Пегматитовые месторождения Пегматиты и связанные с ними месторождения относятся к продуктам поздних стадий раскристаллизации силикатных расплавов, насыщенных флюидными компонентами. Для них характерны: крупнокристаллическое строение; либо гнездовое, либо полосчатое обособление мономинеральных блоков; присутствие скоплений совершенных по форме и крупных по размерам кристаллов многих породообразующих, а также редких и акцессорных минералов. ТИПЫ ПЕГМАТИТОВ Выделяют две группы пегматитов – магматогенные и метаморфогенные. Магматогенные пегматиты представляют собой позднемагматические образования, имеющие состав тождественный родоначальной интрузии. Наибольшей пегматитоносностью обладают интрузии с повышенной кислотностью или щелочностью, полной дифференциацией и многофазностыо внедрения. Среди них установлено пять минералого-геохимических типов: гранитный, гибридный, десилицированный, щелочной и ультраосновной. 1. Гранитные пегматиты связаны с интрузиями гранитоидов и сложены, главным образом, ортоклазом, микроклином, кварцем, альбитом, олигоклазом и биотитом. В качестве дополнительных присутствуют: мусковит, турмалин, гранаты, топаз, берилл, лепидолит, сподумен, флюорит, апатит, минералы редких и радиоактивных элементов и редких земель. Эти пегматиты разделяют на две группы: 1) простые недифференцированные пегматиты, сложенные почти исключительно микроклином и кварцем, 2) сложные дифференцированные разности. В сложных пегматитах выделяют следующие зоны и участки аномальных минеральных скоплений (рис. 19): 1) внешняя тонкозернистая мусковит-кварцполевошпатовая оторочка мощностью в несколько сантиметров; 2) кварц-полевошпатовая масса с письменной и гранитной структурой; 3) блоки крупнокристаллического микроклина; 4) кварцевое ядро; 5) на границе ядра и микроклиновых блоков развиваются неправильные скопления кварца, альбита, сподумен, минералов марганца и редких металлов. Чем совершеннее степень дифференциации, тем образуется большее число зон, возрастает количество скоплений с рудными элементами, укрупняются минералы, расширяется их число, сокращаются размеры зоны гранитной и письменной структуры около пегматитовых тел образуются ореолы метасоматоза по восстанию до 50 м и по мощности до 10 м. В них две зоны – внутренняя, представленная окварцеванием и микроклинизацией пород, и внешняя, характеризующаяся новообразованиями хлорита, амфибола и цеолитов. В геохимических ореолах фиксируют аномальные концентрации бария, рубидия, лития и бериллия. 2. Гибридные пегматиты образуются при ассимиляции гранитной магмой различных пород. В случае, если были захвачены глинистые сланцы или вулканиты основного состава, возникают пегматиты с андалузитом, кианитом, силлиманитом. При переработке карбонатных пород отмечается увеличение содержания роговой обманки, пироксенов, титанита, скаполита и других обогащенных кальцием, магнием и железом минералов. 3. Десилицированные пегматиты формируются при воздействии гранитного расплава на ультраосновные и карбонатные породы. В результате образуются плагиоклазиты (от альбитов до анортозитов). При пересыщении расплава глиноземом возникают корундовые плагиоклазиты. 4. Щелочные пегматиты встречаются в щелочных магматических комплексах. Для них характерны микроклин, ортоклаз, нефелин, арфведсонит, содалит, эгирин, натролит. В качестве примесей отмечаются апатит, анальцим, минералы циркония тантала, ниобия и редких земель. Пегматиты ультраосновных магм имеют состав бронзитит, анортитбитовнит, лабрадор-андезин, оливин, амфибол, биотит. В небольших количествах отмечаются: апатит, гранат, сфен, циркон, титаномагнетит, сульфиды. 