PPT - Институт физики высоких энергий

реклама
Research and Development for the
International Linear Collider
presented by Marc Ross - for the ILC Project Managers:
Marc Ross - (Fermilab),
Nick Walker - (DESY),
Akira Yamamoto – (KEK)
Научная сессия-конференция секции ядерной физики ОФН РАН
"Физика фундаментальных взаимодействий"
Институт физики высоких энергий,
Протвино, 22-25 декабря, 2008
1
ILC – Background:
• traced back to:
– 1965 article by Maury Tigner in Nuovo Cimento …
– 1972 meeting in Switzerland in which G. I. Budker…
• e+/e- collider labs –
– where the linear collider was born:
– BINP, SLAC, KEK, Cornell, DESY, …
• where cold SRF linac technology started
• Technology Reviewed (TRC);
• Recommendation made (ITRP):
– 1995, 2002 and 2004
– 0.5-1 TeV ILC:  Superconducting Linacs
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
Pief Panofsky and Gersh Budker
2
Look back: 2004
• International Technology Recommendation Panel
(ITRP) Report:
– (released during LINAC 2004 Conference, Lubeck)
The superconducting technology has features, some of which follow from the low rf
frequency, that the Panel considered attractive and that will facilitate the future design:

The large cavity aperture and long bunch interval simplify operations, reduce the
sensitivity to ground motion, permit inter-bunch feedback, and may enable
increased beam current.

The main linac and rf systems, the single largest technical cost elements, are of
comparatively lower risk.

The construction of the superconducting XFEL free electron laser will provide
prototypes and test many aspects of the linac.

The industrialization of most major components of the linac is underway.

The use of superconducting cavities significantly reduces power consumption.
Basis of the ITRP decision; basis of our progress since then
rests in large part on EU – XFEL project
International Linear Collider R & D
OUTLINE:
• Reference Design – a global effort
• Critical R & D for Accelerator systems
(non SRF)
• Critical R & D for Main Linac Technology
• Project Preparation
• Conclusion
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
4
ILC – Reference Design:
• ~3000 bunches; ~ each 3 nC e+ / e-; ~20 MW avg.
Beam Delivery and Interaction Region
• six subsystems
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
5
ILC R & D – Global effort
• ILC Reference Design (RD)
– based on R & D in support of: TESLA, SBLC, JLC/NLC,
VLEPP, CLIC
– strongly linked to TESLA Design; with work done by Russian
institutions:
• BINP, Efremov, IHEP, INR, IRE-RAS, MEPhI, …
• RD Report authored by 325 institutions
(including physics/detectors)
– 9 Russian institutions including:
• BINP, Efremov, ITEP, JINR, Lebedev, and Universities
• EU-XFEL  a large scale demonstration
– ~ 5 Russian institutions involved:
• BINP, Efremov, IHEP, INR, JINR
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
6
SRF Test Facilities
FNAL
DESY

NML facility
Under construction
first beam 2010
ILC RF unit test
KEK, Japan

TTF/FLASH
~1 GeV
ILC-like beam
ILC RF unit

STF (phase I & II)
Under construction
first beam 2011
ILC RF unit test
(* lower gradient)
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
7
(Non-SRF) Beam Test Facilities
ATF & ATF2 (KEK)
ultra-low emittance
Final Focus optics
Cornell

