НОВЫЕ ВЫЗОВЫ И ТЕНДЕНЦИИ В ЗАЩИТЕ ЛЕСА

advertisement
ɇɈȼɕȿ ȼɕɁɈȼɕ ɂ ɌȿɇȾȿɇɐɂɂ ȼ ɁȺɓɂɌȿ ɅȿɋȺ
595.768+630.453
Ⱥɥɟɤɫɚɧɞɪ ɋɟɪɝɟɟɜɢɱ ɂɫɚɟɜ,
,
,
asi@cepl.rssi.ru, ɐɟɧɬɪ ɩɨ ɩɪɨɛɥɟɦɚɦ ɷɤɨɥɨɝɢɢ ɢ ɩɪɨɞɭɤɬɢɜɧɨɫɬɢ ɥɟɫɨɜ ɊȺɇ,
ȼɥɚɞɢɫɥɚɜ Ƚɪɢɝɨɪɶɟɜɢɱ ɋɭɯɨɜɨɥɶɫɤɢɣ,
,
, soukhovolsky@yandex.ru,
Ɍɚɦɚɪɚ Ɇɢɯɚɣɥɨɜɧɚ Ɉɜɱɢɧɧɢɤɨɜɚ,
ovchinnikova_tm@mail.ru, ɂɧɫɬɢɬɭɬ ɥɟɫɚ ɢɦ. ȼ.ɇ. ɋɭɤɚɱɟɜɚ ɋɈ ɊȺɇ,
,
Ⱥɧɬɨɧ ȼɥɚɞɢɦɢɪɨɜɢɱ Ʉɨɜɚɥɟɜ,
, sunhi@nm.ru,
Ɇɟɠɞɭɧɚɪɨɞɧɵɣ ɰɟɧɬɪ ɢɫɫɥɟɞɨɜɚɧɢɹ ɷɤɫɬɪɟɦɚɥɶɧɵɯ ɫɨɫɬɨɹɧɢɣ ɨɪɝɚɧɢɡɦɚ
ɩɪɢ Ʉɇɐ ɋɈ ɊȺɇ,
ȿɥɟɧɚ ɇɢɤɨɥɚɟɜɧɚ ɉɚɥɶɧɢɤɨɜɚ,
,
e-palnikova@mail.ru, ɋɢɛɢɪɫɤɢɣ ɝɨɫɭɞɚɪɫɬɜɟɧɧɵɣ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɣ ɭɧɢɜɟɪɫɢɬɟɬ,
Ɉɥɶɝɚ ȼɢɤɬɨɪɨɜɧɚ Ɍɚɪɚɫɨɜɚ,
,
olvitarasova2010@yandex.ru, ɋɢɛɢɪɫɤɢɣ ɮɟɞɟɪɚɥɶɧɵɣ ɭɧɢɜɟɪɫɢɬɟɬ
ɗɄɈɅɈȽɂɑȿɋɄɂɃ ɊɂɋɄ ȼɋɉɕɒȿɄ
ɆȺɋɋɈȼɈȽɈ ɊȺɁɆɇɈɀȿɇɂə Ʌȿɋɇɕɏ ɇȺɋȿɄɈɆɕɏ,
ɆɈȾȿɅɂɊɈȼȺɇɂȿ ɂ ɉɊɂɇəɌɂȿ ɊȿɒȿɇɂɃ
ȼ ɁȺȾȺɑȺɏ ɅȿɋɈɁȺɓɂɌɕ
Ʌɟɫɧɵɟ ɧɚɫɟɤɨɦɵɟ, ɩɨɩɭɥɹɰɢɨɧɧɚɹ ɞɢɧɚɦɢɤɚ, ɜɫɩɵɲɤɢ ɦɚɫɫɨɜɨɝɨ ɪɚɡɦɧɨɠɟɧɢɹ, ɪɢɫɤɢ, ɡɚɳɢɬɚ ɥɟɫɚ, ɩɪɢɧɹɬɢɟ ɪɟɲɟɧɢɣ.
Forest insects, population dynamics, outbreaks, risks, forest protection, decision
making.
ȼɜɟɞɟɧɢɟ.
-
–
-
,
,
,
-
.
,
,
.
,
,
-
,
173
,
,
,
.
,
,
.
.
[1–3].
-
,
,
-
–
.
,
–
,
-
.
.
-
,
,
-
,
.
,
;
-
.
Ɇɟɬɨɞɵ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɩɨɩɭɥɹɰɢɨɧɧɨɣ ɞɢɧɚɦɢɤɢ ɧɚɫɟɤɨɦɵɯ.
,
[4, 5].
»
-
«
:
-
(
),
,
,
.
–
-
[6].
.
-
,
,
,
.
174
-
,
:
G  G0  a ( X  X r )q 2  bq 4
G –
(1)
,
;q–
,
(
;X–
; G0, a, b –
(1)
),
; Xr –
.
(
. 1).
q2 1
q2 = –0,0014 X + 0,921
R2 = 0,807
0,8
0,6
0,4
0,2
0
0
1000
2000
3000
ɏ,
4000
5000
./
Ɋɢɫ. 1.
[7] (ɏ –
,q–
)
Xr 
,
660
[8].
0,921
 657
0,0014
,
-
.
Xr
,
-
.
175
Ɉɰɟɧɤɢ ɪɚɡɦɟɪɨɜ ɨɱɚɝɨɜ ɦɚɫɫɨɜɨɝɨ ɪɚɡɦɧɨɠɟɧɢɹ ɧɚɫɟɤɨɦɵɯ
,
.
,
.
ɏ
–
,
S.
S0
-
(
[4].
(
X0
),
-
),
,
,
,
S
X–
-
,
–
(
,
).
,
.
»
)

