1 ., . . . 2009 2 : 020700 . , 020701 –« » ., . . . .– : , 2009. – : 172 . , , - , ; , . . ., 2009 ., 3 . ……………………………………………………….. 5 . ……………………………………………………………. 7 1. 1.1. 1.2. ………………………………………………….. , ……………………………………. 7 14 ………………………………………………... 16 1.3. 2. 2.1. 2.2. . …………………………………………………… 21 ……………………………….. 22 ………………………………………….. 24 ………………………………………….. 32 …………………………………………… 39 ………………………. 40 . ………………………………… 43 …………………………………………. 51 ……………………………… 56 ……………………………… 64 2.3. 3. 3.1. 3.2. 3.3. 3.4. 4. 4.1. 4.2. ………………………………………. ………………… 64 68 4 4.3. 4.4. 4.5. 5. 5.1. 5.2. 5.3. ……………… ……………………………………. …………………………………….. 79 100 111 ……………………………….. 122 ………………………………………. ……………………………………….. 122 127 ……………………… 136 5.4. . ……………………. 142 …………………………………………………. 152 …………………………….. 165 5 - . , ( , 1990) , 2005, , «… - , « » . (1988) , , , - …». , , , , - , . - , , . , . XX- , , - . 6 , - , - , , Al, Mn, - , . , . - . , . , . 7 1. . 1.1. . (IV .) - . (I .): , , ». XV – , ( , 1981). XIX , . (1) , Na+, NH4+ + Cl-, NO3-, SO42-; (3) ; (2) ; (4) ; (5) ; (6) ; (7) ; (8) . - 8 , – - , . 1859 « »( . , 1997). - Ca2+, Mg2+, K+, Na+. , – . XX - , ( . , 1992). – , 1922 « ». ( - 5 , 1955). – , . , - . , , . . 9 , , . . . , . - – ) , ( , - , . , - . , , – - . , – , , . . , , . 30-40 , , 10 , - . - . - . Ca Na - . 1932 . 40-50 . - , . 1947 . « », . - , , - Al3+, . 50, . - 11 . ( , 1989). 1957 . , . XXI- . , , , , , . , , , , . - , . , , , , - , , - . , . , , - 12 (1937), (1963), (1980) (1974, 1990 .). (1963, 1974, 1978), 1978 .), (1976 (1972, .), (Schnitzer, 1978), (1991 .). (Stevenson, 1994) - . (Jackson, 1965, 1968 .). 2002 «Soil Mineralogy with Environmental Application» (Dixon, Schultze, 2002). , . – , - , . (Sposito, 1984, 1989, 1996 .) - , – - , . , , , 13 , , - . (Sparks, 1989, 1999 .) , - . - – – , , , - . , . (Stumm, Morgan, 1981, Stumm, 1992 .) . - . - , – . , . , , , . , GEOCHEM, MINTEQ , - 14 , . , , . , - , - , ( ., 1981) (1990). - . 1.2. , . , 30- , - , ( . , . 3 4). , , , , , . ( ) - , , . - , . , , 15 , . < 1 <2 , ( ( - , 2005). ) – , . Ca2+, Mg2+, Na+, K+. , , H+, Al3+, , - , - Mn2+. Al ) . , - , , , . , - , , - . , , - . , . ( , 1998). . , 6,5 ( , 1998). - 2+ , BaCl2, 6,5. - , , , , . ., - 16 ( ) - , , - . , BaCl2, , - . . , , - 6,5 8,2 . , 8,2, , 6,5, , . - 1,7. , , , , , - , . - , . 8,2. , 3 . 1.3. , . , 17 , : 2,5 40-120 150-370 /100 8( /100 , 1992). , , , , - . , , Al, - . Al 2+ , BaCl2. , - : – 120-180 80-120 /100 , – /100 - . - – /100 ( Fe , 1978, ., 2005). Al, , , Fe - Al , , . Fe Al , , - . , - . 18 1.1. : « …», 1978, …», 1978, « 1989, ( …», 1989, « , 1990, , 1983, , ., 1986) , , , - , - , , , , , - , - , , AO (6-12) ABg (12-17) Ghx1 (18-28) Ghx2 (29-39) BCgh (45-55) (0-4) (4-6) (6-14) (14-25) ’ (25-36) 1 (40-50) 2t (65-75) 3 (90-100) (130-140) 1 (0-2) 2 (2-3) (3-7) f1 (7-15) f2 (30-40) (90-100) (0-2) (2-7) 1 (7-14) (16-24) 1 (45-67) (0-20) 1 (32-42) (54-64) 2 (68-78) 3 (95-105) (150-160) 1 (0-22) 1’ (22-50) (80-104) (100-130) (0-10) (20-30) (40-50) (0-10) 1t (11-28) (35-45) (90-100) , 46,1 13,0 11,2 10,4 12,09 35,6 10,0 5,5 6,5 14,6 23,7 26,6 27,0 27,8 64,71 66,31 7,06 6,03 5,60 4,68 154,7 50,9 39,7 25,2 34,8 34,0 27,0 22,0 18,0 19,0 18,0 53,5 54,4 52,3 49,5 17,4 15,7 11,4 19,5 44,23 38,41 24,51 19 . 1.1, - , . - . . 1.1 , , – » - . , « » , - . - . , - , - , . , ABg Ghx2 - , - . , 2t. - . , , 1, , 1. - . - 20 1t , . - , . - 21 2. . - , , - . , – , ( ) , ( , , - ). : - – , . : (1) – . - , (2) Fe, Al Mn, (3) - (4) - . , (< 1 ) (< 0,1 , ) . - , - , , , . , , . . , - 22 . , , , , . 2.1. » « » . – - , . – , , . - . . . (Pearson, 1963, 1968) « ( ). « » » « » – , , - , .« – , , » - . » , - – , - 23 , .« – » - , - , , - . 2.1 « , », « » - ( , . 2, 1990). . 2.1. « « », « » » 2, 1990 » Essington, 2004) » » H+, Li+, Na+, K+, Rb+, Cs+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, CH3Hg+, Cu+, Ag+, Au+, Hg+, Be2+, Mg2+, Ca2+, Sr2+, Mn2+, Pb2+, Sn2+, NO+, R3C+, C6H5+ Pt2+, Pt4+, BH3, Ga(CH3)3, R+, Mn7+, Al3+, Fe3+, Ga3+, Cr3+, RSe+, RTe+, RO+, I2, Br2, ICN, 3+ 4+ 4+ 4+ 4+ Ln , Si , Ti , Zr , Th , , , BF3, AlCl3, AlH3, C6H5+, RCO+, CO2 F-, OH-, H2O, NH3, RNH2, C6H5NH2, C5H5N, N3, NO2-, C2H4, C6H6, R3P, (RO3)P, R3As, RSH, S2O32-, S2-, I-, RS, ROH, RO, R2O, CH3COO-, SO32-, BrSCN, R CO32-, NO3-, PO43-, SO42-, O2-, Cl « 2 . » « » - (Pearson, 1963, 1968) (Parr and Pearson, 1983) « » - : = ½( IA - ), (2.1) IA – , – . (Misono et al., 1967) » « : S,M =( 2 M + M + 2XM In0,5)/10 M– , In – , (2.2) . - 24 , – . - ( ) . - . (Ca2+, Mg2+, K+, Na+, Al3+ ) 3, 23 , 24 , NO3-, SO42-, ( 2 4 – 2 , ). , - . , , , . , . . – F-, . 2.2. – . , , . , - . - 25 – Al ( Si ) Al Mg . , - , (–). 1 0,8-0,9 , 0,7-0,6 0,3-0,5 ( ., 2005, Dixon, Weed, 1989, Dixon Schulze, 2002). 18 , ( . 2.1. ). , , - , . 3 . 2.1. ). , , , , . . ( ) , . - . 26 , . - , , (1 0,5 - ). , , , - . , , ( . 2.2). 27 , , , , - . Fe, Al, Mn, Si – ( ) . - Fe, Al, Mn, Si , – SiO2. , - , . Al - – Al(OH)3, ( , , 1992). - Al ( -Al2O3). Fe ( -FeOOH), Fe2O3 2FeOOH 2,5 Fe2O3), 2003). MnO2). ( -FeOOH), 2 (Fe3O4) . Fe ( -Fe2O3) ( Mn ( -FeOOH), ( , 1982, , ( - 28 Fe, Al, Mn Si , , (+). Fe3+ Ti4+ Fe2O3 – , , - Fe - FeTiO3 ( - , 1998, Tessens, Zanyah, 1982). , , , , . Fe, Al Mn , , , , . Mn - Fe, Al, Si , , . . , , , - . : , (+), , . ( . - 3.2). 29 (1934) - . 2 . 2.2). . 2.2. ( Sparks, 1999) 1 -FeOOH -Fe2O3 - Al(OH)3 -Al2O3 SiO2 (am) 2 2,6-16,8 5-22 2-12 2-12 4,5-12 . . 