Готовимся к ЕГЭ,В7

реклама
ЗАДАНИЯ В7
Готовимся к ЕГЭ
РАССМОТРЕННЫЕ ТЕМЫ
1.
2.
3.
Тригонометрические выражения
Действия с корнями.
Действия со степенями.
Задания открытого банка задач
1. Найдите значение выражения
Решение.
2 sin 11  cos11
.
sin 22
2 sin 11  cos11 sin 22

 1.
sin 22
sin 22
Использована формула: sin 2t = 2sin t · cos t
2. Найдите значение выражения
Решение.





22 sin 2 9  cos 2 9
.
cos18

22 sin 2 9  cos 2 9
 22 cos 2 9  sin 2 9
 22cos 2  9



cos18
cos18
cos18
 22cos18

 22.
cos18
Использована формула: сos 2t = cos2 t – sin2 t
Задания открытого банка задач
3. Найдите значение выражения
Решение.
33 cos 63
.
sin 27
33 cos 63 33 cos90  27 33 sin 27


 33.
sin 27
sin 27
sin 27
Использована формула приведения: cos (90º – t) = sin t
π
6
π
6
4. Найдите значение выражения 6 3tg sin .
Решение.
6 3 tg
π
π
1 1 6 3
sin  6 3 
 
 3.
6
6
3 2 2 3
Использована таблица значений тригонометрических
функций.
ТАБЛИЦА ЗНАЧЕНИЙ
ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ
НЕКОТОРЫХ УГЛОВ.
Функция
/ угол
0
π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6
π
3π/2 2π
или или или или или или или или или или или
0°
30° 45° 60° 90° 120° 135° 150° 180° 270° 360°
sin α
0
1/2
√2/2 √3/2
1
√3/2 √2/2
cos α
1
√3/2 √2/2
tg α
0
√3/3
ctg α
–
√3
0
–1
0
1/2
0
-1/2 -√2/2 -√3/2
–1
0
1
1
√3
–
-√3
-1
-√3/3
0
–
0
1
√3/3
0
-√3/3
-1
-√3
–
0
–
1/2
5. Найдите значение выражения
Решение.
60
.
π
31
π
19




sin  

 cos
6
3




60
60


π
5π 
 19π 
 31π 


sin  
 cos
  sin  3  2π   cos 3  2π 

3
6
3
6








60
60
60
60
60





 80.
π
5π
3
3
π
3
π
3 3

 sin cos

cos π   

cos



3
6
4
2
6
2 
6
2 2

Использованы:
а) свойство нечетности функции sin t: sin (−t) = − sin t
б) свойство периодичности функций sin t и cos t:
sin (2πn ± t) = ± sin t, cos (2πn ± t) = cos t, где n ∈ Z
в) свойство четности функции cos t: cos (−t) = cos t
г) формула приведения: cos (π – t) = − cos t.
д) таблица значений тригонометрических функций.
Задания открытого банка задач
6. Найдите значение выражения 24 3 cos 750.
Решение.
24 3 cos 750  24 3 cos2  360  30  24 3 cos 30 
 24 3 
3 24 3  3

 12  3  36.
2
2
Использованы:
а) свойство четности функции cos t: cos (−t) = cos t
б) свойство периодичности функции cos t:
cos (2πn ± t) = cos t, где n ∈ Z
в) таблица значений тригонометрических функций.
Задания открытого банка задач
7. Найдите значение выражения 34 sin 100 .
sin 260
Решение.
34 sin 100 34 sin 90  10 34cos10


 34.
sin 260
sin 270  10
 cos10
Использованы формулы приведения:
sin (90º + t) = cos t и sin (270º − t) = − cos t
8. Найдите значение выражения 5 tg 154  tg 244.
Решение.
5 tg 154  tg 244  5 tg 90  64  tg 180  64 
 5 ctg 64  tg 64  5.
Использованы:
а) формулы приведения: tg (90º + t) = − ctg t и tg (180º + t) = tg t
б) тождество: tg t · ctg t = 1.
Задания открытого банка задач
9. Найдите значение выражения
37
.
2
2
sin 173  sin 263
Решение.
37
37


