Ïðèìåð 1. Âû÷èñëèòü Z x dx x − 1)(x + 2)(x − 3) ( 1. Ðàçëîæåíèå äðîáè â ñóììó ïðîñòåéøèõ äðîáåé èùåì â âèäå x ( x − 1)(x + 2)(x − 3) = A + B C + x−1 x+2 x−3 2. Ïðèâîäÿ ê îáùåìó çíàìåíàòåëþ ïðàâóþ ÷àñòü, èìååì ( x A(x + 2)(x − 3) + B(x − 1)(x − 3) + C (x − 1)(x + 2) = x − 1)(x + 2)(x − 3) (x − 1)(x + 2)(x − 3) 3. Ïðèðàâíèâàÿ ÷èñëèòåëè äðîáåé, ïîëó÷àåì òîæäåñòâî x = A(x + 2)(x − 3) + B(x − 1)(x − 3) + C (x − 1)(x + 2) 4. Ïîäñòàâëÿÿ â òîæäåñòâå âìåñòî x äåéñòâèòåëüíûå êîðíè çíàìåíàòåëÿ äàííîé ðàöèîíàëüíîé äðîáè, íàõîäèì A, B è C . Ïîëàãàÿ â òîæäåñòâå x = 1, èìååì 1= A(1 + 2)(1 − 3) + B(1 − 1)(1 − 3) + C (1 − 1)(1 + 2), îòêóäà 1 = −6A è A = −1/6. Ïîëàãàÿ x = −2, èìååì −2 = A(−2 + 2)(−2 − 3) + B(−2 − 1)(−2 − 3) + C (−2 − 1)(−2 + 2), îòêóäà −2 = 15B, B = −2/15. Ïîëàãàÿ x = 3, èìååì 3= A(3 + 2)(3 − 3) + B(3 − 1)(3 − 3) + C (3 − 1)(3 + 2), îòêóäà 3 = 10C , C = 3/10. Z x dx = 5. Ñëåäîâàòåëüíî, (x − 1)(x + 2)(x − 3) Z −1/6 −2/15 3/10 = + + dx = x−1 x+2 x−3 Z Z Z dx dx dx = −1/6 − 2/15 + 3/10 x−1 x+2 x−3 = = −1/6 ln |x − 1| − 2/15 ln |x + 2| + 3/10 ln |x − 3| + const. 1 Ïðèìåð 2. Âû÷èñëèòü Z x−1 dx (x2 + 1)(x2 + 2) 1. Ðàçëîæåíèå äðîáè â ñóììó ïðîñòåéøèõ äðîáåé èùåì â âèäå ( x−1 Ax + B Cx + D = + x2 + 1)(x2 + 2) x2 + 1 x2 + 2 2. Ïðèâîäÿ ê îáùåìó çíàìåíàòåëþ ïðàâóþ ÷àñòü, èìååì x−1 (x2 + 1)(x2 + 2) = ( Ax + B)(x2 + 2) + (Cx + D)(x2 + 1) (x2 + 1)(x2 + 2) 3. Ïðèðàâíèâàÿ ÷èñëèòåëè äðîáåé, ïîëó÷àåì òîæäåñòâî x − 1 = (Ax + B)(x2 + 2) + (Cx + D)(x2 + 1). Ïåðåïèøåì åãî â âèäå x − 1 = Ax3 + 2Ax + Bx2 + 2B + Cx3 + Cx + Dx2 + D èëè x − 1 = (A + C )x3 + (B + D)x2 + (2A + C )x + (2B + D). Ïðèðàâíèâàÿ êîýôôèöèåíòû ïðè îäèíàêîâûõ ñòåïåíÿõ x, ïîëó÷àåì ñèñòåìó óðàâíåíèé A +C B+D 2A + C 2B + D = 0, = 0, = 1, = −1. îòêóäà A +C 2A + C B+D 2B + D = 0, = 1. = 0, = −1. A −2C + C B −2D + D = −C , A = 1, = 1. C = −1. = −D, B = −1, = −1. D = 1. 2 Z 4. Ñëåäîâàòåëüíî, ( Z x−1 dx = x2 + 1)(x2 + 2) x − 1 −x + 1 = + dx = x2 + 1 x2 + 2 Z x −1 −x 1 dx = = + + + x2 + 1 x2 + 1 x2 + 2 x2 + 2 Z Z Z Z xdx dx xdx dx = − 2 − 2 + = x2 + 1 x +1 x + 2 x2 + 2 Z Z 1 dx2 1 dx2 1 x = − arctg x − + √ arctg √ = 2 2 x +1 2 x2 + 2 2 2 1 1 1 x 2 2 ln(x + 1) − arctg x − ln(x + 2) + √ arctg √ = 2 Ïðèìåð 3. 