Áåëêè òåïëîâîãî øîêà â ìåõàíèçìàõ ñòðåññ-àäàïòàöèè ó áàéêàëüñêèõ àìôèïîä

advertisement
Ñèáèðñêèé ýêîëîãè÷åñêèé æóðíàë, 4 (2010) 623–632
ÓÄÊ 592; 574.5; 591.05
Áåëêè òåïëîâîãî øîêà â ìåõàíèçìàõ ñòðåññ-àäàïòàöèè
ó áàéêàëüñêèõ àìôèïîä
è ïàëåàðêòè÷åñêîãî Gammarus lacustris Sars:
II. Ñåìåéñòâî íèçêîìîëåêóëÿðíûå (ìàëûå) ÁÒØ
Æ. Ì. ØÀÒÈËÈÍÀ1,2, Ä. Ñ. ÁÅÄÓËÈÍÀ2, Ì. Â. ÏÐÎÒÎÏÎÏÎÂÀ2, Â. Â. ÏÀÂËÈ×ÅÍÊÎ2,
Ò. Ï. ÏÎÁÅÆÈÌÎÂÀ3, Î. È. ÃÐÀÁÅËÜÍÛÕ3, Ì. À. ÒÈÌÎÔÅÅÂ1,2
1
2
3
Áàéêàëüñêèé èññëåäîâàòåëüñêèé öåíòð
664003, Èðêóòñê, óë. Ê. Ìàðêñà, 5-10
E-mail: zhasha@mail.ru
Èðêóòñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò
664003, Èðêóòñê, óë. Ê. Ìàðêñà, 2
Ñèáèðñêèé èíñòèòóò ôèçèîëîãèè è áèîõèìèè ðàñòåíèé ÑÎ ÐÀÍ
664033, Èðêóòñê, óë. Ëåðìîíòîâà, 132
ÀÍÍÎÒÀÖÈß
Îïðåäåëÿëè ñòåïåíü ó÷àñòèÿ áåëêîâ òåïëîâîãî øîêà ñåìåéñòâà íèçêîìîëåêóëÿðíûå (ìàëûå) ÁÒØ
(íìÁÒØ) â ìåõàíèçìàõ òåðìî- è òîêñèêîðåçèñòåíòíîñòè ó ïðåñíîâîäíûõ îðãàíèçìîâ. Èññëåäîâàëè ÷åòûðå ýíäåìè÷íûõ âèäà îç. Áàéêàë – Gmelinoides fasciatus (Stebb.), Eulimnogammarus cyaneus (Dyb.),
E. vittatus (Dyb.), Ommatogammarus flavus (Dyb) è ïðåäñòàâèòåëÿ ïàëåàðêòè÷åñêîé ôàóíû Gammarus
lacustris Sars. Âîçäåéñòâèå òåìïåðàòóðíîãî ôàêòîðà îöåíèâàëè â õîäå ýêñïîçèöèè àìôèïîä ïðè òåìïåðàòóðàõ 20, 25, 30 °Ñ, òîêñè÷åñêîãî ôàêòîðà – â õîäå ýêñïîçèöèè â ðàñòâîðàõ õëîðèäà êàäìèÿ ñ
êîíöåíòðàöèÿìè 50, 10, 5, 0,5 è 0,05 ìã/ë. Îòìå÷åíà îáùàÿ äëÿ âñåõ èññëåäîâàííûõ âèäîâ òåíäåíöèÿ ê
óâåëè÷åíèþ ñîäåðæàíèÿ áåëêîâ ñåìåéñòâà íìÁÒØ, ïðè ýòîì íàáëþäàëèñü âèäîñïåöèôè÷íûå îñîáåííîñòè õàðàêòåðà ñèíòåçà èññëåäóåìîãî áåëêà. Ñäåëàí âûâîä îá ó÷àñòèè íìÁÒØ â ìåõàíèçìàõ òåðìî- è
òîêñèêîðåçèñòåíòíîñòè ó èññëåäîâàííûõ âèäîâ àìôèïîä.
Êëþ÷åâûå ñëîâà: ñòðåññ-ðåçèñòåíòíîñòü, áåëêè òåïëîâîãî øîêà (ÁÒØ), íèçêîìîëåêóëÿðíûå ÁÒØ
àìôèïîäû, Áàéêàë, ýíäåìèêè.
Âîçäåéñòâèå ñòðåññîâûõ ôàêòîðîâ âûçûâàåò àêòèâàöèþ çàùèòíûõ ìåõàíèçìîâ, êîòîðûå ïîìîãàþò îðãàíèçìàì àäàïòèðîâàòüñÿ
ê íåáëàãîïðèÿòíûì óñëîâèÿì. Îäíèì èç òàØàòèëèíà Æàííà Ìèõàéëîâíà
Áåäóëèíà Äàðüÿ Ñåðãååâíà
Ïðîòîïîïîâà Ìàðèíà Âëàäèìèðîâíà
Ïàâëè÷åíêî Âàñèëèé Âàëåðüåâè÷
Ïîáåæèìîâà Òàìàðà Ïàâëîâíà
Ãðàáåëüíûõ Îëüãà Èâàíîâíà
Òèìîôååâ Ìàêñèì Àíàòîëüåâè÷
êèõ ìåõàíèçìîâ, äåéñòâóþùèõ íà êëåòî÷íîì
óðîâíå, ÿâëÿåòñÿ ñèíòåç áåëêîâ òåïëîâîãî
øîêà (ÁÒØ). Ñóùåñòâóåò íåñêîëüêî ñåìåéñòâ
ÁÒØ, âûäåëåííûõ íà îñíîâàíèè èõ ìîëåêóëÿðíîé ìàññû è ôóíêöèé. Îäíîé èç ñàìûõ
ðàçíîîáðàçíûõ ãðóïï ÁÒØ ÿâëÿåòñÿ ñåìåéñòâî íèçêîìîëåêóëÿðíûõ (ìàëûõ) ÁÒØ
(íìÁÒØ). Ñåìåéñòâî íìÁÒØ îáúåäèíÿåò áåëêè ñ ìîëåêóëÿðíîé ìàññîé îò 12 äî 43 êèëîäàëüòîí (êÄà). Îáùåé ÷åðòîé äëÿ âñåõ íìÁÒØ
ÿâëÿåòñÿ íàëè÷èå ó íèõ -êðèñòàëëèíîâîãî
$ !
äîìåíà – àìèíîêèñëîòíîé ïîñëåäîâàòåëüíîñòè, ñîñòîÿùåé èç 80–100 îñòàòêîâ, êîòîðûé
ðàñïîëàãàåòñÿ, êàê ïðàâèëî, íà Ñ-êîíöåâîé
÷àñòè áåëêà [1, 2]. -Êðèñòàëëèíîâûé äîìåí
ïîëó÷èë ñâîå íàçâàíèå áëàãîäàðÿ òîìó, ÷òî
îí ðîäñòâåí -êðèñòàëëèíó õðóñòàëèêà ãëàçà ïîçâîíî÷íûõ æèâîòíûõ. Âïåðâûå ýòî îáíàðóæèëè Ingolia è Craig [3]. Íà äàííûé ìîìåíò íìÁÒØ îáíàðóæåíû íå òîëüêî â êëåòêàõ õðóñòàëèêà ìëåêîïèòàþùèõ, íî è â äðóãèõ êëåòêàõ è òêàíÿõ. Ìîíîìåðû íìÁÒØ
ñêëîííû ê îáðàçîâàíèþ óñòîé÷èâûõ äèìåðîâ,
êîòîðûå â ñâîþ î÷åðåäü ìîãóò àññîöèèðîâàòü
ñ îáðàçîâàíèåì êðóïíûõ îëèãîìåðîâ ðàçíîé
ñòðóêòóðû è ñîñòàâà ñ ìîëåêóëÿðíîé ìàññîé
îò 100 äî 1000 êÄà.  óñëîâèÿõ ñòðåññà ðàçìåð ýòèõ êîìïëåêñîâ ìîæåò âîçðàñòàòü äî
5000 êÄà [4].
