Lot Zadeh Fuzzy sets (1965)

advertisement
Lot Zadeh
Fuzzy sets (1965)
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x, y ∈ {0, 1}
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x, y ∈ {0, 1}
u, v ∈ [0, 1]
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x, y ∈ {0, 1}
x ¬x = x
0
1
1
0
u, v ∈ [0, 1]
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x, y ∈ {0, 1}
x ¬x = x
0
1
1
0
u, v ∈ [0, 1]
¬u = (1 − u)
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x, y ∈ {0, 1}
x ¬x = x
0
1
1
0
x
0
0
1
1
y x ∧y
0
0
1
0
0
0
1
1
x ∨y
0
1
1
1
u, v ∈ [0, 1]
¬u = (1 − u)
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x, y ∈ {0, 1}
x ¬x = x
0
1
1
0
x
0
0
1
1
y x ∧y
0
0
1
0
0
0
1
1
x ∨y
0
1
1
1
u, v ∈ [0, 1]
¬u = (1 − u)
e v = min(u, v )
u∧
e v = max(u, v )
u∨
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x ∨y
x ∧y
e v = max(u, v )
u∨
e v = max(u, v )
u∧
x ∨y =y ∨x
max(u, v ) = max(v , u)
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x ∨y
x ∧y
e v = max(u, v )
u∨
e v = max(u, v )
u∧
x ∨y =y ∨x
max(u, v ) = max(v , u)
x ∧y =y ∧x
min(u, v ) = min(u, v )
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x ∨y
x ∧y
e v = max(u, v )
u∨
e v = max(u, v )
u∧
x ∨y =y ∨x
max(u, v ) = max(v , u)
x ∧y =y ∧x
min(u, v ) = min(u, v )
x ∨ (y ∨ z) = (x ∨ y ) ∨ z
max(u, max(v , w )) = max(max(u, v ), w )
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x ∨y
x ∧y
e v = max(u, v )
u∨
e v = max(u, v )
u∧
x ∨y =y ∨x
max(u, v ) = max(v , u)
x ∧y =y ∧x
min(u, v ) = min(u, v )
x ∨ (y ∨ z) = (x ∨ y ) ∨ z
max(u, max(v , w )) = max(max(u, v ), w )
x ∧ (y ∧ z) = (x ∧ y ) ∧ z
min(u, min(v , w )) = min(min(u, v ), w )
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x ∨y
x ∧y
e v = max(u, v )
u∨
e v = max(u, v )
u∧
x ∨y =y ∨x
max(u, v ) = max(v , u)
x ∧y =y ∧x
min(u, v ) = min(u, v )
x ∨ (y ∨ z) = (x ∨ y ) ∨ z
max(u, max(v , w )) = max(max(u, v ), w )
x ∧ (y ∧ z) = (x ∧ y ) ∧ z
min(u, min(v , w )) = min(min(u, v ), w )
x ∨y =x ∧y
1 − max(u, v ) = min(1 − u, 1 − v )
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x ∨y
x ∧y
e v = max(u, v )
u∨
e v = max(u, v )
u∧
x ∨y =y ∨x
max(u, v ) = max(v , u)
x ∧y =y ∧x
min(u, v ) = min(u, v )
x ∨ (y ∨ z) = (x ∨ y ) ∨ z
max(u, max(v , w )) = max(max(u, v ), w )
x ∧ (y ∧ z) = (x ∧ y ) ∧ z
min(u, min(v , w )) = min(min(u, v ), w )
x ∨y =x ∧y
1 − max(u, v ) = min(1 − u, 1 − v )
x ∧y =x ∨y
1 − min(u, v ) = max(1 − u, 1 − v )
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x ∨y
x ∧y
e v = u + v − uv
u∨
e v = uv
u∧
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x ∨y
x ∧y
e v = u + v − uv
u∨
e v = uv
u∧
x ∨y =y ∨x
u + v − uv = v + u − vu
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x ∨y
x ∧y
e v = u + v − uv
u∨
e v = uv
u∧
x ∨y =y ∨x
u + v − uv = v + u − vu
x ∧y =y ∧x
uv = vu
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x ∨y
x ∧y
e v = u + v − uv
u∨
e v = uv
u∧
x ∨y =y ∨x
u + v − uv = v + u − vu
x ∧y =y ∧x
uv = vu
x ∨ (y ∨ z) = (x ∨ y ) ∨ z
u + (v + w − vw ) − u(v + u − vw ) =
= u + v + w − uv − uw − vw + uvw
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x ∨y
x ∧y
e v = u + v − uv
u∨
e v = uv
u∧
x ∨y =y ∨x
u + v − uv = v + u − vu
x ∧y =y ∧x
uv = vu
x ∨ (y ∨ z) = (x ∨ y ) ∨ z
x ∧ (y ∧ z) = (x ∧ y ) ∧ z
u + (v + w − vw ) − u(v + u − vw ) =
= u + v + w − uv − uw − vw + uvw
u(vw ) = (uv )w
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x ∨y
x ∧y
e v = u + v − uv
u∨
e v = uv
u∧
x ∨y =y ∨x
u + v − uv = v + u − vu
x ∧y =y ∧x
uv = vu
x ∨ (y ∨ z) = (x ∨ y ) ∨ z
x ∧ (y ∧ z) = (x ∧ y ) ∧ z
x ∨y =x ∧y
u + (v + w − vw ) − u(v + u − vw ) =
= u + v + w − uv − uw − vw + uvw
u(vw ) = (uv )w
1 − (u + v − vw ) = 1 − u − v + vw =
= (1 − u)(1 − v )
Íå÷åòêèå ëîãè÷åñêèå ñâÿçêè
x ∨y
x ∧y
e v = u + v − uv
u∨
e v = uv
u∧
x ∨y =y ∨x
u + v − uv = v + u − vu
x ∧y =y ∧x
uv = vu
x ∨ (y ∨ z) = (x ∨ y ) ∨ z
x ∧ (y ∧ z) = (x ∧ y ) ∧ z
u + (v + w − vw ) − u(v + u − vw ) =
= u + v + w − uv − uw − vw + uvw
u(vw ) = (uv )w
x ∨y =x ∧y
1 − (u + v − vw ) = 1 − u − v + vw =
= (1 − u)(1 − v )
x ∧y =x ∨y
(1 − u) + (1 − v ) − (1 − u)(1 − v ) =
= 1 − u + 1 − v − 1 + u + v + uv =
= 1 − uv
Íîðìû è êîíîðìû
Ôóíêöèè
T , S : [0, 1] × [0, 1] → [0, 1]
íàçûâàþò íîðìîé è êîíîðìîé, åñëè îíè:
1. ìîíîòîííû;
2. àññîöèàòèâíû;
3. êîììóòàòèâíû;
4. ñâÿçàíû ñîîòíîøåíèÿìè äå Ìîðãàíà
1 − T (u, v ) = S(1 − u, 1 − v )
è
1 − S(u, y ) = T (1 − u, 1 − v );
5. óäîâëåòâîðÿþò ãðàíè÷íûì óñëîâèÿì
T (0, 0) = T (0, 1) = T (1, 0) = 0,
T (1, 1) = 1, S(1, 1) = S(0, 1) = T (1, 0) = 1, S(0, 0) = 0
Download