2 Âû÷èñëèòü Z x 4 2 x+5 x ( + 1)2 ( + 2) 2 + const. dx 1. Ðàçëîæåíèå äðîáè â ñóììó ïðîñòåéøèõ äðîáåé èùåì â âèäå 4 x x+5 x ( + 1)2 ( + 2) = A B C + + x + 1 (x + 1)2 x + 2 2. Ïðèâîäÿ ê îáùåìó çíàìåíàòåëþ ïðàâóþ ÷àñòü, èìååì x+5 A(x + 1)(x + 2) + B(x + 2) + C (x + 1)2 = (x + 1)2 (x + 2) (x + 1)2 (x + 2) 4 3. Ïðèðàâíèâàÿ ÷èñëèòåëè äðîáåé, ïîëó÷àåì òîæäåñòâî 4 x + 5 = A(x + 1)(x + 2) + B(x + 2) + C (x + 1)2 4. Ïîäñòàâëÿÿ â òîæäåñòâå âìåñòî x äåéñòâèòåëüíûå êîðíè çíàìåíàòåëÿ äàííîé ðàöèîíàëüíîé äðîáè, íàõîäèì B, C . Ïîëàãàÿ â òîæäåñòâå x = −1, èìååì 4 (−1) + 5 = A(−1 + 1)(−1 + 2) + B(−1 + 2) + C (−1 + 1)2 , îòêóäà B = 1. Ïîëàãàÿ x = −2, èìååì 4 (−2) + 5 = A(−2 + 1)(−2 + 2) + B(−2 + 2) + C (−2 + 1)2 3 îòêóäà −3 = C , C = −3. Äàëåå, ïîëàãàÿ x = 0, èìååì 4·0+5 = A(0 + 1)(0 + 2) + B(0 + 2) + C (0 + 1)2 îòêóäà 5 = 2A + 2B + C , 5 = 2A + 2 − 3 è A = 3. Z 4x+5 dx = 5. Ñëåäîâàòåëüíî, 2 x x ( + 1) ( + 2) Z = Z =3 3 1 + + dx = x + 1 (x + 1)2 x + 2 Z Z dx dx dx + −3 = x + 1 (x + 1)2 x+2 x = 3 ln | + 1| − Ïðèìåð 4. −3 1 x+1 − 3 ln |x + 2| + const. Âû÷èñëèòü Z ( 3x+3 dx x − 1) (x2 + 2) 1. Ðàçëîæåíèå äðîáè â ñóììó ïðîñòåéøèõ äðîáåé èùåì â âèäå ( 3x+3 A Bx + C = + x − 1) (x2 + 2) x − 1 x2 + 2 2. Ïðèâîäÿ ê îáùåìó çíàìåíàòåëþ ïðàâóþ ÷àñòü, èìååì x+3 A(x2 + 2) + (Bx + C )(x − 1) = 2 (x − 1) (x + 2) (x − 1) (x2 + 2) 3 3. Ïðèðàâíèâàÿ ÷èñëèòåëè äðîáåé, ïîëó÷àåì òîæäåñòâî 3 x + 3 = A(x2 + 2) + (Bx + C )(x − 1) Ïîëàãàÿ â òîæäåñòâå x = 1, èìååì 6 = A · 3, îòêóäà A = 2. Ïîëàãàÿ x = 0, èìååì 3 = 2A − C îòêóäà 3 = 4 − C è C = 1. Ïîëàãàÿ x = −1, èìååì 0=3 A − 2(−B + C ) îòêóäà 0 = 6 − 2(−B + 1), 0 = 4 + 2B è B = −2. 4 4. Ñëåäîâàòåëüíî, Z Z x+3 2 −2x + 1 dx = dx = + (x − 1) (x2 + 2) x − 1 x2 + 2 Z Z Z Z 1 x dx 2xdx dx dx2 =2 − 2 + = 2 ln |x − 1| − + √ arctg √ = x−1 x + 2 x2 + 2 x2 + 2 2 2 1 x 2 = 2 ln |x − 1| − ln(x + 2) + √ arctg √ + C 3 2 Ïðèìåð 5. Z Âû÷èñëèòü Z dx 1 + cos x + sin x t = tg x 2 = 2 dt dx = 2 dx x + sin x Z 1 + cos 1+ sin x= t 1 + t2 2 Z dt = Ïðèìåð 6. Íàéòè 1+ s Z 4 t x+2 x−1 = ln |1 + 3 t 2 1 + t2 = 1− x= Z t dt 1 + t2 2 1−t 2t 1+ + 2 1+t 1 + t2 cos dt 1 + t2 2 = 2 2 = 1+ = t 2 + 1 − t 2 + 2t 1 + t2 x t | + const = ln |1 + tg | + const. 2 dx x x+2 4 Ïîäñòàíîâêà = t ïðèâåäåò ê èíòåãðèðîâàíèþ ðàöèîíàëüíîé ôóíêöèè. x−1 Èç óêàçàííîé ïîäñòàíîâêè îïðåäåëèì x, x + 2 à ïîòîì dx: ( + 2)2 x + 2 = t 4 (x − 1), x + 2 = xt 4 − t 4 , xt 4 − x = t 4 + 2, x(t 4 − 1) = t 4 + 2, x = t4 + 2 ; t4 − 1 4 3t t4 + 2 +2 = . t4 − 1 t4 − 1 3 4 4 3 4t (t − 1) − (t + 2)4t −12t 3 dx = dt , dx = 4 dt 4 2 (t − 1) (t − 1)2 x+2 = Ïîýòîìó s 3 Z 4 x+2 x−1 dx (x + 2)2 Z = (t t3 4 − 1)2 9t 8 −12t 3 4 dt = − 4 2 (t − 1) 3 Z dt t2 = 41 3 t + C= r 4 4 3 x−1 +C x+2 5 √ Z √ x+3 4 x √ √ Âû÷èñëèòü 3 6 Ïðèìåð 7. dx x + 