43

advertisement
43
Ìèíè-îáçîðû
Ñèíòåòè÷åñêèå áèîìàòåðèàëû íà îñíîâå ïîëèìåðîâ
îðãàíè÷åñêèõ êèñëîò â òêàíåâîé èíæåíåðèè
À.Â. Âîëêîâ
 ïîñëåäíåå âðåìÿ âñå áîëüøèìè òåìïàìè èäåò ðàçâèòèå áèîòåõíîëîãèé, â òîì ÷èñëå è ìåäèöèíñêîé áèîòåõíîëîãèè. Èçó÷åíèå ìåõàíèçìîâ ðåãåíåðàöèè òêàíåé è îðãàíîâ,
ïîèñê íîâûõ òåõíîëîãèé, êîòîðûå ìîãëè áû âîññòàíîâèòü
óòðà÷åííóþ ôóíêöèþ êàêîãî ëèáî îðãàíà èëè ñèñòåìû, ïðèâåëè ê ïîÿâëåíèþ íîâûõ îòðàñëåé, âîçíèêøèõ íà ñòûêå
áèîòåõíîëîãèè è ìåäèöèíû – òêàíåâîé èíæåíåðèè, ðåãåíåðàòèâíîé ìåäèöèíû è îðãàíîãåíåçà. Ýòè íàóêè èçó÷àþò
ñîçäàíèå îðãàíîâ è òêàíåé de novo. Â èõ îñíîâå ëåæèò
ïðèíöèï òðàíñïëàíòàöèè êëåòîê íà ìàòðèöàõ-íîñèòåëÿõ.
Ìàòðèöà-íîñèòåëü èëè ìàòðèêñ – ïðåäñòàâëÿåò ñîáîé ñèíòåòè÷åñêèé èëè áèîëîãè÷åñêèé êîìïëåêñ äëÿ îáåñïå÷åíèÿ
ìåõàíè÷åñêîé ïðî÷íîñòè êîíñòðóêöèè ñ çàäàííûìè ñâîéñòâàìè, òðåõìåðíîãî îðèåíòèðîâàíèÿ íàíåñåííîé íà íåãî
êëåòî÷íîé êóëüòóðû. Îñíîâíûìè êðèòåðèÿìè áèîëîãè÷åñêè
ñîâìåñòèìîé ìàòðèöû äëÿ ñîçäàíèÿ òêàíåèíæåíåðíîé êîíñòðóêöèè äîëæíû áûòü: îòñóòñòâèå öèòîòîêñè÷íîñòè, ïîääåðæàíèå àäãåçèè, ôèêñàöèè, ïðîëèôåðàöèè è äèôôåðåíöèðîâêè, ïîìåùåííûõ íà åå ïîâåðõíîñòü êëåòîê, îòñóòñòâèå
ýôôåêòà ïîääåðæàíèÿ âîñïàëåíèÿ, â òîì ÷èñëå èììóííîãî,
äîñòàòî÷íàÿ ìåõàíè÷åñêàÿ ïðî÷íîñòü â ñîîòâåòñòâèè ñ íàçíà÷åíèåì, áèîðåçîðáèðóåìîñòü îáû÷íûìè ìåòàáîëè÷åñêèìè ïóòÿìè, íàïðèìåð, ôåðìåíòàòèâíûì èëè ãèäðîëèçîì
[1, 4-10, 15-18, 20, 22, 25-27].
Îäíèìè èç ïåðâûõ ìàòåðèàëîâ äëÿ òêàíåâîé èíæåíåðèè ñòàëè áèîäåãðàäèðóåìûå ñèíòåòè÷åñêèå áèîìàòåðèàëû íà îñíîâå ïîëèìåðîâ îðãàíè÷åñêèõ êèñëîò. Áëàãîäàðÿ
ñâîèì õèìè÷åñêèì è ôèçè÷åñêèì ñâîéñòâàì îíè ïîçâîëÿþò ïîëó÷àòü èç íèõ øèðîêèé ñïåêòð êîíñòðóêöèé, òàêèõ, êàê
ñåòêè, ïîðèñòûå ìàòðèöû, ïëåíêè è íåòêàíûå ìàòåðèàëû.
