с решением

реклама
Текст районной олимпиады по математике (с решением)
в 5 классах
Задача 1.
Шурик, Трус, Балбес и Бывалый участвовали в турнире по домино и заняли первые четыре
места. Сумма мест, занятых Шуриком, Трусом и Балбесом, равна 6, сумма мест Труса и
Бывалого тоже равна 6. Какое место занял каждый из них, если Трус занял более высокое
место, чем Шурик? Объясните, как вы получили ответ.
Решение.
Ответ: 1. Балбес; 2. Трус; 3. Шурик; 4. Бывалый. Из первого условия следует, что Шурик, Трус
и Балбес заняли первые три места в каком-то порядке, а из второго, – что Трус и Бывалый
заняли второе и четвертое места. Значит, Трус – второй, Бывалый – четвертый. Из последнего
условия следует, что Балбес – первый, а Шурик – третий.
Задача 2.
В бочке находится не менее 13 литров молока. Как отлить из нее 8 литров молока с помощью
пустых пятилитрового и девятилитрового ведер?
Решение.
Наполняем из бочки девятилитровое ведро и отливаем из него 5 л в пятилитровое. Эти 5 л
выливаем обратно в бочку, а в пятилитровое ведро выливаем оставшиеся 4 л из
девятилитрового. Далее снова наполняем девятилитровое ведро из бочки и отливаем 1 л в
пятилитровое. Теперь в девятилитровом ведре находится 8 литров молока.
Задача 3.
Количество цифр, потребовавшихся для нумерации всех страниц энциклопедического словаря,
не превосходит 2009 (первая страница имеет номер 1). Если бы в словаре было на одну
страницу больше, то это количество превысило бы 2009. Сколько страниц в словаре?
Объясните, как вы получили ответ.
Решение. На однозначные номера потрачено 9 цифр, на двузначные – 90×2 = 180 цифр.
Поэтому на трехзначные номера остается не более 2009 – 9 – 90×2 = 1820 цифр. Так как 1820 : 3
= 606 (ост. 2), то страниц с трехзначными номерами в словаре 606, а всего страниц – 9 + 90 +
606 = 705.
Ответ: 705 страниц.
Задача 4.
Коля заплатил 115 руб за четыре тетради, два карандаша и резинку, Саша – 140 руб за две
тетради, семь карандашей и две резинки. Сколько заплатил Антон за две тетради, три
карандаша и резинку? Объясните, как вы получили ответ.
Решение.
Так как покупки Коли и Саши вместе составляют утроенную покупку Антона, то Антон
потратил (115 + 140) : 3 = 85 руб.
Ответ: 85 руб.
Задача 5.
Сколько раз к наибольшему однозначному числу надо прибавить наибольшее двузначное
число, чтобы получить наибольшее трёхзначное.
Решение.
9 + 99п = 999
99п = 990
п = 10
Значит нужно прибавить 10 раз.
Ответ: 10 раз
6 класс
Задача 1.
К числу 2009 слева и справа припишите по одной цифре так, чтобы получилось шестизначное
число, делящееся на 45. Найдите все такие шестизначные числа. Объясните, как вы получили
ответ.
Решение.
Так как число делится на 5, то его последняя цифра равна 0 или 5. Так как число делится на 9,
то его сумма цифр делится на 9.
Ответ: 720090 и 220095.
Задача 2.
Коля заплатил 55 руб за одну тетрадь, два карандаша и резинку, Саша – 115 руб за две тетради,
три карандаша и три резинки. Сколько заплатил Антон за две тетради, пять карандашей и одну
резинку? Объясните, как вы получили ответ.
Решение.
Ответ: 105 руб. Так как покупки Саши и Антона вместе составляют учетверенную покупку
Коли, то Антон заплатил 55×4 – 115 = 105 руб.
Задача 3.
В записи 52*2* замените звездочки цифрами так, чтобы полученное число делилось на 36.
укажите все возможные варианты.
Решение.
Число делится на 36, если оно делится на 4 и на 9. Так как сумма цифр 5,2,2 равна 9, то сумма
2-х недостающих цифр должна равняться 0,9 или 18. Учитывая, что число должно делиться на
4, а предпоследняя цифра равна 2, то последняя цифра может быть лишь 0 или 8.
Варианты: 52524; 52128; 52020; 52920.
Задача 4.
Сколько воды надо добавить к 600 г. жидкости, содержащей 40% соли, чтобы получился
12 % -ый раствор этой соли?
Решение.
1). 600 : 100 ∙ 40 = 240 ( г ) – количество соли в 600 г. жидкости
2). 240 : 12 ∙ 100 = 2000 ( г ) – будет 12 % - й жидкости
3). 2000 – 600 = 1400 ( г ) – воды надо добавить
Ответ: 1400 г.
Задача 5.
Разместите 8 козлят и 9 гусей в 5 хлевах так, чтобы в каждом хлеве были и козлята и гуси, а
число их ног равнялось 10.
Решение.
Количество гусей в 1 хлеве – х.
Число козлят – у.
Так как число ног в 1 хлеве должно равняться 10, то 2х + 4у = 10.
Методом подбора:
х=3иу=1
х=1иу=2
Значит в 2-х хлевах будет по 1 козленку и 3 гусям, в 3-х хлевах – по 2 козленка и 1 гусю.
7 класс
Задача 1.
По какому правилу написаны числа: 1,2,8,28,100,356,…?
Напишите следующие два числа.
Решение.
Правило: каждое следующее число равно сумме утроенного последнего и удвоенного
предпоследнего.
Ответ. 1268, 4560.
Задача 2.
На клетчатой бумаге изображена чашка с крышкой (см. рис. 1). На
покраску крышки израсходовали 30 г краски. Сколько ещё нужно грамм
краски для покраски чашки? Не забудьте обосновать ответ.
Решение.
Площадь закрашенной части составляет ровно 2 клеточки. Тогда на
покраску 1 клетки расходуется 15 г краски. Площадь «чашки» составляет
Рис.1
3 клеточки. Тогда на ее покраску потребуется еще 45 г краски.
Задача 3.
Десять футболистов вместе забили 54 гола. При этом каждый забил хотя бы один гол, а один целых 7 голов. Доказать, что двое из них забили одинаковое количество голов.
Решение.
По условию на 9 футболистов приходится 47 голов, если бы все они забили разное число голов,
то голов бы было не меньше, чем 1 + 2 + 3 + 4 + 5 + 6 + 8 + 9 + 10 = 48, что больше, чем они
реально забили.
Задача 4.
В соревнованиях по бегу на дистанцию 120 метров участвуют три бегуна. Скорость первого из
них на 1 м/с больше скорости второго, а скорость второго бегуна равна полусумме скоростей
первого и третьего. Определить скорость третьего бегуна, если известно, что первый бегун
пробежал дистанцию на 3 секунды быстрее третьего, и их скорости выражаются целым числом
метров в секунду.
Решение.
Пусть скорость II бегуна х м/с, тогда скорость I бегуна – ( х+1) м/с, а III – ( х – 1) м/с.
Имеем:
120 120