ìÁÒØ âûïîëíÿþò ôóíêöèè ìîëåêóëÿðíûõ
øàïåðîíîâ [2]. Îíè âçàèìîäåéñòâóþò ñ ÷àñòè÷íî äåíàòóðèðîâàííûìè áåëêàìè, ïðåäîòâðàùàÿ èõ àãðåãàöèþ, è ïðè îïðåäåëåííûõ
óñëîâèÿõ ïåðåíîñÿò ýòè áåëêè ê øàïåðîíàì,
êîòîðûå îáëàäàþò ÀÒÔ-àçíîé àêòèâíîñòüþ
[5], îäíàêî è ñàìè íìÁÒØ îáëàäàþò øàïåðîíîâîé àêòèâíîñòüþ [6–8]. Îïèñàíî ôóíêöèîíèðîâàíèå íìÁÒØ ïðè ðàçëè÷íûõ ïàòîëîãèÿõ è äåãåíåðàòèâíûõ ñîñòîÿíèÿõ [9, 10].
Òàêæå íìÁÒØ ó÷àñòâóþò â ðåãóëÿöèè àïîïòîçà [4, 11, 12].
Ïðàêòè÷åñêè âñå íìÁÒØ ìîãóò ôîñôîðèëèðîâàòüñÿ ïîä äåéñòâèåì ðàçëè÷íûõ ïðîòåèí-êèíàç [4]. Ôîñôîðèëèðîâàíèå, êàê ïðàâèëî, ïðèâîäèò ê äèññîöèàöèè êðóïíûõ îëèãîìåðîâ íìÁÒØ [13–15], ÷òî ìîæåò ñïîñîáñòâîâàòü ôîðìèðîâàíèþ ãåòåðîîëèãîìåðîâ ýòèõ
áåëêîâ [16] è òåì ñàìûì âëèÿòü íà èõ øàïåðîíîâóþ àêòèâíîñòü.
Ñèíòåç íìÁÒØ èíäóöèðóåòñÿ ðàçëè÷íûìè âîçäåéñòâèÿìè, òàêèìè êàê èçìåíåíèå
òåìïåðàòóðû ñðåäû, îêèñëèòåëüíûé ñòðåññ,
òÿæåëûå ìåòàëëû [2, 17–20].
Öåëü äàííîãî èññëåäîâàíèÿ – îïðåäåëåíèå ñòåïåíè ó÷àñòèÿ íìÁÒØ â ìåõàíèçìàõ
òåðìî- è òîêñèêîðåçèñòåíòíîñòè ó ðÿäà áàéêàëüñêèõ ýíäåìè÷íûõ àìôèïîä è ïàëåàðêòè÷åñêîãî Gammarus lacustris Sars.
ÎÁÚÅÊÒÛ È ÌÅÒÎÄÛ ÈÑÑËÅÄÎÂÀÍÈß
 èññëåäîâàíèè èñïîëüçîâàëè ÷åòûðå ýíäåìè÷íûõ âèäà àìôèïîä îç. Áàéêàë – Gmeli$ "
noides fasciatus (Stebb.), Eulimnogammarus
cyaneus (Dyb.), E. vittatus (Dyb.), Ommatogammarus flavus (Dyb), êîòîðûõ ñðàâíèâàëè ñ
ïðåäñòàâèòåëåì ïàëåàðêòè÷åñêîé ôàóíû Gammarus lacustris Sars.
Ñáîð àìôèïîä ïðîâîäèëè ñ èñïîëüçîâàíèåì ãèäðîáèîëîãè÷åñêîãî ñà÷êà, ãëóáîêîâîäíûé âèä îòëàâëèâàëè ñ ïîìîùüþ ãëóáîêîâîäíûõ ëîâóøåê. Áàéêàëüñêèõ àìôèïîä îòëàâëèâàëè â ïðèáðåæíîé çîíå îç. Áàéêàë â ðàéîíå ïîñ. Ëèñòâÿíêà (Þæíûé Áàéêàë), à òàêæå â ðàéîíå ïîñ. Áîëüøèå Êîòû, G. lacustris – â îçåðå â ðàéîíå ïîñ. Áîëüøèå Êîòû
(Þæíûé Áàéêàë). Ïåðåä ýêñïåðèìåíòàìè ïðîâîäèëè ïðåàêêëèìàöèþ àìôèïîä â ëàáîðàòîðíûõ óñëîâèÿõ: ðàçäåëüíî ïî âèäàì â àýðèðóåìûõ àêâàðèóìàõ ïðè òåìïåðàòóðå 6–7 Ñ
íå ìåíåå 1–2 ñóò. Ïðè äàííûõ óñëîâèÿõ ó
ðà÷êîâ íàáëþäàþò ðàâíîìåðíûé ðîñò è âûñîêóþ äâèãàòåëüíóþ àêòèâíîñòü. Âî âñåõ ýêñïåðèìåíòàõ èñïîëüçîâàëè çäîðîâûõ è àêòèâíî ïëàâàþùèõ ðà÷êîâ.
 ðàáîòå îöåíèâàëè ñòðåññîâîå âîçäåéñòâèå òåìïåðàòóðíîãî è òîêñè÷åñêîãî ôàêòîðîâ. Îöåíêó òåìïåðàòóðíîãî âîçäåéñòâèÿ
ïðîâîäèëè ýêñïîíèðîâàíèåì àìôèïîä â òåðìîñòàòèðóåìûõ êàìåðàõ ïðè ðàçëè÷íûõ òåìïåðàòóðàõ â äèàïàçîíå 20–30 Ñ â çàâèñèìîñòè îò îòíîøåíèÿ òîãî èëè èíîãî âèäà ê ïîâûøåííîé òåìïåðàòóðå. Âëèÿíèå òîêñè÷åñêîãî ñòðåññà îöåíèâàëè ýêñïîíèðîâàíèåì àìôèïîä â ðàñòâîðàõ õëîðèäà êàäìèÿ ñ êîíöåíòðàöèÿìè 50, 10, 5, 0,5 è 0,05 ìã/ë ïðè òåìïåðàòóðå 6–7 Ñ. Äëÿ ñðàâíåíèÿ ïàðàëëåëüíî ñ ýêñïåðèìåíòàëüíûìè ãðóïïàìè ïðîâîäèëè ýêñïîçèöèþ ðà÷êîâ â íîðìàëüíûõ óñëîâèÿõ – ñ ïîñòîÿííîé àýðàöèåé ïðè òåìïåðàòóðå 6–7 Ñ. Äëèòåëüíîñòü ýêñïåðèìåíòîâ ñîñòàâëÿëà îò 30 ìèí äî 12 ñóò. Ïîñëå ýêñïåðèìåíòîâ ðà÷êîâ çàìîðàæèâàëè â æèäêîì
àçîòå è ïðîâîäèëè ïîñëåäóþùèå àíàëèçû èç
íåäèôôåðåíöèðóåìûõ òêàíåé.
Ñóììàðíûé áåëîê âûäåëÿëè â 0,1 Ì ÒðèñHCl áóôåðå (ðÍ 7,6). Ãîìîãåíàò öåíòðèôóãèðîâàëè 15 ìèí ïðè 7000 g, îñàäîê ðàñòâîðÿëè â áóôåðå äëÿ îáðàçöà (ðÍ 6,8), ñîäåðæàùåì 1 ìÌ ÝÄÒÀ, 1 % ÄÄÑ-Nà, 20 % ãëèöåðèí, 5 % -ìåðêàïòîýòàíîë, 0,001 % áðîìôåíîëîâûé ñèíèé. Ïîëó÷åííûå áåëêîâûå ïðîáû õðàíèëè ïðè òåìïåðàòóðå –20 Ñ. Êîëè÷åñòâî áåëêà â ïðîáàõ îïðåäåëÿëè ïî ìåòîäó Ëîóðè [30] ïðè äëèíå âîëíû 750 íì.
Õàðàêòåð ñèíòåçà íìÁÒØ îïðåäåëÿëè ñ
èñïîëüçîâàíèåì äåíàòóðèðóþùåãî ýëåêòðîôîðåçà ñ ÄÄÑ-Na â 12,5 % ïîëèàêðèëàìèäíîì ãåëå [31] è ïîñëåäóþùåãî Âåñòåðí-áëîòòèíãà [32] ñ àíòèòåëàìè ê íìÁÒØ (Anti-/
A-/B Crystallin Rabbit polyclon al antibodies,
Stressgen Bioreagents). Ïîëóêîëè÷åñòâåííûé
àíàëèç ñîäåðæàíèÿ áåëêà íà ìåìáðàíàõ ïðîâîäèëè ñ ïîìîùüþ ïðîãðàììû Gel Explorer.
Îòíîñèòåëüíîå êîëè÷åñòâî áåëêà âûðàæàëè
â óñëîâíûõ åäèíèöàõ (óñë. åä.).
