Муниципальное бюджетное общеобразовательное учреждение лицей №4 СОГЛАСОВАНО на заседании ШМО учителей математики, физики и информатики Руководитель ШМО _________/ Барченкова Н.А./ Протокол № 1 от 31.08.15 г. СОГЛАСОВАНО зам. директора по УВР ________/ Е.В.Русяйкина/ 31.08.2015 г. УТВЕРЖДЕНО Директор МБОУ лицей №4 _____________ /Е.В.Петрова/ Приказ №277 от 01.09.2015 г. РАБОЧАЯ ПРОГРАММА по геометрии для 7 А класса на 2015-2016 учебный год учителя Барченковой Н.А. г.Красногорск 2015 г. I. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа по предмету «Геометрия» для 7-А класса разработана на основе требований Федерального государственного образовательного стандарта основного общего образования, Основной образовательной программы основного общего образования МБОУ лицей №4, учебного плана МБОУ лицей №4 на 2015-2016 учебный год, на основе авторской программы В.Ф.Бутузова «Геометрия. 7-9 классы», Федерального перечня учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования (утвержденного приказом Министерства образования и науки РФ от 31.03.2014 г. №253). Рабочая программа ориентирована на использование учебника Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия. 7-9 классы, 2015 из УМК Л.С.Атанасяна «Геометрия 7-9». ЦЕЛИ: Изучение геометрии в 7 классе направлено на достижение следующих целей: Направление развития Личностное Метапредметное Предметное Компетенции Развитие личностного и критического мышления, культуры речи; Воспитание качеств личности, обеспечивающих, уважение к истине и критического отношения к собственным и чужим суждениям; Формирование качеств мышления, необходимых для адаптации в современном информационном обществе; Развитие интереса к математическому творчеству и математических способностей Формирование представлений об идеях и о методах математики как об универсальном языке науки и техники, части общечеловеческой культуры; Умение видеть математическую задачу в окружающем мире, использовать математические средства наглядности (рисунки, чертежи, схемы) для иллюстрации, интерпретации, аргументации; Овладение умением логически обосновывать то, что многие зависимости, обнаруженные путем рассмотрения отдельных частных случаев, имеют общее значение и распространяются на все фигуры определенного вида, и, кроме того, вырабатывать потребность в логическом обосновании зависимостей Выявление практической значимости науки, ее многообразных приложений в смежных дисциплинах и повседневной деятельности людей; Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности. С учетом требований Федерального государственного образовательного стандарта основного общего образования проектирование, организация и оценка результатов образования осуществляется на основе системно-деятельностного подхода, который обеспечивает: • формирование готовности обучающихся к саморазвитию и непрерывному 2 образованию; • проектирование и конструирование развивающей образовательной среды образовательного учреждения; • активную учебно-познавательную деятельность обучающихся; • построение образовательного процесса с учетом индивидуальных, возрастных, психологических, физиологических, особенностей здоровья обучающихся. Таким образом, системно-деятельностный подход ставит своей задачей ориентировать ученика не только на усвоение знаний, но, в первую очередь, на способы этого усвоения, на способы мышления и деятельности, на развитие познавательных сил и творческого потенциала ребенка. В связи с этим, во время учебных занятий учащихся необходимо вовлекать в различные виды деятельности (беседа, дискуссия, экскурсия, творческая работа, исследовательская (проектная) работа и другие), которые обеспечивали бы высокое качество знаний, развитие умственных и творческих способностей, познавательной, а главное самостоятельной деятельности учеников. II. ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА Овладение учащимися системой геометрических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования. Практическая значимость школьного курса геометрии обусловлена тем, что её объектом являются пространственные формы и количественные отношения действительного мира. Геометрическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе. Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественнонаучного цикла, в частности к физике. Развитие логического мышления учащихся при обучении геометрии способствует также усвоению предметов гуманитарного цикла. Практические умения и навыки геометрического характера необходимы для трудовой деятельности и профессиональной подготовки школьников. Развитие у учащихся правильных представлений о сущности и происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе. Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, геометрия развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения. Геометрия существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников. При обучении геометрии формируются умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе обучения геометрии школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки 3 чёткого, аккуратного и грамотного выполнения математических записей. Важнейшей задачей школьного курса геометрии является развитие логического мышления учащихся. Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым геометрия занимает ведущее место в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию геометрических форм, усвоению понятия симметрии, геометрия вносит значительный вклад в эстетическое воспитание учащихся. Её изучение развивает воображение школьников, существенно обогащает и развивает их пространственные представления. В курсе условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Логика и множества», «Геометрия в историческом развитии». Материал, относящийся к линии «Наглядная геометрия» (элементы наглядной стереометрии), способствует развитию пространственных представлений учащихся в рамках изучения планиметрии. Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также при решении практических задач. Материал, относящийся к содержательным линиям «Координаты» и «Векторы», в значительной степени несёт в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах. Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи. Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. III. МЕСТО КУРСА В УЧЕБНОМ ПЛАНЕ Согласно учебному плану МБОУ лицей №4 на изучение геометрии в 7-А классе отводится 2 ч в неделю, всего 68 часов в год. IV. ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ СОДЕРЖАНИЯ КУРСА Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования: личностные: формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению 4 индивидуальной образовательной траектории с учетом устойчивых познавательных интересов; формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики; формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности; умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта; креативность мышления, инициативу, находчивость, активность при решении геометрических задач; умение контролировать процесс и результат учебной математической деятельности; способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений; метапредметные: регулятивные универсальные учебные действия: умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы; умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения; понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом; умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем; умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера; познавательные универсальные учебные действия: осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей; умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы; умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач; формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТкомпетентности); 5 формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов; умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни; умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации; умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации; умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки; умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач; коммуникативные универсальные учебные действия: умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение; предметные: овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (геометрическая фигура, величина) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления; умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений; овладение навыками устных письменных, инструментальных вычислений; овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений; усвоение систематических знаний о плоских фигурах и их свойствах, умение применять систематические знания о них для решения геометрических и практических задач; умение измерять длины отрезков, величины углов; умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочные материалы и технические средства. 6 V. СОДЕРЖАНИЕ КУРСА (68 ч.) Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла. Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Углы с соответственно параллельными и перпендикулярными сторонами. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку. Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Окружность и круг. Дуга, хорда. Геометрические преобразования. Понятие о равенстве фигур. Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трём сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на п равных частей. Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур. Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Периметр многоугольника. Градусная мера угла. Решение задач на вычисление и доказательство с использованием изученных формул. Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Подмножество. Объединение и пересечение множеств. Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример. Понятие о равносильности, следовании, употребление логических связок если ..., то ..., в том и только в том случае, логические связки и, или. Геометрия в историческом развитии. От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата. 7 Глава 1. Начальные геометрические сведения 1 Прямая и отрезок. Луч и угол 9 1 Характеристика основных видов деятельности (на уровне учебных действий) Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как сравниваются и измеряются отрезки и углы, что такое градус и градусная мера угла, какой угол называется прямым, тупым, острым, развёрнутым, что такое середина отрезка и биссектриса угла, какие углы называются смежными и какие вертикальными; формулировать и обосновывать утверждения о свойствах смежных и вертикальных углов; объяснять, какие прямые называются перпендикулярными; формулировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей; изображать и распознавать указанные простейшие фигуры на чертежах; решать задачи, связанные с этими простейшими фигурами 1 Сравнение отрезков и углов 1 2 5-6 Измерение отрезков. Измерение углов Перпендикулярные прямые 7-8 Решение задач 2 4 Контрольная работа № 1 1 5 2 3,4 9 Глава 2. Треугольники 2 18 Объяснять, какая фигура называется треугольником, что такое вершины, стороны, углы и периметр треугольника, какой треугольник называется равнобедренным и какой равносторонним, какие треугольники называются равными; изображать и распознавать на чертежах треугольники и их элементы; формулировать