Загрузил mkhrunkov00

Расчет аэродинамических характеристик самолета Piper Pa-42

реклама
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное автономное
образовательное учреждение высшего образования
«Самарский национальный исследовательский университет
имени академика С.П. Королева»
(Самарский университет)
Институт авиационной и ракетно-космической техники
Кафедра конструкции и проектирования летательных аппаратов
РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
к курсовому проекту по дисциплине
«Аэродинамика»
Расчет аэродинамических характеристик самолета
Piper PA-42 Cheyenne
Выполнил: Хрунков М.А.
студент группы 3312-240304D
Проверил: Назаров Д. В.
Самара 2022
ЗАДАНИЕ
1. Собрать сведения о самолёте-прототипе и изложить их кратко во
введении
2. Рассчитать габаритные размеры проектируемого самолета, увеличив
длину прототипа на 10%.
3. Выполнить чертёж общего вида самолёта (формат А3) в соответствии
с полученными габаритными размерами, соблюдая требования ГОСТ.
4.
Вычислить
основные
геометрические
характеристики
проектируемого самолёта.
5. Рассчитать крейсерский 𝑐𝑦𝑎 самолета, критическое число Маха и
максимальное значение числа Маха, считая, что взлетная масса вырастет на
5% по отношению к прототипу.
6. Выполнить расчёт коэффициента лобового сопротивления самолёта
при нулевой подъёмной силе на высоте крейсерского полёта и докритического
числа Маха.
7. Провести расчёт значения коэффициента максимальной подъёмной
силы самолёта для докритического режима полёта.
8. Построить докритическую поляру самолёта для высоты полёта
крейсерского режима (результаты представить в виде таблицы и графика).
9. Построить взлётно-посадочные поляры самолёта с учётом влияния
земли.
10. Построить зависимости коэффициента подъёмной силы от угла атаки
на режимах взлёта и посадки самолёта с учётом влияния земли. Показать
влияние механизации.
11. Построить зависимость подъёмной силы самолёта на режиме взлёта.
За счёт выбора эффективной механизации добиться взлёта самолёта.
12. Выполнить подбор винта к самолету.
13. Написать пояснительную записку в редакторе Word к курсовой
работе с учётом ГОСТа по учебным текстовым документам.
2
РЕФЕРАТ
Расчетно- пояснительная записка:
САМОЛЕТ, СХЕМА, ГЕОМЕТРИЯ САМОЛЕТА, КРЫЛО, АНАЛИЗ,
НАГРУЗКА,
АЭРОДИНАМИЧЕСКИЕ
ХАРАКТЕРИСТИКИ,
КОЭФФИЦИЕНТ СИЛЫ,
Объектом исследования является легкий реактивный самолёт Ил-114, а
точнее его геометрическая модификация
Цель курсового проекта– определение аэродинамических характеристик
некоторого проектируемого самолёта на взлётном, посадочном, крейсерском
и закритических режимах полёта.
Графическое задание дано на рисунке 1, а основные тактикотехнические характеристики приведены в таблице 1.
Работа велась по приближенной методике,
поэлементный расчет по инженерной методике.
также
применялся
В результате рассчитаны геометрические параметры самолета и
критическое число Маха, рассчитаны и построены докритические поляры,
характеристики
подъемной
силы
для
немеханизированного
и
механизированного крыльев, взлетная и посадочная поляры, зависимости
максимального качества крыла, коэффициента отвала поляры и коэффициента
лобового сопротивления от числа маха.
3
СОДЕРЖАНИЕ
ВВЕДЕНИЕ .............................................................................................................. 6
1
2
Основные геометрические характеристики самолета ................................... 7
1.1
Расчет характеристик крыла ...................................................................... 7
1.2
Расчет характеристик горизонтального и вертикального оперения ..... 8
1.3
Расчет характеристик фюзеляжа ............................................................. 10
1.4
Расчет характеристик мотогондол и подвесных топливных баков ..... 10
Исходные данные для расчета поляр ............................................................ 13
2.1
3
Выбор профиля крыла и оперения.......................................................... 13
Расчет докритической поляры ....................................................................... 15
3.1 Определение коэффициента минимального лобового сопротивления
крыла ................................................................................................................... 15
3.2 Определение коэффициента минимального лобового сопротивления
горизонтального и вертикального оперения ................................................... 18
3.3 Определение коэффициента минимального лобового сопротивления
фюзеляжа ............................................................................................................ 20
3.4 Определение коэффициента минимального лобового сопротивления
мотогондолы ....................................................................................................... 21
3.5 Определение коэффициента минимального лобового сопротивления
крыльевого ПТБ ................................................................................................. 22
3.6 Определение минимального коэффициента лобового сопротивления
самолета .............................................................................................................. 22
3.7
4
Расчет координат докритической поляры .............................................. 23
Расчет взлетно- посадочной поляры ............................................................. 25
4.1 Определение коэффициента минимального лобового сопротивления
самолета .............................................................................................................. 25
4.1.1 Определение коэффициента минимального лобового
сопротивления крыла...................................................................................... 25
4.1.2 Определение коэффициента минимального лобового
сопротивления горизонтального и вертикального оперения ..................... 27
4.1.3 Определение коэффициента минимального лобового
сопротивления фюзеляжа............................................................................... 29
4.1.4 Определение коэффициента минимального лобового
сопротивления мотогондолы ......................................................................... 29
4
4.1.5 Определение коэффициента минимального лобового
сопротивления крыльевого ПТБ ................................................................... 29
4.1.6 Определение минимального коэффициента лобового
сопротивления самолета................................................................................. 30
4.2 Расчет характеристик подъемной силы для немеханизированного
крыла ................................................................................................................... 30
4.3 Расчет характеристик подъемной силы для механизированного крыла
на режиме взлета и посадке .............................................................................. 32
4.4
Учет влияния земли на режиме взлета и посадки ................................. 34
4.5
Построение взлетно- посадочных характеристик ................................. 36
4.5.1
Зависимость коэффициента подъемной силы от угла атаки ......... 36
4.5.2
Построение взлетно- посадочных поляр ......................................... 47
Взлетную и посадочную поляру строят по уравнению .............................. 47
4.5.3 Расчет зависимости подъёмной силы от угла атаки на режиме
взлёта 53
5
Подбор винта ................................................................................................... 55
ЗАКЛЮЧЕНИЕ ..................................................................................................... 60
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ ........................................... 61
5
ВВЕДЕНИЕ
В данной работе рассматривается легкий многоцелевой самолет
PiperPA-42 Cheyenne, разработанный фирмой Piper Aircraft Inc в 1979 году.
Вычисляются основные геометрические и аэродинамические параметры этого
самолёта, с учетом удлинения самолета на 15%. На основании полученных
данных строятся теоретические зависимости коэффициента подъёмной силы
от угла атаки и от коэффициента сопротивления (поляры) для взлетного,
крейсерского и посадочного режимов полёта. Основные характеристики
самолета представлены в таблице 1.
Таблица 1 – Основные характеристики самолета Piper PA-42 Cheyenne
Параметр
Значение
Длина самолета, м
13,23
Размах крыльев, м
14,53
Высота самолета, м
4,5
Масса пустого самолета, кг
3101
Полезная нагрузка, кг
1979
Максимальная взлетная масса, кг
5080
Крейсерская скорость, км/ч
325
Максимальная скорость полета, км/ч
362
Максимальная дальность полета, км
4207
Максимальная высота полета, м
10925
Тип двигателя
турбовинтовой
Мощность, л.с.
2×720
Пересчитанные параметры: 𝑙с ∙ 115% = 13,23 ∙ 1,15 = 15,21 м;
𝐺0 ∙ 110% = 5080 ∙ 1.1 = 5588 кг.
6
1 Основные геометрические характеристики самолета
1.1 Расчет характеристик крыла
Крыло
имеет
сложную
форму,
поэтому
следует
вычислить
характеристики для двух частей консоли крыла, которые представляют собой
трапеции.
Центральная хорда:
𝑏0(1) = 4.411 м,
𝑏0(2) = 2.603 м;
Концевая хорда:
𝑏к(1) = 2.603 м,
𝑏к(2) = 1.026 м;
Полуразмах крыла:
𝑙 𝑙1 𝑙2
= + = 2.234 + 5.057 = 7.291 м → 𝑙 = 14.582 м
2 2 2
Стреловидность по передней кромке:
χ0(1) = 31,45°;
χ0(2) = 5.17°.
Площадь крыла:
𝑏0(1) + 𝑏к(1) 𝑙1 4.411 + 2.603
∙ =
∙ 2.234 = 7.835 м2
2
2
2
𝑏0(2) + 𝑏к(2) 𝑙2 2.603 + 1.026
𝑆2 =
∙ =
∙ 5.057 = 9.176 м2
2
2
2
𝑆1 =
𝑆 = 2 ∙ (𝑆1 + 𝑆2 ) = 2 ∙ (7.835 + 9.176) = 34.022 м2
Удлинение крыла:
𝑙 2 14.5822
𝜆= =
= 6.25
𝑆
34.022
Сужение крыла:
𝜂1 =
𝑏0(1) 4.411
=
= 1,695
𝑏к(1) 2.603
𝜂1 =
𝑏0(2) 2.603
=
= 2,537
𝑏к(2) 1.026
7
Средняя геометрическая хорда
𝑏ср =
𝑆 34.022
=
= 2.291 м
𝑙 14.582
Координата носка САХ:
𝑥𝐴1 =
𝑏0(1) + 2𝑏к(1) 1
4.411 + 2 ∙ 2.603 1
𝑡𝑔χ0(1) =
∙ ∙ 𝑡𝑔(31.45°) = 0,140 м
𝑏0(1) + 𝑏к(1) 6
4.411 + 2.603 6
𝑥𝐴2 =
𝑏0(2) + 2𝑏к(2) 1
2,603 + 2 ∙ 1,026 1
𝑡𝑔χ0(2) =
∙ ∙ 𝑡𝑔(5,17°) = 0,020 м
𝑏0(2) + 𝑏к(2) 6
2,603 + 1,026 6
𝑥𝐴 =
𝑥𝐴1 𝑆1 + 𝑥𝐴2 𝑆2 0,140 ∙ 7.835 + 0,020 ∙ 9.176
=
= 0,075 м
𝑆1 + 𝑆2
7,835 + 9,176
Величина САХ:
𝑏0(1) 𝑏к(1)
2
2
4.411 ∙ 2.603
𝑏𝐴1 = (𝑏0(1) + 𝑏к(1) −
) = (4.411 + 2.603 −
)
3
𝑏0(1) + 𝑏к(1)
3
4.411 + 2.603
= 3.536 м
𝑏0(2) 𝑏к(2)
2
2
2.603 ∙ 1.026
𝑏𝐴2 = (𝑏0(2) + 𝑏к(2) −
) = (2.603 + 1.026 −
)
3
𝑏0(2) + 𝑏к(2)
3
2.603 + 1.026
= 1.929 м
𝑏𝐴 =
𝑏𝐴1 𝑆1 + 𝑏𝐴2 𝑆2 3.536 ∙ 7.835 + 1.929 ∙ 9.176
=
= 2.669 м
𝑆1 + 𝑆2
7.835 + 9.176
1.2 Расчет характеристик горизонтального и вертикального оперения
Габаритная площадь горизонтального оперения:
𝑆г.о.габ = 8,36 м2
Относительная площадь горизонтального оперения:
̅̅̅̅̅
𝑆г.о. =
𝑆г.о.габ
8,36
=
= 0.245
𝑆
34.022
Площадь проекции горизонтального оперения, омываемая потоком:
𝑆г.о. = 5 м2
Центральная хорда:
𝑏0(г.о.) = 1,640 м
Концевая хорда:
8
𝑏к(г.о.) = 0,865 м
Размах горизонтального оперения:
𝑙г.о. = 6,675 м
Стреловидность по передней кромке:
χ0(г.о) = 10,25°
Удлинение горизонтального оперения:
𝜆г.о.
𝑙г.о. 2
6,6752
=
=
= 5,33
𝑆г.о.габ
8,36
Сужение горизонтального оперения:
𝜂г.о. =
𝑏0(г.о.)
1,64
=
= 1,896
𝑏к(г.о.) 0,865
Площадь вертикального оперения, омываемая потоком (вычитаем
площадь поперечного сечения горизонтального оперения, расположенного в
концевой части вертикального оперения):
𝑆в.о. = 5,755 − 0,1988 = 5,556 м2
Центральная хорда:
𝑏0(в.о.) = 2,837 м
Концевая хорда:
𝑏к(в.о.) = 1,726 м
Удлинение вертикального оперения:
𝜆г.о.
𝑙в.о. 2 2,5362
=
=
= 1,158
𝑆в.о.