ÐÅÇÓËÜÒÀÒÛ È ÈÕ ÎÁÑÓÆÄÅÍÈÅ
Ýêîëîãè÷åñêàÿ õàðàêòåðèñòèêà îáúåêòîâ
èññëåäîâàíèÿ. Èññëåäîâàëè àìôèïîäû Crustacea, Amphi poda. Â Áàéêàëå äàííàÿ ãðóïïà
íàñ÷èòûâàåò îêîëî 350 âèäîâ [21] è ÿâëÿåòñÿ
îäíîé èç ñàìûõ ìíîãî÷èñëåííûõ ãðóïï æèâîòíûõ. Àìôèïîäû íàñåëÿþò âñå òèïû ãðóíòîâ è ãëóáèíû îçåðà, ïðè ýòîì êàæäîé çîíå
ãëóáèí è êàæäîìó âèäó ãðóíòà ñîîòâåòñòâóåò óíèêàëüíûé êîìïëåêñ âèäîâ. Áàéêàëüñêèå
àìôèïîäû â îñíîâíîì ïðåäñòàâëåíû ñòåíîáèîíòíûìè ôîðìàìè, ïðèñïîñîáëåííûìè ê îïðåäåëåííûì óñëîâèÿì ñðåäû è îñòðî ðåàãèðóþùèìè íà èõ èçìåíåíèÿ [22]. Îäíàêî îòìå÷åíû âèäû, ïî ñâîèì àäàïòàöèîííûì ñïîñîáíîñòÿì áëèçêèå ê âèäàì-êîñìîïîëèòàì, à â
íåêîòîðûõ ñëó÷àÿõ è ïðåâûøàþùèå èõ [22].
Ïàëåàðêòè÷åñêèé G. lacustris îáèòàåò â
ìåëêîâîäíûõ êîíòèíåíòàëüíûõ âîäîåìàõ. Ýêñïåðèìåíòàëüíî óñòàíîâëåíî, ÷òî ñðåäè èññëåäîâàííûõ âèäîâ îí ÿâëÿåòñÿ íàèáîëåå óñòîé÷èâûì ê âîçäåéñòâèþ ñòðåññîâûõ ôàêòîðîâ
[22]. G. fasciatus – ëèòîðàëüíûé âèä, øèðîêî ðàññåëèâøèéñÿ ïî âîäîåìàì è âîäîòîêàì
Ðîññèè ïðåèìóùåñòâåííî â ðåçóëüòàòå àêêëèìàòèçàöèîííûõ ðàáîò, íàïðàâëåííûõ íà
îáîãàùåíèå êîðìîâîé áàçû ðûá [23], ïðèíàäëåæèò ê íåìíîãî÷èñëåííîé â Áàéêàëå ãðóïïå ýâðèáèîíòîâ E. cyaneus, òàêæå îáèòàþùåé â ëèòîðàëè, ðàñïðîñòðàíåí íà 600 êì çà
ïðåäåëû Áàéêàëà ïî ð. Àíãàðå [24, 25]. Ýòè
äâà áàéêàëüñêèõ âèäà ïî ïîêàçàòåëÿì òåðìîïðåôåðåíäóìà è ðåçèñòåíòíîñòè ê íåêîòîðûì àáèîòè÷åñêèì ôàêòîðàì ñðåäû áëèçêè ê
G. lacustris [26]. O. flavus – ýâðèáàòíûé âèä,
ïðåîáëàäàåò â çîíå íèæå 100 ì íà èëèñòîì
ãðóíòå, õîòÿ îòìå÷åí íà ãëóáèíàõ 2,5–1313 ì
[27, 28]. Ñòåíîáèîíòíûé âèä, îñòðî ðåàãèðó-
åò íà èçìåíåíèÿ óñëîâèé îáèòàíèÿ [29]. E.
vittatus – ëèòîðàëüíûé âèä, îñíîâíàÿ çîíà
îáèòàíèÿ êîòîðîãî ðàñïîëîæåíà íèæå óðåçà
âîäû. Ðàñïðîñòðàíåí ïî âñåìó Áàéêàëó, à
òàêæå â ð. Àíãàðå. Ïî ðåçèñòåíòíûì ñïîñîáíîñòÿì çàíèìàåò ïðîìåæóòî÷íîå ïîëîæåíèå
ìåæäó E. cyaneus è O. flavus [22, 25]. Òàêèì
îáðàçîì, âûáðàííûå âèäû àìôèïîä ïðåäñòàâëÿþò ðàçëè÷íûå ýêîëîãè÷åñêèå ãðóïïû, îòëè÷àþùèåñÿ ïî ðåçèñòåíòíûì õàðàêòåðèñòèêàì [22].
Âëèÿíèå ïîâûøåííîé òåìïåðàòóðû íà
ñîäåðæàíèå íìÁÒØ. Ó àìôèïîä G. lacustris
îòìå÷àëè êîíñòèòóòèâíûé ñèíòåç íìÁÒØ ñ
ìîëåêóëÿðíîé ìàññîé 35 êÄà (ðèñ. 1). Ýêñïîçèöèÿ àìôèïîä ïðè òåìïåðàòóðå 30 Ñ âûçûâàëà ìíîãîêðàòíîå óâåëè÷åíèå ñîäåðæàíèÿ íìÁÒØ óæå ÷åðåç 30 ìèí ýêñïåðèìåíòà.
Ìàêñèìàëüíîå ñîäåðæàíèå èññëåäóåìîãî
áåëêà îòìå÷àëè ó àìôèïîä ïîñëå 1 ÷ ýêñïîçèöèè, ÷åðåç 3 ÷ íàáëþäàëè íåçíà÷èòåëüíîå
ñíèæåíèå êîëè÷åñòâà íìÁÒØ.
Ó îñîáåé âèäà G. fasciatus îòìå÷åí êîíñòèòóòèâíûé ñèíòåç íìÁÒØ ñ ìîëåêóëÿðíîé
Ðèñ. 1. Âåñòåðí-áëîòòèíã íà íìÁÒØ àìôèïîä âèäà
G. lacustris, ýêñïîíèðîâàííûõ ïðè òåìïåðàòóðå
30 Ñ (À). Çäåñü è íà ñëåäóþùèõ ðèñóíêàõ ïðèâåäåíû ìàðêåðû ìîëåêóëÿðíîé ìàññû; èçìåíåíèå
êîëè÷åñòâà íìÁÒØ ó àìôèïîä âèäà G. lacustris,
ýêñïîíèðîâàííûõ ïðè òåìïåðàòóðå 30 Ñ (çäåñü è
äàëåå â óñë. åä.) (Á)
$ #
Ðèñ. 2. Âåñòåðí-áëîòòèíã (À) è èçìåíåíèå êîëè÷åñòâà íìÁÒØ (Á) ó àìôèïîä âèäà G. fasciatus, ýêñïîíèðîâàííûõ ïðè òåìïåðàòóðå 25 Ñ
ìàññîé 37 êÄà. Âîçäåéñòâèå òåìïåðàòóðíîãî
ñòðåññà 25 Ñ âûçûâàëî óâåëè÷åíèå ñîäåðæàíèÿ äàííîãî áåëêà óæå ÷åðåç 3 ÷ ýêñïîçèöèè. Äàëüíåéøåå ýêñïîíèðîâàíèå (äî 12 ÷)
íå âûçûâàëî óâåëè÷åíèÿ ñîäåðæàíèÿ èññëåäóåìîãî áåëêà (ðèñ. 2).
Ó àìôèïîä E. cyaneus îòìå÷åí êîíñòèòóòèâíûé ñèíòåç íìÁÒØ ñ ìîëåêóëÿðíîé ìàññîé 35 êÄà (ðèñ. 3). Ýêñïîçèöèÿ àìôèïîä ïðè
25 Ñ âûçûâàëà íåçíà÷èòåëüíóþ èíäóêöèþ
ñèíòåçà íìÁÒØ ÷åðåç 1 è 24 ÷.
