Сорбционные свойства почв

реклама
1
.,
.
.
.
2009
2
:
020700
.
,
020701
–«
»
.,
.
.
.
.–
:
, 2009. –
:
172 .
,
,
-
,
;
,
.
.
.,
2009
.,
3
.
………………………………………………………..
5
.
…………………………………………………………….
7
1.
1.1.
1.2.
…………………………………………………..
,
…………………………………….
7
14
………………………………………………...
16
1.3.
2.
2.1.
2.2.
.
……………………………………………………
21
………………………………..
22
…………………………………………..
24
…………………………………………..
32
……………………………………………
39
……………………….
40
.
…………………………………
43
………………………………………….
51
………………………………
56
………………………………
64
2.3.
3.
3.1.
3.2.
3.3.
3.4.
4.
4.1.
4.2.
……………………………………….
…………………
64
68
4
4.3.
4.4.
4.5.
5.
5.1.
5.2.
5.3.
………………
…………………………………….
……………………………………..
79
100
111
………………………………..
122
……………………………………….
………………………………………..
122
127
………………………
136
5.4.
.
…………………….
142
………………………………………………….
152
……………………………..
165
5
-
.
,
(
, 1990)
, 2005,
,
«…
-
,
«
»
.
(1988)
,
,
,
-
…».
,
,
,
,
-
,
.
-
,
,
.
,
.
XX-
,
,
-
.
6
,
-
,
-
,
, Al, Mn,
-
,
.
,
.
-
.
,
.
,
.
7
1.
.
1.1.
.
(IV
.)
-
.
(I
.):
,
,
».
XV
–
,
(
, 1981).
XIX
,
. (1)
, Na+, NH4+
+
Cl-, NO3-, SO42-; (3)
; (2)
; (4)
; (5)
; (6)
; (7)
; (8)
.
-
8
,
–
-
,
.
1859
«
»(
.
, 1997).
-
Ca2+, Mg2+, K+, Na+.
,
–
.
XX
-
,
(
.
, 1992).
–
,
1922
«
».
(
-
5
, 1955).
–
,
.
,
-
.
,
,
.
.
9
,
,
.
.
.
,
.
-
–
)
,
(
,
-
,
.
,
-
.
,
,
–
-
.
,
–
,
,
.
.
,
,
.
30-40
,
,
10
,
-
.
-
.
-
.
Ca
Na
-
.
1932
.
40-50
.
-
,
.
1947 .
«
»,
.
-
,
,
-
Al3+,
.
50,
.
-
11
.
(
, 1989).
1957 .
,
.
XXI-
.
,
,
,
,
,
.
,
,
,
,
.
-
,
.
,
,
,
,
-
,
,
-
.
,
.
,
,
-
12
(1937),
(1963),
(1980)
(1974, 1990
.).
(1963, 1974, 1978),
1978
.),
(1976
(1972,
.),
(Schnitzer, 1978),
(1991
.).
(Stevenson, 1994)
-
.
(Jackson, 1965, 1968
.).
2002
«Soil Mineralogy with Environmental Application»
(Dixon, Schultze, 2002).
,
.
–
,
-
,
.
(Sposito, 1984, 1989, 1996
.)
-
,
–
-
,
.
,
,
,
13
,
,
-
.
(Sparks, 1989, 1999
.)
,
-
.
-
–
–
,
,
,
-
.
,
.
(Stumm, Morgan, 1981, Stumm, 1992
.)
.
-
.
-
,
–
.
,
.
,
,
,
.
,
GEOCHEM, MINTEQ
,
-
14
,
.
,
,
.
,
-
,
-
,
(
., 1981)
(1990).
-
.
1.2.
,
.
,
30-
,
-
,
(
.
,
.
3
4).
,
,
,
,
,
.
(
)
-
,
,
.
-
,
.
,
,
15
,
.
< 1
<2
,
(
(
-
, 2005).
)
–
,
.
Ca2+, Mg2+, Na+, K+.
,
,
H+, Al3+,
,
-
,
-
Mn2+.
Al
)
.
,
-
,
,
,
.
,
-
,
,
-
.
,
,
-
.
,
.
(
, 1998).
.
,
6,5 (
, 1998).
-
2+
,
BaCl2,
6,5.
-
,
,
,
,
.
.,
-
16
(
)
-
,
,
-
.
,
BaCl2,
,
-
.
.
,
,
-
6,5
8,2
.
,
8,2,
,
6,5,
,
.
-
1,7.
,
,
,
,
,
-
,
.
-
,
.
8,2.
,
3
.
1.3.
,
.
,
17
,
:
2,5
40-120
150-370
/100
8(
/100
, 1992).
,
,
,
,
-
.