Ñåò÷àòûå êîíñòðóêöèè â îñíîâíîì èñïîëüçóþòñÿ êàê àðìèðóþùèé ìàòåðèàë â êîìáèíèðîâàííûõ ãðàôòàõ, òàê êàê
áîëüøèå â äèàìåòðå íèòè íå ïîçâîëÿþò êóëüòèâèðîâàòü íà
íèõ íåîáõîäèìîå êîëè÷åñòâî êëåòîê. Îíè ìîãóò ðàçìåùàòüñÿ
ñ áîëüøåé èëè ìåíüøåé ïëîòíîñòüþ òîëüêî â óçëàõ ðåøåòêè,
÷òî íåäîñòàòî÷íî äëÿ ïðåñëåäóåìûõ èññëåäîâàòåëåì öåëåé.
Íåòêàíûå ìàòåðèàëû ïðåäñòàâëÿþò ñîáîé ìàòåðèàë, ñõîäíûé ïî ñòðóêòóðå ñ âàòîé, òîíêèå íèòè, ïåðåïëåòåííûå ìåæäó
ñîáîé, îáåñïå÷èâàþò äîñòàòî÷íóþ ïðî÷íîñòü è ôèêñàöèþ
êëåòîê â 3D ïðîñòðàíñòâå. Ïîðèñòûå ìàòåðèàëû ïîëó÷àþò
ñìåøèâàíèåì ïîëèìåðîâ ñ òàê íàçûâàåìûìè ïîðîãåíàìè –
âåùåñòâàìè, êîòîðûå âûìûâàþòñÿ èíûìè, ÷åì ïîëèìåð,
ðàñòâîðèòåëÿìè, íàïðèìåð, NaCl è âîäà. PGA, ðàñòâîðåííûé â ñâîåì ðàñòâîðèòåëå (õëîðîôîðì), ñîåäèíÿåòñÿ ñ
íóæíûìè ïî ðàçìåðó êðèñòàëëàìè ñîëè. Ïîñëå òîãî, êàê óëåòó÷èâàåòñÿ õëîðîôîðì è çàòâåðäåâàåò ïîëèìåð, åãî îïóñêàþò â ðàñòâîðèòåëü äëÿ ïîðîãåíà (âîäó). Âîäà ðàñòâîðÿåò
ñîëü è â ìåñòàõ ïðèñóòñòâèÿ êðèñòàëëîâ îáðàçóþòñÿ ïîðû.
Ïîðèñòûå ìàòåðèàëû ïîäõîäÿò äëÿ ïîëó÷åíèÿ ýêâèâàëåíòîâ òàêèõ òêàíåé, êàê êîñòíàÿ è õðÿùåâàÿ. Ïëåíêè èç ïîëèìåðîâ îðãàíè÷åñêèõ êèñëîò ïîçâîëÿþò ïîëó÷èòü ëèøü 2D
êîíñòðóêöèè, êîòîðûå ìîãóò áûòü èñïîëüçîâàíû è äëÿ ñîçäàíèÿ ýêâèâàëåíòîâ ýïèòåëèàëüíûõ òêàíåé è êàê àðìèðóþùèé ýëåìåíò.
Áèîäåãðàäèðóåìûå ïîëèýñòåðû – ñåìåéñòâî áèîäåãðàäèðóåìûõ ìàòåðèàëîâ, ñîñòîÿùèõ èç öåïè ïîâòîðÿþùèõñÿ
îñòàòêîâ êîðîòêîöåïî÷å÷íûõ îðãàíè÷åñêèõ êèñëîò, òàêèõ, êàê
ìîëî÷íàÿ è ãëèêîëåëèåâàÿ.  ñîñòàâ ïîëèìåðà ìîæåò âõî-
äèòü êàê îäèí òèï êèñëîòíîãî îñòàòêà - PGA, PLA, òàê è èõ
ñî÷åòàíèå â ðàçëè÷íûõ ïðîïîðöèÿõ, íàïðèìåð PGLA 30/70.
 ìåäèöèíñêîé ïðàêòèêå ýòè ïîëèìåðû íàøëè øèðîêîå
ïðèìåíåíèå â âèäå øîâíîãî ìàòåðèàëà, àðìèðóþùèõ êîíñòðóêöèé, ñåòîê äëÿ ãåðìèíîïëàñòèêè. Ïåðâûì êîììåð÷åñêèì
ïðîäóêòîì áûë øîâíûé ìàòåðèàë ïîä íàçâàíèåì Dexon TM è
Vicryl (American Cyanamid Co.).
