Исследование поглощения комплексов кислорода

реклама
Исследование поглощения комплексов кислорода,
индуцированных столкновениями
Васильченко С.С., Сердюков В.И., Синица Л.Н., Воронин Б.А.,
Половцева Е.Р.
Èíñòèòóò îïòèêè àòìîñôåðû ÑÎ ÐÀÍ èì.Â.Å. Çóåâà, Ðîññèÿ.
[email protected], [email protected], [email protected], [email protected]
Èçó÷åíèå ñëàáîñâÿçàííûõ áèíàðíûõ êîìïëåêñîâ êèñëîðîäà (O2 )2 ïðåäñòàâëÿåò èíòåðåñ äëÿ àòìîñôåðíûõ çàäà÷, òàê êàê ýòè ìîëåêóëû ÿâëÿþòñÿ äîñòàòî÷íî ñòàáèëüíûìè è
ìîãóò äàâàòü çíà÷èòåëüíûé âêëàä â ïîãëîùåíèå ñîëíå÷íîãî èçëó÷åíèÿ, îñîáåííî â óëüòðàôèîëåòîâîé îáëàñòè [1]. Ôîòîëèç ìîëåêóë (O2 )2 ïðèâîäèò ê îáðàçîâàíèþ â àòìîñôåðå
äîïîëíèòåëüíîãî îçîíà è àòîìîâ ñèíãëåòíîãî êèñëîðîäà: (O2 )2 => O3 +O [2], ÷òî îêàçûâàåò áîëüøîå âëèÿíèå íà ôîòîáèîëîãè÷åñêèå ïðîöåññû. Íà äàííûé ìîìåíò ñóùåñòâóåò ðÿä
ýêñïåðèìåíòàëüíûõ è òåîðåòè÷åñêèõ ðàáîò ïî èññëåäîâàíèþ ôèçèêî-õèìè÷åñêèõ ñâîéñòâ
áèíàðíûõ êîìïëåêñîâ êèñëîðîäà [3-7], îäíàêî ïðèðîäà èõ åùå íåäîñòàòî÷íî èçó÷åíà.
Результаты измерений
 äàííîé ðàáîòå áûëè ïðîâåäåíû èçìåðåíèÿ îáùåãî ñîäåðæàíèÿ êîìïëåêñîâ êèñëîðîäà â
àòìîñôåðå â ðàéîíå ã. Òîìñêà ñ èñïîëüçîâàíèåì ñïåêòðàëüíîé ñèñòåìû èçìåðåíèé ãàçîâûõ
àòìîñôåðíûõ êîìïîíåíò, ðàçðàáîòàííîé â Èíñòèòóòå îïòèêè àòìîñôåðû [8]. Èçìåðåíèÿ
ïðîâîäèëèñü â ðàìêàõ êîìïëåêñíîãî ýêñïåðèìåíòà. Äëÿ àíàëèçà îáùåãî ñîäåðæàíèÿ èññëåäóåìûõ ãàçîâ â àòìîñôåðå èñïîëüçîâàëàñü ñïåêòðîñêîïè÷åñêàÿ ìåòîäèêà, îñíîâàííàÿ íà
íàçåìíûõ èçìåðåíèÿõ ñïåêòðîâ ïîãëîùåíèÿ ñîëíå÷íîãî èçëó÷åíèÿ àòìîñôåðîé.  ðàáîòå
[1] áûëî ïîêàçàíî, ÷òî â îáëàñòè 0,231,26 ìêì íàõîäÿòñÿ äîñòàòî÷íî èíòåíñèâíûå ïîëîñû ïîãëîùåíèÿ êèñëîðîäîñîäåðæàùèõ êîìïëåêñîâ.  íàøåé ðàáîòå ñïåêòðû ïîãëîùåíèÿ
ñîëíå÷íîãî èçëó÷åíèÿ áûëè çàðåãèñòðèðîâàíû â øèðîêîì ñïåêòðàëüíîì äèàïàçîíå 0.4771.06 ìêì ñî ñïåêòðàëüíûì ðàçðåøåíèåì 0.01 ñì−1 ïðè ðàçëè÷íûõ ñîëíå÷íûõ çåíèòíûõ
óãëàõ. Äëÿ èññëåäîâàíèÿ áûëè âûáðàíû ïîëîñû ïîãëîùåíèÿ êîìïëåêñîâ (O2 )2 ñ öåíòðàìè
λ =0.630 ìêì è λ =0.577 ìêì, à òàêæå ïîëîñà ïîãëîùåíèÿ O3 ñ öåíòðîì λ= 0.602 ìêì.
