Методы анализа явлений переноса в HgCdTe при наличии

advertisement
79
4, 2011
621.315.592
HgCdTe
1, 2
. .
,
. .
HgCdTe
-
,
.
,
,
-
,
,
.
PACS: 72.20.My, 72.80.Ey, 73.25.+i, 73.63.-b
:
, QMSA.
,
HgCdTe,
,
.
1015
50
HgCdTe
[1],
[2, 3].
,
-
,
-
-3
RH
Hg1-xCdxTe (x 0,2),
InSb
(
).
. 1,
n.
,
[4],
.
,
,
,
,
-
-
RH
,
.
60-
,
-
-
InSb,
,
InSb.
n
.
-
,
HgCdTe
-
,
1017
-3
.
,
1
2
,
1, 2
,
.
"
".
, 79012,
, .
. (+38032) 275-93-38.
, 13.
-
,
RH
RH
(
. 1, ).
,
.
, 35-959,
,
E-mail: nberchen@univ.rzeszow.pl
, 16 .
,
. .
.
, 39614,
, .
, 20.
. (+38 0536) 71-22-36. E-mail: ai-elizarov@online.ua
26
. .,
.
.
2010 .
. ., 2011
,
.
HgCdTe,
,
,
,
-
80
4, 2011
.
.
,
,
.
,
,
,
.
HgTe [5].
.2
,
.
-
(
,
) [6—8].
(1 – x
0,17; 2 – x
,
RH
Hg1-xCdxTe
-
0,12),
.
,
,
,
,
.
,
[12].
105
2
"
.
,
600
150
400
100
1
RH,
3
3
RH,
103
RH,
3
104
2
RH,
3
1
102
"
2
1000
.
105
103
-
RH( )
—
[9—11].
104
1
102
3
101
0
40
80
120
103
, –1
T
. 1.
101
0
200
80
160
103
, –1
T
( )
RH: —
0
0
0,1
1,0
10
,
. 2.
n
;
<1017 -3;
>1017 -3.
RH; —
50
2
240
( )
RH
Hg1-xCdxTe (x 0,2).
RH: 1 —
2—
3—
Hg1-xCdxTe (1 — x
0,17; 2 — x
,
,
,
100
,
-
,
n
[15].
[13].
"
,
"
,
,
RH,
,
-
,
.
0,12),
-
[14]
RH
"
,
-
(
;
-
. 3, ) [16].
,
,
-
81
4, 2011
100—400
.
,
-
.
,
,
300
,
-
.
,
(
)
.
n
,
,
,
, . .
n-
,
-
.
[15].
25
25
25
25
. 3.
—
; —
-
,
; —
(111)
:
Hg1-xCdxTe.
82
4, 2011
,
n
,
. 3, ),
. 3, )
(
(
,
1,09 (
(
.
3,
RH( ),
,
,
-
,
1
. 4),
,
)
—
(
. 4) [17].
,
-
.
2
,
,
-
.
.
,
,
,
,
1,40
.
2
1,30
-
.
)
-
RH/RH (10
1,20
:
1,10
RH ( B)
1
1,00
0,01
0,1
1,0
( B)
10
,
nq
RH,
n-Hg1-xCdxTe,
RH
10
.
1
xx
,
xy
. 3, , ,
2—
n
,
.
B2
2
B
2 2
1
B
,
(3)
,
(4)
—
;
q—
B—
;
.
N
HgCdTe
"
xy
HgCdTe
,
,
,
i
,
2 2
B
i
N n q 2B
i i i
.
2 2
i 1
iB
i
1
,
,
.
(5)
(6)
-
[23],
-
[20—22].
ni qi
N
xx
-
,
"
Al2O3
:
,
.
,
SiO2
(2)
,
-
n
2
1
nq
HgCdTe
(1)
:
. 4.
[18, 19].
1
,
nq
1
,
nq
-
83
4, 2011
-
.
:
M
2
i
(
N
exp
xx ( Bi )
[(
exp
xx ( Bi )
j
2
xx ( Bi ))
j
N
s(E)
s( ) [25, 26]
. 5.
j
2
xy ( Bi )) ].
j
(7)
—
N—
j
.
nj
,
-
,
-
,
,
-
.
s( )
,
.
,
s( )
-
,
3.
.
"
s( )
" [24],
-
-
.
,
-
"
:
".
s p ( ) sn ( )
xx
1
2 2
B
( s p ( ) s n ( )) B
xy
1
2
(8)
d ,
B2
(9)
d .
sp( ), sn( ) —
"
,
E(k)
E
S(E)
E
-
QMSA (Quantitative
Mobility Spectrum Analysis —
) [27, 28], i-QMSA
(improved-Quantitative Mobility Spectrum Analysis)
[29, 30], MEMSA (Maximum Entropy Mobility
Spectrum Analysis —
) [31],
,
.
