Исследование энергетической эффективности альтернативных

реклама
.
01.04.08 –
:
,
.
– 2013
-2-
.
5
1.
16
1.1.
16
1.2.
32
1.3.
,
65
1.4.
76
2.
80
2.1.
80
2.2.
88
2.3.
94
2.4.
.
113
2.5.
119
2.6.
135
-3-
.
3.
137
3.1.
137
3.2.
145
3.3.
158
3.4.
182
3.5.
192
3.6.
213
4.
217
4.1.
217
4.2.
224
4.3.
252
4.4.
5.
265
,
266
5.1.
(FRC)
267
5.2.
309
5.3.
321
-4-
.
5.4.
325
5.5.
342
6.
344
6.1.
344
D–3He-
6.2.
357
6.3.
376
D–3He-
6.4.
384
6.5.
p–11B
6.6.
387
398
400
403
-5-
(
)
-
,
.
(D)
(T)
-
.
;
.
.
D–T,
[1].
-
ITER (International Thermonuclear Experimental Reactor) [2].
–
,
-
Q = 10,
.
D–T-
.
ITER
ITER
) [3]
D–T-
.
–
-
.
,
NIF (National Ignition Facility,
),
,
.
D–T2050 .,
[1].
,
-6.
–
ITER
Q = 10.
-
–
.
.
,
D–T-
.
[4, 5].
Q = 0.1–1.
-
(
).
Q = 10
.
,
3
He (
-3) [6].
-3
(
),
,
.
-3
-
.
D–3HeD–3He-
.
D–T-
.
D–3He-
-
-7.
,
,
-
,
-
.
D–D-
,
-
D–D-
–
-3.
D–D-
D–T-
,
-
D–3He-
.
,
D–D-
,
.
D–D-
.
.
-11 (11B).
(p)
-11
.
-
,
p–11B,
,
-
.
,
.
D–3He, D–D
p–11B,
,
,
-
,
,
.
,
-
~1( –
-8).
~ 0.1,
-
,
~ 1.
,
.
,
.
.
~ 1,
-
,
,
.
,
D–3He-
:
Q = 10–20,
-
p–11B.
Q = 0.1 – 0.5
,
,
-
.
(
-
)
.
,
.
,
-9,
.
-
,
.
,
0.1
D–3He-
,
.
p–11B (~ 100
),
D–T(~ 10
).
,
.
:
.
,
.
.
.
,
,
.
,
,
,
,
,
.
,
(
.
.
,
.
(
)
.
.
,
(
(
(
,
),
),
.
),
), Tri Alpha Energy
),
-
.
,
.
,
T ~ 10
~ 0.1,
.
- 10 ,
:
;
;
-
;
(
)
.
,
-
.
:
1.
,
.
2.
,
,
.
2.
(
)
,
.
3.
,
,
;
.
- 11 4.
.
5.
.
,
-
,
.
(
),
-
.
.
,
-
,
.
.
,
.
-
.
.
,
.)
(
.
,
,
-
- 12 .
-
.
,
,
-
.
(
)
,
.
.
-
,
.
-
.
.
-
,
-
.
.
(FRC),
–
.
-
.
-
,
.
:
, D–3He, FRC
D–T,
D–3He-
-
, D–3He-
- 13 p–11B.
,
-
,
.
1.
,
,
,
.
2.
,
,
.
3.
(
)
-
0.8.
(FRC),
-
.
4.
(FRC)
(
)
,
-
.
5.
(
,
,
-
- 14 ,
)
,
: D–3He-
FRC
,
(Q = 10–20)
(
FRC (Q = 0.1–0.5).
p–11B
6.
Q
)
1.
,
,
Q
5.
,
,
,
-
,
~ 1.
,
,
.
,
.
,
-
(FRC)
-
.
- 15 .
,
(50–250
)
,
(0.5
,
-
).
-
,
,
,
,
-
.
–
.
- 16 1.
1.1.
,
(
[8],
[9]).
.,
-
,
[7],
1
,
-
.
. 1.1.
v ,
, v –
–
,
-
.
,
.
v
-
1
(
-
[7],
p–
11
B,
[10]).
.
1.2
v W,
W–
,
.
,
-
.
-
.
,
,
D–T-
–
,
- 17 .
,
ITER [11]
,
,
5
-
.
1.
,
-
v ,
3
Ti=15
100
300
1
D+T n (14.1) +4He (3.5)
2.6 10-22
8.3 10-22
5.0 10-22
2a
D+D n (2.45) +3He (0.817)
1.5 10-24
0.2 10-22
0.73 10-22
2b
D+D p (3.02) +T (1.01)
1.4 10-24
0.2 10-22
0.59 10-22
3
D+3He p (14.68) +4He (3.67)
2.1 10-25
1.7 10-22
2.57 10-22
4a
D+6Li n (2.958) +7Be (0.423)
0.9 10-23
0.48 10-22
4b
D+6Li n (~0.66) +3He+4He+1.794
0.6 10-23
0.37 10-22
4c
D+6Li p (4.397) +7Li (0.628)
1.2 10-23
0.72 10-22
4d
D+6Li p+T+4He+2.257
1.4 10-23
0.88 10-22
4e
D+6Li
0.39 10-23
0.17 10-22
5
D+7Be p+4He+4He+16.766
1.2 10-23
2.1 10-22
6
p+6Li
1.7 10-23
0.79 10-22
7a
p+9Be D+4He+4He+0.651
7.2 10-23
2.2 10-22
7b
p+9Be
6.3 10-23
1.9 10-22
8
p+11B 34He+8.681
6.1 10-23
3.4 10-22
9
3
~0.5 10-24
~10-23
4
3
He+4He+22.371
He (2.3) +4He (1.722)
4
He (1.277) +6Li (0.851)
He+3He p+p+4He+12.86
- 18 -
10
,
1
10–1
1
10–2
10–3
10–4
2
3
4
10–5
10
102
103
104
E,
. 1.1.
: D–T (1), D–D (2;
,
D–3He (3)
n
3
He;
–
,
p–11B (4,
(
–
p
). E –
T, D, D
p).
T),
-
–
-
- 19 -
102
3
101
D–T
,
D–3He
100
p–11B
D–D
10-1
3
He–3He
10-2
10-3
10-4
100
. 1.2.
101
,
102
103
1
1020
–3
3
-
- 20 ,
:
n + 6Li
T + 4He + 4.8
; n + 7Li
T + 4He + n – 2.47
.
(1.1)
-3
3
He + e– + 0.018
T
12.3
(1.2)
.
,
,
,
,
-
p–11B,
,
3
He–3He.
p–11B
,
,
.
-
.
D–D-
(
,
D–D-
)
.
-
,
(
,
,
. [8, 9, 12]).
D–3He-
-
D–T-
.
(
3
D–TD–3He,
,
1),
.
,
- 21 D–D-
.
,
.
-
D–D-
,
D
[12].
3
He,
5–7 %
D–T-
,
80 %
, D–3He-
.
D–3He-
30–40
D–3He.
-
.
(
)
D–3He-
.
80XX
,
[13–15].
3
He
.
-3
1000
D–3He-
[16].
.
-3,
15 % [12].
D–3He-3
D–D-
.
,
,
D–3He-
,
D–T-
,
D–3He-
[17]
.
- 22 D–3He-
D–D-
ITER
-
,
-
.
,
,
.)
-
,
.
,
D–3He-
.
2
0p
,
2
(1.3)
B
, B 2 /(2
p–
–
0)
–
,B
(
),
0
–
.
,
-
,
2
Be –
0p
Be2
1,
(1.4)
(
,
-
).
,
-
- 23 .
*
(
),
.
-
B
20
.
,
B
5
.
(D–3He, D–D, p–11B
1.
.)
*
,
.
,
>1
,
<< 1
.
0.1
(
) [18].
~1
23].
[19–
,
(
B
A = 1.1 – 1.6),
5
-
.
B
2.5
,
16
).
-
-
(
-
,
D–3He-
[24].
,
D–3He–
D–D-
50–70
),
10–20
20
50
p–11B
(
D–T-
.
,
- 24 .
-
D–3He.
,
-
~ 0.1
0.5.
-
90–95 %.
-
.
[25, 26].
-
,
,
.
,
(
)
.
-
,
D–3He-
p–11B,
-
.
.
,
(
),
-
.
- 25 .
,
,
,
.
-
. 1.3–1.6.
(FRC, field reversed configuration) [27–29],
. 1.3. FRC
-
.
FRC
,
:
,
-
;
.
,
= 0.
B
FRC
.
FRC
,
,
.
*
FRC
-
> 1.
,
FRC
[27].
=1(
*
)
FRC
-
,
0.7–
0.9 [27–29]. FRC
,
[14, 30].
-
D–3He-
- 26 -
. 1.3.
( )
( ) FRC: 1 –
,2–
,3–
(B
0), 4 –
,5–
,6–
. 1.4.
: 1–
,2–
-
- 27 FRC
.
,
FRC.
. 1.4
-
(
)
.
-
,
–
-
.
,
,
,
, ,
,
.
-
.
,
.
[31, 32].
:
.
.
) [33, 34].
,
(
Q
10),
.
D–T-
1000
–
[33, 34],
.
.
- 28 ,
[35].
(
)
Q
1.
Q
,
.
Q << 1.
(
)
,
(
).
-
,
-
,
-
,
.
.
[36] (
).
Q
tandem mirror
-
10
[37],
.
(
0.5–1,
. 1.4)
,
Q
,
-
[38].
,
, –
,
(
),
) [39], EPSILON [40]
,
-
(
. [41, 42].
-
.
,
-
- 29 ,
-
,
.
-
,
.
-
.
,
,
-
,
,
.
(
),
. 1.5.
,
-
.
,
-
,
z.
,
.
,
-
.
,
-
,
.
,
–
.
(
).
,
[43].
[44].
.
.
,
-
- 30 -
. 1.5.
:1–
,2–
. 1.6.
: 1 –
,2–
- 31 . 1.6.
.
.
,
,
.
-
,
.
.
[45].
[46],
,
,
,
.
,
[47, 48].
,
-
.
.
,
.
-
[49, 50] –
.
,
[51] –
,
FRC.
.
,
,
-
[52] –
-
[53]
.
- 32 1.2.
1.2.1.
,
.
,
,
,
-
,
,
-
.
,
,
.
(
nj
j
t
3
ni k B Ti
t 2
3
n e k B Te
t 2
kB –
Ji
Je
[n j ] S
Pn ) hi Pext
(1.5)
Pi e ,
Pn ) he Pext
Pi
Jj –
j
e
Pb
,
j (j = i, e); [nj]S
j
(1.6)
Ps .
(1.7)
i
; nj, Tj,
;
-
[n j ] L ,
i ( Pfus
e ( Pfus
)
–
,
; Pfus –
,
; Pn –
,
[nj]L –
-
,
; Pext –
- 33 ; hi
he –
,
,
; Pi–e –
,
-
; Pb –
; Ps –
.
(1.6)
,
.
j,
)
-
[54, 55].
,
(1.7)
(1.5)–
. 1.7.
Pn
,
Pfus
(Pfus)i
Pext
(Pfus)e
Pch
Pie
Pb
Ps
. 1.7.
- 34 Jj
j
-
,
-
[54].
,
,
-
.
E.
p
p
-
E,
-
.
.
p
,
E
-
.
E,
p
.
nj,
Tj,
.
i ( P fus
e ( P fus
Pn )dV
Pn )dV
(1.6), (1.7)
hi Pext dV
he Pext dV
1
Pi e dV
E i
3 n k T dV
2 i B i
-
,
(1.8)
Pi e dV
i
Pb dV
Ps dV
,
1
E
3 n k T dV
2 e B e
. (1.9)
-
- 35 -
Pfus dV
Q
0, Q
Pext
.
Pext dV
(1.10)
.
Q = 10–20.
E,
Q.
Pfus
Rij ni n j
v
k
Wk ,
(1.11)
i, j, k
i, j –
i
; Rij
;k–
1/ 2
j , Rij
i
v
j;
; Wk –
k
–
1
-
,
.
Pn,
,
(1.11),
Wk
.
,
-
,
.
,
i
,
[54]
Pi
ie
3
2
2
0 mi me
Z i2 e 4 ne
ie
e
k BTe
me
3 n k (T
2 i B i
Te )
,
(1.12)
ie
3/ 2
–
-
- 36 ,
mi –
0
–
,e–
, me –
,
, Zi –
,
ie
–
-
.
Te ~
Ti
[54]
–3
, Te
ie
24 ln( n1e / 2Te 1 ) ,
ne
-
.
1.2.2.
,
,
.
,
,
,
.
,
D–3He-
,
50 %
-
.
.
-
.
Pb
P ei
P ee .
(1.13)
- 37 -
P
ei
d
d
ne ni
i
d
ei
, v
ei
vf (p)d 3 pd
ei
ne ni
i
,
–
-
, f(p) –
,
ei
max
( p)
0
d ei
d
d
–
)
max
(1.14)
0
–
p–
( p )vf ( p )4 p 2 dp ,
p 2c 2
( me c 2 ) 2
me –
p
me c 2 –
,
,
,c–
.
[56]
f ( p)
exp(
4
/ )
(me c ) 3 K 2 (1 / )
,
(1.15)
1 / 1 ( v / c) 2 –
mec2 = 511
k B Te /(me c 2 ) –
;
,
; K2(…) –
d
.
ei
(
) [57–59],
ei
,
-
< 1 %
-
:
ei
Cb c 1 Z i2 4 ln( 2 )
1
3
( 20
4 ln 2) exp
3
0.408(
1) ,
(1.16)
- 38 -
re2 me c 3 ,
Cb
–
, re –
.
(1.16)
,
ei
NR
16 C c 1Z 2 ,
i
3 b
>> 1
4Cb c 1 Z i2 ln( 2 )
ei
ER
ei
1
1
3
(
.
. 1.8).
c/(CbZeff2)
100
90
----–––––
––––
80
70
60
50
40
30
20
10
0
1
2
3
4
5
6
7
8
. 1.8.
9
10
:
–
,
(1.16),
–
–
-
- 39 Pei,
(1.16),
-
,
P
2
Cb ne2 Z eff
ei
K 2 (1 / )
4 ln( 2 )
1
3
( 20
4 ln 2) exp
3
0.408(
1
exp(
2
Z eff
1)
Z i2 ni
/ )(
2
(1.17)
; Pei –
Z i ni –
i
P ei ,
1)d
i
,
-
.
Te < 10
Te ~ 1
.
[60]
B
ei
PNR
32
3
2C
2 2
b ne Z eff
P ei
1)
2
(ln 2
ei
PNR
3
Z eff
2
Z eff
2
,
–
[61],
3
, Z eff
Z i3 ni
i
B
Te = 1
~ 0.1
,
Te
,
.
~ 50
B
i
D–3He-
~ 0.2
.
Z i ni .
-
(
Te < 10
-
D–3He-
Te
)
,
.
,
B
Te
0,
[62]
- 40 -
g
ei
ei
PNR
/ PKramers
,
ei
PKramers
–
.
-
Te << 10
g = 1;
Te >> 10
g
2 3/
1.1 ,
.
Te (1–10
)
-
gElwert
[62],
1.5
.
-
B
3
Z eff
B
2
Z eff
0.39 1 exp( 0.008 /
)
0.49 exp( 505
) .
(1.18)
. 1.9.
1.6
g
1.5
2
1.4
–––––
– - – - Elwert
- - - - - Gould
3
1
1.3
1.2
1.1
1
1
10
100
103
104
105
Te,
. 1.9.
,
B:
2–g
gElwert
1–
(1.18),
Te
0; 3 –
g
[60]
1
Te
0;
- 41 -
d
ee
d ee
u (p1 , p 2 ) f (p1 ) f (p 2 )d 3 p1d 3 p 2 d ,
d
1 2
ne
2
P ee
–
, u(p1,p2) –
,
1
,
-
2
-
1/2
.
(1.19)
d
[63]
ee
PNR
4C F
(1.19)
1/ 2
,
,
Cb ne2
ee
ei
PNR
/ PNR
ee
3
2
3/ 2
CF = (5/9)(44–3 2)
,
Z eff2
[61, 64]
1.
8.
,
Zeff2 ~ 2
Te < 100
-
,
.
,
,
.
[64],
,
Te = 10
20
,
-
,
5
,
4%
.
d
ee
[65],
-
[66]
,
P
ee
[67]
[66],
32Cb ne2
K 2 (1 / ) 2
3 %.
K2
1
2x
-
1
4 x2 1
x
3
2
(3
3
x
2
) ln( x
x2
1)
- 42 -
( x 2 1) 2 xdx . (1.20)
,
(1.17)
(1.20)
,
Te > 1
.
( >> 1)
,
ei
PER
:
2
12Cb ne2 Z eff
ln( 2 )
ee
PER
24C b ne2 ln( 2 )
.
Te,
5
4
CE (
3
2
(
CE
. [68]),
.,
,
[61])
CE = 0.5772... –
-
. 1.10,
,
,
,
-
.
,
>2
>1
.
(
%
P ei
Te > 100
32
3
2C
3%
Te < 100
) [69, 70]
2 2
b ne Z eff
0.68 0.32 exp( 4.4 ) 2.07
P ee
4C F
5
1/ 2
Cb ne2
(1 0.64
B( ) ,
2 ; (1.21)
3/ 2
6.6
2
22.6
3
33.8
4
24.7
5
7.1
6
),
1. (1.22)
- 43 -
100
Pei/(Zeff2Cbne2)
Pee/(Cbne2)
2 (ee)
1 (ei)
10
ER
NR
1
0.1
10
100
1000
Te,
. 1.10.
(1)
(2)
.
,
–
–
(NR)
(1.21)
(ER)
B
(1.18).
. 1.11
D–3He-
.
,
.
Te < 100
,
(1.21)
(1.22)
,
,
,
[37, 71].
- 44 -
Pei/(Zeff2Cbne2)
Pee/(Cbne2)
5
4
----––––
1–
3
2
1
+
.
2 – Dawson
1
2
2
1
0
0
20
. 1.11.
40
60
Te,
80
(
)
100
)
Te
100
;
(
.
–
–
[60]. 1 –
(1.21)
(1.22), 2 –
[17, 72]
- 45 ,
(1.21), (1.22),
(1.17), (1.20)
[37, 71]
.
-
.
-
P ei
[8, 60],
2
8.5Cb n e2 Z eff
(1 0.8
1.87
2
).
-
[60]
,
-
(
-
. 1.11).
[72] (
,
[17]).
[73]
-
.
-
,
P ei
2
8.5Cb ne2 Z eff
(1 2 )
P ee
17C b ne2
D–3He,
D–3He-
(1 2 ) 1 1 /(1
Te
50–80
).
,
-
10–15 %.
-
,
.
Z (Al, Fe, Mo,
W).
.
- 46 ,
-
[74, 75].
-
D–3He-
Te = 50–70
[12]:
Be4+ – 2–3 %, B5+ – 1–2 %, O8+ – 0.6–0.8 %.
,
.
,
Ps 0
0
32 2
re me c 3 ne2
3
2
k B Te
B2
2
0 ne k B Te me c
, B
–
B0 1
2
33.5C s ne2
2
,
(1.23)
*e
–
, B0 –
,
2
–
0p
B02
(1.24)
p
, Cs
re2 me c 3 ,
e
2
0 ne k B Te
(
/ B2
2
0 ne k B Te
)
/ B02 /(1
-
).
,
.
-
(ne = const, Te = const)
- 47 -
Pstot
–
Ps dV
Ps 0 V ,
(1.25)
,
;V–
,
.
Te = 5–100
,
,
Tr
a
2
p
/(c
ce ) ;
60
3/ 2
.
1/ 2
1 Rw 1
;
ce
(1.26)
(
p
,
–
–
-
; Rw –
;
2a
R 2
(
Pstot
[76, 77]
.
a–
);
-
0.414 10
10
–
= 0); R –
ne Te2.5 B02.5 (1
)1.25 a
,
1/ 2
.
1 Rw 1
V,
(1.27)
.
-
,
[78]
rel
1 2.5
1.5
,
1 1/
(1.28)
- 48 (Te = 100–1000
)
-
[78]
rel /[1
Tam
3/ 2
320( / 1 Rw ) (511 )
],
(1.29)
0.39 10 /(511 ) .
,
).
,
,
-
(
) [79].
.
,
-
,
[79]
-
[82, 83]
,
ITER,
.
,
,
[80, 81].
,
,
,
-
.
(
)
-
[82]
Pstot
0.414 10
10
n e,eff (Te,eff ) 2.5 B02.5 1 R w
a eff
1 2.5
Te,eff
511
V.
(1.30)
- 49 ,
, B0 –
(
a
2
ne (r )rdr , Te, eff
a
ne, eff
0
).
:
a
1
Te (r )dr , aeff
a
a k,
a–
,k–
0
.
(1.30)
-
< 25 % [83].
(1.27)
,
(1.30)
-
,
(1.30)
.
< 100
(1.28).
-
(1.30)
Te
(1.30)
,
-
,
-
.
,
,
(1.30),
,
-
[80, 81].
Ps / Ps 0
. 1.12
ne
Te.
[83],
Ps
,
.
,
.
-
- 50 Ps/Ps0
10
––––
–––
+
.
– - – - Tamor, Te < 100
- - - - Tamor, Te = 100–1000
–--–
.
1
0.1
10–2
10–3
10
100
. 1.12.
1000
Te,
a = 2 , Rw = 0.7, B0 = 7
)
–––––
Tr,
––––
Te < 100
(
= 0.5 (
Tr rel,
,
= 0.1 (
-
):
–-–-–
[78], - - - -
(1.29)) [78], – - - – - - – - - –
Te = 100–1000
[82]
- 51 -
0.2
Tr rel
0.18
1 – Te = Ti = 30
2 – 50
3 – 70
4 – 90
0.16
0.14
0.12
a = 2 , Rw = 0.7, Bext = 7
0.1
0.08
4
0.06
3
0.04
0.02
0
0
1
2
0.2
0.4
0.6
0.8
1
. 1.13.
a = 2 , Rw = 0.7, B0 = 7
(3), 90
, Te = Ti = 30
,
-
,
,
.
,
-
[84].
.
(1.30)
-
ne,eff, Te,eff
(1.30)
B,
. Ps
,
,
Te
(2), 70
(4)
.
,
(1), 50
K s ne (Te B0 1
) 2.5 1 2.5
aeff.
ne,
Te
,
511
- 52 -
Pstot
KS
Ps dV .
,
Rw
0.9–0.95.
.
(
),
,
,
,
-
,
Rw = 0.7–0.8.
Rw
0.8–0.85.
-
~ 0.1,
,
Rw = 0.9
,
.
0.4–0.6 (
.
. 1.13).
D–3He-
,
~ 1.
1.2.3.
–
.
,
,
,
.
,
,
-
,
.
[54].
-
- 53 ,
[54, 55, 85].
-
.
,
,
,
.
-
,
,
,
.
[86, 87]
-
[55, 85].
,
,
.
.
.
>1
[88].
,
-
,
.
,
,
.
,
,
(first orbit losses)
-
- 54 .
.
.
.
-
.
k
j
dE k
1
n j E k dt
C
j
2
v
3
[54, 89]
Z k Z j e2
2
kj
nj –
v
erf (u j ) u j
4 mk m j
0
uj
erf (u j ) , (1.31)
; Ek –
2 Ek / mk , Zk
Zj –
; mk
;
mj –
;
m j v 2 /( 2k BT j ) , erf(…) –
; uj
kj
–
-
.
[88–90]
dE k
1
n j E k dt
kj
–
N
kj v
j
E kj
Ek
(
,
,
(1.32)
);
;
E kj / E k –
E kj –
.
(p, D, T, 3He, 4He)
[88]
.
-3
[91].
- 55 -
dE k
1
n j E k dx
eff
.
j
Ek >> kBTi
(
)
,
.
Te–3/2.
D
3
He
. 1.14.
1–10 M
0.2–2
[88].
(ZkZj)2,
,
.
,
3
,
4
,
He
.
. 1.15
D–T0.2–2
.
D–3He-
~ 50
(
)
1–10
~1
(
-
.
.
D–T-
. 1.1).
~1
<1M
.
(~ 5 %),
D–D-
~ 1
,
.
,
D–D-
70 %
[12].
D–3He,
-
- 56 -
– (dE/dt)j/(Enj)
1 (Te = 25
)
10–20
1 (50
)
1 (100
3
)
10–21
3
2
2
10–22
1
10
E,
– (dE/dx)j/(Enj)
10
1 (Te = 25
)
1 (50
)
3
1
1 (100
)
3
2
0.1
0.1
1
. 1.14.
E,
2
10
( )
(- - - - -),
–
(–––––)
(
(
( )
(1.32)
-3 (– - – - –): 1, 2
(1.31)), 3 –
[91])
- 57 -
D–T/ s.d.
0.08
100
0.07
0.06
50
0.05
0.04
0.03
T = 25
0.02
0.01
0.00
0.0
0.5
. 1.15.
1.0
1.5
E,
2.0
D–T-
-
Ti = Te = T
D–3He150–300
14-
-
,
.
-
,
[92].
,
-
,
95],
[93–
.
~ 1 %,
-
- 58 ,
,
-
.
D–3HeD–3He,
D–D-
.
.
,
,
-
D–3He-
.
,
,
,
[54].
,
v0
,
vTi
v0
vTe .
~ vTi
,
vTi
.
-
v vTe
-
[55, 96].
-
.
,
,
,
,
.
-
,
.
,
[97].
-
,
f 0 ( v)
(dn / dt ) –
(dn / dt ) s
exp
4 (v 3 v c3 )
v0
s
( v) v 3
v
,
v2
v c3
dv ,
(1.33)
- 59 -
;
vc
i me
3
4
e ne
i
s
12 2
2
Z i2 ni
mi
13
m
me
2k B Te
me
2
0
k B Te 3 2
eZ
2 4
e ne
–
;
12
–
(
-
); [ z ]
i
Z i2 ni m
(
ne mi
-
i); m –
; (v) –
; mi –
-
,
.
s
vc ,
.
,
-
1
dE k / dt Nj
Ek j
.
s
vc
s1
v c1 ,
-
:
1
s 1
s1
s
Ek j
dE k / dt Nj
,
(1.34)
.
(1.35)
1
v c31
v c3 1
s
Ek j
dE k / dt Nj
.
[97],
,
[98].
- 60 -
1.2.4.
,
.
-
.
.
-
v
v
Tj
(| v j
jk
v
Tk
v k |) | v j
v k | f j ( v j ) f k ( v k )d 3 v j d 3 v k .
,
jk
Teff
(1.36)
,
mk T j
mk
m j Tk
mj
.
-
(1.36)
v
jk
1
V jk
2M
exp
k BT
2
MV jk
2k B T
sinh
0
V jk | V j
; Vj
MuV jk
k BT
Mu 2
exp
2k B T
(u )u 2 du .
Vk | –
(1.37)
-
Vk –
(
; u |vj
vk | –
),
;
- 61 -
mk
M
mj
mk m j
–
.
D–3He
D–T, D–D
[10].
p–11B –
[99],
v
[10, 99]
-
jk
.
D–3He-
[100]
,
T3He > TD.
3
,
He
-
,
.
Q
1,
.
,
Q
10
,
.
p–11B,
D–3He
,
v
jk
-
v
D–D.
. 1.16
-
p 11B
E c.m.
1
2
2
.
MV jk
,
.
.
,
.
- 62 -
10
< v>, 10–22
8
700
600
3
500
6
/
400
50
300
4
200
100
Ec.m. = 0
2
20
0
0
100
200
300
400
500
Ti,
p–11B
. 1.16.
(
)
,
.
,
(
,
)
.
-
(1.33),
(v)
.
- 63 -
. 1.17.
D–T-
: 1 –
,
;2–
-
,
-
;3–
. 1.18.
,
,
-
100
. 1, 2 –
.
. 1.17
- 64 D–T(
.
,
)
-
.
,
,
u
.
. 1.17
1.18.
-
Te = Ti = T.
,
.
D–T-
-
T ~ 10
-
.
,
.
. 1.18
Pinj –
-
,
-
.
~ 100
.
;
,
.
,
.
-
D–T,
,
,
.
,
,
(
[101]).
1.5
D–T
, p–11B –
1.6
.,
,
D–3He
.
,
-
- 65 .
,
,
,
.
1.3.
,
,
,
,
,
,
,
.
,
,
.
,
-
.
,
-
,
.
.
1.
,
cr.
- 66 ,
,
,
-
,
.
,
-
,
,
,
-
,
-
.
,
-
.
[102–110].
.
,
-
.
[111]: L-
, H(
).
-
(
)
)
,
,
,
H (high
L (low
).
.
(
. sheared flows),
.
)
(
,
-
- 67 ,
.
H-
.
,
,
-
.
,
.
-
.
,
-
,
[111, 112].
,
[111–116].
[109–112]
[117–120],
[121],
[122–125]
-
.
,
,
-
,
,
,
,
,
.
,
.
,
,
-
- 68 ,
(
)
.
,
,
,
ITER.
.
,
,
.
.
,
,
,
.
-
,
.
,
.
,
,
-
,
.
,
,
,
- 69 (field reversed configuration, FRC),
(
-
)
.
,
-
(
),
,
.
,
.
,
,
[108–112, 126, 127].
(
)
-
[110–112, 128–134].
,
,
.
,
,
,
-
[135].
(ITG)
-
[136–146],
(TIM, Trapped Ion Mode) [147].
(ETG)
[148–156].
-
.
-
,
(TEM, Trapped Electron Mode),
ETG,
,
,
,
[156–158].
ETG-
TEM.
ETG-
,
- 70 ,
CLM [159].
(D e = D i = D )
(
D
lc
c
i
[137–140, 160]
lc2
c
1
–
(1 / k ) 2
eff
,
(1.38)
(
,
.
i)
lc
eff
), 1/k –
–
-
c
(1.38).
k
-
ky
:
k2
y–
k y2
k2
2
k2
k y2
2
,
(1.39)
,
.
( k||
k ).
y
.
r
(
-
).
.
[161]
- 71 -
D
(k
2
0
(k
2
) max ,
(1.40)
) max –
2
k
(
.
)
[114, 115]
E
E
–
q ( r )E r B ~
r
,
2
q(r ) r
rB
(1.41)
,
Er B-
, q(r) –
, Er –
-
,B–
.
-
[113].
,
,–
,
-
[162–181].
GAM [182–185].
,
-
,
,
,
,
[186–190]
[191–194].
.
,
k
,
1
-
[113, 195].
[113, 195],
.
-
- 72 Er B
-
[113]
D
2
c
1
2 2 1
s c) ,
(1
rd ( E r B 1r 1 ) / dr
s
c
k
(1.42)
(
1
),
.
,
s
E.
[143]
,
(1.42).
[195]
Er B
L (1
G1
2
E1
G2
2
1
E2) ,
–
L
( L-
),
E1
dEr / dr ,
E2
d 2 E r / dr 2 , G1
.
G1
G2 –
,
G2
[195]
,
ITG-
[137, 139, 142,
144].
[196]
net
E
,
.
,
,
,
[155, 197].
[136, 139, 141, 145]
-
- 73 ,
[140, 143, 194, 198] –
.
[142, 199]
.
ITG-
[200]
-
.
-
(1.38)
[137, 148, 161, 201].
(
)
,
-
[201].
-
,
,
-
[201].
,
,
[202].
,
,
-
,
,
.
[203–206].
-
.
,
.
,
[207, 208].
-
- 74 [207–211].
[212, 213],
-
[214].
[215–217].
,
,
,
,
,
-
,
[208, 211, 218–221].
,
-
[222],
[223].
[224]
.
(
)
(
),
.
-
,
,
-
.
.
,
,
,
D
n,
(1.43)
- 75 D
–
,
;n
(
-
)
.
(1.43)
,
,
D
.
,
,
.
[224]
[225,
226].
,
,
,
,
.
,
,
-
(
)
.
-
,
-
,
,
.
,
,
[227–230].
,
,
,
-
,
,
,
,
,
[231]
[232].
-
- 76 ,
-
[233].
,
,
)
-
(
-
.
[105–107]
,
,
[234–236].
,
,
,
-
,
.
,
,
,
[237, 238].
-
,
[239, 240],
[241–244].
(
)
–
(Maxwell–Cattaneo–Vernotte) [245, 246].
,
.
1.4.
(1.5)–(1.7),
,
,
.
-
- 77 -
.
,
-
.
.
,
.
-
.
-
,
,
.
.
1.
,
.
2.
,
,
.
3.
- 78 ,
-
,
-
.
4.
.
5.
.
. 1.19
,
.
(
-
)
)
,
,
,
,
. 1.19.
-
- 79 ,
,
.
,
,
1.2,
.
,
.
,
-
,
,
.
-
.
- 80 2.
2.1.
[224],
.
,
-
. [203, 204].
.
,
.
,
-
.
,
,
-
.
(
),
.
[203, 204]
(
-
-
+ )
(
)
,
-
(
).
-
.
(
)
,
,
.
.
.
,
-
.
-
- 81 .
-
,
,
,
–
,
,
,
,
,
-
.
-
.
,
,
-
,
z,
B
r
z,
-
.
Er(r).
,
,
.
,
~
0n g
(r )cos(
nt
k nr
k|| z
n) ,
(2.1)
n
n–
; g (r) –
;
;
0
n
;
; k
–
–
n
0n
n
2 nrs
–
r
0
; k|| –
( k||
k
n ); rs
–
–
,
, (r=rs
g (r)).
r=rs (s=1, 2, 3, …).
,
n
.
(2.1)
k
n
-
- 82 -
~
Er~
E
~
r
1
r
,
(2.2)
~
.
(2.3)
~
-
.
,
(2.1)
-
.
,
k|| << k ,
,
)
k|| = 0.
-
k||
-
k|| = 0.
-
m
m
e–
e m
,
k B Te
(2.4)
, kB –
, Te –
.
,
k
.
,
-
- 83 -
(k )
0
v g (k
0
k0 ) ,
(2.5)
vg –
k
k0,
k0 .