5. Пегматиты ультраосновных магм имеют состав бронзитит, анортит-битовнит, лабрадор-андезин, оливин, амфибол, биотит. В небольших количествах отмечаются: апатит, гранат, сфен, циркон, титаномагнетит, сульфиды. Магматогенные пегматиты представлены двумя группами образований – сингенетичной и эпигенетичной. Сингенетичные (шлировые, камерные) пегматиты располагаются всегда внутри интрузий и образовались одновременно с последними. Для них характерно отсутствие резких контактов и аплитовых оторочек; овальная форма и обилие миароловых пустот. Эпигенетические пегматиты сформировались после затвердевания внешнего каркаса интрузий. Их тела размещаются как в материнской породе, так и за ее пределами, имеют жильные формы, резкие контакты, четкие аплитовые оторочки, контролируются тектоническими нарушениями. Метаморфогенные пегматиты формировались в регрессивные стадии высоких фаций регионального метаморфизма; не связаны с магматическими комплексами; развиваются в пределах гранитогнейсовых блоков древних кратонов и контролировались разрывными структурами зон протоактивизации. В их составе присутствуют типоморфные метаморфические минералы – дистен, силлиманит, андалузит и др. Пегматиты образовывались во все периоды геологической истории, начиная с архейской. Масштабы этого процесса возрастают по мере эволюции земной коры. Так, площадь пегматитовых поясов составляла (тыс. км2) докембрийских – 98, палеозойских – 229 и мезозойских – 275. Однако рудная продуктивность их, наоборот, угасает в молодых образованиях. По данным Н. Солодова распределение запасов бериллия в пегматитах по эпохам имеет следующий вид: докембрий – 75%, палеозой – 23% и мезозой – 2%. По геологическим данным пегматиты формируются в широком интервале глубин от 1,5 до 20 км, что соответствует величинам литостатического давления 120–800 МПа. Также необычайно широк температурный диапазон – 800–50°С. Судить о температурном режиме пегматитообразования позволяют следующие факты: ранняя кристаллизация расплава 1200–900"С; образование гранита без минерализаторов 1000–800°С, в их присутствии 730–640°С; возникновение гранитной эвтектики 700–650° С; кристаллизация биотита 760–435°С, мусковита 500–435°С, берилла 500–400°С, кварца – 600–300°С, топаза – 510–300°С мориона и аметиста – 300–130°С, халцедона – 90–55°С. ГЕНЕЗИС ПЕГМАТИТОВ Происхождение пегматитов относится к одной из наиболее дискуссионных проблем в рудной геологии. В ее обсуждении принимали участие крупнейшие геологи нашего века. В настоящее время существует пять основных гипотез пегматитообразования. 1. Магматогенно-гидротермальная гипотеза, разработанная А.Ферсманом, В.Никитиным и другими, считает пегматиты продуктом раскристаллизации остаточной магмы. Процесс протекал непрерывно в закрытой системе при неограниченной растворимости Н2О и разделялся на пять условных этапов: магматический (900–800°С), эпимагматический (800–700°С), пневматолитовый (700–400"С), гидротермальный (400– 50°С) и гипергенный (50°С). Этапы в свою очередь расчленяются на 11 фаз и стадий. На ранних этапах формировались плагиоклазы, средних – микроклин и заключительных – альбит. Недостатки гипотезы: недоучет ограниченной растворимости в расплаве воды; проблема пространства (нужны большие открытые полости); не объяснена смена калиевых полевых шпатов натриевыми за счет автометасоматоза. 2. Магматогенно-пневматолито-гидротермальная двухэтапная гипотеза американских геологов (Р.Джонс, Е.Камерон и др.). В ранний магматический этап система закрыта. В открытых полостях происходило их зональное заполнение пегматитами простого состава при условии выноса части элементов. Во второй пневматолито-гидротермальный этап система становилась открытой. Поступавшие из глубин растворы метасоматически перерабатывали более ранние простые пегматиты и формировали сложные по составу тела. К недостаткам следует отнести незначительные по масштабам следы выноса и привноса вещества за пределы пегматитовых тел. 3. Метасоматическая двухэтапная гипотеза А.Заварицкого предполагает преобразование любой исходной породы, близкой по составу к граниту. В первый этап остаточные горячие газоводные растворы находились в химическом равновесии с вмещающими породами и перекристаллизовывали их без изменения состава. В закрытой системе возникали простые крупнокристаллические пегматиты. Во второй этап уже в обстановке открытой системы происходило растворение простых пегматитов и замещение их новыми минеральными ассоциациями. Эта гипотеза не объясняет формирование пегматитов в негранитных породах и отсутствие соответствующих масштабам данных процессов геохимических и метасоматических ореолов. 