PGA - òâåðäûé, òåðìîïëàñòè÷íûé ìàòåðèàë, òåìïåðàòóðà
ïëàâëåíèÿ 225 ãðàäóñîâ. Áëàãîäàðÿ âûñîêîé êðèñòàëëè÷íîñòè (40-50%) îí íå ðàñòâîðèì â áîëüøèíñòâå îðãàíè÷åñêèõ
ðàñòâîðèòåëåé. Áèîäåãðàäàöèÿ ïîëèìåðà ïðîèñõîäèò ïóòåì
ãèäðîëèçà äî óãëåêèñëîãî ãàçà è âîäû (ðèñ. 1), ñ íåêîòîðûì
ïîâûøåíèåì pH îêðóæàþùèõ òêàíåé [11], à òàêæå âûâîäèòñÿ
â âèäå ìîíîìåðà. Ìåõàíè÷åñêàÿ ïðî÷íîñòü ñîõðàíÿåòñÿ ìàêñèìóì äî 21 – 29 äíÿ, ñ ïîòåðåé ìàññû äî 40% ê ýòîìó ïåðèîäó. Ìàòåðèàë íå îáëàäàåò öèòîòîêñè÷åñêèìè ñâîéñòâàìè,
ïîääåðæèâàåò àäãåçèþ è ïðîëèôåðàöèþ êëåòîê, à òàêæå â íåêîòîðîé ñòåïåíè îáëàäàåò îñòåîèíäóêòèâíûìè ñâîéñòâàìè. Èç
ýòîãî ìàòåðèàëà ìîãóò áûòü èçãîòîâëåíû ìàòðèöû ðàçëè÷íîé
ñòðóêòóðíîé îðãàíèçàöèè (ðèñ. 2, 3).
Ðèñ. 1. Ñõåìà ãèäðîëèçà PGLA. Ïðîäóêòû ãèäðîëèçà
íå òîêñè÷íû è ó÷àñòâóþò â öèêëå Êðåáñà ñ îáðàçîâàíèåì
óãëåêèñëîãî ãàçà è âîäû
Ñåìåéñòâî PLA – âêëþ÷àåò ïîëèìåðû èç îñòàòêîâ ìîëî÷íîé êèñëîòû, ïðåäñòàâëåíî öåëîé ïëåÿäîé ïðîäóêòîâ,
îòëè÷àþùèõñÿ ñâîèìè ñâîéñòâàìè, áëàãîäàðÿ èçîôîðìàì
è êîëè÷åñòâó ìîëåêóë â ïîëèìåðå (òàáë. 1). Ïî ñâîèì õèìè÷åñêèì, ôèçè÷åñêèì è áèîëîãè÷åñêèì ñâîéñòâàì ýòîò ïîëèìåð áëèçîê ê PGA, îäíàêî óñòóïàåò åìó â ïðî÷íîñòè è ñêîðîñòè
ãèäðîëèçíîé ðåçîðáöèè, êîòîðàÿ ó íåãî íèæå.