5,556
Стреловидность вертикального оперения по передней кромке:
χ0(в.о) = 40,6°
Стреловидность вертикального оперения по линии 0,25 от начала хорды:
χ0,25(в.о) = 36,72°
Сужение вертикального оперения:
𝜂в.о. =
𝑏0(в.о.) 2,837
=
= 1,644
𝑏к(в.о.) 1,726
9
1.3 Расчет характеристик фюзеляжа
Площадь миделевого сечения фюзеляжа:
𝑆м.ф. = 2.104896 м2
Эквивалентный диаметр фюзеляжа:
𝑆м.ф.
2.104896
𝑑ф.э. = 2√
=2∙√
= 1.637 м
𝜋
3.14
Длина фюзеляжа:
𝑙ф = 14,026 м
Длина головной, цилиндрической и хвостовой части фюзеляжа:
𝑙г = 4,347 м
𝑙ц = 2,924 м
𝑙х = 6,755 м
Удлинение фюзеляжа:
𝜆ф =
𝑙ф
14,026
=
= 8,568
𝑑ф.э.
1.637
𝜆г =
𝑙г
4,347
=
= 2,655
𝑑ф.э. 1.637
𝜆х =
𝑙х
6,755
=
= 4,126
𝑑ф.э. 1.637
Площадь омываемой поверхности фюзеляжа:
2
3
𝑆ф = 𝜋𝑑ф.э. 𝑙ф (1 −
2
1
) × (1 + 2 ) = 3,1415 ∙ 1.637 ∙ 14,026 ×
𝜆ф
𝜆ф
2
2 3
1
× (1 −
) × (1 +
) = 61,239 м2
2
8,568
8,568
1.4 Расчет характеристик мотогондол и подвесных топливных баков
Площадь миделевого сечения подвесного топливного бака:
𝑆м.птб = 0,137 м2
10
Эквивалентный диаметр ПТБ:
𝑆м.птб
0,137
𝑑э.(ПТБ) = 2√
=2∙√
= 0,41766 м
𝜋
3,1415
Длина головной и хвостовой части:
𝑙г = 1,191 м
𝑙х = 1,594 м
𝑙ПТБ = 2,785 м
Удлинение ПТБ:
𝜆ПТБ =
𝑙ПТБ
𝑑э.(ПТБ)
𝜆г(ПТБ) =
𝜆х(ПТБ) =
=
𝑙г
𝑑э.(ПТБ)
𝑙х
𝑑э.(ПТБ)
2,785
= 6,67
0,41766
=
1,191
= 2,85
0,41766
=
1,594
= 3,82
0,41766
Площадь омываемой поверхности ПТБ:
2
3
𝑆ПТБ = 𝜋𝑑э.(ПТБ) 𝑙ПТБ (0,5 + 0,135
𝜆г(ПТБ)
0,3
) × (1,015 + 1,5 )
𝜆ПТБ
𝜆ПТБ
= 3,1415 ∙ 0,41766 ∙ 2,785 ×
2
2,85 3
0,3
× (0,5 + 0,135 ∙
) × (1,015 +
) = 2,556 м2
6,67
6,671,5
Площадь миделевого сечения мотогондолы:
𝑆м.м. = 0,74 м2
Эквивалентный диаметр мотогондолы:
𝑑э.м. = 2√
𝑆м.м.
0,74
=2∙√
= 0.971 м
𝜋
3,1415
Длина головной и хвостовой части:
𝑙г = 2.453 м
𝑙х = 4.118 м
𝑙м = 6.571 м
11
Удлинение мотогондолы:
𝜆м =
𝑙м
6,571
=
= 6,769
𝑑э.м. 0,971
𝜆г(м) =
𝑙г
2,453
=
= 2,527
𝑑э.м. 0,971
𝜆х(м) =
𝑙х
4,118
=
= 4,242
𝑑э.м. 0,971
Площадь омываемой поверхности мотогондолы:
2
𝜆г(м) 3
0,3
𝑆м = 𝜋𝑑э.м. 𝑙м (0,5 + 0,135
) × (1,015 + 1,5 ) = 3,1415 ∙ 0,971 ∙ 6,571 ×
𝜆м
𝜆м
2
2,527 3
0,3
× (0,5 + 0,135 ∙
) × (1,015 +
) = 13.899 м2
6,769
6,7691,5
12
2 Исходные данные для расчета поляр
2.1 Выбор профиля крыла и оперения
Пользуясь рекомендациями [1], выбираем для крыла профиль B-12%,
для оперения профиль B-8%. Характеристики профилей представлены в
таблице 2.
𝑐̅, %
𝑥̅𝑐̅ , %
𝑓,̅ %
𝑥̅𝑓̅ , %
𝛼0 , град
B-12%
12
33
1.987
30
-1,05
NACA 0006il
6
30
0
0
0
Таблица 2 – Характеристики профилей В-08, В-12
2.2 Определение критического числа Маха для крыла
Исходные данные
Масса максимального запаса топлива
𝑚 𝑇 = 1700 кг;
Максимальная(взлетная) масса
𝑚𝑚𝑎𝑥 = 5080кг;
Коэффициент, учитывающий тип профиля:
̅ = 1;
𝐾
Ускорение свободного падения (H=9 км)
𝑔 = 9.7789 м/с2 [ГОСТ 4401 − 81];
Плотность (H=9 км)
𝜌ℎ = 0,467 кг/м3 ;
Скорость звука (H=9 км)
𝑎ℎ = 303,9 м/с.
В качестве нулевого приближения примем крейсерское число
Маха(h=9000 м)
(0)
𝑀∗
= 0,297
Средняя масса самолета во время крейсерского полета
𝑚ср = 𝑚𝑚𝑎𝑥 −
𝑚𝑇
2
= 5588 −
1700
2
= 4738 кг
13
Для приближенного определения критического числа Маха 𝑀∗кр
используем уравнение
𝑐̅ =
0,3
1/3
1
(
𝑀∗кр 𝑀∗кр 𝑐𝑜𝑠χ0,25
− 𝑀∗кр 𝑐𝑜𝑠χ0,25 )
{1 −
5+(𝑀∗кр 𝑐𝑜𝑠χ0,25 )2
[
]
̃2
5+𝑀
3.5 2/3
}
,
где 𝑐̅ = 0,12;
̃ =𝐾
̅−
𝑀
0,25𝑐𝑦𝑎
𝑐𝑜𝑠 2 χ0,25
,
𝑐𝑦𝑎 =
2𝑚ср 𝑔
(0) 2
𝜌ℎ 𝑎ℎ2 (𝑀∗ ) 𝑆кр
Для определения 𝑀∗кр , заданного неявно, используем программу Excelв
которой методом подбора определяем критическое число Маха в первом
(1)
приближении 𝑀∗ .
𝑐𝑦𝑎 =
2∙4738∙9,774
0,467∙303.92 ∙0,2972 ∙34
̃ =1−
𝑀
(1)
𝑀∗
0,25∙0,716
𝑐𝑜𝑠 2 (0,122)
= 0,716
= 0,82
= 0,657
Так как в первом приближении число Маха оказалось больше
крейсерского числа Маха, принимаем первое приближение за критическое
число Маха.
Коэффициент подъемной силы для критического числа Маха:
𝑐𝑦𝑎 = 0,146.
14
3 Расчет докритической поляры
Докритическая поляра самолёта строится для расчётной высоты полёта
и расчётной скорости. За расчетные данные примем высоту полета равной
𝐻расч = 0.85𝐻𝑚𝑎𝑥 = 0,85 ∙ 10925 = 9286 м
Параметры атмосферы на высоте 9000 м:
Давление
𝑃 = 30801 Па;
Температура
𝑇 = 229,7 К;
Плотность
𝜌 = 0,467 кг/м3;
Скорость звука
а = 303,9 м/с;
Число Маха
𝑀 = 0,297;
Кинематическая вязкость
𝜈 = 3,2 ∙ 10−5 м2 /с.
Расчетная скорость
𝑉расч = 90,278 м/с
Для
расчета
минимального
сопротивления
частей
самолета
используется метод аналогии с тонкой пластиной согласно [2].
3.1 Определение
коэффициента
минимального
лобового
сопротивления крыла
Для расчета сопротивления трения для крыла, рассчитаем минимальное
сопротивление для одной консоли крыла. Поделим консоль на два участка от
корневой части до мотогондолы и от мотогондолы до конца крыла.
Параметры частей:
𝑆1 = 7,835 м2 ;
𝑆1̅ =
𝑆1
𝑆кр
= 0,46 ;
15
𝑏1ср = 3,51 м;
𝑆2 = 9,17 м2 ;
𝑆2̅ =
𝑆1
𝑆кр
= 0,54 ;
𝑏2ср = 1,8145 м.
Далее для каждого участка найдем координату 𝑥̅𝑡 𝑖 перехода ЛПС в ТПС,
а также число Рейнольдса𝑅𝑒𝑖 .
10𝑛
𝑅𝑒
𝑥̅𝑡 = 𝑚𝑖𝑛
,
√𝑥̅𝑐̅ 𝑥̅𝑓̅
{ 𝑏̅п
где 𝑏̅п - хорда предкрылка относительно хорды профиля,
𝑛 = 5 + [1,3 + 0,6𝑀(1 − 0,25𝑀2 )]√1 − [
ℎ
𝑅𝑒)−1
𝑏ср
0,08𝑀2
2
lg(
2,2−
] ,
1+0,312𝑀
где h- средняя высота бугорков шероховатости поверхности крыла
h=0.00001.
𝑉расч 𝑏ср
𝜈
90,278 ∙ 3,51
𝑅𝑒1 =
= 9,89 ∙ 106
3,2 ∙ 10−5
𝑅𝑒 =
𝑅𝑒2 =
90,278 ∙ 1,8145
= 5,12 ∙ 106
−5
3,2 ∙ 10
𝑛1 = 𝑛2 = 5 + [1,3 + 0,6 ∙ 0,297(1 − 0,25 × 0,2972 )] ×
× √1 − [
lg(
10−5
∙9,89∙106 )−1
3,51
0,08∙0,2972
2,2−
2
] = 6.44
1+0,312∙0,297
10𝑛
106,44
=
= 0,2802
𝑅𝑒1 9,89 ∙ 106
10𝑛
106,44
=
= 0,54
𝑅𝑒2 5,12 ∙ 106
16
√𝑥̅𝑐̅ 𝑥̅𝑓̅ = √0,33 ∙ 0,3 = 0,316
𝑥̅𝑡1
𝑥̅𝑡2
0.2802
= 𝑚𝑖𝑛 { 0.316 = 0.2802
−
0.54
= 𝑚𝑖𝑛 {0.316 = 0.316
−
Для смешанного пограничного слоя при значениях числе Рейнольдса
4,85 ∙ 105 < 𝑅𝑒 < 3 ∙ 107 , коэффициент одностороннего трения плоской
пластины определяется по формуле[2]
0,455
40𝑥̅𝑡 0,625
𝑐𝐹 =
[1 − 𝑥̅𝑡 +
]
(𝑙𝑔𝑅𝑒)2,58
𝑅𝑒 0,375
0,8
𝑐𝐹1
0,455
40 ∙ 0,28020,625
=
[1 − 0,2802 +
]
(lg (9,89 ∙ 106 ))2,58
(9,89 ∙ 106 )0,375
𝑐𝐹2
0,455
40 ∙ 0,3160,625
=
[1 − 0,316 +
]
(lg (5,12 ∙ 106 ))2,58
(5,12 ∙ 106 )0,375
0,8
= 0,002423
0,8
= 0,002643
Суммарный коэффициент трения будет равен
2𝑐𝐹кр = ∑(2 𝑐𝐹𝑖 ∙ 𝑆𝑖̅ ) = (2 ∙ 0,002423 ∙ 0,46) + (2 ∙ 0,002643 ∙ 0,54)
= 0.005085
Профильное сопротивление консоли определяется по формуле
𝐶𝑥𝑎 р кр = 2𝑐𝐹кр 𝜂𝑐 𝜂𝑀 ,
где 𝜂𝑀 – коэффициент, учитывающий фактор сжимаемости;𝜂𝑐 – коэффициент,
учитывающий толщину профиля и координату точки перехода ЛПС в ТПС.
Согласно [2] коэффициенты равны:
𝜂𝑀 = 0,95;
𝜂𝑐 =1,34.
𝐶𝑥𝑎 р кр = 0.005085 ∙ 1,34 ∙ 0,95 = 0,006496
При расчёте пассивного сопротивления крыла учитывается взаимное
влияние крыла и фюзеляжа, а также наличие щелей
17
𝐶𝑥𝑎𝑚𝑖𝑛кр = 𝐶𝑥𝑎 р кр (1 − 𝑘инт
𝑆пф
) + 0.001𝑙щ̅ ,
𝑆
где 𝑘инт – коэффициент интерференции выбирается в зависимости от
аэродинамической схемы самолёта; 𝑆пф - площадь подфюзеляжной части
𝑙
крыла; 𝑙щ̅ = щ - относительный размах щелей на крыле.
𝑙
Согласно [2] коэффициенты равны:
𝑘инт = 0,5;
𝑆пф = 5,914 м2 ;
𝑙щ̅ =
3.82
14.58
= 0,262.