2
2
2
2
sin 173  sin 263 sin 90  83  sin 180  83
37
37


 37.
2
2
cos 83  sin 83
1
Использованы:
а) формулы приведения:
sin (90º + t) = cost и sin (180º + t) = − sin t
sin2 (180º + t) = (− sin t) 2 = sin2 t
б) тождество: sin2 t + cos2 t = 1.
Задания открытого банка задач
10. Найдите tg t, если
5 29
 3π

cos t 
, t 
; 2π .
29
 2

Решение.
5 29
cos t 

29
5
29
2
25 29 25
4
 5 
2
2
sin t  1  cos t  1  



 1
29
29
29
29
 29 
4
2
 3π


, где t  
; 2π   sin t  0
29
29
 2

2

sin t
29   2  0,4.
tgt 

5
cos t
5
29
sin t  
Использованы тождества:
sin2
t+
cos2
sin t
t = 1 и tg t =
.
cos t
Задания открытого банка задач
11. Найдите −20cos 2t, если sin t = −0,8
Решение.




 20 cos 2t  20 1  2 sin 2 t  20 1  2   0,8 
 201  2  0,64  201  1,28  20   0,28  5,6.
2
Использована формула: сos 2t = 1 – 2sin2 t
12. Найдите
Решение.
2 sin 4t
5 cos 2t
, если sin 2t = −0,7.
2 sin 4t 4 sin 2t  cos 2t 4 sin 2t 4   0,7   2,8




 0,56.
5 cos 2t
5 cos 2t
5
5
5
Использована формула: sin 2t = 2sin t cos t
Задания открытого банка задач
13. Найдите значение выражения
Решение.
 3π

cos3π  t   sin  
t
 2
.
5 cost  π 
 3π

 3π

cos3π  t   sin  
 t   cos t  sin 
t
 2

 2

5 cost  π 
5 cosπ  t 
 cos t  cos t  2cos t 2


  0,4.
 5 cos t
 5 cos t 5
Использованы:
а) свойство нечетности функции sin t: sin (−t) = − sin t
б) свойство четности функции cos t: cos (−t) = cos t
в) формулы приведения:
cos (3π − t) = −cos t, sin (3π/2 − t) = − cos t, cos (π − t) = − cos t.
Задания открытого банка задач
14. Найдите значение выражения:
4tg(−3π – t) – 3tg t, если tg t = 1.
Решение.
4tg  3π  t   3tgt  4tg 3π  t   3tgt  4tgt  3tgt  7tgt 
 7  1  7.
Использованы:
а) свойство нечетности функции tg t: tg (−t) = − tg t
б) формула приведения: tg (3π + t) = tg t.
Задания открытого банка задач
 3π

 t , если sin t = 0,96, t ∈ (0; 0,5π).
 2

15. Найдите  4 sin 
Решение.
cos 2 t  1  sin 2 t  1  0,96
2
2
625 576
49
 24 
1 




25
625 625 625


49
7
28


 0,28, где t  0; 0,5π   cos t  0
625 25 100
 3π

 4 sin 
 t   4 cos t  4  0,28  1,12.
 2

cos t 
Использованы:
а) формула приведения: sin (3π/2 − t) = − cos t
б) тождество: sin2 t + cos2 t = 1.
Задания открытого банка задач


16. Найдите tg  t 
5π 
, если tg t = 0,1.
2 
Решение.
5π 
π
1
1



π

tg  t 

 10.
  tg  2π   t   tg   t   ctgt  
2 
2
tgt
0,1



2

Использованы:
а) формула приведения: tg (5π/2 + t) = − ctg t
б) тождество: tg t · ctg t = 1.
Задания открытого банка задач
17. Найдите tg2 t, если 5sin2 t + 12cos2 t = 6.
Решение.
5 sin 2 t  12cos 2 t  6
: cos 2 t
5 sin 2 t 12cos 2 t
6


cos 2 t
cos 2 t
cos 2 t
1
5tg 2t  12  6 
cos 2 t
5tg 2t  12  6tg 2t  1
5tg 2t  6tg 2t  6  12
 tg 2t  6
tg 2t  6.
Использовано тождество:
tg2
1
t+1=
.
2
cos t
Задания открытого банка задач
7 cos t  6 sin t
18. Найдите
,
3 sin t  5 cos t
если tg t = 1.
Решение.
Поделим числитель и знаменатель дроби на cos t ,
где cos t  0 :
7 cos t 6 sin t