2 x)x ( Òàê êàê ÍÎÊ(2, 3, 4, 6) = 12. Ïðèìåíèì ïîäñòàíîâêó x = t 12 , òîãäà dx = 12t 11 dt è, ñëåäîâàòåëüíî, √ Z √ x+3 4 x √ √ 3 6 Z Z 3 3 t 6 + 3t 3 (t + 3)t · 12t 11 dt = 12 dt = 4 2 12 2 2 (t + 2t )t (t + 2)t t ( x + 2 x)x Z 3 Z Z t +3 −2t + 3 2t 3 = 12 dt = 12 t + dt = 12 t − + dt = t2 + 2 t2 + 2 t2 + 2 t2 + 2 2 √ √ 6 12 √ t 3 x x t 3 = 12 − ln(t 2 + 2) + √ arctg √ + C = 12 − ln( 6 x + 2) + √ arctg √ +C, dx = 2 2 ïîñêîëüêó t = 2 2 2 2 √ 12 x. Z x2 dx . (3 − x2 )3/2 √ Ïðèìåíèì ïîäñòàíîâêó x = 3 sin t , îòêóäà Ïðèìåð 8. Âû÷èñëèòü (3 − x2 )3/2 = (3 − 3 sin2 t )3/2 = 3 dx = √ 3 cos √ 3 cos 3 t, t dt . Òîãäà ïîëó÷èì Z x2 dx (3 − x2 )3/2 Z = 3 sin √ 3 2t 3 cos3 t · √ 3 cos t dt = Z tg 2 t dt Z − 1 dt = tg t − t + C cos2 t 1 = Òàê êàê x t = arcsin √ , 3 òî Z t 1− cos = x2 dx (3 − x2 )3/2 Z r = √ x x2 3 , t √ tg = x − arcsin √ 3 − x2 3 x 3− + x2 , C. dx (3 + x2 )3/2 √ Ïðèìåíèì ïîäñòàíîâêó x = 3 tg t , îòêóäà Ïðèìåð 9. Âû÷èñëèòü (3 + x2 )3/2 = (3 + 3 tg2 t )3/2 = 3 cos2 √ 3/2 t = 3 3 cos3 t , √ dx = 3 cos2 t dt . 6 Òîãäà ïîëó÷èì Z Z dx (3 + x2 )3/2 3 √ · = 3 Òàê êàê cos2 t 3 dt = 1 cos 3 3 x 1 , = 1+ 2 sin t x t √ sin = òî Z dx x2 )3/2 (3 + Ïðèìåð 10. Âû÷èñëèòü Z√ 2 x −1 x4 Ïðèìåíèì ïîäñòàíîâêó x = 1 cos t x2 − 1 = p dx = x4 Z 4t t tg cos sin t cos2 t = 1 √ 3 x2 = 3+ x2 x2 3 t C. sin + , , x 3+ x2 + C. dx. , îòêóäà r dx = Òîãäà ïîëó÷èì Z√ 2 x −1 x2 3+ 3 1 t dt = √ t ctg = dt = 1 cos2 sin t t Z sin − 1 = tg t , dt . cos2 t 2 t cos t dt Òàê êàê Z = 2 t d sin t sin = 3t sin 3 + C. √ t cos = òî 1 x Z√ 2 x −1 x4 Z Ïðèìåð 11. Z Z √ 3t cos Íàéòè ln , x2 − 1 , x t sin = dx = x2 − 1)3/2 +C x3 1( 3 xdx Z Z 1 Z x d |{z} x = x ln x − xd ln x = x ln x − x · dx = x ln x − dx = x ln x − x + C . |{z} x ln u v Ïðèìåð 12. Z Z Íàéòè Z x cos xdx x cos xdx = xd sin x = x sin x − Z sin xdx = x sin x + cos x + C . 7 Z Ïðèìåð 13. Z Íàéòè u = ln x 3 4x ln xdx = dv = 4x3 dx x3 ln xdx 4 1 v = x4 4 = x ln x − Ïðèìåð 14. du = dx x = Z x4 · 1 dx = x4 ln x − x Z 1 x3 dx = x4 ln x − x4 + C . 4 Âû÷èñëèòü ïëîùàäü ôèãóðû, îãðàíè÷åííîé ãðàôèêàìè ôóíê- öèé. x2 = 4y, y = 8 4+ x2 . y −2 S=2 Z2 0 8 − 4 + x2 Ïðèìåð 15. x2 4 dx = 2 4 arctg O x 2 − x 2 x3 2 12 0 =2 4 arctg 1 − 8 12 =2 p− 2 3 Âû÷èñëèòü ïëîùàäü ôèãóðû, îãðàíè÷åííîé ëèíèÿìè, çàäàííû- ìè óðàâíåíèÿìè. x = 3 cos t , y = 2 sin t , 0 ≤ t ≤ 2p 8 y 2 t = p /2 t =0 x 3 O −3 t −2 Z3 S = 4 ydx = 4 0 Z p /2 = 12 Ïðèìåð x = cos t , 16. 