,
.
k0
.
,
(k )
(k )
k.
/ k
,
(2.5)
-
,
-
.
(2.5)
,
vg
.
. 2.1
.
Er,
,
.
Er
vg
VE
Er / B –
vg 0
VE
vg 0
Er
,
B
Er B,
(2.6)
; vg0 –
.
-
- 84 -
~
0
m
2
||
. 2.1.
r = rs
vg0
Er (
,
.,
, [244]),
,
,
Er
(
vg0
(2.6)).
.
dE r / dr
.
,
(2.5)
,
0
vg k0 .
vg k ,
.
-
.
||<< 0,
0
2 / k0 ,
||
–
-
- 85 .
Ti ,
0
ci ( Ti
,
ci
–
,
–
)
[105],
0
~
Te ,
ci
ce
-
ITG-
.
(
Te
–
,
-
,
ce
–
)
-
ETG[108].
0
Te
Ti ,
~
ci
-
[248, 249].
m , q , vr
v
m
dv r
dt
q E r~
Er (r )
m
dv
dt
q E~
vr B ,
–
,
v B,
(2.7)
(2.8)
,
.
||>>
, v
v r2
v2
)
c
, vg
v
(
–
,
-
( ||,
.
–
, <<
0,
vg )
-
- 86 -
u
V
Er
B
vg
V –
mv 2
dB
2q B 2 dr
mv 2
dB
2q B 2 dr
vg
vg 0 ,
(2.9)
.
(2.7), (2.8)
dp r
dt
dr
dt
H
,
r
r
–
,
(2.12)
H
,
P
(2.13)
mv r , P
, pr
,
H
(2.11)
H
H (t , r , , pr , P ) –
H
(2.10)
H
,
pr
dP
dt
d
dt
-
mrv
q
,
–
-
.
pr2
2m
(P
q )2
2mr 2
q
~
q
r,
(2.15)
E r.
-
- 87 ,
.
r ( r | r| r
r | r |),
-
r,
( r ) n( r ) r ,
n–
(2.15)
, r–
,
.
–
-
,
-
,
D
n,
(2.16)
1 2
rm ,
3
D
–
(2.17)
, rm –
.
(2.16)
rm
r
,
rm .
rm
Ln
Ln ,
n
(2.18)
n
–
.
(2.16)
.
- 88 (2.15)
conv
1
rm n .
2
(2.19)
,
,
,
rm
-
.
2.2.
[224–226]
.
. 2.2.
(
||
~ ,
c
),
-
.
. 2.2,
,
,
.
,
,
.
.
,
-
.
,
-
- 89 .
(
)
||
.
,
.
. 2.3
2.4,
,
,
,
.
tint
r
E~
E~
B
tint
m
Bu
,
.
~u/
D
(2.21)
r
2
m
0.
k BTe
eB
0u
2
-
(2.20)
E~
–
|| / u ,
2
.
(2.21)
,
u.
,
.
-
- 90 -
. 2.2.
,
,
B0 = 1
,
m
= 0.05
.
-
- 91 -
. 2.3.
. B0,
m
–
. 2.2
. 2.4.
,
. 2.3
- 92 -
0.2
0.2
r,
r,
0.16
0.16
0.14
0.12
0.1
0.14
vg = 0
0
10
v g = -3
0.12
20
t,
0.1
30
0.2
0
10
20
t,
30
20
t,
30
20
t,
30
20
t,
30
0.2
r,
r,
0.16
0.16
0.14
0.12
0.1
0.14
6
0
10
-6
0.12
20
t,
0.1
30
0.2
0
10
0.2
r,
r,
0.16
0.16
0.14
0.12
0.1
0.14
10
0
10
-10
0.12
20
t,
0.1
30
0.2
0
10
0.2
r,
r,
0.16
0.16
0.14
0.12
0.1
0.14
20
0
10
-20
0.12
20
t,
30
0.1
0
10
. 2.5.
B = 0.5
m
= 0.1, Te = 100
,
100
,
- 93 ,
,
-
.
-
,
,
-
.
vg
,
.
-
. 2.5
,
100
-
,
B = 0.5
vg .
,
.
2.5,
-
v*e
k BTe /(eBLn ) ( v*e = 104
B = 0.5
, Te = 100
, Ln = 0.2 ).
vg
.
0.1,
100
B = 0,5
.
,
,
m
=
-
m,
.
u ~ v*e ,
0
~ Ln ,
(2.21)
D ~
2
m
,
(2.25)
,
[205, 206].
k BTe
.
eB
- 94 -
2.3.
2.3.1.
~
.
(r, )
~
m
cos(
0t
0 ) g || (
g t)g
v g / rs 0
g
(r ) ,
,
0
-
0
(2.26)
–
,
const –
-
.
g||
. 2.6).
(
g
.
,
,
rm.
,
.
,
c
/
/
0,
|| ,
v / v g 0 ( = i, e)
.
.
(
||
:
i,
ci )
(
||
i,
ci ).
-
- 95 -
~
1
2
2
mcos(
0t+
0)
||
. 2.6.
(1)
(2), r = rs0
||
~ ,
c.
.
.
2.7,
(x, y),
,
r,
Er~, E
,
~
~
-
.
,
0
,
/
. 2.8.
tint
0.
0/
m
-
- 96 -
. 2.7.
(
. B = 0.5
Te = 100
,
rs0 = 0.18 ,
1.5 105
= 0.29
i
m
,
0
=4
=0
)
,
a = 0.2 , Ti = 100
,
W0 = 100
,
,
, v g0
0.01vTi ,
||
=4
Ti
= 11.6
,
0
=
mi
=
- 97 -
r,
8
7
| r|
6
5
rm
4
3
2
1
0
0
1
2
3
. 2.8.
(
0
=0(
0
0/
4
5
6
mi
)
)
(
)
0
- 98 -
r,
8
7
6
| r|
5
4
rm
3
2
1
0
0
2
4
6
0/
8
me
. 2.9.
0
= 0 (
)
0
)
W0,
me
i,
rs0 –
.
= 1.88 105
. 2.7,
0.
||
=4
Ti
=11.6
,
m
=4
, v g0
B, a, Ti, Te,
0.01vTe ,
- 99 -
r,
8
3
6
2
4
4
2
1
0
-2
-4
-6
-8
-
- /2
/2
0
0
. 2.10.
0:
4–
m
0
=6
=4
me.
1 –
0
= 0.5
B, a, Ti, Te, W0,
, v g0
0.01vTi ,
me,
i,
me
2 –
rs0 –
0
.
= 1.88 105
=
me,
. 2.7,
3 –
||
=4
0
= 1.7
me,
Ti
=11.6
,
- 100 -
| r|,
6
5
4
3
2
1
0
0
1
2
3
. 2.11.
||/
(
||.
v g0
0.01vTi ,
0
=
4
0
6
i
)
B, a, Ti, Te, W0, i, rs0 –
mi,
5
.
. 2.7,
0/
m
| vg0 |
m
0
<
m,
2
||
2
=4
,
=0
tint
0<
m
.
2
||
/u,
m,
(2.27)
- 101 -
m
~ v /r .
*e
0
>2
-
m
,
~
||
.
(
. 2.8),
–
||
. 2.9, 2.10
.
,
E~
B
rm
0 t
0
m
tint
Bu
<
0
m
,
(2.28)
m
t int ,
||.
. 2.11
||/
< 3.5 –
u/
||/(3.5
)
.
,
0.3 ||/ .
||
,
> 3.5
1,
||
(2.28)
-
.
-
0.
,
,
dB / dr
,
.
u
,
0
<
m
,
(2.9),
vg0 ,
-
- 102 -
rm
2
m
k BTe
eB
(
)
||
0
.
v 2g 0
(2.29)
u
0,
.
res
1 res
n
3
m
|| B
1 res
n
3
m
k BTe
,
eB ||
(2.30)
nres –
2.3.2.
,
||
c.
. 2.12.
(
v
q
m( v
vg )
,| v |
|v
vg |.
||
<< )
-
(2.31)
- 103 -
. 2.12.
(
)
. B, a, Ti, Te, W0,
, v g0
0.3vTi ,
||
= 0.1
Ti,
0
= 0,
0
i,
rs0 –
= 0,
=
.
res
. 2.7,
m
= 20
- 104 -
v /v ,
r/
m v
qB
r
|v
2
(v
||
v g )tint ,
vg |
E ~ tint
.
B
|v |
E~ ~
(2.32)
2
,
||
(2.32)
r~
B(v
vg )
.
(2.33)
v
,
vg .
.
res
(
2
.
arcsin
v
. 2.13),
res
(t int ) max
vg 0
0.1(2 /
.
-
(2.34)
-
0.1 .
c).
(2.35)
- 105 -
0,1
||
2
||
1
v
2
2
tint
||
2
c t int
.
(2.36)
c
,
-
,
.
0
= 0.
. 2.14
,
.
0
(
c
/
0)
0
c.
| v g 0 |~ 0.3v
,
0
-
~ 50
c.
. 2.15.
,
| v g 0 | 0.1v
-
| v g 0 | /(0.1v ) .
,
,
,
,
.
| v g 0 | 0.1v
0.1v / | v g 0 | ,
-
.
,
| v g 0 | 0.1v
rm
E~
B
tint
m
| v g0 |
2 || B 0.1v
t int
10
| v g0 |
m
|| B
c
v
||
, (2.37)
- 106 -
| v g 0 | 0.1v
rm
6
m
10 || B
c
v
| vg 0 |
||
.
(2.38)
| r |,
5
4
3
2
1
0
-
- /2
/2
0
0
. 2.13.
(
)
. B, a, Ti, Te, W0,
0.29
,
m
= 20
, v g0
i,
0.1vTi ,
rs0 –
0
= 0,
.
0
. 2.7,
=0
||
= 0.1
Ti
=
- 107 -
rm,
2.5
1
2.0
1.5
2
1.0
3
4
0.5
0
10 -2
10-1
10 0
. 2.14.
0/
(
0:
4 – v g0
0.29
,
1 – v g0
20
-
0.05vTi , 2 – v g 0
,
0
= 0, =
10 2
)
0.01vTi . B, a, Ti, Te, W0,
m=
ci
101
res
i,
rs0 –
0.02vTi , 3 – v g 0
.
. 2.7,
||
0.3vTi ,
= 0.1
Ti
=
- 108 6
rm,
5
4
3
2
1
0
0.0
0.1
0.2
0.3
vg0 / v
0.4
0.5
i
. 2.15.
(
)
v g 0 . B, a, Ti, Te, W0,
. 2.7,
||
= 0.1
Ti
= 0.29
,
m
= 20
,
0
= 0, =
res
i,
rs0 –
.
- 109 -
rm ,
2.5
2.0
1.5
1.0
0.5
0
10
100
. 2.16.
W 0,
(
)
. B, a, Ti, Te, rs0 –
m
= 20
, v g0
0.05vTi ,
1000
0=
.
0.3
. 2.7,
ci,
0
||
= 0,
= 0.1
=
= 0.29
Ti
,
res
,
( v ~ vT , vT –
)
,
(
.
v
vT –
-
. 2.16).
,
(2.37), (2.38)
rm
,
,
.
- 110 (
(2.37), (2.38))
v
rm2
v
7 | v g 0 | / vT
2
k BTe
eB
2
m
| v g 0 | 0.07vT ,
v
2
c T ||
v
,
0
,
(2.39)
0.07vT <| v g 0 | 1.5vT .
0.5
.
,
,
res.
c
/ .
2.3.3.
,
.
,
-
.
,
,
.
-
.
E~
0.
,
-
- 111 .
,
,
(
i,
,
v
ci ,
c
,
e,
ce ,
c
v
v
,
v i)
-
(2.27)–(2.39)
-
e.
rme
rmi
,
e
i.
,
0.1
||
ui
-
0,
Ln
0
r,
0
v*e / r
u e | v g 0 | 0.1v*e .
,
,
(2.27)–(2.29).
:
D
i
D
2
e
conv
i
m
conv
e
k BTe
,
eB
0.3
m
(2.40)
k BTe ne
.
eB Ln
(2.41)
ITGce ,
~
||
||
-
e,
Te ,
ci ,
0
10
Te ,
vg 0
0.2vTi ,
0
i.
||
ce
ci
.
-
- 112 -
D
3
2 k BTe Te 2
m
eB Ti
20
e
conv
e
10
m
(2.42)
k BTe ne
.
eB Ti
(2.43)
(2.37)–(2.39)
-
,
D
conv
i
2
m
i
m
k B Te Te
eB Ti
k B Te Ti
eB Te
0.25
0.5
,
ni
(2.44)
.
(2.45)
Ti
,
.
,
,
(
,
).
,
m,
( rm i
i ),
( rme
,
e ).
(
)
.
-
- 113 -
:
,
;
(
;
(
)
)
,
.
2.4.
.
[205, 206],
-
[203, 204].
,
.
,
.
.
,
-
,
.
[207–210].
-
.
.
,
.
,–
.
r, , z.
-
- 114 B = Bz(r)
z,
Er(r)
r.
N
,
-
E~ = E ( ,t)
r = r0,
t
,
~
N
( , t)
0l
lt
cos(
l
l),
(2.46)
l 1
l,
0l
l
–
,
-
l
.
l
kl –
l
l
0,
(2.47)
,
l,
–
.
(r, ),
0,
-
r=r0
N
dr
dt
l
d
r *
dt
E0l –
q–
E0l
sin(l
B
1
*
Er (r ) Er (r0 )
B
l
,
0t .
l),
(2.48)
mv 2 dB
,
2qB 2 dr
,m–
(2.49)
,
- 115 -
Er ( r )
(2.49) r
r0 , B (r )
d2
dt
Er (r0 ) (r r0 )
dB
(r )
dr
B(r0 )
(2.50)
dB
(r0 ) ,
dr
(2.48), (2.49)
N
1 dEr
r0 B 2 dr
*
2
dEr
(r0 ) ,
dr
E0l sin(l
l),
*
(2.51)
l 1
[207–210].
-
,
P*
,
,
dEr P*2
qB 2 r02 dr 2
~
q
.
(2.52)
l
(r,
r0 ) .
(2.51),
1
H*
qBr0 (r
-
)
-
,
,
,
.
-
- 116 -
rs
2
0l
dE r
dr
1
,
(2.53)
,
,
.
n
,
-
.
[126]
D
l
1
N
N
l(
(2.54)
l 1
–
, rl –
l
l
Ln
rl )2 ,
0
-
.
v*e / r0 ,
rl
E 0l
B 0
l
B
0l
0 r0
,
r0 ,
D
m
e 0
k BTe
ne
,
ne
0
2
m
k BTe
,
eB
(2.55)
–
, ne
ne –
.
(2.55)
- 117 -
a2
D
1 eBa 2
,
2 k T
m B e
a–
(2.56)
.
,
[205],
GAMMA-10 [124, 125].
-
P*2
A*
2
H*
H –
C* cos( * )
H* ,
(2.57)
.
(2.57)
-
,
C
A*
.
q
m k B Te
01
(2.52).
,
(2.57)
1
dEr
qB 2 r02 dr
-
[210]
I
I
K sin
,
(2.58 )
I , mod(2 ),
(2.58 )
- 118 -
I
2 AP
I –
,
I
K
–
2
4
,
AC
(2.59)
2
.
K>1
.
K
4
2
1 dEr
q dr
e2 L2n
mv 2 dB
1
m
k BTe
2qB 2v*e dr
2
.
(2.60)
[250]
Hill’s vortex.
.
. 2.17.
. 2.17 )
K = 1
-
,
K=2(
.
.
. 2.17 )
,
.
,
.
-
- 119 -
r/a
r/a
*
*
( )
. 2.17.
( )
(
)
[250]
K = 2 ( ). B = 1
,
0
K=1( )
= 4 104
2.5.
,
-
,
.
,
(
,
-
)
.
.
,
- 120 .
[251].
-
[252].
,
-
.
,
,
,
-
.
,
.
,
-
.
(
-
,
).
.
-
,
,
,
,
.
-
,
-
.
.
,
-
,
(
–
)
r,
.
,
-
- 121 .
B0 R
,
R r cos
B
(2.61)
B0 –
;R–
1
;
-
-
–
,
.
B
Br
q(r )
BR
-
,
(2.62)
,
1.2
3.5.
,
Vy
Z–
ZeB0 R
B2 .
,
(2.63)
; v|| –
;
B2
B
;m–
,
B
mv||2
–
-
;
- 122 -
~
0
–
r cos
R
Vd
Vy .
r
0 g ( r )cos(
t n
n
(2.64)
),
, g(r) –
,
(2.65)
–
,n –
,n –
,
.
–
-
:
E
~
1
r
~
, E
~
1
R r cos
~
,
~
Er~
r
.
,
dr
dt
d
r
dt
.
E~B
Vy sin
B2
V y cos
( R r cos )
E~B
d
dt
Vd
Vd
B
v||
B
B
B
v||
,
(2.66)
Er B
Er~ B
B2
B2
B
B
Er B
B2
,
Er~ B
B2
(2.67)
,
(2.68)
- 123 -
d v||
dt
~
~
Ze E B E B
,
m
B
1 B sin B
m R r cos B
(2.69)
Er –
.
v||
-
,
-
d
dt
E
d
dt
Er B
E
rB 2
v|| B
E
rB
v||
qR
,
v|| B
v||
( R r cos ) B
( R r cos )
(2.70)
,
(2.71)
Vd
.
r
,
(2.65)
-
,
n
n
0.
-
(2.72)
v|| ,
,
(2.72)
.
,
-
,
,
(2.72),
- 124 ,
(2.72).
,
,
/2.
n
0
n
1
,
4
(2.73)
2v||r
R2
(2.74)
r2
–
.
(2.73)
R2 r 2
,
8 Rr
|n |
,
(2.75)
,
,
.
-
,
-
n
n
1
,
4
0.
n
0
-
(2.76)
- 125 -
-
v||
v||
qR
1
v||
1
2
1 Rr
v
2 R 2 r 2 v||
E
qR
1
v||
1
E
,
(2.77)
v|| –
-
, v –
(
).
(2.76)
R 2 r 2 v||
|n |
2 Rr
v
2
1
qR
v||
E
,
(2.78)
,
.
. 2.18–2.20
n
W||0 (
-
)
r
W,
~
-
,
E
~
.
r
r0 = 0,7 ,
W0.
.
0
= /2.
-
- 126 0.715
0.71
0.705
r,
0.7
0.695
0.69
0.685 0
10
20
10
20
0
10
20
0
10
20
6.2
t,
30
40
50
30
40
50
30
40
50
30
40
50
5.8
W,
5.4
5
4.6
4.2 0
t,
200
E ~,
100
0
-100
-200
~
,
50
40
30
20
10
0
-10
-20
t, ms
t,
. 2.18.
(
)
n = 3,
3.24 105
,
0.7 , q(r0) = 3
, W||0/W0 = 0.6. W0 = 5
,
0
= 50 , B0 = 3
a=1
=
,R=3
, r0 =
- 127 0.715
0.71
0.705
r,
0.7
0.695
0.69
0.6850
10
20
10
20
0
10
20
50
40
30
20
10
0
-10
-20
0
10
20
6.5
t,
30
40
50
30
40
50
30
40
50
30
40
50
6
W,
5.5
5
4.5
0
t,
200
100
E ~,
0
-100
-200
~
,
t,
t,
. 2.19.
(
)
n = 3,
3.74 105
, W||0/W0 = 0.8. W0,
0,
B0, R, a, r0, q(r0) –
.
. 2.18
=
- 128 0.72
0.715
0.71
0.705
r,
0.7
0.695
0.69 0
10
20
10
20
10
20
10
20
6.5
t,
30
40
50
30
40
50
30
40
50
30
40
50
6
W,
5.5
5
4.5
4
0
600
t,
400
200
E ~,
0
-200
-400
-600
0
50
40
~
,
t,
20
0
-20
-40
0
t,
. 2.20.
(
)
n = 8,
9.98 105
, W||0/W0 = 0.8. W0,
0,
B0, R, a, r0, q(r0) –
.
. 2.18
=
- 129 ,
A = 3,
,
= 1.
,
.
,
-
,
.
,
(2.69).
-
.
-
(
)
(
-
)
r ~
E .
qR
E||~
(2.79)
(
)
,
-
.
Ze
,
20 % (
Vr
.
0
/W0
1%
-
. 2.18–2.20).
n
0
rB
,
(2.80)
.
(2.76)
- 130 -
v||
v||
qR
v||
1
4n
qR(
v||
E
n
,
E)
n
(2.81)
.
(2.82)
ci
.
)
,
-
,
.
(2.65)
-
,
Ze 0
m
| v|| |
.
v|| .
(2.83)
(2.83)
-
,
.
v
v||
qR
Ze 0
k BT
-
v||
E
1
v||
8n 2 vT
2
q2R2 (
n
8n 4 vT2
E)
2
1.
(2.84)
- 131 -
qR
E
> v||
1
Ze 0
k BT
(2.84)
8n 2
(2.85)
2
qR
E
1.
(2.85)
T
,
-
v|| ~ vT , qR
E
vT .
-
.
,
-
.
( << ,
ei
D
col
~ Vr2
~
)
-
1
ei .
(2.86)
,
.
-
( ~ )
D ~ Vr2
1
.
(2.87)
- 132 -
e 0
D ~
k BTe
2
k BTe
.
eB
(2.88)
,
.
e
,
0
kBT
(
. 2.18–2.20),
-
kBT
,
.
.
,
-
,
,
,
-
.
.
,
,
(2.66)–
(2.69),
(
)
(2.57).
-
(2.67), (2.69)
d
dt
dP*
dt
A*P* ,
C* sin
(2.89)
r2
q2R2
(Ze
~
),
(2.90)
- 133 -
B
mr v||
B
P*
mr
2
E,
1
A*
mr
2
, C*
r2
r 3 mv 2
, 2 2 Ze
q 2 R3 2
q R
~
,
H* .
-
.
(K
1)
,
(
-
.
.
2.17).
.
,
-
,
,
.
,
,
(2.88)
( K 1 ).
(K >> 1)
-
,
.
.
,
.
-
,
-
v
.
2qR
(2.91)
,
b
v
R2
2qR R 2 r 2
.
-
- 134 -
4
K
2
AC
2
4
2
b
r
.
R
(2.92)
,
(
).
-
,
V y2
D
b
1
.
(2.93)
,
(2.93)
(
«
Vy ~
)
».
k BT
2
ZeB0 R
D
i
,
b
~
1 k BT
qR m
q i
R
k BT
2
ZeB0 R
-
.
(2.94)
(2.94)
,
.
,
(2.92)
,
.
(2.92)
,
,
.
-
- 135 -
Ze 0 r 2
r3
~ C* ~ 2 3 k BT .
q2 R2
q R
(2.95)
(2.95)
,
.
2.6.
.
-
–
,
-
,
.
.
,
:
,
,
.
-
,
,
-
,
.
,
,
,
-
.
.
,
,
.
-
- 136 ,
.
.
-
,
,
.
,
(
)
-
.
.
(
)
.
,
.
.
- 137 3.
3.1.
-
(
–
).
,
.
-
.
,
,
-
,
,
.
,
,
-
.
[110].
(
Temperature
.
Gradient)
2):
(ITG, Ion
,
(ETG, Electron Temperature Gradient)
-
- 138 ,
,
«
-
».
ITG-
,
. ne1/ne = e 1/(kBTe),
ne1 –
, ne –
,e–
, kB –
.
Ti
, Te –
ITG-
k ~ 1/
–
Ti,
.
ETG-
–q 1/(kBTi),
: ni1/ni =
ni1 –
,q–
k ~ 1/
, ni –
-
.
-
, Ti –
Te,
Te
–
.
2.
-
-
=
k
R
-
ITG
-
ETG
-
»
–
-
-
-
i
0,
e
=0
e
0,
i
=0
i
= 0,
e
=0
= Re( )
~ 1/
Ti
~–
~ 1/
Te
~ 1/
Ti
Im( )
*i
~
*i
~
*e
~
*e
~
*i
~
R
–
- 139 ,
Ti
Te,
-
[104].
k < 1/
Ti,
~
*i.
-
k
*j
j = i, e –
k BT j
q j BLn
.
(3.1)
; kB –
; Tj
qj –
;B–
1 dn
n dx
1
Ln
;
0;
-
(3.2)
x
.
Ln
.
,
Lni = Lne.
,
(
Ln.
i
),
,
Ln / LTi
0
Lni = Lne =
Ln
e
Ln / LTe
.
0,
- 140 1 dTi, e
.
Ti, e dx
1
LTi, e
i
=
e
(3.3)
=0
,
-
.
,
,
[104].
,
k
ci ,
*i
ci
–
.
ITG-
ETG-
-
[106].
*e,
Te,
Ti
ci ,
*e
= Te/Ti
1/ ,
*i
i
e.
-
0( –
);
.
-
( ~ 0.1 )
(
)
[107, 138, 253–255].
[107, 150, 256–262].
;
ITG-
ETG-
.
–
[150, 260, 263].
-
,
Ti
<< Ln.
- 141 ,
-
(
).
–
,
,
,
(
(
.
)
.
[106, 107]
[108,
110, 128, 132]),
,
.
.
k << 1/
[102].
Ti
k ~ 1/
-
Te.
[263, 264],
[265, 266],
ETG-
[266]
,
-
.
,
,
(FRC),
[267].
~ 1,
.
ETGTi
.
<< Ln
-
,
k
.
Ti
~1
-
,
-
- 142 [258]
-
.
[259];
[268–270]
~ 0.03.
,
( ~ 1).
,
,
-
.
,
-
,
,
(
)
-
,
(
, FRC).
,
~1
.
~1
.
~ 1
.
,
.
,
(
).
-
.
B
Ln / LB
R
Ln / R ,
1
LB
1 dB
B dx
(3.4)
- 143 -
–
,R–
-
.
,
B
0
(
.
,
,
)
0
R
,
R
-
0 –
-
,
0,
B
R
0;
0,
B
B
R
0
B
0,
R
R
0;
-
0,
B
0,
0.
-
B
2
,
2
0 p / Be
Be 1
,
Be –
-
–
p
-
.
2
,
0p/B
2
/(1
).
-
1
LB
2
j
0 n j k BT j
(1
j
j)
j
2 Ln
,
(3.5)
/ B2 –
j
,B–
B
R,
.
B
.
= Ln/LB,
*j
j
-
- 144 ~ 1.
,
,
,
-
.
-
,
,
.
1)
~ 1
ITG-
ETG-
(
0)
.
,
,
ITG-
,
ETG-
-
?
k||
L
,
-
0.
,
k|| < /L
,
.
2)
k|| = 0,
.
.
~ 1.
,
k|| = 0
,
3)
-
-
~1
k||.
,
k|| = 0
,
[106].
,
.
4)
[106, 107, 254, 255, 264–268],
- 145 (3.5).
~ 1,
(
),
,
,
-
.
5)
,
-
,
R
= Ln/R.
3.2.
,
,
-
,
-
(
),
,
y
x
z
z.
,
t
v
qj
mj
( v B)
v
qj
f1 j
mj
q j f1 j d 3 v
(E1
v B1 )
v f0 j ,
(3.6)
0,
(3.7)
q j vf1 j d 3 v ,
(3.8)
j
B1
0
j
- 146 -
qj –
j (j = i, e); f1j –
-
; f0j –
, v–
; E1 –
; B1 –
-
.
A1
1
E1
A1
,
t
1
B1
-
(3.9)
A1 ,
(3.10)
0.
A1
[271, 272]
:
df1 j
qj
dt
mj
(v
, v
mj –
)(
1
d
dt
v|| A1|| ) ( v
t
, (v
)( A 1
)( A1
) f0 j ,
)
v
(3.11)
A1 v , v –
, v||
–
,
||
-
.
,
[271, 272].
,
- 147 [273–297].
,
-
,
,
.
,
,
-
.
.
,
-
.
,
,
,
,
-
,
.
,
-
.
,
,
.
.
[298]
f 0 j ( v, x )
f M 0 j (v 2 ) 1
j
x
vy
cj
,
(3.12)
- 148 -
f M 0 j (v )
2
n0 j
3/ 2
mj
exp
2 k BT0 j
,
cj
m jv2
2k BT0 j
–
-
–
, n0j
T0j
nj
Tj
j
f Mj (v , x )
2
n j ( x)
mj
3/ 2
exp
2 k B T j ( x)
-
1
f Mj
fM 0 j
x
x = 0,
,
x 0
m j v2
.
2k B T j ( x)
(3.12)
f0j
-
.
Tj/L
<< 1,
L–
.
Tj/L
f0j
-
<< 1,
f1j
.
~(
2
Tj/L)
[262].
-
,
| f1 j / f 0 j |~
Ti
/L.
-
,
k –
k|| << k ,
k||
.
,
[271, 272],
-
[150, 258, 261, 262]
qj
j
qj
1
k BT j
fM0 j
hj J0 (
j)
2 v dv dv||
0,
(3.13)
- 149 -
k B1||
q j h j J1 (
0
j )v
2 v dv dv|| ,
(3.14)
j )v|| 2
v dv dv|| .
(3.15)
j
k 2 A1||
q j hjJ0(
0
j
1,
B1||
A1|| –
;
||
;
0
; f M 0 j ( v)
–
; J0(
–
J1 (
j)
–
j
k v /
cj ;
v
–
-
; v|| –
–
j),
;
cj
;
hj
*j
Dj
k || v||
(
1
v || A1|| ) J 0 (
j)
v B1||
k
J1 (
j)
q j fM0 j
k BT j
(3.16)
–
;
Dj
k VDj –
; VDj –
,
;
*j
*j
1
j
m j v2
2k B T j
3
2
.
(3.17)
- 150 -
Dj
*j
mj
B
k BT j
v2
2
2
R v ||
.
.
(3.18)
,
.
-
,
,
,
,
0,
.
,
,
B
(3.18),
R,
.
,
B/ R
= –1.
R,
B
.
B
B
.
R
,
R
v
,
,
,
v||
-
).
,
.
B
R
-
- 151 (3.13)–(3.18)
1,
vTe
B1||
A1||.
a11
a 21
a12
a 22
a13
a 23
v Te B1|| / k
a 31
a 32
a 33
v Te A1||
1
0,
k B Te / me –
a11
a12
a13
a 21
a 22
a 23
a 31
a 32
(3.19)
,
1
Ci
i
Ci i F10
i
F10e ,
(3.20)
e
F20
Ci
i
i i F20
,
(3.21)
F11e
Ci
i
i i F11 ,
(3.22)
e
F20
e
F30
e
F21
F11e
e
F21
i
i i F20
Ci
Ci
2 i
i i F30
Ci
Ci
(k
Te )
2 i
i i F21 ,
i
i i F11
Ci
a12 ,
2 i
i i F21
(3.23)
2
2
,
(3.24)
e
(3.25)
a13 ,
a 23 ,
(3.26)
(3.27)
- 152 -
e
F12
a 33
Ci
i
1
2
Rj
j
r
Rj
*j
*j
j
1
J 02 (
j ),
j
2
J0(
(3.32)
(3.32)
(3.20)–(3.28)
j ) J1 (
2
2
,
(3.28)
e
q i Te
,
eTi
(3.30)
vTi
,
v Te
(3.31)
v2
v||2
v r v||s dv dv || ,
2
v2
v||2
j
3
2
2
Dj
k || Lnj
*j
k
j ),
Te )
(3.29)
exp
1
(k
qi ni
,
ene
i
Frsj
2 i
i i F12
Ci
j
3
(3.32)
,
(3.33)
v||
Tj
J 12 (
j ).
r = 1, 2, 3; s = 0, 1, 2.
(3.33)
.
.
-
- 153 -
a11 (a 22 a 33
a 23 a 32 )
a12 (a 21 a 33
a 23 a 31 )
a13 (a 21 a 32
a 22 a 31 )
0.
(3.34)
,
,
-
: k||, k ,
R,
i,
e,
(
= Te/Ti.
*),
,
B,
-
.
0
,
1,
B1|| = A1|| = 0.
-
(3.13)–(3.15)
-
(3.13),
1,
.
a11
(
B
=
R
0.
(3.35)
0.
k ||
= 0)
,
,
-
F11j
k|| = 0.
F21j
0 , a13 = a23 = a31 = a32 = 0,
(a11 a 22
(3.34)
,
a11 a 22
-
a12 a 21 )a 33
0,
-
a12 a 21
a 33
0.
0,
(3.36)
(3.37)
- 154 -
B1|| [107, 141, 253–255].
-
(3.35).
-
;
= 0.
,
-
, ,
,
.
.
(
F10j , F12j , F20j , F30j
v||
R
= 0),
-
:
1
F10j
*j
1
*j
*j
j
1
J 02 (
Lnj v 2
LB 2
*j
F12j
v2
2
j
v2
2
Lnj v 2
LB 2
J 02 (
j ) exp
j ) exp
v2
v dv ,
2
v2
v dv ,
2
(3.38)
(3.39)
- 155 -
1
*j
F20j
j
1
J0(
Lnj v 2
LB 2
*j
1
*j
F30j
v2
2
*j
j
v2
2
j )J1 (
1
J 12 (
Lnj v 2
LB 2
j ) exp
v2 2
v dv ,
2
j ) exp
(3.40)
v2 3
v dv .
2
(3.41)
,
,
-
.
-
,
[299].
(3.21)–(3.28)
-
i.
F10i
(3.36)
e
e
F10e , F20
, F30
,
,
,
ITG-
ETG-
.
:
,
.
-
- 156 -
1
i
*i
B
*i
1
v
2
e
*e
*e
*e
exp(
0,
*e
<< 1, (3.43)
v
2
B
ETG-
(3.42)
1 1/ ,
(3.42)
e
2
0
)d
exp(
2
0
i
i
)d
1
,
(3.43)
(3.42)
–
e
,
ITG-
<< 1.
(3.43),
B.
,
B
,
Im( )
>0
R
> 0,
ETG-
Re( )
R
–
R
-
ITG-
< 0.
ITG-
ETG-
k||
(3.28)
1
e
*e
0
*e
B
v2
2
v2
2
J 02 (
e ) exp
0.