7 cos t  6 sin t
cos
t
cos t  7  6tgt  7  6  1  1  0,5.

3 sin t  5 cos t 3 sin t  5 cos t 3tgt  5 3  1  5  2
cos t
cos t
Использовано тождество: tg t =
sin t
.
cos t
Задания открытого банка задач
10 cos t  2 sin t  10
19. Найдите
, если tg t = 5.
sin t  5 cos t  5
Решение.
Поделим числитель и знаменатель дроби на cos t ,
где cos t  0 :
10 cos t 2 sin t
10
10


10  2tgt 
10 cos t  2 sin t  10
cos t
cos t 
cos t 
 cos t
sin t 5 cos t
5
5
sin t  5 cos t  5


tgt  5 
cos t
cos t
cos t
cos t
10
10
10  2  5 
cos t  cos t  2.

5
5
55
cos t
cos t
Использовано тождество: tg t =
sin t
.
cos t
Задания открытого банка задач
20. Найдите tg t, если
7 sin t  2cos t
 2.
4 sin t  9 cos t
Решение.
7 sin t  2cos t 2

4 sin t  9 cos t 1
7 sin t  2cos t  24 sin t  9 cos t 
16 cos t  10 sin t
: cos t
16 cos t 10 sin t

cos t
cos t
16  10tgt
16
10
tgt  1,6.
tgt 
Использовано тождество: tg t =
sin t
.
cos t
Задания открытого банка задач
21. Найдите tg t, если
3 sin t  5 cos t  1 1
 .
2 sin t  cos t  4 4
Решение.
3 sin t  5 cos t  1 1

2 sin t  cos t  4 4
43 sin t  5 cos t  1  2 sin t  cos t  4
12 sin t  20 cos t  4  2 sin t  cos t  4
12 sin t  2 sin t  cos t  20 cos t
10 sin t  19 cos t
10 sin t  19 cos t

cos t
cos t
10tgt  19
19
tgt  
10
tgt  1,9.
: cos t
Использовано тождество: tg t =
sin t
.
cos t
Задания открытого банка задач
22. Найдите значение выражения
2
3
если cos t   .
Решение.
 π

2cos2π  t   5 sin    t ,
 2

 π

π

2cos2π  t   5 sin    t   2cos t  5 sin   t   2cos t  5 cos t 
 2

2

 2
 3 cos t  3      2.
 3
Использованы формулы приведения:
cos (2π + t) = cos t, sin (π/2 − t) = cos t.
Задания открытого банка задач
23. Найдите значение выражения
 6 sin 142
.
sin 71  sin 19
Решение.
 6 sin 142
 6  2 sin 71  cos 71  12cos 71


 12.
sin 71  sin 19 sin 71  sin 90  71
cos 71
Использованы:
а) формула sin 2t = 2sin t · cos t
б) формула приведения sin (90º – t) = cos t.
Задания открытого банка задач
13π
13π
cos
.
24. Найдите значение выражения 2 2 sin
8
8
Решение.
2 2 sin
13π
13π
13π
 13π 
cos
 2 sin  2 

2
sin


8
8
8 
4

3π 
3π
2

 3π 
 2 sin  4π 
 2
 1.
  2 sin  
   2 sin
4 
4
2

 4 
Использованы:
а) формула sin 2t = 2sin t · cos t
б) свойство периодичности функции sin t:
sin (2πn ± t) = ± sin t, где n ∈ Z
в) свойство нечетности функции sin t: sin (−t) = − sin t
г) таблица значений тригонометрических функций.
Задания открытого банка задач
25. Найдите значение выражения 27 cos 2
13π
13π
 27 sin 2
.
12
12
Решение.
13π
13π
13π
13π 

