удк 665.1 – 665.3 математическая модель процесса сепарации

реклама
1,
2
37
665.1 – 665.3
.,
.,
.,
.,
.,
.,
.,
.
.: (0619) 44-02-74
–
,
.
–
,
,
,
-
,
.
.
:
-
,
,
.
,
(
),
-
.
-
,
.
(
),
(
-
),
.
,
.
.
,
.
.
,
.
.
,
.
.
1,
2
38
,
-
.
.
-
.
,
.
,
.
(
).
.
.
6–8%
.
,
1,5 – 2,0 %
0,2 – 0,6 % [1].
[2]
,
,
13 – 15 %,
.
-
0,3 – 0,4 %,
.
,
-
1,5 – 2,0 %.
,
-
.
,
.
.
.
.
,
,
(
).
(
),
.
.
,
-
(
.1):
,
.
,
,
.
-
1,
2
39
.
.2
.3
.
C
b
L
D
.
+x
B
q
q
M
P
xx
A
O
x
V
. 1.
.
.
2.
. 3.
,
,
).
:
d2
F cos(
dt 2
F =m 2rcos( t),
F =m
r cos ( t)sin
m
) Gsin
(1)
F ,
tg + m g cos
tg .
1,
2
40
d2
m 2
F - F cos(
dt
F =-m 2rcos( t),
F
mg cos tg
mgk sin(
,
) G sin ,
(2)
)cos( t)tg
–
,
;
F, F , G ,
m, g –
,r–
k= 2 r/g –
t–
;
-
,
;
,
;
;
;
;
:
–X - +X,
,
-
.
(1)
2
(2)
[3];
)
sin(
g
cos(
2
r
sin(
g
cos(
k1
k2
r
cos
sin(
k0
)
)
,
)
)
,
(3)
.
,
:
-
k |k1| -
; k |k2| -
; k |k0| .
(
(
),
-
),
(k0, k1, k2).
.
.
,
4º,
1,
2
41
11º,
20º.
27º [4].
(4 , 14
-
20 ),
-
.
[3].
(
k=3,
=-180
. 4)
(3),
k=0
-
–X - +X,
=+180 .
:
1
,
k1a0k1
-
k2b0k2,
k1 k k2;
2
,
,
k1IIb0Ik1
,
k1 k>k2;
,
3
,
,
k2I IIk2;
,
4
k1<k<k2;
,
k2I a0k2 k1IIk2
–
,
k1<k>k2;
,
: k1<k<k0; k>>k2; 1
A.
.
4,
4
,
-
.
-
,
kw
kw.
[3]:
A
sin(
cos(
A
k 2w
)
)
sin 2 (
cos 2 (
B
sin(
cos(
)
)
)
B
k 2w sin (A + B)
k 2w
sin 2 (
cos 2 (
cos(
sin(
)
.
)
)
,
1,
2
42
. 4.
.
,
.
-
.5
,
.
X0Y
:
d 2x
= R sin
dt 2
d2y
m 2
mg + R cos ;
dt
m
(4)
R–
;
R = mk u
k –
m–
u–
VB –
C0, C –
2
(5)
,
,
-1
;
;
,
;
;
,
;
x0', x', y0', y' –
, ;
,
-
G=m g -
,
.;
, .
1,
2
43
. 5.
,
.
.1
[5], k
kac, k , v .
[4]
k
v
k 0F
,
m
k
kac –
Fv –
0 –
(6)
;
,
,
;
;
3
,
2
.
[6]
u
2
v
2
2
y
1
v
x
v
2
(7)
.
(4)
(5)
-
(6)
[6]
x
y
v
g
y
1
v
v2
1
2
x
v
y
v
2
2
x
;
v
x
v
(8)
2
1
y
v
1,
2
44
1
y
v
2
x
v
2
-
,
y
1
v
2
x
v
2
const.
cp
(9)
=1,06.
1–
,
-
,
v
k
1/
kac
-
v
k
1/
kac
k
1/
v ,
v
-
-
v
v
0,28
0,25
2,14
kac
0,27
0,27
0,76
6,0
6,0
3,6
0,65
0,23
6,5
0,37 0,09
0,38 0,09
1,70 0,61
(8)
dx
dt
t = 0; x 0 = 0; y 0 = 0;
0
10,2
10,2
4,0
(9)
[6]
dy
= c x0 ;
dt
= c y0
0
:
x
y
x
y
x0
;
exp(Kv t)
v
Kv
x0
(1 e
k v
k v2
v
(10)
2
g
g
g Kv
k v t
t
2
Kv
2
y0 exp( Kv t ;
);
1
(k v ) 2
g k v2
k v y 0 (1 e k v t ).
(11)
1,
2
45
.6
,
= 4º
VB = 4
.
-
.
. 6.
:
1-k =0,76; 2-k =0,5; 3-k =0,4; 4-k =0,35; 5-k =0,3.
. 2,
. 3.
2–
-
,
I
II
III
4
14
20
-19 -17.5 -30
.
,
.
,
,
,
Vmax b
0.18 0.34 0.42
Vmax n
-0.47 -0.5 -0.5
kw
1.86
2.0
2.5
60.4 62.8
70
1,
2
46
3–
-
,
.
-
,
,
,
,
B
70
H1
1000
H2
250
VB
VP
4.0
0,18
-
4,0
,
.
1.
.
,
,
-
.
.
kw
.
2.
,
,
-
.
.
1.
.
/
.
2.
.,
.–
3.
.,
.
.:
.
/
1955. – 764..
4.
/
478 .
.
.–
.:
, 1972. – 286 .
/ [
];
.
.
. 1982. – 416 .
.
,
. – .:
,
,
, 1966. –
1,
2
47
5.
.
/ .
6.
.–
.:
,
//
. - 1935. - 5. - C. 206 - 208.
.
. /
.,
.,
. 1980. – . 160 – 181.
.,
.,
.,
.
–
,
,
,
.
MATHEMATICAL MODEL OF PROCESS OF
SEPARATION BROKEN OF SEEDS RICINUS
A. Tkachenko, V. Didur, V. Didur, V. Tkachenko
Summary
The work is devoted optimization of technological modes of the
combined separation broken seeds on shaking sieve and in the aspiration channel, allowing to use the chosen kinematic modes sieve more
effectively and more uniform to load the aspiration channel on width
and an operating time.
Скачать