KEK, Japan
INFN Frascati

CesrTA (Cornell)
electron cloud
low emittance

DAfNE (INFN Frascati)
kicker development
electron cloud
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
8
GDE ILC Timeline and Mission
2005 2006
2007 2008 2009
2010 2011
2012 2013
GDE process
Reference Design Report (RDR)
Tech. Design Phase (TDP) 1
TDP 2
LHC physics
Ready for Project
Prepare a design and a plan that is completely ready to go - 2012.
Submission
The request from the HEP community is clear (Brian Foster).
Since the timeline is uncertain:
focus on R & D for cost and risk reduction
develop ties within the accelerator community to facilitate a global project
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
9
Resources:
Basis: institutional and regional support for science ILC will
provide.
Also: Support for science complements strong interest in
emerging technologies
ILC development effort utilizes:
1. ILC project preparation-specific funding
•
support for design and cost/risk reduction studies for the TDR
2. other project-specific funding (XFEL etc)
3. generic R&D
•
support for the development of specific technologies
4. combinations of the above
•
beam test facility support
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
10
‘In-Kind’ R&D
• provides return for regions/institutions
investing resources for technical
development
• To ILC:
– Beam Studies
– Infrastructure usage
– Engineering and Testing
• To contributing Institute / Region:
– Technology transfer between partner ILC institutions
– Infrastructure development and qualification
– Community connection mechanisms
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
11
The role of R&D:
• in support of a mature, low risk design
• take advantage the ongoing, increasing global investment in SRF
and related technology
– the big impact of the ITRP decision
– Improve performance, reduce cost, challenge limitations, develop inter-regional ties,
develop regional technical centers
• Both a ‘project-based’ and a ‘generic’ focus
The ILC has:
• A Baseline Design; to be extended and used for comparison (RDR)
– But ready for deployment
• Research and Development activities on Alternates to the Baseline
– Engages the community  venue for cost-saving / risk-reduction actvities
• Plug – compatibility / modularity policy  flexibility between the
above
– The critical role of associated projects – XFEL, Project X, SNS, JLab12, ERLs, …
• Models of ‘project implementation’
– The transition from R&D to a real project
– The link between Technical Phase R&D and the project political process
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
12
International Linear Collider R & D
• Reference Design – a global effort
• Critical R & D for Accelerator systems
(non SRF)
• Critical R & D for Main Linac Technology
• Project Preparation
• Conclusion
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
13
ILC – Reference Design:
Examples:
Beam Delivery and Interaction Region
• Positron Source, Damping Ring, Beam Delivery
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
14
Critical R & D – Accelerator Systems
– Positron Source
• Positron Source Design –
– Each ILC pulse high energy electrons pass through a helical
undulator that generates ~ 20 MeV gamma rays
– These gamma rays are directed on a high power rotating
titanium target
– Generated positrons are collected through a very short
focus, close proximity lens (OMD) and captured in a normalconducting RF accelerator
– The positrons are injected into the positron damping ring to
be used for collisions on the next machine pulse
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
15
RDR Positron Source Layout

R & D Priorities –
 Undulator (UK – RAL, Cornell – Mikailichenko)
 Target (KEK, BINP – Logachev)
 Optical Matching Device (OMD)- replacement for
‘Flux Concentrator’