Ðèñ. 4. Âåñòåðí-áëîòòèíã (À) è èçìåíåíèå êîëè÷åñòâà íìÁÒØ (Á) ó àìôèïîä âèäà E. vittatus,
ýêñïîíèðîâàííûõ ïðè òåìïåðàòóðå 25 Ñ
$ $
Ðèñ. 3. Âåñòåðí-áëîòòèíã (À) è èçìåíåíèå êîëè÷åñòâà íìÁÒØ (Á) ó àìôèïîä âèäà E. cyaneus,
ýêñïîíèðîâàííûõ ïðè òåìïåðàòóðå 25 Ñ
Ó àìôèïîä E. vittatus ïðèñóòñòâóåò êîíñòèòóòèâíûé ñèíòåç íìÁÒØ ñ ìîëåêóëÿðíîé
ìàññîé 35 êÄà. Ýêñïîíèðîâàíèå àìôèïîä ïðè
òåìïåðàòóðå 25 Ñ âûçûâàëî èíäóêöèþ ñèíòåçà èññëåäóåìîãî íìÁÒØ óæå ÷åðåç 1 ÷, ê
îêîí÷àíèþ ýêñïåðèìåíòà (6 ÷) ñîäåðæàíèå
èññëåäóåìîãî áåëêà äîñòèãàëî ìàêñèìàëüíîãî çíà÷åíèÿ (ðèñ. 4).
Ó àìôèïîä O. flavus êîíñòèòóòèâíûé ñèíòåç íìÁÒØ îòñóòñòâóåò (ðèñ. 5).  äåòåêòèðóåìûõ êîëè÷åñòâàõ áåëîê ñ ìîëåêóëÿðíîé
ìàññîé 35 êÄà îòìå÷àëè ÷åðåç 3 ÷ ýêñïîçèöèè ïðè 20 Ñ, ïîñëå 9 ÷ åãî ñîäåðæàíèå
óâåëè÷èâàëîñü, à ïîñëå 12 ÷ – ñíèæàëîñü.
Âëèÿíèå òîêñè÷åñêîãî ñòðåññà íà ñîäåðæàíèå íìÁÒØ. Ó àìôèïîä G. lacustris, ýêñ-
Ðèñ. 5. Âåñòåðí-áëîòòèíã (À) è èçìåíåíèå êîëè÷åñòâà íìÁÒØ (Á) ó àìôèïîä âèäà O. flavus, ýêñïîíèðîâàííûõ ïðè òåìïåðàòóðå 20 Ñ
Ðèñ. 6. Âåñòåðí-áëîòòèíã (À) è èçìåíåíèå êîëè÷åñòâà íìÁÒØ (Á) ó àìôèïîä âèäà G. lacustris, ýêñïîíèðîâàííûõ â ðàñòâîðå CdCl2 êîíöåíòðàöèè
0,05 ìã/ë
ïîíèðîâàííûõ â ðàñòâîðå CdCl2 ñ êîíöåíòðàöèåé 0,05 ìã/ë, ÷åðåç 3 ñóò ïðîèñõîäèëî óâåëè÷åíèå ñîäåðæàíèÿ íìÁÒØ ñ ìîëåêóëÿðíîé ìàññîé 35 êÄà (ðèñ. 6). ×åðåç 9 è 12 ñóò
ýêñïîçèöèè îòìå÷àëè ñíèæåíèå êîëè÷åñòâà
èññëåäóåìîãî áåëêà, îäíàêî åãî îñòàâàëîñü
áîëüøå, ÷åì ó îñîáåé êîíòðîëüíîé ãðóïïû.
Ïðè ýêñïîíèðîâàíèè àìôèïîä G. fasciatus
â ðàñòâîðàõ CdCl2 ñ êîíöåíòðàöèåé 0,5 ìã/ë
ïðîèñõîäèëî óâåëè÷åíèå ñîäåðæàíèÿ íìÁÒØ
ñ ìîëåêóëÿðíîé ìàññîé 37 êÄà óæå ÷åðåç
30 ìèí ýêñïåðèìåíòà (ðèñ. 7). Ïðè äàëüíåéøåé ýêñïîçèöèè ïðîèñõîäèëî èçìåíåíèå ñîäåðæàíèÿ èññëåäóåìîãî áåëêà, ìàêñèìàëüíîå
åãî êîëè÷åñòâî îòìå÷àëè ó æèâîòíûõ, ýêñïîíèðîâàííûõ â ðàñòâîðàõ õëîðèñòîãî êàäìèÿ â òå÷åíèå 24 ÷.
Àìôèïîä E. cyaneus ýêñïîíèðîâàëè â ðàñòâîðàõ õëîðèäà êàäìèÿ ÷åòûðåõ êîíöåíòðàöèé: 50, 10, 5 è 0,5 ìã/ë. Ó ðà÷êîâ, ýêñïîíèðîâàííûõ â ðàñòâîðàõ ñ êîíöåíòðàöèåé
0,5 ìã/ë (ðèñ. 8, À), ïðîèñõîäèëî óâåëè÷åíèå
ñîäåðæàíèÿ íìÁÒØ ñ ìîëåêóëÿðíîé ìàññîé
35 êÄà ÷åðåç 1 ÷ ýêñïåðèìåíòà. Ìàêñèìàëüíîå êîëè÷åñòâî áåëêà îòìå÷àëè ÷åðåç 6 ÷ ýêñïîçèöèè, ïîñëå ÷åãî äî êîíöà ýêñïåðèìåíòà ïðîèñõîäèëî ñíèæåíèå ñîäåðæàíèÿ èññëåäóåìîãî áåëêà äî êîíòðîëüíîãî óðîâíÿ. Ýêñïîçèöèÿ â ðàñòâîðàõ ñ êîíöåíòðàöèåé 5 ìã/ë
(ðèñ. 8, Á) âûçûâàëà óâåëè÷åíèå ñîäåðæàíèÿ
èññëåäóåìîãî áåëêà óæå ÷åðåç 30 ìèí, ìàê-
Ðèñ. 7. Âåñòåðí-áëîòòèíã (À) è èçìåíåíèå êîëè÷åñòâà íìÁÒØ (Á) ó àìôèïîä âèäà G. fasciatus,
ýêñïîíèðîâàííûõ â ðàñòâîðàõ CdCl2 0,5 ìã/ë
ñèìàëüíîå êîëè÷åñòâî áåëêà îòìå÷àëè ÷åðåç
12 ÷ ýêñïåðèìåíòà. Ïðè ýêñïîçèöèè ðà÷êîâ â
ðàñòâîðàõ ñ êîíöåíòðàöèåé 10 ìã/ë (ðèñ. 8,
Â) óâåëè÷åíèå ñîäåðæàíèÿ íìÁÒØ ïðîèñõîäèëî ÷åðåç 30 ìèí, ïîñëå ÷åãî êîëè÷åñòâî
áåëêà ñíèæàëîñü è âíîâü óâåëè÷èâàëîñü ê 6 ÷
ýêñïåðèìåíòà. Ìàêñèìàëüíîå êîëè÷åñòâî áåëêà îòìå÷àëè ÷åðåç 12 ÷ ýêñïîçèöèè. Ó àìôèïîä, ýêñïîíèðîâàííûõ â ðàñòâîðàõ ñ êîíöåíòðàöèåé 50 ìã/ë (ðèñ. 8, Ã), óâåëè÷åíèå ñîäåðæàíèÿ áåëêà íàáëþäàëè ÷åðåç 30 ìèí,
ïîñëå ÷åãî ïðîèñõîäèëî ñíèæåíèå ñîäåðæàíèÿ èññëåäóåìîãî áåëêà äî êîíòðîëüíîãî
óðîâíÿ.
Ýêñïîçèöèÿ àìôèïîä E. vittatus â ðàñòâîðàõ õëîðèäà êàäìèÿ ñ êîíöåíòðàöèåé 10 ìã/ë
âûçûâàëà èíäóêöèþ ñèíòåçà íìÁÒØ ñ ìîëåêóëÿðíîé ìàññîé 35 êÄà (ðèñ. 9). Óâåëè÷åíèå
ñîäåðæàíèÿ äàííîãî áåëêà îòìå÷àëè óæå ÷åðåç 1 ÷ ýêñïîçèöèè, ê îêîí÷àíèþ ýêñïåðèìåíòà (24 ÷) êîëè÷åñòâî áåëêà äîñòèãàëî ìàêñèìàëüíîãî çíà÷åíèÿ.