,
,
Al,
-
. Al
2+
,
BaCl2.
,
-
:
–
120-180
80-120
/100 ,
–
/100
-
.
-
–
/100 (
Fe
, 1978,
., 2005).
Al,
,
,
Fe
-
Al
,
,
.
Fe
Al
,
,
-
.
,
-
.
18
1.1.
: «
…», 1978,
…», 1978, «
1989,
(
…», 1989, «
, 1990,
, 1983,
,
., 1986)
,
,
,
-
,
-
,
,
,
,
,
-
,
-
,
,
AO
(6-12)
ABg (12-17)
Ghx1 (18-28)
Ghx2 (29-39)
BCgh (45-55)
(0-4)
(4-6)
(6-14)
(14-25)
’ (25-36)
1
(40-50)
2t
(65-75)
3
(90-100)
(130-140)
1
(0-2)
2
(2-3)
(3-7)
f1 (7-15)
f2 (30-40)
(90-100)
(0-2)
(2-7)
1
(7-14)
(16-24)
1
(45-67)
(0-20)
1
(32-42)
(54-64)
2
(68-78)
3
(95-105)
(150-160)
1
(0-22)
1’ (22-50)
(80-104)
(100-130)
(0-10)
(20-30)
(40-50)
(0-10)
1t
(11-28)
(35-45)
(90-100)
,
46,1
13,0
11,2
10,4
12,09
35,6
10,0
5,5
6,5
14,6
23,7
26,6
27,0
27,8
64,71
66,31
7,06
6,03
5,60
4,68
154,7
50,9
39,7
25,2
34,8
34,0
27,0
22,0
18,0
19,0
18,0
53,5
54,4
52,3
49,5
17,4
15,7
11,4
19,5
44,23
38,41
24,51
19
. 1.1,
-
,
.
-
.
. 1.1
,
,
–
»
-
.
,
«
»
,
-
.
-
.
,
-
,
-
,
.
,
ABg
Ghx2
-
,
-
.
,
2t.
-
.
,
,
1,
,
1.
-
.
-
20
1t
,
.
-
,
.
-
21
2.
.
-
,
,
-
.
,
–
,
(
)
,
(
,
,
-
).
:
-
–
,
.
: (1)
–
.
-
, (2)
Fe, Al
Mn, (3)
-
(4)
-
.
,
(< 1
)
(< 0,1
,
)
.
-
,
-
,
,
,
.
,
,
.
.
,
-
22
.
,
,
,
,
.
2.1.
»
«
»
.
–
-
,
.
–
,
,
.
-
.
.
.
(Pearson, 1963,
1968)
«
(
). «
»
»
«
»
–
,
,
-
,
.«
–
,
,
»
-
.
»
,
-
–
,
-
23
,
.«
–
»
-
,
-
,
,
-
.
2.1
«
,
», «
»
-
(
, . 2, 1990).
. 2.1. «
«
», «
»
»
2, 1990
»
Essington, 2004)
»
»
H+, Li+, Na+, K+, Rb+, Cs+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, CH3Hg+, Cu+, Ag+, Au+, Hg+,
Be2+, Mg2+, Ca2+, Sr2+, Mn2+, Pb2+, Sn2+, NO+, R3C+, C6H5+ Pt2+, Pt4+, BH3, Ga(CH3)3, R+,
Mn7+, Al3+, Fe3+, Ga3+, Cr3+,
RSe+, RTe+, RO+, I2, Br2, ICN,
3+
4+
4+
4+
4+
Ln , Si , Ti , Zr , Th ,
,
,
BF3, AlCl3, AlH3, C6H5+,
RCO+, CO2
F-, OH-, H2O, NH3, RNH2, C6H5NH2, C5H5N, N3, NO2-, C2H4, C6H6, R3P, (RO3)P,
R3As, RSH, S2O32-, S2-, I-, RS,
ROH, RO, R2O, CH3COO-, SO32-, BrSCN, R
CO32-, NO3-, PO43-, SO42-, O2-,
Cl
«
2
.
»
«
»
-
(Pearson, 1963, 1968)
(Parr and Pearson, 1983)
«
»
-
:
= ½( IA -
),
(2.1)
IA –
,
–
.
(Misono et al., 1967)
»
«
:
S,M
=(
2
M
+
M
+ 2XM In0,5)/10
M–
, In –
,
(2.2)
.
-
24
,
–
.
-
(
)
.
-
.
(Ca2+, Mg2+, K+,
Na+, Al3+
)
3,
23 ,
24 ,
NO3-, SO42-,
(
2
4
–
2
,
).
,
-
.
,
,
,
.
,
.
.
– F-,
.
2.2.
–
.
,
,
.
,
-
.
