Òêà÷åâ Ñ.Á. êàô. Ìàòåìàòè÷åñêîãî ìîäåëèðîâàíèÿ ÌÃÒÓ èì. Í.Ý. Áàóìàíà ÄÈÑÊÐÅÒÍÀß ÌÀÒÅÌÀÒÈÊÀ ÈÓ5 | 4 ñåìåñòð, 2015 ã. Ñåìèíàð 10. ÊÎËÜÖÀ. ÏÎËß. ÐÅØÅÍÈÅ ÑËÀÓ • First • Prev • Next • Last • Go Back • Full Screen • Close • Quit 1. Êîëüöà. Îïðåäåëåíèå 10.1. Êîëüöî | ýòî àëãåáðà ñ äâóìÿ áèíàðíûìè è äâóìÿ íóëüàðíûìè îïåðàöèÿìè R = (R, +, ·, 0, 1) òàêàÿ, ÷òî: 1) àëãåáðà (R, +, 0) | êîììóòàòèâíàÿ ãðóïïà; 2) àëãåáðà (R, ·, 1) | ìîíîèä ; 3) èìååò ìåñòî äèñòðèáóòèâíîñòü îïåðàöèè · (óìíîæåíèÿ êîëüöà) îòíîñèòåëüíî îïåðàöèè + (ñëîæåíèÿ êîëüöà): a · (b + c) = a · b + a · c, (b + c) · a = b · a + c · a. • First • Prev • Next • Last • Go Back • Full Screen • Close • Quit Îïåðàöèþ + íàçûâàþò ñëîæåíèåì êîëüöà, · | óìíîæåíèåì êîëüöà,ýëåìåíò 0 | íóëåì êîëüöà, ýëåìåíò 1 | åäèíèöåé êîëüöà. Îïðåäåëåíèå 10.2. Êîëüöî íàçûâàþò êîììóòàòèâíûì, åñëè îïåðàöèÿ óìíîæåíèÿ â íåì êîììóòàòèâíà. • First • Prev • Next • Last • Go Back • Full Screen • Close • Quit Ïðèìåð 1. à) Àëãåáðà (Z, +, ·, 0, 1) åñòü êîììóòàòèâíîå êîëüöî. á) Àëãåáðà (N ∪ {0}, +, ·, 0, 1) êîëüöîì íå áóäåò, ïîñêîëüêó (N ∪ {0}, +) | êîììóòàòèâíûé ìîíîèä, íî íå ãðóïïà. á) Àëãåáðà Zk = ({0, 1, 2, . . . , k − 1}, ⊕k , k , 0, 1) (ïðè k ≥ 1 ), åñòü êîììóòàòèâíîå êîëüöî. Åãî íàçûâàþò êîëüöîì âû÷åòîâ ïî ìîäóëþ k . Àääèòèâíàÿ ãðóïïà êîëüöà åñòü àääèòèâíàÿ ãðóïïà âû÷åòîâ ïî ìîäóëþ k , • First • Prev • Next • Last • Go Back • Full Screen • Close • Quit Îïðåäåëåíèå 10.3. Íåíóëåâûå ýëåìåíòû a è b êîëüöà R íàçûâàþò äåëèòåëÿìè íóëÿ, åñëè a · b = 0 . Çàäà÷à 4. Ñóùåñòâóþò ëè äåëèòåëè íóëÿ â êîëüöå âû÷åòîâ ïî ìîäóëþ 4 Z4 .  êîëüöå Z5 ? Ïðè êàêèõ n Zn íå ñîäåðæèò äåëèòåëåé íóëÿ? • First • Prev • Next • Last • Go Back • Full Screen • Close • Quit 2. Ïîëÿ Îïðåäåëåíèå 10.4. Êîëüöî, â êîòîðîì ìíîæåñòâî âñåõ íåíóëåâûõ ýëåìåíòîâ ïî óìíîæåíèþ îáðàçóåò ãðóïïó, íàçûâàþò òåëîì. Êîììóòàòèâíîå òåëî íàçûâàþò ïîëåì. Ãðóïïó íåíóëåâûõ ýëåìåíòîâ ïîëÿ ïî óìíîæåíèþ íàçûâàþò ìóëüòèïëèêàòèâíîé ãðóïïîé ýòîãî ïîëÿ. Ïðèìåð 2. à) Àëãåáðà (Q, +, ·, 0, 1) åñòü ïîëå, íàçûâàåìîå ïîëåì ðàöèîíàëüíûõ ÷èñåë. á) Àëãåáðà (R, +, ·, 0, 1) åñòü ïîëå, íàçûâàåìîå ïîëåì âåùåñòâåííûõ ÷èñåë. • First • Prev • Next • Last • Go Back • Full Screen • Close • Quit Çàäà÷à 6.1. Êàêèå èç ÷èñëîâûõ ìíîæåñòâ îáðàçóþò êîëüöî îòíîñèòåëüíî îáû÷íûõ îïåðàöèé óìíîæåíèÿ è ñëîæåíèÿ: (à) ìíîæåñòâî íåîòðèöàòåëüíûõ√öåëûõ ÷èñåë; (á) ìíîæåñòâî ÷èñåë âèäà x + 2y , x, y ∈ Q ? Êàêèå èç óêàçàííûõ êîëåö ÿâëÿþòñÿ ïîëÿìè? Çàäà÷à 6.2. Êàêèå èç ìíîæåñòâ ìàòðèö îáðàçóþò êîëüöî îòíîñèòåëüíî ìàòðè÷íûõ îïåðàöèé óìíîæåíèÿ è ñëîæåíèÿ? Êàêèå èç êîëåö ÿâëÿþòñÿ ïîëÿìè? (à) ìíîæåñòâî ìàòðèö âèäà (á) ìíîæåñòâî ìàòðèö âèäà a b 0 c , a, b, c ∈ R ? a b −b a , a, b ∈ R ? • First • Prev • Next • Last • Go Back • Full Screen • Close • Quit Òåîðåìà 1.  