(3.39),
v2
v dv
2
R
(k
i
Te )
2
2
.
-
.
(3.44)
e
,
- 157 (3.44),
1
i
*e
v2
2
e
2
R
B
*e
v
2
B
:
v2
2
2
2
J 02 (
e ) exp
v2
v dv
2
0.
(3.45)
*e
(3.45)
,
B
>0
> 0.
B
-
< 0.
,
,
-
.
[300–302],
,
-
,
.
.
0
k B Ti /(eBLn
Ti ) .
:k
Ti,
k||Ln.
Ti = Te.
= Te/Ti
,
,
0.5–2,
.
-
- 158 3.3.
3.3.1.
,
. 1/LB = 0, 1/R = 0.
0
,
-
,
(3.35)
1
i
F10
F10e
0.
0 (
Di, e
(3.46)
)
,
(3.46),
1
e
1
3
2
1
e Z ( e ) 0 (be )
e
e
e e[ e
2
e Z ( e )] 0 (be )
e
e e Z ( e ) 0 (be )
e
1
1
i
3
2
1
i
i
i i[ i
1(be )
0 (be )
i Z ( i ) 0 (bi )
2
i Z ( i )] 0 (bi )
i
i
n (b)
e e Z ( e )be
I n (b) exp( b) , In(b) –
i i Z ( i ) 0 (bi )
i i Z ( i )bi
1 (bi )
0 (bi )
. (3.47)
;
- 159 -
bi
k2
2
Ti ,
be
k2
2
Te ,
Z( )
e u du
u
2
1
(3.48)
–
i
e
k|| 2k BTe / me
, k|| –
, mi
k|| 2k BTi / mi
me –
.
ni1
ne1
,
[293]
,
1
1
*e
1
3
2
e Z ( e ) 0 (be )
e
*e
e
e e[ e
Lne 2u 0|| e
Lue vTe
e
1
2
e Z ( e )] 0 (be )
eZ ( e )
e
0 (be )
e e Z ( e ) 0 (be )
e
1
1
*i
3
2
1
i Z ( i ) 0 (bi )
i
*i
i
e e Z ( e )be
i i[ i
Lni 2u 0|| i
Lui vTi
i
1
2
i Z ( i )] 0 (bi )
iZ( i )
i
0 (bi )
i i Z ( i ) 0 (bi )
1(be )
0 (be )
- 160 -
i
Lui
; u0zi
u 0 zi /( u zi / x ) ; Lue
1 (bi )
u 0 ze /( u ze / x) ; uzi
0 (bi )
. (3.49)
uze –
-
u0ze –
.
,
u0||i / Lui
i i Z ( i )bi
u0||e / Lue
(3.49)
(3.47)
0,
.
3.3.2.
ITG
ETG
ITG-
,
ETG –
.
(3.47)
1
i
1
3
2
1
i
i
i i[ i
1
e
1
e
3
2
e
e e[ e
:
i Z ( i ) 0 (bi )
2
i Z ( i )] 0 (bi )
i
1
-
i
i i Z ( i ) 0 (bi )
i i Z ( i )b 1 (bi )
0 (bi )
0
(ITG), (3.50)
e Z ( e ) 0 (be )
2
e Z ( e )] 0 (be )
e
e
e e Z ( e ) 0 (be )
e e Z ( e )b 1 (be )
0 (be )
0 (ETG). (3.51)
- 161 R e( )/
*i
Im ( )/
1
0.0
*i
0.4
2
3
-0.2
4
0.3
-0.4
4
-0.6
0.2
-0.8
-1.0
0.1
-1.2
1
-1.4
0.0
R e( )/
0.1
0.2
0.3
k || L n
0.0
0.0
0.4
0.1
Im ( )/
*e
8
1.4
3
2
0.2
0.3
0.4
k || L n
*e
0.4
1.2
8
0.3
1.0
0.8
0.2
0.6
0.4
7
0.2
5
0.1
6
5
0
0.1
0.2
0.3
k || L n
0
0.4
7
6
0.1
. 3.1.
0.2
0.3
ITGRe( )/
*i,
– Im( )/
3–
k
8–
i
– Im( )/
*e):
1–
= 2, = 1, k
= 0.3; 6 –
Te
e
= 5, = 1, k
i
= 2,
Ti
e
*i)
= 1, k
= 1; 4 –
= 2,
Te
ETG-
i
(a –
(
= 0.3; 2 –
= 5, = 1, k
= 0.5, k
= 0.3
Ti
Te
= 1; 7 –
i
Ti
= 2,
– Re( )/
= 0.5, k
= 0.3; 5 –
e
= 2,
0.4
k || L n
e
Ti
= 2,
= 1, k
Te
*e,
= 1;
= 1,
= 1;
- 162 (3.50)
ITG:
(3.51)
,
ETGe,
i
1/ , k
k
Ti
Te,
-
R/
–
*i
R/
*e,
/
/
*i
*e.
. 3.1.
3.3.3.
Z( )
,
.
Z( )
4
3
2
2
1
Z( )
... i
1
2 3
2
e
3
...
4 5
<<1,
(3.52)
>>1.
(3.53)
(3.48),
. 3.2–3.4.
ITG (ETG)
(
.
[1
(1
(3.50)
0 )] z
3
0
)
(3.51)
i b( 0
(1
0 )] z
3
0
e b( 0
0
:
z2
1)
0
[
-
i
0
1)
z2
e
0
0Cz
b(
0
1)
C
0,
(ITG)
(3.54)
(ETG)
(3.55)
0Cz
b(
0
1)
C
0,
- 163 -
Z( )
Z( )
1
2
0.5
1.5
0
1
-0.5
0.5
-1
0
-1.5
-0.5
0
0.2
0.4
0.6
0.8
1
-2
0
0.2
0.4
0.6
0.8
Arg( )/
Arg( )/
. 3.2.
| |=0,1.
: –––––– –
.
z
C
–
–
/
i
,–––– –
| | << 1: – – – – –
–
(ITG), z
(k|| / k ) 2 ( Ln /
0)
,
– –
Te )
2
/|
e
C
| (ETG),
(k|| / k ) 2 ( Ln /
Ti )
2
(ITG),
(ETG).
1
1
1
[103] ( b 0 ,
(3.54)
0
1,
(3.55)
1 3
z
z2
Cz C 1
i
0,
(ITG)
(3.56)
z3
z2
Cz C (1
e)
0.
(ETG)
(3.57)
- 164 -
Z( )
Z( )
2.5
4
2
3
1.5
2
1
0.5
1
0
0
-0.5
-1
-1
-2
-1.5
-3
-2
-2.5
0
0.2
0.4
0.6
0.8
1
-4
0
0.2
Arg( )/
0.4
0.6
0.8
1
Arg( )/
Z( )
Z( )
4
3
3
2
2
1
1
0
0
-1
-1
-2
-2
-3
0
0.2
0.4
0.6
0.8
1
-3
0
Arg( )/
0.2
0.4
0.6
0.8
1
Arg( )/
. 3.3.
| |=1.
: –––––– –
.
| | >> 1 ( )
,–
–
–
– –
-
, – – – – –
| | << 1 ( ): – – – – –
-
- 165 Z( )
Z( )
0.8
0.5
0.6
0.4
0.4
0.3
0.2
0.2
0
0.1
-0.2
0
-0.4
-0.1
-0.6
-0.2
-0.8
0
0.2
0.4
0.6
0.8
1
-0.3
0
0.2
0.4
Arg( )/
0.6
0.8
Arg( )/
. 3.4.
| |=2.
: –––––– –
.
–
–
,
– –
,
(3.56)
(3.50)
b.
(3.57)
,
(3.54)
.
| |~1(
,
,
-
(3.51)
,
| |
-
, – – – – –
| | >> 1: – – – – –
–
1
2(
.
,
b << 1).
| |
(3.55)
. 3.3
3.4).
3.3.4.
,
0
k||
0,
.
- 166 -
. 3.5.
k||bLn
k
Ti
i
=
e
= 2, = 1
. 3.1,
,
k||b.
-
,
k|| L
2
L–
0, 1, 2, 3, ... ,
(3.58)
.
k|| = 0
,
,
k||bLn > 2 Ln/L.
- 167 ,
(3.58)
k|| L /
0, 1, 2, 3, ... ,
L–
.
-
,
L
-
.
. 3.5.
. 3.5
k
Ti
,
2 Ln/L ~ 0.3,
,
2 Ln/L ~ 0.17,
< 1.
3.3.5.
i
ITG-
ITG
k
Te
ETG
k
,
e
,
-
~ 1.
Ti
~1
ITG Re( ) < 0,
0,
ETG – Re( ) >
k ,
Re( )
.
k ,
i
[304].
. 3.6
R
Im( )
e
-
= Re( )
=
k|| (
k .
)
. 3.6 ( = 1,
6
(3.48)
ITG,
k
Ti
>9–
ETG.
e=
i=
2)
k
Ti
<
- 168 -
. 3.6.
k||Ln
2; 2 –
e=
0,
i=
= 1, k
2 (ITG); 3 –
e=
Ti
2,
=6( )
i=
k
Ti
= 9 ( ): 1 –
e
=
i
=
0 (ETG)
k
Ti
3.7.
k||Ln
.
-
ITG
ETG.
0
k BTi /(eBLn
Ti ) .
- 169 -
. 3.7.
k
1–
i
=
4–
i
= 2,
e
= 2,
e
= 1; 2 –
i
=
e
= 2,
= 0.5; 3 –
k||Ln = 0.085:
Ti
i
= 3,
e
= 2,
= 1;
= 3, = 1
. 3.8
-
R
.
R
. 3.9.
-
(3.35)
.
(3.35)
ITG-
ETG-
,
.
-
- 170 /
0
0.45
0.40
0.35
6
0.30
0.25
0.20
4
0.15
5
3
0.10
1
2
0.05
0
1.0
0.05
R/
0.10
0.15
0.20
k||Ln
0.25
0
6
4
0.8
0.6
0.4
0.2
1
0.0
3
5
-0.2
-0.4
. 3.8.
2
0
0.05
0.10
0.15
0.20
( )
k||Ln
0.25
( )
-
k||Ln
(Ln/LB = 0, Ln/R = 0)
2–k
Ti
= 1; 3, 4 – k
Ti
i
=
= 10; 5, 6 – k
e
= 2,
Ti
= 1,
= 15
= 0: 1 – k
Ti
= 0.5;
- 171 /
0.20
0
4
0.15
2
0.10
4
0.05
3
1
0
3
-0.05
-0.10
. 3.9.
0
4
8
(
12
16
20
k
Ti
)
(
)
k
2,
(Ln/LB = 0, Ln/R = 0)
Ti
= 1,
i
=
e
=
= 0, k||Ln = 0.02: 1, 2 –
; 3 – ITG-
.
,
; 4 – ETG-
k
Ti
~1
k||Ln
~ 0.2.
L < 10Ln,
,
ck
.
Ti
>> 1
-
.
3.3.6.
i
0
e
0
:
i
0,1,
e
1–2,
- 172 0,5 (
)
,
0,1 (
).
(FRC) [305, 306],
.
i
-
0
ETG-
.
(3.47)
. 3.10–3.16.
. 3.10
-
k
Ti
k||Ln.
(k||Ln)b
k
Ln ~ a / 2 , L ~ a
k || Ln
. 3.11.
Ti
(3.58)
,
,
,
1.
.
k|| Ln
L ~ 10a ,
,
0,3 .
-
,
.
. 3.11
,
.
-
.
(
(k
.
Ti
.
. 3.11),
~ 10 2 ,
k
Te
1 ),
ETG-
- 173 Im( )/
1E+1
Re( )/
1E+2
0
0
1E+1
1
1E-2
Ti
= 0.1
10
100
1
0.1
20
0.1
k
1
100
1000
0.1
20
1000
10
1E-2
1E-3
k
1E-4
1E-3
1
1E-2
Im( )/
Ti
1E-3
= 10
0.1
1
k||Ln
1E-4
1E-3
1E-2
0
Re( )/
1E+1
0.1
0
k
0.1
1E-2
1
k||Ln
Ti
= 100
1
100
1
0.1
0.1
0.1
300
10
1E-2
1
1E-3
10
300
1E-3
1000
1E-4
1E-4
k
1E-5
1E-3
= 1000
1E-2
Im( )/
1E+2
Ti
0.1
1
k||Ln
0
1E-5
1E-3
1E+3
1E-2
Re( )/
0.1
0
1E+2
10
100
10
1
0.1
1000
25
0.01
k
0.01
10
1
1E-3
Ti
=1
0.1
k
Ti
= 25
1E-4
10
1E-4
0.001
0.1
0.01
0.1
1E-3
1000
1
100
0.1
1
k||Ln
1
10
k||Ln
1E-5
0.001
0.01
0.1
1
10
k||Ln
. 3.10.
k
k||Ln:
0.5; –
e
= 2,
i
–
e
= 2,
= 0.1, = 0.1
i
= 0.1,
= 0.5;
–
e
= 1,
i
Ti
= 0.1,
=
- 174 (k||Ln)b
1E+1
3
1
1
0.1
2
2
1E-2
1E-3
0.1
1
1E+1
1E+2
1E+3
k
Ti
. 3.11.
k||Ln
2–
k
e
= 1,
i
= 0.1, = 0.5; 3 –
1E+1
e
Ti:
1 –
= 2,
i
e
= 2,
i
= 0.1,
= 0.5;
= 0.1, = 0.1
(k||Ln)m
3
1
1
0.1
3
2
2
1E-2
1E-3
0.1
1
1E+1
1E+2
1E+3
k
. 3.12.
Ti
k||Ln,
k
Ti,
k
Ti.
1, 2, 3 –
.
. 3.11
- 175 -
Im( )/
1E+2
0
3
1E+1
1
1
0.1
2
1E-2
2
1E-3
1E-4
0.1
1
1E+1
1E+2
1E+3
k
. 3.13.
Ti
k
Ti.
1, 2, 3 –
3.11
Re( )/
1E+2
0
3
1E+1
3
1
1
2
0.1
2
1E-2
1E-3
0.1
1
1E+1
1E+2
1E+3
k
. 3.14.
Ti
k||Ln,
,
k
Ti.
1, 2, 3 –
.
. 3.11
.
.
- 176 | i|
1E+2
1
3
3
1E+1
2
1
2
0.1
1E-2
0.1
1
1E+1
1E+2
1E+3
k
. 3.15.
Ti
| i|,
k
1E+2
,
Ti.
1, 2, 3 –
.
-
. 3.11
D/D0
1E+1
1
0.1
1E-2
1
1E-3
3
1E-4
2
1E-5
2
1E-6
1E-7
0.1
1
1E+1
1E+2
1E+3
k
. 3.16.
Ti
k
.
. 3.11
Ti.
1, 2, 3 –
- 177 k||Ln,
k
. 3.12,
Ti
k
Ti
–
. 3.13
3.14
.
-
,
-
~ 10
0
(
.
. 3.13).
. 3.15
| i|,
,
k
Ti.
,
-
0.1 < | i| < 2,
-
,
,
-
.
,
D
k
2
,
-
.
D0
2
Ti 0 ,
(3.59)
D / D0 .
k
D
3.16.
,
,
k
.
Ti
2
k
Ti
>> 1,
ETG
,
.
[307],
k
Ti
>> 1, k
1/k ,
(~
Te
-
~1
-
Ti).
,
ni1 / ni
,
ETG-
q
,
1 /( k BTi ) ,
(3.47)
-
k
Ti
20 . ITG-
- 178 ,
n e1 / ne
e
1
/(k B Te ) ,
k
Ti
1
-
(3.50).
(
e
~ 1,
1 , Te / Ti ~ 0.5 ).
i
,
ITG-
ETG-
.
-
k
,
Te
~1
-
.
3.3.7.
,
.
,
.
[303].
,
,
-
,
-
,
.
,
[113].
,
,
-
(3.49).
(3.49)
k||
.
–k||.
. 3.17
-
- 179 .
,
,
.
,
-
,
.
. 3.17.
( )
( )
(
). k
Ti
= 1,
( Ln / Lui )(2u0|| i / vTi ) 0.5
)
i
=
e
= 2,
(
= 1,
- 180 3.3.8.
,
k
Ti
~1
[113]
D
k
0
2
k
,
(3.60)
–
,
k
2
,
.
-
,
[113]
D
D
1 (
0
s
/ )
2
.
(3.61)
s
–
du / dx ,
1 d u
,u –
r dr r
s
.
k
,
ETG-
-
Te
),
,
,
[150].
k
Te
~1
,
~1
D
2
Ti
.
(3.62)
- 181 -
i
k|| Ln
=
e
= 2,
=1
,
0.2 0.3 ,
k|| Ln ~ 0.1 .
. 3.18
-
k
k
k
Ti .
2
2
D gyro
k BTe
,
Ln eB
Ti
,
-
[111, 112].
. 3.18.
k
(1)
(2)
i
=
e
= 2, = 1
2
- 182 ,
i
=
e
= 2,
=1(
.
. 3.18),
,
k
Ti
-
k
~ 1,
D
s
~ 0.1
0
0.1k BTi /(eBLn
2
.
-
0.17 Dgyro .
-
Ti ) ,
.
D
(3.62).
-
0.07 Dgyro ,
-
,
-
,
[111, 112].
3.4.
3.4.1.
(
)
vTj A
2
k A~
0
j
vTj
,
,
k BT j / m j .
3
q j f1 j d v ~
0 ene vTe
j i, e
e
k BTe
vTj A ~
,
0e
2
ne vTe vTj
k 2 k BTe
vTj A
e
2
0 ne k B Te
2
B
2( k
2
Te )
vTe
.
vTj
.
-
(3.63)
- 183 ITG
-
e
f 0e .
k BTe
f1e
,
(46)
.
ITG
(
,
e
k
,
(3.63)
(
~ 0,1 )
Te
-
)
.
(3.63)
1,
ETG-
.
.
,
-
,
f1 j
qj
k BT j
*j
f0 j
J 02 (
j)
Dj
k|| v||
qj
f1 j d 3v 0 ,
qj
k BT j
(
v|| A|| ) f 0 j ,
(3.64)
(3.65)
j
q j v|| f1 j d 3 v
0
2
k 2 A|| .
A||
(3.66)
j
a11a33
,
(1
a13a31 0
,
i
F10
F10e )
e
e ( F12
2
i
) 2(k
F12
Te )
2
e
e ( F11
i 2
F11
)
0 . (3.67)
- 184 -
(3.67),
(3.34).
-
,
-
,
,
(3.35).
0
e
(3.67)
-
(3.47),
,
.
-
(3.35)
-
,
.
~ 0.1
,
k||
-
0.
,
-
,
,
-
.
3.4.2.
,
k||
-
0
B.
k||Ln
. 3.19.
k|| = 0
B
= Ln/LB
-
.
,
B
. 3.20
= Ln/LB:
B
> 1, 0
B
~1
0
B
~ 1.
- 185 *.
,
B
>1
,
0
3.20
(
.
.
. 3.20 ).
.
,
(
ETG-
),
,
(
).
,
k
Ti
>> 1
-
.
/
0.16
/
0
0.14
4
0
3
6
3
0.12
0.10
6
2
0.08
0.06
7
0.04
0.02
5
0
3
2
1
-1
2
0.00
-0.02
0
4
1
1
0.01
5
0.02
. 3.19.
0.03
k||Ln
(
-2
0.04 0.0
0.5
1.0
)
k||Ln
1.5
(
-
)
k||Ln
i
=
e
= 1; 2 – Ln/LB = 1.5, k
0.25, k
Ti
= 2,
Ti
= 1,
Ti
=5
= 1, Ln/R = 0: 1 – Ln/LB = 1.5, k
= 5; 3 – Ln/LB = 1.5, k
= 1; 5 – Ln/LB = 0.5, k
– Ln/LB = 0.5, k
*
Ti
Ti
Ti
= 20; 4 – Ln/LB = –
= 1; 6 – Ln/LB = –0.25, k
Ti
= 5; 7
- 186 /
0.15
0
3
/
0
4
1
2
2
0.10
4
5
1
3
0.05
5
0
-1
0
5
10
15
. 3.20.
20
k
25
0
5
10
15
20
Ti
(
)
(
k
25
Ti
-
)
k
1.5; 2 –
0.25; 5 –
Ti
*
i
=
e
= 2,
= 1, Ln/R = 0, k||Ln = 0: 1 –
= 0.5, Ln/LB = 1.5; 3 –
*
*
= 1, Ln/LB = 1.5; 4 –
*
= 0, Ln/LB =
= 1, Ln/LB = –
= 1, Ln/LB = 0.5
. 3.21
.
(F10, F20, F30).
(
*
,
-
F12
1~
B
.
. 3.22).
.
~1
~1
0
,
B
> 1.
B
~1
0
B
Te
~ 1.
-
~ 1
-
,
k
k
0
Ti
> 1,
-
- 187 F10
F20
2.5
0.2
2
2.0
1
0.1
1.5
1.0
1
0.0
0.5
2
0.0
-0.1
2
-0.5
2
-1.0
0
5
10
15
20
k
Ti
-0.2
25
0
F30
5
10
15
20
k
Ti
25
F12
0.1
1
2.0
2
2
1.0
0.0
0.0
-0.1
-1.0
1
1
1
-2.0
-0.2
-3.0
-0.3
2
2
-4.0
-0.4
0
5
. 3.21.
10
15
20
k
Ti
25
-5.0
0
(
5
10
)
15
20
(
k
Ti
25
)
(1)
(2)
k
1.5, Ln/R = 0, k||Ln = 0
Ti
i
=
e
= 2, = 1,
*
= 1, Ln/LB =
- 188 /
3
0
/
3
0.2
0
2
1
2
3
0.1
3
2
2
1
2
1
1
1
3
3
0
2
0
1
1
2
-1
-1.0
-0.5
0
0.5
. 3.22.
Ln/LB
1.0
(
-0.1
0
1
2
3
4
)
)
Ti
= 1,
*
= 1; 2 – k
R
Ti
= 5,
i
=
*
= 1; 3 – k
e
= 2,
Ti
= 5,
= Ln/R
*
=0
-
),
.
.
. 3.24
i
. 3.24,
-
= 1, Ln/R = 0,
. 3.23.
,
5
(
Ln/LB
k||Ln = 0: 1 – k
Ln/LB
-
e
i
i
>0
e
> 0.
,
e
i
.
e
i,e
< 0.
-
- 189 /
0
1.5
2.0
R/
0
5
1.5
1.0
1.0
4
1
0.5
3
5
0.5
0.0
1
4
6
-0.5
0.0
. 3.23.
2
-0.5
2
3
0.0
-1.0
6
Ln/R
0.5
-1.0
-1.0
-0.5
( )
0.0
( )
-
Ln/R
1, k||Ln = 0, k
Ti
0.5
Ln/R
= 1 (1–3)
k
i
=
e
= 2,
= 1,
*
=
= 5 (4–6): 1 – Ln/LB = –0.3, 2 – Ln/LB =
Ti
0.65, 3 – Ln/LB = 1.5, 4 – Ln/LB = –0.2, 5 – Ln/LB = 0.5, 6 – Ln/LB = 1.5
/
1.4
R/
0
2
0
1.2
1
1.0
2
3
0.8
1
0
0.6
3
0.4
3
3
1
2
-1
0.2
0
1
. 3.24.
2
e
3
-2
0
1
( )
= 1,
2(
*
2
( )
= 1, Ln/R = 0, k||Ln = 0, k
Ti
= 5,
i
=
3
e
e
e
(
),
i
): 1 – Ln/LB = 1.5, 2 – Ln/LB = 0.5, 3 – Ln/LB = –0.2
=
- 190 3.4.3.
,
-
. 3.25.
-
,
,
B
> 0,
e
-
>0
B
< 0,
e
<0(
.
. 3.25).
-
,
i
F12
,
,
,
,
-
.
,
,
.
/
18
0
16
14
12
5
10
4
3
8
6
1
4
2
0
2
3
4
5
0
10
. 3.25.
20
30
k
Ti
(
)
(
-
)
= 1,
2, Ln/LB = 1.5; 2 –
e
i
=
e,
*
= 1, Ln/R = 0, k||Ln = 0: 1 –
= 0, Ln/LB = 1.5; 3 –
–0.5, Ln/LB = –0.5; 5 –
e
= –0.5, Ln/LB = –1
e
= –1, Ln/LB = –0.5; 4 –
e
=
e
=
- 191 F12
1.0
1
0.5
2
0.0
1
-0.5
2
-1.0
. 3.26.
0
5
10
(
15
20
k
25
Ti
)
(
)
(1)
(2)
i
=
e
= –1, = 1, Ln/LB = –0.5,
*
= 1, Ln/R = 0, k|| = 0
i
F12
,
F12e ,
,
2
i
k
Ti
a33
,
i
F12
.
>> 1,
-
.
. 3.26.
(k
,
Ti
,
15)
, ,
.
- 192 3.5.
3.5.1. ITG(
)
,
.
-
ITG-
.
-
,
.
.
.
–
.
.
.
.
,
-
.
.
,
,
.
.
.
,
,
- 193 .
,
–
,
.
,
.
,
(
)
,
.
,
-
.
),
-
.
,
.
–
(slab),
[308, 309]
B
x
e
Ls
B e ||
B–
,
, Ls –
e –
, e||
,
,
-
,
, –
.
Bz
x,
(3.68)
By
,
-
z
x,
1
Ls
1 By
.
B x
(3.69)
- 194 -
x
,
,
-
z
y–
-
x
z.
,
B = Bz,
0.
,
,
By =
y
-
.
.
,
, ,
,
,
.
,
,
,
z
-
x=0
y
e||
e ,
-
.
,
k ||
k||
ky x
Ls
.
ITG-
0.
(3.70)
,
ne~
ne
e
.
k BTe
(3.71)
- 195 -
|
i
| 1.
(3.53)
|
1
, Z( i)
1
i
2
3
i
1
3
2
i
i
| 1,
.
ITG,
-
bi ~ 1 .
ni~
ni
Zie
k BTi
Zie
k BTi
*i
2
i
*i
2u0 zi
i
1
(1 bi )
Ti
1
2
1
*i
i (1
2
i
2
1 bi
*i
bi )
i
1
1
2
i
2
(1 2bi ) . (3.72)
,
( x)exp( i t ik y y ) ,
k||
0
x
k
.
Ti
1,
Ti
(
–
)
bi
2
Ti
2
x
2
k y2 .
(3.73)
.
(x)
d2
d x2
Q ( x, )
0,
(3.74)
- 196 -
x
x
1
k y2 2s
A( )
uz
s
u0 zi
,
vs
,
s
mi vs
, vs
qi B
k BTe
,
mi
Q( x , ~ )
A(~)
1
,
K
~
k yv
e
u z su s
,
(
K)
B( )
u1 yi
v
B (~)x C (~) x 2 ,
, K
1
i
C (~ )
(3.75)
s2 x 2
~2 ,
k yu0 yi , u1 yi
,
e
Ln
,
Ls
s
u yi
su
Lni
,
Lui
u0 yi , u0yi –
(x = 0), u0zi –
x = 0.
(
(x) Q
x ( )
1/ 4
exp
x ( ) –
,
).
Q dx ,
i
(3.76)
Q( x , )
.
(
0.
-
)
x ( )
Q ( x , )dx
(l 1 / 2) ,
x ( )
l–
.
C 1/ 4 x
B
2C
(3.77)
- 197 -
d2
d
2
2l 1
2
l = 0, 1, 2, … –
0,
(3.78)
,
.
ITG-
[142, 310].
-
[310],
[142].
(
-
)
B2
4C
A
l (x)
(2l 1) C .
H l ( ) exp(
Hl ( ) –
(3.79)
2
/ 2) ,
.
A k y2
k y v*e
(3.80)
2
s
1
K
, B
0, C
s2
2
,
,
k y2
2
s
1
2
i (2l 1) s k y2
2
sK
1
i(2l 1) sK
0,
(3.81)
- 198 -
Im( ~ ) .
Re( ~ )
R
ITG. 3.27
3.28,
.
|
3.29.
|
i
-1 -1/2
|
i
| 1
,
. 3.30.
1/ 2
Re C
sm
(3.80),
osc
1/ 2
Im C
osc
–
(
)
.
-
. 3.31.
sm
2
(k y )
2
s s
,
(3.82)
,
;
min
sm , osc
,
s
v*e /
osc
sm
[144]
-
s.
l = 0.
. 3.32.
,
-
,
,
–s
K.
. 3.33.
s
,
K.
,
s
.
-
- 199 -
0
0.4
l=3
l=0
l=2
-0.4
R/
0.3
l=1
l=2
l=1
/
s
-0.8
l=3
s
0.2
l=0
-1.2
-1.6
0.1
0
0.5
. 3.27.
ky
s
1.0
0
1.5
( )
0
0.5
ky
s
1.0
1.5
( ) ITGl
K=2
-
s = 0.1
0.6
0
s = 0.1
s=3
s = 0.03
-0.5
0.4
R/
s
-1.0
s = 0.3
/
s=1
s
s=1
s = 0.3
0.2
s=3
-1.5
s = 0.1
s = 0.03
-2.0
0
. 3.28.
0.5
ky
( )
K=2
s
1.0
1.5
( )
0
0
0.5
ky
s
(l = 0)
1.0
1.5
s
- 200 -
0.3
0.4
0.3
0.2
0.2
0.1
0.1
-20
-20
0.0
-10
0
10
x/
0.0
-10
0
10
x/
20
s
20
s
-0.1
-0.1
0.3
0.2
0.2
0.1
0.1
-2 0
-20
-10
0
10
x/
-1 0
0.0
0
10
0
10
x/
s
20
-0.1
20
s
-0.2
-0.1
-0.3
0.4
0.4
0.3
0.2
0.2
0.1
-20
-20
-10
0.0
0
10
x/
0.0
-10
20
x/
20
s
-0.2
s
-0.1
-0.4
-0.2
. 3.29.
: – – – – Re( ), – - – - – – Im( ), ––– –
K = 4, s = 0.1.
l = 0; – ky
s
– ky
s
= 0.1, l = 0;
= 0.5, l = 1;
– ky
s
– ky
s
= 0.5, l = 0;
= 0.5, l = 2; – ky
s
– ky
= 0.5, l = 3
.
s
= 0.8,
- 201 1.6
1.4
1.2
|
i
-1 -1/2
|
1.0
0.8
3
5
7
0.6
4
0.4
0.2
2
0.0
0.0
. 3.30.
|
i
0.5
-1 –1/2
|
ky
6
1
1.0
1.5
s
: 1 – s = 0.01, K = 2; 2 – s = 0.01, K = 4; 3 – s = 0.1,
K = 2; 4 – s = 0.1, K = 4; 5 – s = 0.3, K = 4; 6 – s = 0.3, K = 8; 7 – s = 1,
K = 16
8
s = 0.1
s = 0.03
6
/
s = 0.3
s = 0.03
s
4
s = 0.1
s=1
s = 0.3
2
s=3
s=1
s=3
0
0
0.5
. 3.31.
ky
1.0
(l = 0)
,
osc
–
1.5
s
s
K = 2:
sm
–
- 202 -
s = 0.03
0.8
s = 0.1
0.6
s = 0.3
s=1
0.4
s=3
0.2
0
0
0.5
. 3.32.
ky
1.0
1.5
s
s
K=2
3
max
1
s = 10-3
s=1
s = 10-2
0.5
s = 0.3
0.3
s = 0.1
0.1
0.5
1
. 3.33.
K
5
10
K
s
- 203 -
.
,
,
,
,
-
.
:
D
max
max
k BTe
,
LN eB
s
(3.83)
–
.
,
K
max
max
0.35 K
s.
s(
.
. 3.33)
0.1 .
3.5.2.
,
,
-
,
[311]
u y,z
–
u 0 y , z exp
x2
2
2
,
(3.84)
.
. 3.34
3.35
-
- 204 .
.
~ 0.1
E
1
Ti v*e
~ u / L ~ 0.1
ITG[303].
1
Ti v*e
), ,
| E| >
(L –
-
,
0.4
/
-
L
10
Ti.
s
0.3
2
0.2
1
4
0.1
6
5
3
0
-2
-1
0
1
u0y/
2
*e
. 3.34.
: 1 – s = 0.1, K = 4, ky
s
= 0.5,
= 10 s; 3 – s = 0.1, K = 4, ky
0.8,
ky
s
s
= 0.1,
= 3 s; 5 – s = 0.01, K = 4, ky
= 0.5,
=3
s
= 3 s; 2 – s = 0.1, K = 4, ky
s
s
= 0.5,
= 3 s; 4 – s = 0.1, K = 4, ky
= 0.5,
s
=
= 3 s; 6 – s = 0.01, K = 2,
- 205 /
s
1
3
0.3
0.2
4
0.1
2
0
-3
-2
-1
0
1
u0zLNi/(
2
s s)
3
. 3.35.
: 1 – s = 0.1, K = 4, ky
0.1, K = 4, ky
s
––––– –
=3
s
= 0.5; 2 – s = 0.1, K = 4, ky
= 0.8; 4 – s = 0.01, K = 4, ky
s
s
= 0.1; 3 – s =
= 0.5. –––––– –
= 10 s,
s
,
ITG-
.
,
[303]
ITG-
u / vTi ~ 10
2
u|| / vTi ~ 0.2 ,
,
-
(3.85)
(3.86)
- 206 u
u|| –
, u
u|| –
-
.
: Te
ITG|s| < 0.1,
i
Ti ,
2–4.
,
[303]
,
»
x
,
u||
.
,
[140],
u
«
-
[140].
,
,
(3.85), (3.86)
,
-
.
u
,
,
(3.85),
,
,
.
u|| ~ vTi
,
.
-
,
(3.85), (3.86).
,
(
ITG-
,
),
-
,
-
,
-
[140].
,
[312].
-
- 207 3.5.3.
Er B,
.
B
Er
VE
Er B-
,
Er / B .
,
-
. 3.36,
x
,
VE
-
–
.
.
VE
[313–318].
,
[316, 317].
,
[319].