Liquid Lithium Lens (KEK, BINP – Logachev)
Capture RF – normal conducting accelerator
(Paramonov –INR, SLAC)
Linear Collider – Positron Source
<= Li Out
Li In =>
Lithium Lens with feeding cables.
(Courtesy of Yu. Shatunov, BINP)
Lithium Lens CAD model section view.
(Courtesy of Alexander Mikhailichenko,
Cornell)
Presentation for
Российской
Marc Ross, Fermilab
17
BINP – Positron System R & D
• Liquid Lead target development for KEK-B
–
–
–
–
(years of operational experience at BINP)
Initial activity for SLAC - NLC
Alternate to baseline rotating target (also tested at BINP)
To be installed at KEK-B Linac 2009
• Boron Nitride window / brazing tests underway
– Used in liquid target
– Also applicable to Lithium Lens applications
• Liquid Lithium Lens
– ~ factor 2 improved capture compared to pulsed electromagnet
– design study in 2009 – support from BINP and KEK
– High pressure Li is main issue
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
18
Positron source: First Ever Full Length
Undulator Cryomodule
Ln2
precooling
Constructed by Rutherford
Appleton Lab.
First cooldown of complete
system early Sept 08.
Vac vessel closed
Vertical magnet tests successful – design
field exceeded in both 1.75m undulators
But, vacuum leak when cold – now being
repaired – should be complete by Jan 09
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
KEK ATF Beam Test planning
Marc Ross, Fermilab
19
Critical R & D – Accelerator Systems
– Damping Ring
• Damping Ring Design
– Two 6 km circumference 5GeV damping rings (e+ / e-)
– Each pulse inject ~ 3000 bunches and ‘damp’ to very low
emittance in 200 ms
– Bunch spacing 6 ns
– Extract one – by – one with very fast pulse magnet kicker a
bunch every 300 ns
• Component testing with beam at test
facilities:
– Cornell (CESR TA)
– Dafne (Frascati)
– ATF (KEK)
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
20
Damping Rings Critical R&D
• Electron cloud.
– Goal is to demonstrate effective mitigation methods.
– Studies are in progress at CesrTA, DANE, KEKB.
• Fast injection/extraction kickers.
– Goal is to demonstrate fast, high-power pulsers meeting ILC
damping rings specifications.
– Studies are in progress at ATF, DANE, SLAC.
• Low-emittance tuning.
– Goal is to demonstrate reliable operation with 2 pm vertical
emittance.
• Typical beam size ~ few microns
– Swiss Light Source has recently achieved 3 pm.
– Studies are in progress at ATF and CesrTA.
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
21
Electron Cloud Studies in CesrTA
Installation of wigglers in
former location of CLEO
(above).
Retarding field analyzers in
wiggler vacuum chambers,
and first data (right).
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
22
Fast Kicker R&D
• The goal is to develop and demonstrate a highreliability fast kicker that meets the ILC specifications
for damping ring injection and extraction.
Pulse amplitude
10 kV
Bunch spacing
3 ns
Pulse repetition rate
6.6 MHz
Pulse stability
~ 0.1%
Proposed for
smaller 3 km
circumference
damping rings
• R&D program includes activities at SLAC, INFN/LNF
and KEK. Drift Step Recovery Diodes 
– Anatoly Krasnykh, SLAC and
– A. Kardo-Sysoev, Ioffe Institute of Physics (RAS)
Damping Rings Summary, ILC08
Global Design Effort
23
Fast Injection/Extraction Kickers: SLAC
• Researchers at
SLAC are
investigating two
possible
technologies:
MOSFET array,
and DSRD fast
switch.
• Both technologies
provide attractive
characteristics.
• A hybrid pulser
may be the best
solution.
1 ns / division
Damping Rings Summary, ILC08
Global Design Effort
24
Critical R & D – Accelerator Systems
– Beam Delivery
• Beam Delivery (BDS) Design –
– BDS delivers the beam from the high power linac to the
users detector
– The BDS provides high power collimation and precision
focusing of the beams
– There will be two detectors arranged to they can be
‘exchanged’ using a ‘push-pull’ mechanism
– Critical BDS components ‘live’ within the detector
• BDS relies on precision instrumentation
systems and optics correction algorithms
– Collimation of high density, high power beams is a key
technology
– Beam testing is required: ATF2 at KEK
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
25
Beam Delivery System R & D
• ATF2
– constructed, hardware mostly
commissioned
– Next: beam commissioning
– Developing long-terms plans for AFT2
• SC FD
• squeezed beta* tests, etc
• IR integration (MDI)
– have a new version of “IR Interface
Document”
– the document is focused on functional
requirements
– MDI and DDI (Detector-Detector
Interface)
– Also a lot of progress on detailed
Detector and MDI design
Andrei Seryi, SLAC, BDS Group Leader
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
26
Travelling focus
Travelling focus idea proposed by Vladimir Balakin at the "Beam-Beam
and Beam-Radiation Interactions, High Intensity and Nonlinear Effects",
the 7th ICFA Workshop on Beam Dynamics, UCLA, USA, 13-16 May
1991, and also at the Linear Collider Workshop LC91, Protvino, 1991
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
27
International Linear Collider R & D