ëþáîì êîëüöå âûïîëíÿþòñÿ ñëåäóþùèå òîæäåñòâà 1) a · 0 = 0 · a = 0 . 2) (a − b) · c = a · c − b · c , c · (a − b) = x · a − c · b , ãäå ðàçíîñòü a − b åñòü ïî îïðåäåëåíèþ a − b = a + (−b) . Ñëåäñòâèå 10.1.  ëþáîì êîëüöå ñïðàâåäëèâû òîæäåñòâà: a · (−b) = (−a) · b = −a · b (â ÷àñòíîñòè, (−1) · x = x · (−1) = −x ). Òàêèì îáðàçîì, ïðîèçâîäÿ âû÷èñëåíèÿ â ëþáîì êîëüöå (ïîëå), ìîæíî ðàñêðûâàòü ñêîáêè è ìåíÿòü çíàêè òàê æå, êàê â îáû÷íîé øêîëüíîé àëãåáðå. • First • Prev • Next • Last • Go Back • Full Screen • Close • Quit Çàäà÷à 6.3. Ðåøèòü â ïîëå Z3 è â ïîëå Z5 ñèñòåìó óðàâíåíèé: x + 2y = 1, y + 2z = 2, 2x + z = 1. Çàäà÷à 6.4. Ðåøèòü â ïîëå Z5 è â ïîëå Z7 ñèñòåìó óðàâíåíèé: 2x + 3y = 1, 3x − 4y = 2. Çàäà÷à 6.5. Ðåøèòü â ïîëå Z7 ñèñòåìó óðàâíåíèé: 3x + 4y + 5z = 2 3x + 2y + 3z = 4, x + y + 4z = 2. • First • Prev • Next • Last • Go Back • Full Screen • Close • Quit Çàäà÷à 6.6. Óñòàíîâèòü, èìååò ëè ðåøåíèå â ïîëå Z11 ñèñòåìà óðàâíåíèé: 3x + 7y + 10z = 2 5x + 2y + 8z = 4, 9x + 3y + 7z = 6. • First • Prev • Next • Last • Go Back • Full Screen • Close • Quit Äîìàøíåå çàäàíèå Çàäà÷à Ä6.1. Ðàçðåøèìà ëè â êîëüöå Z21 ñèñòåìà óðàâíåíèé: 5x + 2y = 1, y − 11x = 13? Çàäà÷à Ä6.2. Óñòàíîâèòü, èìååò ëè ðåøåíèå â ïîëå Z11 ñèñòåìà óðàâíåíèé: 3x + 7y + 10z = 2 5x + 2y + 8z = 4, 9x + 3y + 7z = 6. Åñëè ðåøåíèå íå åäèíñòâåííî, îïèñàòü ìíîæåñòâî ðåøåíèé. • First • Prev • Next • Last • Go Back • Full Screen • Close • Quit Çàäà÷à Ä6.3. Óñòàíîâèòü, èìååò ëè ðåøåíèå â ïîëå Z11 ñèñòåìà óðàâíåíèé: 3x + 4y + 5z = 6 6x + 2y + 8z = 2, 9x + 1y + 4z = 7. Åñëè ðåøåíèå íå åäèíñòâåííî, îïèñàòü ìíîæåñòâî ðåøåíèé. • First • Prev • Next • Last • Go Back • Full Screen • Close • Quit Äîïîëíèòåëüíûå çàäà÷è 10.1. Êîëüöî R íàçûâàåòñÿ áóëåâûì, åñëè ∀x ∈ R x2 = x . Äîêàçàòü: (à) â ëþáîì áóëåâîì êîëüöå ∀x ∈ R x + x = 0 ; (á) ëþáîå áóëåâî êîëüöî êîììóòàòèâíî; (â) â ëþáîì áóëåâîì êîëüöå ìîùíîñòè áîëüøå 2 åñòü äåëèòåëè íóëÿ. 10.2. Äîêàçàòü, ÷òî (2M , 4, ∩, ∅, M ) | áóëåâî êîëüöî. Äîêàçàòü, ÷òî îíî èçîìîðôíî Z2 ïðè |M | = 1 . 10.3. Áóäåò ëè ëþáîå êîëüöî Z2n , n ≥ 1 , áóëåâûì? • First • Prev • Next • Last • Go Back • Full Screen • Close • Quit