0 Z0 p /2 t 0 2 sin 3 cos p 0 x 3 y 0 t dt = 24 p 6 √ 3 3 4 √ 3 2 √2 1 Z p /2 2 2 t dt sin 0 2 p p 3 3 2 √2 3 0 2 = p /2 (1 − cos 2t ) dt = 12 (t − sin 2t ) = 6p . 2 1 0 Âû÷èñëèòü ïëîùàäü ôèãóðû, îãðàíè÷åííîé ëèíèÿìè y = 0. y = 2 sin2 t , y = 2 sin2 t 1 t p O 2 x = cos t x2 = cos2 t , y y 2 −1 O 1 y x S=2 2 2 t, = sin + y = −2x2 + 2. Z0 p /2 2 sin =4 Ïðèìåð 17. x2 = 1, cos 2 t d (cos t ) = 4 t− Z0 3 t 0 cos 3 p /2 p /2 2 t ) d (cos t ) = (1 − cos =4 1− 1 3 =4 2 3 . Âû÷èñëèòü ïëîùàäü ïëîñêîé ôèãóðû, îãðàíè÷åííîé îäíîé àð- êîé öèêëîèäû x = t − sin t , y = 1 − cos t è îñüþ Ox. 9 t0 = 0 , t 1 = 2 p , dx = (1 − cos t ) dt y 2 p O p x 2 S= Z 2p 0 Z 2p = 0 t 2 dt = (1 − cos ) t 1 − 2 cos + t 1 + cos 2 2 0 dt = 1 1 2 4 t − 2 sin t + t + = Ïðèìåð 18. Z 2p 2 t ) dt t (1 − 2 cos + cos Z 2p t 1 − 2 cos + 0 2p t sin 2 0 =2 1 2 + = t cos 2 2 dt = p + p = 3p Âû÷èñëèòü ïëîùàäü ôèãóðû, îãðàíè÷åííîé ëèíèÿìè, çàäàííû- ìè â ïîëÿðíûõ êîîðäèíàòàõ. r2 = cos 2j r= 1 O p 4 √ cos 2 j O p j r = cos 2j r = cos j S=4 1 2 Z p /4 0 2p 3 1 −1 O cos 2 P j d j = sin 2j |0p /4 = 1. p 6 1 −1 Ïðèìåð 19. 10 r = sin 3j D = {(r, j ) : 0 ≤ j ≤ p /3, 0 ≤ r ≤ sin 3j } S = 3SD = = 3 4 Z p /3 0 3 2 Z p /3 0 2 sin 3 j dj = j) dj = (1 − cos 6 Ïðèìåð 20. p 4 Âû÷èñëèòü äëèíó äóãè êðèâîé, çàäàííîé óðàâíåíèÿìè â ïðÿ- ìîóãîëüíîé ñèñòåìå êîîðäèíàò. y= p 1− x2 + arcsin x, L= ≤ x ≤ 7/9 y x dx 1 + ( 0 ( ))2 a x 1−x y= +√ = √ = 2 2 1+x 1−x 1−x 1−x 2 0 2 1 + (y (x)) = 1 + = 1+x 1+x √ 7/9 √ Z 7/9 dx √ √ √ 4 2 2 √ L= 2 =2 2 1 + x =2 2 −1 = 3 3 0 1+x 0 0 Ïðèìåð 21. óðàâíåíèÿìè. −2x √ 2 1 − x2 Zb p 0 1− 1 r Âû÷èñëèòü äëèíó äóãè êðèâîé, çàäàííîé ïàðàìåòðè÷åñêèìè x = 4 sin t + 3 cos t , y = 3 sin t − 4 cos t , L= Z t1 q t0 0 ≤ t ≤ p /2. xt0 )2 + (yt0 )2 dt ( xt0 = 4 cos t − 3 sin t , yt0 = 3 cos t + 4 sin t , xt0 )2 = (4 cos t − 3 sin t )2 = 16 cos2 t − 24 cos t sin t + 9 sin2 t , 2 0 2 2 2 (yt ) = (3 cos t + 4 sin t ) = 9 cos t + 24 cos t sin t + 16 sin t , ( 11 ( xt0 )2 + (yt0 )2 = 25 cos2 t + 25 sin2 t = 25 L= Z p /2 5 0 p 5 dt = 2 Âû÷èñëèòü äëèíó äóãè êðèâîé, çàäàííîé óðàâíåíèÿìè â ïîëÿð- Ïðèìåð 22. íûõ êîîðäèíàòàõ. r = 1 + cos j , L= Ïðèìåð 23. r2 + (rj0 )2 d j a r0 = − sin j Zp p 0 ≤j ≤p Zb q L= Zp r 0 (1 + cos j )2 + (− sin j )2 d j 0 2+2 2 cos2 j 2 − 1 dj = 2 = Zp p Zp 0 cos 0 j 2 2 + 2 cos j dj = j p d j = 4 sin = 4 2 0 Âû÷èñëèòü îáúåì òåëà, îáðàçîâàííîãî âðàùåíèåì ôèãóðû, îãðàíè÷åííîé ãðàôèêàìè ôóíêöèé. Îñü âðàùåíèÿ Ox. y = sin(p x/2), y = x2 . y O V = V1 − V2 = p = p 2 Z1 0 (1 − cos Ïðèìåð 24. p x) dx − p Z1 0 2 sin x5 1 p 5 0 = 1 2 px 2 x− x dx − p 1 p Z1 0 x4 dx = 1 p sin p x − 5 0 = p 2 − p 5 = p 3 10 Âû÷èñëèòü îáúåì òåëà, îáðàçîâàííîãî âðàùåíèåì ôèãóðû, îãðàíè÷åííîé ãðàôèêàìè ôóíêöèé. Îñü âðàùåíèÿ Oy. y = arcsin x, y = arccos x, y = 0 12 y x x O p O y 4 V = V1 − V2 = p = p Z p /4 y 1 + cos 2 2 0 Ïðèìåð 25. Z +∞ 0 −∞ Ïðèìåð 27. 