Íà ðèñ.1 ïîêàçàíû ýêñïåðèìåíòàëüíûå ñïåêòðû ïðîïóñêàíèÿ ñîëíå÷íîãî èçëó÷åíèÿ
êîìïëåêñîâ (O2 )2 è O3 â èññëåäóåìîé îáëàñòè, çàðåãèñòðèðîâàííûå 22 ìàÿ 2012 ã. äëÿ
ðàçëè÷íûõ ñîëíå÷íûõ çåíèòíûõ óãëîâ. Íà ðèñóíêå âèäíî, ÷òî ñî âðåìåíåì ïðîïóñêàíèå
óìåíüøàåòñÿ èç-çà óâåëè÷åíèÿ äëèíû òðàññû, âñëåäñòâèå óìåíüøåíèÿ ñîëíå÷íîãî óãëà.
Îáùåå ñîäåðæàíèå â àòìîñôåðíîì ñòîëáå êèñëîðîäíûõ êîìïëåêñîâ è îçîíà îïðåäåëÿëîñü èç ïîäãîíêè ìîäåëüíûõ äàííûõ ê ýêñïåðèìåíòàëüíûì äàííûì ìåòîäîì íàèìåíüøèõ
êâàäðàòîâ.  êà÷åñòâå ìîäåëè äëÿ (O2 )2 áûëè èñïîëüçîâàíû ýêñïåðèìåíòàëüíûå ñå÷åíèÿ
ïîãëîùåíèÿ èç ðàáîòû [9].
Ïîãëîùåíèå ñòîëêíîâèòåëüíûõ êîìïëåêñîâ êèñëîðîäà â ýòîé îáëàñòè ïðîèñõîäèò â
ðåçóëüòàòå ýëåêòðîííûõ ïåðåõîäîâ ñ îñíîâíîãî òðèïëåòíîãî ñîñòîÿíèÿ ìîëåêóë êèñëîðîäà
íà âîçáóæäåííîå ñèíãëåòíîå ñîñòîÿíèå.
 òàáëèöå 1 ïðèâåäåíû ÎÑ êîìïëåêñîâ êèñëîðîäà, âðåìÿ ðåãèñòðàöèè ñîëíå÷íûõ ñïåêòðîâ, êîòîðûå áûëè âûáðàíû äëÿ ðàñ÷åòîâ,òåìïåðàòóðà è âûñîòà ñîëíöà íàä ãîðèçîíòîì
äëÿ êàæäîãî èçìåðåíèÿ.
Îäíîâðåìåííî ñ ïîäãîíêîé ýêñïåðèìåíòàëüíûõ äàííûõ äëÿ àòìîñôåðíûõ êîìïëåêñîâ
(O2 )2 îñóùåñòâëÿëàñü ïîäãîíêà äëÿ îçîíà. Ìîäåëüíûå ýêñïåðèìåíòàëüíûå ñå÷åíèÿ ïîãëîùåíèÿ îçîíà äëÿ ïîëîñû ñ öåíòðîì 0.602 ìêì áûëè âçÿòû èç áàçû äàííûõ Spectra [10].
55
Ðèñ. 1. Ýêñïåðèìåíòàëüíûå ñïåêòðû ïðîïóñêàíèÿ êîìïëåêñîâ (O2 )2 è O3 â îáëàñòè 1550018500 ñì−1 , çàðåãèñòðèðîâàííûå 22 ìàÿ 2012 ã.