𝐶𝑥𝑎𝑚𝑖𝑛кр = 0,006496 ∙ (1 − 0,5 ∙
3.2 Определение
5,914
) + 0.001 ∙ 0,262 = 0,0062
34
коэффициента
минимального
лобового
сопротивления горизонтального и вертикального оперения
Минимальное сопротивление хвостового оперения рассчитывается
аналогично расчетам для крыла.
Минимальное лобовое сопротивление горизонтального сопротивления
считаем для двух частей: правой и левой консоли.
Параметры частей:
𝑆1 = 𝑆2 = 4,174 м2;
𝑆1̅ = 𝑆2̅ = 0,5 ;
𝑏1ср = 𝑏2ср = 1,2525 м;
h=0,00001
𝑅𝑒1 = 𝑅𝑒2 =
1,2525 ∙ 90,278
= 3,53 ∙ 106
3,2 ∙ 10−5
𝑛1 = 𝑛2 = 5 + [1,3 + 0,6 ∙ 0,297(1 − 0,25 ∙ 0,2972 )] ×
10−5
× √1 − [
lg (
1,25
∙ 3,53 ∙
2,2 −
106 )
2
−1
0,08∙0,2972
1+0,312∙0,297
18
] = 6.44
10𝑛
106,44
=
= 0.7847
𝑅𝑒
3.53 ∙ 106
√𝑥̅𝑐̅ 𝑥̅𝑓̅ = 0, т.к. на оперении используем симметричный профиль.
𝑥̅𝑡1 = 𝑥̅𝑡2
0.7847
= 𝑚𝑖𝑛 { − = 0,7847
−
0,455
40 ∙ 0,78470,625
=
[1 − 0,7847 +
]
(lg (3,53 ∙ 106 ))2,58
(3,53 ∙ 106 )0,375
𝑐𝐹1 = 𝑐𝐹2
0,8
= 0,001490
Суммарный коэффициент трения будет равен
2𝑐𝐹ГО = 2 ∙ 0,001490 = 0.0029803
𝜂𝑀 = 0,95;
𝜂𝑐 =1,16.
𝐶𝑥𝑎 р ГО = 0.0029803 ∙ 1,16 ∙ 0,95 = 0,0032936
𝑘инт = 0,7;
𝑆пф = 0,336 м2 ;
𝑙щ̅ =
2,664∙2+0,88∙2
6,6775
= 1,062.
𝐶𝑥𝑎𝑚𝑖𝑛ГО = 0,0032936 ∙ (1 − 0,7 ∙
0.336
) + 0.001 ∙ 1,062 = 0,004263
8,368
Вертикальное оперение:
Параметры:
𝑆 = 5,887 м2 ;
𝑆̅ = 1 ;
𝑏ср = 2,2815 м;
h=0,00001
𝑅𝑒 =
2,28 ∙ 90,278
= 6,44 ∙ 106
−5
3,2 ∙ 10
𝑛 = 5 + [1,3 + 0,6 ∙ 0,297(1 − 0,25 ∙ 0,2972 )] ×
19
10−5
× √1 − [
lg (
2,28
2
∙ 6,44 ∙ 106 ) − 1
2,2 −
] = 6.44
0,08∙0,2972
1+0,312∙0,297
10𝑛
106,44
=
= 0.4308
𝑅𝑒
6,44 ∙ 106
√𝑥̅𝑐̅ 𝑥̅𝑓̅ = √0,3 ∙ 0 = 0
0,4308
𝑥̅𝑡 = 𝑚𝑖𝑛 { − = 0,4308
−
𝑐𝐹 =
0,455
[1 − 0,4308 +
2,58
(lg (6,44∙106 ))
40∙0,43080,625
(6,44∙106 )
0,8
]
0,375
= 0,002244
Суммарный коэффициент трения будет равен
2𝑐𝐹ВО = 0.004489
𝜂𝑀 = 0,95;
𝜂𝑐 =1,16.
𝐶𝑥𝑎 р ВО = 0.004489 ∙ 1,16 ∙ 0,95 = 0,004961
𝑘инт = 0,7;
𝑆пф = 0 м2 ;
𝑙щ̅ =
2,168+1,153
2,536
= 1,31.
𝐶𝑥𝑎𝑚𝑖𝑛ВО = 0,004961 + 0.001 ∙ 1,31 = 0,00627
3.3 Определение
коэффициента
минимального
лобового
сопротивления фюзеляжа
Коэффициент сопротивления фюзеляжа или эквивалентного тела
вращения определяется по аналогии с сопротивлением трения плоской
пластины:
𝐶𝑥𝑎0ф = 𝐶𝑥𝑎𝐹ф + ∆𝐶𝑥𝑎ф + 𝐶𝑥𝑎к + ∆𝛼𝛽 𝐶𝑥ф
= 𝑐𝐹 𝜂𝜆 𝜂𝑀
𝑆ф
+ ∆𝐶𝑥𝑎ф + 𝐶𝑥𝑎к + ∆𝛼𝛽 𝐶𝑥ф ,
𝑆м.ф.
где 𝐶𝑥𝑎𝐹ф – коэффициент сопротивления трения фюзеляжа;∆𝐶𝑥𝑎ф –
поправка, учитывающая отличие фюзеляжа от тела вращения; 𝐶𝑥𝑎к –
20
коэффициент сопротивления давления кормовой части фюзеляжа, в нашем
случае равен 0, так как удлинение фюзеляжа больше 2;∆𝛼𝛽 𝐶𝑥ф – поправка,
учитывающая угол атаки и изгиб хвостовой части фюзеляжа вверх, в нашем
случае не учитывается.
Число Рейнольдса, рассчитанное по длине фюзеляжа
𝑅𝑒ф =
14,03 ∙ 90,278
= 3,96 ∙ 107
3,2 ∙ 10−5
При 𝑅𝑒ф > 3 ∙ 107 принимаем 𝑥̅𝑡 = 0.
Величину 𝑐𝐹 определяем по рисунку 16 [2]
𝑐𝐹 = 0,0024;
𝜂𝑀 = 0,98;
Коэффициент 𝜂𝜆 рассчитывается по формуле
𝜂𝜆 = 1 + 𝜓ф
𝜓ф =
2,2
𝜆1,5
ф.эф
+
3,8
𝜆3ф.эф
𝜆ф.эф = 𝑚𝑖𝑛[𝜆ф ; (𝜆г + 𝜆х + 2)] = 𝑚𝑖𝑛[8,57; (2,66 + 4,13 + 2)] = 8,568
𝜓ф =
2,2
3,8
+
= 0,0937
8,5681,5 8,5683
𝜂𝜆 = 1,093762
𝐶𝑥𝑎𝐹ф = 0,0024 ∙ 1,093762 ∙
61,33
= 0,075
2,10
∆𝐶𝑥𝑎ф = 0,07 ∗ 0,075 = 0,00524
𝐶𝑥𝑎0ф = 0,075 + 0,00524 = 0,0802
3.4 Определение
коэффициента
минимального
лобового
сопротивления мотогондолы
Расчет коэффициента минимального сопротивления аналогичен расчету
для фюзеляжа.
Число Рейнольдса, рассчитанное по длине мотогондолы
𝑅𝑒ф =
6,571 ∙ 90,278
= 1,85 ∙ 107
−5
3,2 ∙ 10
21
Согласно [2]принимаем 𝑥̅𝑡 = 0.
Величину 𝑐𝐹 определяем согласно графику[2]
0,455
0,455
𝑐𝐹 = (𝑙𝑔𝑅𝑒)2.58 = (𝑙𝑔1,85∙107 )2.58 = 0,0027;
𝐶𝑥𝑎0МГ = 1.25𝑐𝐹
𝑆мг
13,899
= 1.25 ∙ 0,0027 ∙
= 0,064
𝑆м.мг
0,74
3.5 Определение
коэффициента
минимального
лобового
сопротивления крыльевого ПТБ
Расчет коэффициента минимального сопротивления аналогичен расчету
для фюзеляжа.
Число Рейнольдса, рассчитанное по длине ПТБ
𝑅𝑒ф =
2,785 ∙ 90,278
= 7,86 ∙ 106
3,2 ∙ 10−5
Согласно [2] принимаем 𝑥̅𝑡 = 0.
Величину 𝑐𝐹 определяем согласно [2]
0,455
0,455
𝑐𝐹 = (𝑙𝑔𝑅𝑒)2.58 = (𝑙𝑔7,86∙106)2.58 = 0,0031;
𝐶𝑥𝑎0ПТБ = 1.25𝑐𝐹
3.6 Определение
𝑆мг
2.556
= 1.25 ∙ 0,0031 ∙
= 0,073
𝑆м.мг
0,137
минимального
коэффициента
лобового
сопротивления самолета
Сводка минимальных сопротивлений представлена в таблице 3.
Наименование части
самолета
Крыло
ГО
ВО
Фюзеляж
Мотогондола
ПТБ
Кол-во n,
шт.
1
1
1
1
2
2
Площадь в плане
или миделя
𝑆𝑖 , м2
34
8,348
5,887
2,10
0,74
0,137
𝐶𝑥𝑎𝑚𝑖𝑛𝑖
0,0062
0,0043
0,0063
0,0802
0,0640
0,0728
Сумма
Таблица 3- Сводка расчетов 𝐶𝑥𝑎𝑚𝑖𝑛
∑ 𝑛𝐶𝑥𝑎𝑚𝑖𝑛 𝑖 𝑆𝑖
𝐶𝑥𝑎 𝑚𝑖𝑛 = 1,05
= 0,0175
𝑆
22
𝑛𝐶𝑥𝑎𝑚𝑖𝑛 𝑖 𝑆𝑖
0,2106
0,0356
0,0369
0,1688
0,0947
0,0200
0,56655
37%
6%
7%
30%
17%
4%
1,00
3.7 Расчет координат докритической поляры
Уравнение докритической поляры имеет вид:
𝐶𝑥𝑎 = 𝐶𝑥𝑎𝑚𝑖𝑛 + 𝐷(𝐶𝑦𝑎 − 𝐶𝑦𝑎расч )2 ,
где 𝐷- коэффициент отвала поляры,
расчётный
𝐶𝑦𝑎расч -
коэффициент
подъёмной
силы,
которому
соответствует коэффициент минимального лобового сопротивления.
𝛼
𝐶𝑦𝑎расч = | 0 |,
2𝐷
где 𝛼0 - угол нулевой подъёмной силы профиля, выраженный в радианах.
𝐷=
1
𝜋𝜆эф
,
где 𝜆эф - эффективное удлинение крыла.
𝜆эф =
𝜆эф к
𝑆
1+ 𝑖
,
𝑆кр
где 𝑆𝑖 - площадь крыла, занятая фюзеляжем и мотогондолами, 𝜆эф к эффективное удлинение крыла, определяемое в зависимости от удлинения
крыла λ , сужения крыла η и угла стреловидности крыла по передней кромке
χ.
𝑆𝑖 = 5,094 м2
𝜆эф к =
𝜆
,
1+𝛿
𝛿 = 0,02
𝜆
14 20 8
+ 2 − 3)
(3.1 −
𝑐𝑜𝑠𝜒0
𝜂
𝜂
𝜂
Для расчета примем осредненное значение стреловидности по передней
кромке 𝜒0ср = 18,31° = 0,32 рад.; осредненное значение сужения крыла
𝜂ср = 2,116.
Таким образом получаем:
𝛿 = 0,02
𝜆
14
20
8
+
−
(3.1 −
) = 0,01398
cos (0,320)
2,116 2,1162 2,1163
𝜆эф к =
6,25
= 6,1638
1 + 0,01398
𝜆эф =
6,1638
1+
5,094
34
23
= 5,36
𝐷=
1
= 0,059
3,1415 ∙ 4,657
𝐶𝑦𝑎расч = |
−0,0183
| = 0,154
2 ∙ 0,059
Результаты вычислений координат представлены в таблице 4.
𝐶𝑦𝑎
𝐶𝑥𝑎
0
0,1
0,2
0,3
0,4
0,5
0,6
0,0189
0,0177
0,0176
0,0188
0,0211
0,0246
0,0293
Таблица 4- Координаты поляры
По результатам вычислений строится докритическая поляра. График
поляры представлен на рисунке 1.
Cya
Докритическая поляра
0,8
0,6
0,4
0,2
0
0,0000
0,0050
0,0100
0,0150
0,0200
0,0250
0,0300
Рисунок 1- Докритическая поляра
24
Cxa
0,0350
4 Расчет взлетно- посадочной поляры
Для построения взлетно- посадочных характеристик необходимо
определить коэффициент минимального лобового сопротивления самолета на
взлетно- посадочном режиме при M=0,15, H=0.
Параметры стандартной атмосферы при H=0 приведены в таблице 5.