2.3 , 3 : ( Fe3+, - )– – Fe3+. – . (Essington, 2004). . , : FeOH0 + H+ FeOH0 FeOH2+ FeO- + H+ (2.3) (2.4) 30 (2.3) ( 106,2, +), , = 1/ s,1). , ( FeOH2+ 6,2 + FeOH0 ). , K- = 1/Ks,2 = 10-11,8. , , FeO- 11,8 FeOH0. , FeOH2+0,5 : FeOH-0,5 + s,H - + = 10-8,5, (2.5) . 8,5 FeOH2+0,5 FeOH-0,5. pKS,1, pKS,2 Fe, Al pKS,H Mn , Si, , - . – (SM-O), ( 2.3). . ( ) , - 31 (ENM), - . 2.3. Mn ( Si, Al pKS,1, pKS,2 pKS,H Essington, 2004) - SiO2 -MnO2 Al2O3 IV IV III SM-O S/rM-OH +1 +2/3 +1/2 3,818 2,300 1,711 M ENM pKS,1 pKS,2 pKS,H 3,38 3,72 2,77 1,90 1,55 1,61 -1,2 0,16 6,1 7,2 7,36 11,8 3,0 3,76 8,95 , , , , - S/rM-OH ( M-OH ( , M). Si , - SiOH0 , - SiOH2+, Al(OH)2+0,5. , . AlOH2+0,5 , +0,5 , 2 FeO Al+0,5 , Fe+0,5 2, 2 - , . , - : OH2 + OH2 + SO42- Al OH2 Al – + OH2 SO4 32 2.3. . , , - , , 1990, 1992, Stevenson, 1982, Perdue, 1985, Hayes, 1986, Sposito, 1989 .). , . , , , , - . – 3, - – – ( ( . 2.4). . 2.5). : ( , , 2,89), 1 ( = 3,8), = 1.3), 2- ( , 3 ( 2 , , 1 = 4,8), )- , = 3,1) ; . 1 = 33 34 , - , ( ) . H R C NH 2 COOH . - : NH 2 : HC COOH H NH 2 : CH 3 C COOH H NH 2 : HOOC –CH2- CH -COOH : HCCO CH 2 CH 2 NH 2 C COOH H NH 2 : NH 2 C NH CH 2 CH 2 CH 2 CH COOH NH NH 2 : NH 2 CH 2 CH 2 CH 2 CH 2 CH COOH , – NH2 - . , , , . ( , - )– , , , ( , , , NH2- )– , - ( , )– . – - , – – . , , , . 35 , . , , ( ( SH- , , - NH), - ), , , ( (C= ), ( . 2.6). ) ( , 1990, Stevenson, 1994). (Sposito, 1989). 2.4, - , , , - . , , – . . 2.4. ( ) ( Stevenson, 1994) 360 390 260 290 60 150-570 210-570 20-490 10-560 30-80 820 300 610 270 80 520-1120 30-570 260-950 120-420 30-120 36 , , – . – , . 2.6. . 2.6. ( – Essington, 2004) , . - 37 . , , , Al ( , 1990, Sposito, Holtsclaw, 1977 - .). - ( , 1990, Perdue, 1985, Hayes, 1987, Senesi, Loffredo, 1998) - , 4-5, 10 – 11. , , , , , . , , 8 . . , . , , -, . , , . : SH2 (s) + Ca2+ (aq) = SCa (s) + 2H+ (aq) (2.6) 2SH (s) + Ca2+ (aq) = S2Ca (s) + 2H+ (aq) (2.7), 38 (s) (aq) - . . , SH2 (s) SCa (s) . , - (Sposito, 1989). 39 3. , , - , - , (Stumm, 1992). , , - 2. (« ») , , – , - , . - , , . - . , , , - . - . , . - 40 : - , - . 3.1. – . 3.1). , , - . . , . - , « » , - , , Na+, Ca2+, Mg2+), ( –« » - , Cl-, NO3-). . 3.1 Na+ Cl-, - . ( ), . - . 41 . , - . . , . . 3.1 ; - 42 Cu+, , F-, . , – - . , . , , « , Ni2+, Cu2+, Zn2+, Pb2+), » ( , Hg2+, Cd2+) »( (Essington, 2004). – Cs+ K+ , , - . . , , , - , , 4 . ( - Stumm, 1992, S , ): (1) : S–OH + H+ S–OH2+ S–OH + OH- S–O- + (H2O) (2) S–OH + MZ+ S–OH + MZ+ S–OH + MZ+ + H2O : S–OM(z-1)+ + H+ (S–O)2M(z-2)+ + 2H+ S–OMOH(z-2)+ + 2H+ 43 (3) : S–OH + L- S–L + OH- S–OH + L- S2–L+ + 2OH- (4) - S–OH + L- + MZ+ S–L–MZ+ + OH- S–OH + L- + MZ+ S–OM–L (Z-2)+ + H+ - , . . . , - . 3.2. . . , - – . (Sposito, 1989, Stumm, 1992, Sparks, 1998, Essington, 2004). , , – - . , - , , - 44 , ( . 3.2). , - . , – , , 2.1, ( 2). , 0. : . (–) - 45 0 F = (3.1) S – ,F– (96485 2 ), S – , 140 650 000 0 = 140 / 0,01 96485 650000 2 , 0,208 - . , : / 2 , , . , , , . , ( . 3.3). , - . , 3.2 , S- – , ( . 2.1, 2). - s, , , - . , , - s, - . – – , 46 . , S - : = H F qH q OH (3.2) S qOH_ – qH+ , S– . ( ) - . (Stumm, 1992) (10-1 -FeOOH NaClO4), 6 , 120 , 10-4 2 , - FeOHTOT, ( ). HCl NaOH, – - , - . : FeOH2+ FeOH FeOH + H+ FeO- + H+ FeOH2+, FeOH , FeO- , , . Ka1s = { FeOH } [ H ] { FeOH 2 } Ka2s = = { FeO } [ H ] { FeOH } (3.3) , (3.3) (3.4) (3.4) – . , 47 , , - 1. : CB A OH H FeO , FeOH 2 – , + ; FeOH2+ FeO- - - , . , , . . . 3.3 ( - .3.3. ) - Q, ( . 3.3. ). , 7,9 0, . - : FeOH2+ = FeO( 3) ( pHPZNCP). s : H = Q·F·s-1, (3.5) Q– ,F– ,s– . , - : Q { FeOH2+} < ; Q { FeO-} > - : FeOHTOT = ( FeOH2+ + FeOH + FeO-) (3.3) Ka1s = FeOHTOT Q (3.4) Q H : < (3.6) 48 Ka2s = QH FeOHTOT > Q (3.7) .3.3. (3.6) (3.6) . ( ), , ( ), Stumm, 1992 ( ) (3.7). - (3.7) . 3.3. , , , - . , . 6,4 9,2 1 . s pKa2s c 49 , (3.3) (3.4), , - , - : lg Ka1s + lg Ka2s = = lg{ FeOH} + lg[H+] – lg{ FeOH2+} +lg { FeO-} + lg [H+] – lg{ FeOH} , , { FeOH2+} = { FeO-}, lg Ka1s + lg Ka2s = 2 lg [H+] s = ½( Ka1 + : : s Ka2 ) (3.8) : = ½(6,4 + 9,2) = 7,8 3.1. 3.1. , Sahai, Sverjensky, 1997) s a1 SiO2 -1,2 -0,7 5,7 8,50 SiO2 n H2O -Fe2O3 -FeOOH ( 0 + pKsa2 7,2 7,7 11,3 9,70 ) , + - - . – , , . - . , , 50 . . , is, , is 3.2. , - . , - , - ( . . 3.1). - , , . . , os, , os - . 3.2. . , , os Ca2+, Na+, Mg2+, . - ~ 0,3 . , p : p = 0 + H + is + os. , , , d . 3.2. , , . , , - . > 0,6 - . 51 , , , : p + d =0 3.3. , 3.2, - , - , , . 3.2 (Sposito, 1981, 1984, 1989, Essing- ton, 2004). pHZPC) – , 0, . p - = 0, – 0. , , . 3.2. . 3.2. Sverjensky and Sahai, 1996 Sahai and Sverjensky, 1997) SiO2 2,9 3,5 4,7 6,9 7,5 8,5 8,9 9,0 SiO2 n H2O Al4(OH)8Si4O10 Fe3O4 KAl2(OH)2[AlSi3O10] -Fe2O3 Al(OH)3 -FeOOH – . , , , - , ( , ), 52 . , , , , SiO2 n H2O ( ) . , , . , . – pHPZNPC) – , s- , , . qH = qOH , , qH – qOH = 0. . pH , = - - . ( IEP) – , , , = H = is = os = d . 3.2. , 0 = 0. ( pHPZNC) – , , . – = 0, , , - , , . os + d = 0. - , os + d = 0. , , = os =0 is + 53 ( pHPZSE) , , , .d H/dI = 0. - ( . 3.4). , , ( 3.4. ). , . 3.4, - . , - , . , , - 54 , . , , . 3.4 - , , , - . 0 = , ( ), , , . . , , , - . . ( ) , – , . , - I1 , (Sposito, 1981). 0 + H + is + os : + d)1 =( 0 + H + is + os + d)2 =0 I2, - 55 H + is + os)1 =( H 01 = + 02 ) is + os)2, ( d1 = ( d2 ). , -, . - . , : H + os)1 =( H + os)2 , , , : 1) , ; 2) - , . NaCl NaNO3, – . . , , H1 os1 = = os2 - , H2, , , 1= 2 ( . 3.5 ), . = = . . , , + os)1 =( H + os)2 , ( H . , - 56 , , ( , . 3.5 ). , . - , . , - , , : 0 + Cu2+ MeOCu+ + H+ , - . , . : 0 + SO42- Me SO4- + OH- 57 , - . 3.4. – - – , , , . – - . 0 , = 0, . , , , ( , EDL, - ). - , . - 0 : 0 = RT ln 10 ( pH F pH ) 0,059( pH pH ) 298 (3.9), . (Essington, 2004). ( . 