4. Ликвациопная гипотеза, развиваемая А.А.Маракушевым и В.Н.Граменицким, касается генезиса только гранитных пегматитов. На примере шлировых пегматитов доказывается тесная генетическая связь этих образований с материнскими гранитоидами. Она базируется на близости химизма биотитов (железистость глиноземистость, фтористость и др.), а также преемственность режима кислорода и фтора при их формировании в гранитоидах и пегматитах. Особая роль отводится вязким высококонцентрированным средам, промежуточным между растворами и расплавами, являющимися продуктами ликвации магмы. Пегматитоносность массивов связывают с их расслоенностью. Шлировые пегматиты концентрируются в прикровельных частях массивов. Формы выделений: слои, лепешки, капли, колбы, гантели и др. Формировавшиеся пегматиты по сравнению с материнскими гранитами имеют более лейкократовый состав. Они обеднены железом, магнием, марганцем и кальцием. Нормативный состав: кварц–полевой шпат. Для разных массивов в гранитах и пегматитах соотношения кварца, альбита и ортоклаза неодинаковы, а для одного они выдержаны. Таким образом, пегматитообразование представляет собой самостоятельный петро-генетический процесс, который заключается в отщеплении от остаточной магмы особого флюидного расплава по механизму жидкостной несмесимости и подготовке к расслоению гранитного плутона. Существует три главные ветви эволюции гранитной магмы. 1. Магма расщепляется на два расплава с близкими количествами в них алюмосиликатов. Расплав, обогащенный солями, приводит к образованию пегматитов. По мере понижения температуры состав расплава становится все более водносолевым и из него кристаллизуются кварц и другие жильные минералы. Сначала флюидные фазы носят щелочной характер и происходит растворение кремнезема. Затем они становятся кислыми, способствующими появлению кварц-мусковитовых агрегатов. Из-за пониженной плотности остаточные расплавы занимают в интрузии верхнее положение. В силу ограниченной растворимости солевой составляющей происходит отщепление самостоятельной фазы флюидных расплавов, в которых концентрируются рудные компоненты. 2. Из магмы отделяется солевой расплав. Пегматиты в этом случае не возникают. Образуются известковые скарны. 3. Третья ветвь характеризуется непрерывным переходом от алюмосиликатных расплавов к гидротермальным растворам. Она реализуется в глубинных магматических комплексах на платформенных щитах в этапы тектономагматической активности. Здесь возникает непрерывный ряд: 1) мигматиты, 2) гигантомигматиты (простые пегматиты), 3) кварц-полевошпатовые и кварцевые жилы. 5. Метаморфогенная гипотеза разработана В.Н. Мораховским. Она касается многочисленных пегматитовых провинций и полей, широко развитых в фундаментах древних платформ и для которых отсутствует пространственно-генетическая связь с интрузивными комплексами. Образование этих пегматитов тесно ассоциирует с возникновением и развитием очаговых структур и протекает на фоне падения температур и давлений в шесть основных этапов. 1. В локальных участках растяжения возникают микротрещинные матричные деформации во всем объеме пород. Направление растяжения субширотное или вертикальное, обусловленное действием ротационных сил Земли и денудационной разгрузкой. Такое поле напряжений способствует центростремительному движению флюидов в очаговые структуры. В полостях трещин отрыва создается высокая степень разряжения. 2. Протекают интенсивные процессы автометасоматоза при участии калиевых и натриевых щелочей (ранняя волна щелочности), выражающиеся в собирательной перекристаллизации и росте микроклинов. 