P,
мм.рт.ст. P, Па
T, К
, кг/м^3
a, м/с
M
760,165 101330
288,2
1,225
340,3
0,150
, м^2/с
1,46E-05
Таблица 5- параметры стандартной атмосферы
Расчетная скорость
𝑉расч = 𝑎𝐻 𝑀 = 340.3 ∙ 0.15 = 51.045
Коэффициент
минимального
м
с
лобового
сопротивления
самолета
определяется таким же образом, как и в случае докритических режимов.
4.1 Определение
коэффициента
минимального
лобового
сопротивления самолета
Определение
4.1.1
коэффициента
минимального
сопротивления крыла
𝑅𝑒1 =
𝑅𝑒2 =
51.045 ∙ 3,51
= 1,23 ∙ 107
1,46 ∙ 10−5
51.045 ∙ 1,8145
= 6,34 ∙ 106
−5
1,46 ∙ 10
𝑛1 = 𝑛2 = 5 + [1,3 + 0,6 ∙ 0,15(1 − 0,25 × 0,152 )] ×
× √1 − [
lg(
10−5
∙1,23∙107 )−1
3,51
0,08∙0,152
2,2−
2
] = 6.35
1+0,312∙0,15
10𝑛
106,35
=
= 0,1811
𝑅𝑒1 1,23 ∙ 107
10𝑛
106,35
=
= 0,3161
𝑅𝑒2 6,34 ∙ 106
√𝑥̅𝑐̅ 𝑥̅𝑓̅ = √0,33 ∙ 0,3 = 0,316
25
лобового
0,1811
𝑥̅𝑡1 = 𝑚𝑖𝑛 { 0.316 = 0,1811
−
0,3161
𝑥̅𝑡2 = 𝑚𝑖𝑛 { 0.316 = 0.3161
−
0,455
40𝑥̅𝑡 0,625
𝑐𝐹 =
[1 − 𝑥̅𝑡 +
]
(𝑙𝑔𝑅𝑒)2,58
𝑅𝑒 0,375
0,8
0,8
𝑐𝐹1
0,455
40 ∙ 0,18110,625
=
[1 − 0,1811 +
]
(lg (1,23 ∙ 107 ))2,58
(1,23 ∙ 107 )0,375
0,8
𝑐𝐹2
0,455
40 ∙ 0.31610,625
=
[1 − 0.3161 +
]
(lg (6,34 ∙ 106 ))2,58
(6,34 ∙ 106 )0,375
= 0,002551
= 0,002538
Суммарный коэффициент трения будет равен
2𝑐𝐹кр = ∑(2 𝑐𝐹𝑖 ∙ 𝑆𝑖̅ ) = (2 ∙ 0,002551 ∙ 0,46) + (2 ∙ 0,002538 ∙ 0,54)
= 0.00509
𝜂𝑀 = 0,95;
𝜂𝑐 =1,34.
𝐶𝑥𝑎 р кр = 0.00509 ∙ 1,34 ∙ 0,95 = 0,006708
При расчёте пассивного сопротивления крыла учитывается взаимное
влияние крыла и фюзеляжа, а также наличие щелей элеронов, интерцептора, а
также закрылков.
𝑘инт = 0,5;
𝑆пф = 5,914 м2 ;
Полуразмах элеронов
𝑙э
2
= 1,91 м
Полуразмах закрылков
𝑙з
2
= 3,1 м
Длина интерцептора
𝑙и = 0,478
26
𝑙щ̅ =
1,91∙2+0,478+3,1∙2
14.58
= 0,72.
𝐶𝑥𝑎𝑚𝑖𝑛кр = 0,006708 ∙ (1 − 0,5 ∙
Определение
4.1.2
5,914
) + 0.001 ∙ 0,72 = 0,0068
34
коэффициента
минимального
лобового
сопротивления горизонтального и вертикального оперения
𝑅𝑒1 = 𝑅𝑒2 =
1,2525 ∙ 51,045
= 4,38 ∙ 106
−5
1,46 ∙ 10
𝑛1 = 𝑛2 = 5 + [1,3 + 0,6 ∙ 0,15(1 − 0,25 ∙ 0,152 )] ×
10−5
× √1 − [
lg (
1,25
2
∙ 4,38 ∙ 106 ) − 1
2,2 −
0,08∙0,152
] = 6.35
1+0,312∙0,15
10𝑛
106,35
=
= 0.5069
𝑅𝑒
4,38 ∙ 106
√𝑥̅𝑐̅ 𝑥̅𝑓̅ = 0, т.к. на оперении используем симметричный профиль.
𝑥̅𝑡1 = 𝑥̅𝑡2
𝑐𝐹1 = 𝑐𝐹2
0.5069
= 𝑚𝑖𝑛 { − = 0.5069
−
0,455
40 ∙ 0.50690,625
=
[1 − 0.5069 +
]
(lg (4,38 ∙ 106 ))2,58
(4,38 ∙ 106 )0,375
0,8
= 0,002218
Суммарный коэффициент трения будет равен
2𝑐𝐹ГО = 2 ∙ 0,002218 = 0.004435
𝜂𝑀 = 0,98;
𝜂𝑐 =1,16.
𝐶𝑥𝑎 р ГО = 0.004435 ∙ 1,16 ∙ 0,98 = 0,005056
𝑘инт = 0,7;
𝑆пф = 0,336 м2 ;
𝑙щ̅ =
2,564∙2+0,8∙2
6,6775
= 6,728.
𝐶𝑥𝑎𝑚𝑖𝑛ГО = 0,005056 ∙ (1 − 0,7 ∙
0.336
) + 0.001 ∙ 6,728 = 0,005922
8,368
27
Вертикальное оперение:
Параметры:
𝑆 = 5,887 м2 ;
𝑆̅ = 1 ;
𝑏ср = 2,2815 м;
h=0,00001
𝑅𝑒 =
2,28 ∙ 51,045
= 7,98 ∙ 106
−5
1,46 ∙ 10
𝑛 = 5 + [1,3 + 0,6 ∙ 0,15(1 − 0,25 ∙ 0,152 )] ×
10−5
× √1 − [
lg (
2,28
2
∙ 7,98 ∙ 106 ) − 1
2,2 −
] = 6.35
0,08∙0,152
1+0,312∙0,15
10𝑛
106,35
=
= 0.2783
𝑅𝑒
7,98 ∙ 106
√𝑥̅𝑐̅ 𝑥̅𝑓̅ = √0,3 ∙ 0 = 0
0.2783
𝑥̅𝑡 = 𝑚𝑖𝑛 { − = 0.2783
−
𝑐𝐹 =
0,455
(lg (7,98∙106 ))
[1 − 0.2783 +
2,58
40∙0.27830,625
]
0,375
(7,98∙106 )
0,8
= 0,002522
Суммарный коэффициент трения будет равен
2𝑐𝐹ВО = 0.005045
𝜂𝑀 = 0,98;
𝜂𝑐 =1,16.
𝐶𝑥𝑎 р ВО = 0.005045 ∙ 1,16 ∙ 0,98 = 0,005751
𝑘инт = 0,7;
𝑆пф = 0 м2 ;
𝑙щ̅ =
2,134+1,153
2,536
= 1,31.
𝐶𝑥𝑎𝑚𝑖𝑛ВО = 0,005751 + 0.001 ∙ 1,31 = 0,007048
28
Определение
4.1.3
коэффициента
минимального
лобового
сопротивления фюзеляжа
𝑅𝑒ф =
14,03 ∙ 51,045
= 4,9 ∙ 107
−5
1,46 ∙ 10
𝑥̅𝑡 = 0.
𝑐𝐹 = 0,0022;
𝜂𝑀 = 0,98;
𝜆ф.эф = 𝑚𝑖𝑛[𝜆ф ; (𝜆г + 𝜆х + 2)] = 𝑚𝑖𝑛[8,57; (2,66 + 4,13 + 2)] = 8,568
𝜓ф =
2,2
3,8
+
= 0,0937
8,5681,5 8,5683
𝜂𝜆 = 1,093762
𝐶𝑥𝑎𝐹ф = 0,0022 ∙ 1,093762 ∙ 0,98 ∙
61,33
= 0,0687
2,10
∆𝐶𝑥𝑎ф = 0,07 ∙ 0,0687 = 0,00481
𝐶𝑥𝑎0ф = 0,0687 + 0,00481 = 0,0735
4.1.4
Определение
коэффициента
минимального
лобового
сопротивления мотогондолы
𝑅𝑒ф =
6,571 ∙ 51,045
= 2,3 ∙ 107
−5
1,46 ∙ 10
𝑥̅𝑡 = 0.
0,455
0,455
𝑐𝐹 = (𝑙𝑔𝑅𝑒)2.58 = (𝑙𝑔2,3∙107)2.58 = 0,0026;
𝐶𝑥𝑎0ПТБ = 1.25𝑐𝐹
4.1.5
𝑆мг
13.899
= 1.25 ∙ 0,0026 ∙
= 0,062
𝑆м.мг
0.74
Определение
коэффициента
минимального
сопротивления крыльевого ПТБ
𝑅𝑒ф =
2,785 ∙ 51,045
= 9,74 ∙ 106
−5
1,46 ∙ 10
𝑥̅𝑡 = 0.
0,455
0,455
𝑐𝐹 = (𝑙𝑔𝑅𝑒)2.58 = (𝑙𝑔9.74∙106)2.58 = 0,003;
29
лобового
𝐶𝑥𝑎0ПТБ = 1.25𝑐𝐹
4.1.6
𝑆ПТБ
2.556
= 1.25 ∙ 0,003 ∙
= 0,07
𝑆м.ПТБ
0,137
Определение
минимального
коэффициента
лобового
сопротивления самолета
Сводка минимальных сопротивлений представлена в таблице 6.
Наименование части
самолета
Крыло
ГО
ВО
Фюзеляж
Мотогондола
ПТБ
Кол-во n,
шт.
1
1
1
1
2
2
Площадь в плане
или миделя
𝑆𝑖 , м2
34
8,348
5,887
2,10
0,74
0,137
𝐶𝑥𝑎𝑚𝑖𝑛𝑖
𝑛𝐶𝑥𝑎𝑚𝑖𝑛 𝑖 𝑆𝑖
0,0068
0,0059
0,0070
0,0735
0,0619
0,0703
Сумма
0,2327
0,0494
0,0415
0,1547
0,0917
0,0193
0,58932
41%
9%
7%
27%
16%
3%
1,04
Таблица 6- Сводка расчетов 𝐶𝑥𝑎𝑚𝑖𝑛
∑ 𝑛𝐶𝑥𝑎𝑚𝑖𝑛 𝑖 𝑆𝑖
𝐶𝑥𝑎 𝑚𝑖𝑛 = 1,05
= 0,01820
𝑆
4.2 Расчет характеристик подъемной силы для немеханизированного
крыла
Определение характеристик немеханизированного крыла проводится в
следующей последовательности [2]:
𝐶𝑦𝑎𝑚𝑎𝑥 = 𝐶𝑦𝑎𝑚𝑎𝑥∞ ∙ 𝑘𝜂 ∙
1+𝑐𝑜𝑠𝜒0.5
2
,
где 𝑘𝜂 – поправочный коэффициент, учитывающий сужение крыла η,
задается таблицей 6[2];
𝜒0.5 – угол стреловидности крыла по линии 0,5 хорд;
𝐶𝑦𝑎𝑚𝑎𝑥∞ – коэффициента максимальной подъёмной силы профиля.
𝑘𝜂 = 0,93
𝜒0.5 = 0,121 рад
𝐶𝑦𝑎𝑚𝑎𝑥∞ = 1,12𝐶𝑦𝑎𝑚𝑎𝑥𝜆=5 ,
где 𝐶𝑦𝑎𝑚𝑎𝑥𝜆=5 – коэффициент максимальной подъемной силы крыла с
удлинением 5, размахом 2,5 метра и хордой 0,5 метра[3],имеющего данный
профиль.
30
𝐶𝑦𝑎𝑚𝑎𝑥𝜆=5 = 0,952
𝐶𝑦𝑎𝑚𝑎𝑥∞ = 1,12 ∙ 0.952 = 1,066
𝐶𝑦𝑎𝑚𝑎𝑥 = 1,066 ∙ 0,93 ∙
1 + cos(0,121)
= 0,988
2
Допустимый коэффициент подъемной силы
𝐶𝑦𝑎доп = 0,85𝐶𝑦𝑎𝑚𝑎𝑥 = 0,85 ∙ 0,988 = 0,8398
Зависимость коэффициента подъемной силы от угла атаки на линейном
участке записывается в виде
𝛼 (𝛼
𝐶𝑦𝑎 = 𝐶𝑦𝑎
− 𝛼0 ),
𝛼
где 𝐶𝑦𝑎
– производная коэффициента подъемной силы по углу атаки,
характеризующая наклон линейного участка зависимости.
𝛼
𝐶𝑦𝑎
=
𝛼
𝐶𝑦𝑎∞
1 + (0,01𝜒0 )4
1
𝑐𝑜𝑠 𝜒0
+
2
,
𝜆э
где 𝜆э – эффективное удлинение крыла;
𝛼
𝐶𝑦𝑎∞
– производная коэффициента подъемной силы по углу атаки,
которая является характеристикой профиля.