 27 sin 2
 27  cos 2
 sin 2

12
12
12
12 

π
π
 13π 
 13π 

 27 cos 2 
  27 cos
  27 cos 2π    27 cos 
12 
6
6

 6 

27 cos 2
3 9
3 3
  4,5.
2
2
Использованы:
а) формула cos 2t = cos2 t – sin2 t.
б) свойство периодичности функции cos t:
cos (2πn ± t) = cos t, где n ∈ Z
в) таблица значений тригонометрических функций.
Задания открытого банка задач
26. Найдите значение выражения
Решение.
72 cos 2
15π
72 cos
 18.
8
2
15π
15π


 15π 
 18  18  2cos 2
 1  18 cos 2 

8
8
8




π
π
2
 15π 

 18 cos
 3.
  18 cos 4π    18 cos  3 2 
4
4
4
2




Использованы:
а) формула cos 2t = 2cos2 t – 1.
б) свойство периодичности функции cos t:
cos (2πn ± t) = cos t, где n ∈ Z
в) таблица значений тригонометрических функций.
Задания открытого банка задач
27. Найдите значение выражения
Решение.
8  32 sin 2
11π
8  32 sin
.
8
2
11π
11π 

 11π 
 8 1 2 sin 2
  8 cos 2 

8
8
8





3π 
3π
2
 11π 


  2.
 8 cos
 2 2  
  8 cos 2π 
  8 cos

4 
4
 4 

 2 
Использованы:
а) формула cos 2t = 1 – 2sin2 t.
б) свойство периодичности функции cos t:
cos (2πn ± t) = cos t, где n ∈ Z
в) таблица значений тригонометрических функций.
Задания открытого банка задач
1. Найдите значение выражения 652  562.
Решение.
652  562  (65  56)(65  56)  9  121  3  11  33.
2 7  .
2
2. Найдите значение выражения
Решение.
2 7 
2
14

14
4  7 28

 2.
14
14
3. Найдите значение выражения
Решение.
 13  7  13  7  
2
2
 13  7  13 
13  7  13  7  6.
7
.
Задания открытого банка задач
4. Найдите значение выражения 50,36  250,32 .
Решение.
 
50,36  250,32  50,36  52
0,32
 50,36  50,64  50,360,64  51  5.
36,5
5. Найдите значение выражения 2,25 .
9
Решение.
36,5
36,5
36,5
6,5 4,5
2



3

3
 9.
2,25
2,25
4,5
2
9
3
3
 
4
9
5
18
6. Найдите значение выражения 7  49 .
Решение.
4
9
5
18
7  49
4
9
 
5
2 18
7  7
4
9
5
9
 7 7  7
4 5

9 9
9
9
 7  71  7.
Задания открытого банка задач
23,5  35,5
7. Найдите значение выражения
.
64,5
Решение.
23,5  35,5 23,5  35,5 23,5  35,5
3
3,5  4,5
5,5  4,5
1
1



2

3

2

3

 1,5.
4,5
4,5
4,5
4,5
6
2 3
2
2  3
8. Найдите значение выражения 35 4,7  75,7 : 5 3,7 .
Решение.
35 4,7  75,7 : 5 3,7  5  7 
4,7
 5 4,73,7  7 4,75,7
 75,7  53,7  5 4,7  7 4,7  75,7  53,7 
7
 5 1  71   1,4.
5
2,8  4,2
9. Найдите значение выражения
Решение.
2,8  4,2
2,8  4,2
28  42


 49  7.
0
,
24
24
0,24
0,24
.
Задания открытого банка задач
10. Найдите значение выражения
Решение.

6
5
3
 3  1 :
.