-
.
,
,
[315].
,
| - k yVE |
–
VE0.
(
)
k||vTi ,
,
(3.87)
- 208 -
VE
VE
VE0
0
–
. 3.36.
0
x
E B-
,
ky
,
Ti
1, | |
ci ,
,
Ti
–
ci
–
.
d2
dx 2
Q( x , )
Q ( x, )
k y2
0,
(3.88)
VE'' ( x)
.
/ k y VE ( x )
(3.89)
(3.88)
(3.89),
Q(x, ),
-
[320],
.
(3.88)
.
- 209 -
R
Re(
k yVE 0
k y VE )
= Im( )
-
. 3.37.
VE / .
0
. 3.38
,
Q
ky
,
. 3.39
x.
-
1
2
.
-
ky
,
-
(k y ) min ~ 1 ,
ky
,
(k y ) min
.
-
VE ( x )
ky
(k y ) min ;
max
~
0.
. 3.37
,
(x=0).
,
x=0
(k y ) min
x0,
,
max
–
(
.
. 3.40).
(
)
: D ~
1
c1
~
2
1
c2
~ k y2 D [160].
2
[144].
-
D .
(
ky )
1
c1
1
c2
, ,
,
D ~(
2
k y2 )
1
.
(3.90)
- 210 -
/
R
16
0
12
1.2
8
0.8
4
0.4
0
0
0
/
1.6
5
10
ky
15
. 3.37.
0
0
5
( )
l = 1 (– – – – –)
2.0
10
ky
( )
l = 0 (–––––––),
l = 2 (– - – - – - –)
| |
1.6
1.2
0.8
0.4
0
-2
. 3.38.
-1
0
1
x/
.
l–
2
.
15
. 3.37, ky = 6
- 211 Q
Im(Q)
40
0
Re(Q)
-40
-80
-1.0
-0.5
0
0.5
1.0
x/
. 3.39.
Q
max/
l = 0, ky = 6
0
1.6
1.2
0.8
0.4
0
0
0.2
0.4
0.6
0.8
1.0
x 0/
. 3.40.
.
l–
.
. 3.37, ky = 6
- 212 -
,
,
,
.
-
~ 0,1 .
k y ~ 10 ,
~ 0.1
-
0,
D ~ 10
3
VE .
(3.91)
,
-
~ D ),
(
,
VE / D ~ 103 .
,
,
.
,
,
,
,
[234].
-
.
,
,
.
,
.
~ 0.1 V/ ~ 0.1dV/dx,
.
V–
-
- 213 [321],
[322].
-
[323].
(
) [324].
,
[325]
-
,
,
,
.
s
= dV/dx
,
-
.
,
.
-
,
–
.
ITG-
s
0.1
s
/ ~ 10 .
,
.
s
,
.
(1.42),
-
(3.91).
.
3.6.
,
.
,
.
-
- 214 ,
.
1)
,
,
-
,
ITG-
,
,
–
ETG-
.
k|| = 0
,
-
.
k||m,
L < /k||m
(
).
,
.
k|| = 0,
.
.
2)
k||
,
k||
,
~ 1
k|| = 0
-
.
3)
,
(
R
> 0)
(
)
(
R
.
-
< 0)
(
k||
e
< 0).
-
R
.
4)
.
B
= Ln/LB
:
B
> 1,
–
- 215 -
0
B
~ 1,
– 0
B
~ 1.
-
~1
.
,
-
.
.
,
.
k
Ti
> 1.
k
Te
~ 1.
5)
-
(
),
.
-
,
,
.
[256, 257].
(
«
0.14
cr
»)
[106, 256, 257].
-
( i,
-
e,
.)
B
.
,
1/
Ti
ETG-
k ~ 1/
~1
-
Te
.
,
.
ETG-
1
,
[96,
.
. 15.4],
| e| < 1
k
Te
<<
-
,
(3.18).
-
- 216 -
B
.
= Ln/LB
,
,
-
~1
B
| e| < 1.
(3.5),
e
,
1
-
[267].
,
,
.
,
,
.
–
)
= Ln/LB
.
[326, 327]
.
- 217 4.
4.1.
,
,
(
–
),
,
.
-
,
,
(
[132]).
.,
-
k.
-
.
,
,
-
.
k
,
-
k
.
,
,
,
-
,
-
.
-
,
.
,
.
,
,
,
,
,
.
-
.
-
- 218 ,
.
(
,
-
),
.
,
-
.
.
,
,
,
,
-
.
,
.
,
.
-
[237, 238].
,
,
,
-
,
,
-
[328].
,
,
,
.
,
-
,
-
.
,
.
-
x
z
.
.
x
z
-
y
-
- 219 (
3
,
z
-
).
,
,
n vx ,
Q
3
k BT n v x
2
3
nk B T v x
2
vx –
n, T
(
)
(4.1)
3
n T
k BT 1
2
T n
,
(4.2)
,
-
,
.
(4.2)
,
,
3
k BT
2
,
-
.
,
n T
T n
n
T
T
n
.
i
Zi
e
i
Zi –
.
.
e
i
,
-
(4.3)
- 220 a
Ln.
a << Ln
-
.
a ~ Ln.
-
[245, 246].
.
-
.
,
-
.
a <<
Ln.
.
,
-
.
,
,
3.
,
.
,
-
(
)
.
,
,
-
,
,
.
.
,
-
- 221 .
,
-
,
.
ITER
[130],
-
(
)
ITG-
ETG-
-
.
-
(ELM, edge localized modes),
ELM [130].
:
[130].
,
.
,
,
,
-
.
~1
,
,
.
B
0
-
,
,
-
[228, 229].
B
0
-
.
B
,
0,
,
,
,
.
-
.
B,
,
-
- 222 .
,
,
.
. 1.3,
.
-
,
k .
. 4.1
-
,
.
: 1/ L
1/
Ti
~ k ~ 1/
Te ,
Ti
Te
k ~ 1/
–
Ti
-
(
); L –
1/
k
.
Te
k ~ 1 / rD ,
(
rD –
-
)
.
k ~ 1/L
,
-
.
,
ITG
0
L–1
SWITG
TEM ETG
–1
Ti
Te
k
. 4.1.
–1
rD–1
- 223 -
1/ L
k ~ 1/
(
Ti
)
-
.
ITG,
.
,
.
,
1/
,
ETG-
-
k ~ 1/
Ti
Te ,
.
-
1/
Ti
k
1/
Te .
-
ITG(SWITG, short wave ITG).
-
(TEM, trapped electron mode)
.
-
(1.38)
:
D
D
k
0
2
D
1 (
s
0
/ )
2
.
(4.4)
–
-
[161], k
–
(
)
,
s
–
-
.
(4.4)
,
,
,
- 224 .
,
,
.
.
4.2.
.
.
,
.
-
,
(
)
(
.,
-
, [110, 329–331]).
,
,
-
,
.
,
.
B
z,
y,
E(x)
»
X
x.
X ( y, t )
x
x
x = x0.
y
t
x
x0
X ( y, t ) .
(4.5)
- 225 .
(
).
n~
~
X.
.
n~
,
,
[332]
n~
~
X.
(4.6)
,
Ti ,
ci
,
-
ci
,
Ti
.
(
,
)
,
.
(4.6)
-
X ( y, t )
,
-
.
,
x
-
,
ky.
1/
n~
t
n~
V(X )
y
(4.7)
2 ~
D
n
y
2
V (x )
n~ ,
(4.8)
y; D
,
.
- 226 (4.8)
(4.7)
x.
.
,
,
D,
,
D .
n~
.
,
-
.
,
)
(4.8).
-
,
E B
V ( x)
.
E ( x) / B
-
.
.
V ( x ) V0
V0
s (x
x0 ) ,
x = x0;
(4.9)
,
s
.
,
,
,
.
,
V0,
.
V0
0.
-
- 227 (4.5), (4.6)
(4.9)
(4.8)
,
X
t
sX
X
y
,
D
2
X
y
2
X.
(4.10)
(
ky
)
X0.
-
,
k y.
(4.10)
,
[333],
.
,
[334].
,
(4.28)
[335].
[336].
(4.28)
(4.28)
,
(
[337].
)
[333],
-
[338, § 101].
,
(4.10)
-
.
,
.
(4.10),
0, D 0,
-
s
s
0,
- 228 -
0
s
–
s
X
y
s
–y.
-
,
,
sX
(
X / y)
(
D
2
X / y 2 ).
(
s
0)
(4.10)
D ky 2
D0
(1.42)
D0 ,
ky 2
(4.11)
,
0.
s
0
s
D
-
D0 ,
D
,
D0
,
.
0
s
D
.
.
-
D
-
D
,
0.
,
D .
,
D / D0
X m2
X m2 / X m2 0 ,
X m2 0
s
s
0,
.
-
(4.12)
- 229 (4.10)
,
D
-
.
-
D
)
(
-
.
-
D
D,
-
(4.12).
(D
0)
D 0
,
D 10
2
D .
1
:
,
,
Xm0,
D0.
,
-
.
. 4.2 4.8
3.
.
4.2 4.4
.
1.5
.
1.6.
. 4.7
4.9.
4.2 4.4,
.
(
0
.
. 4.5, 4.6)
1,
D
-
D
3.
.
NL,
0
0,45 ,
D
3
NL
5,
3
D
D
D .
D
D
s
1.
- 230 -
D
D
D ,
(1.42).
X m2
D
,
D
10%.
,
D
,
D
s,
X m2 ,
D
,
,
D .
D
,
-
s.
,
-
,
.
3.
s
D
s/
0/
NL
X m2 / X m2 0
X m2 / X m2 0
D
1
D
D /D
0
(5)
D
0
0
1
0.5
0.090
20
0.80
3.8
0.80
1
0.22
12
0.48
0.96
0.50
1.5
0.31
6.5
0.29
0.43
0.31
2
0.36
5.0
0.18
0.24
0.20
3
0.40
5.0
0.090
0.11
0.10
5
0.44
5.0
0.037
0.038
0.038
10
0.45
5.0
0.0095
0.0098
0.0099
- 231 -
X/Xm0
3
0.5
4
0.4
2
0.3
0.2
1
0.1
0
-0.1
-0.2
-0.3
-0.4
-0.5
0
kyy
. 4.2.
:1
D
D ,
s/
t = 3; 2
2
5; 3
7; 4
20.
= 1.5,
-
X 0 / X m 0 10
2
1.5
X/Xm0
2
1
1
0.5
7
0
8
-0.5
-1
-1.5
0
kyy
. 4.3.
:1
0.3; 5
0.5; 6
1; 7
2; 8
5. D
t = 0; 2
2
0.1; 3
D , s/ = 10 ( X 0 / X m 0 10
0.2; 4
2
)
- 232 -
X/Xm0
0.6
5
6
4
0.4
3
2
0.2
1
0
-0.2
-0.4
-0.6
0
. 4.4.
:1
5
6; 6
20. D 10
lg(Xm/Xm0)
2
kyy
2
t = 2; 2
3; 3
4; 4
5;
:1
s/
2
D , s/ = 1.5, X 0 / X m 0 10
0
1
-0.2
2
-0.4
3
-0.6
4
-0.8
-1
-1.2
-1.4
-1.6
-1.8
-2
0
5
. 4.5.
= 1; 2
2; 3
3; 4
5. D
D
10
t
15
- 233 0.5
lg(Xm/Xm0)
1
2
0
3
4
-0.5
5
-1
-1.5
-2
0
5
10
t
15
. 4.6.
:1
= 0.5; 2
1; 3
X/Xm0
2; 4
3; 5
5. D 10
2
s/
D
1
2
0.8
3
4
1
0.6
5
0.4
0.2
7
0
6
-0.2
-0.4
-0.6
-0.8
-1
0
. 4.7.
:1
6
5. D
D
s/
= 0; 2
kyy
2
0.5; 3
1; 4
2; 5
3;
- 234 -
X/Xm0
2
1.5
1
1
2
0.5
3
0
4
-0.5
5
-1
-1.5
-2
0
. 4.8.
:1
D 10
2
2
kyy
s/
= 0.5; 2
1; 3
2; 4
3; 5
5.
D
x = x0.
)
V ( x)
,
2
2x
2
X m0
,
(4.13)
,
s
;
-
.
2
(4.10)
,
(4.13)
- 235 -
X
t
2
X2 X
X m0 y
2
D
X
y2
X.
(4.14)
(4.14)
,
-
(4.10),
. 4.9 4.12
4.
4.
2
2/
X m2 / X m2 0
D
D
X m2 / X m2 0
D
0
1
0.3
0.96
0.5
0.89
1
0.75
1.90
1.5
0.63
1.26
2
0.54
0.94
3
0.41
0.62
4
0.33
0.46
5
0.28
0.37
6
0.24
0.31
8
0.19
0.23
10
0.17
0.19
12
0.14
0.16
D
- 236 -
X/Xm0
1
0.8
0.6
2
3
4
1
5
0.4
0.2
0
7
6
-0.2
-0.4
-0.6
-0.8
-1
0
kyy
. 4.9.
:1
5
3; 6
5; 7
X/Xm0
10. D
2/
= 0.3; 2
2
0.5; 3
1; 4
2;
D
1
0.8
0.6
0.4
1
2
3
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
0
. 4.10.
kyy
:1
2/
= 3; 2
5; 3
2
10. D 10
2
D
- 237 -
lg(Xm/Xm0)
0
-0.2
-0.4
-0.6
1
-0.8
2
3
-1
4
-1.2
-1.4
-1.6
-1.8
-2
0
5
10
t
15
. 4.11.
:1
= 2; 2
3; 3
lg(Xm/Xm0)
5; 4
10. D
2/
D
0
-0.2
-0.4
-0.6
1
-0.8
2
3
-1
-1.2
-1.4
-1.6
-1.8
-2
0
5
10
. 4.12.
t
15
:1
= 3; 2
5; 3
10. D 10
2
D
2
- 238 -
D
,
2
0
D
D
1
0,45 ,
NL
D
D ,
2 D0 / |
2
3.
2
2
D
|.
.
1.
.
,
,
.
,
-
.
,
NL
V(x)).
,
~ 5/
(
-
,
.
,
kk
,
2
k
.
(4.15)
,
-
,
,
-
.
2.
.
,
y
.
-
- 239 ,
y
y 0
X=0
/ky .
[334].
y
(
ky),
,
,
,
,
.
(4.15).
(4.15)
,
,
.
D,
-
(4.8),
D
.
-
.
D
D
D
k y,
D
Dmax .
Dmax ,
,
,
,
D
D.
Dmax
,
D.
,
,
D
,
(
D
Dmax
)
-
.
3.
.
,
-
(
-
- 240 -
D
),
,
,
D
i
E B
.
,
,
D
i
D
e.
.
e
,
,
.
4.
.
.
,
.
-
,
.
-
.
4.3.
,
.
-
[132].
n
a
:
- 241 -
,
n|
|
n
n
n
a
a
Ln
(4.16)
1/
-
a << Ln.
a.
a2 .
D
,
k
~ 1/
Ti
(4.17)
,
(ITG-
,
)
D
2
k
.
(4.18)
a
,
n
n
.
1
.
k Ln
,
.
k
(4.19)
(4.19)
-
[339, 340].
a
k .
- 242 -
n vx ,
(4.20)
k
vx –
, x –
,
vx
n
k .
(ITG-
)
E B
v xi
Ey
v xe
Ey / B
k
/B,
(4.21)
–
.
,
,
2.3.2,
(4.21)
(1/k
-
).
ITG-
ne / ne
/( k B Te ) ,
ni / ni
–
,
i,e
k
Ti
qi
ETG-
/(k B Ti ) .
0
5–10 (
( ne / n e
ni = ne = n
e
.
. 3.3.5).
ni / ni )
Ti = Te = T, qi = e,
- 243 -
k
,
k T
k B
eB
n
n
2
n.
(4.22)
(4.22)
;
.
(4.22)
.
k
1/
k
Ti
1/
Te .
k
. 2.3,
1/
1/
Ti
,
,
Ti
,
-
.
,
(
,
-
),
(
).
(4.22)
k
–3
,
S (k )
,
( n / n) 2
,
-
(4.19).
. 4.2,
k
-
D
k
2
.
-
(4.22)
D
k T
k Ln B
eB
n
n
2
.
,
S (k )
n
n
2
(k )
k3
eB
.
k B TLn
(4.23)
- 244 -
C
C –
Ln/R,
k BT
,
eBLn Ti
(4.24)
,
i,
e,
.
k
C
(k ~ 1/
,
.
ITG-
Ti
)
C ~ 0.1.
.
~1
,
k >> 1/
Ti
(
. . 3.4).
(4.24)
S (k )
k > 1/
,
ETG-
k
C
2 3
Ti Ln k
.
(4.25)
ITG-
Ti
–3
.
,
,
k >> 1/
Ti
,
[307].
(
.
,
. 2.3.2).
k
,
k >> 1/
Ti
–3
,
.
ETG,
ETG(4.23),
.
,
-
- 245 ITG-
,
( n / n) 2
S (k )
= 3.5
[132]
k
,
(4.26)
0.5.
,
(k << 1/
Ti).
.
,
D
Bohm
C Bohm
k B Te
,
eB
CBohm
(4.27)
Ln
(4.18)
1/
k
(4.27)
1/16.
-
Ti :
a
C Bohm Ln
k
1 Ln
.
4 k
(4.28)
[132],
k << 1/
.
Ti
ITGk ~ 1/
Ti.
(4.18)
(4.24)
- 246 -
D
Ti
C
Ln
k BT
,
eB
(4.29)
C ~ 0.1.
(4.29)
-
,
.
(4.26).
(1 /
ETG-
Ti
k
1/
Te ),
,
. 2.3.2.
,
D ~ a2
ci .
,
ETG-
D ~
a2 ~
2
Ti
/
2
Ti
~
.
ci ,
,
ITG-
-
.
.
,
-
,
,
.
Ti,
,
,
,
ITG-
,
-
.
.
,
.
- 247 ,
-
.
-
k
n
k an / Ln .
,
,
.
C
k BT
k
eB Ti
C
k BT
,
eBLn Ti
(4.30)
,
,
-
(4.16).
a
(4.30)
k
– ITG-
1/
k
Ti
1/
1/
k
,
S (k )
C /C
Te .
~ 1/
Ti ,
k
Ti
C /(k C ) .
,
– ETG-
a
1 /( k k
Ti ) .
-
Ti
k
4
.
,
,
.
,
.
-
,
.
,
,
,
,
,
,
.
,
,
,
,
,
-
.
- 248 ak
k
da k
dt
k
k ak
:
ak
[a k ] NL ,
(a k )
–
(4.31)
, [ak]NL –
-
.
.
[341],
,
2
1 /( k s a k ) ,
s
–
-
.
1 /( k 2 Dk ) ,
sat
ak 2
Dk
.
-
.
,
.
,
,
,
.
,
Dk
-
,
.
,
da k
dt
k ak
k 2 Dk a k
k s a k2
k
-
2
s ak
.
(4.32)
- 249 -
,
,
,
.
Dk
(4.32),
k
2
-
k
ka k2
,
k a k2 ,
. a k2
k
(4.28),
1/ k .
1/
-
Ti .
k
1/
,
Ti .
.
,
,
.
,
s1
3
T
kB
2
T
kB
n
n
kB
3
2
-
,
1
n
,
n
T
n
n
T
n T
.
T n
,
2 / 3,
,
(
1) 5 / 3 .
,
.
,
.
,
s
,
kB
2
n
n
.
,
-
,
n s
t
kBn
n
n
2
,
(4.33)
- 250 -
–
.
,
.
-
( / T )D
n
kB
n) 2
D (
kB
n
–
D n
L2n
.
(4.34)
.
(4.33)
(4.34),
2
2
k –
-
2
n
n
D
L2n
1
(k Ln ) 2 (1
.
(4.35)
2
s
/
2
)
,
(4.36)
.
2
1
( k Ln ) 2
2
2
(4.37)
- 251 -
2
( k Ln ) 2
2
,
2
2 .
(4.38)
2
(4.36–4.38),
(4.19)
(4.23)
,
,
k
,
.
(
s
)
2
(k
v*
<
~ 1 /(k Ln ) .
ITG-
C1 k v* ,
Ti)
k B T /(eB) –
C1 ~ 0.1 ,
.
-
L*
2
( k Ln )
2
1 1 /(C1 k L* ) 2
1
v* /
C1 L*
Ln
s
L**
v* /
2
.
2
,
(4.39)
–
2
2C1 L**
k L2n
(4.39)
2C1 L**
.
Ln
(4.40)
(4.40)
,
.
.
a
,
k
min
1 / Ln .
Ln ,
-
- 252 -
k
max
~ 1 / L* .
k
( L*
, L**
max
)
~ 1 / L** .
-
,
-
,
–
.
-
,
GAMMA-10 [124, 125],
.
Ln
:
10
1
10
a,
2
C1
-
Ln /L* 1 10
0.1 ,
.
(
),
(4.39)
C1 L* / Ln
10
1
10
2
.
4.3.
,
,
.
,
-
,
,
.
,
-
.
.
-
- 253 ,
,
.
-
,
,
.
-
,
.
,
,
,
-
.,
-
,
,
.
(
(
),
.
)
.
,
(
,
,
,
).
-
[342].
[342]
.
[343, 344]
.
,
,
,
.).
-
,
.
-
(
),
.
- 254 [345].
-
,
, ,
,
.
,
,
,
(
.
,
)
,
,
-
,
.
.
,
,
-
,
,
.
,
,
,
.
,
-
(
).
,
.
const (
–
),
u
.
,
,
-
.
-
- 255 .
,
.
,
,
-
.
( = i, e):
( D
(
m n (u
n
T )
)u ||
k BT
1
n F ||
|| p
)
m (u || ) 2
2
1
Z eU
u || ) ,
(4.43)
h0 (
en e u e ,
),
(4.45)
(4.46)
i
0.
(4.47)
i ,e
–
(
(4.42)
(4.44)
Z i eni u i
Z n
0
sT ,
E
,
B
j
0
(4.41)
T
q n E||
m (u ) 2
2
B
sn ,
kBn V
p
Z en B
u
1
n V
; B
E
U –
- 256 -
; U –
p
n k BT , u
j
; m , Z , n , T,
Z en u
–
,
,
,
,
;
; h0 (
)–
; sN
–
;D ,
,
; V
,
;
–
-
–
-
; F || –
sT –
,
,
,
;
-
||
,
-
.
,
(
,
const
,
r
-
const ) n , T , p , u || , u , U
.
(4.41)–(4.43)
–
,
-
.
(4.47)
s ne
Z i s ni .
-
,
-
i
(4.41)
,
,
.
(
),
D
e
= D
i
(D
i
,
–
).
,
(4.41)
,
n F ||
(
u || ) .
- 257 (
),
-
kBn
(
1)
m n D
D
,
(4.48)
.
(4.49)
(4.44)
,
-
.
(4.45)
(
)
-
.
(4.50)
1.
,
3 (
-
),
1
.
k B T ln
n
n
*
m (u || ) 2
2
m (u ) 2
2
Z eU
h0 (
) , (4.50)
.
,
,
.
,
,
,
dh0
.
T (dS
dS int )
T dS int ,
-
,
(4.51)
- 258 -
S –
(
)
-
; dS int –
-
;
,
,
-
[346].
–
,
0.
(4.51) dS
,
.
h0
,
,
,
,
dPw
n dh0
(4.52)
,
(
-
).
,
, Pw
-
.
n T
–
1
dh0
dt
T
1
h0 ,
(4.53)
.
,
,
.
-
- 259 (4.41)–(4.53)
( );
(sn ),
(F ||);
(sT )
-
(D ).
D
-
,
,
,
,
,
,
.
.
-
,
,
(
).
,
,
,
.
,
.
,
.
-
,
.
.
,
. 4.13
-
4.14.
-
<< 1.
(
)
,
.
-
(
),
-
.
,
.
-
- 260 ,
.
.
-
.
4.13
,
(
.
4.14 ),
(
. 4.14 ),
(
. 4.14 ).
. 4.14
-
vs .
ne/ne*
q(r)
T,
1.0
10
0.10
0.8
8
0.08
6
0.06
4
0.04
2
0.02
ne/ne*
0.6
Ti
0.2
0.0
0.0
0.2
0.4
0.6
Pwe,
10
u
u
1
0.00
0.0
0
1.0
0.8
u,
0
3
q(r)
2
Te
0.4
4
0.2
0.4
0.6
0.8
3
0
1.0
Er,
0
e
i
200
-10
Er
-20
u||e
-30
-10
100
1.5pe
Pwe
-40
-50
-60
0.0
0.2
. 4.13.
0.4
0.6
0.8
1.0
0
0.0
0.2
0.4
r
0.6
0.8
-20
1.0
-
- 261 ne/ne*
q(r)
T,
1.0
0.8
ne/ne*
0.6
10
0.10
8
0.08
6
0.06
4
0.04
2
0.02
8
6
q(r)
Te
0.4
Ti
0.2
0.0
0.0
0.2
0.4
0.6
0
1.0
0.8
0.00
0.0
0.2
0.8
0
1.0
0.6
0.8
1.0
0.6
0.8
1.0
0.4
0.6
30
vs
600
20
u||i
400
10
200
0
0
-10
Pwe,
2
u,
u,
800
-200
0.0
4
u||e
0.2
0.4
0.6
0.8
3
1.0
1.0
0
e
u
-20
0.0
D /D
Er,
u
0.2
0.4
0.2
0.4
i
0
0.8
200
1.5pe
Er0
-20
Pwe
100
0.6
0.4
Er
-40
0.2
0
0.0
0.2
0.4
0.6
0.8
-60
1.0
0.0
0.0
. 4.14.
r
,
.D
,D –
0
–
- 262 ,
,
,
-
,
.
p
n
T
p*
n*
T*
1
.
-
(4.54)
3,
,
.
p* , n *
(4.54)
T*
.
(4.44)
p
(4.46),
p
r
p
j Bz
B02
2 0
B2
2 0
1
jz B
0
1
a
0 r
Bz
Bz
z
B2
dr ,
r
(4.55)
(4.56)
(
(
pe
Br
rBr .
r r
B0 –
B
pi
B
r = a).
-
- 263 -
j z)
,
B
Bz
B
Bz
B0 1
1
Bz0 1
2
1
Bz
,
(4.57)
1
0p
B02
2
B02
a
r
,
(4.58)
,
(4.59)
B2
dr .
r
(4.60)
B
q(r )
A>1–
Bz r
,
B aA
.
(4.61)
A = 3,
.
(r)
q(r)
. 4.13
Pwi = 0,
4.14 .
.
,
.
, Pwe
-
. 4.13
,
-
4.14 ,
1.5 pe .
- 264 . 4.13
4.14
Er.
Er0
4.14
.
.
,
,
-
,
,
-
.
.
,
.
-
,
.
,
-
.
,
,
.
,
,
.
,
-
Pwi = 0
Pwe > 0,
.
,
.
.
-
Pwe
,
Pwi
-
,
,
-
Pwe
.
-
- 265 ,
-
,
.
4.4.
.
-
,
(
-
)
-
,
,
.
,
-
.
,
.
-
.
,
.
-
,
.
- 266 5.
,
(1.5)–(1.7).
,
,
,
,
,
.
,
.
-
.
.
.
,
,
,
-
.
-
.
,
.
,
,
–
(FRC).
,
,
-
.
FRC
-
- 267 .
.
-
,
,
.
,
,
-
.
,
,
,
-
.
,
.
.
,
.
5.1.
5.1.1.
(FRC)
FRC
-
(FRC)
,
[347],
.
,
D–3He-
,
.
,
- 268 FRC,
.
FRC
,
(
1.3).
.
.
.
FRC
.
,
r–z,
),
,
.
-
FRC
[29].
[27–29, 348–357]
,
FRC-
-
:
a
0.15 ,
Be
T = Ti + Te
–
400
0.5
(Ti –
, Te
),
0.5
s
N.
Te/Ti
0.5–1,
,
,
.
-
E
Te/Ti ~ 0.1.
,
,
L-
,
-
.
FRC,
,
: Be
1
,a
0.2 , Ti
Te
1
[29,
351, 354, 355, 357].
FRC
.
C-2
,
[357, 358].
FRC
(IPA, Inductive
Plasma Accelerator) [359, 360].
[361, 362].
TS-3 and TS-4
-
- 269 –
,
,
(
)
.
-
,
)
.
FRC
.
[363].
-
FRC [29].
TCS
[364–366].
FIX
[367–369].
(
)
TS-3
-
TS-4 [362].
FRC.
FRC
(
).
FRC [370, 371].
-
FRC
-
[343].
FRC
[29].
,
.
.
FRC
- 270 [372–374].
[375].
(
)
[376–378].
FRC
-
,
.
,
14
(
first orbit losses)
Bea > 15
,
3.5
(
– Bea > 5.5
[375].
)
[379]
[380].
[381].
FRC [382–387]
(
).
p( )
.
,
FRC.
-
[343]
-
.
,
,
,
FRC [344, 354, 362, 388, 389].
E B
[110],
,
,
.
FRC
,
- 271 .
-
,
-
.
FRC
[390, 391]
FRC
,
.
[392]
FRC
NIMROD,
.
FRC
-
.
,
FRC,
.
-
.
,
FRC-
[358, 393–395].
-
[362].
[396]
.
.
.
[27]
-
,
-
,
FRC.
FRC,
,
.
[397],
,
.
,
,
-
.
-
- 272 [398].
,
,
,
,
-
,
.
,
-
,
.
[399].
Tilt-
-
[400].
tilt[401],
[402],
[403].
,
[403, 404],
[405].
FRC,
,
.
,
FRC.
,
[406–408].
,
[409],
FRC.
(LHD)
FRC [408, 410–412] (
[108]),
,
.
,–
-
FRC.
FRC [412–414].
FRC-
- 273 [412],
TRX-2.
,
,
.
-
LHD-
,
.
TRX-2
10–300
6
-
: Te = 100
, Be = 0.6–1
, Ti = 150–400
,
Bs
, a = 4–
0.6Be,
0.6 [412].
LHD.
10–40
,
.
.
-
ne/ne ~ 10–3.
(
) ne/ne < 10–4.
.
LHD-
-
,
-
~ 10–2.
,
-
[413, 414].
LHD-
-
,
,
[264,
.
265]
LHD-
FRC.
k|| = 0,
*
= 1.5–2, Te = Ti, Ln ~
: [265]: k ~ 1/
,
ETG-
k || Ln ~ 4 [264].
k
Te
,
~
ci.
k||
[266]
1/
FRC
Te
-
Ti
0
-
Ln ~
Ti.
-
k||
0.
,
Ln ~
Ti
- 274 .
[415, 416]
~
(
ci,
.
)
0.3
ci.
FRC
-
,
(
ci
= ).
[417]
FRC
~
ci
.
,
FRC-
-
LTe
Ln,
LTi >> Ln,
e
Ln / LTe ~ 1 ,
Ln / LTi
i
1.
,
ETG-
.
FRC
[267].
~1
,
3.4.
,
-
,
.
,
FRC
ETG-
[305].
FRC
B
~ 1 ( ~ 1)
B
~1
k
Ti
,
R
~1
k||
,
~ 1.
k||
- 275 =0
(
R
).
=0
k|| = 0
.
2
k
D
1/
k
2
.
-
,
Ti.
. 5.1.
,
,
0
k B Ti /(eBe Ln
Ti ) .
-
D0
/
2
Ti
0
0
0.12
k B Ti
.
Ln eBe
Ti
3 4
2
k
–1
10
–2
/D0
1
10–2
0.08
2
2
10–3
3
4
0.04
1
5
10–4
5
0
0
10
20
. 5.1.
5
30
40 k
Ti
10–5
50
0
10
= Im( ) (
R
1
3
4
20
30
40 k
)
k|| = 0 ( )
( ): 1 –
= 1,
0.6,
= 0.6; 2 –
= 0.6; 4 –
= 0.6
e
e
= 2,
= 2,
i
50
)
= Re( ) (
2,
Ti
i
= 2,
= 1.5,
= 1,
= 1,
= 0.3; 3 –
= 0.6; 5 –
e
e
e
= 2,
= 1.5,
i
= 2,
i
i
= 2,
= 2,
=
=
= 1,
- 276 [267]
FRC
,
ETG-
0.8.
<
> 0.8
,
-
,
FRC
.
0.5
-
FRC.
FRC
0.4.
0.8
.
0.1
2
Ti
D
k
(
0.1C
D
C –
,
0.4
1)
-
k BT
,
Ln eB
Ti
(5.1)
(C
0.8).
,
D
Ti
k BT
.
eBL n Ti
(5.1)
anom
,
(
)
.
-
(
,D
D cl.
)
anom
>> D cl,
D
D
anom
.
,
-
,
-
.
FRC
> 0.8.
- 277 ,
,
-
FRC.
.
> 0.8
,
< 0.8,
-
.
.
,
,
, ,
,
.
FRC-
,
1,
,
[415, 416].
-
.
,
-
.
,
.
,
,
.
(
.
,
,
)
- 278 ,
-
,
.
,
.
5.1.2.
[418]
FRC,
-
,
[348–
356].
,
FRC.
( =
N
)
E
,
, –
a,
) B0
T = Ti + Te.
,
Ti
Te,
T
Ti
Ti
2Te,
Te.
.
LSX (large s experiment)
[351, 352]
a
s
r0
rdr
,
a i
(5.2)
- 279 -
i
–
(
,
,
-
), r0 –
,a–
.
s
,
.
,
LSX,
[351]
N,
E
(
,
).
-
LSX
a 2.5 B01.5T
0.75
.
(5.3)
[206]
,
-
,
a, B0
T.
[250]
-
.
,
.
,
[250]
,
Bohm
10a 2 B0T
1
.
(5.4)
- 280 -
a–
T–
.
, B0 –
,
(5.4)
[348–356]
. 5.2 ,
exp
–
,
-
.
,
(5.4),
,
-
,
,
,
,
.
.
,
,
FRC
,
[370, 371].
(ITG)
,
-
.
2
D
–
,
(5.5)
.