Òàáëèöà 1. Îáùåå ñîäåðæàíèå è óñëîâèÿ èçìåðåíèÿ ñïåêòðîâ ïðîïóñêàíèÿ àòìîñôåðíûõ
êîìïëåêñîâ (O2 )2
Âðåìÿ èçìåðåíèé, ÷÷: ìì
Òåìïåðàòóðà, o Ñ
9:30
9:41
10:04
12:24
14:00
14:42
16
16.3
16.5
18
18.5
19
56
Âûñîòà
ñîëíöà
íàä ãîðèçîíòîì,
ãðàä.
35.15
36.59
39.53
52.65
53.05
50.61
Îáùåå
ñîäåðæàíèå
(O2 )2 ,
2
5
ìîëåêóëà /ñì *1043
1.64
1.53
1.86
1.41
1.48
1.53
Äàííûå ïî îáùåìó ñîäåðæàíèþ îçîíà, ïîëó÷åííûå â õîäå ïîäãîíêè ê ìîäåëüíûì äàííûì ñðàâíèâàëèñü ñî ñïóòíèêîâûìè äàííûìè, ÷òî ñëóæèëî äîïîëíèòåëüíûì êðèòåðèåì
ïðàâèëüíîñòè îïðåäåëåíèÿ ÎÑ êèñëîðîäíûõ êîìïëåêñîâ.  õîäå ðàñ÷åòà ïîãðåøíîñòè áûëà ïðîâåäåíà êîððåêöèÿ ýêñïåðèìåíòàëüíîãî ñïåêòðà ïðè ïîìîùè ïðîãðàììû OPUS èç
ñïåêòðà áûëè óáðàíû ëèíèè ïîãëîùåíèÿ ñîëíå÷íîé àòìîñôåðîé, ÷òî ïîçâîëèëî óìåíüøèòü
ìàêñèìàëüíóþ ïîãðåøíîñòü ðàñ÷åòîâ áîëåå ÷åì â äâà ðàçà.
Íà ðèñ.2 ïîêàçàí âðåìåííîé õîä ÎÑ êîìïëåêñîâ (O2 )2 è îçîíà, ïîëó÷åííûå â õîäå íàøèõ
ðàñ÷åòîâ, à òàêæå äàííûå ñïóòíèêà OMI ïî ÎÑ îçîíà äëÿ 22 ìàÿ 2012 ã.
Ðèñ. 2. ÎÑ êîìïëåêñîâ (O2 )2 è îçîíà, äàííûå ñïóòíèêà OMI ïî ÎÑ îçîíà 22 ìàÿ 2012 ã.
Íàçåìíûå ñïåêòðîñêîïè÷åñêèå èçìåðåíèÿ ñ èñïîëüçîâàíèåì Ôóðüå- ñïåêòðîìåòðà âûñîêîãî ðàçðåøåíèÿ ïîçâîëÿþò îïðåäåëèòü îáùèå ñîäåðæàíèÿ àòìîñôåðíûõ êîìïëåêñîâ
êèñëîðîäà è îçîíà ñ äîñòàòî÷íî âûñîêîé òî÷íîñòüþ- 1-3% äëÿ îçîíà è 10-15% äëÿ (O2 )2 ,
à òàêæå âûÿâëÿòü èõ äíåâíûå è ñåçîííûå âàðèàöèè. Ïîëó÷åííûå äàííûå ìîãóò áûòü èñïîëüçîâàíû äëÿ çàäà÷ ñïåêòðîñêîïèè è õèìèè àòìîñôåðû.
Ðàáîòà ïîääåðæàíà ãðàíòàìè ÐÔÔÈ, ïðîãðàììîé ÎÔÍ ÐÀÍ 3.9.
Литература
1. Розенберг Г.В., Татарский В.И., Дианов-Клоков В.И. Íåêîòîðûå îñîáåííîñòè ðàñïðîñòðàíåíèÿ ñâåòà â ðàçëè÷íûõ ñëîÿõ àòìîñôåðû // Âåñòíèê Àêàäåìèè Íàóê ÑÑÑÐ.
-1970. - 2. -ñòð. 21-29.
2. Brown L., Vaida V. Photoreactivity of Oxygen Dimers in the Ultraviolet // J. Phys.
Chem. -1996. V. 100. -P. 7849-7853.
