Правильные многогранники Цель и задачи: Закрепление изученного материала; Увеличение интереса к геометрии; Развитие логического мышления. История Правильные многогранники названы по имени Платона, который в сочинении «Тимей» (IV век до н. э.) придавал им мистический смысл, но были известны и до Платона. Кеплер пытался построить модель Солнечной системы вписывая и описывая правильные многогранники в сферы. Это не удалось, но послужило толчком к разработке Законов Кеплера. Правильный многогранник, или Платоново тело — это выпуклый многогранник с максимально возможной симметрией. Многогранник называется правильным, если: он выпуклый все его грани являются равными правильными многоугольниками в каждой его вершине сходится одинаковое число граней все его двухгранные углы равны Существует всего пять правильных многогранников: Тетраэдр Куб Октаэдр Додекаэдр Икосаэдр Тетраэдр Тетра́эдр — многогранник с четырьмя треугольными гранями, в каждой из вершин которого сходятся по 3 грани. У тетраэдра 4 грани, 4 вершины и 6 рёбер. Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед. Отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани, называется его медианой, опущенной из данной вершины. Отрезок, соединяющий середины скрещивающихся рёбер тетраэдра, называется его бимедианой, соединяющей данные рёбра. Отрезок, соединяющий вершину тетраэдра с точкой противоположной грани и перпендикулярный этой грани, называется его высотой, опущенной из данной вершины. Выделяют: равногранный тетраэдр, у которого все грани - равные между собой треугольники; ортоцентрический тетраэдр, у которого все высоты, опущеные из вершин на противоположные грани, пересекаются в одной точке; прямоугольный тетраэдр, у которого все ребра, прилежащие к одной из вершин, перпендикулярны между собой; правильный тетраэдр, у которого все грани - равносторонние треугольники. Теорема Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, считая от вершины. Эта точка делит бимедианы пополам. Куб Куб или гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы. Свойства куба В куб можно вписать тетраэдр двумя способами, притом четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба. Все шесть рёбер тетраэдра будут лежать на всех шести гранях куба и равны диагонали грани-квадрата. Четыре сечения куба являются правильными шестиугольниками - эти сечения проходят через центр куба перпендикулярно четырём его диагоналям. В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба. Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра. В куб можно вписать икосаэдр, при этом шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра — внутри куба. Все двенадцать вершин икосаэдра будут лежать на шести гранях куба. Октаэдр Окта́ эдр (греч. οκτάεδρον, от греч. οκτώ, «восемь» и греч. έδρα — «основание») — один из пяти правильных многогранников. Октаэдр имеет 8 граней (треугольных), 12 рёбер, 6 вершин (в каждой вершине сходятся 4 ребра). Свойства Октаэдр можно вписать в тетраэдр, притом четыре (из восьми) грани октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести рёбер тетраэдра. Октаэдр с ребром y состоит из 6 октаэдров (по вершинам) с ребром y / 2 и 8 тетраэдров (по граням) с ребром y / 2. Октаэдр можно вписать в куб, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба. В октаэдр можно вписать куб, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра. Додекаэдр Додека́эдр (от греч. dodeka — двенадцать и hedra — грань), двенадцатигранник — правильный многогранник, объёмная геометрическая фигура, составленная из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра. Сумма плоских углов при каждой из 20 вершин равна 324°. Додекаэдр применяется как генератор случайных чисел (вместе с другими костями) в настольных ролевых играх, и обозначается при этом d12(dice - кости). Результаты наблюдений в августе 2006 года во время нанесения на карты областей распределения темной материи в скоплении галактик Cl 0024+17 (ZwC10024+1652) свидетельствуют о том, что Вселенная представляет собой набор бесконечно повторяющихся додекаэдров Икосаэдр Икоса́эдр (от греч. εικοσάς, «двадцать» и греч. -εδρον, «грань», «лицо», «основание») — правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12. Свойства Икосаэдр можно вписать в куб, при этом, шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба В икосаэдр может быть вписан тетраэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра. Икосаэдр можно вписать в додекаэдр, при том вершины икосаэдра будут совмещены с центрами граней додекаэдра. В икосаэдр можно вписать додекаэдр, при том вершины додекаэдра будут совмещены с центрами граней икосаэдра. Теорема Эйлера Для любого выпуклого многогранника сумма числа вершин и сумма граней на две единицы больше числа его ребер В+Г-Р=2 Список литературы Газета «Первое сентября». Математика ru.wikipedia.org/wiki Учебник геометрии Л.С. Атанасян «Геометрия» И.М. Смирнова, В.А. Смирнов http://www.knigka.info/uploads/posts/238 9649497499315.jpeg