:
a2
.
D
(5.6)
,
(
.
(5.1)).
- 281 -
1000
1000
(
exp
)
(
exp
)
100
100
10
10
100
Bohm
10
10
1000
a2B0T –1 (
)
gyro–Bohm
1000
(
exp
100
a3B02T –3/2 (
1000
)
1000
)
(
100
exp
)
100
10
10
100
aT
global
–1/2
1000
(
10
10
100
)
corr
. 5.2.
3/2
a T
1000
–1/2
(
)
:
–
,
»
–
,
–«
»,
–«
-
- 282 ,
ITG-
-
,
v*e
s;
s
1
:
;
s
mi k B Te
–
eB
; v*e
; L
,
-
k BTe
–
eBL
a –
.
k BTe
.
L eB
s
D
gyro Bohm
4 10 3 a 3 B02 T
(5.7)
3/ 2
.
(5.8)
(5.8)
. 5.2 .
,
k ~ 1/
. 5.2 , ,
,
Ti.
.
-
,
in
Bohm gyro Bohm
200a 2.5 B01.5T
1.25
.
(5.9)
,
-
- 283 .
,
-
,
FRC.
.
k 2 i2 2R
,
k|| 2k BTe / me
[298]:
me –
,
k
R
k BTe
–
eBL
, k
i
,
k||
k||
0.
–
-
k .
-
k||
-
,
.
,
k||
1
-
a 1.
2.5 10
global
k||
,
k
i
2
aT
1/ 2
.
(5.10)
1
(5.4).
,
(5.10)
[224].
-
,
D
–
r2 ,
(5.11)
.
- 284 -
,
v*e
.
k BTe
,
eBv*e
r
,
(5.6)
(5.10).
s
(5.10)
.
5.2 .
,
«
corr
»
2 3/ 2
9 10
a
T
1/ 2
(
.
. 5.2 )
.
(5.12)
,
(5.10)
(5.12)
.
,
,
B0,
-
,
(
).
,
-
FRC.
(5.10)
(5.12)
-
,
.
-
,
,
.
(5.4)
(5.10)
Bohm
global gyro Bohm
(5.8),
-
.
(5.8).
(5.8)
s,
,
-
- 285 [351, 352],
Ln /
FRC.
-
a/
Ti
Ti
8sa 2 B0 T
-
k BTe
.
seB
D
gyro Bohm
s,
1
0.8s
Bohm .
(5.13)
(5.13)
s
[351]
. 5.3.
(5.13)
s
s
1.2–1.3,
,
.
exp/(0.8 Bohm)
5
4
3
2
1
0
. 5.3.
1
2
s
3
4
5
s
- 286 -
.
.
-
,
,
,
-
.
,
L-
-
.
,
FRC
,
, ,
,
L.
,
,
L-
-
,
-
,
[419].
FRC
-
,
,
,
(
-
s).
-
s,
[351, 352].
,
,
-
s~1
,
-
s.
,
ITG.
ITG-
-
,
.
D
k
2
.
k
s,
v*e
s
1
- 287 ITG-
-
(5.8)
.
5.1.3.
-
,
,
,
,
-
.
,
-
FRC,
.
,
-
.
FRC.
,
,
,
.
-
,
,
.
-
,
.
.
> 0.8
,
,
-
.
-
- 288 .
,
,
.
-
.
,
,
.
.
,
,
.
FRC
,
,
,
.
D ,
(5.6),
,
-
.
Ln.
,
,
,
.
-
.
,
.
.
-
- 289 FRC
,
.
.
FRC
[390, 391].
,
,
n
t
,
1
rD
r r
n
r
,
sn
n
.
(5.14)
sn –
,
–
-
;
(
).
:
3
ni k BTi
t 2
3
nek BTe
t 2
sTi
sTe –
1 (rJ i )
r
r
1 (rJ e )
r
r
sTi
sTe
Pi e ,
Pi
e
Pb
(5.15)
Ps .
(5.16)
i
-
.
(1.7).
(1.6)–
-
- 290 -
3
k B Ti
2
Ji
ni
, Je
r
D
3
k B Te
2
D
ne
.
r
FRC,
-
(5.14)–(5.16)
-
.
,
.
-
[420, 421].
.
,
.
:
p / p0
p0, n0
0,
p / p0
T0 –
(n / n0 )
1
, T / T0
(n / n0 ) ,
,
(
,
),
1–2.
FRC
,
-
r, z.
-
(z = 0)
B2
p
2 0
Be2
.
2 0
(5.17)
[422]
,
-
- 291 .
)
-
:
B1
B2
cBe u ,
(5.18)
1
cBe (u u 3 ) ,
2
(5.19)
cBe u 3 ,
(5.20)
B3
2r 2 / a 2 1 , c
u
r < a (a –
1
s
,
p s / p 0 , ps
s
s
–
-
.
r>a
B
B e 1 (1 c) exp (r a ) /
1–3,
,
(5.21)
(5.18)–(5.21),
-
:
a
1 c
,
4c a
1 c
,
8c a
1 c
.
12c
1
,
«rigid rotor»,
,
.
,
. 5.4
3–
2–
-
1–3
.
- 292 -
. 5.4.
( ),
( )
( )
1–3
FRC
.
r
1
r r r
–
Br
–
2
z
0r
2
2
dp
,
d
(5.22)
,
1
, Bz
r z
1
,
r r
dp/d
c
,
(5.18)–(5.21).
(r)
.
B(r)
p(r)
p( ).
-
- 293 -
dp/d
,
,
.
,
-
p( )
(r, z),
.
-
.
= 0.
=
w
= const,
.
,
,
.
–
.
rw
-
rwp.
d /dz = 0 (Br = 0).
(z = 0)
-
.
,
,
[423].
,
-
,
–
.
,
FRC.
,
(5.14)–(5.16), (5.22),
-
.
n(r)
Ti(r)
Te(r)
.
n(r), Ti(r)
B(r)
-
(r)
Te(r)
,
(r, z)
.
,
-
- 294 ,
-
.
-
(5.18)–(5.21).
,
,
-
[424].
,
,
= 2,
.
-
FRC
(5.18)–(5.21)
-
. 5.5.
. 5.6.
,
,
-
s.
. 5.7.
s
FRC
-
,
.
,
FRC
,
,
.
.
.
,
FRC
,
,
a > rwp.
[425, 426],
FRC.
-
- 295 -
. 5.5.
FRC
= 0.5, a/rw = 0.9.
1–3
s
- 296 -
. 5.6.
FRC
0.5
a/rw = 0.8 ( ), 0.7 ( )
0.55 ( )
3
s
=
- 297 -
. 5.7.
FRC
0.9
s
= 0.3 ( )
3
a/rw =
0.7 ( )
. 5.8
,
FRC.
-
n
(5.14), (5.22)
:
) n0 = 2.5 1021
(
T0 = 1
;
Be = 1
;
–3
-
1.
,
.
,
-
- 298 [412–414]
,
,
.
. 5.9.
. 5.8, 5.9.
-
,
(5.14)
sn = 0.
.
,
-
,
1
ndV
D (
n) s dF ,
(5.23)
D –
(
,
n)s –
,
V
F
.
,
:
D
a2
,
n Ln
, Ln –
2n s a
, <n> –
, ns –
.
(5.24)
-
- 299 -
. 5.8.
FRC
1
2
( )
D = 10
t = 100
2
( )
( ): 1 –
50
,2–
( )
D =
- 300 -
. 5.9.
D =1
1–
,2–
2
( )
D = 10
2
( ):
- 301 -
Ln L0 /
D
|| ,
L0 –
,
.
,
||
–
-
||
Ln
a
ii.
~ 3 ||.
n
2n s
s
||
Ln
,
L0
n
2n s
0.5,
2
||
Ln
.
L0
-
FRC,
Ln/a
0.1
0.1.
L0 ~ Ln.
||.
<<
||
,
,
L0 ~
i.
||
<<
-
.
-
,
(5.18)–(5.21).
L0 >>
i
.
,
~ 3 ||,
L0 ~
i
~ Ln.
Ln/L0
,
-
FRC.
||eff
L0
i.
|| Ln
/ L0 .
||
<<
,
.
,
L0
i.
-
- 302 -
,
/
. 5.10.
/
||eff
a/Ln
||eff.
-
. 5.11–5.13
,
s.
,
(
.
/
||eff
. 5.10),
(
–
).
.
k(
||eff
)s ,
/
k
s–
.
,
=2
: k = 0.2, s = 0.53
||eff
/
0.1
0.1
k = 0.3, s = 0.7
||eff
/
1.
10
1
0.1
1
–2
10
10–3
0.1
. 5.10.
2
1
10
102
3
103
/
||eff
/
||eff:
1, 2, 3 –
(5.18)–(5.20)
-
- 303 10
1
0.1
1
10–2
2
3
10–3 –2
10
0.1
. 5.11.
s:
1
s
1, 2, 3 –
.
. 5.10
103
/
3
2
1
||eff
102
10
1
0.1 –2
10
. 5.12.
/
||eff
0.1
1
s
s:
1, 2, 3 –
.
. 5.10
- 304 103
a/Ln
102
10
1
0.1
10–2
0.1
1
s
. 5.13.
a/Ln
s:
1, 2, 3 –
.
-
. 5.10
FRC:
k
||eff
s 1
D
a
||eff
2
.
||eff
(5.25)
/
D
||eff
/ a2
.
||,
,
,
.
=
.
- 305 (5.25),
a2 / D .
.
FRC,
.
,
-
(5.25)
(5.1),
[348–357]
. 5.14.
1000
exp,
100
10
10
100
. 5.14.
1000
D,
(
FRC
D)
(
exp)
- 306 -
100
D
2
exp,
10
1
1
10
D
2 100
theor,
. 5.15.
FRC
,
,
(5.25)
D
D
exp
(5.1).
theor,
.
5.15.
,
D–TB~3
-
:
T ~ 10
,
,
a ~ 1 , Ln ~ 0.1 .
- 307 2
D ~1
.
<1 ,
.
,
(
.
||.
,
-
,
).
–
-
D .
s
r
/ r (
–
),
max.
( s/
max
~ 105
2
max) .
–1
.
-
s
> 0.8,
.
.
.
-
,
,
-
.
FRC
.
E
~
-
N
FRC.
FRCD .
~D .
-
- 308 -
,
,
.
-
,
.
FRC
N,
FRC
.
D
1 /(
0
–
0
)
D ,
(5.26)
.
D
,
.
PCD
,
–
p
.
J
(
1) p /( BLn ) ,
J2
J2 / ,
J
J B
.
,
1) 2 D
(
2
,D
-
p–
(5.26)
PCD
,
-
ni k B Ti
ne k B Te
L2n
Ln
.
(5.27)
,
-
.
(5.27)
,
,
-
- 309 -
.
~1
.
FRC
.
FRC
, ,
.
,
,
-
,
.
FRC,
,
(5.14)–(5.16),
(5.22).
,
.
,
,
.
(
).
5.2.
,
.
-
,
.
.
–
,
[45].
,
,
. 1.6.
,
,
-
- 310 .
,
–
.
LDX [427, 428]
RT-1 [429, 430].
~1
D–3He-
D–D-
[431].
-
<< 1,
~ 1,
,
[45, 432–434].
-
[45].
[45]
-
.
,
.
[435–437]
.
[438]
.
,
3,
.
.
. 5.16
,
-
.
.
[439]
[440].
-
- 311 -
. 5.16.
( ),
( )
( )
,
()
( )
-
- 312 .
[441]
. 5.14 .
-
.
,
-
.
(
.
. 5.14 )
.
,–
,
ds
|B|
const
U
s–
min ,
,
(5.28)
–
,
.
.
-
= const
.
(r, z).
,
-
Br
1
,
r z
(5.29)
- 313 -
Bz
1
.
r r
(5.30)
,
.
-
[442]
Br
2 10
7
z
I
r (r
Bz
7
2 10
( z b) 2
1
I
(r
I–
a) 2
2
a) 2
2
( z b) 2
, a–
z = 0, k 2
K (k )
K (k )
a2
( z b) 2
(r
2
2
a)
( z b)
r2
a2
( z b) 2
(r
a) 2
( z b) 2
E (k 2 ) , (5.31)
E (k 2 ) , (5.32)
, b–
4ar
(r
r2
a) 2
( z b) 2
,K
E–
-
.
,
b/a
(5.31)
(5.32)
-
:
Ba
I
idem .
(5.33)
,
,
(5.33)
.
:
N
50,
J
200 .
- 314 ,
.
(
dz
Bz
dr
Br
= const)
ds
,
|B|
du
(5.34)
u,
-
U
du .
-
:
,
,
.
-3
. 5.17–5.20.
-
(
,c
-
,
)
. 5.17.
. 5.18.
,
,
,
,
,
,
,
.
. 5.19
= const.
. 5.20
.
-
- 315 -
0.2
0.15
4
C1
3
0.1
5
6
0.05
z,
C3
0
C4
-0.05
-0.1
C2
2
-0.15
-0.2
1
0.1
0.2
0.3
r,
0.4
0.5
. 5.17.
-3: 1, 4 –
,2–
N5 = 40, 3 – c
Ns = 300, 5 –
-
N5 = 120, 6 – c
Ns = 600.
– N3 = 0.8N1, N4 = N1.
,
3
–
1–3 N3 = N1, N4 = 1.74N1;
:
1,
2
,
–
4
4–5
-
–
-
- 316 B,
0.1
0.09
0.09
1
0.08
0.08
0.07
0.07
0.06
0.06
0.05
0.05
0.04
0.04
0.03
0.03
0.02
0.02
0.01
0.01
0
0
0.2
0.4
0.6
0.8
1
0
0.2
0.4
0.6
0.8
1
0.08
0.08
0.07
0.07
0.06
0.06
0.05
0.05
0.04
0.04
0.03
0.03
0.02
0.02
0.01
0.01
0
0.2
0.4
0.6
0.8
4
0.09
3
0.09
1
0.1
0
0
0.2
0.4
0.6
0.8
1
1.2
0.1
0.09
0.09
5
0.08
0.08
0.07
0.07
0.06
0.06
0.05
0.05
0.04
0.04
0.03
0.03
0.02
0.02
0.01
0.01
0
0
0.1
0.1
0
2
0
0.2
0.4
0.6
0.8
1
0 0
0
6
0.2
s,
0.4
0.6
0.8
1
s,
. 5.18.
,
. 5.17; s –
,
- 317 -
B
0.2
0.15
C1
0.1
z,
0.05
C3
0
C4
A
-0.05
-0.1
1
-0.15
-0.2
. 5.19.
C2
2
0.1
0.2
0.3
0.4
r,
(
(
0.5
= const)
6).
1,
2,
3,
4
–
.
. 5.17
- 318 -
B,
0.035
0.03
0.025
0.02
0.015
0.01
0.005
0
0
0.1
0.2
0.3
s1,
0.4
0.5
. 5.20.
AB
.
. 5.19): ––––––– –
AB; s1 –
AB, – – – – –
,
AB
.
.
,
(
Ln/R
)
B
= Ln/LB
.
R
=
-
(
. 5.19),
B
~ 0.5,
R
~ –0.1.
.
–1,
R
1,
B
.
,
-
.
)
(
B
~ 0.5,
R
–0.5.
-
- 319 -
,
. 3.22
3.23.
-
,
.
,
D
,
k ~ 1/
Ti,
k
2
,
-
–
.
k BTe
.
Ln eB
Ti
D gyro
(
): D
D
0.1Dgyro.
,
0.1Dgyro.
0.01Dgyro,
D
,
-
.
–
.
-
.
[443, 444]
,
.
,
.
-
.
,
.
- 320 (
) [445]
,
-
Er.
Er
kTe
1
e Ln (r )
[446]: E r (r )
. 5.21
Er
1
2L B (r )
Ur ,
,
Uexp,
-
[46].
0
0
Ur
-10
Ur,
.
-400
Er ,
-20
-800
-30
-1200
-40
Uexp
-50
-60
-4
-2
0
2
r,
4
Er
-1600
8
-2000
10
6
. 5.21.
(
)
- 321 (T
20
,B
3
,
~ 1).
s
0.1k B T /(eBLn
).
s
s
~
( s–
Ti ) .
10k B T /(eBa 2 ) .
.
5
.
D < 0.1
a
1
2
.
-
5 .
,
.
,
,
-
1
-
,
.
5.3.
,
.
,
.
GAMMA-10 [124, 125]
-
.
4.6.5
-
,
.
[124, 125]
-
- 322 -
.
:
B = 0.4
Te = 60–120
,
a = 0.2 ,
,
Ti = 500–800
.
[124, 125]
D
ne / ne
( ne / ne ) 2 L2n ,
-
(5.35)
–
-
.
[205]
D
2
k B Te
.
eB
(5.36)
,
,
[125],
(5.36)
-
(5.37)
. 5.22.
,
0.1k
(5.37)
k B Te
, k ~ 10 Ln1 , Ln ~ a ,
eBL n
.
,
(5.36)
- 323 10 3
10 2
,
10 1
Te = 120
10 0
Te = 60
10 -1
10-4
10 -3
( ne/ne)
. 5.22.
2
10-2
10-1
,
),
[125] (
(5.36) (
) [205],
-
[125] (
)
(4.4)
D
-
0.1k B Te
k 2 [1 (
s
/ )2 ]
k [1 (
s
-
10
/ ) 2 ]eBLn
eB[1 (
s
s
2
r d Er
.
B dr r
k B Te
s
/ )2 ]
.
(5.37)
- 324 -
/
0
1.0
0.8
0.6
0.4
0.2
0
-8
-6
-4
-2
0
2
s/
4
6
. 5.23.
s/
:
–
[125],
–
(5.38)
:
s
0.1
1 (
s
/ )
2
.
(5.38)
. 5.23
s,
(5.38) (
- 325 -
),
[125] (
).
.
0
5.23 –
s
.
(5.38),
0
0
= 0,
-
0.1.
-
0.11.
5.4.
3
-
.
-
,
)
(
-
.
,
.
-
,
-
.
,
.
<< 1
k||
0
.
-
.
.
(FRC).
,
-
.
- 326 -
.
core
[130].
,
-
(ITG, ion temperature gradient)
.
,
~ 0.1
[281, 447–
450],
ITG.
ITG-
.
,
-
ITG-
-
,
(TEM, trapped electron mode).
TEM-
(ETG, electron
temperature gradient) [451].
TEM-
ITG,
-
.
ITG-
.
ETG-
,
-
(
)
ITG.
k ~ 1/
ETG-
Ti
k ~ 1/
,
,
Ti,
–
Te,
TEM-
ETG-
Te
–
k < 1/
ITG-
Te.
,
ETG[150].
ETG[150, 187].
-
,
.
,
,
TEM-
ETG-
- 327 .
,
-
,
,
-
[107].
.
[107],
-
,
.
,
3.2.
,
-
[141]
Dj
v2
2
mj
qjB
mj –
3
v ||2
B B k ,
j (= i, e), qj –
, v
(5.39)
,B–
-
–
, v|| –
,k –
.
A. Hirose
[141].
,
,
[141]
B1||.
k|| = 0
-
.
-
[141]
k
k
,
)
.
(
(5.39)
-
- 328 .
-
,
,
,
.
,
.
,
ITER Physics Basis [130].
,
-
-
[255, 452, 453]
-
.
ETG-
k || v||
0
.
TEM-
k|| = 0,
.
0 (
Dj
–
Dj
,
)
.
0
0,
Dj
.
,
.
,
-
,
,
.
,
-
,
.
R
= Re( ) > 0
.
k|| = 0,
,
R
= Re( ) < 0 –
,
k||
0.
-
- 329 -
.
,
,
k
Ti
> 5 (k
k
Ti
Te
> 0.1).
-
< 5.
,
.
i,
,
e,
–
= Te/Ti
=
R
+i (
R
–
)
k||
k
,
.
-
(1.5),
,
-
Ln
.
R/a,
a–
,
.
,
,
-
(
0
-
[107].
,
k||
R
R/a
)
-
k .
-
.
n
n 0 1 (r / a) 2
= 0.45a.
0.5
i
.
=
,
e
=2
r = 0.8a
= 1.
Ln
,
. 5.24–5.33,
.
-
0
).
k B Ti
(
eBLn Ti
)
0e
k B Te
(
eBL n Te
-
- 330 -
/
0.12
0
0.10
3
0.08
5
2
0.06
4
1
0.04
0.02
0
1
R/
-0.05
2
3
4
k
5
Ti
0
-0.10
-0.15
5
4
3
-0.20
2
1
-0.25
. 5.24.
0
1
2
3
( )
k
Ti
4
k
5
Ti
( )
i
=
e
= 2,
= 1,
-
= 0, Ln/a = 0.45, k||Ln = 0.1:
1 – R/a = 1.5, 2 – R/a = 2, 3 – R/a = 3, 4 – R/a = 4, 5 – R/a = 6
- 331 -
0.10
/
0e
1
0.08
2
0.06
0.04
3
0.02
4
5
0
R/
0.3
0.5
1.0
1.5
2.0
2.5
k
Te
k
Te
0e
1
2
0.2
3
4
5
0.1
0
. 5.25.
0.5
1.0
1.5
( )
2.0
2.5
( )
k
Te
i
=
e
= 2,
= 1,
= 0, Ln/a = 0.45, k|| = 0:
1 – R/a = 1.5, 2 – R/a = 2, 3 – R/a = 3, 4 – R/a = 4, 5 – R/a = 6
- 332 -
F10i,e
4
Re(F10i)
2
Im(F10i)
Re(F10e)
0
Im(F10e)
-2
-4
0
4
8
12
16
k
20
Ti
. 5.26.
k
i
=
e
= 2, = 1,
Ti
= 0, Ln/a = 0.45, k||Ln = 0.1, R/a = 3
F10i,e
10
Im(F10e)
5
Re(F10e)
0
Re(F10i)
-5
Im(F10i)
-10
0
2
4
6
8
k
10
Ti
. 5.27.
k
i
=
e
= 2, = 1,
= 0, Ln/a = 0.45, k|| = 0, R/a = 3
Ti
- 333 -
/
0
10
9
8
1
7
4
10–1
3
2
1
–2
10
5
6
–3
10
1
10
R/a
. 5.28.
(1–4)
R/a
i
=
e
= 2,
2 – k||Ln = 0.1, k
2; 5 – k|| = 0, k
= 0, k
Ti
Ti
Ti
= 1,
(5–9)
= 0, Ln/a = 0.45: 1 – k||Ln = 0.1, k
= 0.5; 3 – k||Ln = 0.1, k
= 0.3; 6 – k|| = 0, k
= 10; 9 – k|| = 0, k
Ti
= 30
Ti
Ti
Ti
= 0.3;
= 1; 4 – k||Ln = 0.1, k
= 1; 7 – k|| = 0, k
Ti
Ti
=
= 3; 8 – k||
- 334 -
Dk/D0
1.0
2
1
3
4
5
0.1
6
10
7
–2
8
10
9
10–3
10–4
0
1
10
. 5.29.
k
(1–5)
k
Ti
i
=
e
= 2,
100
Ti
(6–10)
= 1,
= 0, Ln/a = 0.45, k||Ln =
0.1: 1, 6 – R/a = 1.5; 2, 7 – R/a = 2; 3, 8 – R/a = 3; 4, 9 – R/a = 4; 5, 10 –
R/a = 6
- 335 -
S(k ),
.
10
.
2
1
1
3
4
5
0.1
10–2
10–3
10–4
0.1
1
k
10
Ti
. 5.30.
k
e
= 2, = 1,
Ti
i
=
= 0, Ln/a = 0.45, k||Ln = 0.1: 1 – R/a = 1.5, 2 – R/a = 2, 3 –
R/a = 3, 4 – R/a = 4, 5 – R/a = 6
S(k ),
10
.
.
1
1
2
0.1
3
4
10
–2
5
10–3
10–4
10–5
10–6
0.1
1
. 5.31.
10
k
100
Ti
k
i
=
e
= 2,
= 1,
Ti
= 0, Ln/a = 0.45, k|| = 0: 1 – R/a = 1.5, 2 – R/a = 2,
3 – R/a = 3, 4 – R/a = 4, 5 – R/a = 6
- 336 -
/
0.12
0.10
0
1
0.08
3
0.06
2
0.04
0.02
4
0
R/
-0.04
0.01
6
5
0.02
0.03
0.04
0
3
-0.08
2
6
-0.12
5
-0.16
-0.20
0
. 5.32.
1
0.01
4
0.02
0.03
( )
0.04
( )
i
=
e
= 2,
= 1, Ln/a = 0.45, k||Ln = 0.1: 1 – k
0.7, R/a = 1.5; 2 – k
Ti
= 0.7, R/a = 3; 3 – k
= 3, R/a = 1.5; 5 – k
Ti
= 3, R/a = 3; 6 – k
Ti
Ti
= 0.7, R/a = 6; 4 – k
= 3, R/a = 6
Ti
=
Ti
- 337 -
/
0e
0.10
0.08
1
0.06
2
0.04
3
0.02
5
6
4
0
R/
0.16
0.1
0.2
0.3
0.2
0.3
0e
0.12
0.08
1
5
0.04
0
3
2
6
-0.04
0
. 5.33.
4
0.1
( )
( )
i
0.35, R/a = 1.5; 2 – k
k
Te
Te
= 0.7, R/a = 3; 5 – k
=
e
= 2, = 1, Ln/a = 0.45, k|| = 0: 1 – k
= 0.7, R/a = 1.5; 3 – k
Te
Te
= 0.35, R/a = 6; 6 – k
Te
=
= 0.35, R/a = 3; 4 –
Te
= 0.7, R/a = 6
- 338 . 5.24
5.25
= 0,
(
).
. 5.26
-
5.27
.
R/a
5.28.
. 5.29
,
.
. 5.30
5.31 –
-
.
. 5.32
5.33,
.
.
k|| = 0
1
,
B1||.
k||
0
k||.
k|| = 0
,
-
.
,
R/a
-
k .
k
,
-
ETG-
.
~ 0.1
.
,
3.4,
,
,
,
-
k|| = 0
~ 0.5,
.
,
ETGR/a
.
,
.
),
,
R/a (
,
.
.
- 339 -
,
.
R/a
k|| = 0
-
.
k||
0
,
k||
R/a,
0
k|| = 0,
-
(TEM)
-
.
,
.
[107].
(k
1)
k|| ~ 1/L,
L–
.
Ti
>
[107]
(a/R)3/4
:
;
,
;
~ 0.1
(
-
)
~ a/ R.
,
k|| = 0,
[107, § 11.3, §
12.3, § 12.4].
,
4.6.
(
ITG-
TEM-
. 5.28, 5.29)
,
-
[454, 455].
,
3,
,
-
.
- 340 -
Tp
k BT
.
eB
Tp
D0
Ln
–
(5.40)
,
T = Ti.
(5.40)
fD
0
k B T /(eBLn
D / D0
/
0,
(5.41)
Tp ) .
fD
i,
M
e,
, , A,
Z.
Ln ~ a,
-
:
sa
2
sa
D
s
–
3
(eB) 2
f D m p (k B T )
, mp –
3/ 2
.
(5.42)
.
(5.42)
ITER Physics
Basis [130],
,
.
[130]:
core,th( 2)
Ip –
0.065 I 0p.45 B 0.35 ( n e
(
),
L
/ 1019 ) 0.6 a 2.55 A 0.68
–
(
, <ne> –
;
.
0.88
0.6 0.2
M ,
s PL
(5.43)
)
Ip
PL
- 341 (5.43)
.
.
Ip
100aB /
N
,
N
2–3 –
(
PL ~ 2
).
core
a 3 (eB) 2
~
m p (k B T ) 3 / 2
0.7
s (100 /
N
2
s Aa
)1.125
3
Ti
~ 1 (ITG-
) fD
1, c
1
1.125
.
A 0.2 M 0.5 .
.
(5.44)
. 5.26, 5.30),
A.
fD
b
-
nk B T
(
k
,
b
A
c
-
,
(5.45)
0.2.
,
A,
,
.
(5.45)
s
0.7
,
.
.
,
ITG-
,
,
M
(Z , M ) Z 2 M
fD
M 1/ 2 Z
2
.
,
Z=1
1/ 2
M = 1, 2, 3
. 5.34.
(Z 1, M
Z
1) ,
.
-
- 342 -
Dk/D0
0.6
0.5
2
0.4
0.3
3
0.2
1
0.1
0
0.1
1.0
10.0
k
Tp
. 5.34.
k
= 1 (1), M = 2 (2), M = 3 (3), Z = 1,
i
=
e
= 2, = 1,
M
Tp
= 0, Ln/a = 0.45,
k||Ln = 0.1
,
-
, ,
,
.
,
,
,
i,
e,
.
,
A
.
5.5.
,
,
-
- 343 .
.
1)
(FRC).
FRC
),
.
-
.
2)
-
(
)
.
,
,
-
,
-
.
3)
,
.
,
GAMMA-10.
4)
,
.
A
ITER
.
(
core).
-
- 344 6.
6.1.
-
.
.
,
-
.
,
,
.
-
,
.
-
.
Q > 10.
Q
-
1,
.
–
Q
,
1,
.
,
-
- 345 (
)
,
,
.
,
.
–
(
-
) [456–458].
«
»
,
,
.
(
-
) [33, 34].
,
(D–T)
,
-
,
.
,
~ 1000
[33, 34],
,
.
-
[35].
.
.
[459].
,
.
.
-
«
»
,
.
«
»
.
-
- 346 .
.
,
.
-
,
,
Te
-
Te3/2,
.
Te
10–20
,
Te ~ 1
.
,
[36].
,
,
-
[460].
,
.
-
.
E B
,
.
-
-
,
[461],
.
-
«
»,
[462].
,
-
- 347 ,
.
-
GAMMA-10 [124, 125].
-I [122]
Alice [123].
,
,
)
(
-
.
.
,
-
0.5–0.6 [35, 459].
[463].
-
[37, 97],
,
.
,
,
-
[97].
[98].
-
[85].
[86, 87].
.
,
[37, 97, 98],
,
- 348 .
(
)
,
-
.
.
,
.
,
-
,
-
:
.
T-
,
D–
3.52
.
-
,
,
1
[88].
v
fa
a
fa
t
1
v2 v
C
v 2 D vv
fa
v
( AvC
1
v 2 sin
AvN ) f a
sin D C
fa
sa ( )
4 v 02a
(v v 0 a ) L a ,
(6.1)
C
Dvv
, D C , AvC –
, AvN –
-
, sa( ) –
, La –
fa / t
0,
,
.
,
-
- 349 .
-
,
:
1
s a ( ) sin d
20
qa ,
qa –
,
.
-
La
(v, )
fa /
fa /
La||
|| ( v,
).
-
;
||
.
,
,
;
La|| = 0.
,
,
-
,
[54, 85].
,
[88],
1
v
2
AvN
n b ( v) b ( E / E ) b ,
-
,
nb ( v) b ,
L ) fa
,
-
,
(1 cos
AvN
b
b.
: LN
a
-
( v) b –
, ( E/E)b –
,
,
L
-
–
b
.
:
- 350 -
f a (v
fa
v 0a , )
(v,
0)
f a (v, )
0,
0,
fa
(v,
)
m a v ||2
2
fa
(v
v
,
Bm
Bc
; ma
Za –
Zae
1
,
–
v cos
0,
(6.2)
a; Bc –
; Bm –
; v||
0, )
0.
ma v 2
2
e–
a;
0
v
v sin
-
–
-
.
Bc
B0 1
,
B0 –
-
.
,
Bm
.
[55]
f 0a ( v)
qa –
,
(6.3)
qa
4 (v 3
sa
3
v ca
)
sa
,
(6.3)
v ca
(1.33).
,
- 351 .
vTi
v
vTe ,
vTi
vTe –
.
-
,
,
,
.
-
,
-
v ~ v Ti .
Pinj,
-
,
Pfus.
.
(6.3)
: Ti
Te
10
(Ti –
100
),
.
-
,
,
,
,
,
-
.
FPC2 [98],
–
(6.1).
,
.
,
-
.
.
D–D-
[464]
3–5
,
,
,
-
- 352 -
.
e
= (1–1.5)kBTe.
-
.
e
kBTi
-
,
.
.
,
,
.
,
Ti
Te
20
e
= 0.5kBTe
,
2kBTe –
-
e
= kTe –
1.5
,
e
=
10 %.
.
-
–
,
.
-
.
,
.
,
,
-
v
.
,
,
. 6.1.
,
,
t
s
,
-
3 s,
-
.
-
,
250
,
.
,
- 353 -
. 6.1.
(
)
)
( )
t = 0.1 s ( ), 0.3
nD = 3.3 1019
10 s ( ).
250
s
,
45 5 ,
, Ti = Te = 20
= 10
–3
,
3
2
s
,
,
= 4.5 ,
=
s
,
,
. 1.7.
: Pfus –
; Pn –
80 %
(
Pfus); Pext –
; Pb
Ps –
; Pch –
; (Pfus)i –
(
, Pie –
)
; (Pfus)e –
,
- 354 .
,
,
)
20–30 %
-
.
[36, 456–458, 465].
-
,
s;
.
(
2%
Pfus).
,
,
,
-
,
-
.
5
-
,
(
1, 3, 4 –
)
.
2
-
(
)
.
1–4
-
T
a=1 ,
L = 10 ,
5
20
.
1–4
= 0.5.
: a = 0.1 , L = 16 ,
= 0.6.
-
.
,
.
,
-
3–4
100
,
-
.
- 355 -
5.
.
.
.
.
.
1*
2*
3*
4*
5**
B0,
1.5
1.5
2
2
1.5
11
11
14
14
15
0.22
0.26
0.21
0.415
1.32
0.33
0.26
0.42
0.415
1.32
0.04
0.03
0.06
0.085
0.02
11
10
22
22
3
8.5
10.5
18
19
3.6
16.5
15
33
44
3
250
250
250
250
65
90
90
100
65
23
74
60
60
55
50
PRH,
0
18
0
0
51
Pn,
30
24
43
59
3.6
0.5
0.38
0.9
1.34
0.045
13
11
19
26.5
1.5
0.4
0.4
0.7
1
0.36
1.8
1.2
1.8
2.0
9.9
Bm,
nD, 1020
nT, 1020
–3
–3
n , 1020
–3
Ti,
Te,
,
E0,
<E>,
Pinj,
Q = Pfus/(Pinj + PRH)
N, 1018
/c
Jn,
2
JH,
2
- 356 Te = 3.6
5
-
.