1 Z −1 −2 Z p /4 2 ydy = sin 0 x 0 1 1 0 2 Z0 arctg 2 −∞ 2 x x→−∞ = 1 0− 4 Ze = 1 d ln x 2 1 − ln x p x xdx 1 = x2 − 1 2 −2 dx2 x2 − 1 = arctg 2 x 1 + 4x2 2 − = Ze 1 = p 2 = 2 dx 0 x−∞ = p2 16 dx x e p 1 − ln 2x e 2 −2 Íàéòè ñóììó ðÿäà 1 1·4 1 + n(n + 3) 1 2·5 = lim Z −1 −2 1 x→−1−0 2 + 1 3·6 . 1 = arcsin(ln )|1 = arcsin(ln ) − arcsin(ln 1) = −1 1 2 ln |x − 1| = an = 2 arctg 2 p2 Âû÷èñëèòü íåñîáñòâåííûé èíòåãðàë Z −1 0 e−x − 1 x→+∞ lim −∞ 4 p / 4 y 2 Z0 1 4 2 sin 2 xe−x dx 0 2 xd arctg 2x = 0 − lim arctg 2 4 Z +∞ 2 2 +∞ 1 1 e−x dx2 = − e−x = − dx = p ydy = cos 2 Âû÷èñëèòü íåñîáñòâåííûé èíòåãðàë 2 1 − ln x Ïðèìåð 29. dy = p 2 0 1 + 4x2 p Ïðèìåð 28. 2 Z +∞ 2 arctg 2 dx x y 1 − cos 2 − Z p /4 Âû÷èñëèòü íåñîáñòâåííûé èíòåãðàë = Ze 1 2 Z0 0 2 ydy − p cos Âû÷èñëèòü íåñîáñòâåííûé èíòåãðàë xe−x dx = Ïðèìåð 26. Z p /4 p 2 xdx x2 − 1 x2 − 1| − ln 3) = ∞ (ln | +...+ 1 n(n + 3) +... A B + n n+3 13 1 A(n + 3) + Bn = n(n + 3) n(n + 3) 1 = A(n + 3) + Bn n = 0, 1=3 n = −3, an = sn = 1 3 + 1 3 1− 1 6 − 1 + 4 1 + 9 1 3 1 1 2 3 1 3 1− + 1 4 1 n−3 + − − 1 1 1 1 + + 1 1+ 3 1 Ïðèìåð 30. 11 18 − 6 + 1 4 − 1 1 7 + 1 + 1 − 3 1 n+1 1 + 2 1 1+ 3 2 − 1 1 1 5 = 1 1 1 − + n 1 8 + 1 1 1 6 1 − 1 1 9 + 1 7 1 − n+3 1 1 3 = − 8 1 + n+1 + = + − n−2 3 n+2 n n+2 1 − 1 n+3 1 5 1 − +... 10 n+3 = . 1 1 − − − 3 n+1 n+2 n+3 + 1 − + 7 3 1 − − 1 4 − n 3 n(n + 3) 3 n−3 + 1 1 3 . n+3 +... 1 1+ 1 1 1 1 + 3 1 1 − n+1 n−1 + 2 = 1 6 − 1 s = nlim sn = nlim →∞ →∞ Èòàê, ñóììà ðÿäà s = 3 3 n 3·6 n+2 − 3 1 1 1 1 − 1 B=− , 1 3 + +...+ n n−2 = 3 1 = 1 5 1 + 5 1 1 2·5 n−1 − 2 1 + − 10 3 = 1 1·4 7 1 n(n + 3) 3 −3B, 1= 1 1 A, A = , = 11 18 . Èññëåäîâàòü ñõîäèìîñòü ðÿäà Ñðàâíèì ýòîò ðÿä ñ ðÿäîì ñêîé ïðîãðåññèåé). an n→∞ bn lim å n=1 ∞ 1 2n å n=1 ∞ (ò. å. ñ áåñêîíå÷íî óáûâàþùåé ãåîìåòðè÷ån = lim 1 . 2n − 1 2 n→∞ 2n − 1 = lim n→∞ 1 1− 1 = 1. 2n 14 å n=1 ∞ Òàê êàê ïðåäåë êîíå÷åí è îòëè÷åí îò íóëÿ è ðÿä äàííûé ðÿä. 1 ñõîäèòñÿ, òî ñõîäèòñÿ è 2n Èññëåäîâàòü íà ñõîäèìîñòü ðÿä Ïðèìåð 31. å n=1 n ∞ 1 ! 1 = 1+ 2! + 1 +...+ 3! 1 n! +... Ïðèìåíèì ïðèçíàê Äàëàìáåðà: an = an+1 lim n→∞ an 1 n! an+1 = , n 1 ( + 1)! = lim n→∞ 1 n ( + 1)! 