3
x 1 x 1
x 2  1  80
x9
Значит, скорость III бегуна равна 8 м/с.
Ответ. 8 м/с.
Задача 5.
Ученик купил портфель, авторучку и книгу. Если бы портфель стоил в пять раз дешевле,
авторучка в два раза дешевле, а книга в 2,5 раза дешевле, то вся покупка стоила бы 200 руб.
Если бы портфель стоил в два раза дешевле, авторучка в четыре раза дешевле, а книга в три
раза дешевле, то вся покупка стоила бы 300 руб. Сколько стоила покупка на самом деле?
Решение.
Пусть портфель стоил х руб., авторучка – у руб., а книга – z руб. Тогда
 х у 2z
 5  2  5  200  10 2 х  5 у  4 z  2000


6 х  3 у  4 z  3600
 х  у  z  300
 12
 2 4 3
Складывая равенства последней системы, получим:
8( х + у + z) = 5600
х + у + z = 700
Значит, вся покупка стоила на самом деле 700 рублей.
Ответ: 700 рублей
8 класс
Задача 1.
Поставьте знаки модуля так, чтобы равенство стало верным: 1-2-4-8-16=19.
Решение.
||1-2|-|4-8|-16|=19
Задача 2.
Постройте график функции:
x2  x
x2
у 2

x 1 x 1
Решение.
x2  x
x2
хх  1
х2
у 2

, у

, х 1
х  1х  1 х  1
x 1 x 1
х
х2
х1  х 

, у
, х  1
х 1 х 1
х 1
ух
Значит, графиком данной функции является прямая y = x ( биссектриса I и III координатных
четвертей ) с двумя выколотыми точками ( 1; 1 ), ( -1; -1 ).
Задача 3.
В школе 30 классов и 1000 учащихся. Докажите, что есть класс, в котором не менее 34
учеников.
Решение.
Пусть такого класса в школе нет, т.е. во всех классах будет 33 и менее учащихся. Тогда во всей
школе будет не более 33·30=990 учащихся, что противоречит условию задачи (в школе 1000
учащихся). Значит, наше предположение неверно, поэтому в школе есть класс, в котором не
менее 34 учеников.
Задача 4.
5 х  31
a
b


Найдите значения a и b, при которых равенство
выполняется при
( x  5)( x  2) x  5 x  2
всех допустимых значениях переменной x.
Решение.
Приведем в правой части равенства дроби к общему знаменателю и учитывая. Так как
знаменатели у дробей в левой и правой частях равны, получим:
5х+31=ах+2а+вх – 5х
5х+31=(а+в)х+(2а – 5в )
Откуда имеем:
а  в  5
а  8


2а  5в  31 в  3
Ответ: при а = 8, в = – 3 .
Задача 5.
Найдите все пары натуральных чисел, удовлетворяющих уравнению x² - y² = 69.
Решение.
Разложим левую часть равенства на множители, а число 96 представим в виде произведения:
96 = 1∙ 96 = 96 ∙1 = 3 ∙ 23 = 23∙3. Учитывая, что х > у, имеем:
у
 х  у  1
 х  35


 х  у  69
 у  34

х  у х  у   69  

 х  13
х  у  3


 х  у  23
 у  10
Ответ: (35;34), (13;10).
Скачать