Ðèñ. 2. Âîëîêíèñòàÿ
(íåòêàíàÿ) ìàòðèöà
èç PGA. Ñêàíèðóþùàÿ
ýëåêòðîííàÿ
ìèêðîñêîïèÿ (ÑÝÌ)
Ðèñ. 3. Ãóá÷àòàÿ
ìàòðèöà èç PLA. ÑÝÌ
Êëåòî÷íàÿ òðàíñïëàíòîëîãèÿ è òêàíåâàÿ èíæåíåðèÿ ¹ 2, 2005
44
Ìèíè-îáçîðû
Íàèëó÷øèìè æå ïîêàçàòåëÿìè îáëàäàþò ñîïîëèìåðû PGA
è PLA (PDLA) – PGLA (PGDLA).  çàâèñèìîñòè îò ïðîöåíòíîãî
ñîîòíîøåíèÿ ìîëî÷íîé è êëèêîëåâîé êèñëîò ìîæíî ìåíÿòü
ñâîéñòâà ïðîäóêòà, íàïðèìåð, ïëàñòè÷íîñòü, ïðî÷íîñòü, ñðîê
áèîäåãðàäàöèè è äð.  òå÷åíèå äëèòåëüíîãî âðåìåíè ïðîèçâîäèëîñü òåñòèðîâàíèå ýòèõ ïîëèìåðîâ ñ ðàçëè÷íûìè òèïàìè
êëåòîê. Áûëî óñòàíîâëåíî, ÷òî äàííûå ìàòåðèàëû ìîãóò ñëóæèòü ìàòðèöåé äëÿ ñîçäàíèÿ òêàíåèíæåíåðíûõ êîíñòðóêöèé
ìûøå÷íîé, õðÿùåâîé, êîñòíîé è ýïèòåëèàëüíîé òêàíåé. Îñîáîå
ìåñòî ïîëèìåðû íà îñíîâå ìîëî÷íîé è êëèêîëåâîé êèñëîò
çàíÿëè â ðåêîíñòðóêòèâíîé õèðóðãèè è ðåãåíåðàòèâíîé ìåäèöèíå. Îíè èñïîëüçóþòñÿ äëÿ âîññòàíîâëåíèÿ äåôåêòîâ êîñòíîé è õðÿùåâîé òêàíè â êëèíè÷åñêîé ïðàêòèêå [1, 6-10, 15,
19, 25-27] è áûëè îäîáðåíû FDA (Àãåíòñòâîì ïî êîíòðîëþ
çà ëåêàðñòâàìè è ïðîäóêòàìè ïèòàíèÿ ÑØÀ) êàê áåçîïàñíûå
ìàòåðèàëû äëÿ òêàíåâîé èíæåíåðèè [28].
Ïîëèêàïðîëàêòîí (PCL) – åùå
îäèí ïðåäñòàâèòåëü ñåìåéñòâà ïîëèýñòåðîâ (ðèñ. 4). Ïîëóïðîçðà÷íûé ïîëèìåð ñ òåìïåðàòóðîé ïëàâëåíèÿ ìåíåå 60 ãðàäóñîâ (ñì. òàáë. 1). Ñðîê
áèîäåãðàäàöèè ñîñòàâëÿåò îêîëî 3
Ðèñ. 4.
Ôîðìóëà PCL
ëåò. Ýòè ñâîéñòâà ïîçâîëÿþò ïîëó÷àòü
äîñòàòî÷íî ïëàñòè÷íûå êîíñòðóêöèè, îáåñïå÷èâàþùèå äëèòåëüíóþ ìåõàíè÷åñêóþ ïðî÷íîñòü è ïîääåðæêó. Êðîìå òîãî,
ïîëèìåð îáëàäàåò îò÷åòëèâûìè îñòåîèíäóêòèâíûìè ñâîéñòâàìè, è íà íåì áåñïðåïÿòñòâåííî àäãåçèðóþòñÿ ìàëîäèôôåðåíöèðîâàííûå ìåçåíõèìàëüíûå êëåòêè (ðèñ. 5).
Êîììåð÷åñêèé ïðåïàðàò, ïðèìåíÿåìûé â çäðàâîîõðàíåíèè,
MONOCRYL, Ethicon Inc. – øîâíûé ìàòåðèàë äëÿ õèðóðãèè.
Ðèñ. 5.