1 n! = lim = n→∞ (n + 1)! n! n! 1 = lim = lim = 0 < 1. n→∞ n!(n + 1) n→∞ n + 1 Äàííûé ðÿä ñõîäèòñÿ, òàê êàê ïðåäåë ìåíüøå åäèíèöû. Ïðèìåð 32. å ∞ n=1 Èññëåäîâàòü íà ñõîäèìîñòü ðÿä n n 2 1 2 4 3 9 = + + +...+ n+1 2 3 4 n n 2 n+1 +... Ïðèìåíèì ïðèçíàê Êîøè: lim n→∞ √ n an = nlim →∞ n→∞ n 1 n+1 n n2 n+1 n = lim r = lim n→∞ n = lim n+1 n→∞ 1 1+ 1 n n n = n 1 e = < 1. Äàííûé ðÿä ñõîäèòñÿ, òàê êàê ïðåäåë ìåíüøå åäèíèöû. Ïðèìåð 33. Îïðåäåëèòü îáëàñòü ñõîäèìîñòè ñòåïåííîãî ðÿäà 1− x 22 + x2 32 x4 − 2 4 n−1 x + . . . + (−1) an = lim R = nlim →∞ an+1 n→∞ n−1 n2 1 n2 n 1 ( + 1)2 = lim n→∞ n +... 2 ( + 1) n2 = 1. 15 Òàêèì îáðàçîì, R = 1 è ðÿä ñõîäèòñÿ â èíòåðâàëå (−1, 1). Åñëè x = −1, ïîëó÷àåì ÷èñëîâîé ðÿä 1+ 1 22 + 1 32 + 1 42 +...+ 1 Ðÿä ñ îáùèì ÷ëåíîì an = a ñõîäèòñÿ ïðè n â òî÷êå x = −1. 1 n2 +... a > 1. Ñëåäîâàòåëüíî, ðÿä ñõîäèòñÿ Ïðè x = 1 ïîëó÷àåì ðÿä Ëåéáíèöà 1− 1 > 1 4 > 1 9 > 1 22 1 + 1 1 32 − 2 4 n−1 + . . . + (−1) 1 16 > ... > 2 > n n 1 ( + 1)2 1 n2 +... > ..., lim 1 n→∞ n2 = 0. Èòàê, äàííûé ðÿä ñõîäèòñÿ íà [−1, 1]. Ïðèìåð 34. Ðåøèòü óðàâíåíèå x2 y2 y0 + 1 = y Ïðèâîäèì óðàâíåíèå ê âèäó: x2 y2 dy + 1 = y, x2 y2 dy = (y − 1)dx. dx Äåëèì îáå ÷àñòè óðàâíåíèÿ íà x2 (y − 1): y2 y−1 dy = dx x2 Ïåðåìåííûå ðàçäåëåíû. Èíòåãðèðóåì îáå ÷àñòè óðàâíåíèÿ: Z Z 2 Z Z 2 Z Z y dx y −1+1 dx 1 dx dy = 2 , = , y +1+ = , y−1 x y−1 x2 y−1 x2 y2 2 + y + ln |y − 1| = − 1 x + C. Ïðè äåëåíèè íà x2 (y − 1) ìîãëè áûòü ïîòåðÿíû ðåøåíèÿ x = 0 è y − 1 = 0, ò. å. y = 1. Î÷åâèäíî, y = 1 ðåøåíèå óðàâíåíèÿ, à x = 0 íåò. Ïðèìåð 35. Ðåøèòü óðàâíåíèå x Ïîëàãàåì y = uv, òîãäà dy − 2y = 2x4 dx dy dv du =u + v dx dx dx 16 dy â èñõîäíîå óðàâíåíèå, áóäåì èìåòü dx dv du dv du x(u + v) − 2uv = 2x4 , xu − 2uv + x v = 2x4 dx dx dx dx Ïîäñòàâëÿÿ âûðàæåíèå u x dv − 2v dx Äëÿ îïðåäåëåíèÿ v ïîëó÷èì óðàâíåíèå x xdv = 2vdx, dv dx =2 , èëè v x + x du v = 2x4 dx dv − 2v = 0 îòêóäà dx v| = 2 ln |x| + C1 , v = x2 . ln | Ïîäñòàâëÿÿ âûðàæåíèå ôóíêöèè v = x2 â óðàâíåíèå dv du u x − 2v + x v = 2x4 , dx dx ïîëó÷àåì äëÿ îïðåäåëåíèÿ u óðàâíåíèå x3 îòêóäà du du 4 = 2x , èëè = 2 x, dx dx u = x2 + C . Ñëåäîâàòåëüíî, îáùèé èíòåãðàë çàäàííîãî óðàâíåíèÿ áóäåò èìåòü âèä y = Cx2 + x4 . y00 − y = 0. Õàðàêòåðèñòè÷åñêîå óðàâíåíèå k 2 − 1 = 0 èìååò ðàçëè÷íûå êîðíè k1 = 1, k2 = −1. ×àñòíûå ðåøåíèÿ: y1 = ex , y2 = e−x . Òîãäà îáùåå ðåøåíèå: y = C1 ex + C2 e−x Ïðèìåð 36. Ïðèìåð 37. Ðåøèòü óðàâíåíèå Ðåøèòü óðàâíåíèå y00 − 2y + y = 0. Ïèøåì õàðàêòåðèñòè÷åñêîå óðàâíåíèå k 2 − 2k + 1 = 0. Íàõîäèì åãî êîðíè: k1 = k2 = 1. Îáùèì èíòåãðàëîì áóäåò y = (C1 + C2 x)ex . Ïðèìåð 38. Ðåøèòü óðàâíåíèå y00 + y = 0. Íàïèøåì õàðàêòåðèñòè÷åñêîå óðàâíåíèå k 2 + 1 = 0. Íàõîäèì åãî êîðíè: k1 = i, k2 = −i. Îáùåå ðåøåíèå äàííîãî óðàâíåíèÿ: y = C1 cos x + C2 sin x, ãäå C1 , C2 ïðîèçâîëüíûå ïîñòîÿííûå. 