Ýêñïîçèöèþ àìôèïîä O. flavus ïðîâîäèëè
â ðàñòâîðàõ õëîðèäà êàäìèÿ òðåõ êîíöåíòðàöèé – 10, 5 è 0,05 ìã/ë (ðèñ. 10).  äåòåêòèðóåìûõ êîëè÷åñòâàõ áåëîê ñ ìîëåêóëÿðíîé
ìàññîé 35 êÄà îòìå÷àëè ÷åðåç 1 ñóò ýêñïîçèöèè. Ïðè ýòîì õàðàêòåð ñèíòåçà èññëåäóåìîãî íìÁÒØ çàâèñåë îò êîíöåíòðàöèè ðàñòâîðîâ òîêñèêàíòà, â êîòîðûõ ýêñïîíèðîâàëè àìôèïîä: ìàêñèìàëüíîå êîëè÷åñòâî îòìå÷àëè ó
îñîáåé, ýêñïîíèðîâàííûõ â ðàñòâîðàõ ñ íàè$ %
Ðèñ. 8. Âåñòåðí-áëîòòèíã è èçìåíåíèå ñîäåðæàíèÿ íìÁÒØ àìôèïîä âèäà E. cyaneus, ýêñïîíèðîâàííûõ â ðàñòâîðàõ ïðåïàðàòà CdCl2 0,5 ìã/ë (À); 5 ìã/ë (Á); 10 ìã/ë (Â) è 50 ìã/ë (Ã)
áîëüøåé êîíöåíòðàöèåé òîêñèêàíòà (10 ìã/ë),
à ìèíèìàëüíûé – ñ íàèìåíüøåé (0,05 ìã/ë).
Òàêèì îáðàçîì, ïîêàçàí êîíñòèòóòèâíûé
ñèíòåç íìÁÒØ ó èññëåäîâàííûõ àìôèïîä, çà
Ðèñ. 9. Âåñòåðí-áëîòòèíã (À) è èçìåíåíèå êîëè÷åñòâà íìÁÒØ (Á) ó àìôèïîä âèäà E. vittatus, ýêñïîíèðîâàííûõ â ðàñòâîðàõ CdCl2 10 ìã/ë
$ &
èñêëþ÷åíèåì ýíäåìè÷íîãî ãëóáîêîâîäíîãî
O. flavus. Èçâåñòíî, ÷òî êîëè÷åñòâî íìÁÒØ
â íåêîòîðûõ òêàíÿõ ãîðàçäî âûøå, ÷åì äðóãèõ ìîëåêóëÿðíûõ øàïåðîíîâ [33, 34]. Äåíàòóðàöèÿ áåëêîâ ïðîèñõîäèò î÷åíü áûñòðî, à
âîññòàíîâëåíèå èõ íàòèâíîé ñòðóêòóðû âîçìîæíî òîëüêî â íà÷àëå ïðîöåññà äåíàòóðàöèè, ïîýòîìó âàæíî, ÷òîáû ýòî ñîñòîÿíèå
áåëêà áûëî ñòàáèëèçèðîâàíî. Ñðàâíèòåëüíî
âûñîêîå ñîäåðæàíèå ñòàáèëèçèðóþùèõ áåëêîâ, òàêèõ êàê íìÁÒØ, íåîáõîäèìî äëÿ òîãî,
÷òîáû îíè ñìîãëè áûñòðî ñâÿçàòü áåëêè, òîëüêî íà÷àâøèå ðàçðóøàòüñÿ, è ïåðåìåñòèòü èõ
ê äðóãèì øàïåðîíàì, ñîäåðæàíèå êîòîðûõ â
êëåòêàõ ãîðàçäî íèæå [35]. Îòñóòñòâèå êîíñòèòóòèâíîãî ñèíòåçà íìÁÒØ â äåòåêòèðóåìîì êîëè÷åñòâå ó O. flavus, âåðîÿòíî, ñâÿçàíî ñ òåì, ÷òî àìôèïîäû ýòîãî âèäà îáèòàþò â óñëîâèÿõ, õàðàêòåðèçóþùèõñÿ ñòàáèëüíûìè óñëîâèÿìè ñðåäû (òåìïåðàòóðà,
êèñëîðîä, õèìè÷åñêèé ñîñòàâ âîäû è ò. ä.).
Ïîýòîìó îíè íå ñòàëêèâàþòñÿ ñ ÷àñòûìè èç-
Ðèñ. 10. Âåñòåðí-áëîòòèíã íà íìÁÒØ àìôèïîä
âèäà O. flavus, ýêñïîíèðîâàííûõ â ðàñòâîðàõ
CdCl2 òðåõ êîíöåíòðàöèé (À): 1, 2 – êîíòðîëü; 3 –
1 ÷ (10 ìã/ë); 4 – 24 ÷ (10 ìã/ë); 5 – 1 ÷ (5 ìã/ë);
6 – 24 ÷ (5 ìã/ë); 7 – 1 ÷ (0,05 ìã/ë); 8 – 24 ÷
(0,05 ìã/ë); èçìåíåíèå êîëè÷åñòâà íìÁÒØ ó àìôèïîä âèäà O. flavus, ýêñïîíèðîâàííûõ â ðàñòâîðàõ CdCl2 òðåõ êîíöåíòðàöèé (Á)
ìåíåíèÿìè óñëîâèé îáèòàíèÿ è ó íèõ íåò íåîáõîäèìîñòè áûñòðî ðåàãèðîâàòü íà ñòðåññîâîå âîçäåéñòâèå.
Òåìïåðàòóðà, îäèí èç âàæíåéøèõ àáèîòè÷åñêèõ ôàêòîðîâ, îïðåäåëÿåò ãðàíèöû ñóùåñòâîâàíèÿ æèâûõ îðãàíèçìîâ [36, 37]. Èçâåñòíî, ÷òî èçìåíåíèå òåìïåðàòóðû ñðåäû
îáèòàíèÿ âûçûâàåò ó îðãàíèçìîâ ðÿä èçìåíåíèé íà áèîõèìè÷åñêîì óðîâíå, â ÷èñëå êîòîðûõ ñêîðîñòü îáìåíà âåùåñòâ è êëåòî÷íûå
ñòðóêòóðû. Íàðóøåíèå ñòðóêòóðû áåëêîâ,
êàê ïðàâèëî, ïðèâîäèò ê íàðóøåíèþ èõ
ôóíêöèîíàëüíîé àêòèâíîñòè, ïîýòîìó ÷ðåçâû÷àéíî âàæíî ïîääåðæàíèå íàòèâíîé ñòðóêòóðû êëåòî÷íûõ áåëêîâ.
Çàùèòó áåëêîâ îò ïîâðåæäåíèé, âûçâàííûõ âîçäåéñòâèåì ñòðåññîâûõ ôàêòîðîâ, îáåñïå÷èâàþò áåëêè òåïëîâîãî øîêà. Òàê, ïðè
âîçäåéñòâèè ñòðåññîâûõ òåìïåðàòóð ïðîèñõîäèò èíäóêöèÿ ñèíòåçà íìÁÒØ [38–40]. Óâåëè÷åíèå ñîäåðæàíèÿ íìÁÒØ ïðè âîçäåéñòâèè òåìïåðàòóðíîãî ñòðåññà ïîêàçàíî ó
ðÿäà îðãàíèçìîâ, â òîì ÷èñëå ó êîðàëëîâ [41],
äðîçîôèëû [42, 43], êðåâåòîê Palaeomonetes
pugio [44] è äð.
