1 2 Óñëîâèÿ çàäà÷è Utt = a2 ∆U (1) U |r=r0 = 0 (2) Ut |t=0 = 0 r2 U |t=0 = A 1 − 2 r0 (3) (4) Ïåðåâîä óðàíåíèÿ êîëåáàíèé â ïîëÿðíûå êîîðäèíàòû U = U (t, r, ϕ) ∆U = Uxx + Uyy = Urr + U (t, r, ϕ) = U (t, r, ϕ + 2π) (5) x = r cos ϕ y = r sin ϕ (6) 1 1 1 ∂ 1 Uϕϕ + Ur = (rUr ) + 2 Uϕϕ r2 r r ∂r r (7) (ñì çàäà÷ó 60) 1 1 1 Utt = Urr + 2 Uϕϕ + Ur 2 a r r 3 (8) Ðåøåíèå ðàçäåëåíèåì ïåðåìåííûõ Ðåøàåì ðàçäåëåíèåì ïåðåìåííûõ óðàâíåíèå êîëåáàíèé ñ ãðàíè÷íûìè óñëîâèÿìè, íî áåç íà÷àëüíûõ. U (t, r, ϕ) = T (t) R (r) Φ (ϕ) (9) Èç (5) Φ (ϕ) = Φ (ϕ + 2π) (10) 1 1 1 1 0 00 00 00 RΦT = ΦT R + 2 T RΦ + T ΦR · a2 r r T RΦ (11) 1 T 00 R00 1 Φ00 1 R0 = + 2 + =κ 2 a T R r Φ r R (12) κt0 = 0, 3.1 κr0 = κϕ0 = 0, =⇒ κ = const (13) Ïðîñòðàíñòâåííàÿ ÷àñòü R00 1 Φ00 1 R0 + 2 + =κ R r Φ r R R00 R0 Φ00 r2 +r − κr2 = − =µ R R Φ µ = const 1 (14) (15) 3.1.1 Óãëîâàÿ ÷àñòü − Φ00 =µ Φ (16) Èç (16) ïðè óñëîâèè (10), êàê â çàäà÷å 60 ïîëó÷àåì µ = n2 (17) Φn = Cn1 cos (nϕ) + Cn2 sin (nϕ) , (18) n = 0, 1, 2 . . .. 3.1.2 Ðàäèàëüíàÿ ÷àñòü Ïîäñòàâèì (17) â (15): r2 Çàìåíà R0 R00 +r − κr2 = n2 R R (19) r2 R00 + rR0 − κr2 R − Rn2 = 0 (20) n2 1 R00 + R0 − κR − 2 R = 0 r r (21) √ −κ ρ √ dR √ d2 R dR dρ d dR √ d2 R dρ = = −κ 2 R0 = −κ, R00 = −κ = −κ 2 dρ dr dρ dr dρ dρ dr dρ √ √ 2 d2 R −κ dR √ −κ −κ 2 + −κ − κR − n2 R=0 dρ ρ dρ ρ d2 R 1 dR n2 + + 1− 2 R=0 dρ2 ρ dρ ρ √ −κr R = C 3 Jn (ρ) = C 3 Jn 1 = r ρ , r= √ −κ (22) (23) (24) (25) (26) Èç (2) ñëåäóåò (27) R (r0 ) = 0 Jn √ −κr0 = 0 =⇒ √ (n) −κr0 = µk =⇒ ! (n) 2 µk κ=− r0 (n) r 3 Rnk = Cnk Jn µk r0 2 √ (n) −κ = µk , r0 k∈N (28) (29) (30) 3.2 Âðåìåííàÿ ÷àñòü Ïîäñòàâèì (29) â (12) ! (n) 2 µk r0 !2 (n) µk a T r0 ! 1 T 00 =− a2 T (31) T 00 = − (32) (n) 4 Tnk = Cnk cos Îáùåå ðåøåíèå òàêîå: U= µk a t r0 ∞ X ∞ X 5 + Cnk sin (n) µk a t r0 ! (33) Tnk Rnk Φn = n=0 k=1 = ∞ X ∞ X " (n) µk a t r0 4 Cnk cos n=0 k=1 4 4.1 ! 5 + Cnk sin !# (n) 1 µk a (n) r 3 t Cn cos (nϕ) + Cn2 sin (nϕ) Cnk Jn µk r0 r0 (34) Íà÷àëüíûå óñëîâèÿ Íà÷àëüíàÿ ñêîðîñòü Ut |t=0 = 0 5 Cnk = 0. =⇒ (35) Äîêàçàòåëüñòâî. Âîñïîëüçóåìñÿ òåì, ÷òî ˆπ −π ˆπ n 6= m 0, π, n = m 6= 0 cos (mϕ) cos (nϕ) dϕ = 2π, n = m = 0 −π n 6= m 0, π, n = m 6= 0 sin (mϕ) sin (nϕ) dϕ = 0, n = m = 0 ˆπ sin (mϕ) cos (nϕ) dϕ = 0 (36) ∞ ∞ " # (n) X X 1 (n) r 5 µk a 3 Cnk Cnk Jn µk Cn cos (nϕ) + Cn2 sin (nϕ) = 0 dϕ cos (mϕ) · r0 r0 (37) −π ˆπ −π n=0 k=1 Òåïåðü âîñïîëüçóåìñÿ îðòîãîíàëüíîñòüþ ôóíêöèé Áåññåëÿ: ˆr0 r2 h 0 (m) i2 (m) r (m) r Jm µk rdr = δkn 0 Jm µn . Jm µn r0 r0 2 (38) 0 Äîìíîæèì è ïðîèíòåãðèðóåì: ˆr0 0 ∞ (m) X (m) r (m) r 5 µk a 3 1 dr rJm µn · Kπ Cmk Cmk Jm µk Cm =0, r0 r0 r0 k=1 3 K = 1, 2; m = 0, 1, . . . (39) 5 Cmn (m) i2 2 h µn a 3 1 r0 0 Jm Cmn Cm µ(m) = 0, n r0 2 (40) 5 1 Cmn Cm = 0. " # ˆπ ∞ X ∞ (n) X 1 (n) r 5 µk a 3 dϕ sin (mϕ) · Cnk Cnk Jn µk Cn cos (nϕ) + Cn2 sin (nϕ) = 0 r0 r0 (42) n=0 k=1 −π ˆr0 0 (41) X ∞ (m) (m) r (m) r 5 µk a 3 2 dr rJm µn · π Cmk Cmk Jm µk Cm =0, r0 r0 r0 m = 1, 2, . . . (43) k=1 5 Cmn (m) i2 2 h µn a 3 0 2 r0 µ(m) Jm = 0, Cmn Cm n r0 2 (44) 5 2 Cmn Cm = 0. (45) Ïîäñòàâèì â (34): U= ∞ ∞ X X ! (n) 4 3 1 µk a (n) r 4 3 t Jn µk Cnk Cnk Cn cos (nϕ) + Cnk Cnk Cn2 sin (nϕ) = r0 r0 cos n=0 k=1 îáîçíà÷èì 7 6 4 3 4 3 , Cnk Cnk Cn2 ≡ Cnk Cnk Cnk Cn1 ≡ Cnk = ∞ ∞ X X cos n=0 k=1 4.2 ! (n) 6 µk a (n) r 7 t Jn µk Cnk cos (nϕ) + Cnk sin (nϕ) . r0 r0 Íà÷àëüíîå îòêëîíåíèå r2 U |t=0 = A 1 − r0 ∞ X ∞ X (48) ˆπ ˆπ 6 r2 (n) r 7 Jn µk Cnk cos (nϕ) + Cnk sin (nϕ) sin (mϕ) dϕ = A 1 − 2 sin (mϕ) dϕ r0 r0 (49) Ñìåðòü óãëîâîé ÷àñòè sin: ∞ X ∞ X n=0 k=1 −π ∞ X ∞ X −π (n) Jn µk n=0 k=1 m 6= 0 (47) 6 r2 (n) r 7 Cnk cos (nϕ) + Cnk sin (nϕ) = A 1 − 2 Jn µk r0 r0 n=0 k=1 4.2.1 (46) ˆr0 0 r r0 ˆπ 7 Cnk sin (nϕ) sin (mϕ) dϕ = A 1 − −π ˆπ 2 r r02 sin (mϕ) dϕ −π X ∞ (m) r (m) r 7 dr rJm µn · Jm µk Cmk π = 0, r0 r0 k=1 4 (50) (51) 7 Cmn r02 h 0 (m) i2 = 0, Jm µn 2 (52) 7 Cmn = 0. (53) Ïîäñòàâèì â (46) è ïîëó÷èì íîâûé âèä ðåøåíèÿ: U= ∞ X ∞ X (n) cos n=0 k=1 µk a t r0 ! (n) r 6 Jn µk Cnk cos (nϕ) . r0 (54) r2 cos (nϕ) = A 1 − 2 r0 (55) Íà÷àëüíîå óñëîâèå (4) ïðåâðàòèòñÿ â ∞ X ∞ X Jn (n) µk n=0 k=1 cos: ∞ X ∞ X n=0 k=1 r r0 6 Cnk . ˆπ ˆπ r2 (n) r 6 Cnk cos (nϕ) cos (mϕ) dϕ = A 1 − 2 cos (mϕ) dϕ Jn µk r0 r0 −π m 6= 0 ˆr0 (56) −π X ∞ (m) r 6 (m) r dr rJm µn · Jm µk Cmk π=0 r0 r0 (57) k=1 0 6 Cmn r02 h 0 (m) i2 Jm µn =0 2 6 Cmn = 0, (58) (59) m = 1, 2, . . . è (54) ïðåâðàòèòñÿ â U= ∞ X ∞ X (n) µk a t r0 cos n=0 k=1 4.2.2 ! Jn (n) µk r r0 6 Cnk m = 0: ∞ X k=1 ˆr0 dr rJ0 k=1 ˆr0 6 C0k J0 µ(0) n cos