• Reference Design – a global effort
• Critical R & D for Accelerator systems
(non SRF)
• Critical R & D for Main Linac Technology
• Project Preparation
• Conclusion
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
28
Critical R & D – Main Linac
Technology
• Main Linac Design
– Each pulse a ~3 MHz bunch ‘train’ of e- and e+ is
accelerated from 5 to 250 GeV using two 11 km linacs
– Each linac has ~ 8000 9 cell superconducting standing wave
RF cavities operating at 1.3 GHz
– Gradient: 31.5 MV/m
– RF Power for each linac is provided through rectangular
waveguide from ~ 300 10 MW peak power ‘multi-beam’
klystrons
• The main linac is a ‘cost driver’ – R & D is
underway to:
– Improve gradient performance
– Produce and transport high power RF more efficiently
– Test components and systems in each region
Presentation for Российской академии наук
– EU-XFEL (17 GeV) uses almost identical technology
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
29
Superconducting Cavity R&D
 Niobium Sheet metal cavity
 Fabrication:
 Forming and welding (EBW)
 Surface Process:
 Chemical etching and polishing
 Cleaning
 Inspection/Tests:
 Optical Inspection (warm)
 Thermometry (cold)
081209
ILC Global Design Effort
30
Combined Yield of Jlab and DESY Tests
48 Tests, 19 cavities
23 tests, 11 cavities
ACCEL, AES, Zanon, Ichiro, Jlab
One Vendor
One Vendor Yield
(A6, A7, A8, A11, A12, A15, AC115, AC117, AC122, 125, 126)
1.2
1.2
1
1
0.8
0.8
50%
0.6
Fraction
Fraction
All Vendor Yield
(A6, A7, A8, A11, A12, A15, AES 1- 4, Ichiro5, J2,AC115, AC117, AC122,
125, 126, Z139, 143)
0.6
0.4
0.4
0.2
0.2
0
0
>15
>20
>25
>30
>35
>40
>15
>20
>25
>30
>35
>40
Gradient (MV/m)
Gradient (MV/m)
Yield 45 % at 35 MV/m being achieved
by cavities with a qualified vendor !!
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
31
Klystron RF Power Source
• S. Kazakov, A. Larionov, V.
Teriaev, BINP, Branch of
Institute of Nuclear Physics,
Russia, et. al
– Russian Design team; fabricated in
Japan
• Most successful 10 MW multibeam klystron  BASELINE
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
32
Basis:
2 tunnels
Cost Reduced
RF Concepts
Surface Klystron Cluster
(Adolphsen, Nantista,
SLAC; Kazakov, KEK)
Both options aimed at
single-tunnel solutions
Also: Distributed RF Source
Concept
(Fukuda, KEK; Kazakov, KEK)
Civil Engineering
• 30% of the estimated cost
• Three sample sites studied – Japan, CERN,
Illinois
– Quite similar configurations; deep rock dual tunnel
• JINR suggested a 4th sample site near Dubna
– Studied ~ 20 years ago
• This site has several contrasting features that
provide a comparison basis
– Single tunnel with near surface building
– Soft tunneling material
– (Shirkov, Trubnikov, Delov – JINR / GSPI)
• Siting process is political – but it is useful to have
studied and reported sample sites
• See presentation by G. Shirkov, JINR
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
34
Deep & Shallow
Site Configurations
35
International Linear Collider R & D
• Reference Design – a global effort
• Critical R & D for Accelerator systems
(non SRF)
• Critical R & D for Main Linac Technology
• Project Preparation
– Collaboration with CERN
– Making the transition from broad-based R & D to a practical
Project
• Conclusion
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
36
Collaboration with CLIC / CERN
• Formulated (Barish/Aymar) 11.2007
– Established in 02.2008; initially 5 working groups
• ‘Exclusive’ strategy:
– pick and choose efforts with strong commonality; optimize use of
resources
– startup philosophy: choose tasks more likely to succeed
• Promoting communication / links between the
two groups
– will facilitate discussion and consensus building between teams
– improving the credibility of both
• Common costing methodology / basis is a
collaboration priority
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
37
ILC R & D Resources
• (summarized in R & D Plan; published 2008.06)
• 2007-2010  4 years
Technical Area:
Superconducting RF
Tech
CFS / Global (Controls)
Effort (years * Funds (M$)
people)
615
90
112
4
Accelerator Systems
415
27
Total
1142
121
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
38
International Linear Collider R & D
• Reference Design – a global effort
• Critical R & D for Accelerator systems
(non SRF)
• Critical R & D for Main Linac Technology
• Project Preparation
• Conclusion
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
39
Conclusion
• ILC Global Design Effort has 3 goals:
–
–
–
–
Developing the community
Doing R & D
Designing the ILC and preparing a practical Project
Until end 2012
• ILC GDE is launching the first *truly global
large scale international science project*
– Based roughly equally in each of three regions: Americas,
Europe and Asia
• Russian contributions to ILC were (and
are) vital and span the entire complex
• We invite and strongly encourage your
continued and increased participation!
Presentation for Российской академии наук
made at Институт физики высоких энергий,
Протвино, 22 декабря, 2008
Marc Ross, Fermilab
40
Скачать