 íàøåì èññëåäîâàíèè âîçäåéñòâèå ïîâûøåííûõ òåìïåðàòóð âûçûâàëî óâåëè÷åíèå
ñîäåðæàíèÿ íìÁÒØ ó âñåõ èññëåäîâàííûõ
âèäîâ, ïðè ýòîì îòìå÷åíû âèäîñïåöèôè÷íûå
èçìåíåíèÿ ñîäåðæàíèÿ íìÁÒØ ïðè âîçäåéñòâèè ñòðåññîâûõ ôàêòîðîâ, à òàêæå ðàçëè÷èÿ
â ìîëåêóëÿðíîé ìàññå íìÁÒØ. Ýêñïîçèöèÿ
ïðè 30 Ñ àìôèïîä G. lacustris, óñòîé÷èâûõ
ê âîçäåéñòâèþ ïîâûøåííûõ òåìïåðàòóð, âûçûâàëà áûñòðîå ìíîãîêðàòíîå óâåëè÷åíèå
ñîäåðæàíèÿ íìÁÒØ. Ó G. fasciatus, îäíîãî
èç íàèáîëåå óñòîé÷èâûõ èç áàéêàëüñêèõ âèäîâ ê âîçäåéñòâèþ âûñîêèõ òåìïåðàòóð, ýêñïîçèöèÿ ïðè 25 Ñ âûçûâàëà óâåëè÷åíèå ñîäåðæàíèÿ áåëêà, îäíàêî ìàêñèìàëüíûé åãî
óðîâåíü ëèøü â 2 ðàçà ïðåâûøàë êîíñòèòóòèâíûé. Ó àìôèïîä E. cyaneus, êàê è ó ïðåäûäóùåãî âèäà, óñòîé÷èâîãî ê âîçäåéñòâèþ
òåìïåðàòóð, âîçäåéñòâèå òåìïåðàòóðû 25 Ñ
âûçûâàëî íåçíà÷èòåëüíóþ èíäóêöèþ èññëåäóåìîãî áåëêà. Ó E. vittatus, áîëåå ÷óâñòâèòåëüíîãî ê ïîâûøåíèþ òåìïåðàòóðû, ÷åì
âûøåîïèñàííûå âèäû, ýêñïîçèöèÿ ïðè òåìïåðàòóðå 25 Ñ âûçûâàëà èíäóêöèþ ñèíòåçà
íìÁÒØ. Ó ãëóáîêîâîäíîãî O. flavus â äåòåêòèðóåìûõ êîëè÷åñòâàõ êîíñòèòóòèâíûé ñèíòåç íìÁÒØ íå îáíàðóæåí. ×åðåç 3 ÷ âîçäåéñòâèÿ ïîâûøåííîé òåìïåðàòóðû îòìå÷åíî óâåëè÷åíèå ñîäåðæàíèÿ íìÁÒØ.
Îòìå÷åíû ðàçëè÷èÿ â ìîëåêóëÿðíîé ìàññå íìÁÒØ, ñèíòåçèðóåìûõ ó ðàçíûõ âèäîâ:
ó G. lacustris, E. cyaneus, E. vittatus, O. flavus
ñèíòåçèðóåòñÿ áåëîê ñ ìîëåêóëÿðíîé ìàññîé
35 êÄà, ó G. fasciatus – 37 êÄà.
Ïðè àíàëèçå äàííûõ òîêñèêîëîãè÷åñêèõ
ýêñïåðèìåíòîâ íåîáõîäèìî ðàññìîòðåòü òîêñè÷åñêèå ñâîéñòâà êàäìèÿ. Òÿæåëûå ìåòàëëû, ê êîòîðûì îòíîñèòñÿ è êàäìèé, âûçûâàþò íåãàòèâíûå ïîñëåäñòâèÿ â æèâûõ îðãàíèçìàõ.
Òÿæåëûå ìåòàëëû íå ðàçëàãàþòñÿ è ìîãóò îñòàâàòüñÿ â ýêîñèñòåìàõ äîëãîå âðåìÿ,
êðîìå òîãî, îíè èìåþò òåíäåíöèþ íàêàïëèâàòüñÿ â îðãàíèçìàõ [45]. Â êëåòêè êàäìèé
ïðîíèêàåò ÷åðåç êàëüöèåâûå êàíàëû. Âîçäåéñòâèå êàäìèÿ ïðèâîäèò ê îáðàçîâàíèþ â
êëåòêàõ àêòèâíûõ ôîðì êèñëîðîäà (ÀÔÊ)
[46, 47], êîòîðûå âîçäåéñòâóþò íà êëåòî÷íûå ïðîöåññû, â ÷àñòíîñòè íà ôóíêöèîíèðîâàíèå ìåìáðàí [48]. ÀÔÊ ïðèâîäÿò ê ðàçíîîáðàçíûì ïîâðåæäåíèÿì áèîìîëåêóë, â
òîì ÷èñëå ê íàðóøåíèÿì ñòðóêòóðû êëåòî÷íûõ áåëêîâ [49].
$ '
Ðàíåå ïîêàçàíî ó÷àñòèå íìÁÒØ â ñòðåññîâîé ðåàêöèè íà âîçäåéñòâèå êàäìèÿ ó êðåâåòîê P. pugio [44]. Ïîêàçàíà èíäóêöèÿ íìÁÒØ
ñ ìîëåêóëÿðíîé ìàññîé 22 êÄà ó ìèäèè Limnopern a fortune, ýêñïîíèðîâàííîé â ðàñòâîðàõ êàäìèÿ [50].
 íàøåé ðàáîòå ïîêàçàíî óâåëè÷åíèå ñîäåðæàíèÿ áåëêîâ ñåìåéñòâà íìÁÒØ ó âñåõ
èññëåäîâàííûõ âèäîâ. Ó àìôèïîä G. lacustris,
ýêñïîíèðîâàííûõ â ðàñòâîðå CdCl2 ñ êîíöåíòðàöèåé 0,05 ìã/ë, ÷åðåç 3 ñóò ïðîèñõîäèëî
óâåëè÷åíèå ñîäåðæàíèÿ íìÁÒØ, ÷åðåç 9 è
12 ñóò ýêñïîçèöèè îòìå÷àëè ñíèæåíèå êîëè÷åñòâà èññëåäóåìîãî áåëêà. Ïðè ýêñïîíèðîâàíèè àìôèïîä G. fasciatus â ðàñòâîðàõ CdCl2
ñ êîíöåíòðàöèåé 0,5 ìã/ë ïðîèñõîäèëî óâåëè÷åíèå ñîäåðæàíèÿ íìÁÒØ ñ ìîëåêóëÿðíîé ìàññîé 37 êÄà, ìàêñèìàëüíîå êîëè÷åñòâî
áåëêà îòìå÷àëè ó æèâîòíûõ, ýêñïîíèðîâàííûõ â ðàñòâîðàõ õëîðèñòîãî êàäìèÿ â òå÷åíèå 24 ÷. Àìôèïîä E. cyaneus ýêñïîíèðîâàëè
â ðàñòâîðàõ õëîðèäà êàäìèÿ ÷åòûðåõ êîíöåíòðàöèé: 50, 10, 5 è 0,5 ìã/ë. Ó ðà÷êîâ ïðîèñõîäèëî óâåëè÷åíèå ñîäåðæàíèÿ íìÁÒØ ñ
ìîëåêóëÿðíîé ìàññîé 35 êÄà, ïðè ýòîì ìàêñèìàëüíîå óâåëè÷åíèå êîëè÷åñòâà áåëêà îòìå÷àëè ó àìôèïîä, ýêñïîíèðîâàííûõ â ðàñòâîðàõ ñ êîíöåíòðàöèåé 10 ìã/ë. Ýêñïîçèöèÿ àìôèïîä E. vittatus â ðàñòâîðàõ õëîðèäà
êàäìèÿ ñ êîíöåíòðàöèåé 10 ìã/ë âûçûâàëà
èíäóêöèþ ñèíòåçà íìÁÒØ ñ ìîëåêóëÿðíîé
ìàññîé 35 êÄà. Ýêñïîçèöèþ àìôèïîä O. flavus
ïðîâîäèëè â ðàñòâîðàõ õëîðèäà êàäìèÿ òðåõ
êîíöåíòðàöèé – 10, 5 è 0,05 ìã/ë. Îòìå÷åí
äîçîçàâèñèìûé õàðàêòåð ñèíòåçà èññëåäóåìîãî íìÁÒØ – ìàêñèìàëüíîå êîëè÷åñòâî
îòìå÷àëè ó àìôèïîä, ýêñïîíèðîâàííûõ â
ðàñòâîðàõ ñ ìàêñèìàëüíîé êîíöåíòðàöèåé
òîêñèêàíòà (10 ìã/ë), à ìèíèìàëüíûé – ñ ìèíèìàëüíîé (0,05 ìã/ë).
Òàêèì îáðàçîì, ó ïàëåàðêòè÷åñêîãî G. lacustris âîçäåéñòâèå èññëåäóåìûõ ñòðåññîâ
âûçûâàåò ìíîãîêðàòíîå óâåëè÷åíèå íìÁÒØ.
Ýòî, âåðîÿòíî, ñâÿçàíî ñ òåì, ÷òî àìôèïîäû äàííîãî âèäà îáèòàþò â ìåëêîâîäíûõ êîíòèíåíòàëüíûõ âîäîåìàõ, õàðàêòåðèçóþùèõñÿ ÷àñòûìè è ðåçêèìè êîëåáàíèÿìè óñëîâèé,
è âûíóæäåíû áûñòðî ðåàãèðîâàòü íà òàêèå
èçìåíåíèÿ. Ó ëèòîðàëüíûõ áàéêàëüñêèõ âèäîâ (G. fasciatus, E. cyaneus, E. vittatus) âîçäåéñòâèå ïîâûøåííûõ òåìïåðàòóð âûçûâà$!
