КОМИ РЕСПУБЛИКАНСКАЯ АКАДЕМИЯ ГОСУДАРСТВЕННОЙ СЛУЖБЫ И УПРАВЛЕНИЯ Примерный тест по математике (время выполнения работы 90 мин.) 0 вариант 1. Наибольший общий делитель и наименьшее общее кратное чисел 144 и 216 равны а) 72 и 864; б) 144 и 864; в) 72 и 432; г) 144 и 432; д) другой ответ. 𝟑 𝟑 𝟑 2. Значение выражения ( √𝒙 + 𝟏)( √𝒙𝟐 − √𝒙 + 𝟏) при 𝒙 = −𝟒 равно а) -3; б) -5; в) 17; г) 9; д) другой ответ. −𝒙𝟐 −𝟏 3. Наибольшее целое решение неравенства 𝟐𝒙+𝟑 > 𝟎 равно а) -1; б) 1; в) 0; г) -2; д) другой ответ. 4. Наименьшее целое положительное решение неравенства 𝒙𝟐 > 𝟏𝟔 равно а) 4; б) 5; в) 3; г) -5; д) другой ответ. 5. Точка числовой прямой, наиболее удаленная от точки 𝒙 = −𝟐, это 𝟕 а)𝒙 = √𝟓 − 𝟏; б) 𝒙 = −𝝅; в) 𝒙 = − 𝟐; г) 𝒙 = − 𝐥𝐨𝐠 𝟑 𝟏𝟔; д) другой ответ. 6. Точка пересечения графика функции 𝒚 = 𝒙𝟑 + 𝟒 с прямой 𝒚 = −𝟒 а) (2;-4); б) (-2;-4); в) (-2;4); г) (-4;-2); д) другой ответ. 7. Вершиной параболы 𝒚 = 𝟒𝒙 − 𝒙𝟐 − 𝟏 является точка а) (3;-2); б) (2;3); в) (-2;-3); г) (3;2); д) другой ответ. 𝟏 𝝅 8. Количество корней уравнения 𝐜𝐨𝐬 𝒙 = 𝟐, принадлежащих промежутку [− 𝟐 ; 𝝅] равно а) 3; б) 2; в) 1; г) 0; д) другой ответ. 9. Число, 17% которого равно 51, есть а) 150; б) 200; в) 300; г) 350; д) другой ответ. 10. Один кран наполняет бассейн за 12 часов. За какое время наполнит тот же бассейн второй кран, если оба крана, работая вместе, наполняют бассейн за 4 часа? а) 6 часов; б) 7 часа; в) 8 часов; г) 10 часов; д) другой ответ. 11. Сторона правильного треугольника, вписанного в круг с площадью 𝟏𝟐𝝅 см2 равна а) √𝟑 см; б) 4 см; в) 6 см; г) 𝟑√𝟑 см; д) другой ответ. 12. Радиус шара, в который вписан куб объёма 8 см3, равен а) 2 см; б) √𝟑 см; в) 3 см; г) 4 см; д) другой ответ. КОМИ РЕСПУБЛИКАНСКАЯ АКАДЕМИЯ ГОСУДАРСТВЕННОЙ СЛУЖБЫ И УПРАВЛЕНИЯ Тест по математике (время выполнения работы 90 мин.) I вариант 1. Наименьшее общее кратное чисел 72 и 108 равно а) 432; б) 216; в) 108; г) 36; д) другой ответ. 2. Значение выражения (𝟐 − √𝒃)(𝟐 + √𝒃) при 𝒃 = 𝟕 равно а) 11; 𝟐 б) (𝟐 − √𝟕) ; в) -3; г) -11; д) другой ответ. −𝟐 3. Наибольшее целое решение неравенства 𝟐−𝟑𝒙 < 𝟎 равно а) 1; б) 0; в) -1; г) 2; д) другой ответ. 4. Наименьшее целое решение неравенства 𝒙𝟐 < 𝟏𝟕 равно а) -4; б) 4; в) 3; г) -3; д) другой ответ. 5. Точка числовой прямой, наиболее удаленная от точки 𝒙 = 𝟏 это 𝟕 а) 𝒙 = 𝟐; б) 𝒙 = √𝟕; в) 𝒙 = −𝟐; г) 𝒙 = 𝐥𝐨𝐠 𝟐 𝟗; д) другой ответ. 6. Точка пересечения графика функции 𝒚 = 𝒙𝟑 + 𝟑 с прямой 𝒚 = 𝟐 а) (-1;2); б) (1;2); в) (2;-1); г) (2;2); д) другой ответ. 7. Вершиной параболы 𝒚 = 𝒙𝟐 + 𝟐𝒙 + 𝟑 является точка а) (1;-2); б) (1;6); в) (-1;2); г) (0;3); д) другой ответ. 𝟏 𝝅 8. Количество корней уравнения 𝐜𝐨𝐬 𝒙 = 𝟐, принадлежащих промежутку [− 𝟐 ; 𝝅] равно а) 1; б) 2; в) 3; г) 4; д) другой ответ. 