Ôèáðîáëàñòîïîäîáíûå
êëåòêè, àäãåçèðîâàâøèå
â óñëîâèÿõ êóëüòóðû
ê ãðàíóëàì êàïðîëàêòîíà (À)
è ê ïîðèñòîìó
êàïðîëàêòîíó (Â). ÑÝÌ
Òàáëèöà 1. Ñâîéñòâà áèîäåãðàäèðóåìûõ ïîëèìåðîâ
Ïîëèìåð
Òåìïåðàòóðíûå è ìåõàíè÷åñêèå
ñâîéñòâà
t ïëàâëåíèÿ
(°C)
ëèçàöèè
(°C)
ïðî÷íîñòü
Âðåìÿ
äåãðàäàöèè
(ìåñÿöû)
t êðèñòàë-
Ïðîäóêòû
äåãðàäàöèè
Ïðèìå÷àíèÿ
Poly(glycolic acid), PGA
225—230
35—40
7,0 GPa
6—2
Glycolic acid, CO2,
H2O
Poly(l-lactic acid), PLLA
173—178
60—65
2,7 GPa
>24
l-lactic acid, CO2,
H2O
Poly(d,l-lactic acid), PLDA
Àìîðôíûé
55—60
1,9 GPa
12—16
d,l-lactic acid, CO2,
H2O
Poly(d,l-lactic-co-glycolic
acid)(85/15), PDLGA85/15
Àìîðôíûé
50—55
2,0 GPa
5—6
d,l-lactic acid b
glycolic acid, CO2,
H2O
Poly(d,l-lactic-co-glycolic
acid)(85/15), PDLGA85/15
Àìîðôíûé
50—55
2,0 GPa
4—5
d,l-lactic acid è
glycolic acid, CO2,
H2O
Poly(d,l-lactic-co-glycolic
acid)(85/15), PDLGA85/15
Àìîðôíûé
45—50
2,0 GPa
3—4
d,l-lactic acid è
glycolic acid, CO2,
H2O
Poly(d,l-lactic-co-glycolic
acid)(85/15), PDLGA85/15
Àìîðôíûé
45—50
2,0 GPa
I—2
d,l-lactic acid è
glycolic acid, CO2,
H2O
Poly(capro- lactone), PCL
58—63
60—65
0,4 GPa
>24
Caproic acid, CO2,
H2O
Òêàíåñîâìåñòèìûé
ïîëèìåð ñ íèçêîé
öèòîòîêñè÷íîñòüþ
Poly(propylene fumarate)
—
—
Fumaric acid,
propylene glycol
è poly(acrylic acidco-fumaric acid)
Âûçûâàåò
óìåðåííûå
ìåñòíûå
âîñïàëèòåëüíûå
ðåàêöèè, ðåàêöèþ
íà èíîðîäíîå
òåëî, ôèáðîç
Êëåòî÷íàÿ òðàíñïëàíòîëîãèÿ è òêàíåâàÿ èíæåíåðèÿ ¹ 2, 2005
2—30 MPa  çàâèñèìîñòè îò
ôîðìóëû,
ìîæåò
äîñòèãàòü
íåñêîëüêî
ìåñÿöåâ
Áîëüøîå
êîëè÷åñòâî
èññëåäîâàíèé
ïîêàçàëè, ÷òî
äàííûå
ïðåïàðàòû íå
èìåþò
âûðàæåííîé
öèòîòîêñè÷íîñòè,
õîòÿ è ñíèæàþò ðÍ
ñðåäû âî âðåìÿ
ãèäðîëèçà.
Ïðåèìóùåñòâî –
ïîëíûé ãèäðîëèç
äî óãëåêèñëîãî
ãàçà è âîäû,
îáû÷íûìè
ìåòàáîëè÷åñêèìè
ïóòÿìè
Ìèíè-îáçîðû
Ïîëèïðîïèëåí ôóìàðàò – äîñòàòî÷íî ïðî÷íûé, ïëàñòè÷íûé ïîëèìåð, òàêæå ïðåäíàçíà÷åííûé äëÿ äëèòåëüíîé ïîääåðæêè ìåõàíè÷åñêîé ïðî÷íîñòè êîíñòðóêöèè â òå÷åíèå êàê
ìèíèìóì 200 äíåé. Áèîäåãðàäàöèÿ ïðîèñõîäèò ôåðìåíòàòèâíûì ãèäðîëèçíûì ïóòåì, íî, â îòëè÷èå îò ïðåäûäóùèõ
ìàòåðèàëîâ, íå âëèÿåò íà pH îêðóæàþùèõ òêàíåé ïðè áèîäåãðàäàöèè. Ê ñóùåñòâåííûì íåäîñòàòêàì ìîæíî îòíåñòè
îáðàçîâàíèå ôèáðîçíîé êàïñóëû êàê îòâåò íà èíîðîäíîå
òåëî, ÷òî îêàçûâàåòñÿ íåáëàãîïðèÿòíûì â ðÿäå ñèòóàöèé
[12, 14].
Òàêèì îáðàçîì, â íàñòîÿùåì îáçîðå ïðåäñòàâëåíû
îñíîâíûå ðàçíîâèäíîñòè îðãàíè÷åñêèõ ïîëèìåðíûõ áèîäåãðàäèðóåìûõ ìàòåðèàëîâ äëÿ òêàíåâîé èíæåíåðèè.