-
25
–
Al
(
Si
)
Al
Mg
.
,
-
,
(–).
1
0,8-0,9
, 0,7-0,6
0,3-0,5
(
., 2005, Dixon, Weed, 1989, Dixon Schulze,
2002).
18
,
(
. 2.1. ).
,
,
-
,
.
3
. 2.1. ).
,
,
,
,
.
.
( )
,
.
-
.
26
,
.
-
,
,
(1
0,5
-
).
,
,
,
-
.
,
,
(
. 2.2).
27
,
,
,
,
-
.
Fe, Al, Mn, Si –
(
)
.
-
Fe, Al, Mn, Si
,
– SiO2.
,
-
,
.
Al
-
– Al(OH)3,
(
,
, 1992).
-
Al
( -Al2O3).
Fe
( -FeOOH),
Fe2O3 2FeOOH 2,5
Fe2O3),
2003).
MnO2).
( -FeOOH),
2
(Fe3O4)
.
Fe
( -Fe2O3) (
Mn
( -FeOOH),
( , 1982,
,
( -
28
Fe, Al, Mn
Si
,
,
(+).
Fe3+
Ti4+
Fe2O3 –
,
,
-
Fe
-
FeTiO3 (
-
, 1998, Tessens, Zanyah, 1982).
,
,
,
,
.
Fe, Al
Mn
,
,
,
,
.
Mn
-
Fe, Al, Si
,
,
.
.
,
,
,
-
.
:
,
(+),
,
.
(
.
-
3.2).
29
(1934)
-
.
2
. 2.2).
. 2.2.
(
Sparks, 1999)
1
-FeOOH
-Fe2O3
- Al(OH)3
-Al2O3
SiO2 (am)
2
2,6-16,8
5-22
2-12
2-12
4,5-12
.
. 2.3
,
3
:
(
Fe3+,
-
)–
–
Fe3+.
–
.
(Essington, 2004).
.
,
:
FeOH0 + H+
FeOH0
FeOH2+
FeO- + H+
(2.3)
(2.4)
30
(2.3)
(
106,2,
+),
,
= 1/
s,1).
,
(
FeOH2+
6,2
+
FeOH0
).
,
K- = 1/Ks,2 = 10-11,8.
,
,
FeO-
11,8
FeOH0.
,
FeOH2+0,5
:
FeOH-0,5 +
s,H
-
+
= 10-8,5,
(2.5)
.
8,5
FeOH2+0,5
FeOH-0,5.
pKS,1, pKS,2
Fe, Al
pKS,H
Mn
,
Si,
,
-
.
–
(SM-O),
(
2.3).
.
(
)
,
-
31
(ENM),
-
.
2.3.
Mn (
Si, Al
pKS,1, pKS,2 pKS,H
Essington, 2004)
-
SiO2
-MnO2
Al2O3
IV
IV
III
SM-O
S/rM-OH
+1
+2/3
+1/2
3,818
2,300
1,711
M
ENM
pKS,1
pKS,2
pKS,H
3,38
3,72
2,77
1,90
1,55
1,61
-1,2
0,16
6,1
7,2
7,36
11,8
3,0
3,76
8,95
,
,
,
,
-
S/rM-OH (
M-OH
(
,
M).
Si
,
-
SiOH0
,
-
SiOH2+,
Al(OH)2+0,5.
,
.
AlOH2+0,5
,
+0,5
,
2
FeO
Al+0,5
,
Fe+0,5
2,
2
-
,
.
,
-
:
OH2 +
OH2
+ SO42-
Al
OH2
Al
–
+ OH2
SO4
32
2.3.
.
,
,
-
,
, 1990, 1992, Stevenson, 1982, Perdue, 1985, Hayes, 1986, Sposito, 1989
.).
,
.
,
,
,
,
-
.
–
3,
-
–
–
(
(
. 2.4).
. 2.5).
:
(
,
,
2,89),
1
(
= 3,8),
= 1.3),
2-
(
,
3
(
2
,
,
1
= 4,8),
)-
,
= 3,1)
;
.
1
=
33
34
,
-
,
(
)
.
H
R
C
NH 2
COOH .
-
:
NH 2
: HC COOH
H
NH 2
: CH 3 C COOH
H
NH 2
: HOOC –CH2- CH -COOH
: HCCO CH 2 CH 2
NH 2
C
COOH
H
NH 2
: NH 2
C
NH
CH 2
CH 2
CH 2
CH
COOH
NH
NH 2
: NH 2 CH 2 CH 2 CH 2 CH 2 CH COOH
,
–
NH2
-
.
,
,
,
.
(
,
-
)–
,
,
,
(
,
,
,
NH2-
)–
,
-
(
,
)–
.
–
-
,
–
–
.
