МОУ «Кормиловский лицей» учитель высшей категории Хохлова Т.Н. Обеспечение преемственности при обучении математике в начальной и основной школе Как известно, одной из основных образовательных задач, стоящих перед начальной школой является формирование у детей вычислительных навыков в процессе обучения арифметическим действиям с натуральными числами. Судя по наблюдениям, беседам с учителями, данным, опубликованным в разные годы журналом и газетой «Начальная школа» начальная школа справляется с этой задачей довольно успешно. Неуспевающих среди младших школьников практически нет, а средний балл успеваемости достаточно высок. Между тем при переходе в пятый класс ситуация меняется. Успеваемость падает. Учителя жалуются на плохую подготовку выпускников начальной школы, на то, что дети за лето забывают многое из того, чему их научили раньше. О неблагополучии с подготовкой выпускников начальной школы к дальнейшему обучению свидетельствует и то, что при изучении математики в пятом классе существенная часть времени отводится на повторение того, что дети должны были усвоить в начальной школе. Между тем, беседы с учителями математики и личные наблюдения показывают, что времени на изучение материала в средних и старших классах не хватает. Несмотря на обучение в начальной школе и повторение в 5 - 6 классах вычислительные трудности многие ученики продолжают испытывать всё время обучения в школе. Достаточно большой процент детей к седьмому классу обращается к калькулятору даже при выполнении простейших вычислений. Одну из причин такого явления я вижу в том, что обучение в начальной школе во многом построено с опорой на механическую память. Яркий пример тому - таблица умножения, на заучивание которой отводится в младших классах много времени, и к повторению которой постоянно возвращаются на протяжении всего обучения в начальной школе. А в средней школе, как только она перестаёт быть одним из главных объектов внимания и осознаваться как нечто насущно необходимое, таблица умножения стремительно забывается. Известный советский математик А.Я. Хинчин, постоянно интересовавшийся вопросами преподавания в школе, выписал все виды применяющегося в процессе обучения повторения. Список получился весьма солидный. После чего он с горечью добавил: «Кошмар! Вместо бесконечных повторений нельзя ли учить так, чтобы материал не забывался?» Доказано, что повторение может быть эффективным только, если оно включено в изучение нового материала. Если при изучении новой темы ребёнок вынужден обращаться к тому, что ранее пройдено, то это осознаётся им как всё ещё нужное и, следовательно, не подлежащее забыванию. Если же обучение строится на механической памяти, если изо дня в день, из месяца в месяц решаются однотипные упражнения, то это не только не способствует формированию прочных знаний, не только является недопустимой тратой времени, но приводит ещё к одному серьёзному бедствию. Психологами убедительно доказано, что детям младшего школьного возраста совершенно необходимо знать, чему новому они научились. У ребёнка должно быть ощущение продвижения вперёд. Идеально, когда он может каждый день сказать себе и окружающим, что нового он узнал. Хуже, когда это можно сделать лишь в конце недели. Вот что говорит о пагубности низких темпов обучения Ш.А. Амонашвили: «Традиционная педагогика учит: не надо спешить... от простого к сложному, постепенно... Но медленный темп не соответствует психологии детского возраста. Ребёнок изначально подвижен. Медленный темп обучения приводит к замедлению умственного развития детей». Наличие характерных для начальной школы, а затем и пятого класса, малых темпов продвижения в овладении новыми знаниями и длительных периодов, в течение которых дети вообще не имеют возможности сказать себе и другим, чему именно новому их научили, закладывают, по мнению исследователей, прочный фундамент устойчивого нежелания учиться, отсутствия интереса к учению, что, конечно же, не может не сказаться негативно в средних и старших классах. О вреде медленных темпов обучения говорится в работах Эрдниева П.М., Занкова Л.В., Давыдова В.В., Эльконина Д.Б., Истоминой Н.