(
«
 dX
 dt  kX ( A  X )( X  B)    cXS

 dS  mX  bS ,
 dt
,
-
:
(2)
T1
 1
T2
Ɍ1
Ɍ2
;k–
, B–
,ɫ–
b–
,A
,–
,
,m
.
,
(2)
.
.
.
176
(2)
-
,
–
.
.2
-
(2).
S
1
2
s0
sr
3
0
Ɋɢɫ. 2.
xout
xr
x0
-
xmax
«
ɏ (
S(
»
; ɏ0 –
X
(3)
)
). S0, Sr –
,
-
; Xr –
; Xmax –
, Xout –
[5]
«
S
m
b
m
X
b
.
-
(2)
,
1
m
b
(2)
.2
».
.2
,
,
ɏ0,
(2)
-
S 0.
,
,
.
,
,
177
Sr
,
[9].
«
»
«
»
-
,
.
ɏr
Ɍ1)
«
»,
Smax,
(
Xmax.
. 2,
m
b
X = Xmax
,
1,
Smax
Xmax
(
,
S = Smax
(2)
-
-
).
[4].
,
ɏout ,
,
,
[4].
S0
ɏ0
.
(2),
(ɏr – ɏ0)
,
ɏr .
,
,
,
,
.
m
(
b
-
(2)
2
(2)
. 2).
–
.
.
.
m
b
,
(3)
3
. 2,
[4].
«
-
,
,
178
[10].
»,
.
.
-
(«
«
»
)
-
»
:
X
 dX
 dt  kX ( A  X )( X  B)    c S

 d (1 / S )  b 1  mX .
 dt
S
(3)
«
-
(3)
,
»
1
S
(2).
(3)
. 3.
4
5
1
s0
1
sr
6
0
xr
x0
Ɋɢɫ. 3.
xout
-
«
–
1/S (
m
b
ɏ0
(3)
(
X
»
(4)
ɏ
)
S–
1 m
 X
S b
,
4
. 3),
S0
(
1/S0
).
S
.
ɏ
1 1
 )
S Sr
-
xm
«
,
Sr (
-
»,
-
179
Ɍ 1,
(
ɏmax
(2))
Sr
m
b
,
-
ɏ = Xout
,
,
ɏ = ɏ0
(
-
.
6
S = S 0.
m
b
(
,
.
.
5
. 3)
-
. 3).
,
X  ( X r  X 0 )
S  ( S r  S0 )