,
,
,
.
35
,
.
,
,
(
(
SH-
,
,
- NH),
-
),
,
,
(
(C= ),
(
. 2.6).
)
(
, 1990, Stevenson,
1994).
(Sposito, 1989).
2.4,
-
,
,
,
-
.
,
, –
.
. 2.4.
(
)
(
Stevenson, 1994)
360
390
260
290
60
150-570
210-570
20-490
10-560
30-80
820
300
610
270
80
520-1120
30-570
260-950
120-420
30-120
36
,
, –
.
–
,
.
2.6.
. 2.6.
(
–
Essington, 2004)
,
.
-
37
.
,
,
,
Al
(
, 1990, Sposito, Holtsclaw, 1977
-
.).
-
(
, 1990, Perdue, 1985, Hayes, 1987, Senesi, Loffredo, 1998)
-
,
4-5,
10
–
11.
,
,
,
,
,
.
,
,
8
.
.
,
.
,
,
-,
.
,
,
.
:
SH2 (s) + Ca2+ (aq) = SCa (s) + 2H+ (aq)
(2.6)
2SH (s) + Ca2+ (aq) = S2Ca (s) + 2H+ (aq)
(2.7),
38
(s)
(aq)
-
.
.
,
SH2 (s)
SCa (s)
.
,
-
(Sposito,
1989).
39
3.
,
,
-
,
-
,
(Stumm, 1992).
,
,
-
2.
(«
»)
,
,
–
,
-
,
.
-
,
,
.
-
.
,
,
,
-
.
-
.
,
.
-
40
:
-
,
-
.
3.1.
–
. 3.1).
,
,
-
.
.
,
.
-
,
«
»
,
-
,
, Na+, Ca2+, Mg2+),
(
–«
»
-
, Cl-, NO3-).
. 3.1
Na+
Cl-,
-
.
(
),
.
-
.
41
.
,
-
.
.
,
.
. 3.1
;
-
42
Cu+,
,
F-,
.
,
–
-
.
,
.
,
,
«
, Ni2+, Cu2+, Zn2+, Pb2+),
» (
, Hg2+, Cd2+)
»(
(Essington, 2004).
–
Cs+
K+
,
,
-
.
.
,
,
,
-
,
,
4
.
( -
Stumm, 1992,
S
,
):
(1)
:
S–OH + H+
S–OH2+
S–OH + OH-
S–O- + (H2O)
(2)
S–OH + MZ+
S–OH + MZ+
S–OH + MZ+ + H2O
:
S–OM(z-1)+ + H+
(S–O)2M(z-2)+ + 2H+
S–OMOH(z-2)+ + 2H+
43
(3)
:
S–OH + L-
S–L + OH-
S–OH + L-
S2–L+ + 2OH-
(4)
-
S–OH + L- + MZ+
S–L–MZ+ + OH-
S–OH + L- + MZ+
S–OM–L (Z-2)+ + H+
-
,
.
.
.
,
-
.
3.2.
.
.
,
-
–
.
(Sposito,
1989, Stumm, 1992, Sparks, 1998, Essington, 2004).
,
,
–
-
.
,
-
,
,
-
44
,
(
. 3.2).
,
-
.
,
–
,
,
2.1,
(
2).
,
0.
:
.
(–)
-
45
0
F
=
(3.1)
S
–
,F–
(96485
2
), S –
,
140
650 000
0
=
140
/
0,01 96485
650000
2
,
0,208
-
.
,
:
/
2
,
,
.
,
,
,
.
,
(
.
3.3).
,
-
.
,
3.2
,
S-
–
,
(
.
2.1,
2).
-
s,
,
,
-
.
,
,
-
s,
-
.
–
–
,
46
.
,
S
-
:
=
H
F qH
q OH
(3.2)
S
qOH_ –
qH+
,
S–
.
(
)
-
.
(Stumm, 1992)
(10-1
-FeOOH
NaClO4),
6
,
120
,
10-4
2
,
-
FeOHTOT,
(
).
HCl
NaOH,
–
-
,
-
.
:
FeOH2+
FeOH
FeOH + H+
FeO- + H+
FeOH2+, FeOH
,
FeO-
,
,
.
Ka1s =
{ FeOH } [ H ]
{ FeOH 2 }
Ka2s = =
{ FeO } [ H ]
{ FeOH }
(3.3)
,
(3.3)
(3.4)
(3.4)
–
.
,
47
,
,
-
1.
:
CB
A
OH
H
FeO ,
FeOH 2
–
,
+
;
FeOH2+
FeO-
-
-
,
.
,
,
.
.
. 3.3
(
-
.3.3. )
-
Q,
(
. 3.3. ).
,
7,9
0,
.