Б. Выход мы видим в том, чтобы более эффективно изучать действующий материал и за счёт этого включать в работу задачи повышенной трудности, направленные на подготовку к дальнейшему обучению. Другим большим недостатком обучения в начальной школе, является то, что программа начальной школы недостаточно учитывает потребности дальнейшего обучения. Многое из того, чему учат в начальной школе, больше нигде не используется, а некоторые вещи откровенно мешают дальнейшему успешному обучению. Приведу лишь один пример. Учитель начальной школы тратит много времени и сил, чтобы дети усвоили правила отыскания неизвестных компонентов действий. С помощью этих правил решаются уравнения. В пятом классе 30% детей очень плохо знают эти правила и совсем не умеют решать уравнения, около 50% в большинстве случаев правильно воспроизводят правила, но далеко не всегда видят какое именно нужно применить в данном случае и, как правило, решают уравнения «методом подбора», и лишь около 20% учащихся в большинстве, но не во всех случаях, решают уравнения успешно. А в шестом классе детям предлагается забыть все эти правила и решать уравнения, прибавляя к обеим частям одно и то же число, деля уравнение на одно и то же не равное нулю число и т. д. В психологии отмечается, что овладение негодным приёмом опасно не только потому, что он мало эффективен, но и потому, что он будет серьёзно мешать овладению рациональными приёмами в дальнейшем. Детей приходится переучивать, а это всегда труднее, чем учить. Таким образом, наличие таких тупиковых тем в курсе математики начальной школы мешает осуществлению преемственности в обучении, не готовит к обучению в средних классах и не способствует развитию детей. Трудности усвоения систематических курсов алгебры и геометрии, которые начинаются в седьмом классе, также идут из начальной школы. Приведём лишь один пример. Проанализировав учебники математики начальной школы, можно заметить, что авторы избегают включения в изложение материала букв и буквенных выражений. Это вытекает из положения о том, что в силу возрастных особенностей ученикам младших классов практически недоступно абстрактное мышление. Поэтому в преподавании надо опираться главным образом на конкретные примеры, согласующиеся с жизненным опытом ребёнка, наглядные образы и т.д. Буквенные выражения - это слишком абстрактно, то, до чего ребёнок ещё не дорос. Однако неспособность детей этого возраста к абстрактному мышлению сильно преувеличена: его можно и нужно развивать. Из работ Д.Б. Эльконина со всей очевидностью следует, что стимулировать развитие, нужно противопоставляя традиционным наглядным пособиям моделирование, в том числе моделирование математических законов и закономерностей с помощью букв и буквенных выражений. Дети, с начальной школы привыкшие работать с буквами, понимающие, что вместо буквы в буквенное выражение может быть подставлено любое число из рассматриваемого множества, несомненно, будут испытывать гораздо меньше затруднений при изучении алгебры. Приведём несколько примеров прикладного характера. Операции сложения и вычитания натуральных чисел дети в начальной школе усваивают достаточно хорошо. А при изучении десятичных дробей в шестом классе в примерах на сложение и вычитание самыми распространёнными, долго не изживаемыми ошибками, являются ошибки при записи в столбик. Дело в том, что при изучении сложения и вычитания натуральных чисел, учитель, произнося верные слова о необходимости выполнения сложения и вычитания по разрядам, в действительности обращает основное внимание на выравнивание записей, на то, не сдвинуты ли в записях последние цифры каждого из чисел. Естественно, выполняя рассматриваемые действия, дети тоже думают, прежде всего, о выравнивании записей, совершенно забывая о разрядах. В начальной школе это оправдано, так как последняя цифра любого числа -всегда стоит в разряде единиц. Но когда они "дорастают" до сложения и вычитания десятичных дробей, то пытаются и здесь выравнивать записи. Если правильно организовать обучение сложению и вычитанию натуральных чисел в начальной школе, то в шестом классе таких трудностей не возникнет. Подобных примеров можно привести достаточно много. Это и умножение и деление на 10, 100, 1000., и алгоритм деления в столбик , и многое другое. Необходимость перестройки и совершенствования начального образования является одной из актуальных проблем современной школы. Преемственность в обучении, кроме того, является необходимым условием реализации его развивающей функции, которая в настоящий момент выдвигается на передний план. Возникает противоречие между потребностями общества в высокообразованных людях и невозможностью удовлетворить эту потребность при организации непрерывного образования, в частности из-за того, что не обеспечивается преемственность преподавания в начальной и средней школе. Для решения обозначенной проблемы необходимо решить ряд частных задач. Прежде всего, необходимо разобраться, каковы особенности ныне действующих учебников математики для начальной школы и методических пособий, что именно препятствует обеспечению преемственности в обучении. Отсюда вытекает первая задача исследования', проанализировать