3.6) - 58 HO, - isH, . - 0 , . ( , ) . , , - . : = (3.10) 59 – , - , , ( . . 3.7). , , , . , - . - . x : = (x) (x) = (d) = 0 exp(- x) (3.11) – (d) x , , – , - 2980 = ; : 2 I 10 3 = ZF 0 RT 0,5 (3.12) Z– ,F– ( 78,54 2 2 -1 -1 -1 -1 ), ), 0 (96487 – ), I – ( (8,854*10-12 – ), R – (8,314 -1 -1 ). , , , : 60 -1 3,042(10 ZI = 10 ) (3.13) -1 , » . : ZF RT C B exp x d (3.14) cx – x , cB – - . (3.11) ZF B exp x 0 (3.13) (3.14), exp ZI 0, 5 3, 287 10 9 x 2,4788 10 3 : (3.15) : 2C0 RT = sinh zF 0 2 RT (3.16) - : ( sinh( y ) – 0 e y , sinh – e 2 y ). , , (3.9) (3.15) , , (3.9) , 0, (3.15) , , 0 . - . , . , . 3.5. . , - 61 . 3.8 , (3.15) . -1 , (3.12) (3.13) - . , -1 , 100 10 - . 62 ( . 3.9) . - , . . , , . 63 . 3.9. ( Essington, 2004) 64 4. 4.1. . - , . : (1) , - ; (2) ; (3) (Israelashvili, 1985, . , 1997). , - , , - . , , . . , , . - . – 65 , . - , , – - . , – - . , – . ( Sparks, 1998, Essington, 2004 , 1992, Sposito, 1984, 1989, Stumm, 1992, .). (2005). , , , . – - (Sparks, 1999, Essington, 2004). , , 66 ( . ) , , , , , - . , . , – – - (Sutton, Rivers, 1999), , - , (Teo, 1986). - (2005, 2007). , – - , - . (Stumm, 1992): i i 1 RT ln ai – (4.1) T,p i ( ( 2 ), i 2 ), – – i- . (4.1) ( ln ai 0 ), , , . - 67 , , , , . - , – , – . – - ( ) . . , , - , , , - , (Parks, 1984, . . Stumm, 1992) , , - . . . , , , . - – , , . , , . . - 68 , - , . ( – – , ), , - . , , ,– . . 4.2. , - , Kd, -1 q( ceq ( -1 ) - -1 -1 ). - , , : q ceq Kd (4.2) , – - . , , , . , - . 69 ( ., 1987, Giles et al., 1974) , ( S- ( . 4.1. ) - ; - . . 4.1. Cu2+ Cu2+, . 4.1). , , - Cu2+ . , Cu2+ . . , - . 70 Cu2+ - , . S- , - , , - , . L- ( . 4.1. ), ; - , . – . . 4.1. - L- - . L- , , . . . 4.1. Cd2+ Cd2+ . , , . . 4.1. . (C10H14 NO5PS) . - 71 , , , . L- , - : – ; – ; – , ; – ; – ; – ; – . , , , - . - : q bK L eq 1 KL b (4.3) eq KL . ( . 4.2). b , KL q; , , – , ; q - . - b·KL – 0. 72 , . - H2O(ad) – , , M(aq)- . - (Essington, 2004): H2O(ad) + M(aq) = (ad) + 2 (liq) - ( ): K ex ( S M )( H 2 O) ( S H 2O )(M ) (4.4) , N - , K ex (N (N : )( H 2 O) H 2O )(C M ) (4.5) S M S , , , (4.5) : 73 ( N S M )(H 2O ) (1 N S M )(C M ) K ex (4.6) N S-M: K ex C M ( H 2 O) N S-M = K ex C M 1 ( H 2 O) (4.7) , N S-M = , K ex C M 1 K ex C M : (4.8) N - nM , n S, nM = . N = nM / n S, (4.8) K ex C M n S 1 K ex C M : (4.9) (4.9) m, : q bK ex C M 1 K ex C M (4.10), b- (n S/m), q – , M – ceq, Kex = KL. , . q + qKL eq = bKL , - (4.10) : (4.11) eq (4.11) eq; - : q eq = bKL – qKL (4.12) (4.2) , Kd , Kd = bKL – qKL (4.12) . (4.13) 74 , Kd q, . - KL, – bKL; , - . (1) 4. , , , , . - ( q ai i , 1997): ai p p bi (4.14) bi – i ( KL (4.5) – (4.13)), ). b – ( i S– eq , (4.14) q= Kex ap dS p b : (4.15), . , b ( , 1984, . - , 1997). , , . 75 , b KL. , - : b1 K L1C eq q 1 K L1Ceq 1 + b2 K L 2C eq (4.16), 1 K L 2C eq 2 - . Kd q, , , . - . , 4.3), , . , . , , - , – , - . . , , , - 76 , Fe Al , - . . , , . S-, H- - . : q = KFCeqN (4.17) q– , KF – , Ceq - , N – 0 1. KF (Sposito, 1980), - , N– , , N – 0 - 1 . : log q = log KF + NlogCeq , (4.18) N , log KF – . ( - ) , - 77 (Stumm, 1992). - : 1 exp( 2a ) (4.19), B[ A] B– , [A] – , , – – - , . , (4.6) - , =0 . , , > 0, - < 0. . 4.3 ( 7 15 ) 4. , . , ). . 4.3. , - (4.6) , . 4.3. , , , [ log , 2a ] ln 10 1 , . log C 1. - 78 : q (4.20) K p Ceq (4.2) Kd, (4.20) –K, K . « » , »( – «partition», K ). « « Brown, 1989). - » - » , , - (Sawhney, (4.20) N = 1. . 79 4.3. . , , - . , , . - - ( , 1990, Stevenson, 1994 .). , - . , , , - , . , , , . - , . - , , . 80 , . - , , . - , ( ) – . . - . , , Kp. , , Fe Al - . , (« . » ) , , . . 4.4 - , . , . - 81 Kp , , - KOC: K OC Kp (4.21) f OM fOM – . . 4.4. log , . .( Stumm, 1992) – (SW) (KOW), SW - 82 , KOW – . KOW - ( 8 17 ) Coctanol Cwater: K OW C oc tan ol C water (4.22) , KOW , . : log K OW d– . (4.23) a d log SW , . 4.5 187 - . . – , . 83 . ( 11 . 4.6, ) 23 ( 7 - ) 15 - , . . . 4 , 9 , Na+. . . , – , . , , , - . , . 4.7 , - 84 KOW, ( - ) . , . - , B, nc - (Stumm, 1992): Gads = –RTln B = 0,7 – 3,1nC ( ) (4.24) . 4.7 . . 4.7 . , , - , - , , . . , . . 4.7. , - , . - Gads, , ( . 4.7. ) 8. , Gads . , 85 , « » - , , - . 86 , , , L- . . 2, ( . 2.5). , (Essington, 2004). - , ) - : R-NH3+ (aq) + [Na+ - X(s)] [R-NH3+ - X(s)] +Na+(aq), R-NH3+ (aq) – , [Na+ , - - X(s)] – , (–X) , - . . 4.8 ( ), - . - (~ 100 , ). - , . . 87 , - . , , : RCOO-(aq) + [Cl(aq) + X(s)] [RCOO- + X(s)] +Cl- (aq), (s) . - , . Fe Al - . 2, , . : 88 R-NH20 (aq) + [ SOH2+(s)] [ SOH2+ R-COO-(aq) + [ SOH2+(s)] [ SOH2+ NH2-R](s) - OOC-R] (s) - , . , , -, - : R-COO-(aq) + [ SO[ SO- (H2O) M2+(H2O)n](s) (H2O) M2+ (H2O)n - OOC R](s) , , - , , - : R-COO-(aq) + [ SO[ SO- (H2O) (H2O) M2+ M2+(H2O)n](s) - OOC ( > Fe < R(H2O)n-1](s) ), - Al ( ). : R-COO-(aq) + [ SO + 2 ](s) [ SOOC-R](s) + , 2 (aq) Fe , , Al. - 89 . : , , , - , . . , . , , , , . - , . 2 ( . 2.3), . - , - . : - , (Pignatello, Xing, 1996, Xing, Pignatello, 1996, Xia, Pignatello, 2001). « » , – « - 90 » ( Xia, Pig- natello, 2001). , , . , » , , - . , , , , - . L- , , , ; , , . , , 5« ) « »( -1,3»( -2,6- , , ) , , « - 1,4% (Xing et al., 1996). » - , N 1. - . , - 91 . , ( . 4.9), - : S i bi C 11 b C i n S K pC i (4.25) S– . - « » , bi – S° - . , – . - . . 4.9 , (4.25) , . . ( ), , , , S, N , - . , . , - , , . 92 93 , - , , . 0, , – - – 0 . , - 0 = 1. ( 7,7%), ( ., 2003). ( 9 20, 22), 10 – 8 10 18, - 18 . . 4.10 , : L- 0 0,4-0,5 , . , S- . , , . - - , . , ( 0 , 2005): 1 Vs P P0 1 Vm C C 1P Vm C P0 P 1 P0 (4.26), 94 Vs – , , Vm – , - , - . 4.10 4.10. , (4.26) Vm . - . 