Íàèáîëåå ÿðêèìè ïðåäñòàâèòåëÿìè, çàðåêîìåíäîâàâøèìè
ñåáÿ êàê â ýêñïåðèìåíòàëüíûõ, òàê è â êëèíè÷åñêèõ èññëåäîâàíèÿõ, ÿâëÿþòñÿ ïîëèýôèðû ìîëî÷íîé è êëèêîëåâîé
ËÈÒÅÐÀÒÓÐÀ
1. Agrawal C.M., Athanasiou K.A., Heckman J.D. Biodegradable PLA/PGA
polymers for tissue engineering in orthopaedica. Material Science Forum 1997;
250: 115-28.
2. Alcock H.R. Inorganic-organic polymers as route to biodegradable
materials. Macromol. Symp. 1999; 144: 33-46.
3. Andriano K.P., Tabata Y., Ikada Y., Heller J. In vitro and In vivo comparison
of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue
engineering. J. Biomed. Mater. Res. 1999; 48: 602-12.
4. Attawia M.A., Uhrich K.E., Botchwey E. et al. Cytotoxocity testing of
poly(anhydride) for orthopaedic applications. J. Biomed. Mater. Res. 1995; 29:
1233-40.
5. Behravesh E., Yasko A.W., Engle P.S., Mikos A.G. Synthetic
biodegradable polymers for orthopaedic applications. Clin. Orthop. 1999; 367S:
118-85.
6. Bostman O.M. Osteolytic changes accompanying degradation of
absorbable fracture fixation implants. J. Bone Joint Surg. 1991; 73B: 679-82.
7. Bostman O.M. Intense granulomatous inflammatory lesions associated
with absorbale internal fixation devices made of polyglycolide in ankle fractures.
Clin. Orthop. 1992; 278: 178-99.
8. Bostman O., Paivaarinta U., Partio E. et al. Degradation and tissue
replacement of an absorbable polyglycolide screw in the fixation of rabbit
osteomies. J. Bone Joint Surg. 1992; 74A: 1021-31.
9. Bostman O., Partio E., Hirvensalo E., Rokannen P. Foreign-body
reactions to polyglycolide screws. Acta Orthop. Scand. 1992; 63: 173-6.
10. Burg K.J.L., Porter S., Kellam J.F. Biomaterials development for bone
tissue engineering. Biomaterials 2000; 21: 2347-59.
11. Chu C.C. The in vitro degradation of poly(glycolic acid) sutures- effect of
pH. J. Biomed. Mater. Res. 1981; 15: 795-804.
12. Domb A.J. Poly(propylene glycol fumarate) compositions for biomedical
applications. United States Patent 1989; 4888; 413: 1-31.
13. Domb A.J., Langer R. Polyanhydrides I: Preparation of high molecular weight
polyanhydrides. J. Polym. Sci., Part A, Polymer Chem. 1987; 25: 3373-86.
14. Frazier D.D., Lathi V.K., Gerhart T.N., Hayes W.C. Ex vivo degradation of
a poly(propylene glycol-fumarate) biodegradable particulate composite bone
cement. J. Biomed. Mater. Res. 1997; 5; 35(3):383-9.
15. Gogolewski S., Pennings A.J. An artificial skin based on biodegradable
45
êèñëîò. Êðîìå òîãî, äàííûå ìàòåðèàëû îäîáðåíû FDA êàê
áåçîïàñíûå ìàòåðèàëû äëÿ òêàíåèíæåíåðíûõ êîíñòðóêöèé.