7
7
28


 27
 27
6
5
3
12 
3
12  28
 3  1 :






:







7
7  28  7
7  28  7
7 
3

27 28
12 28
27  28
12  28






 9  4  4  4  6  4  2.
7
3
7
3
73
73
11. Найдите значение выражения
Решение.
9
9
7  18 7
.
6
7
7  18 7 18 72  18 7 18 72  7 18 73 18



 1  1.
3
3
6
18 3
7
7
7
7
Задания открытого банка задач
12. Найдите значение выражения
Решение.
5
5
10  5 16
.
5
5
10  5 16 5 10  16 5

 32  2.
5
5
5
 13 14
2 2
13. Найдите значение выражения  12
2


Решение.

2 2
 12
2


1
3
1
4
2



2 2



1

 212


1
3
1
4
2
2


.



1 1 1 2
4 31 2
1 2
 3  4 12 
 12 
 2





 2   2.

2

2






 





 

Задания открытого банка задач

2 5
14. Найдите значение выражения  109

Решение.

3
5
2 15
3

2  5


109
3
5





2


3 15
5
 
  5
 
 
29  59
2
3
15


.


2 15
3




29  510
 9 9  5.
2 5
1
7
2
7
6
7
15. Найдите значение выражения 0,8  5  20 .
Решение.
1
7
2
7
6
7
1
7
2
7
1
7
2
7
6
7
6
7
6
4 5 4 5
4
0,8  5  20     5  4  5 7 
 4  5  20.
1
5
57
Задания открытого банка задач

13  7 
16. Найдите значение выражения
.
2
10  91
Решение.
 13  7 
10  91

2
2

2
13  2 13 7  7
13  2 91  7


10  91
10  91


20  2 91 2 10  91

 2.
10  91
10  91
17. Найдите значение выражения 5  3 9  6 9.
Решение.
5  3 9  6 9  5  6 92  6 9  5  6 92  9  5  6 93  5  9  5  3  15.
Задания открытого банка задач
18. Найдите значение выражения
Решение.
495,2
.
7 8,4
 
5,2
495,2
72
710,4
10,48,4
2



7

7
 49.
78,4
78,4
78,4
19. Найдите значение выражения
Решение.
5a   6b 
30a b 
2 3
2
3
2
5a   6b 
30a b 
2 3
5 3  a 6  62  b 2 5 3  a 6  62  b 2

 2 2 6 2  5.
302  a 6  b 2
5  6 a b
2
3
2
.
Задания открытого банка задач
20. Найдите значение выражения
Решение.
   11m 
3m 
7m
5 6
3 10
15 2
x 10  2x 4
3 10
15 2
7m 30  11m 30 18m 30


 2.
30
30
9m
9m
21. Найдите значение выражения
Решение.
3x 3  x 9
   11m 
3m 
7m
5 6
33  x 3  x 9 27x 6 27
 10


 13,5.
4
6
x  2x
2x
2
3x 3  x 9 .
x 10  2x 4
.
Задания открытого банка задач
22. Найдите значение выражения
Решение.
a 2b 6
16

3 2
1  4 .
4a  b a b
a 2b 6
16
a 2b 6  16
16a 2b 6 1
 1 4 

 .
3 2
3 2
1  4
2 6
a
b
64
a
b

a
b
64
a
b
4
4a  b
23. Найдите значение выражения
Решение.
2x   x  : 3x
3 4
2 6
12

16x

12
 x 12
3x 12
  15x
12
3x 12
2x   x  : 3x
3 4
 5.
2 6
12
.
Задания открытого банка задач
24. Найдите значение выражения x  x 2  4x  4
при х  2.
Решение.
x  x 2  4x  4  x 
x  22
Т.к. при х  2
 x  x  2  x  x  2  2,
x  2  x  2.
25. Найдите значение выражения
11a
6

 b 3  3a 2b
Решение.
11a
6

 b 3  3a 2b
  : 4a b 
3
6
6
  : 4a b 
3
6
6
при b = 2.
11a 6b 3  27a 6b 3  16a 6b 3  4


 3 ,
6 6
6 6
4a b
4a b
b
Т.к. b = 2, то
4
 0,5.
3
2
Скачать