0 . 4.10. : - , , , . - 95 , . , 0 = 0,4 , ( . 4.1.). : , . 4.11, . 4.1) 0. , . 4.1. ( ., 2003) Vm, Vs, 0 = 0,4) 7,0 8,2 7,9 11,0 6,7 24 76 62 52 47 54 29 13 13 4,4 8 11,4 13,2 12,8 17,5 10,0 35 48 43 1,4 5 1,8 1,7 2,8 22 8 0,9 0,8 2,4 1,8 13,1 5% - , , 5%, - 33% – – . , . - 96 97 , - , . , , S- ,( - ., 2008), . . 4.12 L- , , . - 98 , . 370 667 2278 , . - 2 . 2 - , ( - . 4.12). , . , , . « » . – ( - . 7,1%), - ( ., 2008). , , , - , , : , , ( . 4.13). - , - , . 99 L( . 4.14), - . , – , - , . , S- . - , , – . - 100 , , , - , S. L- , , - . , , , , . 4.4. , . , : ( ), ( ) - . 3, , 3.1 . . 4.15 , - , . – , . 101 , . - , , – . , (Sposito, 1989). 5. - , . : < < - . , - 102 , , , . , . . , , , . , . . - . , - Z/R , , . - 103 . , , . : Cs+ > Rb+ > K+ > Na+ > Li+ Ba2+ > Sr2+ > Ca2+ > Mg2+ Hg >2+ Cd2+ > Zn2+ , , - (Sposito, 1989): Cu2+ > Ni2+ > Co2+ > Fe2+ > Mn2+ , ( . « 2). » < 0,25 » , - . « - » 0,32, ( . . 4.16). 104 . 4.16 , , - , » . , . , - . « » « » ( .4.2). - 105 . 4.2. ( Sposito, 1989) Hg > Cu > Cd > Fe > Cr > Zn > Co > Mn Hg > Pb > Cu > Cd > Ni > Zn Ag > Hg > Cu > Cd > Cr > Ni > Pb > Co > Zn > Fe Hg > Cu > Cd > Zn > Pb . , , - . Fe 3) – Al ( . . ( 50 . 4.17). , – - , . . . Al(OH)2+ Al3+ , Al(OH)2+ . , Al3+; Al . , Fe , , - Al , - 106 . - , . , . 4.2 Cu . 4.1, , - , S- , - . , , Cu . - , . . - 107 , , , - . . , . , , , , - . Fe Al, . , - G0ads – G0 ( G0int) G0 - . - ( G0coul): G0ads = G0int + G0coul (4.27) G0coul , , : Kads = Kint Kcoul (4.28) : G0coul = F 0 (4.29) 108 F– , Z– , . 0 - , : G 0 coul RT Kcoul = exp exp F Z RT (4.30) 0 . - (Stumm, 1992) . , Fe , Al, - . S–OH, 2+ , - : S–OH2+ S–OH + S–OH S–O- + S–OH + Me+ S–OMe+ + S–O S–A HA + HA log KS1 (1) + log KS2 (2) H+ logKMS (3) log KLS (4) logKHA (5) + + H2O H+ + A2 . – KMS , S – surface – KLS ). . , S–OHTOT : - 109 S–OHTOT = [ S–OH2+] + [ S–OH] + [ S–O] +[ S–OMe+] (1) – (4): S–OHTOT = [ S OH ][ H ] [ S OH ]K 2 S [H ] K1 S S [ S OH ]K M [ Me 2 ] [H ] : S S OH TOT K2 [H ] 1 S [H ] K1 [ S OH ] S K M [ Me 2 ] [H ] (4.31) MeTOT : [MeTOT] = [Me2+] + S–OMe+] (3), [MeTOT ] [ Me 2 ] : [ Me 2 ][ S OH ]K M [H ] S : S K M [ S OH ] [H ] [MeTOT ] [Me 2 ] 1 (4.32) , , (4.31) – [Me2+] ( ) S-OH] ( (4.32) . - . ). , , : S–OHTOT = [ S–OH2+] + [ S–OH] + [ S–O] +[ S- ] ATOT = [HA] + [A-] + [ S- ] - 110 . 4.18 4.19 , : log K1S = – 4; log K1S = – 9; log KMS = –1; log KLS = 5, log KHA = –5; 10-4 10-7 ; - . . 4.18 , , , . ( 2 Pb , . 4.19) . 4 Al, , (Essington, 2004). - 111 4.5. , , , . , . , ( , 1941, ., 1963, 1964 -, .), - - . - , – ( - …, 2006). , , , , . , , ( …, 1999). . , - . . , 112 Al – Al (Robarge, 1999). , - (Nordstrom 1982, Nordstrom, 1986 .). Ball, , , . , - , , . - , . . , . 3.1 3 ). , : - , – , . , , ( . Cl- NO3-, - 2), - . Cl-, , « »– , , - . – - 113 . , - , . l- , - , . « » , « » - , - . , , , , , - . : Cl- < NO3- < SO42- << PO42- < SiO44- ( , 1997). , Cl- : - NO3- , PO42- ; < SiO44- ; , - . . Fe . . 4.20 3 Al (Rajan, 1978). Al - 114 (1) , - , ( ., – ) - Al. (2) . (3) , - Al . , - , , , - . , . . . . , , . Fe Al 4.3. (1830 8 ). . 4.3. ( , 0-10 Gillman, Fox, 1980) , 10,9 , 1830 14,4 7,5 1830 8,2 115 10-20 20-30 6,8 4,2 6,8 5,2 4,2 3,0 5,6 3,0 . , . . 116 4.21, , - , . , ( . . 4.22), . 117 . 4.22 F- , - ~ 4, – ~ 8-9. - . , > , - , ( - . 4.23). , - – . , Fe . , . Al, . , - . 4.24 - , - 118 ~ 4, - , , - Al. . , , – . - . , Fe Al, Fe Al, , . . 4.25 , - 119 , ( , 2006). , - . (Rajan, 1978) Al 800 Fe - . Al, - . < , . , – . – . , , . , 120 . , . (Singh, 1984) . , , ( , 2004). , , , ., - , - . . , . - , . . 4.26 - , P/S (Pigna, Violante, 2003). , . - . (Karltun, 1998) - . , <7 - 121 . . 122 5. 5.1. , . , . – - , . , , – , , , - . – - , . , – , . - . . , , - , . , - , , , , , . - - 123 , ( ) , - , - , . , (Sposito, 1984, 1989, Essington, 2004). - . . , - : F q q r2 (5.1) F– , q+ q- – , – – ,r . , – , . . , . ( – ): Li+(0,059) < Na+(0,102) < K+(0,138) < Rb+(0,152) < Cs+ (0,167) - 124 Mg2+(0,072) < Ca2+(0,100) < Sr2+(0,118) < Ba2+(0,135) ( , . ) - . , , 3 , K+ , . Cs+, - . , - . . , , . - (KS), - ( – ) - . , . , . . (1) , , – , , - 125 , - . (2) - , . , , . (3) , , ( ) - , . , - , . , Al3+, Al(OH)2+, Al(OH)2+ ( , , , 1947, Reuss, Johnson, 1986 .). . (4) - , . , - , , : Na2X(s) + a2+(aq) 2 NaX(s) + a2+(aq) CaX(s) + 2Na+(aq) CaX2(s) + 2Na+(aq) NaX(s) + 0,5 a2+(aq) – (5.2 ) (5.2 ) Ca0,5X(s) + Na+(aq) , (s) (5.2 ), (aq) . 126 , : KS (CaX )( Na ) 2 ( Na 2 X )(Ca 2 ) (5.3 ) KS (CaX 2 )( Na ) 2 ( Na 2 X ) 2 (Ca 2 ) (5.3 ) KS (CaX ) 0,5 ( Na ) ( NaX )(Ca 2 ) 0,5 (5.3 ), . . 5.4 ) . , , , , - , , . , . »( ., 1986), . . CaX(s) + 2Na+(aq) : Na2X(s) + a2+(aq) (5.4) : KS {Na 2 X }[Ca 2 ] {CaX }[ Na ]2 KS [ Na ]2 [Ca 2 ] {Na 2 X } {CaX } (5.5) - 127 . 1 , , , , , : {Na 2 } {CaX } KS (5.6) (5.5) KS [0,1]2 [0,1] {Na 2 } {CaX } : (5.7) , 2+ Na+ + . , - . » («ratio law»), (Schofield, 1947). - , , 2 , 3 , – - ( . , 1988). , . , Ca2+ , Na+ Mg2+ Na+, . , 2+ 2+ Na+, , ( ., 1980). , , 128 , (United States Salinity Laboratory…, 1954) (Reuss, Johnson, 1986). . , , - . . ( ) - . . . , ( , 1992, 1989, Sparks, 1999, Essington, 2004 , 1997, Sposito, 1984, .). , , . - – . . 5.2. , (1997) 4.2 . - 129 ( . 5.1.). , . (I) , . (II) , - , ; ). (III) - , - , , , . 3 (I), . . L- . - 1 K+ (I) Na+ Ca 2– Mg . . . - . Ca2+ . 5.1 Mg2+ . (I) . S. Ca2+ 1) ( ( (II) 2), NH4+ Na+ K+ - 3). . , - , , 130 L . , , - . 2+ Pb2+ 2) ( ( 1), ( 3). (II) . . , - . - , Fe Ca 1) 2) ( . - 2+ Pb2+ Cd ( (II) . 