и доказывать теоремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведённым из данной точки к данной прямой; формулировать и доказывать теорему о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника; формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника; формулировать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать простейшие задачи на построение (построение угла, равного данному, построение биссектрисы угла, построение перпендикулярных прямых, построение середины отрезка) и более сложные задачи, использующие Скорректированные сроки Содержание материала Количество часов № урока Плановые сроки (учебная неделя) КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ VI. 1 2 3 8 3 5-6 3 7-8 4 8-10 20-22 Первый признак равенства треугольников Медианы, биссектрисы и высоты треугольника Второй и третий признаки равенства треугольников Задачи на построение 3 10-11 23-26 Решение задач 4 12-13 27 Контрольная работа № 2 1 14 28 Зачет №1 1 14 10-12 13-15 16-19 Глава 3. Параллельные прямые 9 4 33-37 Признаки параллельности двух прямых Аксиома параллельных прямых 38-40 Решение задач 3 Контрольная работа № 3 1 29-32 41 Глава IV. Соотношения между сторонами и углами треугольника 5 20 Формулировать определение параллельных прямых; объяснять с помощью рисунка, какие углы, образованные при пересечении двух прямых секущей, называются накрест лежащими, какие односторонними и какие соответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых; объяснять, что такое аксиомы геометрии и какие аксиомы уже использовались ранее; формулировать аксиому параллельных прямых и выводить следствия из неё; формулировать и доказывать теоремы о свойствах параллельных прямых, обратные теоремам о признаках параллельности, связанных с накрест лежащими, соответственными и односторонними углами, в связи с этим объяснять, что такое условие и заключение теоремы, какая теорема называется обратной по отношению к данной теореме; объяснять, в чём заключается метод доказательства от противного: формулировать и доказывать теоремы об углах с соответственно параллельными и перпендикулярными сторонами; приводить примеры использования этого метода; решать задачи на вычисление, доказательство и построение, связанные с параллельными прямыми Формулировать и доказывать теорему о сумме углов треугольника и ее следствие о внешнем угле треугольника; проводить классификацию треугольников по углам; формулировать и доказывать теорему о соотношениях между сторонами и углами треугольника (прямое и обратное утверждения) и следствия из неё, теорему о неравенстве треугольника; формулировать и доказывать теоремы о свойствах прямоугольных треугольников (прямоугольный треугольник с углом 30°, признаки равенства прямоугольных треугольников); формулировать определения 15-16 17-19 19-20 21 9 42-43 Сумма углов треугольника 2 21-22 44-46 Соотношения между сторонами и углами треугольника Контрольная работа № 4 3 22-23 1 24 48-51 Прямоугольные треугольники 4 24-26 52-55 Построение треугольника по трём элементам Решение задач 4 26-28 5 28-30 61 Контрольная работа № 5 1 31 62 Зачет №2 1 31 Повторение. Решение задач 6 32-34 47 56-60 10 VII. УЧЕБНОЕ МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ: 1. Геометрия. Сборник рабочих программ. 7 – 9 классы: пособие для учителей общеобразовательных организаций /автор-составитель Т.А. Бурмистрова. – М.: Просвещение, 2014 2. Учебник. Геометрия: 7 – 9 кл. / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. – М.: Просвещение, 2015. 3. Рабочая тетрадь по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Ю.А. Глазков, П.М. Камаев. – М.: Издательство «Экзамен», 2014 4. Контрольные работы по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Н.Б. Мельникова. – М.: Издательство «Экзамен», 2014 5. Тесты по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / А.В. Фарков. – М.: Издательство «Экзамен», 2014 6. Дидактические материалы по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Н.Б. Мельникова, Г.А. Захарова. – М.: Издательство «Экзамен», 2014 7. Сборник задач по геометрии 7 класс / В.А.Г усев. – М.:Издательство «Экзамен», 2014 8. Геометрия 7 – 9 классы: задачи на готовых чертежах для подготовки к ГИА и ЕГЭ / Э.Н.. Балаян. – Ростов-на-Дону: Издательство «Феникс», 2013 9. Геометрия. 7 класс. Самостоятельные работ. Тематические тесты. Тесты для промежуточной аттестации. Справочник. Рабочая тетрадь / Ф.Ф.Лысенко, С.Ю.Кулабухова. – Ростов-на-Дону: Издательство «Легион», 2013 10. Геометрия. 7 класс. Контрольные измерительные материалы / Д.Г.Мухин, А.Р.Рязановский. – М.: Издательство «Экзамен», 2014 11. Методический журнал для учителей математики «Математика», ИД «Первое сентября» VIII. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ ГЕОМЕТРИИ В 7 КЛАССЕ Геометрические фигуры Ученик научится: пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения; распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации; находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, равенство фигур; решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств; решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки; решать простейшие планиметрические задачи в пространстве. Ученик получит возможность: овладеть методами решения задач на вычисления и доказательства: методом от противного, методом перебора вариантов и методом геометрических мест точек; овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование; приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ. Измерение геометрических величин Ученик научится: использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла; решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства). 11