𝜆э = 5,36
𝛼
𝐶𝑦𝑎∞
= 5,81
1
[3]
рад
Данную величину необходимо выразить в размерности [
1
град
]
1
1 𝛼
1
1
𝛼
𝐶𝑦𝑎∞
𝐶𝑦𝑎∞ [
∙ 5,81 = 0,101396
[
]=
]=
град
57,3
рад
57,3
𝛼
𝐶𝑦𝑎
= 0,101396
1 + (0,01 ∙ 0.32)4
1
𝑐𝑜𝑠(0.32)
31
+
2
5.36
= 0.071
4.3 Расчет характеристик подъемной силы для механизированного
крыла на режиме взлета и посадке
Для определения характеристик необходимо выбрать тип механизации,
используемой на крыле. По ориентировочным данным таблицы 7[2] для
данного самолета выбираем простые закрылки.
Параметры закрылков:
Относительная хорда
𝑏̅зак = 0,25
Угол отклонения
𝛿 = 40°
Стреловидность закрылка
𝜒зак = −0,157 рад
Относительная площадь, обслуживаемая закрылком
̅
𝑆обсл.зак
=
2𝑆обсл.зак.
𝑆
=
2∙15,044
34
= 0,8849
Расчет производим для двух режимов взлетный и посадочный. В первом
закрылки отклонены на 20 градусов, во втором на 40.
По рисунку 32[2] определяются приращения коэффициентов подъемной
силы и сопротивления механизации при отклонении закрылков.
Взлет (𝛿 = 20°):
𝛥𝐶𝑦𝑎пр = 0,6
𝛥𝐶𝑥𝑎 = 0,025
Приращение коэффициента подъемной силы на линейном участке
̅
∆𝐶𝑦𝑎л = ∆𝐶𝑦𝑎пр 𝑆обсл.зак
𝑐𝑜𝑠 2 𝜒зак = 0,6 ∙ 0,8849 ∙ cos(−0,157) = 0.518
Изменение угла нулевой подъемной силы
𝛥𝛼0зак =
∆𝐶𝑦𝑎л 0,518
=
= 7,286
𝛼
𝐶𝑦𝑎
0,071
Угол нулевой подъемной силы
𝛼0зак = 𝛼0 − 𝛥𝛼0зак = −1,05 − 7,286 = −8,337
Максимальное увеличение коэффициента подъемной силы
32
2
2
закр
∆𝐶𝑦𝑎𝑚𝑎𝑥 = ∆𝐶𝑦𝑎л = ∙ 0.518 = 0,345314
3
3
Коэффициент максимальной подъемной силы
закр
𝐶𝑦𝑎𝑚𝑎𝑥 = 𝐶𝑦𝑎𝑚𝑎𝑥 нм + ∆𝐶𝑦𝑎𝑚𝑎𝑥 = 0,988 + 0,345314 = 1,333
Посадка (𝛿 = 40°):
𝛥𝐶𝑦𝑎пр = 0,85
𝛥𝐶𝑥𝑎 = 0,065
Приращение коэффициента подъемной силы на линейном участке
̅
∆𝐶𝑦𝑎л = ∆𝐶𝑦𝑎пр 𝑆обсл.зак
𝑐𝑜𝑠 2 𝜒зак = 0,6 ∙ 0,8849 ∙ cos(−0,157) = 0.734
Изменение угла нулевой подъемной силы
𝛥𝛼0зак =
∆𝐶𝑦𝑎л 0.734
=
= 10,323
𝛼
𝐶𝑦𝑎
0,071
Угол нулевой подъемной силы
𝛼0зак = 𝛼0 − 𝛥𝛼0зак = −1,05 − 10,323 = −11,373
Максимальное увеличение коэффициента подъемной силы
2
2
закр
∆𝐶𝑦𝑎𝑚𝑎𝑥 = ∆𝐶𝑦𝑎л = ∙ 0.734 = 0,489195
3
3
Коэффициент максимальной подъемной силы
закр
𝐶𝑦𝑎𝑚𝑎𝑥 = 𝐶𝑦𝑎𝑚𝑎𝑥 нм + ∆𝐶𝑦𝑎𝑚𝑎𝑥 = 0,988 + 0,489195 = 1,477
33
4.4 Учет влияния земли на режиме взлета и посадки
Коэффициент максимальной подъемной силы вблизи земли
мех
̅ 𝑚𝑎𝑥 (𝐶𝑦𝑎𝑚𝑎𝑥
𝐶𝑦𝑎𝑚𝑎𝑥 земн = 𝐶𝑦𝑎
+ 0,5∆𝐶𝑦𝑎зем ),
мех
где 𝐶𝑦𝑎𝑚𝑎𝑥
– максимальный коэффициент подъёмной силы вдали от
земли;
∆𝐶𝑦𝑎зем – увеличение коэффициента подъемной силы из-за влияния
земли, определяется по рисунку 2;
̅ 𝑚𝑎𝑥 – коэффициент, определяемый по рисунку 2.
𝐶𝑦𝑎
̅ 𝑚𝑎𝑥 [2]
Рисунок 2- Определение ∆𝐶𝑦𝑎зем и 𝐶𝑦𝑎
ℎзак – расстояние между закрылком и поверхностью земли
ℎ̅зак =
ℎзак
𝑏ср
ℎ𝐹 – расстояние ¼ средней аэродинамической хорды крыла до земли
ℎ̅𝐹 =
ℎ𝐹
𝑙
𝜆зем – эффективное удлинение крыла вблизи земли
𝜆зем =
𝜆э
𝜋
+ 2)
(
2,23 8ℎ̅𝐹
34
Взлет:
ℎзак = 0.925 м
ℎ𝐹 = 1,3 м
ℎ̅зак =
0,925
= 0.429
2,159
̅ 𝑚𝑎𝑥 = 0,87
𝐶𝑦𝑎
∆𝐶𝑦𝑎зем = 0,2
𝐶𝑦𝑎𝑚𝑎𝑥 земн = 0,87 ∙ (1,333 + 0,5 ∙ 0,2) = 1,247
Посадка:
ℎзак = 0.788 м
ℎ𝐹 = 1,3 м
ℎ̅зак =
0,788
= 0,365
2,159
̅ 𝑚𝑎𝑥 = 0,855
𝐶𝑦𝑎
∆𝐶𝑦𝑎зем = 0,225
𝐶𝑦𝑎𝑚𝑎𝑥 земн = 0,855 ∙ (1,477 + 0,5 ∙ 0,225) = 1,359
ℎ̅𝐹 =
𝜆зем =
1,3
= 0,089
14,58
𝜆э
𝜋
5,36 3,1415
+ 2) =
+ 2) = 15,395
(
(
2,23 8ℎ̅𝐹
2,23 8 ∙ 0,089
35
4.5 Построение взлетно- посадочных характеристик
Зависимость коэффициента подъемной силы от угла атаки
4.5.1
По методике [2] построим зависимости для немеханизированного крыла.
Также построим зависимости для механизированного крыла с учетом влияния
земли на режиме взлета и посадки, с выпущенной и убранной механизацией.
Кривая 𝐶𝑦𝑎 (𝛼) на линейном участке описывается уравнением
𝛼
𝐶𝑦𝑎 = 𝐶𝑦𝑎
(𝛼 − 𝛼0 )
∆𝛼кр - параметр, определяемый по рисунку 30 в зависимости от
заострения носка ∆𝑦
∆𝑦 = 𝐴𝑐̅,
где A- коэффициент, зависящий от типа профиля
𝐴 = 11,75
∆𝑦 = 11,75 ∙ 0,12 = 1,41
∆𝛼кр = 2°
Угол атаки на нелинейном участке вычисляется по формуле
𝛼=
где ∆𝛼 = (
𝐶𝑦𝑎 −𝐶𝑦𝑎нл
𝐶𝑦𝑎𝑚𝑎𝑥
𝐶𝑦𝑎
𝛼 + 𝛼0 + ∆𝛼,
𝐶𝑦𝑎
2
) ∆𝛼кр ,
𝐶𝑦𝑎нл – значение коэффициента подъёмной силы в конце линейного участка.
Немеханизированное крыло:
𝐶𝑦𝑎 = 0.071((−4°) − (−1.05°)) = −0.2097
𝐶𝑦𝑎 = 0.071((−2°) − (−1.05°)) = −0.06753
𝐶𝑦𝑎 = 0.071((0°) − (−1.05°)) = 0.07464
𝐶𝑦𝑎 = 0.071((2°) − (−1.05°)) = 0.2168
𝐶𝑦𝑎 = 0.071((4°) − (−1.05°)) = 0.359
𝐶𝑦𝑎 = 0.071((6°) − (−1.05°)) = 0.5011
𝐶𝑦𝑎 = 0.071((8°) − (−1.05°)) = 0.2168
𝐶𝑦𝑎 = 0.071((10°) − (−1.05°)) = 0.7854
36
𝐶𝑦𝑎 = 0.071((11°) − (−1.05°)) = 0.8566
𝐶𝑦𝑎 = 0.071((12°) − (−1.05°)) = 0.9277
𝐶𝑦𝑎 = 0.071((13°) − (−1.05°)) = 0.9987
Линейный участок пересекает линию максимального коэффициента
подъемной силы на 13-ти градусов значит
𝛼кр ≈ 13 + ∆𝛼кр ≈ 13 + 2 ≈ 15°
𝐶𝑦𝑎нл = 0,7854
∆𝛼(𝐶𝑦𝑎
0,8566 − 0,7854 2
= 0,8566) = (
) ∙ 2 = 0,25°
0,988 − 0,7854
∆𝛼(𝐶𝑦𝑎
0.9277 − 0,7854 2
= 0.9277) = (
) ∙ 2 = 0,99°
0,988 − 0,7854
∆𝛼(𝐶𝑦𝑎
0.9987 − 0,7854 2
= 0.9987) = (
) ∙ 2 = 2,218°
0,988 − 0,7854
0,8566
+ (−1,05°) + 0,25° = 11,246°
0.071
0.9277
𝛼(𝐶𝑦𝑎 = 0.9277) =
+ (−1,05°) + 0,99° = 12,986°
0.071
0.9987
𝛼(𝐶𝑦𝑎 = 0.9987) =
+ (−1,05°) + 2,218° = 15,218°
0.071
𝛼(𝐶𝑦𝑎 = 0,8566) =
Результаты вычислений занесем в таблицу 7, результат построения
представлен на рисунке 3.
𝛼
𝐶𝑦𝑎
-4
-2
0
2
4
6
8
9
10
11,24641
12,98563
15,21767
-0,2097
-0,06753
0,074639
0,216808
0,358977
0,501146
0,643315
0,7144
0,785484
0,856569
0,927653
0,998738
Таблица 7- Немеханизированное крыло
37
Механизированное крыло, взлет без учета влияния земли
𝐶𝑦𝑎𝑚𝑎𝑥 = 1,333
Зависимость на линейном участке будет иметь вид
𝛼 (𝛼
𝐶𝑦𝑎 = 𝐶𝑦𝑎
− 𝛼0зак ) + ∆𝐶𝑦𝑎л
∆𝐶𝑦𝑎л – прирост коэффициента подъемной силы за счет выпуска
механизации
𝛼0зак = −8,337°
∆𝐶𝑦𝑎л = 0,518
Согласно таблице 7[2]
∆𝛼кр = −5°
Чтобы построить линейный участок, необходимо отметить точку 𝛼0зак и
через нее провести прямую параллельную 𝐶𝑦𝑎 (𝛼) для немеханизированного
крыла.