3). , S- - , Ca2+ . ( ( 1 2) Pb2+ - 3). - , . (III) . S- . . Ca2+ ( 1 Cd2+ Ca2+ . III ), ( Ca - Cu2+ 2 3 . III ) - Mg 1 3 . III ). , . - 131 (III), . , . Ca2+ Cu2+ a . , - , , ( , ) - . . , ( ) ( . ) , , . . - 132 – 450 , . Ca MgX(s) + a2+(aq) MgX(s) + C X(s) Mg. 2+ (5.8), (aq) ( (aq) ) - . , : KS = [ MgX ] [Ca 2 ] [CaX ] [ Mg 2 ] (5.9) ([Ca2+]/[Mg2+]) (5.9) , KS = 1 ([MgX]/[CaX]) , - 133 450 , . . . 5.1. - . - 2+ aX2(ex) + 2K+(aq) + (Essington, 2004). 2K(ex) + Ca2+(aq) ( (5.10) Ca ) ( ) 1, : ~ 2[ 2 ] [ K ] [Ca 2 ] E~K [K ] [ K ] [Ca 2 ] (5.11) (5.12), . (NCa) (N ) - 1, : N Ca [CaX 2 ] [ KX ] [CaX 2 ] (5.13) NK [ KX ] [ KX ] [CaX 2 ] (5.14), . 1, ( ) : ECa EK 2 N Ca 2 N Ca N K NK 2 N Ca NK (5.15) (5.16) 134 (KV), ( ). : KV = 1= 2 N Ca NK K 2 [ K ]2 (5.17), [Ca 2 ] – , . (5.15) (5.16) - : ECa 2 ECa N Ca (5.18) 2EK 1 EK NK (5.19) (5.18) - : 1 EK 1 EK N Ca (5.20) (5.20) , 2 4EK 2 1 EK [ K ]2 , [Ca 2 ] (5.17) - : 2 = (5.21) K Ca : 1 2 EK 4[Ca 2 ] 1 [ K ]2 (5.22) (5.22) 1 EK 2 1 : 4[Ca 2 ] (2[Ca 2 ] [ K ]) 2 [ K ] (2[Ca 2 ] [ K ]) 2 (5.11) (5.12) (5.23) (5.23) : 135 1 EK 2 1 ~ 4 E Ca 1 ~ 2 2 E K (2[Ca 2 ] [ K ]) (1 E~ K ) 2 2 E~ K ( 2[ Ca 2 ] [ K ]) (5.24) - 1 EK 2 NT = 2[Ca2+] + [K+], 4(1 E~K ) 1+ 2 2 E~ N K (5.24) : (5.25) T (5.25) : 0,5 EK 1 2 1 ~ NT E K 2 1 ~ EK (5.26) (5.26) , ) ( , 1 ( )– - , 5). - ( ), - ( ). NT, , . , . , - , , . , , - : 0,5 EK 1 2 3 ~ I EK 2 4 ~ EK (5.27) 1 . 5.2. , 136 , . – . 5.3 Mg - K . , ( , 5.27), . - . . 5.4 2+ (2004) I =0,05 . + 137 . 5.4. , – , 5.27 ( 5.3. ). - 138 , - , , - . - . - , ( , 1997, Sposito, 1989, Essington, 2004, .). 30- - (1932, 1934 .). , , – , - : KX(ex) + Na+(aq) Na(ex) + K+(aq) KX(ex) + 0,5Ca2+(aq) 0,5X(ex) (5.28) + K+(aq) (5.29) - : [ NaX ][ K ] [ KX ][ Na ] KG (5.30) [Ca 0,5 X ][ K ] KG (5.31) [ KX ][Ca 2 ]0, 5 , – . , . , - , - . 139 , , . - (N ) ( ). , , – - , - . : KG N Na ( K ) N K ( Na ) (5.32) KG ECa ( K ) E K (Ca 2 ) 0,5 (5.33) . (Ca2+ + Mg2+) Na+, , Ca2+ Mg2+ - . : Na+(aq) + (Ca + Mg)0,5X(ex) KG NaX(ex) + 0,5(Ca2+ + Mg2+) (aq) [ NaX ][Ca 2 Mg 2 ]0,5 [(Ca Mg ) X 0,5 ][ Na 2 ] (5.34) [NaX] : [(Ca + Mg0,5) X] sodium ratio), (5.33) ESR (exchangeable [Na+] : [Ca2+ + Mg2+]0,5 SAR (sodium adsorption ratio), Ca2+ KG ESR SAR Na+: (5.35) SAR ( 140 ), , Na . . 1934 . : 1 Z ( Mei i ) zi 1 Z Me j j zj 1 Z ( Me j j ) zj 1 Z Mei i zi (5.36), ( , – ; zi , zj – ) - ( - ). : 1 KN Ni 1 Zi j Ci (5.37), 1 Zj 1 Zj Nj – Ni Ci 1 Zi 1 N j Zj Ci Zi /100 , – , i j – . , K ( Na) : (K+) + Na+ KN (Na) + K+ (5.38) N Na a K N K a Na (5.39) , . , Ca2+ , Na+: 1 ( a 2 ) Na 2 ( Na ) 1 KN , N Na C 2 Ca 1 C Na N 2 Ca 1 2 Ca Na 1 2 Ca 2 (5.40) (5.41) , 141 (5.33) (5.41) , - , - . (Vanselow, 1932, . Essington, 2004) - . , Na : [ KX ]( Na ) [ NaX ]( K ) KV (5.42) . , , , - . , , KX(ex) . , CaX2(ex). - . , , - , , , . . - , - 142 , , + - , 2+ : 2KX(ex) + Ca(aq) = CaX2(ex) + 2K+ (5.43) : N Ca ( K ) 2 KV (5.44) 2 N K (Ca 2 ) NCa NK – , . . (Gaines, Thomas, 1953, . Essington, 2004) , , , . : K GT ECa ( K ) 2 E 2 K (Ca 2 ) (5.45) , ( - , 1) , - . - , , . . . - 143 (Rothmund und Kornfeld, 1918, , 1997) . , . , , : {2CaX 2 } {K }2 {KX }2 {2Ca} k (5.46), , . k - N, , ( . 4.2 - 4). - (Essington, 2004). : 1 K RK ( K ) 2 ECa (Ca 2 ) ( E 1 ) 2 (5.47) K 2 K RK ( K ) 2 ECa (Ca 2 ) ( E 1 ) 2 (5.48) K (5.46) (5.47), , - . (5.47) ( 2 ( ( 2 ) )/( 2 : )) E 2 Ca E 2K ) RK (5.49) , : . 144 2 log E Ca EK log K RK log (Ca 2 ) (K )2 (5.50) log log( 2+ )/( + 2 ). , , , , - ,– . 5.4. . , , - . - . , , , - . , . , - . , . - , - , . 145 . 5.5. , ( ). - , , , . , - . . 5.1 Ca 1 . Na , , - , - , Na , , Na ( 0,46 0,65). , - , ( , - 146 ) . . 5.1. Ca Na , Ca Na , 2004) ( 1 G Na 0,33 0,80 0,93 0,97 0,98 0,991 0,995 0,997 0,9991 0,9996 0,9997 Na 0,67 0,20 0,07 0,03 0,02 0,009 0,005 0,003 0,0009 0,0004 0,0003 -Na V - -Na Na 0,30 0,34 0,39 0,43 0,43 0,43 0,45 0,46 0,46 0,48 0,48 0,70 0,66 0,61 0,57 0,57 0,57 0,55 0,54 0,54 0,52 0,52 0,46 0,50 0,56 0,60 0,60 0,60 0,62 0,63 0,63 0,65 0,65 0,54 0,50 0,44 0,40 0,40 0,40 0,38 0,37 0,37 0,35 0,35 4,21 1,00 0,61 0,47 0,35 0,24 0,19 0,16 0,08 0,06 0,05 38,27 1,98 0,66 0,36 0,20 0,09 0,06 0,04 0,01 0,005 0,003 , , , , , 1997, Essington, 2004): f Ca N Ca 2 f K N 2K K ex fCa 2 K Ca 2 [K ] [Ca 2 ] (5.51), fK – , 2+ – , [K+] + , NCa NK – [Ca2+] – . , 1. K ex (5.44) f Ca KV f 2K : (5.52) : ln Kex = ln KV + ln fCa – 2 ln fK (5.53) 147 , , , ln Kex : dln Kex = 0 = d ln KV + d ln fCa – 2d ln fK (5.54) : d ln KV = 2d ln fK – d ln fCa (5.55) , , : ), . - : mK d K mCa d Ca (5.56), 0 mCa – mK , – , = Ca = : + RTln(KX) Ca (5.57) (5.58) + RTln(CaX2) (5.57) (5.58) (5.56) (mK + mCa), mK d[ mK mCa 0 K mK mK mCa mCa d[ mK mCa RT ln( KX )] - : 0 Ca RT ln(CaX 2 )] 0 (5.59) mCa mK mCa ; 0 K d d 0 Ca , . (5.59) RT : (5.60) NK dln (KX) + NCa dln(CaX2) = 0 (KX) = fKNK aX2) = fCaNCa, (5.60) : (5.61) NK dln (fKNK) + NCa dln(fCaNCa) = 0 , - 148 , = - dNCa. , (5.61) : (5.62) NK dlnfK + NCa dlnfCa = 0 (5.62) dlnfCa: NK d ln f K N Ca d ln f Ca . dNK (5.63) (5.55): 2d ln f K NK d ln f K N Ca d ln K V (5.64) (5.64) 2dlnfK: 2 N Ca d ln KV 2 N Ca N K 2d ln f K (5.65) , , , 2d ln f K - : (5.66) ECa d ln KV , . EK = 1 f K= 1(ln fK = 0); = 0. (5.66) : ECa ln f K 2 d ln f K 0 (5.67) ECa d ln K V 0 , : ECa 2 ln f K ECa ln KV (5.68) ln KV dECa 0 : 1 ln f Ca (1 ECa ) ln KV ln KV dECa ECa (5.69) 149 fK fCa (5.53), - : 1 ln K ex (5.70) ln K V dECa 0 (5.70) ln KV - ECa, . ln KV , ECa ln K V . : (5.71), b mECa m– , b– . (5.71) (5.70), - : 1 ln K ex (5.72) [b mECa ]dE Ca 0 xdx ( x 2 / 2) ln K ex bECa : m 2 E Ca 2 (5.71) 1 b 0 m 2 (5.73) (5.73) , ln Kex = ln KV (5.71) (5.68) = 0,5. (5.69), : ln f K m 2 E Ca 4 ln f Ca m (1 ECa ) 2 2 (5.74) m 2 E K 2 (5.75) (5.64)-(5.75) 2 5). . 