9. Число, 12% которого равно 36, есть а) 120; б) 240; в) 300; г) 360; д) другой ответ. 10. Двое рабочих, работая вместе, выполняют работу за 6 часов. Если производительность первого рабочего втрое меньше производительности второго, то он выполнит эту же работу за а) 36 часов; б) 24 часа; в) 8 часов; г) 12 часов; д) другой ответ. 11. Площадь правильного треугольника, вписанного в окружность радиуса √3 см равна а) 𝟔√𝟑 см2; б) 𝟗√𝟑 𝟐 см2; в) 12 см2; г) 𝟗√𝟑 𝟒 см2; 12. Объём шара, в который вписан куб с ребром √𝟑 см, равен 𝟗𝝅 а) 𝟐 см3; б) 𝟏𝟖𝝅 см3; в) 𝟏𝟐𝝅 см3; г) 𝟔√𝟑𝝅 см3; д) другой ответ. д) другой ответ. КОМИ РЕСПУБЛИКАНСКАЯ АКАДЕМИЯ ГОСУДАРСТВЕННОЙ СЛУЖБЫ И УПРАВЛЕНИЯ Тест по математике (время выполнения работы 90 мин.) II вариант 1. Наибольший общий делитель чисел 360 и 756 равно а) 36; б) 72; в) 60; г) 56; 𝟑 𝟑 д) другой ответ. 𝟑 2. Значение выражения ( √𝒂 − 𝟏)( √𝒂𝟐 + √𝒂 + 𝟏) при 𝒂 = 𝟓 равно а) -4; б) 124; в) 6; г) 4; д) другой ответ. −𝟑 3. Наибольшее целое решение неравенства 𝟓𝒙+𝟔 > 𝟎 равно а) -1; б) 1; в) -2; г) 2; д) другой ответ. 4. Наибольшее отрицательное целое решение неравенства 𝒙𝟐 > 𝟏𝟎 равно а) -3; б) -4; в) 3; г) 4; д) другой ответ. 5. Точка числовой прямой, наименее удаленная от точки 𝒙 = −𝟏 это 𝟓 а) 𝒙 = − 𝐥𝐨𝐠 𝟐 𝟕; б) 𝒙 = −√𝟏𝟎; в) 𝒙 = 𝟏; г) 𝒙 = 𝟐; д) другой ответ. 6. Точка пересечения графика функции 𝒚 = 𝟐𝒙 − 𝟑 − 𝒙𝟐 с прямой 𝒙 = −𝟏 а) (-3;0); б) (0;-3); в) (-1;-6); г) (-1;-4); д) другой ответ. 7. Вершиной параболы 𝒚 = 𝟏 − 𝟒𝒙 − 𝒙𝟐 является точка а) (2;3); б) (-2;5); в) (0;1); г) (1;-4); д) другой ответ. 𝟑𝝅 √𝟐 8. Количество корней уравнения 𝐬𝐢𝐧 𝒙 = 𝟐 , принадлежащих промежутку [𝟎; 𝟐 ] равно а) 0; б) 1; в) 2; г) 3; д) другой ответ. 9. Число 48 составляет от числа 60 а) 80%; б) 30%; в) 40%; г) 60%; д) другой ответ. 10. Первый трактор вспахивает поле за 8 часов, второй – за 6 часов. Время, за которое вспашут это же поле оба трактора, работая вместе равно 𝟐𝟒 а) 14 часов; б) 4 часа; в) 7 часов; г) 𝟕 часа; д) другой ответ. 11. Площадь круга, описанного около правильного треугольника со стороной равной 3 см, равна а) 𝟑𝝅 см2; б) 𝟔𝝅 см2; в) 𝟗𝝅 см2; г) 𝟏𝟐𝝅 см2; д) другой ответ. 12. Объём куба, вписанного в шар радиуса √𝟑 см, равен 𝟒 а) 12 см3; б) 8 см3; в) 6 см3; г) 𝟑 см3; д) другой ответ. Критерии оценок 1. Оценка тестовых заданий №№1 – 10 – 8 баллов №№11,12 – 10 баллов ВСЕГО: 100 баллов 2. Перевод в пятибалльную систему оценки: Количество баллов 85-100 65-84 35-64 0-34 Оценка 5 4 3 2 Ключ к заданиям I варианта Ключ к заданиям II варианта 1.б) 2. в) 3. б) 4. а) 5. г) 6. а) 7. в) 8. б) 9. в) 10. б) 11. г) 12. а) 1. а) 2. г) 3. в) 4. б) 5. а) 6. в) 7. б) 8. в) 9. а) 10. г) 11. а) 12. б)