E||
-
0.01 c,
.
,
Bohm
>>
,
0.05
E||.
Bohm.
-
,
45%
,
T
20
-
,
Pinj.
Q
,
Q ~ 1.
,
Q
0.05
-
.
.
.
Q
N
1
[466,
467]
[5].
,
.
,
(
)
,
.
,
.
,
.
-
.
,
,
-
- 357 .
.
11–14
,
.
,
,
Q
1
-
.
D–3He-
6.2.
D–3He-
-
,
.
Physics Basis (IPB),
ITER
ITER [2, 468],
.
( –
A
D–3He-
),
-
3,
-
[12, 469].
,
D–3He-
~1
,
D–3HeD–T-
.
~ 1
–
(A = 1.1–2) [19–23].
c
0.5,
IPB [20].
,
,
.
-
,
-
- 358 .
,
IPB,
D–
3
He-
.
.
,
,
,
,
3
2
[24, 469, 470],
.
,
-
D–3He-
B0 =
2–3 T.
-
B0
5
.
-
.
IPB
.
D–3He-
.
,
,
.
D–3He-
,
.
D–3He,
.
,
- 359 Bc
-
.
[24, 469]
D–3He.
6
,
[24, 470].
,
[470],
,
0.34
3
.
,
[24],
.
-
,
.
1500
.
-
40 %,
600
,
-
.
,
.
6.
D–3He-
[24, 470]
[470]
a,
R,
[24],
[24],
.1
.2
6.15
3
2
8
4.5
3
2.7
3
5
128
200
140
0.32
0.5
0.4
43
40
40
6100
1500
1500
B0,
Ip,
< >
<T>,
Pfus,
- 360 -
. 6.2.
(
)
(
a,
.
. 6.2)
-
R,
A = R/a,
k
.
.
,
.
r0
-
.
,
,
r0
.
.
- 361 -
r0 = R – a –
),
0
s
–
0,
s
–
(
–
.
-
.
(
Bmax
B0
B(r0 )
B ( R)
)
R
R a
-
.
s
(6.4)
0
,
,
B0
.
.
-
.
,
.
: B0 = 5.5
, a = 2 , A = 1.7,
s
= 0.3 ,
r0 = 0.95 , Bmax = B(r0) = 19.7
0
= 0.15 .
.
,
,
,
Bp,
-
.
Bp
Bmax
[ B (r0 )]2
B 2p
-
B0.
20.5
,
.
,
4.2
B
.
-
(Nb3Sn)
-
Bc = 24.5
20
jmax
, I
,
[471, 472].
0.4 109
2 r0 B(r0 ) /
,
2
.
0,
0
–
I =
- 362 9.35 107
.
%
).
2
0.28
j = 0.33 109
(
10
2
.
-
.
.
ITER Physics Basis
.
-
[473],
-
ITER-FEAT [468, 474].
D–
3
He-
ITER,
.
D–T-
,
A
: ITER A > 3,
0.5.
< 0.05;
D–3He-
,
,
-
D–T-
(T
50–70
A < 2,
~
)
-
.
-
,
ITER Physics Basis
,
.
;
B0;
T0
;
;
0
,
Ip
Q.
.
,
IPB98y2
ITER.
0.25
40
.
2
,
- 363 -
D–3He-
. 6.3.
-
, ITER
,
3.7,
[473].
,
k=
,
(D–T-
ARIES
) [475].
= 0.35 (
ITER).
. 6.3
D–3He-
-
, ITER
(
[475]).
900
3
, 800
3
-
V
600
3
.
-
[470, 476]
qa
5aB0 [1 k 2 (1 2
2 AI p
2
1.22 3 )](1.17 0.65 A 1 )
.
(1 A 2 ) 2
(6.5)
- 364 -
Ip
MA.
,
n
n0 (1
2
T
T0 (1
2
p
n0, T0
-
p0 (1
n,
)
)
T
(6.6)
,
2 ( n
)
p0 –
(6.7)
T ),
(6.8)
,
,
-
–
.
p0
B02
,
0
2 0
0
–
-
.
n0 /(1
n
:
0
/(1
-
n
T
n),
T
T0 /(1
T ),
p
),
p 0 /(1
n
T
),
-
.
< >
0.01
N
–
(
N
Ip
aB0
,
(6.9)
).
: Te
- 365 = Ti = T.
ne
Z i ni ,
(6.10)
i
ne –
, ni –
, Zi –
,
.
,
a2
NG
Eth
3
2
V–
ne
1.
10 20 I p
ni k BTi
ne k B Te V
3
2
Pn )
Pr
i
-
(6.11)
B02
Vp ,
2 0
(6.12)
.
(6.13)
.
(1
f fast )( Pfus
Paux
Eth
E
,
–
.
,
,
,
-
- 366 Pfus
Pn,
(
).
-
ffast = 0.05 (
ITER).
-
Paux.
Pr (
)
,
E.
-
Q
Pfus / Paux ,
(6.14)
;
-
Q 10 .
Pr
Pb
Ps ,
Pb –
(6.15)
, Ps –
-
.
,
.
,
,
,
D–3HeITER-FEAT
,
.
-
,
-
- 367 .
,
,
,
,
,
ITER
D–3He-
.
(
),
-
,
.
–
,
.
«
»
[477].
,
[99].
-
[70].
[83].
Q
,
Pfus
Paux.
Pfus, Pn, Pr
,
ffast
Ps,
Eth
-
.
Pr
Rw.
E.
E,
,
,
,
,
.
98 y 2
E
0.0562 I 0p.93 B00.15 M 0.19 ( ne
-
IPB98 2 [130]
/ 1019 ) 0.41 a1.97 A1.39 k 0.78 PL 0.69 , (6.16)
- 368 M–
,
L
–
(
)
,
(
)
-
.
:
H y2
E
98 y 2
.
E
/
(6.17)
Hy2 = 1.2–1.5,
-
[20, 22, 23].
T0,
x3He = n3He/nD (n3He –
-3, nD –
)
ximp = nimp/nD (nimp –
).
x3He
T0
.
-
Hy2,
.
-
x3He
Jn
Pn / S 0 ,
S0 –
,
(
-
).
.
-
k = 3.7 (
N
,
,
ARIES-ST [478])
= 5.
3.5
3
.
- 369 2.4
Hy2
2.0
Q = 20
Q = 10
1.6
Q=5
1.2
0.8
40
50
60
. 6.4.
70
T0,
80
Hy2
x3He = 1
1.8
Hy2
1.6
Q = 20
1.4
Q = 10
Q=5
1.2
1.0
. 6.5.
Hy2
T0 = 62
0
0.5
1.0
x3He
1.5
-3
- 370 0.9
Jn
2
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.5
1.0
1.5
x3He
. 6.6.
-3
T0 = 62
. 6.4–6.6
.
,
T0 = 62
Q = 10.
Hy2,
x3He = 0.5–
0.6.
,
Hy2
10 %.
,
-
x3He = 1,
x3He
-
x3He = 1.
Li3+,
Be4+
ITER.
Ar18+.
–
,
–
.
,
-
. 6.7.
- 371 4
Hy2
Ar
Be4+
18+
Li3+
2
3
3
2
1
1
0
. 6.7.
0.05
0.1
0.15
0.2
ximp 0.25
Hy2
:
1 – Li3+ (xBe = xAr = 0), 2 – Be4+ (xLi=xAr= 0), 3 – Ar18+ (xBe= 0.025, xLi= 0)
,
-
Hy2.
xLi
0.2,
– xBe
0.1,
.
.
D–DD–3He-
,
(
-3
.
)
.
.
p
-
.
D–3He7.
.
ITER-FEAT
-
- 372 7.
D–3He1, ST-2
ST-3),
(
ST-
ITER-FEAT [468]
D–3He
D–3He
D–3He
ITER-
ST-1
ST-2
ST-3
FEAT
a,
2.0
2.0
2.0
2.0
2.0
R,
3.4
3.4
3.4
6.2
6.2
A = R/a
1.7
1.7
1.7
3.1
3.1
k
3.7
2.8
2.8
1.7
1.7
0.35
0.5
0.5
0.35
0.35
900
653
653
828
830*
5.5
5.5
5.5
5.3
5.3
Ip,
110
110
110
15
15
q95
4.7
3.1
3.1
3.0
3.0*
0.5
0.5
0.25
0.025
0.025
N
5.0
5.0
2.5
1.77
1.77*
NG
0.56
0.56
0.28
0.85
0.83*
4.92
4.92
2.45
1.01
1.03*
Ti0/<Ti>,
62/44.3
62/44.3
62/44.3
16.2/8.1
16.2/8.1
Te0/<Te>,
62/44.3
62/44.3
62/44.3
17.8/8.9
17.8/8.9
0.4/0.2
0.4/0.2
0.4/0.2
1.0/0.1
1.0/0.1
1
1
1
–
–
xp
0.074
0.074
0.074
–
–
x
0.16
0.16
0.16
0.1
0.1*
xT
0.0038
0.0038
0.0049
1
1
xLi
0.05
0.05
0.025
–
–
xBe
–
–
–
0.05
0.05
xAr
–
–
–
0.003
0.003
3
V,
0,
>
<ne>, 1020
T/ n
x3He
–3
- 373 7.
D–3He
D–3He
D–3He
ITER-
ST-1
ST-2
ST-3
FEAT
Rw
0.85
0.65
0.85
–
0.5
Eth,
8124
5900
2950
325
324*
Pfus,
3064
2225
582
410
410*
162
119
37
(0.053)
(0.053)
(0.064)
1746
1267
310
21
31
(0.57)
(0.57)
(0.53)
(0.057)
(0.077)*
273
324
149
8
8
(0.089)
(0.145)
(0.26)
2053
1591
459
48
40
(0.67)
(0.71)
(0.79)
(0.117)
(0.097)*
306 (0.1)
222 (0.1)
58 (0.1)
41 (0.1)
41 (0.1)*
10
10
10
10
10
,
20
20
40
17
17
p,
10
10
20
–
–
E,
7.8
9.4
25.7
3.7
3.7*
98 2
E
1.24
1.31
1.48
1.0
1.0*
Val
E
1.06
1.09
0.87
–
–
2
0.16
0.16
0.05
0.4
0.4*
Pn,
(Pn/Pfus)
Pb,
(Pb/Pfus)
Ps,
(Ps/Pfus)
Pr,
(Pr/Pfus)
Paux,
(Paux/Pfus)
Q
Hy2 =
HVal =
Jn,
E
E
328 (0.8) 328 (0.8)*
(0.0195) (0.0195)*
- 374 .
,
,
(
-
*)
ITER-
FEAT.
IPB98y2
. [479],
MAST
NSTX.
,
,
-
[480],
Val
E
0.252 I 0p.59 B01.4 PL 0.73 M 0.19 R1.97 (1 / A) 0.58 k 0.78 .
,
,
(6.16)
(6.18)
(6.18),
.
7
:
a;
A = R/a;
R;
k;
;
V;
0;
q95
;
,
Ip;
95 %
< >;
-
N;
NG;
<ne>;
Ti0, Te0
<Ti>, <Te>;
T,
n;
-
x3He, xp, x , xT, xLi, xBe, xAr
;
-
Rw;
Eth;
Pfus;
Pn,
Pb;
Pr;
Ps;
Paux;
-
- 375 -
Q;
p;
E;
E
Hy2 =
Val
E ;
E
-
98 2
;
E
HVal =
Jn.
(ST-1)
Pfus
3000
.
1000
,
[481],
-
.
-
95 %.
k = b/a =
3.7
N
= 5.
-
k = 2.8.
-
2200
(
ST-2).
.
,
-
.
N
B0
1
.
B0
=5
5
N
[482].
, ,
,
(ST-3) k = 2.8,
N
.
-
= 2.5.
.
,
-
k = 3.7
N
=5
.
D–3He-
,
,
,
.
-3
.
,
-
- 376 ,
-
D–3He-
.
–
B0
ITER.
>3
,
5
N
5 T
k
.
,
D–3He-
.
-
.
6.3.
-
(FRC),
,
,
.
D–3He-
.
-
D–3He-
FRC[483–486].
FRC,
,
,
.
(6.13).
FRC
FRC
.
5.1.
FRC-
-
- 377 .
,
.
Bea (Be –
,
,
,a–
-
)
,
-
(
first orbit losses) [375].
14
(
first orbit losses)
Bea > 15
,
3.5
– Bea > 5.5
[375].
,
.
Be
.
-
. 5.1,
-
a.
FRC
-
.
,
,
.
.
,
,
-
:
D
Ti,
Ln
theor
Ti
0.1
k B Ti
,
Ln eBe
Ti
(6.19)
,
-
- 378 .
.
D
,
. 5.1,
req.
HD
D
theor
/D
req .
(6.20)
.
-
.
1 (
HD
s
/ )2 ,
s
–
,
.
–
-
FRC
-
,
s
3 .
-
HD = 10
.
,
-
,
3–4
,
.
,
Be = 5
, a = 2
D–3He-
.
Be = 2
, a = 1
Bea,
D–T,
,
-
,
.
5%
.
.
200
.
-
- 379 .
,
,
-
,
D–3He-
(
14
),
.
,
.
.
-
,
T = Ti – Te ~ 1
.
Pie
,
.
T
-
Pie.
~1
-
T
.
-
Te = Ti.
-
Rw = 0.8.
–
.
-
Q = 20.
8.
D–3He-
2–
.
FRC
D–3HeD–T-
.
FRC-1
,
FRC-
FRC-3
D–T-
FRC-4 –
,
,
FRC.
8
L;
:
k;
V;
e;
>;
a;
s
<ne>;
- 380 T0
<T>;
x3He, xT, xp, x , xLi
;
Eth;
Pfus;
Pn,
Pb;
Ps;
Pr;
-
Paux;
-
Q;
p;
E;
-
HD;
Jn;
JH.
D–3He-
,
FRC
2
(< 0.3
),
,
.
2
3
)
.
.
D–T-
D–3He-
,
D–T,
,
.
D–T-
FRC
.
D–3He-
FRC[484]
ARTEMIS
,
-
,
-
,
.
D–3He-
FRC
,
,
,
.
-
FRC
.
,
ARTEMIS
,
200
ARTEMIS
.
0.3
2
.
-
- 381 -
8.
FRC D–3HeFRC-1, FRC-2)
D–T-
(
(FRC-3, FRC-4)
D–3He
D–3He
D–T
D–T
FRC-1
FRC-2
FRC-3
FRC-4
a,
2.0
2.5
1.5
0.5
L,
20
20
15
2.5
k = L/a
10
8
10
5
240
375
101
1.9
5.0
5.0
2.0
1.0
0.80
0.50
0.50
0.8
0.93
0.83
0.83
0.93
5.0
4.6
3.4
1.2
67/64
67/59
12/10.6
10/9.5
1
1
–
–
xT
0.0064
0.0059
1
1
xp
0.16
0.13
–
–
x
0.34
0.28
0.072
0.0058
xLi
0.05
0.05
0.05
0.05
3
V,
e,
s
>
<ne>, 1020
Ti0/<Ti>,
x3He
–3
- 382 8.
D–3He
D–3He
D–T
D–T
FRC-1
FRC-2
FRC-3
FRC-4
Eth,
3140
4380
190
1.0
Pfus,
1214
1670
1070
1.57
Pn,
(Pn/Pfus)
65 (0.054) 92 (0.055) 860 (0.80) 1.26 (0.80)
Pb,
(Pb/Pfus)
628 (0.52) 859 (0.51)
Ps,
(Ps/Pfus)
22 (0.017) 67 (0.040)
Pr,
(Pr/Pfus)
670 (0.54) 926 (0.55)
Paux,
(Paux/Pfus)
32 (0.04)
0
32 (0.04)
60 (0.05) 84.5 (0.05) 53.5 (0.05)
Q
0.05 (0.03)
0
0.05 (0.03)
15.7 (10)
20
20
20
0.1
,
20
20
3
0.3
p,
10
10
–
–
E,
6.3
6.7
0.84
0.06
HD
2.8
10
10
1.6
Jn,
2
0.26
0.29
6.1
0.16
JH,
2
2.8
3.2
6.3
0.17
FRC
Q = 0.1,
D–T-
.
10
,
,
.
16
.
.
Q = 0.1
.
0.16
2
-
- 383 .
,
-
FRC
(
D–T-
)
.
-
.
-
–
1
.
E
,
~ 0.1 ,
.
D–3He-
FRC,
,
.
,
,
,
-
.
FRC
.
,
.
,
.
.
,
,
,
.
-
,
.
FRC
.
,
.
FRC
(
. 5.1.3),
- 384 ,
.
-
(
)
= kBTi/e.
||
7
ii.
.
,
-
.
,
D–3He-
FRC.
FRC
,
,
-
,
D–3He-
,
.
D–3He-
6.4.
-
-
D–3He,
. 5.2.
[487].
-3,
x3He =
n3He/nD = 0.3
.
D–3He-
,
,
,
,
.
-
.
-
- 385 ,
,
,
.
3
Pfus = 2
-
Q = 20.
9.
3
Pfus = 2
-
,
.
14
, ,
,
-
,
-
.
.
-
.
50
.
-
D–D-
[431]
9 ,
40
[443]
D–T10
.
-
,
,
1
-
.
,
D–3He.
,
. 5.2,
-
,
,
.
FRC,
-
- 386 9.
2
3
D– He3
Q = 20
a1 = 7
a3 = 4
a4 = 8
a5 = 1.8
z=0
b = 2.2
I1 = 54
I3 = 43
I4 = 54
(
)
Is = 567
(
-
)
I5 = 162
B = 4.6–14
D–3He-
fus
= 3–8
nD = 1.8 1020 -3
x3He = n3He/nD = 0.3
xT = nT/nD = 0.0042
3
He
ne = 2.9 1020
Te = Ti = 50
(
= 0.5
Pn/Pfus = 0.16
)
-
Pbr/Pfus = 0.27
Ps/Pfus = 0.3
E> 6
-3
- 387 p–11B
6.5.
11
B
p + 11B
34He + 8.681
,
(6.21)
.
-
.
(6.21).
-
,
.
-11
,
,
-
.
p–11B-
,
.
,
,
,
p–11Bp–11B-
~ 1.
[488, 489].
,
,
, p–6Li, p–9Be, 3He–3He (
.
[7])
,
-
p–11B.
,
,
,
,
1.6
-
.
.
,
-
- 388 ,
,
.
,
.
–
-
.
.
p–11BEc.m.
(6.21)
680
,
p–11B-
.
. 1.16 (
p–11B-
1.2.4).
.
.
Colliding Beam Fusion Reactor (CBFR)
[490, 491]
(
[492, 493]
)
.
[494].
,
CBFR
-
[495].
,
p–11B-
CBFR
,
,
100 %.
,
,
,
.
p–11B-
.
-
,
.
.
-
- 389 ,
,
p–11B-
.
-
[9, 67, 496],
,
Te = Ti
.
.
-
,
.
.
[9, 67, 496]
.
,
.
Te > 100
[70],
. 1.2.2.
-
,
.
,
,
-
.
Te < Ti
.
[10].
. 6.8.
E
,
680
-
.
.
- 390 -
p–11B
. 6.8.
(
).
:
0.3
,
kBTi
-
.
[94, 95].
,
,
.
p–11B-
.
–
.
-
.
[55, 97].
- 391 -
.
. 6.9
-11
6.10.
xB = nB/np = 0.1–0.2
.
Q
5
xB = 0.15
4
3
xB = 0.1
xB = 0.2
2
=8
=2
=5
1
0
0
100
200
300
Ti,
400
p–11B-
. 6.9.
= 1: –––––
B0 = 15
,
;–-–-–-–
;––––
500
,
-
- 392 -
Te,
200
1
180
2
160
140
120
100
80
60
40
20
0
0
100
200
300
Ti,
400
p–11B-
. 6.10.
500
B0 = 15
,
= 1, xB =
0.15: 1 –
); 2 –
-
,
=5
Q
.
4.
-
Q
1.
- 393 p–11B,
1.6
.
Q
4.
1
Q > 10
Q
-
.
,
.
v
,
-11
.
Ec.m.
. 1.16
-
. 1.2.4.
,
,
.
Ec.m. > 200
Ti
150
Te
100
Ec.m. < 100
,
Q
-
.
Q
p–11B-
.
10
p–11B-
,
4
Q
-
.
,
:
;
;
.
-
.
Q = 10
,
.
,
p–11B
2
-
- 394 .
E
700
-11 V
p–11B
107
10–21
(V)V
.
-
, ,
,
3
.
,
Ti
Te
1.6 10–22
v
100
150
,
,
3
.
-
.
Ti
150
Te
100
.
.
1.5
,
.
,
.
,
,
Q
.
,
E
-
700
.
,
200
.
-
.
,
.
,
Q < 1.
,
CBFR.
-11
-
.
(FRC).
-
.
-
- 395 -11
k B Ti 1
eBL Z p
V
1
,
ZB
(6.22)
L–
, Zp = 1
V
L
Ti
150
1
107
,
1
B
1
L
1
.
,
-
100
900
,
.
ZB = 5.
,
.
-
,
,
.
,
,
-
p–11B
.
,
(
,
,
-
)
Q
5.
10
: 1)
, 2)
.
- 396 10.
p–11B
-
Ti,
250
250
126
125
0.95
0.95
B0,
10
11
Bpl,
2.3
2.4
4 1020
4 1020
-11 n11B/np
0.15
0.15
n /np
0.19
0.29
2
2
–
650–800
1
2.2
10.5
23
1.5
0.76
0.057
0.030
1
10
10
7.5
Te,
(
)
np,
–3
a,
E,
3
Pfus,
-
b
= Pb/Pfus
s
= Ps/Pfus
Q
,
- 397 p–11B
.
D–3He-
,
.
-
,–
,
.
.
,
.
-
.
.
[497].
p–11B-
FRC.
,
,
-
,
-
.
-
-11,
(ZB = 5)
.
,
.
,
[498–500].
,
p–11B
,
-
.
.
,
.
- 398 ,
.
,
,
,
,
,
,
,
-
.
6.6.
,
,
(FRC).
-
,
-
.
,
,
-
,
.
–
.
–
.
Q
.
,
,
.
,
p–11B.
-
11.
- 399 11.
D–3He
FRC
p–11B
FRC,
0.8–0.9
0.95
2–2.5
2
5
10
10–20
60–70
100
250
–
1000
1–3
5
5
2
2.5
2.5
0.4–1.3
10–20
2
6–7
7
1
3–10
~ 10
80
5–7
0
< 10
60–80
D–T
0.5
a,
1
1.5–2 (11–15
)
B,
T,
Einj,
Wfus,
3
JH,
2
Q
E,
,%
~1(
%
100
5)
- 400 -
,
,
-
.
,
-
,
: 1)
-
D–3He-
; 2)
FRC.
10–20
.
,
-
FRC
-
,
FRC
D–3He-
.
,
-
.
-
,
.
~ 0.5
T ~ 100
,
-
.
.
-
- 401 ,
.
[501],
[502],
FRC [503]
-
.
,
[504],
[505],
[507]
[506],
-
ETG-
[508].
[509].
[510].
-
.
.
1.
.
2.
,
.
3.
(
)
.
- 402 .
4.
(FRC)
,
,
,
.
-
FRC
D–3He-
.
Q = 20.
5.
Q = 0.1–0.5.
6.
p–11B,
Q
-
5.
7.
,
,
,
,
-
.
8.
,
,
,
-
.
- 403 -
1.
.,
.
-
//
. 2006.
.
. 4. . 3–14.
2. ITER Physics Basis / F.W. Perkins [et al.] // Nucl. Fusion. 1999. V. 39. P. 2137–
2638.
3.
/
.
[
. 2007.
.] //
.
-
. 4. . 3–13.
4. Stacey W.M. Tokamak D–T fusion neutron source requirements for closing the
nuclear fuel cycle // Nucl. Fusion. 2007. V. 47. P. 217–221.
5.
/
.
6.
[
.] //
. 2010. . 36. . 307–346
.
1989. (
.
-4885/8).
7. Feldbacher R. Nuclear Reaction Cross Sections and Reactivity Parameter. IAEA,
1987.
8. McNally J.R., Jr. Physics of fusion fuel cycles // Nuclear Technology/Fusion.
1982. V. 2. P. 9–28.
9. Alternate fusion fuel cycle research / R.W. Conn [et al.] // Plasma Phys. and
Contr. Nucl. Fusion Res.: 8th Int. Conf., Brussels, 1980. V. 5. P. 621–631.
10.Nevins W.M., Swain R. Thermonuclear fusion rate coefficient for p–11B reaction
// Nucl. Fusion. 2000. V. 40. P. 865–872.
11.Progress in ITER Physics Basis. Chapter 9: ITER contributions for Demo plasma
development / V. Mukhovatov [et al.] // Nucl. Fusion. 2007. V. 47. P. S404–
S413.
12.Khvesyuk V.I., Chirkov A.Yu. Low-radioactivity D–3He fusion fuel cycles with
- 404 3
He production // Plasma Phys. Control. Fusion. 2002. V. 44. P. 253–260.
13.Santarius J.F. Very high efficiency fusion reactor concept // Nucl. Fusion. 1987.
V. 27. P. 167–171.
14.Self-ignition of an advanced fuel field-reversed configuration reactor by fusion
product heating / M. Ohinishi [et al.] // Fusion Technol. 1987. V. 12. P. 249–256.
15.Kinetics and an analysis of the D–3He tandem mirror reactor plasma parameters
/ I.N. Golovin [et al.] // Proc. of Workshop Held at Villa Manastero, Varenna, Italy, September 6–15, 1989. P. 673–692.
16.Wittenberg L.J., Santarius J.F., Kulcinski G.L. Lunar source of 3He for commercial fusion power // Fusion Technol. 1986. V. 10. P. 167–178.
17.Stott P.E. The feasibility of using D–3He and D–D fusion fuels // Plasma Phys.
Control. Fusion. 2005. V. 47. P. 1305–1338.
18.MHD-limits to plasma confinement / F. Troyon [et al.] // Plasma Phys. Control.
Fusion. 1984. V. 26. P. 209–215.
19.Peng Y.-K.M., Strickler D.J. Features of spherical torus plasmas // Nucl. Fusion.
1986. V. 26. P. 769–777.
20.Sykes A. Overview of recent spherical tokamak results // Plasma Phys. Control.
Fusion. 2001. V. 43. P. A124–A139.
21.
/
.
[
.] //
. 1999.
. 69,
. 9. . 58–62.
22.Overview of physics results from NSTX / R. Raman [et al.] // Nucl. Fusion.
2011. V. 51. 094011 (18p.).
23.Overview of physics results from MAST / B. Lloyd [et al.] // Nucl. Fusion. 2011.
V. 51. 094013 (10p.).
24.
.
D–3He-
3
He
//
76,
25.
. 2006. .
. 9. . 51–54.
.
-
- 405 //
. 2008. . 34.
. 387–392.
26.
.,
.
,
//
27.
-
. 2008. . 34. . 971–976.
.,
.,
.
.
. . 7.
//
.:
, 1985. . 80–135.
28.Tuszewski M. Field reversed configurations // Nucl. Fusion. 1988. V. 28. P.
2033–2092.
29.Steinhauer L.C. Review of field-reversed configurations // Phys. Plasmas. 2011.
V. 18. 070501 (38p.).
30.Chirkov A.Yu., Khvesyuk V.I. Analysis of D–3He/catalyzed D–D plasma as a
source of fusion power // Fusion Technol. 2001. V. 39, No. 1T. P. 406–409.
31.Overview of Recent Progress in the GAMMA 10 Tandem Mirror / T. Cho [et al.]
// Fusion Sci. Technol. 2007. V. 51, No. 2T. P. 11–16.
32.Ivanov A.A. Perspectives of development of magnetic mirror traps in Novosibirsk // Fusion Sci. Technol. 2011. V. 59, No 1T. P. 17–22.
33.
.,
.
-
//
34.
. 1979. . 5,
.,
. 11.
.
. 678–682.
//
.
. 1980.
. 1. . 57–66.
35.Gas dynamic trap as high power 14 MeV neutron source / P.A. Bagryansky [et
al.] // Fusion Engineering and Design. 2004. V. 70. P. 13–33.
36.
.
:
//
37.
.,
D–T, D–3He
26,
,
. 1997. . 23. . 883–908.
.
D–D
. 21. . 61–66.
-
//
. 2000. .
- 406 38.Plasma kinetics models for fusion systems based on the axially-symmetric mirror
devices / A.Yu. Chirkov [et al.] // Fusion Sci. Technol. 2011. V. 59 (1T). P. 39–
42.
39.
.,
.,
//
.
. 2000. . 26. . 407–415.
40.The EPSILON experimental pseudo-symmetric trap / V.V. Arsenin [et al.]
// Nucl. Fusion. 2001. V. 41. P. 945–952.
41.Chirkov A.Yu., Khvesyuk V.I., Ryzhkov S.V. Modified open systems for low
radioactive fusion reactors // Fusion Technol. 1999. V. 35 (1T). P. 393–397.
42.
.,
.
//
. 2002.
.
-
1 (8). . 32–40.
43.Ryzhkov S.V., Kostyukov I.Yu. Magneto inertial fusion based on a cusp field
configuration // ArXiv e-prints. 2009. arXiv:0911.5497v2 (
30.05.2012).
44.Chirkov A.Yu., Ryzhkov S.V. The plasma jet/laser driven compression of compact plasmoids to fusion conditions // Journal of Fusion Energy. 2012. V. 31. P.
7–12.
45.
.,
.
//
46.
. 1998. . 168,
.
//
. 2000.
47.
.
. 3. . 57– 63.
.
//
48.
11. . 1153–1194.
. 2009. . 35. . 381–384.
.
//
. 2010.
. 36.
. 499–
- 407 509.
49.Tokamak-like confinement at high beta and low field in the reversed field pinch
/ J.S. Starff [et al.] // Plasma Phys. Control. Fusion. 2003. V. 45. P. A457–A470.
50.Plasma performance and scaling laws in the RFX-mod reversed-field pinch experiment / P. Innocente [et al.] // Nucl. Fusion. 2009. V. 49. 115022 (11p.).
51.Jarboe T.R. Review of spheromak research // Plasma Phys. Control. Fusion.
1994. V. 36. P. 945–990.
52.
/
.
[
. 2003.
.] //
.
. 1. . 22– 28.
53.
-X
[
.] //
54.
/
. 1997. . 67,
.
-
. 2. . 12–16.
.
-
//
.
. 4. /
.
.
.
:
, 1964. . 81–187.
55.
.
. 18. /
56.
//
.
.
,
.
57.
:
, 1990. . 209–315.
.
.,
.
:
, 1971.
.
.
:
,
1981.
58.
.,
.
.,
. . IV /
.
.,
.
.:
,
1989.
59.Electron bremsstrahlung spectrum, 1–500 keV/ C.M. Lee [et al.] // Phys. Rev. A.
1976. V. 13, No. 5. P. 1714–1727.
60.Gould R.J. Thermal bremsstrahlung from high-temperature plasmas // Astrophys.
J. 1980. V. 238. P. 1026–1033.
61.Stickforth J. Zur theorie der bremsstrahlung in plasmen hoher temperatur // Z.
- 408 Physik. 1961. V. 164. P. 1–20.
62.Greene J. Bremsstrahlung from a Maxwellian gas // Astrophys. J. 1959. V. 130.
P. 693–701.
63.
.
-
//
. 1952. . 22,
. 2. . 140–142.
64.Maxon S.M., Corman E.G. Electron-electron bremsstrahlung from a quantum
plasma (Z = 1) // Phys. Rev. 1967. V. 163, No. 1. P. 156–162.
65.Haug E. Bremsstrahlung and pair production in the field of free electrons // Z.
Naturforsch. 1975. V. 30a. P. 1099–1113.
66.Haug E. Electron-electron bremsstrahlung in a hot plasma // Z. Naturforsch.
1975. V. 30a. P. 1546–1552.
67.
.,
.
//
. 1979. . 5. . 1264–1270.
68.Alexanian M. Photon bremsstarhlung from an extreme-relativistic electron gas
// Phys. Rev. 1968. V. 165, No. 1. P. 253–257.
69.
.
100
1
// VIII
:
.
., 2009. . 276–280.
70.Chirkov A.Yu. Plasma bremsstrahlung emission at electron energy from low up
to extreme relativistic values // ArXiv e-prints. 2010. arXiv:1005.3411v1 (
30.05.2012).
71.Svensson R. Electron-positron pair equilibria in relativistic plasmas // Astrophys.
J. 1982. V. 258. P. 335–348.
72.Dawson J.M. in Fusion, Ed. by E. Teller. New York: Academic Press, 1981. Vol.
1. Part B. Chapt. 16.
73.Maxon S. Bremsstrahlung rate and spectra from a hot gas (Z = 1) // Phys. Rev. A
1972. V. 5, No. 4. P. 1630–1633.
- 409 74.
.,
.
//
.
.
.:
.:
, 1983. . 4.
. 194–
274.
75.Lamourex M., Avdonina N. Bremsstrahlung from hot plasmas with partially ionized atoms // Phys. Rev. E. 1997. V. 55, No. 1. P. 912–926.
76.
.
»
«
//
77.
. 1972. . 16,
-
. 1. . 37–39.
.
//
.
.
,
:
.
. 7. /
, 1973. . 274–300.
78.Tamor S. Extension of Trubnikov’s radiation loss formula to relativistic temperatures // Nucl. Fusion. 1983. V. 23. P. 1704–1708.
79.Benchmarking of Codes for Calculating Local Net EC Power Losses in Fusion
Plasmas / F. Albajar [et al.] // Fusion Sci. Technol. 2009. V. 55 (1). P. 76–83.