µk a t r0 ! (0) r 6 Jn µk C0k . r0 r µ(0) n r0 r r0 X ∞ r2 (0) r 6 · J0 µk C0k = A 1 − 2 , r0 r0 (61) (62) k=1 J0 (60) 6 C0k r2 (0) r 6 J0 µk C0k 2π = A 1 − 2 2π, r0 r0 0 ∞ X (0) k=1 Íàõîæäåíèå îñòàâøèõñÿ êîýôôèöèåíòîâ Òåïåðü ïóñòü â (56) cos (nϕ) = ∞ X (0) µk r r0 ˆr0 1− rdr = A 0 0 5 r2 r02 r J0 µ(0) rdr. n r0 (63) Äàëåå áóäóò àêòèâíî èñïîëüçîâàòüñÿ ôîðìóëû ν Jν − Jν0 = Jν+1 , x ν Jν + Jν0 = Jν−1 . x Ëåâàÿ ÷àñòü (63): ∞ X ˆr0 6 C0k k=1 J0 µ(0) n r r0 J0 (0) µk r r0 rdr = J00 = −J1 6 = C0n A è ñ çàìåíîé µ(0) n 0 ñ ó÷¼òîì J0 (ρ) = (ρ) + J10 r0 (0) µn (64) r0 r= ρ: (0) µn !2 ˆ µ(0) n r0 1 − (0) µn ρ !2 J0 (ρ) ρdρ = (0) µn 0 (ρ): !2 ˆ µ(0) n 2 ρ r0 1 0 1 − J (ρ) + J (ρ) ρdρ = 2 1 1 (0) ρ (0) µn µ n 0 = = i2 2 h r02 h 0 (0) i2 6 r0 J0 µn = C0n J00 µ(0) = n 2 2 r02 h (0) i2 J 1 µn . 2 r = ρ; r0 ˆr0 r2 r 1 − 2 J0 µ(0) rdr = n r0 r0 1 ρ J1 6 C0k δnk k=1 0 Ïðàâàÿ ÷àñòü(63) áåç ∞ X !2 (0) µn ˆ 0 (0) 2 ρ 1 − 2 J1 (ρ) dρ + (0) µn µn ˆ 0 3 ρ 0 ρ − 2 J1 (ρ) dρ = (0) µn µ(0) n !2 ˆ µ(0) µ(0) n n ˆ ρ2 3ρ2 r0 ρ3 − 1 − 1 − 2 J1 (ρ) dρ + ρ − 2 J 1 (ρ) 2 J 1 (ρ) dρ = (0) (0) (0) (0) µn µ µ µ n n n 0 0 = 0 !2 ˆ µ(0) µ(0) n n ˆ 2 2 r0 3ρ ρ 1 − 1 − 2 J1 (ρ) dρ − 2 J 1 (ρ) dρ = (0) (0) (0) µn µn µn 0 0 = (0) = µn ˆ r02 (0) µn 2 0 (0) 2ρ2 2r02 2 J1 (ρ) dρ = 4 (0) (0) µn µn 6 µn ˆ ρ2 J1 (ρ) dρ. 0 (65) Âû÷èñëèì îòäåëüíî èíòåãðàë. Åù¼ ðàç ïî ÷àñòÿì, (0) J1 = −J00 : (0) µn ˆ µn ˆ 2 ρ J1 (ρ) dρ = − 0 (0) µ(0) ρ2 J00 (ρ) dρ = − ρ2 J 0 (ρ)0 n + 0 µn ˆ 2ρJ 0 (ρ) dρ = 2 0 (0) ρ 1 0 J1 (ρ) + J1 (ρ) dρ = ρ 0 (0) µn ˆ =2 (0) µn ˆ µn ˆ ρJ10 (ρ) dρ = J1 (ρ) dρ + 2 0 (66) 0 È åù¼ ðàç: (0) (0) µn ˆ =2 µ(0) ρJ 1 (ρ)|0 n J1 (ρ) dρ + 2 µn ˆ −2 0 (0) J 1 (ρ) dρ = 2µ(0) . n J 1 µn 0 Èòàê, (0) µn ˆ (0) ρ2 J1 (ρ) dρ = 2µ(0) , n J 1 µn (67) 0 (0) µn ˆ ˆr0 2 2r 4r2 r r2 , rdr = 04 ρ2 J1 (ρ) dρ = 03 J 1 µ(0) 1 − 2 J0 µ(0) n n r0 r0 (0) (0) µn µn 0 0 (68) è (63) çàïèñûâàåòñÿ â âèäå 6 C0n r02 h (0) i2 4r2 J 1 µn = A 03 J 1 µ(0) , n 2 (0) µn (69) îòêóäà 6 C0n = 8A 8A (0) J µ 3 h 3 i2 1 n = , (0) (0) (0) (0) µn J 1 µn µn J 1 µn (70) ÷òî ïîäñòàâëÿåòñÿ â (60), è íàõîäèòñÿ îêîí÷àòåëüíûé îòâåò: U= ∞ X k=1 (0) cos ! µk a t r0 (0) Jn µk r r0 6 C0k (0) µk a cos ∞ r0 t X (0) r = 8A . 3 Jn µk r0 (0) (0) k=1 µn J 1 µn 7 (71)