𝐶𝑦𝑎 = 0.071((−10°) − (−1.05°)) + 0,518 = −0,1182
𝐶𝑦𝑎 = 0.071((4°) − (−1.05°)) + 0,518 = 0,8769
𝐶𝑦𝑎 = 0.071((5°) − (−1.05°)) + 0,518 = 0,948
𝐶𝑦𝑎 = 0.071((6°) − (−1.05°)) + 0,518 = 1,0191
𝐶𝑦𝑎 = 0.071((7°) − (−1.05°)) + 0,518 = 1,0902
𝐶𝑦𝑎 = 0.071((8°) − (−1.05°)) + 0,518 = 1,1613
𝐶𝑦𝑎 = 0.071((9°) − (−1.05°)) + 0,518 = 1,2324
𝐶𝑦𝑎 = 0.071((10°) − (−1.05°)) + 0,518 = 1,3035
Линейный участок пересекает линию максимального коэффициента
подъемной силы примерно на 𝛼 = 10° значит
𝛼кр ≈ 10 + |∆𝛼кр | ≈ 10 + 5 ≈ 15°
𝐶𝑦𝑎нл (𝛼 = 4°) = 0,8769
∆𝛼(𝐶𝑦𝑎
0,948 − 0,8769 2
= 0,948) = (
) ∙ 5 = 0.121°
1,333 − 0,8769
38
∆𝛼(𝐶𝑦𝑎
1,0191 − 0,8769 2
= 1,0191) = (
) ∙ 5 = 0.485°
1,333 − 0,8769
∆𝛼(𝐶𝑦𝑎
1,0902 − 0,8769 2
= 1,0902) = (
) ∙ 5 = 1.092°
1,333 − 0,8769
∆𝛼(𝐶𝑦𝑎
1,1613 − 0,8769 2
= 1,1613) = (
) ∙ 5 = 1.941°
1,333 − 0,8769
∆𝛼(𝐶𝑦𝑎
1,2324 − 0,8769 2
= 1,2324) = (
) ∙ 5 = 3.033°
1,333 − 0,8769
∆𝛼(𝐶𝑦𝑎
1,3035 − 0,8769 2
= 1,3035) = (
) ∙ 5 = 4.367°
1,333 − 0,8769
0,948
+ (−8.337°) + 0.121° = 5.121°
0.071
1,0191
𝛼(𝐶𝑦𝑎 = 1,0191) =
+ (−8.337°) + 0.485° = 6.485°
0.071
1,0902
𝛼(𝐶𝑦𝑎 = 1,0902) =
+ (−8.337°) + 1.092° = 8.092°
0.071
1,1613
𝛼(𝐶𝑦𝑎 = 1,1613) =
+ (−8.337°) + 1.941° = 9.94°
0.071
1,2324
𝛼(𝐶𝑦𝑎 = 1,2324) =
+ (−8.337°) + 3.033° = 12.033°
0.071
1,3035
𝛼(𝐶𝑦𝑎 = 1,3035) =
+ (−8.337°) + 4.367° = 14.367°
0.071
𝛼(𝐶𝑦𝑎 = 0,948) =
Результаты вычислений занесем в таблицу 8, результат построения
представлен на рисунке 3.
𝛼
𝐶𝑦𝑎
-10
4
5,121308
6,485233
8,091773
9,94093
12,0327
14,36709
-0,11824
0,876948
0,948032
1,019117
1,090202
1,161286
1,232371
1,303455
Таблица 8- Механизированное крыло, взлет без учета влияния близости
земли
39
Взлет с учетом влияния близости земли:
𝐶𝑦𝑎𝑚𝑎𝑥 = 1,247
Зависимость на линейном участке будет иметь вид
𝛼
(𝛼 − 𝛼0зак ) + ∆𝐶𝑦𝑎л + ∆𝐶𝑦𝑎зем
𝐶𝑦𝑎 = 𝐶𝑦𝑎зем
∆𝐶𝑦𝑎зем – прирост коэффициента подъемной силы за счет влияния земли;
𝛼
𝐶𝑦𝑎зем
- производная коэффициента подъемной силы по углу атаки для
крыла вблизи земли
∆𝐶𝑦𝑎зем = 0,2
𝛼
𝐶𝑦𝑎зем
=
𝛼
𝐶𝑦𝑎∞
1 + (0,01𝜒0 )4
1
𝑐𝑜𝑠 𝜒0
+
2
= 1,066
𝜆зем
1 + (0,01 ∙ 0,32)4
1
𝑐𝑜𝑠(0,32)
+
2
= 0,086
15,395
𝐶𝑦𝑎 = 0.086((−10°) − (−1.05°)) + 0,518 + 0,2 = −0.049
𝐶𝑦𝑎 = 0.086((−8°) − (−1.05°)) + 0,518 + 0,2 = 0,122
𝐶𝑦𝑎 = 0.086((−2°) − (−1.05°)) + 0,518 + 0,2 = 0,637
𝐶𝑦𝑎 = 0.086((0°) − (−1.05°)) + 0,518 + 0,2 = 0,808
𝐶𝑦𝑎 = 0.086((1°) − (−1.05°)) + 0,518 + 0,2 = 0,894
𝐶𝑦𝑎 = 0.086((2°) − (−1.05°)) + 0,518 + 0,2 = 0,979
𝐶𝑦𝑎 = 0.086((3°) − (−1.05°)) + 0,518 + 0,2 = 1,065
𝐶𝑦𝑎 = 0.086((4°) − (−1.05°)) + 0,518 + 0,2 = 1,151
𝐶𝑦𝑎 = 0.086((5°) − (−1.05°)) + 0,518 + 0,2 = 1,236
Линейный участок пересекает линию максимального коэффициента
подъемной силы примерно на 𝛼 = 5° значит
𝛼кр ≈ 5 + |∆𝛼кр | ≈ 5 + 5 ≈ 10°
𝐶𝑦𝑎нл (𝛼 = 0°) = 0,808
∆𝛼(𝐶𝑦𝑎
0,894 − 0,808 2
= 0,894) = (
) ∙ 5 = 0.121°
1,247 − 0,808
∆𝛼(𝐶𝑦𝑎
0,979 − 0,808 2
= 0,979) = (
) ∙ 5 = 0,762°
1,247 − 0,808
40
∆𝛼(𝐶𝑦𝑎
1,065 − 0,808 2
= 1,065) = (
) ∙ 5 = 1,714°
1,247 − 0,808
∆𝛼(𝐶𝑦𝑎
1,151 − 0,808 2
= 1,151) = (
) ∙ 5 = 3,048°
1,247 − 0,808
∆𝛼(𝐶𝑦𝑎
1,236 − 0,808 2
= 1,236) = (
) ∙ 5 = 4,762°
1,247 − 0,808
0,894
+ (−8.337°) + 0.121° = 2,282°
0.086
0,979
𝛼(𝐶𝑦𝑎 = 0,979) =
+ (−8.337°) + 0,762° = 3,854°
0.086
1,065
𝛼(𝐶𝑦𝑎 = 1,065) =
+ (−8.337°) + 1,714° = 5,806°
0.086
1,151
𝛼(𝐶𝑦𝑎 = 1,151) =
+ (−8.337°) + 3,048° = 8,139°
0.086
1,236
𝛼(𝐶𝑦𝑎 = 1,236) =
+ (−8.337°) + 4,762° = 10,854°
0.086
𝛼(𝐶𝑦𝑎 = 0,894) =
Результаты вычислений занесем в таблицу 9, результат построения
представлен на рисунке 3.
𝐶𝑦𝑎
𝛼
-10,000
-0,049
-8,000
0,122
-2,000
0,637
0,000
0,808
2,282
0,894
3,854
0,979
5,806
1,065
8,139
1,151
10,854
1,236
Таблица 9- Механизированное крыло, взлет с учетом влияния близости
земли
Механизированное крыло, посадка без учета влияния земли:
𝐶𝑦𝑎𝑚𝑎𝑥 = 1,477
Зависимость на линейном участке будет иметь вид
𝛼 (𝛼
𝐶𝑦𝑎 = 𝐶𝑦𝑎
− 𝛼0зак ) + ∆𝐶𝑦𝑎л
41
∆𝐶𝑦𝑎л – прирост коэффициента подъемной силы за счет выпуска
механизации
𝛼0зак = −11,373°
∆𝐶𝑦𝑎л = 0,734
Согласно таблице 7[2]
∆𝛼кр = −10°
Чтобы построить линейный участок, необходимо отметить точку 𝛼0зак и
через нее провести прямую параллельную 𝐶𝑦𝑎 (𝛼) для немеханизированного
крыла.
𝐶𝑦𝑎 = 0.071((−12°) − (−1.05°)) + 0,734 = −0,045
𝐶𝑦𝑎 = 0.071((−11°) − (−1.05°)) + 0,734 = 0,027
𝐶𝑦𝑎 = 0.071((−4°) − (−1.05°)) + 0,734 = 0,524
𝐶𝑦𝑎 = 0.071((−1°) − (−1.05°)) + 0,734 = 0,737
𝐶𝑦𝑎 = 0.071((0°) − (−1.05°)) + 0,734 = 0,808
𝐶𝑦𝑎 = 0.071((1°) − (−1.05°)) + 0,734 = 0,880
𝐶𝑦𝑎 = 0.071((2°) − (−1.05°)) + 0,734 = 0,951
𝐶𝑦𝑎 = 0.071((3°) − (−1.05°)) + 0,734 = 1,022
𝐶𝑦𝑎 = 0.071((4°) − (−1.05°)) + 0,734 = 1,093
𝐶𝑦𝑎 = 0.071((5°) − (−1.05°)) + 0,734 = 1,164
𝐶𝑦𝑎 = 0.071((6°) − (−1.05°)) + 0,734 = 1,235
𝐶𝑦𝑎 = 0.071((7°) − (−1.05°)) + 0,734 = 1,306
𝐶𝑦𝑎 = 0.071((8°) − (−1.05°)) + 0,734 = 1,377
𝐶𝑦𝑎 = 0.071((9°) − (−1.05°)) + 0,734 = 1,448
Линейный участок пересекает линию максимального коэффициента
подъемной силы примерно на 𝛼 = 9° значит
𝛼кр ≈ 9 + |∆𝛼кр | ≈ 9 + 10 ≈ 19°
𝐶𝑦𝑎нл (𝛼 = −1°) = 0,737
42
∆𝛼(𝐶𝑦𝑎
0,808 − 0,737 2
= 0,808) = (
) ∙ 10 = 0,092°
1,477 − 0,737
∆𝛼(𝐶𝑦𝑎
0,880 − 0,737 2
= 0,880) = (
) ∙ 10 = 0,369°
1,477 − 0,737
∆𝛼(𝐶𝑦𝑎
0,951 − 0,737 2
= 0,951) = (
) ∙ 10 = 0,831°
1,477 − 0,737
∆𝛼(𝐶𝑦𝑎
1,022 − 0,737 2
= 1,022) = (
) ∙ 10 = 1,477°
1,477 − 0,737
∆𝛼(𝐶𝑦𝑎
1,093 − 0,737 2
= 1,093) = (
) ∙ 10 = 2,308°
1,477 − 0,737
∆𝛼(𝐶𝑦𝑎
1,164 − 0,737 2
= 1,164) = (
) ∙ 10 = 3,323°
1,477 − 0,737
∆𝛼(𝐶𝑦𝑎
1,235 − 0,737 2
= 1,235) = (
) ∙ 10 = 4,523°
1,477 − 0,737
∆𝛼(𝐶𝑦𝑎
1,306 − 0,737 2
= 1,306) = (
) ∙ 10 = 5,908°
1,477 − 0,737
∆𝛼(𝐶𝑦𝑎
1,377 − 0,737 2
= 1,377) = (
) ∙ 10 = 7,477°
1,477 − 0,737
∆𝛼(𝐶𝑦𝑎
1,448 − 0,737 2
= 1,448) = (
) ∙ 10 = 9,231°
1,477 − 0,737
0,808
+ (−11,373°) + 0,092° = 0,092°
0.071
0,880
= 0,880) =
+ (−11,373°) + 0,092° = 1,369°
0.071
0,951
= 0,951) =
+ (−11,373°) + 0,092° = 2,831°
0.071
1,022
= 1,022) =
+ (−11,373°) + 0,092° = 4,477°
0.071
1,093
= 1,093) =
+ (−11,373°) + 0,092° = 6,308°
0.071
1,164
= 1,164) =
+ (−11,373°) + 0,092° = 8,323°
0.071
𝛼(𝐶𝑦𝑎 = 0,808) =
𝛼(𝐶𝑦𝑎
𝛼(𝐶𝑦𝑎
𝛼(𝐶𝑦𝑎
𝛼(𝐶𝑦𝑎
𝛼(𝐶𝑦𝑎
43
1,235
+ (−11,373°) + 0,092° = 10,523°
0.071
1,306
= 1,306) =
+ (−11,373°) + 0,092° = 12,908°
0.071
1,377
= 1,377) =
+ (−11,373°) + 0,092° = 15,477°
0.071
1,448
= 1,448) =
+ (−11,373°) + 0,092° = 18,231°
0.071
𝛼(𝐶𝑦𝑎 = 1,235) =
𝛼(𝐶𝑦𝑎
𝛼(𝐶𝑦𝑎
𝛼(𝐶𝑦𝑎
Результаты вычислений занесем в таблицу 10, результат построения
представлен на рисунке 3.