действующие программы и учебники математики для младших классов с целью выявления потенциальных возможностей повышения эффективности подготовки детей к дальнейшему обучению и обеспечения преемственности обучения. Во многих исследованиях преемственность отождествляется с систематическим повторением. Такое понимание преемственности характерно, например, для многих ныне действующих учебников математики для начальной школы, где запоминание рассматривается как функция большого числа повторений, а повторение осуществляется в результате решения большого количества однотипных упражнений на протяжении всего курса. Как подчёркивалось, навыки, сформированные в результате такого повторения, стремительно теряются, как только перестают быть предметом целенаправленной отработки (например, вычислительные навыки при переходе в пятый класс). Повторение только в том случае будет способствовать преемственности, если на каждом новом этапе это не будет повторение тех же самых упражнений, выполняемых теми же самыми способами. В упражнениях на повторение непременно должно появляться новое, отмирать старое, несущественное в соответствии с логикой развития изучаемого понятия и с повышением уровня образования учащихся. Таким образом, преемственность хотя и требует повторения, но лишь такого, которое обеспечивает непрерывное развитие системы понятий. Для того, чтобы преемственность реально осуществлялась, повторение должно быть органически включено в новую тему и по мере развития темы должно соответственным образом меняться, не сводясь лишь к механическому повторению одних и тех же упражнений. В некоторых работах преемственность отождествляется с таким принципом дидактики как принцип систематичности. Именно этот принцип обязывает учителя устанавливать между изучаемым учебным материалом определённые дидактические связи - связи преемственности. Под связями преемственности понимаются такие связи, когда всякий новый материал с одной стороны, логически связывается с ранее изученным, опирается на него, а с другой стороны - подготавливает почву, составляет логическую основу для изучения и усвоения последующего материала. Так, например, усвоение вычислительных алгоритмов с натуральными числами должно подготавливать почву для изучения действий с десятичными дробями. Обеспечение преемственности связано не только с усвоением содержания учебного материала, но и со способами обучения, с теми действиями, которые выполняются учащимися в ходе овладения ими учебным материалом. Например, обучение решению арифметических задач, может в гораздо большей мере, чем в большинстве ныне действующих курсов готовить школьников к решению алгебраических задач. Обобщая всё выше сказанное, можно дать следующее определение преемственности. Преемственность в обучении — это установление необходимой связи и правильного соотношения между частями отдельного учебного предмета на разных ступенях его изучения. Обучение математике в начальной школе реализует принцип преемственности, если оно подготавливает детей к изучению дальнейших тем внутри начальной школы и обеспечивает пропедевтику обучения в следующих классах. Понятие преемственности характеризуется также требованиями к знаниям и умениям учащихся на каждом этапе обучения, формам, методам и приёмам объяснения нового учебного материала и ко всей последующей работе по его усвоению. Например, если организовать работу с определением умножения с учётом требований преемственности, то это позволит подготовить детей к конструированию и усвоению таблицы умножения, к усвоению определения деления, обеспечит формирование умения работать с любым определением как с эквиваленцией, обеспечит пропедевтику работы с многочленами, будет способствовать формированию умения аргументировано и доказательно излагать свои мысли. Не учитывая понятие преемственности, нельзя придать обучению перспективный характер, при котором отдельные темы рассматриваются не изолированно друг от друга, а в той взаимосвязи, которая позволяет изучение каждой текущей темы строить не только с опорой на предыдущую, но и с ориентировкой на последующие темы. Обучение с соблюдением преемственности воспитывает действенность, активность знаний и умений, способность использовать их при решении новых практических и теоретических задач. Это является важным условием преодоления формализма знаний, который, по мнению многих исследователей, является одним из основных недостатков современного школьного обучения. Кроме того, обучение с соблюдением преемственности во многом способствует успешности обучения, развитию интереса как к конкретному учебному предмету, так и к процессу учения вообще.