окружность и круг. Касательная окружности и ее свойства.
6. Свойство серединного перпендикуляра к отрезку; окружность, описанная около
треугольника. Свойство биссектрисы угла; окружность, вписанная в треугольник.
7. Понятие о равенстве фигур. Признаки равенства треугольников.
8. Понятие о подобии фигур. Признаки подобия треугольников.
9. Основные задачи на построение с помощью циркуля и линейки.
1.
2.
3.
4.
1.
2.
Геометрические величины.
Длина отрезка и ее свойства. Расстояние между точками. Расстояние от точки до прямой.
Величина угла и ее свойства. Измерение вписанных углов.
Длина окружности. Длина дуги. Число π.
Понятие о площади. Основные свойства площади. Площади прямоугольника, треугольника,
параллелограмма, трапеции. Отношение площадей подобных фигур. Площадь круга и его
частей.
Элементы тригонометрии.
Синус, косинус, тангенс угла.
соотношение между сторонами и углами прямоугольного треугольника. Теоремы синусов и
косинусов. Решение треугольников.
Координаты и векторы.
1. Прямоугольные координаты на плоскости. Формула расстояния между двумя точками
плоскости с заданными координатами. Уравнения прямой и окружности.
2. Свойства параллелограмма и его диагоналей.
3. Свойства прямоугольника, ромба и квадрата.
4. Окружность, описанная около треугольника.
5. Окружность, вписанная в треугольник.
6. Теорема о вписанном угле в окружность.
7. Свойство касательной к окружности.
8. Теорема Пифагора.
9. Значение синуса, косинуса и тангенса для углов 30°, 45°, 60°.
10. Сложение векторов и его свойства.
11. Скалярное произведение векторов и его свойство. Операции над векторами. Виды
векторов.
12. Теорема косинусов.
13. Теорема синусов.
14. Формула площадей параллелограмма, треугольника и трапеции.
15. Формула расстояния между двумя точками плоскости с заданными координатами.
16. Уравнение прямой и окружности.
Основные умения и навыки.
Экзаменуемые должны:
1. Владеть уверенными вычислительными навыками при выполнении действий с рациональными числами
(натуральными, целыми, обыкновенными и десятичными дробями);
2. Уметь выполнять тождественные преобразования основные типов алгебраических выражений (многочленов,
дробно-рациональных выражений, выражений, содержащих степень и корни);
3. Уметь решать уравнения, неравенства и их системы первой и второй степени и приводящихся к ним, а также
решать задачи на составление уравнений или их систем.
4. Уметь строить график функций, предусмотренных программой.
5. Уметь изображать геометрические фигуры и производить простейшие построения на плоскости;
6. Владеть навыками измерения и вычисления длин, углов и площадей, применяемых для решения
разнообразных геометрических и практических задач.
Скачать