𝐶𝑦𝑎
𝛼
-12
-11
-4
-1
0,092
1,369
2,831
4,477
6,308
8,323
10,523
12,908
15,477
18,231
-0,045
0,027
0,524
0,737
0,808
0,880
0,951
1,022
1,093
1,164
1,235
1,306
1,377
1,448
Таблица 10- Механизированное крыло, посадка без учета влияния
близости земли
Посадка с учетом влияния земли:
𝐶𝑦𝑎𝑚𝑎𝑥 = 1,359
Зависимость на линейном участке будет иметь вид
𝛼
(𝛼 − 𝛼0зак ) + ∆𝐶𝑦𝑎л + ∆𝐶𝑦𝑎зем
𝐶𝑦𝑎 = 𝐶𝑦𝑎зем
∆𝐶𝑦𝑎зем – прирост коэффициента подъемной силы за счет влияния земли;
𝛼
𝐶𝑦𝑎зем
- производная коэффициента подъемной силы по углу атаки для
крыла вблизи земли
∆𝐶𝑦𝑎зем = 0,225
𝛼
𝐶𝑦𝑎зем
= 0,086
44
𝐶𝑦𝑎 = 0.086((−14°) − (−1.05°)) + 0,734 + 0,225 = −0,15
𝐶𝑦𝑎 = 0.086((4°) − (−1.05°)) + 0,734 + 0,225 = 1,39
Линейный участок пересекает линию максимального коэффициента
подъемной силы примерно на 𝛼 = 4° значит
𝛼кр ≈ 4 + |∆𝛼кр | ≈ 4 + 10 ≈ 14°
𝐶𝑦𝑎нл (𝛼 = −7°) = 0,449
∆𝛼(𝐶𝑦𝑎
0,535 − 0,449 2
= 0,535) = (
) ∙ 10 = 0,089°
1,359 − 0,449
∆𝛼(𝐶𝑦𝑎
1,392 − 0,449 2
= 1,392) = (
) ∙ 10 = 10,724°
1,359 − 0,449
0,535
+ (−11,373°) + 0,089° = −5,046°
0.086
1,392
= 1,392) =
+ (−11,373°) + 10,724° = 15,589°
0.086
𝛼(𝐶𝑦𝑎 = 0,535) =
𝛼(𝐶𝑦𝑎
Результаты вычислений занесем в таблицу 11, результат построения
представлен на рисунке 3.
𝐶𝑦𝑎
𝛼
-14
-8
-7
-5,046
-3,780
-2,337
-0,716
1,081
3,056
5,208
7,538
10,044
12,728
15,589
-0,151
0,363
0,449
0,535
0,620
0,706
0,792
0,877
0,963
1,049
1,134
1,220
1,306
1,392
Таблица 11- Механизированное крыло, посадка с учетом близости
земли
45
C1,6
ya
1,4
1,2
Взлет с учетом влияния земли
1,0
0,8
Посадка без учета влияния
земли
0,6
Посадка с учетом влияния
земли
0,4
0,2
Немеханизированное крыло
без учета влияния земли
0,0
-20
-15
-10
-5
0
5
10
15
Взлет без учета влияния земли
-0,2
-0,4
Рисунок 3- Зависимость коэффициента подъемной силы от угла атаки
46
𝛼20°
4.5.2
Построение взлетно- посадочных поляр
Взлетную и посадочную поляру строят по уравнению
𝐶𝑥𝑎 в−п
∗
2
(𝐶𝑦𝑎 − 𝐶𝑦𝑎
в−п )
= 𝐶𝑥𝑎𝑚𝑖𝑛 в−п +
,
𝜋𝜆зем
̅
где 𝐶𝑥𝑎𝑚𝑖𝑛 в−п = 𝐶𝑥𝑎𝑚𝑖𝑛 + 𝐶𝑥𝑎ш + ∆𝐶𝑥𝑎зак 𝑆обсл.зак.
;
∗
𝐶𝑦𝑎
в−п = 𝐶𝑦𝑎 расч + 0,5(∆𝐶𝑦𝑎л + ∆𝐶𝑦𝑎зем ) ;
𝐶𝑦𝑎 расч = 0,154 (См. п.3.7)
𝜆зем = 15,395 (См. п. 4.4)
Лобовое сопротивление шасси
𝐶𝑥𝑎ш = 1,5
∑ 𝑆пн
𝑆
Площадь пневматика
𝑆пн = 0,15 м2
𝐶𝑥𝑎ш = 1,5
0,15 ∙ 3
= 0,0198
34
Для немеханизированного крыла уравнение поляры имеет следующий
вид:
𝐶𝑥𝑎 в−п
(𝐶𝑦𝑎 − 𝐶𝑦𝑎 расч )2
= 𝐶𝑥𝑎𝑚𝑖𝑛 в−п +
,
𝜋𝜆зем
𝐶𝑥𝑎𝑚𝑖𝑛 в−п = 𝐶𝑥𝑎𝑚𝑖𝑛 + 𝐶𝑥𝑎ш
(0,210 − 0,154)2
𝐶𝑥𝑎 в−п (−4°) = (0,01820 + 0,0199) +
= 0,041
3,1415 ∙ 15,395
Результаты расчетов приведены в таблице 12, результат построения
представлен на рисунке 4.
47
𝛼
-4,000
-2,000
0,000
2,000
4,000
6,000
8,000
9,000
10,000
11,246
12,986
15,218
𝐶𝑦𝑎
-0,210
-0,068
0,075
0,217
0,359
0,501
0,643
0,714
0,785
0,857
0,928
0,999
𝐶𝑥𝑎 в−п
0,041
0,039
0,038
0,038
0,039
0,041
0,043
0,045
0,046
0,048
0,050
0,053
Таблица 12- Немеханизированное крыло
Данные для механизированного крыла:
Взлет без учета влиянии земли:
2
𝐶𝑥𝑎 в−п
∗
(𝐶𝑦𝑎 − 𝐶𝑦𝑎
в−п )
= 𝐶𝑥𝑎𝑚𝑖𝑛 в−п +
,
𝜋𝜆зем
̅
𝐶𝑥𝑎𝑚𝑖𝑛 в−п = 𝐶𝑥𝑎𝑚𝑖𝑛 + 𝐶𝑥𝑎ш + ∆𝐶𝑥𝑎зак 𝑆обсл.зак.
∗
𝐶𝑦𝑎
в−п = 𝐶𝑦𝑎 расч + 0,5∆𝐶𝑦𝑎л
∆𝐶𝑦𝑎л = 0,518
∆𝐶𝑥𝑎зак = 0,025
𝐶𝑥𝑎 в−п (−10°) = (0,01820 + 0,0199 + 0,025 ∙ 15,044) +
(−0,118 − (0,154 + 0,5 ∙ 0,518))2
+
= 0,0499
3,1415 ∙ 15,395
Результаты расчетов приведены в таблице 13, результат построения
представлен на рисунке 4.
48
𝛼
𝐶𝑦𝑎
𝐶𝑥𝑎 в−п
-10,0000
-0,1182
0,0499
-8,0000
0,0239
0,0481
-4,0000
0,3083
0,0469
0,0000
0,5926
0,0492
4,0000
0,8769
0,0547
5,1213
0,9480
0,0566
6,4852
1,0191
0,0587
8,0918
1,0902
0,0611
9,9409
1,1613
0,0636
12,0327
1,2324
0,0664
14,3671
1,3035
0,0693
Таблица 13- Механизированное крыло, взлет без учета влияния близости
земли
Взлет с учетом влияния близости земли:
𝐶𝑥𝑎 в−п
∗
(𝐶𝑦𝑎 − 𝐶𝑦𝑎
в−п )
= 𝐶𝑥𝑎𝑚𝑖𝑛 в−п +
𝜋𝜆зем
2
̅
𝐶𝑥𝑎𝑚𝑖𝑛 в−п = 𝐶𝑥𝑎𝑚𝑖𝑛 + 𝐶𝑥𝑎ш + ∆𝐶𝑥𝑎зак 𝑆обсл.зак.
∗
𝐶𝑦𝑎
в−п = 𝐶𝑦𝑎 расч + 0,5(∆𝐶𝑦𝑎л + ∆𝐶𝑦𝑎зем )
∆𝐶𝑦𝑎зем = 0,2
𝐶𝑥𝑎 в−п (−12°) = (0,01820 + 0,0199 + 0,2 ∗ 0,885) +
+
(−0,049 − (0,154 + 0,5 ∙ (0,518 + 0,2))2
= 0,067
3,1415 ∙ 15,395
Результаты расчетов приведены в таблице 14, результат построения
представлен на рисунке 4.
𝐶𝑦𝑎
𝛼
-10,000
-0,049
-8,000
0,122
-6 0,293788
-4 0,465175
-2,000
0,637
0,000
0,808
2,184
0,894
3,461
0,979
4,922
1,065
6,569
1,151
8,399
1,236
𝐶𝑥𝑎 в−п
0,06671
0,06334
0,06117
0,06022
0,06049
0,06197
0,06317
0,06467
0,06647
0,06858
0,07099
Таблица 14- Взлет с учетом влияния близости земли
49
Посадка без учета влияния близости земли:
2
𝐶𝑥𝑎 в−п
∗
(𝐶𝑦𝑎 − 𝐶𝑦𝑎
в−п )
= 𝐶𝑥𝑎𝑚𝑖𝑛 в−п +
,
𝜋𝜆зем
̅
𝐶𝑥𝑎𝑚𝑖𝑛 в−п = 𝐶𝑥𝑎𝑚𝑖𝑛 + 𝐶𝑥𝑎ш + ∆𝐶𝑥𝑎зак 𝑆обсл.зак.
∗
𝐶𝑦𝑎
в−п = 𝐶𝑦𝑎 расч + 0,5∆𝐶𝑦𝑎л
∆𝐶𝑦𝑎л = 0,734
∆𝐶𝑥𝑎зак = 0,065
𝐶𝑥𝑎 в−п (−12°) = (0,01820 + 0,0199 + 0,065 ∙ 0,885) +
(−0,045 − (0,154 + 0,5 ∙ 0,734))2
+
= 0,105
3,1415 ∙ 15,395
Результаты расчетов приведены в таблице 15, результат построения
представлен на рисунке 4.
𝛼
-12
-11
-8
-6
-4
-1
0,092313
1,369252
2,830817
4,477007
6,307824
8,323266
10,52333
12,90803
15,47735
18,2313
𝐶𝑦𝑎
-0,045
0,027
0,239755
0,381924
0,524
0,737
0,808
0,880
0,951
1,022
1,093
1,164
1,235
1,306
1,377
1,448
𝐶𝑥𝑎 в−п
0,105086
0,103197
0,098783
0,096884
0,095822
0,095796
0,096205
0,096823
0,09765
0,098686
0,099931
0,101385
0,103048
0,104919
0,107
0,10929
Таблица 15- Посадка без учета влияния близости земли
Посадка с учетом влияния близости земли:
𝐶𝑥𝑎 в−п
∗
(𝐶𝑦𝑎 − 𝐶𝑦𝑎
в−п )
= 𝐶𝑥𝑎𝑚𝑖𝑛 в−п +
𝜋𝜆зем
2
̅
𝐶𝑥𝑎𝑚𝑖𝑛 в−п = 𝐶𝑥𝑎𝑚𝑖𝑛 + 𝐶𝑥𝑎ш + ∆𝐶𝑥𝑎зак 𝑆обсл.зак.
∗
𝐶𝑦𝑎
в−п = 𝐶𝑦𝑎 расч + 0,5(∆𝐶𝑦𝑎л + ∆𝐶𝑦𝑎зем )
50
∆𝐶𝑦𝑎зем = 0,225
∆𝐶𝑦𝑎л = 0,734
𝐶𝑥𝑎 в−п = (0,01820 + 0,0199 + 0,065 ∙ 0,855) +
(−0,151 − (0,154 + 0,5 ∙ (0,734 + 0,225))2
+
= 0,108
3,1415 ∙ 15,395
Результаты расчетов приведены в таблице 16, результат построения
представлен на рисунке 4.
𝛼
-14
-12
-10
-8
-7
-5,04558
-3,77971
-2,33659
-0,71622
1,081393
3,056258
5,20837
7,53773
10,04434
12,72819
15,5893
𝐶𝑦𝑎
-0,151
0,020
0,192
0,363
0,449
0,535
0,620
0,706
0,792
0,877
0,963
1,049
1,134
1,220
1,306
1,392
𝐶𝑥𝑎 в−п
0,108303
0,10335
0,099611
0,097086
0,09628
0,095777
0,095577
0,095682
0,09609
0,096801
0,097817
0,099136
0,100758
0,102685
0,104915
0,107448
Таблица 16- Посадка с учетом близости земли
51
C1,6
ya
1,4
Немеханизиров
анное крыло
1,2
Взлет без учета
влияния земли
1,0
Взлет с учетом
влияния земли
0,8
Посадка без
учета влияния
земли
Посадка с
учетом влияния
земли
0,6
0,4
0,2
0,0
0,00
0,02
0,04
0,06
0,08
0,10
0,12
0,14
0,16
Cxa
-0,2
-0,4
Рисунок 4- Взлетно- посадочные поляры
52
Расчет зависимости подъёмной силы от угла атаки на
4.5.3
режиме взлёта
Для расчета используется формула
𝑌𝑎 взл =
𝛼
[𝐶𝑦𝑎
взл земн (𝛼
2
𝜌𝑉взл
− 𝛼0 − ∆𝛼закр взл )]
𝑆
2
Смещение угла нулевой подъемной силы при выпуске закрылков на 20°
∆𝛼0закр взл = −7,287°
Производная коэффициента подъемной силы по углу атаки на взлетном
режиме
𝛼
𝐶𝑦𝑎
взл земн = 0,086
Взлетную скорость согласно [4] принимаем
м
𝑉взл = 111,278
с
Плотность на взлетном режиме
𝜌 = 1,225
кг
м3
(см. Таблица 5)
Площадь крыла
𝑆 = 34 м2
Сила тяжести самолета
𝑃 = 𝑚𝑔 = 5588 ∙ 9.8066 = 54799.28 Н
𝑌𝑎 взл
1,225 ∙ 111,2782
= [0,086(0 − (−1,05) − (−7,287))] ∙
∙ 34
2
= 38764,46 Н
Результаты расчета подъемной силы представлены в таблице 17,
результат построения представлен на рисунке 5.
