Изучение формы статистического распределения Распределение рабочих по стажу работы на предприятии, представленное в табл.1, проверить на соответствие нормальному закону распределения, используя критерии согласия К. Пирсона, В. романовского и А. Колмогорова при уровне значимости =0,05 Таблица 1. Распределение рабочих по стажу работы на предприятии (лет). Стаж работы 0-2 2-4 4-6 6-8 8-10 10-12 12 и более Кол-во рабочих 12 14 17 29 23 13 10 1. Определение среднего стажа рабочих и показателей вариации. X I - {1, 3, 5, 7, 9, 11, 13} f I = 12 + 14 + 17 + 29 + 23 + 13 + 10 = 118 X = (1 12 +3 14+5 17+7 29+9 23+11 13+13 10) / 118 = 822 / 118 = 6,97 Показатель вариации: 2 =(X I – X) 2 f I / f I = ((1-6,97) 2 12+(3-6,97) 2 14+(5-6,97) 2 17+(7-6,97) 2 29+(9-6,97) 2 23 + (11-6,97) 2 13+(13-6,97) 2 10)/118 = 1384 / 118 = 11,73 = 2 = 11,73 = 3,42 = / X 100 = 3,42 / 6,97 100 = 49 Т.к. >33 , можно сделать вывод о том, что совокупность неоднородная. Результаты расчётов приведены в табл.2. Таблица 2. Определение среднего стажа работы и показатели вариации. Стаж работы, лет (x) Число рабочих, Чел (f I) 0-2 2-4 4-6 6-8 8-10 10-12 12 и более 12 14 17 29 23 13 10 ИТОГО 118 Середина Интервала, X I 1 3 5 7 9 11 13 fI XI (X I – X) 2 f I 12 42 203 85 207 143 130 427,69 220,65 65,98 0,03 94,78 211,13 363,61 822 1384 2. Построить гистограмму распределения рабочих по стажу работы и определить структурную моду. 30 25 20 15 10 5 0 X Mo = 6,97 3. Построить кумуляту распределения и определить медиану. 140 120 100 80 60 40 20 0 0 2 4 6 8 10 12 N / 2=118/2=59 4. Определить коэффициент асимметрии. AS = X - X Mo / = 6,97-7,05 / 3,42 = 0,02 Т.к. 0,02 < 0,025 асимметрия не значительная, носит случайный характер и может быть отнесена к нормальному закону распределения. 5. Для описания эмпирического распределения используем уравнение нормального распределения. f(X) = (1 / 2) e-(X-6,97)^2 где X – среднее значение 2 – дисперсия / 2^2 - среднее квадратичное отклонение С учётом ранее полученных результатов, конкретное уравнение для рассматриваемого случая, примет вид : f(X) = (1 / 3,42 2) e-(X-X)^2 / 2 12 6. Проверка адекватности принятого теоретического описания распределения эмпирическим с использованием критериев согласия. 6.1. Критерий согласия ”X2” К. Пирсона. Для использования этого критерия необходимо определение теоретической частоты для каждого интервала разбиения рабочих по стажу работы. fit = PI N где PI - вероятность попадания в интервал N – общее число рабочих PI определяется по формуле: PI = 1 / 2 [F (t2) – F (t1)], где t1 = (X I – X) / , а t2 = (X 2 – X) / X1 и X2 - граничные значения стажа работы в каждом диапазоне F (t) – интервально нормированная функция Лапласа (значения берутся из таблицы) 0-2: t1 = (0 – 6,97) / 3,42 = -2,04; t2 = (2 – 6,97) / 3,42 = -1,45 2-4: t1 = (2 – 