80.Albajar F., Johner J., Granata G. Improved calculation of synchrotron radiation
losses in relativistic tokamak plasmas // Nucl. Fusion. 2001. V. 41. P. 665–678.
81.Fidone I., Giruzzi G., Granata G. Synchrotron radiation loss in tokamaks of arbitrary geometry// Nucl. Fusion. 2001. V. 41. P. 1755–1758.
82.Kukushkin A.B., Minashin P.V., Neverov V.S Electron cyclotron power losses in
fusion reactor-grade tokamaks: scaling laws for spatial profile and power loss
// 22nd IAEA Fusion Energy Conf., Geneva, 2008. TH/P3-10.
83.
.,
//
.,
.
.
. 2008.
. 3.
. 82–87.
84.Romanelli F., Giruzzi G. A D–3He fusion reactor with an edge radiating layer
// Nucl. Fusion. 1998. V. 38. P. 103–109.
- 410 85.Karney C.F.F. Fokker–Planck and quasilinear codes // Computer Phys. Reports.
1986. V. 4. P. 183–244.
86.Rosenbluth M.N., M cDonald W.M., Judd D.L. Fokker Planck equation for an
inverse-square force // Phys. Rev. 1957. V. 107. P. 1–6.
87.
.
//
. 1958.
. 34.
.
1341–1343.
88.Devaney J.J., Stein M.L. Plasma energy deposition from nuclear elastic scattering // Nucl. Sci. Eng. 1971. V. 46. P. 323–333.
89.Nakao Y., Ohta M., Nakashima H. Effect of nuclear elastic scattering on ignition
nd thermal instability characteristics of D–D fusion reactor plasma // Nucl. Fusion. 1981. V. 21. P. 973–979.
90.Choi C.K., Hsiao M.Y. Effect of nuclear elastic scattering on energetic fusion
product slowing-down // Nucl. Fusion. 1983. V. 23. P. 195–200.
91.Perkins S.T., Kullen D.E. Elastic nuclear plus interference cross sections for
light-charged particles // Nucl. Sci. Eng. 1981. V. 77. P. 20–93.
92.Drift Pumping of Tandem Mirror Thermal Barriers / D.E. Baldwin [et al.]
// Plasma Phys. and Contr. Nucl. Fusion Research: Proc. 11th Int. Conf., Kyoto,
1986. Vienna: IAEA, 1986. P. 293–303.
93.
.,
.
//
. 1993.
. 19. . 42–45.
94.Shabrov N.V., Khvesjuk V.I. Ion pumping from a mirror trap by an external rotating field // Fusion Technol. 1994. V. 26, No. 2. P. 117–124.
95.Khvesyuk V.I., Shabrov N.V., Lyakhov A.N. Ash pumping from toroidal and
mirror magnetic confinement systems // Fusion Technol. 1995. V. 27 (1T). P.
406–408.
96.An alpha particle distribution function for mirror loss-cone type instability calcu-
- 411 lations / S.K. Ho [et al.] // Fusion Technol. 1986. V. 10. P. 1171–1176.
97.
.,
.
//
. 2003.
98.
.
-
. 1. . 55–65.
.
//
.
2011.
www.chemphys.edu.ru/pdf/2011-02-01-029.pdf (
.
11.
30.05.2012).
99.Bosh H.-S., Hale G.M. Improved formulas for fusion cross-sections and thermal
reactivities // Nucl. Fusion. 1992. V. 32. P. 611–631.
100. Chaniotakis E.A., Sigmar D.J. Time dependent effects on fusion reactivity enhancement due to minority heating in D–3He tokamak // Nucl. Fusion. 1993. V.
33. P. 849–861.
101.
.
11
B(p, )8Be* //
. 2006. . 69,
9. .
1496–1497.
102.
//
.
. 1957. . 32,
103.
1. . 67–74.
.,
.
//
. 1961. . 138,
3. . 581–
583.
104.
.,
//
105.
.
. 1962. . 146,
.
3. . 581–584.
//
/
.
.
.
.
.
.
1972. . 112–213.
106.
.
.
.:
, 1977.
:
,
- 412 107.
.
.
.:
, 1977.
108. Davidson R.C., Krall N.A. Anomalous transport in high-temperature plasmas
with applications to solenoidal fusion systems // Nucl. Fusion. 1977. V. 17. P.
1313–1371.
109. Tang W.M. Microinstabilities theory in tokamak // Nucl. Fusion. 1978. V. 18.
P. 1089–1160.
110. Horton W. Drift waves and transport // Rev. Mod. Phys. 1999. V. 71. P. 735–
778.
111. Wolf R.C. Internal transport barriers in tokamak plasmas // Plasma Phys. Contol. Fusion. 2003. V. 45. P. R1–R91.
112. A review of internal transport barrier physics for steady-state operation of tokamaks / J.W. Connor [et al.] // Nucl. Fusion. 2004. V. 44. P. R1–R49.
113. Itoh K., Itoh S.-I. The role of the electric field in confinement // Plasma Phys.
Control Fusion. 1996. V. 38. P. 1–49.
114. Burrell K.H. Effects of E B velocity shear and magnetic shear on turbulence
and transport in magnetic confinement devices // Phys. Plasmas. 1997. V. 4. P.
1499–1518.
115. Increased understanding of the dynamics and transport in ITB plasmas from
multi-machine comparisons / P. Gohil [et al.] // Nucl. Fusion. 2003. V. 43. P.
708–715.
116. Burrell K.H. Turbulence behaviour in the presence of transport barrier
// Plasma Phys. Control. Fusion. 2006. V. 48. P. A347–A363.
117. Toda S., Itoh K. Theoretical Analysis of Transport Barriers in Helical Systems
// J. Plasma Fusion Res. SERIES. 2000. V. 3. 580–583.
118. Wagner F. A quarter-century of H-mode studies // Plasma Phys. Control. Fusion. 2007. V. 49. P. B1–B33.
119.
- 413 -2
.] //
. 2008.
/
.
[
6. . 48–52.
120. Transition to the improved confinement mode in torsatron U-3M in range of
rare collision frequencies / V.K. Pashnev [et al.] // Problems of Atomic Science
and Technology. Series: Plasma Physics. 2010. No. 6 (16). P. 17–20.
121. Improved confinement in RFP with electric field / V. Antoni [et al.] // Plasma
Phys. Control Fusion. 2000. V. 42. P. 83–87.
122.
,
«
/
.
»
[
.] //
.
-
. 1962. . 1. . 215–225.
123. Cooperative effects in a tenuous energetic plasma contained by a magnetic
mirror field / C.C. Damm [et al.] // Phys. Fluids. 1965. V. 8. P. 1472–1488.
124. Ambipolar potential effect on a drift-wave mode in tandem-mirror plasma / A.
Mase [et al.] // Phys. Rev. Lett. 1990. V. 64. P. 2281–2284.
125. Control of the radial electric field and of turbulent fluctuations in a tandem
mirror plasma / A. Mase [et al.] // Nuclear Fusion. 1991. V. 31. P. 1725–1733.
126.
.
//
/
.
.
.
.
. . 1.
.:
,
1983. . 525–598.
127.
.
/
//
.
.
.
.
.
. 2.
.:
,
1983. . 275–364.
128. Connor J.W., Wilson H.R. Survey of theories of anomalous transport
// Plasma Phys. Control. Fusion. 1994. V. 36. P. 719–795.
129. Search for the ion temperature gradient mode in a tokamak plasma and comparison with theoretical predictions / C.L. Rettig [et al.] // Phys. Plasmas. 2001.
V. 8. P. 2232–2237.
130. Progress in ITER Physics Basis. Chapter 2: Plasma confinement and transport
- 414 / E.J. Doyle [et al.] // Nucl. Fusion. 2007. V. 47. P. S18–S127.
131. Improved model for transport driven by drift modes in tokamaks / F.D.
Halpern [et al.] // Phys. Plasmas. 2008. V. 15. 012304 (11p.).
132. Conway G.D. Turbulence measurements in fusion plasmas // Plasma Phys.
Control. Fusion. 2008. V. 50. 124026 (11p.).
133. Tynan G.R., Fujisawa A., McKee G. A review of experimental drift turbulence studies // Plasma Phys. Control. Fusion. 2009. V. 51. 113001 (77p.).
134. Particle transport in tokamak plasmas, theory and experiment / C. Angioni [et
al.] // Plasma Phys. Control. Fusion. 2009. V. 51. 124017 (14p.).
135.
.,
.
//
. 1976.
. 118,
. 2.
.
273–306.
136. Coppi B., Rosenbluth M.N., Sagdeev R.Z. Instabilities due to temperature
gradients in complex magnetic field configurations // Phys. Fluids. 1967. V. 10.
P. 582–587.
137. Gladd N.T., Horton W. Critical shear and growth rates for drift waves in a
nonuniform current-carrying plasma // Phys. Fluids. 1973. V. 16. P. 879–887.
138. Hirshman S.P., Molvig K. Turbulent destabilization and saturation of the universal drift mode in sheared magnetic field // Phys. Rew. Lett. 1979. V. 42. P.
684–651.
139. Horton W., Choi D.-I., Tang W.M. Toroidal drift modes driven by ion pressure gradient // Phys. Fluids. 1981. V. 24. P. 1077–1085.
140. Migliuolo S., Sen A.K. Effect of nonuniform equilibrium electric field on ion
temperature gradient instabilities // Phys. Fluids. 1990. V. B2. P. 3047–3051.
141. Hirose A. Skin size electromagnetic drift mode and anomalous transport
// Phys. Fluids. 1991. V. B3. P. 1599–1608.
142. Hamaguchi S., Horton W. Effect of sheared flows on ion-temperaturegradient-driven turbulent transport // Phys. Fluids. 1992. V. B4. P. 319–328.
- 415 143. Zhang Y.Z., Mahajan S.M. Edge turbulence scaling with shear flow // Phys.
Fluids. 1992. V. B4. P. 1385–1387.
144. Wang X.-H., Diamond P.H., Rosenbluth M.N. Stability of ion-temperaturegradient-driven modes in the presence of sheared poloidal flows // Phys. Fluids.
1992. V. B4. P. 2402–2413.
145. Radially global gyrokinetic simulation studies of transport barriers / S.E.
Parker [et al.] // Phys. Plasmas. 1996. V. 3. P. 1959–1966.
146. Weiland J., Holod I. Drift wave transport scalings introduced by varying correlation length // Phys. Plasmas. 2005. V. 12. 012505 (4p.).
147. Artun M., Tang W.M., Rewoldt G. Trapped ion mode in toroidally rotating
plasma // Phys. Plasmas. 1995. V. 2. P. 3384–3400.
148. Horton W., Hong B.G., Tang W.M. Toroidal electron temperature gradient
driven drift modes // Phys. Fluids. 1988. V. 31. P. 2971–2983.
149. Hirose A. Electron temperature gradient modes in tokamaks // Phys. Fluids.
1990. V. B2. P. 850–853.
150. Electron temperature gradient driven turbulence / F. Jenko [et al.] // Phys.
Plasmas. 2000. V. 7. P. 1904–1910.
151. Jenko F., Dorland W., Hammett G.W. Critical gradient formula for toroidal
electron temperature gradient modes // Phys. Plasmas. 2001. V. 8. P. 4096–4104.
152. Fluid description of electron temperature gradient driven drift modes / R.
Singh [et al.] // Phys. Plasmas. 2001. V. 8. P. 4340–4350.
153. Holland C., Diamond P.H. A simple model of interactions between electron
temperature gradient and drift-wave turbulence // Phys. Plasmas. 2004. V. 11. P.
1051–1043.
154. Li J., Kishimoto Y. Numerical study of zonal flow dynamics and electron
transport in electron temperature gradient driven turbulence // Phys. Plasmas.
2004. V. 11. P. 1493–1510.
155. Electron transport and the critical temperature gradient / W. Horton [et al.]
- 416 // Phys. Plasmas. 2004. V. 11. P. 2600–2606.
156. The role of electron-driven microinstabilities in particle transport during electron Internal Transport Barriers / E. Fable [et al.] // 34th EPS Conference on
Plasma Phys., Warsaw, 2–6 July, 2007. ECA. 2007. V. 31F. P-1.100.
157. Size scaling of turbulent transport in magnetically confined plasmas / Z. Lin
[et al.] // Phys. Rev. Lett. 2002. V. 88. 195004 (4p.).
158. Fluctuation characteristics and transport properties of collisionless trapped
electron mode turbulence / Y. Xiao [et al.] // Phys. Plasmas. 2010. V. 17. 022302
(10p.).
159. Wei X., Sokolov V., Sen A.K. Experimental production and identification of
electron temperature gradient modes // Phys. Plasmas. 2010. V. 17. 042108 (6p.).
160.
.,
.
.
.:
-
, 1979.
161. Dupree T.H. Nonlinear theory of drift-wave turbulence and enhanced diffusion // Phys. Fluids. 1967. V. 10. P. 1049–1055.
162. Guzdar P.N., Kleva R.G., Chen L. Shear flow generation by drift waves revisited // Phys. Plasmas. 2001. V. 8. P. 459–462.
163. Scaling properties of turbulence driven shear flow / Z. Yan [et al.] // Phys.
Plasmas. 2010. V. 17. 012302 (8p.).
164. Nonlinear dynamics of shear flows and plasma rotation in a simple laboratory
plasma system / G.R. Tynan [et al.] // Plasma Phys. Control. Fusion. 2009. V. 51.
124055 (6p.).
165. On the nonlinear turbulent dynamics of shear-flow decorrelation and zonal
flow generation / G.R. Tynan [et al.] // Phys. Plasmas. 2001. V. 8. P. 2691–2699.
166. Secondary instability in drift wave turbulence as a mechanism for zonal flow
and avalanche formation / P.H. Diamond [et al.] // Nuclear Fusion. 2001. V. 41.
P. 1067–1080.
167. Bursty transport in tokamak turbulence: Role of zonal flows and internal
- 417 transport barriers / S. Benkadda [et al.] // Nuclear Fusion. 2001. V. 41. P. 995–
1001.
168. Lashmore-Davies C.N., McCarthy D.R., Thyagaraja A. The nonlinear dynamics of the modulational instability of drift waves and the associated zonal flows
// Phys. Plasmas. 2001. V. 8. P. 1521–1533.
169. Malkov M.A., Diamond P.H., Smolyakov A. On the stability of drift wave
spectra with respect to zonal flow excitation // Phys. Plasmas. 2001. V. 8. P.
1554–1558.
170. Non-linear zonal dynamics of drift and drift-Alfven turbulence in tokamak
plasmas / L. Chen [et al.] // Nuclear Fusion. 2001. V. 41. P. 747–754.
171. Malkov M.A., Diamond P.H., Rosenbluth M.N. On the nature of bursting in
transport and turbulence in drift wave–zonal flow systems // Phys. Plasmas.
2001. P. 5073–5076.
172. Moestama R., Sheikh D., Weiland J. Self-consistent theory of zonal flows in
ion temperature gradient turbulence // Phys. Plasmas. 2004. P. 4801–4807.
173. Zonal flows in plasma a review / P.H. Diamond [et al.] // Plasma Phys. Control. Fusion. 2005. V. 47. P. R35–R161.
174. Kim E. Theory of turbulence regulation by oscillatory zonal flows // Phys.
Plasmas. 2006. V. 13. 022308 (5p.).
175. Miyato N., Kishimoto Y., Li J.Q. Nonlocal behaviour of zonal flows in tokamak plasmas // Plasma Phys. Control. Fusion. 2006. V. 48. P. A335–A340.
176. Physics of zonal flows / K. Itoh [et al.] // Phys. Plasmas. 2006. V. 13. 055502
(11p.).
177. Sen A.K., Sokolov V., Wei X. A new paradigm for plasma transport and zonal
flows // Phys. Plasmas. 2006. V. 13. 055905 (7p.).
178. Neoclassical generation of toroidal zonal flow by drift wave turbulence
/ A.B. Mikhailovskii [et al.] // Phys. Plasmas. 2006. V. 13. 032502 (11p.).
179. Generation of zonal flows by ion-temperature-gradient and related modes in
- 418 the presence of neoclassical viscosity / A.B. Mikhailovskii [et al.] // Phys. Plasmas. 2006. V. 13. 052516 (11p.).
180. Fujisawa A. A review of zonal flow experiments // Nucl. Fusion. 2009. V. 49.
013001 (42p.).
181. Dewhurst J.M, Hnat B., Dendy R.O. Finite Larmor radius effects on test particle transport in drift wave-zonal flow turbulence // Plasma Phys. Control. Fusion.
2010. V. 52. 025004 (11p.).
182. Spectral features of the geodesic acoustic mode and its interaction with turbulence in a tokamak plasma / T. Lan [et al.] // Phys. Plasmas. 2008. V. 15. 056105
(10p.).
183. Nonlinear self-interaction of geodesic acoustic modes in toroidal plasmas / M.
Sasaki [et al.] // Phys. Plasmas. 2009. V. 16. 022306 (8p.).
184. Hagera R., Hallatschek K. Radial propagation of geodesic acoustic modes in
up-down asymmetric magnetic geometries // Phys. Plasmas. 2010. V. 17. 032112
(5p.).
185. Miki K., Diamond P.H. Role of the geodesic acoustic mode shearing feedback
loop in transport bifurcations and turbulence spreading // Phys. Plasmas. 2010. V.
17. 032309 (10p.).
186. Singh R., Kaw P.K., Weiland J. Non-linear features of electron temperature
gradient mode and electron thermal transport in tokamaks // Nucl. Fusion. 2001.
V. 41. P. 1219–1225.
187. Itoh S.-I., Itoh K. Possible maximum amplitude of streamers in drift wave turbulence // Plasma Phys. Control. Fusion. 2008. V. 50. 055002 (7p.).
188. Selective formation of streamers in magnetized cylindrical plasmas / N. Kasuya [et al.] // Nucl. Fusion. 2010. V. 50. 054003 (8p.).
189. Streamer simulation based on discontinuous Galerkin method with hierarchical reconstruction / C. Zhuang [et al.] // ArXiv e-prints. 2010. arXiv:0912.0081v3
30.05.2012).
- 419 190. Intermittent convective transport carried by propagating electromagnetic filamentary structures in nonuniformly magnetized plasma / G.S. Xu [et al.] // Phys.
Plasmas. 2010. V. 17. 022501 (22p.).
191. Cowley S.C., Kulsrud R.M., Sudan R. Considerations of ion-temperaturegradient-driven turbulence // Phys. Fluids. 1991. V. B3. P. 2767–2782.
192. Vranjes J., Shukla P.K., Poedts S. Velocity shear driven electron skin size
vortices // Phys. Plasmas. 2001. V. 8. P. 3913–3920.
193. Throumoulopoulos G.N., Tasso H. Magnetohydrodynamic counter-rotating
vortices and synergetic stabilizing effects of magnetic field and plasma flow
// Phys. Plasmas. 2010. V. 17. 032508 (9p.).
194. Self-sustaining vortex perturbations in smooth shear flows / J.-H. Kim [et al.]
// Phys. Plasmas. 2006. V. 13. 062304 (8p.).
195. Theory of anomalous transport in H-mode plasmas / S.-I. Itoh [et al.] // Phys.
Rew. Lett. 1994. V. 72. P. 1200–1203.
196. Waltz R.E., Staebler G.M., Dorland W. A gyro-Landau-fluid transport model
// Phys. Plasmas. 1997. V. 4. P. 2482–2496.
197. Hinton F.L. Thermal confinement bifurcation and L- to H-mode transition in
tokamaks // Phys. Fluids. 1991. V. B3. P. 696–704.
198. Biglari H., Diamond P.H., Terry P.W. Influence of sheared poloidal rotation
on edge turbulence // Phys. Fluids. 1990. V. B2. P. 1–4.
199. Momentum-energy transport from turbulence driven by parallel flow shear
/ J.Q. Dong [et al.]// Phys. Plasmas. 1994. V. 1. P. 3250–3261.
200. Pakyari A., Pavlenko V.P. Stationary turbulent spectra of toroidal
i
mode
// Phys. Plasmas. 1996. V. 3. P. 3628–3635.
201. Dupree T.H. Nonlinear Theory of Low-Frequency Instabilities // Phys. Fluids.
1968. V. 11. P. 2680–2694.
202. Garbet X., Waltz R.E. Action at distance and Bohm scaling of turbulence in
tokamaks // Phys. Plasmas. 1996. V. 3. P. 1898–1907.
- 420 203. Drift wave test particle transport in reversed shear profile / W. Horton [et al.]
// Phys. Plasmas. 1998. V. 5. P. 3910–3917.
204. Global drift wave map test particle simulations / J.-M. Kwon [et. al] // Phys.
Plasmas. 2000. V. 7. P. 1169–1180.
205. Khvesyuk V.I., Chirkov A.Yu., Pshenichnikov A.A. Analysis of influence of
the radial electric field on turbulent transport in a tandem mirror plasma // J.
Plasma Fusion Res. SERIES. 2000. V. 3. P. 150–153.
206. Khvesyuk V.I., Chirkov A.Yu. Stochastic drift wave model for anomalous
transport in tandem mirror and FRC // Fusion Technol. 2001. V. 39, No. 1T. P.
398–401.
207.
.,
.
.
./
.
208.
.
.
.,
.,
//
210.
.:
, 1984.
.
.
209.
:
.
:
, 1988.
.
-
. 1971. . 105,
. 1. . 3–39.
.
//
.
. 13. /
-
.
.
.
.:
:
,
1984. . 3–73.
211.
.
.
.:
-
, 2000.
212. D’Angelo F., Paccagnella R. Stochastic diffusion in presence of mode locking
in a reversed field pinch // Plasma Phys. Control. Fusion. 1996. V. 38. P. 313–
323.
213. Chaotic transport in reversed shear tokamaks / F.A. Markus [et al.] // Nucl.
Fusion. 2008. V. 48. 024018 (8p.).
214. On the accuracy of some mapping techniques used to study the magnetic field
dynamics in tokamaks / D. Constantinescu [et al.] // Nucl. Fusion. 2008. V. 48.
- 421 024017 (9p.).
215. Collisionless plasma transport across loop magnetic field / W. Horton [et al.]
// Phys. Fluids. 1991. V. B3. P. 2192–2199.
216. Horton W., Tajima T. Collisionless conductivity and stochastic heating of the
plasma sheet in the geomagnetic tail // J. Geophys. Res. 1991. V. 96. P. 15,811–
15,829.
217. Kostyukov I.Yu., Rax J.M. Stochastic heating in field-reversed low pressure
discharge // Phys. Plasmas. 2000. V. 7. P. 185–192.
218.
.
//
219.
. 1997. . 67,
2. . 94–99.
.
//
69,
. 1999. .
. 5. . 106–110.
220.
/
.
[
.] //
. 2009. . 89,
. 9. . 528–534.
221. Neishtadt A.I. Averaging, passages through resonances, and captures into
resonance in dynamics of charged particles // Proc. IV Int. Conf. Frontiers of
Nonlinear Physics, Nizhny Novgorod, 2010. P. 44–45.
222.
.
//
.
223.
. 1989.
.,
.,
. 3. . 65–68.
.
//
1997. . 23,
224.
.
. 21. . 37–39.
.,
.
//
. 2004. . 74,
. 4. . 18–
26.
225.
.,
.,
.
-
- 422 //
.
2002. . 28. . 854–857.
226. Chirkov A.Yu., Khvesyuk V.I. Dynamics of plasma particles interaction with
electric field fluctuations // Problems of Atomic Science and Technology. Series:
Plasma Physics. 2002. V. 8, No. 5. P. 57–59.
227.
:
/
.
.
.
.
.
.:
,
2003.
228.
/
.
[
.] //
-
. 1994. . 20. . 1069–1076.
229.
/
.
[
.] //
. 1999. . 25. . 346–361.
230.
/
.
[
.] //
.
2002. . 28. . 128–143.
231.
.,
.
//
232.
. 2005. . 82,
.,
. 176,
.
. 6. . 395–406.
//
. 2006.
11. . 1177–1206.
233.
.
:
.
:
-
, 2003.
234.
.
.
.:
, 1958. 194 .
235. Drazin P. Introduction to hydrodynamic stability. Cambridge Univ. Press,
2002. 276pp.
236. Drazin P.G., Reid W.H. Hydrodynamic stability. Cambridge Univ. Press,
2004.
- 423 237.
.,
.
./
1963.
//
.
.
,
II. . 83–205.
238.
.
//
./
, 1963.
239.
.
.
:
-
III. . 206–264.
.
//
240.
//
:
. 2003. . 173,
.,
. 2003. . 73,
7. . 757–768.
.
. 7. . 1–6.
241. Statistical properties and radial structure of plasma turbulence in the boundary
region of the L2-M stellarator / G.M. Batanov [et. al] // Plasma Phys. Control.
Fusion. 1998. V. 40. P. 1241–1250.
242. Ballistic transport phenomena in TJ-II / B.P. Van Milligen [et al.] // Nucl. Fusion. 2002. V. 42. P. 787–795.
243. Del-Castillo-Negrete D., Carreras B. A., Lynch V.E. Fractional diffusion in
plasma turbulence // Phys. Plasmas. 2004. V. 11. P. 3854–3864.
244. Fractional diffusion models of non-local perturbative transport: numerical results and application to JET experiments / D. Del-Castillo-Negrete [et al.]
// Nucl. Fusion. 2008. V. 48. 075009 (13p.).
245.
.,
.
.,
.
:
;
-
, 2006.
246. Vázquez F., Márkus F. Non-Fickian particle diffusion in confined plasmas
and the transition from diffusive transport to density waves propagation // Phys.
Plasmas. 2010. V. 17. 042111 (5p.).
247. Chen Y.-J., Birdsall C.K. Lower-hybrid drift instability saturation mechanisms in one-dimensional simulations // Phys. Fluids. 1983. V. 26. P. 180–189.
- 424 248.
.
//
. 1972. . 110,
. 3. . 329–355.
249. Ferraro R.D., Sanuki H., Littlejohn R.G., Fried B.D. A nonlocal analysis of
drift and drift-cyclotron waves in cylindrical geometry // Phys. Fluids. 1985. V.
27. P. 2181–2187.
250. Khvesyuk V.I., Chirkov A.Yu. Turbulence of high-beta plasma // The
US-Japan Workshop on Physics of High-Beta Plasma Confinement in Innovative
Fusion. Report NIFS-PROC-41. National Institute for Fusion Science, Nagoya,
Japan, 1999. P. 19–26.
251. Haines M.G., Martin P. The breaking of up–down symmetry of trapped particle orbits by a toroidal electric field // Phys. Plasmas. 1996. V. 3. P. 4536–4544.
252.
.
//
. 2004. . 74,
. 12. . 47–51.
253. Farengo R., Lee Y.C., Guzdar P.N. An electromagnetic integral equation: Application to microtearing modes // Phys. Fluids. 1983. V. 26. P. 3515–3523.
254. Dong J.Q., Guzdar P.N., Lee Y.C. Finite beta effect on ITG driven mode
// Phys. Fluids. 1987. V. 30. P. 2694–2700.
255. Short wavelength ion temperature gradient instability in toroidal plasmas / Z.
Gao [et al.] // Phys. Plasmas. 2005. V. 12. 022502 (10p.).
256. Hastings D.E., McCune J.E. The high- universal drift mode // Phys. Fluids.
1982. V. 25. P. 509–517.
257. Huba J.D., Gary S.P. Finite- stabilization of the universal drift instability:
revisited // Phys. Fluids. 1982. V. 25. P. 1821–1823.
258. Horton W. Electromagnetic drift modes driven by pressure gradients in tokamak // Phys. Fluids. 1983. V. 26. P. 1461–1466.
259. Pu Y.-K., Migliuolo S. Finite beta stabilization of the kinetic ion mixing mode
// Phys. Fluids. 1985. V. 28. P. 1722–1726.
- 425 260. Linear and nonlinear description of drift instabilities in a high-beta plasmas
/ A.Y. Aydemir [et al.] // Phys. Fluids. 1987. V. 30. P. 3083–3092.
261. Tsang K.T., Cheng C.Z. Gyrokinetic simulation of microinstabilities in high
temperature tokamaks // Phys. Fluids. 1991. V. B3. P. 688–695.
262. Artun V., Tang W.M. Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas // Phys. Plasmas. 1994. V. 1. P. 2682–2692.
263. Effects of finite plasma beta on the lower-hybrid-drift instability / R.C. Davidson [et al.] // Phys. Fluids. 1977. V. 20. P. 301–310.
264. Farengo R., Guzdar P.N., Lee Y.C. Stabilization of lower hybrid drift modes
by finite parallel wavenumber and electron temperature gradients in fieldreversed configurations // Phys. Fluids. 1988. V. 31. P. 3299–3304.
265. Farengo R., Guzdar P.N., Lee Y.C. The effect of magnetized ions on lower
hybrid drift instability in field reversed configurations // Phys. Fluids. 1989. V.
B1. P. 1654–1658.
266. Farengo R., Guzdar P.N., Lee Y.C. Collisionless electron temperature gradient-driven instability in field-reversed configurations // Phys. Fluids. 1989. V.
B1. P. 2181–2185.
267. Chirkov A.Yu., Khvesyuk V.I. Electromagnetic drift instabilities in highplasma under conditions of a field reversed configuration // Phys. Plasmas. 2010.
V. 17. 012105 (8p.).
268. Study of electromagnetic instabilities driven by ion temperature gradient and
parallel sheared flows in high- plasmas / Z. Gao [et al.] // Phys. Plasmas. 2001.
V. 8. P. 4080–4089.
269. Effects of
and Te/Ti on the ion temperature gradient modes in anisothermal
plasmas / Z. Gao [et al.] // Phys. Plasmas. 2001. V. 8. P. 2816–2823.
270. Ion temperature gradient driven instability in high beta plasmas of a sheared
slab / S. Liu [et al.] // Phys. Plasmas. 2009. V. 16. 012302 (7p.).
271. Antonsen T.M., Jr., Lane B. Kinetic equations for low frequency instabilities
- 426 in inhomogeneous plasmas // Phys. Fluids. 1980. V. 23. P. 1205–1214.
272. Catto P.J., Tang W.M., Baldwin D.E. Generalized gyrokinetics // Plasma
Phys. 1981. V. 23. P. 639–650.
273. Dong J.Q., Horton W., Kishimoto Y. Gyrokinetic study of ion temperature
gradient instability in vicinity of flux surfaces with reversed magnetic shear
// Phys. Plasmas. 2001. V. 8. P. 167–173.
274. Gyrokinetic theory of drift waves in negative shear tokamaks / Y. Idomura [et
al.] // Nucl. Fusion. 2001. V. 41. P. 437–445.
275. Chen Y., Parker S. Gyrokinetic turbulence simulations with kinetic electrons
// Phys. Plasmas. 2001. V. 8. P. 2095–2100.
276. Snydera P. B., Hammett G.W. A Landau fluid model for electromagnetic
plasma microturbulence // Phys. Plasmas. 2001. V. 8. P. 3199–3216.
277. Dong J.Q., Sanuki H., Itoh K. Gyrokinetic study of the electron temperature
gradient instability in plasmas with slightly hollow density profiles // Phys. Plasmas. 2001. V. 8. P. 3636–3644.
278. Candya J., Waltz R.E., Dorland W. The local limit of global gyrokinetic simulations // Phys. Plasmas. 2004. V. 11. P. L25–L28.
279. Bakera D.R. A perturbative solution of the drift kinetic equation yields pinch
type convective terms in the particle and energy fluxes for strong electrostatic
turbulence // Phys. Plasmas. 2004. V. 11. P. 996–992.
280. Qin H., Tang W.M. Pullback transformations in gyrokinetic theory // Phys.
Plasmas. 2004. V. 11. P. 1052–1063.
281. A full radius gyrokinetic stability analysis for large aspect ratio finite- tokamaks / R. Ganesh [et al.] // Phys. Plasmas. 2004. V. 11. P. 3106–3130.
282. Wonga S.K., Chan V.S. A drift-kinetic approach to neoclassical transport theory for plasmas with large toroidal rotation // Phys. Plasmas. 2004. V. 11. P.
3432–3442.
283. Full f gyrokinetic simulation of FT-2 tokamak plasma / T.P. Kiviniemi [et al.]
- 427 // Plasma Phys. Control. Fusion. 2006. V. 48. P. A327–A333.
284. Scott B. Gyrokinetic study of the edge shear layer // Plasma Phys. Control.
Fusion. 2006. V. 48. P. A387–A392.
285. Waltz R. E., Staebler G.M. Gyrokinetic theory and simulation // Phys. plasmas. 2008. V. 15. 014505 (4p.).
286. Hahm T.S., Wang L., Madsen J. Fully electromagnetic nonlinear gyrokinetic
equations for tokamak edge turbulence // Phys. Plasmas. 2009. V. 16. 022305
(11p.).
287. Role of stable eigenmodes in gyrokinetic models of ion temperature gradient
turbulence / D.R. Hatch [et al.] // Phys. Plasmas. 2009. V. 16. 022311 (15p.).
288. Gyrokinetic simulations of spherical tokamaks / C.M. Roach [et al.] // Plasma
Phys. Control. Fusion. 2009. V. 51. 124020 (11p.).
289. Direct multiscale coupling of a transport code to gyrokinetic turbulence codes
/ M. Barnes [et al.] // Arxiv e-prints. 2009. arXiv:0912.1974v1 (
30.05.2012).
290. Predebon I., Angioni C., Guo S.C. Gyrokinetic simulations of ion temperature
gradient modes in the reversed field pinch // Phys. Plasmas. 2010. V. 17. 012304
(7p.).
291. Barnes M., Dorland W., Tatsuno T. Resolving velocity space dynamics in
continuum gyrokinetics // Phys. Plasmas. 2010. V. 17. 032106 (13p.).
292. Brizard A.J. Exact energy conservation laws for full and truncated nonlinear
gyrokinetic equations // Phys. Plasmas. 2010. V. 17. 042303 (11p.).