3. Формируются системы сколовых трещин поясного типа. В очаговую структуру поступают кислые флюиды (волна кислотности). Возникают стержневые сегрегации (ихтиоглипты) и крупноблоковые выделения кварца, отдельные кристаллы и гнезда шерла, берилла и апатита. Намечаются основные контуры минеральных зон. 4. Интенсивно развиваются возникшие системы трещин поясного типа. Образуются крупнокристаллические слюды с поясными, реже конусными ориентировками. 5. Режим растяжения сменяется обстановкой сжатия. Протекают хрупкие и пластические деформации. Исчезновение сжимающих напряжений стимулирует поступление флюидов и развитие серицита, альбита, кварца, хлорита, кальцита, пирита, магнетита, ортита. 6) В системах региональных тектонических нарушений, рассекающих очаговые структуры, образуются дайки гранитов и кварцевые жилы. В рассмотренных гипотезах спорными положениями являются представления о роли особого остаточного расплава, о масштабах метасоматоза, об источниках флюидов, о степени закрытости системы, о растворимости воды и некоторые другие менее важные утверждения. Не существует одной универсальной концепции, объясняющей все разнообразие этих природных образований. В конкретных геологических ситуациях сохраняют актуальность отдельные положения всех пяти гипотез. ТИПЫ ПЕГМАТИТОВЫХ МЕСТОРОЖДЕНИЙ Образование полезных ископаемых, связанных с пегматитами, зависит главным образом от двух факторов – степени дифференциации магматического вещества и масштабов метасоматического преобразования ранних фаций пегматитов. С этих позиций В.И.Смирновым выделено три класса месторождений простые, перекристаллизованные и метасоматически замещенные. Однако эта классификация не в полной мере удовлетворяет промышленно-генетическому принципу систематики минеральных объектов. Видимо, целесообразнее разделять месторождение пегматитов по ведущему типу полезного компонента. В связи с таким подходом предлагается выделить четыре класса месторождений: керамический, мусковитовый, редкометальный и цветных камней. Керамические месторождения. К этому классу месторождений относятся магматогенные и метаморфогенные простые и перекристаллизованные пегматиты, сложенные почти исключительно калинатровыми полевыми шпатами и кварцем. Обладают письменной, гранитной и гигантозернистой структурой. Отношение кварца и полевых шпатов в промышленных сортах сыры составляет 1:3. Мусковитовые месторождения встречаются в магматогенных и метаморфогенных (дистен-силлиманитовая фация) перекристаллизованных пегматитах. Промышленное значение имеют тела, в 1 м3 которых произведение средней площади мусковитовых пластин на их массу будет больше 10-20 кг×см2. Запасы крупных месторождений достигают нескольких тысяч тонн. Наиболее значительные мусковитовые провинции располагаются в Россш (Карелия и Забайкалье), Индии и Бразилии. Редкометалльные месторождения ассоциируют с магматогенными и метаморфогенными метасоматически замещенными пегматитами. В магматогенных разностях месторождения характеризуются большим разнообразием рудных элементов. Помимо наиболее важных в промышленном отношении тантала и ниобия, из них добывают в небольших количествах олово, вольфрам уран, торий, редкие земли. В метаморфогенных пегматитах, образовавшихся в условиях андалузит-силлиманитовой фации, часто располагаются сложные тантал-ниобиевые и редкоземельные месторождения. Этот класс месторождений широко развит в фундаментах всех древних платформ и в фанерозойских складчатых поясах, а также в областях тектономагматической активизации (Бразилия, Австралия; Россия – Урал, Сибирь, Карелия и др). Месторождения цветных камней связаны с магматогенными метасоматически замещенными пегматитами. Особенно перспективны гранитные пегматиты. Им свойственны крупные до 200 м открытые полости с друзами кристаллического сырья. Из этих меторождений добывают значительную часть горного хрусталя оптического флюорита, топазов, аквамаринов, гранатов, аметистов и других драгоценных камней (Украина, Волынь; Бразилия, Южная Африка, Австралия и др.). Часто коренные месторождения служат источником для образования крупных россыпей цветных камней. Подобным способом возникли многие прибрежноморские россыпи Индии, Мадагаскара и Австралии.