-
:
FeOH2+ = FeO(
3)
(
pHPZNCP).
s
:
H
= Q·F·s-1,
(3.5)
Q–
,F–
,s–
.
,
-
:
Q
{ FeOH2+}
<
; Q
{ FeO-}
>
-
:
FeOHTOT = ( FeOH2+ + FeOH + FeO-)
(3.3)
Ka1s =
FeOHTOT
Q
(3.4)
Q H
:
<
(3.6)
48
Ka2s =
QH
FeOHTOT
>
Q
(3.7)
.3.3.
(3.6)
(3.6)
.
( ),
,
( ),
Stumm, 1992
( )
(3.7).
-
(3.7)
. 3.3.
,
,
,
-
.
,
.
6,4
9,2
1
.
s
pKa2s c
49
,
(3.3)
(3.4),
,
-
,
-
:
lg Ka1s + lg Ka2s =
= lg{ FeOH} + lg[H+] – lg{ FeOH2+} +lg { FeO-} + lg [H+] – lg{ FeOH}
,
,
{ FeOH2+} = { FeO-},
lg Ka1s + lg Ka2s = 2 lg [H+]
s
= ½( Ka1 +
:
:
s
Ka2 )
(3.8)
:
= ½(6,4 + 9,2) = 7,8
3.1.
3.1.
,
Sahai, Sverjensky, 1997)
s
a1
SiO2
-1,2
-0,7
5,7
8,50
SiO2 n H2O
-Fe2O3
-FeOOH
(
0
+
pKsa2
7,2
7,7
11,3
9,70
)
,
+
-
-
.
–
,
,
.
-
.
,
,
50
.
.
,
is,
,
is
3.2.
,
-
.
,
-
,
-
(
.
. 3.1).
-
,
,
.
.
,
os,
,
os
-
. 3.2.
.
,
,
os
Ca2+, Na+, Mg2+,
.
-
~ 0,3
.
,
p
:
p
=
0
+
H
+
is
+
os.
,
,
,
d
. 3.2.
,
,
.
,
,
-
.
> 0,6
-
.
51
,
,
,
:
p
+
d
=0
3.3.
,
3.2,
-
,
-
,
,
. 3.2 (Sposito, 1981, 1984, 1989, Essing-
ton, 2004).
pHZPC) –
,
0,
.
p
-
= 0,
–
0.
,
,
. 3.2.
. 3.2.
Sverjensky and Sahai, 1996
Sahai and Sverjensky, 1997)
SiO2
2,9
3,5
4,7
6,9
7,5
8,5
8,9
9,0
SiO2 n H2O
Al4(OH)8Si4O10
Fe3O4
KAl2(OH)2[AlSi3O10]
-Fe2O3
Al(OH)3
-FeOOH
–
.
,
,
,
-
,
(
,
),
52
.
,
,
,
,
SiO2 n H2O (
)
.
,
,
.
,
.
– pHPZNPC) –
,
s-
,
,
. qH = qOH ,
, qH – qOH = 0.
.
pH
,
=
-
-
.
(
IEP)
–
,
,
,
=
H
=
is
=
os =
d
. 3.2.
,
0
= 0.
(
pHPZNC) –
,
,
.
–
= 0, ,
,
-
,
,
.
os
+
d
= 0.
-
,
os +
d
= 0.
,
,
=
os
=0
is
+
53
(
pHPZSE)
,
,
,
.d
H/dI
= 0.
-
(
. 3.4).
,
,
(
3.4.
).
,
. 3.4,
-
.
,
-
,
.
,
,
-
54
,
.
,
,
.
3.4
-
,
,
,
-
.
0
=
,
(
),
,
,
.
.
,
,
,
-
.
.
(
)
,
–
,
.
,
-
I1
,
(Sposito, 1981).
0
+
H
+
is
+
os
:
+
d)1
=(
0
+
H
+
is
+
os
+
d)2
=0
I2,
-
55
H
+
is
+
os)1
=(
H
01
=
+
02
)
is
+
os)2,
(
d1
=
(
d2
).
,
-,
.
-
.
,
:
H
+
os)1
=(
H
+
os)2
,
,
,
: 1)
,
; 2)
-
,
.
NaCl
NaNO3,
–
.
.
,
,
H1
os1
=
=
os2
-
,
H2,
,
,
1=
2
(
. 3.5 ),
.
=
=
.
.
,
,
+
os)1
=(
H
+
os)2
,
(
H
.
,
-
56
,
,
(
,
. 3.5 ).
,
.
-
,
.
,
-
,
,
:
0
+ Cu2+
MeOCu+ + H+
,
-
.
,
.
:
0
+ SO42-
Me SO4- + OH-
57
,
-
.