åò íåçíà÷èòåëüíîå óâåëè÷åíèå íìÁÒØ. Ýòî
ìîæåò áûòü ñâÿçàíî ñ òåì, ÷òî ýòè àìôèïîäû îáèòàþò â óñëîâèÿõ êîëåáàíèÿ òåìïåðàòóðû ñðåäû è ïðèñïîñîáëåíû ê ïîâûøåííîé
òåìïåðàòóðå. Òîêñè÷åñêîå âîçäåéñòâèå õëîðèäà êàäìèÿ âûçûâàåò ìíîãîêðàòíîå óâåëè÷åíèå íìÁÒØ ó ëèòîðàëüíûõ âèäîâ. Âåðîÿòíî, ýòî ñâÿçàíî ñ òåì, ÷òî äàííûé òîêñèêàíò, íå òèïè÷íûé äëÿ Áàéêàëà, âûçûâàåò
êëåòî÷íûå ïîâðåæäåíèÿ è íåîáõîäèìî óâåëè÷åíèå ñîäåðæàíèÿ íìÁÒØ äëÿ âîññòàíîâëåíèÿ ñòðóêòóðû êëåòî÷íûõ áåëêîâ. Ó ãëóáîêîâîäíîãî O. flavus â îòâåò íà âîçäåéñòâèå
èññëåäîâàííûõ ñòðåññîâûõ ôàêòîðîâ íàáëþäàåòñÿ óâåëè÷åíèå êîëè÷åñòâà íìÁÒØ, îäíàêî ýòî ïðîèñõîäèò ÷åðåç íåñêîëüêî ÷àñîâ
ïîñëå íà÷àëà âîçäåéñòâèÿ. Âåðîÿòíî, äàííûå
àìôèïîäû îáèòàþò â ñðåäå, õàðàêòåðèçóþùåéñÿ ñòàáèëüíûìè óñëîâèÿìè, è èì íåîáõîäèìî âðåìÿ äëÿ àêòèâàöèè ìåõàíèçìîâ ðåçèñòåíòíîñòè.
Ìîæíî ñäåëàòü çàêëþ÷åíèå, ÷òî íìÁÒØ,
íåñîìíåííî, ó÷àñòâóþò â ìåõàíèçìàõ òåðìîè òîêñèêîðåçèñòåíòíîñòè ó èññëåäîâàííûõ
âèäîâ àìôèïîä, îäíàêî ñòåïåíü ó÷àñòèÿ
íìÁÒØ â ñòðåññîâûõ ðåàêöèÿõ íåîäèíàêîâà
è èìååò âèäîñïåöèôè÷íóþ çàâèñèìîñòü.
Ðàáîòà ïîääåðæàíà ãðàíòàìè ÐÔÔÈ ¹ 06–04–
48099-à, 08–04–00928–à, 08–04–10065-ê.
ËÈÒÅÐÀÒÓÐÀ
1. Caspers G. J., Leunissen J. A., de Jong W. W. Genealogy
of the -crystallin-small heat-shock protein superfamily // J. Mol. Ecol. 1995. N 40. P. 238–248.
2. Sun Y., MacRae T. H. Small heat shock proteins: molecular structure and chaperone function // Cell. Mol.
Life Sci. 2005. N 62. P. 2460–2476.
3. Ingolia T. D., Craig E. A. Four small Drosophila heat
shock proteins are related to each other and to
mammalian alpha-crystallin // Proc. Natl. Acad. Sci.
USA. 1982. N 79. P. 2360–2364.
4. Ïàíàñåíêî Î. Î., Êèì Ì. Â., Ãóñåâ Í. Á. Ñòðóêòóðà
è ñâîéñòâà ìàëûõ áåëêîâ òåïëîâîãî øîêà// Óñïåõè áèîë. õèìèè. 2003. ¹ 43. C. 59–98.
5. Gusev N. B., Bogatcheva N. V., Marston S. B. Structure
and properties of small heat shock proteins (sHsp)
and their interaction with cytoskeleton proteins //
Biochemistry (Moscow). 2002. Vol. 67(5). P. 511–519.
6. Horwitz J. Alpha-crystallin can function as a molecular
chaperone // Proc. Natl. Acad. Sci. USA. 1992. N 89.
P. 10449–10453.
7. Small heat shock proteins are molecular chaperones /
U. Jakob [et al] // J. Biol. Chem. 1993. N 268. P. 1517–
1520.
8. Derham B. K., Harding J. J. Alpha-crystallin as a
molecular chaperone // Prog. Retin. Eye Res. 1999.
N 4. P. 463–509.
9. Farnsworth P. N., Singh K. Self-complementary motifs
(SCM) in -crystallin small heat shock proteins //
FEBS Letters. 2000. N 482. P. 175–179.
10. Ito H., Inàguma Y., Kato K. Small heat shock proteins
particiðate in the regulation of cellular aggregates
ofmisfolded protein //Ni ppon Yakurigaku Zasshi. 2003.
N 121. P. 27–32.
11. Cytotoxic effects induced by oxidative stress in cultured
mammalian cells and protection provided by Hsp27
expression / A.-P. Arrigo [et al.] // Methods. 2005.
Vol. 35(2). P. 126–138.
12. The small heat shock protein B-crystallin is a novel
inhibitor of TRAIL-induced apoptosis that suppresses
the activation of caspase-3 M / C. Kamradt [et al.] //
J. Biol. Chem. 2005. N 280. P. 11059–11066.
13. Brophy C.M., Dickinson M., Woodrum D. J. Phosphorylation of the small heat shock-related protein,
HSP20, in vascular smooth muscles is associated with
changes in the macromolecular associations of HSP20 //
Biol. Chem. 1999. N 274. P. 6324–6329.
13à. Brophy C.M., Lamb S., Graham A. The small heat
shock-related protein–20 is an actin-associated protein //
J. Vasc. Surg. 1999. N 29. P. 326–333.
14. Regulation of the levels of small heat-shock proteins
during differentiation of C2C12 cells / H. Ito [et al.] //
Exp. Cell Res. 2001. N 266. P. 213–221.
15. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/
tumor necrosis factor  by phosphorylation / T. Rogalla [et al.] // J. Biol. Chem. 1999. N 274. P. 18947–
18956.
16. HSP22, a new member of the small heat shock protein
superfamily, interacts with mimic of phosphorylated
HSP27 (3DHSP27)/ R. Benndorf [et al.] // Ibid. 2001.
N 276. P. 26753–26761.
17. Human hsp27, Drosophila hsp27 and human alphaBcrystallin expression-mediated increase in glutathione
is essential for the protective activity of these proteins
against TNFalpha-induced cell death / P. Mehlen [et al.]
// EMBO J. 1996. N 15. P. 2695–2706.
18. The molecular chaperone a-crystallin incorporated into
red cell ghosts protects membrane Na/K-ATPase
against glycation and oxidative stress / B. K. Derham
[et al.] // Eur. J. Biochem. 2003. N 270. P. 2605–2611.
19. The identity of proteins associated with a small heat
shock protein during heat stress in vivo indicates that
these chaperones protect a wide range of cellular
functions / E. Basha [et al.] // J. Biol. Chem. 2004.
N 279. P. 7566–7575.
20. Hsp42 is the general small heat shock protein in the
cytosol of Saccharomyces cerevisiae / M. Haslbeck
[et al.] // EMBO J. 2004. N 23. P. 1–12.
21. Àííîòèðîâàííûé ñïèñîê îçåðà Áàéêàë è åãî âîäîñáîðíîãî áàññåéíà: Â 2 ò. Íîâîñèáèðñê: Íàóêà. Ñèá.
îòä-íèå, 2001. Ò. 1. 832 ñ.
22. Òèìîôååâ Ì. À. Ñðàâíèòåëüíàÿ îöåíêà îòíîøåíèÿ
áàéêàëüñêèõ ãàììàðèä è ãîëàðêòè÷åñêîãî Gammarus
lacustris ê àáèîòè÷åñêèì ôàêòîðàì: äèñ. êàíä. áèîë.
íàóê. Èðêóòñê, 2000. 140 ñ.
23. Ìàòàôîíîâ Ä. Â., Èòèãèëîâà Ì. Ö., Êàìàëòûíîâ Ð. Ì.