150 (1) , 0,5. . , , 0,5, , , . - . Ca . 5.6 Cd ( , 1997). , 0,3, - . 1,35. (2) (5.73). (Essington, 2004). . 5.2 - , . . 5.7 , : ln K V 0,526 5,109 ECa (5.76), 151 0,526 5,109 b m (5.73), 2,03, . (5.71). , 0,132. ln Kex = – ( 0,099 . 5.2) , - 0,169. , 0,078 0,926. 152 (3). . . 5.8 ln KV , , , - . 1 ln K ex (5.70)), ln K V dECa , - 0 ln Kex ln KV = 0. , , ln Kex. . 5.3. , (–2,017). , . ln Kex, , 0,133, , . 153 : Gex 0 (5.77) 5,708 log K ex Gex KX 8,79 2 0,015 0,15. 7,21 0 154 (1) 4. . H2O(ad) – , M(aq) – , . (Essington, 2004): H2O(ad) + M(aq) = (ad) + 2 (liq) (1) ( - ): ( S M )( H 2 O) ( S H 2O )(M ) K ex (2) , N , K ex - : (N (N )( H 2 O) H 2O )(C M ) S M S (3) , , , 1, K ex K ex (3) (N S M ) (1 N S M )(C M ) KN S M CM N K ex (1 N K ex C M S M N N S-M , : S M )C M K ex C M N S M N N (4) S M (5) S M S-M: K ex C M 1 K ex C M = (6) N nM, n S, (6) N S-M = nM K ex C M = nS 1 K ex C M n S, . N = nM / : (7) 155 , nM = K ex C M n S 1 K ex C M (8) (8) m, : q bK ex C M 1 K ex C M (9) q – , b = n S/m, . , M – - ceq, Kex = KL. , . , q + qKL (9) eq = bKL : (10) eq (10) eq; - : q = bKL – qKL C eq (11) (4.2) Kd , , (4.12) . Kd = bKL – qKL (12) Kd q, . KL, bKL; – , - . (2) 4. Pb2+ Al(OH)3 . Pb2+ Al(OH)3 1,4·10-5 Pb, 4 0,1 7 NaNO3 , , Al ( . 156 2, . 2.3). 2 8 = 10-8,87. -2 , , 3,5 2 0,1 3,33 . 30 , , . , 1,55·10-4 - . : ST n S * 1018 * a * S A 8 * 10 18 * 3,33 * 3,5 = AN 6,022 * 10 23 1,55 * 10 4 (1)(4.33) ST – , nS – 2 1 ,a– , SA 2 – , 1018 – - , AN – . , , Pb , - . : 0 ,5 AlOH 2 K1, 2 10 AlOH 0,5 H AlOH 0, 5 ( H ) 0,5 AlOH 2 8,87 (2)(4,34) , < 8,87 . - (+0,5) - : , 0,5 - Al, ( . 2 Al . 3:6 - = 0,5). , (+2,5); (– 2), (+0,5). Pb AlOH K Pb 0 ,5 Pb 2 H 2O AlOPbOH 0, 5 ( H ) 2 AlOH 0,5 Pb 2 AlOPbOH : 0,5 2H (3)(4.35) (4)(4.36) 157 , , [ AlOPbOH-0,5] [ AlOPbOH -0,5 K PbOH Pb(OH)+ + H+ 2O 10 . Pb2+: , Pb2+ + ] (5)(4.37) ( PbOH )( H ) ( Pb 2 ) 7,7 (6)(4.38) , Pb PbT ST - : PbT = [Pb2+] + [Pb(OH)+] + [ AlOPbOH-0,5] = 1,4·10-5 M (7)(4.39) ST = [ AlOH2+0,5] + [AlOH2-0,5] + [ AlOPbOH-0,5] = 1,55·10-4 M (8)(4.40) (1) – (8) - , , - . (4), (5) AlOH 2 0 ,5 108,87 [ AlOPbOH ( PbOH ) (6) 0 ,5 10 AlOH : 0 ,5 (9)(4.41) (H ) K Pb [ AlOH 0, 5 ] Pb 2 (H ) 2 ] (10)(4.42) 7,7 ( Pb 2 ) (H ) (11)(4.43) Pb - : PbT [ Pb 2 ] 10 7,7 [ Pb 2 ] (H ) K Pb [ ALOH 0, 5 ][ Pb 2 ] (H ) 2 (12)(4.44) (8) , . . (8) : ST = [ AlOH2+0,5] + [AlOH-0,5] AlOH2+0,5] ST = 108,87 AlOH-0,5](H+) + [ AlOH-0,5] (13) (4.45) (9), : (14)(4.46) : [AlOH-0,5] = S [1 10 T 8,87 ( H )] (15) (4.47) 158 [AlOH-0,5] Pb, PbT [ Pb 2 ] 10 (15) 0, 5 ] K Pb [ Pb 2 ]ST [ Pb 2 ] (H ) ( H ) 2 [1 10 8,87 ( H )] 7,7 0 ,5 (16)(4.48) : K Pb [ Pb 2 ]ST ( H ) 2 [1 108,87 ( H )] (16) [ AlOPbOH PbT - : (10) (15), [ AlOPbOH (12) (17) ] 2 {( H ) [1 10 (17)(4.49) 8,87 : K Pb ST ( H )] 10 7, 7 ( H )[1 10 8,87 ( H )] K Pb ST } (18) (4.50) (16) KPb b {[ AlOPbOH-0,5]/PbT} ( . . 4.19), (18), > - 50. , , (4.28). - 159 (1) 5 ( + ) 2+ ( ) (Essington, 2004) + 2+ . : 2KX (ex) + Ca2+(aq) CaX2(ex) + 2K+(aq) ( Ca) ( ) 1, - : ~ 2[ 2 ] [ K ] [Ca 2 ] (1) E~K [K ] [ K ] [Ca 2 ] (2) . (NCa) 1, (N ) : N Ca [CaX 2 ] [ KX ] [CaX 2 ] (3) NK [ KX ] [ KX ] [CaX 2 ] (4) . 1, ( ) - , 2 : ECa EK 2 N Ca 2 N Ca N K NK 2 N Ca NK (5) (6) 160 (KV), ( - ). , : 2 N Ca KV = 1= NK K 2 [ K ]2 (7) [Ca 2 ] – , . (5) 2 N Ca E Ca 2 N Ca 2 N Ca NK E Ca ECa N Ca 2 N Ca ; E Ca 2 N Ca N Ca ECa 2 ECa E Ca N Ca 2 N Ca 2 N Ca (1 N Ca ) N Ca (2 : 2 N Ca 1 N Ca ECa ) (8) NK EK (6) NK = 2E K N K EK 2E K N K (1 E K ) NK 2(1 N K ) Nk NK 2 NK NK 2EK 1 EK NK (9) (8) : N Ca 1 EK ECa = 2 ECa 2 (1 E K ) N Ca 1 EK 1 EK (10) (9) , KV = 1= (10) (7) - : N Ca NK 1 EK 1 EK 2 K 2 [ K ]2 [Ca 2 ] : (1 E K ) (1 E K ) 2 (1 E K ) (2 E K ) 2 2 K [K ]2 1 E K = 2 [Ca 2 ] 4E K 2 [ K ]2 , [Ca 2 ] 2 = K Ca 161 [ K ]2 [Ca 2 ] 4E K 2 1 EK (11) 2 : [ K ]2 4 2 E K [Ca 2 ] 1 EK 2 2 4 E K [Ca 2 ] [K ] 4[Ca 2 ] [K ] 1 2 EK 2 (1 E K ) 1 EK 2 1 4[Ca 2 ] [ K ]2 1 (12) (12) : 1 EK 2 1 EK 2 4[Ca 2 ] (2[Ca 2 ] [ K ]) 2 [ K ] 2 (2[Ca 2 ] [ K ]) 2 1 (1) ~ 4 E Ca (2) (13) 1 ~ 2 2 E K (2[Ca 2 ] [ K ]) 1 (13) : ~ 2(1 EK ) ~ 2 EK (2[Ca 2 ] [ K ]) (14) - NT = 2[Ca2+] + [K+], 1 4(1 E~K ) 1+ 2 2 2 E~K N T EK (5.24) : (15) (15) 1 EK 2 1+ 4(1 E~K ) 4 = 1+= 1+ ~ 2 2 ~ 2 EK NT 2E K N T : ~ 4E K ~ 2 2 EK NT 0 ,5 EK 2 1 ~ NT EK 2 1 1 ~ EK (16) (16) , ( ) )– . ( ( ) ), , , , 162 . . NT, , . , . , - , - , . , , : 0,5 EK 1 2 3 ~ I EK 2 4 ~ EK (17) 1 (2) 5. , (1997) . (Essington, 2004) . - : 2+ 2KX (ex) + Ca (aq) CaX2(ex) + 2K+(aq) , - : K ex fCa f Ca N Ca 2 f K N 2K 2 K Ca 2 [K ] [Ca 2 ] (1) fK – , 2+ [K+] + , NCa [Ca2+] – – NK – , . 1. , : K ex f Ca KV f 2K (2) - 163 : ln Kex = ln KV + ln fCa – 2 ln fK (3) , , ln Kex , : dln Kex = 0 = d ln KV + d ln fCa – 2d ln fK (4) : d ln KV = 2d ln fK – d ln f Ca (5) , , : ( ), . : mK d mK mCa d K 0 Ca mCa – (6) , – , = Ca : + RTln(KX) = Ca (7) + RTln(CaX2) (8) (7) (mK + mCa), mK d[ mK mCa 0 K mK mK mCa (8) (6) : RT ln( KX )] mCa d[ mK mCa 0 Ca RT ln(CaX 2 )] 0 (9) mCa mK mCa ; d 0 K d 0 , Ca - . (9) RT - : NK dln (KX) + NCa dln(CaX2) = 0 (KX) = fKNK (10) aX2) = fCaNCa, (10) NK dln (fKNK) + NCa dln(fCaNCa) = 0 : (11) , - , , : . dNK = - dNCa. (11) 164 NK dlnfK + NCa dlnfCa = 0 (12) (12) dlnfCa: NK d ln f K N Ca d ln f Ca (13) (5): 2d ln f K d ln K V 2d ln f K d ln f K 2 NK d ln f K N Ca (14) (14) 2dlnfK: NK d ln f K N Ca d ln K V ; d ln f K 2 NK d ln K v ; d ln f K N Ca d ln K V d ln K V ; N Ca 2 NK 2 N Ca d ln KV 2 N Ca