3.4.
–
-
–
,
,
,
.
–
-
.
0
,
= 0,
.
,
,
,
(
,
EDL,
-
).
-
,
.
-
0
:
0
=
RT ln 10
( pH
F
pH ) 0,059( pH
pH )
298
(3.9),
.
(Essington, 2004).
(
. 3.6)
-
58
HO,
-
isH,
.
-
0
,
.
(
,
)
.
,
,
-
.
:
=
(3.10)
59
–
,
-
,
,
(
.
. 3.7).
,
,
,
.
,
-
.
-
.
x
:
=
(x)
(x)
=
(d)
=
0
exp(- x)
(3.11)
–
(d)
x
,
,
–
,
-
2980
=
;
:
2 I 10 3
= ZF
0 RT
0,5
(3.12)
Z–
,F–
(
78,54
2
2
-1 -1
-1 -1
),
),
0
(96487
–
), I –
(
(8,854*10-12
–
), R –
(8,314
-1
-1
).
,
,
,
:
60
-1
3,042(10
ZI
=
10
)
(3.13)
-1
,
»
.
:
ZF
RT
C B exp
x
d
(3.14)
cx –
x
, cB –
-
.
(3.11)
ZF
B exp
x
0
(3.13)
(3.14),
exp ZI 0, 5 3, 287 10 9 x
2,4788 10 3
:
(3.15)
:
2C0 RT
=
sinh
zF 0
2 RT
(3.16)
-
:
( sinh( y )
–
0
e
y
, sinh –
e
2
y
).
,
,
(3.9)
(3.15)
,
,
(3.9)
,
0,
(3.15)
,
,
0
.
-
.
,
.
,
. 3.5. .
,
-
61
. 3.8
,
(3.15)
.
-1
,
(3.12)
(3.13)
-
.
,
-1
,
100
10
-
.
62
(
. 3.9)
.
-
,
.
.
,
,
.
63
. 3.9.
(
Essington, 2004)
64
4.
4.1.
.
-
,
.
: (1)
,
-
; (2)
; (3)
(Israelashvili, 1985,
.
, 1997).
,
-
,
,
-
.
,
,
.
.
,
,
.
-
.
–
65
,
.
-
,
,
–
-
.
,
–
-
.
,
–
.
(
Sparks, 1998, Essington, 2004
, 1992, Sposito, 1984, 1989, Stumm, 1992,
.).
(2005).
,
,
,
.
–
-
(Sparks, 1999, Essington, 2004).
,
,
66
(
.
)
,
,
,
,
,
-
.
,
.
,
–
–
-
(Sutton, Rivers, 1999),
,
-
,
(Teo, 1986).
-
(2005, 2007).
,
–
-
,
-
.
(Stumm, 1992):
i
i
1
RT
ln ai
–
(4.1)
T,p
i
(
(
2
),
i
2
), –
–
i-
.
(4.1)
(
ln ai
0 ),
,
,
.
-
67
,
,
,
,
.
-
,
–
,
–
.
–
-
(
)
.
.
,
,
-
,
,
,
-
,
(Parks, 1984,
.
.
Stumm, 1992) ,
,
-
.
.
.
,
,
,
.
-
–
,
,
.
,
,
.
.
-
68
,
-
,
.
(
–
–
,
),
,
-
.
,
,
,–
.
.
4.2.
,
-
,
Kd,
-1
q(
ceq
(
-1
)
-
-1
-1
).
-
,
,
:
q
ceq
Kd
(4.2)
,
–
-
.
,
,
,
.
,
-
.
69
(
., 1987, Giles et al., 1974)
,
(
S-
(
. 4.1. )
-
;
-
.
. 4.1.
Cu2+
Cu2+,
. 4.1).
,
,
-
Cu2+
.
,
Cu2+
.
.
,
-
.
70
Cu2+
-
,
. S-
,
-
,
,
-
,
.
L-
(
. 4.1. ),
;
-
,
.
–
.
. 4.1.
-
L-
-
.
L-
,
,
.
.
. 4.1.
Cd2+
Cd2+
.
,
,
.
.
4.1.
.
(C10H14 NO5PS)
.
-
71
,
,
,
.
L-
,
-
:
–
;
–
;
–
,
;
–
;
–
;
–
;
–
.
,
,
,
-
.
-
:
q
bK L
eq
1 KL
b
(4.3)
eq
KL
.
(
. 4.2).
b
,
KL
q;
,
,
–
,
;
q
-
.
-
b·KL –
0.
72
,
.
-
H2O(ad) –
,
,
M(aq)-
.