Îäíàêî èõ íåäîñòàòêè, òàêèå, êàê ïîâûøåíèå pH îêðóæàþùèõ òêàíåé ïðè ãèäðîëèçå, íåäîñòàòî÷íàÿ ìåõàíè÷åñêàÿ
ïðî÷íîñòü, îãðàíè÷èâàþò èñïîëüçîâàíèå è íå ïîçâîëÿþò èõ
ïðèìåíÿòü êàê óíèâåðñàëüíûé ìàòåðèàë äëÿ ìàòðèö è ïîäëîæåê. Íåñìîòðÿ íà íåêîòîðûå ìèíóñû, åùå â òå÷åíèå äëèòåëüíîãî âðåìåíè îíè ñìîãóò ñîñòàâèòü çíà÷èòåëüíóþ êîíêóðåíöèþ äðóãèì ïîëèìåðàì. Ê ñåãîäíÿøíåìó äíþ ìàòðèöû
íà îñíîâå PGA, PLA è PGLA (PGDLA) ëåãëè â îñíîâó ñîçäàíèÿ òàêèõ îðãàíîâ è òêàíåé, êàê êîæà, êîñòü, õðÿù, ñóõîæèëèå,
ïîïåðå÷íî-ïîëîñàòàÿ, ãëàäêàÿ è ñåðäå÷íàÿ ìûøöà, òîíêàÿ
êèøêà è äð. è ïðîäîëæàþò ñâîå òðèóìôàëüíîå øåñòâèå ïî
ïðîñòîðàì ðåãåíåðàòèâíîé ìåäèöèíû. Äðóãèå æå ïðåäñòàâèòåëè ñåìåéñòâà ïîëèýñòåðîâ çàéìóò, ïî-âèäèìîìó, ñâîå
ìåñòî â ñòðóêòóðå áèîìàòðèö.
mixtures of polylactides and polyurethanes for full-thickness skin wound covering.
Makromol. Chem. Rapid. Commun. 1983; 4: 675-80.
16. Jen A.C., Peter S.J., Mikos A.G. Preparation and use of porous poly(ahydroxyester scaffolds for bone tissue engineering. In: Tissue Engineering Methods and
Protocols. Morhgan J.R, Yarmush M.L eds Humana Press, Totowa: 1999; 133-40.
17. Kronenthal R.L. Biodegradable polymers in medicine and surgery. Polymer
Sci. Technol. 1975; 8: 119-37.
18. Laurencin C.T., El-Amin S.F., Ibim S.E. et al. A highly porous 3-dimentional
polyphophazene polymer matrix for skeletal tissue regeneration. J. Biomed. Mater.
Res. 1996; 30: 133-8.
19. Peter S.J., Miller M.J., Yaszemski M.J., Mikos A.G. Poly(propylene fumarate).
In: Handbook of Biodegradable Polymers. Domb A.J., Kost J., Wiseman D.M. eds.
Harwood Academic Publishers, Amsterdam: 1997; 87-98.
20. Skarja G.A., Woodhouse K.A. Synthesis and characterization of degradable
polyurethane elastomers containing an amino acid-based chain extender. J.
Biomater. Sci. Polym. Ed 1998; 9: 271-95.
21. Temenoff J.S., Mikos A.G. Injectable biodegradable materials for orthopedic
tissue engineering. Biomaterials 2000; 21: 2405-12.
22. Thomson R.C., Wake M.C., Yaszemski, Mikos A.G. Biodegradable polymer
scaffolds to regenerate organs. Adv. Polymer. Sci. 1995; 122: 245-74.
23. Van Sliedregt A., van Blitterswijk C.A., Hesseling S.C. et al. The effect of the
molecular weight of polylactic acid on in vivo biocompatibility. Adv. Biomaterials 1990;
9: 207-12.
24. VanSliedregt A., Radder A.M., deGroot K., Van Blitterswijk C.A. In vitro
biocompatibility testing of polylactides Part I: Proliferation of different cell types. J.
Mater. Sci.: Mater. Med. 1992; 3: 365-70.
25. William D.F., Mort E. Enzyme-accelerated hydrolysis of polyglycolic acid. J.
Bioeng. 1977; 1: 231-8.
26. Wong W.H., Mooney D.J. Synthesis and properties of biodegradable
polymers used as synthetic matrices for tissue engineering. In: Synthetic
Biodegradable Polymer Scaffolds. Atala A., Mooney D., eds. Burkhauser, Boston;
1997: 51-84.
27. Yazemski M.J., Payne R.G., Hayes W.C. et al. Evolution of bone
transplantation: molecular, cellular and tissue strategies to engineer human bone.
Biomaterials 1996; 17: 175-85.
28. Gunatillake P.A., Adhikari R. Biodegradable synthetic polymer for tissue
engineering. European Cells and Materials 2003; 5: 1-16.
Êëåòî÷íàÿ òðàíñïëàíòîëîãèÿ è òêàíåâàÿ èíæåíåðèÿ ¹ 2, 2005
Download