17 Ïðèìåð 39. Íàéòè îáùåå ðåøåíèå óðàâíåíèÿ ìåòîäîì âàðèàöèè ïðîèçâîëü- íûõ ïîñòîÿííûõ: y00 + y = tg x. Õàðàêòåðèñòè÷åñêîå óðàâíåíèå k 2 + 1 = 0 èìååò êîðíè k1,2 = ±i. Îáùåå ðåøåíèå îäíîðîäíîãî óðàâíåíèÿ y = C1 cos x + C2 sin x. Ðåøàÿ ñèñòåìó y1 (x) = cos x, y2 (x) = sin x, y (x) 1 y01 (x) y2 (x) C1 0 · = , y02 (x) C20 f (x) 0 C10 cos x+C20 sin x =0, −C 0 sin x+C 0 cos x=tg(x), 1 2 ïîëó÷àåì C10 = − sin2 x/ cos x, C20 = sin x, îòêóäà Z x p 2 cos x − 1 C1 = dx = sin x − ln tg + + A1 , x C2 = − cos x + A2 . cos 2 4 Òàêèì îáðàçîì, îáùåå ðåøåíèå èñõîäíîãî óðàâíåíèÿ x p y = sin x − ln tg + + A1 · cos x + (− cos x + A2 ) · sin x = 2 4 x p = A1 cos x + A2 sin x − ln tg + · cos x. 2 4 Ïóñòü ïðàâàÿ ÷àñòü ëèíåéíîãî íåîäíîðîäíîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ èìååò âèä: f (x) = P(x)ea x ãäå P(x) = pm xm + . . . + p0 ìíîãî÷ëåí ñòåïåíè m ≥ 0. Òîãäà ÷àñòíîå ðåøåíèå èùåòñÿ â âèäå: y(x) = xr Q(x)ea x . Q(x) ìíîãî÷ëåí òîé æå ñòåïåíè, ÷òî è P(x), íî ñ íåîïðåäåë¼ííûìè êîýôôèöèåíòàìè, à r ≥ 0 êðàòíîñòü êîðíÿ a õàðàêòåðèñòè÷åñêîãî óðàâíåíèÿ. Çäåñü Ïðèìåð 40. Ðåøèòü óðàâíåíèå y000 − y0 = x. Ðåøèì ñîîòâåòñòâóþùåå îäíîðîäíîå óðàâíåíèå: y000 − y0 = 0. k 3 − k = 0, k1 = 0, k2 = 1, k3 = −1, y = C1 + C2 ex + C3 e−x . 18 Íàéäåì ÷àñòíîå ðåøåíèå èñõîäíîãî íåîäíîðîäíîãî óðàâíåíèÿ. P(x)ea x = x = xe0x . ×àñòíîå ðåøåíèå èùåì â âèäå: y = xr Q(x)ea x , ãäå r = 1, a y = Ax2 + Bx. = 0, Q(x) = Ax + B. Ò. å. Îïðåäåëèì íåèçâåñòíûå êîýôôèöèåíòû A è B. y0 = 2Ax + B, y00 = 2A, y000 = 0, −2Ax − B = x, −2A = 1, A=− 1 2 ; B = 0. x2 y∗ = − . Îáùåå ðåøåíèå ëèíåéíîãî íåîäíîðîäíîãî äèôôå2 x2 ðåíöèàëüíîãî óðàâíåíèÿ: y = C1 + C2 ex + C3 e−x − . ×àñòíîå ðåøåíèå: 2 Ïðèìåð 41. Ðåøèòü óðàâíåíèå y 00 + 2 0 + 2 = 2 −2x . y y e Ðåøèì ñîîòâåòñòâóþùåå îäíîðîäíîå óðàâíåíèå: y00 + 2y0 + 2y = 0. k 2 + 2k + 2 = 0, k1 = −1 − i, k2 = −1 + i, y = e−x (C1 cos x + C2 sin x). Íàéäåì ÷àñòíîå ðåøåíèå èñõîäíîãî íåîäíîðîäíîãî óðàâíåíèÿ. P(x)ea x = 2e−2x . y = xr Q(x)ea x , ãäå r = 0, a = −2, Q(x) = A. Ò. å. y = Ae−2x . Îïðåäåëèì íåèçâåñòíûé êîýôôèöèåíò A. ×àñòíîå ðåøåíèå èùåì â âèäå: y0 = −2Ae−2x , y00 = 4Ae−2x , 4 Ae−2x − 4Ae−2x + 2Ae−2x = 2e−2x , A = 2, A = 1. 