те Тест по теории вероятностей-1

реклама
Решение на сайте http://nice-diplom.ru
Тест по теории вероятностей-1
Вопрос 1: Укажите, какое из перечисленных ниже свойств не является верным для
функции распределения случайного вектора (ξ1, ξ2):
1.
2.
3.
4.
5. ответ не указан.
Вопрос 2: Если Mξ=2, Dξ=0.1; то будет верной следующая оценка:
P(|ξ-2| ≥ 10) > 0.001;
P(|ξ-2| < 10) = 1;
P(|ξ-2| ≥ 10) ≤ 0.001;
P(|ξ-2| ≥ 10) = 1;
ответ не указан.
Вопрос 3: Если независимые случайные величины ξ1~N(0,1), ξ2~N(0,1); ...; ξ10~N(0,1);
то случайная величина
имеет:
1. χ2-распределение с девятью степенями свободы;
2. распределение Фишера с (4,6) степенями свободы;
3. χ2-распределение с десятью степенями свободы;
4. распределение Стьюдента с девятью степенями свободы;
5. ответ не указан.
Вопрос 4: Известно, что в результате опыта может произойти одно из трех независимых
событий А, В, С. Какова вероятность того, что в результате опыта произойдет только два
из этих событий?
1. 1 – P( А )P( В )P( С );
2. 1 - P( А )P( В )P( С )-P( А )P( В )P(С)- P( А )P(В)P( С )-P(А)P( В )P( С );
3. 1 - Р(А)Р(В)Р(С);
4. Р(А)Р(В)Р(С);
5. ответ не указан.
Вопрос 5: Известно, что ξ - случайная величина, имеющая показательное распределение с
параметром α=2, тогда дисперсия случайной величины η=5ξ-3 равна:
100;
97;
25/4;
13/4;
ответ не указан.
Вопрос 6: Функция распределения одномерной случайной величины дискретного типа,
принимающей конечное число значений, обладает следующим свойством:
1. имеет счетное число точек разрыва;
Решение на сайте http://nice-diplom.ru
Тест по теории вероятностей-1
2. в точках, совпадающих с возможными значениями случайной величины, имеет разрывы
второго рода;
3. имеет конечное число точек разрыва первого рода;
4. не имеет промежутков постоянства значений функции;
5. ответ не указан.
Вопрос 7: Какое из указанных ниже свойств, не является общим для всех функций
распределения одномерных случайных величин:
1.
2. Fξ(x1) > Fξ(x2), " x1 > x2;
3. Р(а≤ξ<b) = Fξ(b)-Fξ(a);
4.
5. нет такого свойства.
Вопрос 8: Если ξ1~N(3,1), ξ2~N(2,1), ξ3~N(4,2), то η=ξ1+ξ2+ξ3~N(a,σ), где:
1. a = 9, σ = 6;
2. a = 9, σ = √6 ;
3. a = 9/2, σ = 4;
4. a = 9/2, σ = √4;
5. ответ не указан.
Вопрос 9: Если m - число успехов в серии из 100 независимых испытаний с вероятностью
успеха 1/5 в каждом из них, то будет справедливо следующее:
ответ не указан.
Вопрос 10: Замена формулы Бернулли локальной формулой Маувра-Лапласа оправдана
при:
npg ≤ 9;
npg = 9;
npg < 8;
npg > 9;
ответ не указан.
Вопрос 11: В ящике в 7 раз больше белых шаров, чем черных. Наугад выбирается один
шар. Вероятность того, что он будет черным равна:
1. 1/7;
2. 1/8;
3. 7/8;
4. 1/2;
5. ответ не указан.
Решение на сайте http://nice-diplom.ru
Тест по теории вероятностей-1
Скачать