N K 2d ln f K (15) , , , 2d ln f K NK N Ca - : ECa d ln KV (16) (Gains,Thomas,1953) , . EK = 1 f K = 1(ln fK = 0); = 0. (16) - : ECa ln f K 2 d ln f K 0 (17) ECa d ln K V 0 » ( udv uv « vdu ), : ECa 2 ln f K ECa ln KV (18) ln KV dECa 0 . NCa, (13) ( , (8) , d ln fK (16): 1 5) 165 (1 N Ca ) d ln f K N Ca NK d ln f K N Ca d ln f Ca 1 (2 2 E ca )(2 E Ca ) 1 ECa d ln K V 2 E Ca (2 ECa ) E Ca 2 E Ca d ln f K = ECa 2 ECa (1 E ca )d ln K V : dlnfCa = (1– ECa ) lnKV : 1 ln f Ca (1 ECa ) ln KV ln KV dECa (19) ECa fK fCa (3), : ln Kex = ln KV + ln fCa – 2 ln fK ECa 1 ln K ex ln K V (1 E Ca ) ln K V ln K V dE Ca – E Ca ln K V ln K V dE Ca ECa 0 ECa 1 ln K ex ln K V ln K V ln K V dE Ca – E Ca ln K V ln K V ECa ECa ln K V dE Ca 0 1 ln K ex (20) ln K V dECa 0 (20) ECa, ln KV . ln KV , . ln K V ECa : b mECa (21) m– , b– . (21) (20), : 1 ln K ex (22) [b mECa ]dE Ca 0 xdx ( x 2 / 2) , (22) : 166 1 ln K ex 1 [b mE Ca ]dE Ca (b mE Ca ) E Ca E Ca d (b 0 mE Ca ) 0 1 ln K ex bE Ca 2 mE Ca E Ca dE ca bE Ca mE Ca mE Ca 2 2 0 0 , ln K ex (21) 0 1 , 1 m 2 b 0 (23) (23) , ln Kex = ln KV (21) (18) (( udv uv vdu ) = 0,5. (19), : ECa ln KV dECa = E Ca (b ECa ln KV - xdx ( x 2 / 2) ECa 2 ln f K 1 : m 2 E Ca 2 bE Ca 2 mE Ca ) (b 0 mE Ca )dE Ca 0 E 2 ln f K ECa (b mECa ) ECa (b mE Ca ) E Ca d (b mE Ca ) 0 mECa 2 2 ln f K ln f K 2 m 2 E Ca 4 (24) 1 ln f Ca (1 ECa ) ln KV ln KV dECa ECa 1 ln f Ca ( E Ca 1)(b mE Ca ) (b mECa )dEca ECa ln f Ca bECa bE Ca b m (E 2 2 Ca ln f Ca b mE Ca mECa 2 2 E Ca 2 mECa mECa b bE Ca m 2 bECa E m Ca 2 2 mECa 2 2 1 ECa mECa 2 2 mECa m 2 1) m (1 ECa ) 2 2 m 2 E K 2 (25) 167 . . ., 1980 . . ( ). . . ., 2006, -25 . . - . I. . , 1947, . 9, ., 2, . 81-96. . . . II. , 1947, . 9, 3, . 161-168. ., . - . III. . , 1947, . 9, . », 1988, -375 5, . 315-324 . ., ., ., ., . 2003 ., 1 ., ., - . 17 - . 19-25 . . ., . - . . 317-327 3 . 2008 ., « . ., 1998, – 217 . – . ., 2005, –110 As, Pb ). . Zn 2007 . 6, , 1998, –272 . ( . 681-691 . . - . 1932, . . . . EXAFS- ., 2003 , – 238 . 11-12, 1934, 2, . 18-32 . 190-201 168 . . 302 . . ., 1955, . . . . ., 1963, – 302 , . . 250-384 . . . . . . , ., 1974, – . . . , ., 1978, – . « » . 293 . . 1976 – 128 ., ., ., « . ., . . - ». 1987 . . . . , ., 2005, », 1990, – 260 . », , . ., 1983, –219 . . ., « » 2006, – 855 . . . . ., .« ., , 1984, », . . , 1992, –224 , . . . . 54-62 ., 1982, –207 . - . ., . . , 1963 N3, ., . ., . . . . .« I. .: . 239-257 ., . ., . - . 27-35 ., . . . . , 1964, . 45-61 . ,« ., », 1986, –281 . ( ., . 1999 –320 . . . ). - 169 . 2004, -25 . . . . . . , ., 196 . . « 1978, » ., « », . 279-284 ., ., ., . , 1972 1 . . 107-114 ., ., ., , . . 1972 5 . 107- 120 . . , 1981 . . 2004 . . 1067-1076 ., 1934, – 123 ., . 9 - ., , 1980 -272 . ., . . . ., . - . ., , 1986, –231 ., . . . , 1981, –52 ., ., . ., 17 2008 . . . . . ., . . 14-19 2 ., 1974, –332 . 180-190 . . . ., ., . . ,« 1 ., 1934 . 1990, –323 - . . . », 1990, – 188 . . , ., 1992. –400 . . . , 1997, –165 170 . . . . . . . , ., 1990, -25 .« . », ., 1989, –190 . , 19787, –142 . , . . . - ., 1957 . . - .: .« » ., « », 1989, . . . . , 1941, N3, : 1988 . . . ., ., 2005, -336 7 . 54-58 . . , . 103-128 ., 2005, –300 ., . . . . . . . , ., 1937 . .« » . 2, , 1990 . .« » . 5, , 1998 . . ( ) , ., « 1947, 185 », 1978, –304 . . . . . . - . . , 1991 2 ., 1991 , –48 . . . . . . 65-81 . , ., 2005, – 431 . Courchesne F. and Hendershot W.H. Sulfate retention in some podzolic soils of the Southern Laurentias, Quebec. Canadian Journal of Soil Science, 1989 v. 69, pp. 337-350 Dixon J.B., Weed S.B. (Ed) Minerals in Soil Environments. Madison Wisconsin USA 1989 – 1244 p. Dixon J.B., Schulze D.G. (Ed.) Soil Mineralogy with Environmental Application. Madison, Wisconsin, USA, 2002 – 866 p. 171 Edwards P.J. Sulfur Cycling, Retention and Mobility in Soils: a Review. USDA, Forest Service. Northeastern Research Station General Technical Report NE-250, 1998, – 18p Essington M.E. Soil and Water Chemistry. CRC Press. Boca Raton London New York Washington D.C. 2004, – 534 p. Gaines G.L., and Thomas H.C. Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. Journ. Chem. Phys. 1953 V. 21 pp. 714-718 Geelhoed J.S., Hiemstra T., and Van Riemsdijk W. Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption. Geochimica et Cosmochimica Acta 1997, v. 61, N12, pp. 3773-3797 Giles C.H., Smith D., Huitson A. A general treatment and classification of the solute adsorption isotherm. Colloid Interface Science. 1974 v. 47 pp. 755-765 Gillman G.P., Fox R.L. Increase in the Cation Exchange Capacity Of Variable Charge Soils Following Superphosphate Application. Soil Science Society of America Journal 1980 v. 44 N 5, pp. 934-938 Hayes M.S.B. Influence of the acid/base status on the formation and interaction of acids and bases in soils. Trans. 13 Congr. Int. Soc. Soil Sci., Hamburg, 13-20 August, 1986, v.5, pp. 93-109, Hamburg, 1987 Israelashvili J.N. Intermolecular and Surface Forces. London. Academic Press. 1985 Jackson M.L. Clay transformation in soil Genesis during the Quaternary. Soil Science. 