3. Aquilanti V., Ascenzi D., Bartolomei M., Cappelletti D. Molecular Beam Scattering of
Aligned Oxygen Molecules. The Nature of the Bond in the O2 -O2 Dimer // J. Am. Chem.
Soc. 1999. -V. 121, P. 10794-10802.
4. Campargue A., Biennier L., Kachanov A., Jost R. Rotationally resolved absorption
spectrum of the O2 dimer in the visible range // Cem. Phys. Letter, -1998. -V. 288,
-P. 734-742.
57
5. Long C.A., Ewing G.E. Spectroscopic investigation of van der Waals molecules. I. The
infrared and visible spectra of (O2 )2 // J. Chem. Phys. -1973. -V. 58. - 11. -P. 4824-4834.
6. Wittrock F., Oetjen H., Richter A., Fietkau S. Max-DOAS measurements of atmospheric
trace gases in Ny-Alesund-Radiativr transfer studies and their application. // Atmos.
Chem. Phys. -2004. -V.4, -P. 955-966.
7. Pfeilsticker K., Erle F., Platt U. Absorption of Solar Radiation by Atmospheric O4 //
Journal of Atmospheric sciences. -1996. -V. 54. -P. 933-939.
8. Васильченко С.С., Сердюков В.И., Синица Л.Н. Ñïåêòðàëüíàÿ ñèñòåìà èçìåðåíèé ãàçîâûõ àòìîñôåðíûõ êîìïîíåíòîâ ñ îïòîâîëîêîííîé ñëåäÿùåé ñèñòåìîé è íåêîòîðûå
ðåçóëüòàòû àíàëèçà àòìîñôåðíûõ ñïåêòðîâ // Îïòèêà àòìîñôåðû è îêåàíà. -2012.
-Ò. 25.  10. Ñ. 920-925.
9. Naus H., Ubachs W. Visible absorption bands of the (O2 )2 collision complex at pressures
below 760 Torr // Applied Optics. -1999. -V. 38. - 15. P. 423-428.
10. Электронный ресурс URL http://smpo.iao.ru/
Study of collision-induced oxygen complexes
Vasilchenko S.S., Serdyukov V.I., Sinitsa L.N., Voronin B.A., Polovtseva E.R.
V.E. Zuev Institute of Atmospheric Optics SB RAS, Russia
The (O2 )2 molecular complexes play an important role in atmospheric chemistry and radiation transfer, however many properties of these atmospheric complexes are still far from
being entirely understood. The authors present the results of investigation of collision-induced
absorption of oxygen complexes (O2 )2 by spectroscopic technique. The absorption of oxygen
complexes (O2 )2 were investigated by high resolution Fourier transform spectrometer (FTS)
IFS-125M. The FTS is used for ground-based infrared solar absorption atmospheric measurements at the Zuev Institute of Atmospheric Optics SB RAS, Tomsk. The experimental system
is equipped with a sun tracker that provides continuous solar tracking throughout the day. The
FTS solar absorption spectra were recorded in the spectral range of 477-1060 nm with spectral
resolutions of 0.01, 0.1, 1.0 and 10 cm−1 under clear-sky conditions. High-quality long term
measurements have been applied to determine the collision-induced absorption. The spectral
data obtained under various experimental conditions were analyzed. It was revealed, that for
measurements along the path close to the horizon there are several strong oxygen dimers absorption bands with center at 1060, 630, 577 and 477 nm as well as O3 absorption band centered
at 602 nm that was confirmed by the experimental works. Our studies have detected a seasonal
variability of atmospheric oxygen complex amount. In winter the continual absorption of O4
species reaches 10-20 percent at 630 and 577 nm for a big solar zenith angles and 1-2 percent in
summer for a small solar zenith angles. It is shown that oxygen dimers continual absorption at
577 nm might be up to 10 percent for slant optical path of 15 km, atmospheric pressure of 760
Torr, and room temperature. It is necessary to take into account oxygen dimers absorption to
estimate realistic atmospheric concentration of O3 . Error in measurement of atmospheric ozone
concentration can reach 20 percent not considering the (O2 )2 molecular complexes contribution
to the observed absorption.
The work is partly supported by the Russian Fund for Basic Research Grants, RAS Program
3.9.
58
Скачать