-
(Essington, 2004):
H2O(ad) + M(aq) =
(ad) +
2
(liq)
-
(
):
K ex
( S M )( H 2 O)
( S H 2O )(M )
(4.4)
,
N
-
,
K ex
(N
(N
:
)( H 2 O)
H 2O )(C M )
(4.5)
S M
S
,
,
,
(4.5)
:
73
( N S M )(H 2O )
(1 N S M )(C M )
K ex
(4.6)
N
S-M:
K ex C M
( H 2 O)
N S-M =
K ex C M
1
( H 2 O)
(4.7)
,
N
S-M
=
,
K ex C M
1 K ex C M
:
(4.8)
N
-
nM ,
n S,
nM =
. N = nM / n S,
(4.8)
K ex C M n S
1 K ex C M
:
(4.9)
(4.9)
m,
:
q
bK ex C M
1 K ex C M
(4.10),
b-
(n S/m), q –
,
M
–
ceq, Kex = KL.
,
.
q + qKL
eq =
bKL
,
-
(4.10)
:
(4.11)
eq
(4.11)
eq;
-
:
q
eq
= bKL – qKL
(4.12)
(4.2)
,
Kd ,
Kd = bKL – qKL
(4.12)
.
(4.13)
74
,
Kd
q,
.
-
KL,
–
bKL;
,
-
.
(1)
4.
,
,
,
,
.
-
(
q
ai
i
, 1997):
ai p
p bi
(4.14)
bi –
i
(
KL
(4.5) – (4.13)),
).
b
–
(
i
S–
eq
,
(4.14)
q=
Kex
ap
dS
p b
:
(4.15),
.
,
b (
, 1984,
.
-
,
1997).
,
,
.
75
,
b
KL.
,
-
:
b1 K L1C eq
q
1 K L1Ceq
1
+
b2 K L 2C eq
(4.16),
1 K L 2C eq
2
-
.
Kd
q,
,
,
.
-
.
,
4.3),
,
.
,
.
,
,
-
,
–
,
-
.
.
,
,
,
-
76
,
Fe
Al
,
-
.
.
,
,
.
S-, H-
-
.
:
q = KFCeqN
(4.17)
q–
, KF –
, Ceq -
, N –
0
1.
KF
(Sposito, 1980),
-
,
N–
,
,
N
–
0
-
1
.
:
log q = log KF + NlogCeq
,
(4.18)
N
, log KF –
.
(
-
)
,
-
77
(Stumm, 1992).
-
:
1
exp( 2a )
(4.19),
B[ A]
B–
, [A] –
,
,
–
–
-
,
.
,
(4.6)
-
,
=0
.
,
,
> 0,
-
< 0.
. 4.3
(
7
15
)
4.
,
.
,
).
. 4.3.
,
-
(4.6)
,
. 4.3.
,
,
,
[ log
,
2a
]
ln 10
1
,
.
log C
1.
-
78
:
q
(4.20)
K p Ceq
(4.2)
Kd,
(4.20)
–K,
K
.
«
»
,
»(
– «partition»,
K ).
«
«
Brown, 1989).
-
»
-
»
,
,
-
(Sawhney,
(4.20)
N = 1.
.
79
4.3.
.
,
,
-
.
,
,
.
-
-
(
, 1990, Stevenson, 1994
.).
,
-
.
,
,
,
-
,
.
,
,
,
.
-
,
.
-
,
,
.
80
,
.
-
,
,
.
-
,
(
)
–
.
.
-
.
,
,
Kp.
,
,
Fe
Al
-
.
,
(«
.
»
)
,
,
.
. 4.4
-
,
.
,
.
-
81
Kp
,
,
-
KOC:
K OC
Kp
(4.21)
f OM
fOM –
.
. 4.4.
log
,
.
.(
Stumm, 1992)
–
(SW)
(KOW),
SW
-
82
,
KOW –
.
KOW
-
(
8
17
) Coctanol
Cwater:
K OW
C oc tan ol
C water
(4.22)
,
KOW
,
.
:
log K OW
d–
.
(4.23)
a d log SW
,
. 4.5
187
-
.
.
–
,
.
83
.
(
11
. 4.6,
)
23
(
7
-
)
15
-
,
.
.
.
4
,
9
,
Na+.
.
.
,
–
,
.
,
,
,
-
.
,
. 4.7 ,
-
84
KOW, (
-
)
.
,
.
-
,
B,
nc
-
(Stumm, 1992):
Gads = –RTln B = 0,7 – 3,1nC
(
)
(4.24)
. 4.7
.
. 4.7
.
,
,
-
,
-
,
,
.
.
,
.
. 4.7. ,
-
,
.
-
Gads,
,
(
. 4.7. )
8.
,
Gads
.
,
85
,
«
»
-
,
,
-
.
86
,
,
,
L-
.
.