Îñîáåííîñòè ýêñïàíñèè Gmelinoides fasciatus (Steb-
bing, 1899) âîäîåìîâ Âîñòî÷íîãî Çàáàéêàëüÿ (íà
ïðèìåðå îçåðà Àðàõëåé) // Ñèá. ýêîë. æóðí. 2006.
¹ 5. 595–601.
24. Áàçèêàëîâà À. ß. Îá àìôèïîäàõ ðåêè Àíãàðû //
Òðóäû Áàéêàëüñêîé ëèìíîëîãè÷åñêîé ñòàíöèè. 1957.
Ò. XV. Ñ. 377–387.
25. Áåêìàí Ì. Þ., Äåíüãèíà Ð. Ñ. Íàñåëåíèå áåíòàëè è
êîðìîâûå ðåñóðñû ðûá Áàéêàëà. Áèîëîãè÷åñêàÿ ïðîäóêòèâíîñòü âîäîåìîâ Ñèáèðè. Ì., 1969. Ñ. 42–47.
26. Timofeyev M. A. On the role of adaptive abilities in
the distribution of endemic amphi pods from Lake
Baikal // Verhandlungen Intern ation ale Vereinigung
Limnologie. 2002. N 28. P. 1613–1615.
27. Áàçèêàëîâà À. ß. Àìôèïîäû îç. Áàéêàë // Òð. Áàéêàëüñêîé ëèìíîëîãè÷åñêîé ñòàíöèè ÀÍ ÑÑÑÐ. 1945.
¹ 11. 440 ñ.
28. Áàçèêàëîâà À. ß. Ìàòåðèàëû ïî èçó÷åíèþ ðàçìíîæåíèÿ áàéêàëüñêèõ àìôèïîä // Èçâ. ÀÍ ÑÑÑÐ. Ñåð.
áèîë. 1941. ¹ 3. C. 407–425.
29. Òèìîôååâ Ì. À., Êèðè÷åíêî Ê. À. Ýêñïåðèìåíòàëüíàÿ îöåíêà ðîëè àáèîòè÷åñêèõ ôàêòîðîâ â îãðàíè÷åíèè ðàñïðîñòðàíåíèÿ ýíäåìèêîâ çà ïðåäåëû îçåðà Áàéêàë íà ïðèìåðå àìôèïîä // Ñèá. ýêîë. æóðí.
2004. ¹ 1. C. 41–50.
30. Protein measurement with the Folin reagent / O. H. Lowry [et al.] // J. Biol. Chem. 1951. N 193. P. 265–275.
31. Laemmli U. K. Cleavage of structural proteins during
the assemble of the head bacteriophage T4 // Nature.
1970. Vol. 227, N 5259. P. 680–685.
32. Bers G., Garfin D. Protein and nucleic acid blotting
and immunobiochemical detection // Bio Techniques.
1985. Vol. 3. P. 276–288.
33. Abundance and location of the small heat shock proteins HSP25 and B-crystallin in rat and human heart / G. Lutsch [et al.] //Circulation. 1997. N 96.
P. 3466–3476.
34. Ischemia-induced phosphorylation and translocation
of stress protein B-crystallin to Z lines of myocardium / N. Golenhofen [et al.] // Am. J. Physiol. 1998.
N 274. P. H1457–H1464.
35. Wang K., Spector A. Alpha-crystallin can act as a
chaperone under condition of oxidative stress // Eur.
J. Biochem. 2000. N 267. P. 4705–4712.
36. Willmer P., Stone G., Johnston I. Environmental physiology of animals. Oxford: Blackwell Science, 2000.
37. Hochachka P. W., Somero G. N. Biochemical adaptation:
mechanism and process in physiological evolution. New
York: Oxford University Press, 2002.
38. Arrigo A.-P., Landry J. The biology of heat shock
proteins and molecular chaperones. NY: Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, 1994.
P. 335–373.
39. Structure and modifications of the junior chaperone
-Crystallin / P. J. T. A. Groenen [et al.] // Eur. J.
Biochem. 1994. N 225. P. 1–19.
40. De Jong W. W., Leunissen J. A. M., Voorter C. E. M.
Evolution of the alpha-crystallin/small heat-shock protein family // Mol. Biol. Evol. 1993. N 10. P. 103–126.
41. A molecular biomarker system for assessing the health
of coral (Montastraea faveolata) during heat stress /
C. A. Downs [et al.] // Mar. Biotechnol. 2000. N 2.
P. 533–544.
42. Bhole D., Allikian M. J., Tower J. Doxycyclineregulated over-expression of hsp22 has negative
$!
effects on stress resistance and life span in adult
Drosophila melanogaster // Mechanisms of Ageing
and Development. 2004. Vol. 125(9). P. 651–663.
43. Small heat shock proteins and adaptation of various
Drosophila species to hyperthermia / V. Yu. Shilova
[et al.] // Molecular Biology. 2007. Vol. 40(2). P. 235–
239.
44. Downs C. A., Fauth J. E., Woodley C. M. Assessing the
health of grass shrimp (Palaeomonetes pugio) exposed
to n atural and anthropogenic stressors: a molecular
biomarker system // Mar. Biotechnol. 2001. N 3. P. 380–
397.
45. Gagn airea B., Thomas-Guyonb H., Ren ault T. In vitro
effects of cadmium and mercury on Pacific oyster,
Crassostrea gigas (Thunberg), haemocytes // Fish &
Shellfish Immunology. 2004. N 16. P. 501–512.
46. Brenn an R. J., Schiestl R. H. Cadmium is an inducer
of oxidative stress in yeast // Mutat. Res. 1996. N 356.
P. 171–178.
47. Oxidative mechanisms in the toxicity of chromium
and cadmium ions / S. J. Stohs [et al.] // J. Environ.
Pathol. Toxicol. Oncol. 2000. N 19. P. 201–213.
48. Effect of cadmium and zinc on antioxidant enzyme
activity in the gastropod, Achatin a fulica / R. Chandrana [et al.] // CBP, Part C. 2005. N 140. P. 422 – 426.
49. Aravind P., Prasad M. N. V. Zinc alleviates cadmiuminduced oxidative stress in Ceratophyllum demersum
L.: a free floating freshwater macrophyte// Plant
Physiol. Biochem. 2003. N 41. P. 391–397.
50. Evaluation of a biomarker of Cd(II) exposure on Limnopern a fortunei / B. Mariano [et al.] //Environmental
Pollution. 2006. Vol. 144(1). P. 280–288.
Heat Shock Proteins in the Mechanisms of Stress Adaptation
in Baikalian Amphipoda and Palaearctic Gammarus lacustris Sars:
II. Low-Molecular (Small) HSP Family
Zh. M. SHATILINA1,2, D. S. BEDULINA2, M. V. PROTOPOPOVA2, V. V. PAVLICHENKO2,
T. P. POBEZHIMOVA3, O. I. GRABEL’NYKH3, M. A. TIMOFEYEV1,2
1
Baikal Research Center
664003, Irkutsk, K. Marks str., 5-10
E-mail: zhasha@mail.ru
2
Irkutsk State University
664003, Irkutsk, K. Marks str., 2
3
Siberian Institute of Plant Physiology and Biochemistry SB RAS
664033, Irkutsk, Lermontov str., 132
The degree of particiðation of the heat shock proteins of the low-molecular (small) HTP family (lmHSP)
in the mechanisms of therm- and toxoresistivity in fresh-water organisms was investigated. Four endemic
species of Lake Baikal were studied: Gmelinoides fasciatus (Stebb.), Eulimnogammarus cyaneus (Dyb.),
E. vittatus (Dyb.), Ommatogammarus flavus (Dyb.) and the representative of the palaearctic faun a
Gammarus lacustris Sars. The effect of temperature factor was evaluated in course of exposure at
temperatures 20, 25, 30 °C, the action of the toxic factor was evaluated by exposure in cadmium chloride
solutions with the concentrations 50, 10, 5, 0.5 and 0.05 mg/l. A trend to increasing content of the
proteins of lmHSP family was observed as a common feature of all the species investigated; however,
species-specific peculiarities of the character of synthesis of the protein under investigation were observed.
It was concluded that the lmHSP partici pate in the mechanisms of thermo- and toxoresistivity in the
investigated amphi poda species.
Key words: stress resistivity, heat-shock proteins (HSP), low-molecular HSP amphiðoda, Baikal,
endemics.
$!
Download