293. Ramos J. J.Fluid and drift-kinetic description of a magnetized plasma with
low collisionality and slow dynamics orderings. I. Electron theory // Phys. Plasmas. 2010. V. 17. 082502 (15p.).
294. Madsena J. Second order guiding-center Vlasov–Maxwell equations // Phys.
Plasmas. 2010. V. 17. 082107 (12p.).
295. AstroGK: Astrophysical Gyrokinetics Code / R. Numata [et al.] // Arxiv
- 428 e-prints. 2010. arXiv:1004.0279v1 (
30.05.2012).
296. Large scale dynamics in flux driven gyrokinetic turbulence / Y. Sarazin [et
al.] // Nucl. Fusion. 2010. V. 50. 054004 (10p.).
297. Gyrokinetic simulations of turbulent transport / X. Garbet [et al.] // Nucl. Fusion. 2010. V. 50. 043002 (30p.).
298.
.,
.
299.
.
.:
, 1987.
.
//
. 1966. . 6. . 93–100.
300. Scott B. Low frequency fluid drift turbulence in magnetized plasma. Dusseldorf: Heinrich-Heine-Universitat, 2000. 354 p.
301. Simakov A.N., Catto P.J. Drift-ordered fluid equations for field-aligned
modes in low- collisional plasma with equilibrium pressure pedestals // Phys.
Plasmas. 2003. V. 10. P. 4744–4757.
302. Vranjes J., Poedts S. On the role of perpendicular electron collisions in drift
and acoustic wave instabilities // Phys. Plasmas. 2009. V. 16. 022101 (6p.).
303. Artun M., Tang W.M. Gyrokinetic analysis of ion temperature gradient modes
in the presence of sheared flows // Phys. Fluids. 1992. V. B4. P. 1102–1114.
304.
.,
.
//
.
http://technomag.edu.ru/doc/119255.html (
305.
.,
306.
.,
4.
30.05.2012).
.
//
. 2009.
2009.
.
-
1. . 21–30.
.
//
. 2009.
6. . 67–76.
-
- 429 307. Observation of turbulence exponential wave number spectra at ion subLarmor scales in FT-2 tokamak / Gurchenko A.D. [et al.] // Plasma Phys. Control. Fusion. 2010. V. 52. 035010 (10p.).
308. Krall N.A., Rosenbluth M.N. Universal instability in complex field geometries // Phys. Fluids. 1965. V. 8. P. 1488–1503.
309. Pearlstein L.D., Berk H.L. Universal eigenmode in a strongly sheared magnetic field // Phys. Rev. Lett. 1969. V. 23. P. 220–222.
310. Hahm T.S., Tang W.M. Properties of ion temperature gradient drift instability
in H-mode plasmas // Phys. Fluids. 1989. V. B1. P. 1185–1192.
311. Chirkov A.Yu. Plasma turbulence in localized sheared flows // Problems of
Atomic Science and Technology. Series: Plasma Physics. 2007. V. 13, No. 1. P.
58–60.
312. Timofeev A.V., Tupikov S.E. Drift instability in non uniform electric field
// Fusion Technol. 1999. V. 35, No. 1T. P. 253–257.
313. Perkins F.W., Jassby D.L. Velocity shear and low-frequency plasma instabilities // Phys. Fluids. 1971. V. 14. P. 102–115.
314. Jassby D.L. Transverse velocity shear instabilities within a magnetically confined plasma // Phys. Fluids. 1972. V. 15. P. 1590–1604.
315. Ganguli G., Lee Y.C., Palmadesso P.J. Kinetic theory for electrostatic waves
due to transverse velocity shears // Phys. Fluids. 1988. V. 31. P. 823–838.
316. Glowienka J.C., Jennings W.C., Hickok R.L. Experimental investigation of a
coherent flute instability using a heavy ion beam probe // Phys. Fluids. 1988. V.
31. P. 2704–2709.
317.
.,
.
//
. 1990. . 16,
. 6.
. 700–709.
318. Timofeev A.V. Convective modes in plasma with the strong shear of E × B
drift velocity // Plasma Phys. Control. Fusion. 2001. V. 43. P. L31–L35.
- 430 319.
.
-
E B-
// VII
:
.
.,
2006.
. 186–189.
320.
//
.
. 1970. . 102,
. 2. . 185–210.
321. Michalke A. On the inviscid instability of the hyperbolic-tangent velocity profile // J. Fluid. Mech. 1964. V. 19. P 543–556.
322. Zhuang M., Dimotakis P.E., Kubota T. The effect of walls on a spatially
growing supersonic shear layer // Phys. Fluids. 1990. V. A2. P. 599–604.
323. Sandham N.D., Reynolds W.C. Thee-dimensional simulations of large eddies
in the compressible mixing layer // J. Fluid. Mech. 1991. V. 224. P 133–158.
324. Miura A. Compressible magnetohydrodynamic Kelvin–Helmholtz instability
with vortex pairing in the two-dimensional transverse configuration // Phys.
Plasmas. 1997. V. 4. P. 2871–2885.
325. Nonlinear vortex dynamics in an inhomogeneous magnetized plasma with a
sheared velocity field / A. Tenerani [et al.] // Plasma Phys. Control. Fusion. 2011.
V. 53. 015003 (13p.).
326.
.,
.
//
:
-
0321001780 (
). 1-4 (11 .).
327. Bolshakova A.D., Chirkov A.Yu., Khvesyuk V.I. Scaling laws for electrostatic collisionless drift instabilities // ArXiv e-prints. 2010. arXiv:1009.2298v1
30.05.2012).
328. Vianello N., Antoni V., Spada E., et al. Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R // Nucl. Fusion.
2005. V. 45. P. 761–766.
- 431 329.
/
.
[et al.] //
.
1981. . 7. . 414–418.
330. Connor J.W. A review of models for ELMs // Plasma Phys. Control. Fusion.
1998. V. 40. P. 191–213.
331. Diamond P.H., Hasegawa A., Mima K. Vorticity dynamics, drift wave turbulence, and zonal flows: a look back and a look ahead // Plasma Phys. Control. Fusion. 2011. V. 53. 124001 (23p.).
332.
.
//
.
333.
. 2008.
.,
3. . 3–16.
.
//
. 1971.
. 103,
. 2. . 193–232.
334.
.
,
//
’ 2006 /
. .
:
.
,
.
,
.
-
, 2007. . 139 150.
335. Chirkov A.Yu. Dynamics of finite amplitude non-linear waves in sheared
flows of fluids and plasmas // Proc. III Int. Conf. Frontiers of Nonlinear Physics,
Nizhny Novgorod Saratov, 2007. P. 52 53.
336.
.,
.
,
//
. 2006. . 12,
.
6. . 112–114.
337. Tasso H. A non-linear equation for drift waves // Phys. Lett. A. 1997. V. 232.
P. 247–251.
338.
.,
.
.:
339.
.
. . VI.
, 1988.
.
//
.
-
. 2011.
. 4. . 72–79.
-
- 432 340. Khvesyuk V.I. Excitement of local non-uniformities in plasma by unstable
ion-temperature-gradient waves // Jornal Fusion Ener. 2012. V. 31.
341.
.
342.
.
.:
, 1976.
.
//
.
. 2006.
2. . 115–125.
343. Steinhauer L.C. Formalism for multi-fluid equilibria with flow // Phys. Plasmas. 1999. V. 6. P. 2734–2741.
344. Steinhauer L.C., Guo H.Y. Nearby-fluid equilibria. II. Zonal flows in a high, self-organized plasma experiment // Phys. Plasmas. 2006. V. 13. 052514 (8p.).
345.
.
.
.
.
/
.
346.
:
.
.
.
, 1972. . 77–111.
.,
.
.
.
.
.
.:
, 2002.
347. Tuszewski M., Smirnov A., Deng B.H., et al. Combined FRC and mirror
plasma studies in the C-2 device // Fusion Sci. Technol. 2011. V. 59 (1T). P. 23–
26.
348. Field reversed configuration transport. Theory and measurement of flux, energy, and particle lifetimes / A.L. Hoffman [et al.] // Plasma Physics and Controlled Nuclear Fusion Research: Proc. 11th Int. Conf., V. 2, IAEA, Vienna, 1987.
P. 541–549.
349. Electron energy confinement in field reversed configuration plasmas
/ D.J. Rej [et al.] // Nucl. Fusion. 1990. V. 30. P. 1087–1094.
350. Flux confinement measurements in large field-reversed configuration equilibria / Rej [et al.] // Phys. Fluids. 1990. V. B2. P. 1706–1708.
351. Hoffman A.L., Slough J.T. Field reversed configuration lifetime scaling based
on measurements from the large s experiment // Nucl. Fusion. 1993. V. 33. P.
27–38.
- 433 352. Transport, energy balance, and stability of a large field-reversed configuration
/ J.T. Slough [et al.] // Phys. Plasmas. 1995. V. 2. P. 2286–2291.
353. Advanced experiments on Field-Reversed Configuration at Osaka / K. Kitano
[et al.] // Proc. of 1998 Int. Congress on Plasma Physics & 25th EPS Conf. on
Contr. Fusion and Plasma Physics. Prague, 1998.
354. Steinhauer L. FRC data digest, 1996. Presented in: Iwasawa N., Ishida A.,
Steinhauer L.C. Tilt mode stability scaling in field-reversed configurations with
finite Larmor radius effect // Phys. Plasmas. 2000. V. 7. P. 931– 934.
355. Guo H. Recent results on Field Reversed Configurations from the Translation,
Confinement and Sustainment experiment // Plasma Sci. Technol. 2005. V. 7. P.
2605– 2609.
356. Recent FRC plasma studies / S. Okada [et al.] // Fusion Sci. Technol. 2007.
V. 51, No. 2T. P. 193–196.
357. Dynamic formation of a hot field reversed configuration with improved confinement by supersonic merging of two colliding high- compact toroids / M.W.
Binderbauer [et al.] // Phys. Rev. Lett. 2010. V. 105. 045003 (4p.).
358. Formation of a long-lived hot field reversed configuration by dynamically
merging two colliding high- compact toroids / H.Y. Guo [et al.] // Phys. Plasmas. 2011. V. 18. 056110 (10p.).
359. Formation of a stable field reversed configuration through merging / G.
Votroubek [et al.] // J. Fusion Energy. 2008. V. 27. P. 123–127.
360. Slough J., Votroubek G., Pihl C. Creation of a high-temperature plasma
through merging and compression of supersonic field reversed configuration
plasmoids // Nucl. Fusion. 2011. V. 51. 053008 (10p.).
361. Experimental investigation of three-dimensional magnetic reconnection by
use of two colliding spheromaks / Y. Ono [et al.] // Phys. Fluids. 1993. V. B5. P.
3691–3701.
362. Spontaneous and artificial generation of sheared-flow in oblate FRCs in TS-3
- 434 and TS-4 FRC experiments / Y. Ono [et al.] // Nucl. Fusion. 2003. V. 43. P. 649–
654.
363. Mozgovoy A. Compact toroid formation in the inductive store // 30th EPS
Conference on Contr. Fusion and Plasma Phys., St. Petersburg, 7-11 July 2003.
ECA. 2003. V. 27A. P-2.198.
364. Slough J.T., Miller K.E. Flux generation and sustainment of a field reversed
configuration with rotating magnetic field current drive // Phys. Plasmas. 2000.
V. 7. P. 1945–1950.
365. Long pulse FRC sustainment with enhanced edge driven rotating magnetic
field current drive / A.L. Hoffman [et al.] // Nucl. Fusion. 2005. V. 45. P. 176–
183.
366. Guo H.Y., Hoffman A.L., Steinhauer L.C. Observations of improved confinement in field reversed configurations sustained by antisymmetric rotating
magnetic fields // Phys. Plasmas. 2005. V. 12. 062507 (6p.).
367. Experimental evidence of improved confinement in a high-beta field-reversed
configuration plasma by neutral beam injection / T. Asai [et al.] // Phys. Plasmas.
2000. V. 7. P. 2294–2297.
368. Experiments on additional heating of FRC plasmas / S. Okada [et al.] // Nuclear Fusion. 2001. V. 41 P. 625–629.
369. Inomoto M., Asai T., Okada S. Neutral beam injection heating on fieldreversed configuration plasma decompressed through axial translation // Nucl.
Fusion. 2008. V. 48. 035013 (8p.).
370. Hewlett D.V. Spontaneous development of toroidal magnetic field during
formation of field-reversed theta pinch // Nucl. Fusion. 1984. V. 24. P. 349–357.
371. Milroy R.D., Brackbill J.U. Toroidal magnetic field generation during compact toroid formation in a field-reversed theta pinch and conical theta pinch
// Phys. Fluids. 1986. V. 29. P. 1184–1195.
372. Wang M.Y., Miley G.H. Particle orbits in field-reversed mirrors // Nucl. Fu-
- 435 sion. 1979. V. 19. P. 39–49.
373. Hsiao M.-Y., Miley G.H. Particle-confinement criteria for axisymmetric fieldreversed magnetic configurations // Nucl. Fusion. 1984. V. 24. P. 1029–1038.
374. Hsiao M.-Y., Miley G.H. Velocity-spase particle loss in field-reversed configurations // Phys. Fluids. 1985. V. 28. P. 1440–1449.
375.
.
//
376.
. 1986. . 12. . 1292–1296.
.,
.,
.
//
1997. . 23,
.
21. . 37–39.
377. Landsman A.S., Cohen S.A., Glasser A.H. Regular and stochastic orbits of
ions in a highly prolate field-reversed configuration // Phys. Plasmas. 2004. V.
11. P. 947–957.
378. Losses of neutral beam injected fast ions due to adiabaticity breaking processes in a field-reversed configuration / T. Takahashi [et al.] // Phys. Plasmas.
2004. V. 11. P. 3131–3140.
379. Lifschitz A.F., Farengo R., Arista N.R. Monte Carlo simulation of neutral
beam injection into a field reversed configuration // Nucl. Fusion. 2002. V. 42. P.
863–875.
380. Lifschitz A.F., Farengo R., Hoffman A.L. Calculations of tangential neutral
beam injection current drive efficiency for present moderate flux FRCs // Nucl.
Fusion. 2004. V. 44. P. 1015–1026.
381. Ferrari H.E., Farengo R. Current drive and heating by fusion protons in a D–
3
He FRC reactor // Nucl. Fusion. 2008. V. 48. 035014 (8p.).
382. Spenser R.L., Tuszewski M. Experimental and computational equilibria of
field-reversed configurations // Phys. Fluids. 1985. V. 28. P. 1810–1815.
383. Steinhauer L.C. Improved analytic equilibrium for a field-reversed configuration // Phys. Fluids. 1990. V. B2. P. 3081–3085.
- 436 -
384.
Suzuki Y., Okada S., Goto S. Analysis of averaged
value in two dimen-
sional equilibria of a field-reversed configuration with end mirror fields // J.
Plasma Fusion Res. SERIES. 1999. V.2. P. 218–221.
385. Barnes D.C. Profile consistency of an elongated field-reversed configuration.
I. Asymptotic theory // Phys. Plasmas. 2001. V. 8. P. 4856–4863.
386. Barnes D.C. Profile consistency of an elongated field-reversed configuration.
II. Two-dimensional solutions // Phys. Plasmas. 2001. V. 8. P. 4864–4869.
387. Cerfona A.J., Freidberg J.P. “One size fits all” analytic solutions to the Grad–
Shafranov equation // Phys. Plasmas. 2010. V. 17. 032502 (9p.).
388. Steinhauer L.C. End-shorting and electric field in edge plasmas with application to field-reversed configurations // Phys. Plasmas. 2002. V. 9. P. 3851–3856.
389. Steinhauer L. Equilibrium rotation in field-reversed configurations // Phys.
Plasmas. 2008. V. 15. 012505 (7p.).
390.
.
.,
.
//
1989. . 15,
. 3. . 288–299.
391.
.
.,
.
.
.
.
.
,
75,
, 1988.
392. Simulations of the field-reversed configuration with the NIMROD code
/ A.I.D. Macnab [et al.] // J. Fusion Energy. 2007. V. 26. P. 113–117.
393. The n = 1 rotational instability in field-reversed configurations / M.
Tuszewski [et al.] // Phys. Fluids. 1990. V. B2. P. 2541–2543.
394. High-power magnetic-compression heating of field-reversed configurations
/ D.J. Rej [et al.] // Phys. Fluids. 1992. V. B4. P. 1909–1919.
395. Detection of electric field around field-reversed configuration plasma / T. Ikeyama [et al.] // Phys. Plasmas. 2010. V. 17. 012501 (8p.).
396. Observations of improved stability and confinement in a high- self-organized
- 437 spherical-torus-like field-reversed configuration / H.Y. Guo [et al.] // Phys. Rev.
Lett. 2005. V. 95. 175001 (4p.).
397.
.
//
. 1981. . 7,
. 5. . 973–
980.
398.
/
.] //
. 1981. . 7,
.
[
. 5. . 981–985.
399. Stabilization of interchange modes by rotating magnetic fields / H.Y. Guo [et
al.] // Phys. Rev. Lett. 2005. V. 94. 185001 (4p.).
400.
.
//
.
.
. 1999.
5–6. . 106–115.
401. Nishimura K., Horiuchi R., Sato T. Tilt stabilization by cycling ions crossing
magnetic separatrix in a field-reversed configuration // Phys. Plasmas. 1997. V.
4. P. 4035–4042.
402. Iwasawa N., Ishida A., Steinhauer L.C. Tilt mode stability scaling in fieldreversed configurations with finite Larmor radius effect // Phys Plasmas. 2000.
V. 7. P. 931–934.
403. Omelchenko Y.A., Schaffer M.J., Parks P.B. Nonlinear stability of fieldreversed configurations with self-generated toroidal field // Phys. Plasmas. 2001.
V. 8. P. 4463–4469.
404.
Numerical study of global stability of oblate field-reversed configurations
/ E.V. Belova [et al.] // Phys. Plasmas. 2001. V. 8. P. 1267–1277.
405. Improved stability and confinement in a high- relaxed plasma state / H.Y.
Guo [et al.] // J. Fusion Energy. 2007. V. 26. P. 53–56.
406. Krall N.A. Low-frequency stability for field reversed configuration parameters // Phys. Fluids. 1987. V. 30, No. 3. P. 878–883.
407. Krall N.A. The effect of low-frequency turbulence on flux, particle, and energy confinement in a field-reversed configuration // Phys. Fluids. 1989. V. B1.
- 438 P. 1811–1817.
408. Krall N.A. Dumping of lower hybrid waves by low-frequency drift waves
// Phys. Fluids. 1989. V. B1. P. 2213–2216.
409. Sobehart J.R., Farengo R. Low-frequency drift dissipative modes in fieldreversed configurations // Phys. Fluids. V. B2. 1990. P. 3206–3208.
410. Huba J.D., Drake J.F., Gladd N.T. Lower-hybrid-drift instability in field reversed plasmas // Phys. Fluids. 1980. V. 23. P. 552–561.
411. Hoffman A.L., Milroy R.D. Particle lifetime scalling in field-reversed configurations based on lower-hybrid-drift resistivity // Phys. Fluids. 1983. V. 26. P.
3170–3172.
412. Carlson A.W. A search for lower-hybrid-drift fluctuations in a field reversed
configuration using CO2 heterodyne scattering // Phys. Fluids. 1987. V. 30. P.
1497–1509.
413. Estimation of the electrical resistivity in field
reversed configuration plas-
mas from detailed interferometric measurements / S. Okada [et al.] // Phys. Fluids. 1989. V. B1. P. 2422–2429.
414. Measurement of magnetic field fluctuation in a field-reversed-configuration
plasma / Okada S. [et al.] // Fusion Technol. 1995. V. 27 (1T). P. 341–344.
415. Excitation and propagation of low frequency wave in a FRC plasma / Okada
S. [et al.] // Nucl. Fusion. 2003. V. 43. P. 1140–1144.
416. Behaviour of a low frequency wave in a FRC plasma / Okada S. [et al.]
// Nucl. Fusion. 2007. V. 47. P. 677–681.
417. Iwasawa N., Okada S., Goto S. Global eigenmodes of low frequency waves in
field-reversed configuration plasmas // Phys. Plasmas. 2004. V. 11. P. 615–624.
418.
.
//
. 2007.
2. . 31–36.
419. Comparison of low confinement mode transport simulations using the mixed
Bohm/gyro-Bohm and the Multi-Mode-95 transport model / T. Onjun [et al.]
- 439 // Phys. Plasmas. 2001. V. 8. P. 975–985.
420. Rej D.J., Tuszewski M. A zero-dimensional transport model for field-reversed
configurations // Phys. Fluids. 1984. V. 27. P. 1514–1520.
421. Steinhauer L.C., Milroy R.D., Slough J.T. A model for inferring transport
rates from observed confinement times in field-reversed configurations // Phys.
Fluids. 1985. V. 28. P. 888–897.
422. Beta value at separatrix of field-reversed configuration / T. Ikeyama [et al.]
// Phys. Plasmas. 2009. V. 16. 042512 (5p.).
423.
.,
.
//
. 2010.
2.
. 176–192.
424.
.,
.,
. . 1.
.
.
.
.:
-
, 1990, . 3.4.4.
425. Suzuki Y., Okada S., Goto S. Analysis of averaged
value in two dimen-
sional equilibria of a field-reversed configuration with end mirror fields // J.
Plasma Fusion Res. SERIES. 1999. V.2. P. 218–221.
426. Takahashi T, Gota H, Nogi Y. Control of elongation for field-reversed configuration plasmas using axial field index of a mirror confinement field // Phys.
Plasmas. 2004. V. 11. P. 4462–4467.
427. Kesner J., Mauel M. Plasma confinement in a levitated magnetic dipole
// Plasma Physics Reports. 1997. V. 23. P. 742–750.
428. Production and study of high-beta plasma confined by a superconducting dipole magnet / D.T. Garnier [et al.] // Phys. Plasmas. 2006. V. 13. 056111 (8p.).
429. First Plasma in the RT-1 device / Z. Yoshida [et al.] // J. Plasma Fusion Res.
2006. V. 1. 008 (2p.).
430. Formation of high-
plasma and stable confinement of toroidal electron
plasma in Ring Trap 1 / H. Saitoh [et al.] // Phys. Plasmas. 2011. V. 18. 056102
(9p.).
- 440 431. Helium catalysed D–D fusion in a levitated dipole / J. Kesner [et al.] // Nucl.
Fusion. 2004. V. 44. P. 193–203.
432. Garnier D.T., Kesner J., Mauel M.E. Magnetohydrodynamic stability in a
levitated dipole // Phys. Plasmas. 1999. V. 6. P. 3431–3434.
433. Dipole equilibrium and stability / J. Kesner [et al.] // Nucl. Fusion. 2001. V.
41. P. 301–308.
434. Furukawa M., Hayashi H., Yoshida Z. Stabilization of pressure-driven magnetohydrodynamic modes by separatrix in dipole plasma confinement // Phys.
Plasmas. 2010. V. 17. 022503 (5p.).
435. Kesner J. Stability of electrostatic modes in a levitated dipole // Phys. Plasmas. 1997. V. 4. P. 419–422.
436. Kesner J. Stability of a plasma confined in a dipole field // Phys. Plasmas.
1998. V. 5. P. 3675–3679.
437. Kesner J., Hastie R.J. Electrostatic drift modes in a closed field line configuration // Phys. Plasmas. 2002. V. 9. P. 395–400.
438. Stabilization of a low-frequency instability in a dipole plasma / D.T. Garnier
[et al.] // J. Plasma Phys. 2008. V. 74. P. 733–740.
439.
/
.
[
. 2006.
.] //
.
-
. 4. . 68–76.
440. Baver D.A. The compact levitated dipole configuration for plasma confinement // J. Fusion Energy. 2011. V. 30. P. 428–432.
441.
«
[
442.
.] //
. 2006. . 32,
.,
.
. 1. . 65–70.
.
.:
, 1985.
443.
/
.
[
.] //
. 1999. . 69,
. 4. . 141–142.
»/
.
-
- 441 444. Design and fabrication of the cryostat for the floating coil of the levitated dipole experiment (LDX) / A. Zhukovsky [et al.] // 16th Conf. on Magnet Technology,
Tallahassee,
Florida,
1999.
zhukovsky_mt16.pdf (
19.09.2011).
445.
«
. 1999. . 25,
446.
http://www.psfc.mit.edu/ldx/pubs/
»/
.
[
.] //
. 17. . 57–61.
.,
.
-
-2003.
.
.
//
-
: II-
-
1.
.,
2003. . 157–158.
447. Zonca F., Chen L., Santoro R.A. Kinetic theory of low-frequency Alfv´en
modes in tokamaks // Plasma Phys. Control. Fusion. 1996. V. 38 P. 2011–2028.
448. Dong J., Chen L., Zonca F. Study of kinetic shear Alfven modes driven by ion
temperature gradient in tokamak plasmas // Nucl. Fusion. 1999. V. 39. P. 1041–
1050.
449. Shear-Alfv´en waves in gyrokinetic plasmas / W.W. Lee [et al.] // Phys. Plasmas. 2001. V. 8. P. 4335–4440.
450. Falchetto G.L., Vaclavik J., Villard L. Global-gyrokinetic study of finite
ef-
fects on linear microinstabilities // Phys. Plasmas. 2003. V. 10. P. 1424–1436.
451. Observation of the ETG mode component of tokamak plasma turbulence by
the UHR backscattering diagnostics / Gurchenko A.D. [et al.] // Nucl. Fusion.
2007. V. 47. P. 245–250.
452. Short wavelength electron temperature gradient instability in toroidal plasmas
/ Z. Gao [et al.] // Phys. Plasmas. 2005. V. 12. 022503 (7p.).
453. Short wavelength ion temperature gradient mode and coupling with trapped
electrons / J. Chowdhury [et al.] // Phys. Plasmas. 2009. V. 16. 082511 (10p.).
454. Dannerta T., Jenko F. Gyrokinetic simulation of collisionless trapped-electron
- 442 mode turbulence // Phys. Plasmas. 2005. V. 12. 072309 (8p.).
455. Waltz R. E., Candy J., Fahey M. Coupled ion temperature gradient and
trapped electron mode to electron temperature gradient mode gyrokinetic simulations // Phys. Plasmas. 2007. V. 14. 056116 (8p.).
456. Pastukhov V.P. Collisional losses of electrons from an adiabatic trap in a
plasma with a positive potential // Nuclear Fusion. 1974. V. 14. P. 3–6.
457. Collisional losses of electrostatically confined species in a magnetic mirror
/ R.H. Cohen [et al.] // Nuclear Fusion. 1978. V. 18. P. 1229–1243.
458. Rognlien T.D., Cutler T.A. Transition from Pastukhov to collisional confinement in a magnetic and electrostatic well // Nuclear Fusion. 1980. V. 20. P.
1003–1011.
459. Confinement of strongly anisotropic hot-ion plasma in a compact mirror
/ A.V. Anikeev [et al.] // J. Fusion Energy. 2007. V. 26. P. 103–107.
460.
.,
//
.
. 1970. . 100,
461.
. 4. . 601–639.
.,
//
.
-
. 2008. . 34. . 463–472.
462.
.
//
463.
. 2009. . 35. . 472–481.
.
~1
,
.
96-84
.
.
, 1996.
464. Spatial profiles of fusion product flux in the gas dynamic trap with deuterium
neutral beam injection / V.V. Maximov [et al.] // Nucl. Fusion. 2004. V. 44. C.
542–547.
465.
.
.
466.
.:
, 2007. § 17.3.
/
.
- 443 .] //
.
. 1988.
. 3. . 3–6.
467.
/
.
[
.
.] //
. 1989.
. 2. . 29–34.
468. Progress in ITER Physics Basis. Chapter 1: Overview and summary / M. Shimada [et al.] // Nucl. Fusion. 2007. V. 47. P. S1–S17.
469.
.
D–3He //
. 2001.
.
. 2. . 37–43.
470. Bingren S. Core plasma characteristics of a spherical tokamak D–3He fusion
reactor // Plasma Sci. Technol. 2005. V. 7. P. 2767–2772.
471.
.
//
. 1967. . 93,
. 4. .
675–701.
472.
.,
473.
.
.
.:
, 2006.
.
.
-
.:
, 2007. § 16.11.
474. Physics Design of ITER-FEAT / M. Shimada [et al.] // J. Plasma Fusion Res.
SERIES. 2000. V. 3. P. 77–83.
475.
.,
.,
.
//
.
. 2010.
. 3. . 55–74.
476. Stacey W.M. Tokamak demonstration reactors // Nucl. Fusion. 1995. V. 35. P.
1369–1384.
477.
.
.
.:
.
-
, 2008.
478. Miller R.L. System Perspectives of ARIES-ST // Japan-US workshop on fusion power plants and related advanced technology, Kyoto, March 24–26, 1999.
- 444 P. 185–197.
479. Scaling of H-mode energy confinement with Ip and BT in the MAST spherical
tokamak / M. Valovic [et al.] // Nucl. Fusion. 2009. V. 49. 075016 (8p.).
480.
/
.
[
.
.] //
. 2010.
. 4. . 26–35.
481. Physics and engineering basis of multi-functional compact tokamak reactor
concept / R.M.O. Galvão [et al.] // Proc. 22nd IAEA Fusion Energy Conf., Geneva, 2008. IAEA-CN-116/FT/P3-20 (6 p.).
482.
.
//
?
XXXVIII
.
.(
)
.
., 2011. . 13.
483.
D–3He
.] //
/
.
.
. 1989.
[
.
1. . 46–52.
484. Conceptual design of D–3He FRC reactor ARTEMIS / H. Momota [et al.]
// Fusion Technol. 1992. V. 21. P. 2307–2323.
485. D–3He field reversed configuration fusion power plant / V.I. Khvesyuk [et
al.] // Fusion Technol. V. 39, No. 1T. 2001. P. 410–413.
486.
D–3He-
.
//
. 2006.
487.
.,
. 4. . 57–67.
. //
.
.
XXXI
.
., 2004. . 117.
488. An advanced fuel laser fusion and volume compression of p–11B laser-driven
targets / G.H. Miley [et al.] // Fusion Technol. 1991. V. 19. P. 43–51.
489. Calculation of R-parameter and energy gain for aneutronic fusion in degen-
- 445 erate p–11B plasma / S.N. Hosseini Motlagh [et al.] // J. Fusion Energy. 2008. V.
27. P. 161–167.
490. Rostoker N., Binderbauer M.W., Monkhorst H.J. Colliding beam fusion reactor // Science. 1997. V. 278. No. 5342. P. 1419–1422.
491. Rostoker N., Qerushi A., Binderbauer M. Colliding beam fusion reactors // J.
Fusion Energy. 2003. V. 22. P. 83–92.
492. Volosov V.I. Aneutronic fusion on the base of asymmetrical centrifugal trap
// Nucl. Fusion. 2006. V. 46. P. 820–828.
493.
.
.
,
(
,
.
,
) //
. 2008.
-
. 1. . 31–39.
494. Nevins W.M., Carlson A. Feasibility of a colliding beam fusion reactor // Science. 1998. V. 281. No. 5375. P. 307.
495. Rostoker N., Binderbauer M., Skinner R. Classical scattering in a highs beta
self-collider/FRC // Physics of High Energy Particles in Toroidal Systems (AIP
Conf. Proc.), American Institute of Physics, New York, 1994. P. 168–185.
496.
.,
.
//
. 2000.
.
-
. 3. . 28–35.
497. Spraker M.C., Ahmed M.W., Blackston M.A. The 11B(p, )8Be
the
-
+
and
11
B( , )11B reactions at energies below 5.4 MeV // J. Fusion Energy. 2012.
V. 31. P. 357–367.
498. Haruki T., Yousefi H.R., Sakai J.-I. Simulations of plasma heating caused by
the coalescence of multiple current loops in a proton-boron fusion plasma
// Phys. Plasmas. 2010. V. 17. 032504 (5p.).
499. Lerner E.J., Krupakar Murali S., Haboub A. Theory and experimental program for p-B11 fusion with the dense plasma focus // J. Fusion Energy. 2011. V.
30. P. 367–376.
- 446 500. Fusion reactions from >150 keV ions in a dense plasma focus plasmoid
/ E.J. Lerner [et al.] // Phys. Plasmas. 2012. V. 19. 032704 (8p.).
501. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator / J.E. Menard [et al.] // Nucl. Fusion. 2011. V. 51. 103014 (13p.).
502. Li experiments on T-11M and T-10 in support of a steady-state tokamak concept with Li closed loop circulation / S.V. Mirnov [et al.] // Nucl. Fusion. 2011.
V. 51. 073044 (9p.).
503. A new high performance field reversed configuration operating regime in the
C-2 device / M. Tuszewski [et al.] // Phys. Plasmas. 2012. V. 19. 056108 (8p.).
504. 2D properties of core turbulence on DIII-D and comparison to gyrokinetic
simulations / M.W. Shafer [et al.] // Phys. Plasmas. 2012. V. 19, 032504 (12 p.).
505. Leconte M., Diamond P.H. Impact of resonant magnetic perturbations on
nonlinearly driven modes in drift-wave turbulence // Phys. Plasmas. 2012. V. 19.
055903 (11p.).
506. Global simulations of tokamak microturbulence: finite- effects and collisions
/ A. Bottino [et al.] // Plasma Phys. Control. Fusion. 2011. V. 53. 124027 (11p.).
507. Formation of turbulent structures and the link to fluctuation driven sheared
flows / T. Windisch [et al.] // Plasma Phys. Control. Fusion. 2011. V. 53. 124036
(9p.).
508. Validation of electron temperature gradient turbulence in the Columbia Linear
Machine / X.R. Fu [et al.] // Phys. Plasmas. 2012. V. 19. 032303 (7p.).
509. Pusztai I., Candy J., Gohil P. Isotope mass and charge effects in tokamak
plasmas // Phys. Plasmas. 2011. V. 18. 122501 (10p.).
510. Yu L., Zhang X., Sheng Z.-M. The dynamics of ion with electrostatic waves
in a sheared magnetic field // Phys. Plasmas. 2011. V. 18. 122104 (11p.).
Скачать