6,97) / 3,42 =-1,45; t2 = (4 – 6,97) / 3,42 = -0,87 4-6: t1 = (4 – 6,97) / 3,42 = -0,87; t2 = (6 – 6,97) / 3,42 = -0,28 6-8: t1 = (6 – 6,97) / 3,42 = -0,28; t2 = (8 – 6,97) / 3,42 = 0,3 8-10: t1 = (8 – 6,97) / 3,42 =0,3; t2 = (10 – 6,97) / 3,42 = 0,89 10-12: t1 = (10 – 6,97) / 3,42 =0,89; t2 = (12 – 6,97) / 3,42 = 1,47 12 и более: t1 = (12 – 6,97) / 3,42 = 1,47. P1 = 1 / 2 [F (-1,45) – F (-2,04)] = 1 / 2 (-0,8529 + 0,9586) = 0,05 P2 = 1 / 2 [F (-0,87) – F (-1,45)] = 1 / 2 (-0,6157 + 0,8529) = 0,12 P3 = 1 / 2 [F (-0,28) – F (-0,87)] = 1 / 2 (-0,2205 + 0,6157) = 0,2 P4 = 1 / 2 [F (0,3) – F (-0,28)] = 1 / 2 (0,2358+0,2205) = 0,23 P5 = 1 / 2 [F (0,89) – F (0,3)] = 1 / 2 (0,6265 – 0,2358) = 0,2 P6 = 1 / 2 [F (1,47) – F (0,89)] =1 / 2 (0,8584 - 0,6265) = 0,12 P7 = 1 / 2 – 1 / 2 [F (1,47) ] =1 / 2 (1- F (1,47)) = 1 / 2 (1-0,8584) = 0,07 PI = 0,99 Fit = PI N F1t = 0,05 118 = 5,9 F1t = 0,12 118 = 14,2 F1t = 0,2 118 = 23,6 F1t = 0,23 118 = 27,4 F1t = 0,02 118 = 23,6 F1t = 0,12 118 = 14,2 F1t = 0,07 118 = 8,3 Fit = 117,2 Результаты расчётов приведены в табл.3 Таблица 3. Расчёт критерия “X2” К. Пирсона Стаж работы, лет Эмпирич. частота, fi 0-2 2-4 4-6 6-8 8-10 10-12 12 и более ИТОГО Вероятность PI Граничные значения, t1 – t2 Теоретич. частота, fit 12 14 17 29 23 13 10 0,05 0,12 0,2 0,23 0,2 0,12 0,07 5,9 14,2 23,6 27,4 23,6 14,2 8,3 118 0,99 117,2 -2,04 – (-1,45) -1,45 – (-0,87) -0,87 – (-0,28) -0,28 – 0,3 0,3 – 0,89 0,89 – 1,47 1,47 (fI - fit )2 fit 6,3 0,003 1,85 0,09 0,015 0,101 0,35 8,7 Df = 7 – 3 = 4 X2расч = 8,7 , X2табл = 9,49 и X2расч < X2табл 8,7 < 9,49 гипотезу о нормальном характере распределения можно принять. 30 25 20 15 10 5 0 0 12 14 17 29 23 13 10 *- Разница между эмпирическими и теоретическими частотами есть X2 6.2. Используем расчётные значения X2 К. Пирсона, для расчёта критерия согласия В. Романовского. X2расч - (k – 3) / 2 (k - 3) = (8,7 – 4) / 8 = 1,3 Т.к. 1,3 < 3, то гипотеза о нормальном распределении принимается 6.3. Применение согласия Колмогорова. Результаты критерия Колмогорова приведены в табл.4. Таблица 4. Расчёт критерия согласия Колмогорова Стаж работы, лет 0-2 2-4 4-6 6-8 8-10 10-12 12 и более Частота Эмпирич. fI Накопленная частота Теоретич. Fit 12 14 17 29 23 13 10 Эмпирич. fI 5,9 14,2 23,6 27,4 23,6 14,2 8,3 Теоретич. Fit 12 26 43 72 95 108 118 f I - Fit | 5,9 20,1 43,7 71,1 94,7 108,9 117,2 6,1 5,9 0,7 0,9 0,3 0,9 0,8 dN = f I - Fit / N = 15,6 / 118 = 0,12 140 120 100 80 60 40 20 0 0 2 4 6 8 10 12 Критерий согласия Колмогорова соотнесём с / N; = 1,36 , при уровне значимости = 0,05. 0,12 < 1,36 / 118 = 0,13 Критерий согласия Колмогорова основан на сопоставлении величины максимальной разницы накопленных теоретических и эмпирических, dnmax < / N, поэтому мы можем сказать, что рассматриваемое распределение следует нормальному закону.