+
(E)
S( )
E
S
KT
EF
k
xx ( H )
xx ( H )
S
S (E)
1 ( ( E ) H )2
S (k )
1 ( (k ) H ) 2
0
dE
xx ( H )
dk
. 5.
0
S( )
1 ( H )2
d
s(E)
(E) —
s( ).
, EF —
E(k)
,
, kT —
[26]
84
4, 2011
QMSA
i-QMSA
.
,
-
,
.
QMSA
.
. 6
.7
100
-Hg1-xCdxTe (x 0,22)
20
[33].
,
,
,
.
.
QMSA [32].
,
1
3
2
h
10–3
10–5
10–7
102
103
104
105
,
. 6.
2/(
106
)
4
(
3
),
,
0,009
9
[32]
n set
set
nQMSA,
QMSA
-
QMSA
-
set ,
2
e1
e2
e3
h
-600
-1 104
-3,7 104
3 103
nset ,
QMSA ,
2
-3
-1 1014
-5 1012
-1 1012
1 1013
-601
-1,02 104
-3,75 104
3,03 103
nQMSA,
-3
-1,00 1014
-5,01 1012
-9,66 1011
1,00 1013
. 7.
i-QMSA
,
-Hg1-xCdxTe (x
20
0,1 %
—
0,22)
:
4
; —
30
.
100
12
,
.
[33]
,
.
,
,
("ghost" peaks),
.
-
,
(87,2 %)
439 2
.
-
.
-
,
85
4, 2011
-
10–1
10–2
,
.
-
(
0,2
,
)
,
0,85 %,
,
(
)
45,8 %
2
.
17467
10–3
-
,
10–4
102
-
104
,
,
,
QMSA
.
,
.
DMSA
Analysis —
) [34, 35].
,
"
(Discrete
Mobility
"
Spectrum
-
,
1013 c
.
p-InSb
,
,
-
/(
)
,
2
/(
)
10–2
10–3
10–4
10–5
102
103
104
-
-3
,
)
,
105
2
(
2
481
103
. 8.
QMSA
105
,
n-Si
296
( )
( )
[36].
[37].
,
B (1 + C(R –1),
,
QMSA,
—
R =
2/ 1
-
,
,
—
.
.
,
,
",
Hg1-xCdxTe
"
QMSA
n-Si
(
[38],
. 8).
"
.
"
.
-
,
,
.
—
.
,
-
HEMT (High
. . [39].
,
-
Electron Mobility Transistor)
1,5
Al0,88In0,12N/AlN/GaN/AlN
i-QMSA
-
86
4, 2011
,
,
Al0,88In0,12N/AlN
GaN/AlN [40].
,
.
,
.
,
,
,
,
-
,
,
-
.
1.
2.
AIIBVI/
.
3.
4.
. .//
. ,
. . .
, 1986.
. .
.—
:
. .,
. 2003. . 173. . 649.
. .
.
, . .
.—
.:
, 2000.
. .,
.
.
-
.—
:
.
, 1984.
5.
. .,
. . //
. 1972.
. 62. . 713.
6.
O. H.,
. .,
. .,
. . //
. 1974. . 66. . 330.
7.
. .,
O. H.,
. .,
. ,
. .,
. . //
.
1974. . 20. . 370.
8. Tsidilkovski I. M., Harus G. I., Shelushinina N. G.//
Advances in Physics, 1985. V. 34. P. 43.
9.
. .,
. .,
. .//
.
1975. . 9. . 2084.
10.
. .,
. .,
. . //
. 1978. . 12. . 2207.
11.
. .,
. .,
. .,
. . //
. 1979. .13. . 441.
12. Ivanov-Omskii V. I., Berchenko N. N., Elisarov A. I.//
Phys. Stat. Sol.(a). 1987. V.103. S.11.
13.
. .,
. .,
. . //
. 1999. . 33. . 574.
14.
. .,
. .,
. . //
. 1976. 13. . 52.
15.
. .//
. 1979.
18.
C. 46.
16.
. .,
. .,
. .,
. .,
. .//
. 1985. . 19. . 819.
17. Berchenko N. N., Kurbanov K. R., Nikiforov A. Yu.,
Korovin A. V. // Material Science and Engeneering. 1997. V. B44.
P. 274.
18.
. .,
. .,
. .//
. 1988. . 22. . 62.
19. Salmin E. A., Shimansky I. V., Ponomarenko Y. P., Stafeev V. I.//Acta Phys. Polon. 1990. V. A77. P. 237.
20.