2 y∗ = e−2x . Îáùåå ðåøåíèå ëèíåéíîãî íåîäíîðîäíîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ: y = e−x (C1 cos x + C2 sin x) + e−2x . ×àñòíîå ðåøåíèå: Ïðèìåð 42. Ðåøèòü óðàâíåíèå y00 + 2y0 + y = (x − 6)e−x . Ðåøèì ñîîòâåòñòâóþùåå îäíîðîäíîå óðàâíåíèå: y00 + 2y0 + y = 0. k 2 + 2k + 1 = 0, k1 = −1, k2 = −1, y = C1 e−x + C2 xe−x . 19 Íàéäåì ÷àñòíîå ðåøåíèå èñõîäíîãî íåîäíîðîäíîãî óðàâíåíèÿ. P(x)ea x = (x − 6)e−x . y = xr Q(x)ea x , ãäå r = 2, a = −1, Q(x) = Ax + B. Ò. å. y = x2 (Ax + B)e−x . Îïðåäåëèì íåèçâåñòíûå êîýôôèöèåíòû A è B. ×àñòíîå ðåøåíèå èùåì â âèäå: y00 + 2y0 + y = (6Ax + 2B)e−x , Ax + 2B)e−x = (x − 6)e−x , (6 6 A = 1, A = 1 6 ; 2 B = −6, B = −3. ×àñòíîå ðåøåíèå: y∗ = 16 x3 − 3x2 e−x . Îáùåå ðåøåíèå ëèíåéíîãî íåîäíîðîäíî ãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ: y = C1 e−x + C2 xe−x + 61 x3 − 3x2 e−x . Ðàññòàâèòü ïðåäåëû èíòåãðèðîâàíèÿ â òîì è äðóãîì ïîðÿäêå ZZ â äâîéíîì èíòåãðàëå f (x, y) dxdy, ãäå îáëàñòü D îãðàíè÷åíà ëèíèÿìè y = x2 , Ïðèìåð 43. D x + y = 2 , x = 0. y 2 1 O 1 x D ÿâëÿåòñÿ ñòàíäàðòíîé îòíîñèòåëüíî îáîèõ îñåé êîîðäèíàò: D = {(x, y) | 0 ≤ x ≤ 1, x2 ≤ y ≤ 2 − x}. ZZ D Z1 2Z−x 0 x2 f (x, y) dxdy = dx f (x, y) dy. 20 x y = x2 1 x+y = 2 O 1 y 2 Ïðèìåð 44. Ïðåäñòàâèì ìíîæåñòâî D â âèäå D = D1 ∪ D2 , ãäå √ D1 = {(x, y) | 0 ≤ y ≤ 1, 0 ≤ x ≤ y} D2 = {(x, y) | 1 ≤ y ≤ 2, 0 ≤ x ≤ 2 − y} ZZ ZZ D Z1 = D1 √ Zy dy 0 Ïðèìåð 45. ZZ f (x, y) dxdy = f (x, y) dxdy + f (x, y) dxdy = D2 ZZ 1 0 f (x, y) dx + dy 0 Âû÷èñëèòü Z2 2Z−y x y dxdy, åñëè îáëàñòü D îãðàíè÷åíà ëèíèÿìè ( +2 ) D y = x2 , y2 = x. y y = x2 1 O ZZ Z1 x y dxdy = dx √ Zx ( +2 ) D 0 Z1 = 0 √ x y dy = y2 = x x 1 Z1 ( +2 ) √ x xy + y2 x2 dx = 0 x2 x x + x − x3 − x4 ) dx = ( f (x, y) dy. 2 1 1 1 1 x5/2 + x2 − x4 − x5 5 2 4 5 0 = 2 5 + 1 2 − 1 4 − 1 5 = 9 20 . 21 Âû÷èñëèòü Ïðèìåð 46. Z dl p AB x2 + y2 + 1 AB îòðåçîê ïðÿìîé, ñîåäèíÿþùåé òî÷êè A(0, 0) è B(1, 1). Ñîñòàâèì óðàâíåíèå ïðÿìîé, ïðîèñõîäÿùåé ÷åðåç òî÷êó A è òî÷êó B: y = x. Òîãäà p √ dl = 1 + (y0 (x))2 dx = 2 dx. Òàêèì îáðàçîì, ãäå Z1 Z AB √ = d( ( Ïðèìåð 47. √ 0 x 2 ) q√ √ dl 2dx 2dx p √ = = √ = x2 + y2 + 1 x2 + x2 + 1 2x2 + 1 x 2 )2 + 1 = √ 1 √ √ arctg 2x = arctg 2 − arctg 0 = arctg 2. 0 Âû÷èñëèòü Z L ( x2 − xy) dx + (y2 − xy) dy, ãäå L ïàðàáîëà y = x2 , 0 ≤ x ≤ 1. y = x2 , dy = 2xdx Z L 2 2 (x − xy) dx + (y − xy) dy = Z1 0 Z1 0 ( x2 − xx2 ) dx + ((x2 )2 − xx2 )2xdx = x2 − 2x3 + x4 )2xdx = 2 Z1 ( 4 x 4 −2 x5 x6 1 5 + 6 0 = 0 1 4 ( x3 − 2x4 + x5 ) dx = − 2 5 + 1 6 = 1 60 . 22