53
𝛼
𝑌𝑎 взл , Н
38764,45983
43414,32112
48064,1824
52714,04368
57363,90497
62013,76625
66663,62753
71313,48882
75963,3501
80613,21138
85263,07267
89912,93395
94562,79523
99212,65651
0
1
2
3
4
5
6
7
8
9
10
11
12
13
Таблица 17- Зависимость подъемной силы от угла атаки
120000
Ya
100000
80000
60000
40000
20000
0
0
2
4
6
Подъемная сила
8
10
12
Сила тяжести
Рисунок 4- Зависимость подъемной силы от угла атаки
54
14
α
5 Подбор винта
Исходные данные:
𝑁ном кр = 537кВт
𝑁кр = 0,85𝑁ном кр = 456,450 кВт
𝐻 = 9 км
Исходя из характеристик самолета [4] зададимся следующими
значениями скорости и числа оборотов
𝑉кр = 111.278
об
𝑛𝑐 = 2000
мин
м
с
= 33
об
с
Для расчета необходимо определить максимальный конструктивно
допустимый диаметр винта
𝐷𝑚𝑎𝑥 = 2.6 м
Зададим три стандартных диаметра винта по таблице стандартных
значений винтов[1] и три значения числа оборотов.
𝐷1 = 2,6 м;
𝐷2 = 2.5 м;
𝐷3 = 2,4 м;
𝑛с1 = 28
𝑛с2 = 30
𝑛с3 = 33
об
с
об
с
об
с
;
;
.
Выбор нестандартного значения для числа оборотов обусловлен
характеристиками самолета и двигателя[4].Для каждой пары 𝐷 − 𝑛𝑐
вычисляем относительную поступь и коэффициент мощности
𝜆=
𝛽=
𝑉кр
𝐷𝑛𝐶
;
𝑁кр
𝜌Н 𝑛𝑐3 𝐷5
;
Также необходимо вычислить концевое число Маха, которое должны
быть меньше 1,2
55
𝜋 2
𝑀𝑅 = 𝑀√1 + ( ) .
𝜆
Вычисления для 𝐷1 :
𝜆𝑛𝐶1 =
111,278
111,278
111,278
= 1,529; 𝜆𝑛𝐶2 =
= 1,427; 𝜆𝑛𝐶3 =
= 1,297
2,6 ∙ 28
2,6 ∙ 30
2,6 ∙ 33
𝛽𝑛𝐶1 =
456450
456450
= 0,375; 𝛽𝑛𝐶2 =
= 0,305;
118,814 ∙ 21952
118,814 ∙ 27000
𝛽𝑛𝐶3 =
456450
= 0,229
118,814 ∙ 35937
3,1415 2
) = 0,837;
1,529
𝑀𝑅𝑛
= 0,366√1 + (
𝑀𝑅𝑛
3,1415 2
= 0,366√1 + (
) = 0,886
1,427
𝑀𝑅𝑛
= 0,366√1 + (
𝐶1
𝐶2
𝐶3
3,1415 2
) = 0,960
1,297
Расчеты для диаметров 𝐷2 и 𝐷3 проводятся аналогичным образом.
Далее, пользуясь серийными характеристиками воздушных винтов
[Головин], определяем КПД. Самолет изначально имеет пяти лопастной винт,
поэтому для определения КПД пользуемся только характеристикой для
четырех лопастного винта, т.к. у других КПД слишком низкое. Все результаты
расчетов сведены в таблице 16.
𝐷
2,6
𝑛𝐶
𝜆
𝐷
2.4
28
30
33
28
30
33
28
30
33
1,529
1,427
1,297
1,590
1,484
1,349
1,656
1,546
1,405
5
𝑛𝑐3
2,5
118,814
97,656
79.626
21952,000 27000,000 35937,000 21952,000 27000,000 35937,000 21952,000 27000,000 35937,000
𝛽
0,375
0,305
0,229
0,456
0,371
0,278
1,391
1,131
0,850
𝑀𝑅
𝜂
Серия
4Ф-1
0,837
0,886
0,960
0,811
0,857
0,928
0,559
0,455
0,341
0,77
0,8
0,82
0,78
0,79
0,8
<0,8
<0,8
<0,8
Таблица 16- сводка результатов
56
На основе вычисленных данных определяем:
Число оборотов
𝑛с3 = 33
об
с
Предварительное значение диаметра
𝐷′ = 2.6 м
Отношение модельного эквивалентного диаметра мотогондолы к
диаметру модельного винта
𝑑э
𝐷
= 0,37
Для вычисления расчетного КПД выберем дополнительно два
ближайших стандартных значения
𝐷′ − ∆𝐷1 = 2.5 м
𝐷′ − ∆𝐷2 = 2.4 м
Определяем относительные поступи, коэффициенты мощности и
концевые числа Маха, затем по серийной характеристике находим угол
установки лопасти в нулевом приближении 𝜑0° . Далее по рисунку 6.3[1]
определяем угол притекания струй 𝛽°. Затем вычисляем угол атаки в нулевом
приближении по формуле
𝛼г0 ° = 𝜑0° − 𝛽°.
По рисунку 6.4[1] определяем коэффициент 𝑘𝛽 , учитывающий
увеличение потребляемой винтом мощности вследствие сжимаемости
воздуха. Далее вычисляем коэффициент мощности, соответствующий
отсутствию влияния сжимаемости и, следовательно, меньшей мощности:
𝛽′ =
𝛽
𝑘𝛽
Затем для каждой пары 𝜆 − 𝛽 ′ снимаем углы установки лопасти в первом
приближении 𝜑1° и находим геометрический угол атаки в первом приближении
𝛼г1 ° = 𝜑1° − 𝛽°.
По рисунку 6.5[1] определяем величину поправки на сжимаемость 𝐾𝜂м
для рассчитанных 𝛼г1 и 𝑀𝑅
57
Поправку на влияние мотогондолы определяем по формуле
𝐾𝜂ф = 0,985
где коэф-ты 𝑘ф и 𝑘ф0 , зависят от
𝑑
𝑑э
𝐷
𝑑
𝑘ф
,
𝑘ф0
и определяются по рисунку 6.6[1]
𝑑
𝑑
( 𝐷э) = 0,37; ( 𝐷э) = 0,359; ( 𝐷э) = 0,373; ( 𝐷э) = 0,388.
0
1
2
1
Расчетный КПД находим по формуле
𝜂расч = 𝜂𝐾𝜂ф 𝐾𝜂м ,
где 𝜂 выбирается по серийной характеристике для каждой пары 𝜆 − 𝛽 ′ .
Результаты расчетов приведены в таблице 17.
𝐷′
2,6
𝐷 ′ − ∆𝐷1
2,5
𝐷 ′ − ∆𝐷2
2,4
0,96
0,93
0,897
1,297
1,349
1,405
𝛽
0,229
0,278
0,341
𝜑0 °
𝛽°
𝛼г0 °
𝑘𝛽
34
28
6
1,47
0,156
32
4
0,93
37
29
8
1,46
0,191
33
4
0,95
38
30
8
1,37
0,25
34
4
0,97
0,373
0,388
0,405
0,955
0,95
0,955
0,985
0,84
0,769
351230,0589
0,95
𝑀𝑅
𝜆
𝛽′
𝜑1 °
𝛼г1 °
𝐾𝜂м
𝑑э
𝐷
𝑘ф
𝑘ф0
𝐾𝜂ф
𝜂
𝜂расч
𝑁расч
0,99
0,83
0,739
337250,458
0,99
0,82
0,774
353148,0522
Таблица 17- сводка результатов второго этапа расчетов
58
Требуется удостовериться, что суммарной тяги, предоставляемой
винтами выбранной серии и диаметра, достаточно для поддержания
крейсерского режима полета самолета.
Для этого рассчитаем величину силы тяги по формуле:
𝑃 = 𝛼𝜌𝐻 𝑛𝑐2 (𝐷′ − ∆𝐷2 )4 ,
где 𝛼 – коэффициент тяги винта, который рассчитывается по формуле
∆𝐷2
𝜂расч
𝛽∆𝐷2 0,774 ∙ 0,25
𝛼=
=
= 0,138
𝜆∆𝐷2
1,405
𝑃 = 0,138 ∙ 0,467 ∙ 332 ∙ 2,44 = 2328,46 Н
Рассчитаем силу лобового сопротивления на крейсерском режиме:
𝑋𝑎крейс
2
𝜌ℎ 𝑉крейс
𝑆
= 𝑐𝑥𝑎крейс
,
2
где 𝑉крейс – скорость полета на крейсерском режиме 𝑉крейс = 90,278 м/с
(см. пункт 2);
𝑆 = 34 м2 – площадь крыла;
–
𝑐𝑥𝑎 крейс
коэффициент
лобового
сопротивления
самолета
на
крейсерском режиме, соответствует 𝐶𝑦𝑎 крейс = 0,716.
𝐶𝑥𝑎 крейс = 𝐶𝑥𝑎𝑚𝑖𝑛 + 𝐷(𝐶𝑦𝑎 крейс − 𝐶𝑦𝑎расч )2 =
= 0,01750 + 0,059 ∙ (0,716 − 0,154)2 = 0,0362
𝑋𝑎крейс
0,467 ∙ 90,7282 ∙ 34
= 0,0362
= 2365,69 Н
2
Необходимо выполнение условия
𝑃𝑛дв > 𝑋𝑎крейс ,
где 𝑛дв = 2- число двигателей
После чего имеем
𝑃𝑛дв = 2328,46 ∙ 2 = 4656,92 Н
Таким образом делаем вывод, что винт серии 4Ф-1 диаметром 2,4 м не
превышает максимальный конструктивно допустимый диаметр. Тяга,
создаваемая
винтами
достаточна,
чтобы
сопротивления.
59
преодолеть
силы
лобового
ЗАКЛЮЧЕНИЕ
В данной курсовой работе были проведены вычисления характеристик
самолета Piper Pa 42 Cheyenne, длина которого была увеличена на 15%, а также
была увеличена масса на 10%.
В
результате
расчетов
были
получены
геометрические
и
аэродинамические характеристики, осуществлен подбор винтов. Были
получены следующие характеристики:
1) Критическое число Маха самолета М∗ = 0,657;
2) Минимальное сопротивление в крейсерском режиме полета
𝑐𝑥𝑎 𝑚𝑖𝑛 = 0,0175;
3) Для взлетно-посадочного режима для немеханизированного крыла
𝑐𝑦𝑎 доп зем = 0,785, 𝑐𝑦𝑎 max зем = 0,988.
4) Механизация крыла состоит из простого закрылка. Относительная
хорда закрылка 𝑏̅закр = 0,25 , угол отклонения закрылка на взлете
составляет 𝛿вз = 20°, а на посадке 𝛿пос = 40°
5) Для режима взлета, для механизированного крыла с учетом влияния
мн вз
мн вз
земли 𝑐𝑦𝑎зем
= 0,808, 𝑐𝑦𝑎
max зем = 1,247.
6) Для режима посадки с механизированным крылом с учетом влияния
м пос
м пос
земли 𝑐𝑦𝑎
доп зем = 0,449, 𝑐𝑦𝑎 max зем = 1,359.
7) Воздушный винты серии 4Ф-1, диаметра 𝐷 = 2,4 м. Отдельный винт
располагает мощностью в крейсерском режиме 𝑁расч = 353,48 кВт и
тягой 𝑃 = 2328,46 Н.
60
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1) Головин В.М. Расчёт поляр и подбор винта к самолёту. [Текст] / В.М.
Головин, Г.В. Филиппов, В.Г. Шахов. - Самара: Изд-во Самар. гос.
аэрокосм. ун-та им. С. П. Королёва, 1992. – 68 с.
2) Расчёт аэродинамических характеристик дозвуковых самолётов
[Электронный ресурс]: электрон. учеб. пособие /В.В. Васильев, А.Н.
Никитин, В.А. Фролов, В.Г. Шахов; Минобрнауки России, Самар.
гос. аэрокосм. ун-т им. С. П. Королёва (нац. исслед. ун-т). – Электрон.
текстовые и граф. дан. (2,315 Мбайт). – Самара, 2012. – 1 эл. опт. диск
(CD-ROM).
3) Б. А. Ушаков Атлас аэродинамических характеристик профилей
крыльев. [Текст] / Б. А. Ушаков, П. П. Красильщиков, А. К. Волков,
А. Н. Гржегоржевский.
4) TYPE CERTIFICATE DATA SHEET NO. A23SO Piper PA-42. [Текст]
61
Скачать