. .,
. .,
. .,
. .,
. . //
. 1983. . 17. . 459.
21. Emtage P. R., Temofonte T. A., Noreika A. J., Seiler C. F.//
Appl. Phys. Lett. 1989. V. 54. P. 2015.
22. Belyaev A. E., Beketov G. V., Gorodnichii O. P., Komirenko S. M., Mukha L. A. //Phys. Stat. Sol.(a). 1993. V. 135.
. 253.
23. Petritz R. L. //Phys. Rev. 1958.V. 110. P. 1254.
24. Beck W. A., Anderson J. R.//J. Appl. Phys. 1987. V. 62.
P. 541.
25. Dziuba Z., Gorska M.//J. Phys. 1992. V. III 2. P. 99.
26. Dziuba Z. //Phys. Stat. Sol.(a). 1996. V. 153. . 445.
27. Antoszewski J., Seymour D. J., Faraone L., Meyer J. R.,
Hoffman C. A. //J. Electron. Mater. 1995. V. 24. P. 1255.
28. Meyer J. R., Hoffman C. A., Antoszewski J., Faraone L.//
J. Appl. Phys. 1997. V. 81. P. 709.
29. Vurgaftman I., Meyer J. R., Hoffman C. A., Redfern D.,
Antoszewski J., Faraone L., Lindemuth J. R. // J. Appl. Phys.
1998. V. 84. P. 4996.
30. Antoszewski J., Faraone L., Vurgaftman I., Meyer J. R.,
Huffman C. A. //J. Electron. Mater. 2004. V. 33. P. 673.
31. Kiatgamolchai S., Myronov M., Mironov O. A., Kanter V. G., Parker E. H. C., Whall T. E.// Phys. Rev. 2002. V. E 66.
P. 36705.
32. Gang Du, Lindemuth J. R., Dodrill B. C., Sandhu R.,
Wojtowicz M., Goosky M. S., Vurgaftman I., Meyer J. R.
http://www.lakeshore.com/pdf_files/systems/Hall_Data_Sheets/IP
RM%20Paper.pdf
33. Tsen G. K. O., Musca C. A., Dell J. M., Antoszewski J.,
Faraone L. //J. Electron. Mater. 2007. V. 36. P. 826.
34.
. .,
. .//
. 2003. . 2.
. 10.
35. Bogoboyashchyy V. V., Elizarov A. I., Izhnin I. I. // Semicond. Sci. Technol. 2005. V. 20. P. 726.
36. Berchenko N. N., Bogoboyashchiy V. V., Izhnin I. I., Pociask M., Sheregii E. M., Yudenkov V. A. // Phys. Stat. Sol. (c).
2005. V. 2. P. 1418.
37. Vurgaftman I., Meyer J. R., Hoffman C. A., Cho S.,
Ketterson J. B., Faraone L., Antoszewski J., Lindemuth J. R.//
J. Electron. Mater. 1999. V. 28. P. 548.
38. Umana-Membreno G. A., Antoszewski J., Faraone L.,
Smith E. P. G., Venzor G. M., Johnson S. M., Phillips V.//
J. Electron. Mater. 2010. V. 39. P. 1023.
39. Antoszewski J., Faraone L.//Opto-Electron. Rev. 2004.
V. 12. P. 347.
40. Tasli P., Lisesivdin S. B., Yildiz A., Kasap M, Arslan E.,
Özcelik S., Ozbay E.// Cryst. Res. Technol. 2010. V. 45. P. 133.
Analysis techniques for the evaluation of HgCdTe multicarrier
transport parameters
1
N. N. Berchenko1, 2
National University "Lviv Polytechnic", 13 Bandera str., Lviv, 79012, Ukraine
Institute of Physics, Rzeszow University, 16a Rejtana str., Rzeszów, 35-959, Poland
E-mail: nberchen@univ.rzeszow.pl
2
87
4, 2011
A. I. Yelizarov
M. Ostrogradski Kremenchuk State Politechnical University, 20 Perszotravneva str.,
Kremenchuk, 39614, Ukraine
E-mail: ai-elizarov@online.ua
The paper examines the findings of the investigation of kinetic effects in HgCdTe which have
been carried out since the first samples of this material were grown. This long-lasting research has
multifold importance since not only the main parameters of carriers, but structural perfection of the
material were assayed. In addition, it enabled those experimental techniques to find a new application in the investigation of multi-layer semiconductor structures.
PACS: 72.20.M, 72.80.Ey, 73.25.+i, 73.63.-b
Keywords: HgCdTe, variable magnetic field, Hall effect, multilayered structures, quantitative mobility spectrum analysis (QMSA).
Bibliography — 40 references.
Received August 26, 2010
Download