1965 v. 99 N 1, pp. 15-22. Jackson M.L. Weathering of primary and secondary minerals in soils. In: 9-th International Congress of Soil Science Transactions, v. 4 Adelaida 1968 pp. 281-292 Karltun E. Modelling SO42- surface complexation on variable charge minerals. II. Competition between SO42-, oxalate and fulvate. European Journal of Soil Science, 1998, v.49 pp. 113-120 Nordstrom D.K., and Ball J.W. The geochemical behavior of aluminum in acidified surface waters. Science 1986 v. 232 pp. 54-56 Nordstrom D.K., The effect of sulfate on aluminum concentrations in natural waters: Some stability relations in the system Al2O3-SO3- H2O at 298 K. Geochimica et Cocmochimica Acta 1982 v. 56 pp. 681-692 Parks G.A. Surface Energy and Adsorption at Mineral/Water Interface: An Introduction. In: M.F. Hochella and A.F.White, Eds., Mineral-Water Interface Geochemistry, Mineralogical Society of America, 1990, pp. 133-175 Parr R.G. and Pearson R.G. Absolute hardness: companion parameter to absolute electronegativity. J. Amer. Chem. Soc. v.105, pp. 7512-7516, 1983 Pearson R.G. Hard and Soft Acids and Bases. J. Amer. Chem. Soc. v.85, pp. 3533-3539 1963 172 Pearson R.G. Hard and Soft Acids and Bases, HSAB. I. Fundamental Principles. J. Chem. Educ., v.45, pp. 581-587, 1968 Perdue E.M. Acidic functional groups of humic substances. In: Humic Substances in Soil, Sediments and Water. Ed. by Aiken G.R. et al. N.Y. John Wiley, 1985, pp. 493-526 Pigna M., Violante A. Adsorption of Sulfate and Phoshate on Andisols. Communications in Soil Science and Plant Nutrition. 2003 v. 34 Nos. 15&16, pp. 2099-2013 Pignatello J.J., Xing B. Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles. Environmental Science and Technology 1996, v. 30 N1 Rajan S.S.S. Sulfate adsorbed on hydrous alumina, ligands displayced and changes in surface charge Soil Science Society of America Journal. 1978, v. 42 N 1, pp. 39-44 Reuss J.O., Johnson D.W. Acid deposition and Acidifications of Soils and Waters. Ecological Studies. V. 59, 1986, Springer Verlag, New York, –114 p. Robarge W.P. Precipitation/Dissolutions Reactions in Soils. In Sparks Donald L. (Ed.) Soil Physical Chemistry. CRC Press Boca Raton Boston London New York Washington, DC, 1998 pp. 193-238 Rothmund V., Kornfeld G. Der Basenaustausch in Permutit. Zeitschrift Anorg. und Allgem. Chem. 1918 Bd. 103, N1-4, pp. 129-133 Sawhney B.L., Brown K. (Eds.) Reactions and Movement of organic Chemicals in Soils. Soil Science Society of America, Special Publications. Madison WI, 1989 Sahai N. and Sverjenskiy D.A. Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data. Geochim. Cosmochim. Acta 1997 v.61, pp. 2801-2826 Schnitzer M. Humic Substances, chemistry and reactions. In: “Soil Organic Matter Studies”, Amsterdam, 1978, pp.1 Schofield R.K. A ratio low governing the equilibrium of cations in solutions. Proc. Eleventh Int. Congr. Pure and Appl. Chemistry. London, 1947, v.3, p. 257-261 Senesi N., Loffredo E. The Chemistry of Soil Organic Matter. In: Sparks Donald L. (Ed.) Soil Physical Chemistry. CRC Press Boca Raton Boston London New York Washington, DC, 1998 pp. 239-271 Singh B.R. 1984 Sulfate Sorption by acid forest soils. 2. Sulfate adsorption isotherms with and without organic matter and oxides of aluminum and iron. Soil Sci. 1984, v. 138, 4, pp. 294-297 Sparks D. Kinetics of Soil Chemical Processes. Academic Press. San Diego, 1989, – 210 pp. Sparks D. L. Soil Physical Chemistry. Second Edition. CRC Press. Boca Raton Boston London New York Washington, D.C. 1999, – 410 p. 173 Sposito G. Derivation of the Freundlich Equation for Ion Exchange Reactions in Soils. Soil Sci. Soc. Amer. Journal v. 44 N6, 1980, pp. 652-654 Sposito G. The Operational Definition of the Zero Point of Charge in Soils. Soil Sci. Soc. Amer. Journal v. 45 N2, 1981, pp. 292–297 Sposito G. The Surface Chemistry of Soils. Oxford University Press, New York, Clarendon Press Oxford 1984, –228 p. Sposito G. The Chemistry of Soils. New York Oxford, Oxford University Press, 1989, – 279 p. Sposito G. The Environmental Chemistry of Aluminum. (Ed.) CRC Press, Inc. Boca Raton, 1996 Sposito G., Holtsclaw K.M. Titration Studies on the Polynuclear Poliacidic Nature of Fulvic Acid Extracted from Sewage Sludge Soil Mixtures. Soil Sci. Soc. Amer. Journal 1977 v. 41, N2 pp. 330-336. Stevenson F.J. Humus Chemistry, Genesis, Composition, Reaction. N.Y. John Wiley, 1994, –444 p. Stumm W. Chemistry of the Solid-Water Interface. John Wiley & Sons, Inc. New York / Chichester / Brisbane / Toronto / Singapore 1992, – 428 p. Stumm W., Morgan J.J. Aquatic Chemistry. 2-nd Ed. John Wiley & Sons, Inc. New York 1981, -796 p. Sutton S.R., Rivers M.L. Hard X-ray synchrotron microprobe techiques and applications. In: Synchrotron X-ray methods in clay science. Eds. Schulse D., Bertch P., Stucki J. Clay Min. Soc. Amer. 1999 Sverjenskiy D.A. and Sahai N. Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water. Geochimica et Cosmochimica Acta 1996, v. 60, pp. 3773-3797 Teo B.K. EXAFS: Basic Principles and Data Analysis. Inorganic Chemistry Concepts 9. Springer-Verlag. Berlin, 1986 Tessens E., Zauyah S. Positive Permanent Charge in Oxisols. Soil Sc. Soc. Amer. Journal 1982, v.46, N 5, pp. 1103-1106 United States Salinity Laboratory Stuff. Diagnosis and improvement of saline and sodic soils. L.A. Richards (Ed.). USDA Agric. Handbook No. 60 Washington D.C. 1954 Vanselow A.P. Equilibria of the base-exchange reactions of bentonites, permutites, soil colloids and zeolites. Soil Science 1932 v. 33, N1, pp. 95-113 Xia G., Pignatello J.J. Detailed Sorption Isotherms of Polar and Apolar Compounds in a High-Organic Soils. Environmental Science and Technology 1996, v. 35 N1, pp. 84-94 174 Xing B., Pignatello J.J., Gigliotti B. Competitive Sorption between Atrazine and Other Organic Compounds in Soils and Model Sorbents. Environmental Science and Technology 1996, v. 30 N8, pp. 2432-2440