,
«
«
S,
»
»
(2)
(3).
-
,
.
-
.
ɉɪɢɧɰɢɩɵ ɩɨɫɬɪɨɟɧɢɹ ɫɢɫɬɟɦɵ ɩɨɞɞɟɪɠɤɢ ɩɪɢɧɹɬɢɹ ɪɟɲɟɧɢɣ
ɩɪɢ ɜɵɛɨɪɟ ɜɨɡɞɟɣɫɬɜɢɹ ɧɚ ɩɨɩɭɥɹɰɢɢ ɜɪɟɞɢɬɟɥɟɣ
-
t0
p (t0  ) –
,
.
180
R (t0 )  p(t0  ) W (t0  )
R(t0):
(4)
t0  ; W (t0  ) –
;–
«
»
-
,
-
-
.
,
–
.
. 4.
t=0
М
я
я
П
t=t+1
R(t)
R(t)>R(0)
t=t+1
П
-
я
П
я. П
я
-
З
?
Ɋɢɫ. 4.
.4
,
.
,
,
,
–
,
. .
,
-
.
–
R(t),
R0
181
,
,
-
-
–
,
.
«
»
–
«
,
-
»,
.
(
)
(
)
,
-

,
(
),
-
.
-
,
R0 ,
,
,
-
(
)
(
-
),
(
-
,
,
).
11-04-00176- .
Ȼɢɛɥɢɨɝɪɚɮɢɱɟɫɤɢɣ ɫɩɢɫɨɤ
1. Ȼɚɪɚɧɱɢɤɨɜ, ɘ.ɇ.
:
.
[
]/ . .
, 2004. – . 256–258.
2. Ȼɚɪɚɧɱɢɤɨɜ, ɘ.ɇ.
//
. .
.
.:
.
.
.
, 2004. – . 32–53.
3. ɋɟɥɢɯɨɜɤɢɧ, Ⱥ.ȼ.
,
[
.
. .
]/
.–
. .
182
. – 2009. – . 1, № 1. – C. 72–81.
:
,
?[
//
-
-
. .
]/
. .
-
.–
–
-
4. ɂɫɚɟɜ, Ⱥ.ɋ.
[
]/ . .
,
, . .
, . .
, . .
, . .
.–
. – 2001. – 374 .
5. Isaev, A.S. Forest insects population dynamics [Text] / A.S. Isaev, R.G. Khlebopros,
V.V. Kiselev, Yu.P. Kondakov, L.V. Nedorezov, V.G. Soukhovolsky. –
:
, – 2009. – 115 .
6. ɋɭɯɨɜɨɥɶɫɤɢɣ, ȼ.Ƚ.
[
] / . .
, . .
,
. .
, . .
//
. – 2005. – . 403, № 4. – . 551–553.
7. Ʉɨɧɞɚɤɨɜ, ɘ.ɉ.
[
]/ . .
//
.–
:
, 1974. – . 206–265.
8. ɂɥɶɢɧɫɤɢɣ, Ⱥ.ɂ.
,
[
]/ . .
;
. . .
.–
.:
.
- , 1965. – 525 .
9. Ȼɟɪɟɡɨɜɫɤɚɹ, Ɏ.ɋ.
[
] / . .
, . .
, . .
, . .
//
, 1999. –
. 365, № 3. – . 416–419.
10. Ɍɚɪɚɫɨɜɚ, Ɉ.ȼ.
:
[
]/ . .
, . .
, . .
, . .
.–
:
, 2004. – 180 .
. .
.:
-
–
-
,
,
,
-
.
,
-
,
,
.
.
-
,
.
,
.
,
–
.
183
,
,
,
,
-
.
***
Insects’ outbreaks are cyclic iterative processes. Outbreaks and forest fires are major
factors in determining location, formation and productivity of Russian forests. It is necessary
to develop and put into practice new effective forest protection methods of insect pests density estimation, assessing the impact of external factors on the insects, modeling and prediction
of population dynamics, new methods of decision-making in the planning of forest protection
to prevent and minimize damage from insects impacts.
It is proposed to use methods of the phenomenological theory of population dynamics
and model of outbreaks as a phase transition for estimation of critical population density. It is
possible to calculate the critical density of populations of several species of insect by using
the proposed approaches.
The models of outbreaks spatial dynamics are proposed that take into account the ratio
of characteristic times of changes in the outbreak’s area and pest population density.
We propose a population-energy model of the interaction of insects with food and introduce the notion of ecological food prices, a price and withdrawal price of food consumption
and prices are given for assessing the environmental food for insect populations at different
stages of the outbreak to model food consumption and insect damage forecast of plantation.
We consider the general scheme of decision-making process in planning and implementing protective measures. This scheme includes an assessment of the current state of the pest
population and its associated ecosystem components, prediction of environmental risk, the
choice of the optimal scenario of protection activities, forecast and evaluate the effectiveness
of protective measures.
184
Download