2,
(
. 2.5).
,
(Essington, 2004).
-
,
)
-
:
R-NH3+ (aq) + [Na+
-
X(s)]
[R-NH3+
-
X(s)] +Na+(aq),
R-NH3+ (aq) –
, [Na+
,
-
-
X(s)] –
,
(–X)
,
-
.
. 4.8
(
),
-
.
-
(~ 100
,
).
-
,
.
.
87
,
-
.
,
,
:
RCOO-(aq) + [Cl(aq)
+
X(s)]
[RCOO-
+
X(s)] +Cl- (aq),
(s)
.
-
,
.
Fe
Al
-
.
2,
,
.
:
88
R-NH20 (aq) + [ SOH2+(s)]
[ SOH2+
R-COO-(aq) + [ SOH2+(s)]
[ SOH2+
NH2-R](s)
-
OOC-R] (s)
-
,
.
,
,
-,
-
:
R-COO-(aq) + [ SO[ SO-
(H2O)
M2+(H2O)n](s)
(H2O)
M2+ (H2O)n
-
OOC
R](s)
,
,
-
,
,
-
:
R-COO-(aq) + [ SO[ SO-
(H2O)
(H2O)
M2+
M2+(H2O)n](s)
-
OOC
(
>
Fe
<
R(H2O)n-1](s)
),
-
Al
(
).
:
R-COO-(aq) + [ SO
+
2 ](s)
[ SOOC-R](s) +
,
2
(aq)
Fe
,
,
Al.
-
89
.
:
,
,
,
-
,
.
.
,
.
,
,
,
,
.
-
,
.
2
(
.
2.3),
.
-
,
-
.
:
-
,
(Pignatello,
Xing, 1996, Xing, Pignatello, 1996, Xia, Pignatello, 2001).
«
»
,
–
«
-
90
»
(
Xia, Pig-
natello, 2001).
,
,
.
,
»
,
,
-
.
,
,
,
,
-
.
L-
, ,
,
;
,
,
.
,
, 5«
)
«
»(
-1,3»(
-2,6-
,
,
)
,
,
«
-
1,4% (Xing et al., 1996).
»
-
,
N
1.
-
.
,
-
91
.
,
(
. 4.9),
-
:
S i bi C
11 b C
i
n
S
K pC
i
(4.25)
S–
.
-
«
»
, bi –
S° -
.
,
–
.
-
.
. 4.9
,
(4.25)
,
.
.
(
),
,
,
,
S, N
,
-
.
,
.
,
-
,
,
.
92
93
,
-
,
,
.
0,
,
–
-
–
0
.
,
-
0 = 1.
(
7,7%),
(
., 2003).
(
9
20,
22),
10
–
8
10
18,
-
18
.
. 4.10
,
:
L-
0
0,4-0,5
,
.
,
S-
.
,
,
.
-
-
,
.
,
(
0
, 2005):
1
Vs
P
P0
1
Vm C
C 1P
Vm C P0
P
1
P0
(4.26),
94
Vs –
,
, Vm –
,
-
,
-
.
4.10
4.10.
,
(4.26)
Vm
.
-
.
0
. 4.10. :
-
,
,
,
.
-
95
,
.
,
0
= 0,4
,
(
. 4.1.).
:
,
. 4.11,
. 4.1)
0.
,
. 4.1.
(
., 2003)
Vm,
Vs,
0
=
0,4)
7,0
8,2
7,9
11,0
6,7
24
76
62
52
47
54
29
13
13
4,4
8
11,4
13,2
12,8
17,5
10,0
35
48
43
1,4
5
1,8
1,7
2,8
22
8
0,9
0,8
2,4
1,8
13,1
5%
-
,
,
5%,
-
33% –
–
.
,
.
-
96
97
,
-
,
.
,
,
S-
,(
-
., 2008),
.
. 4.12
L-
,
,
.
-
98
,
.
370
667
2278
,
.
-
2
.
2
-
,
(
-
. 4.12).
,
.
,
,
.
«
»
.
–
(
-
. 7,1%),
-
(
., 2008).
,
,
,
-
,
,
:
,
,
(
. 4.13).
-
,
-
,
.
99
L(
. 4.14),
-
.
,
–
,
-
,
.
,
S-
.
-
,
,
–
.
-
100
,
,
,
-
,
S.
L-
,
,
-
.
,
,
,
,
.
4.4.
,
.
,
:
(
),
(
)
-
.
3,
,
3.1
.
. 4.15
,
-
,
.
–
,
.
101
,
.
-
,
,
–
.
,
(Sposito, 1989).
5.
-
,
.
:
<
<
-
.
,
-
102
,
,
,
.
,
.
.
,
,
,
.
,
.
.
-
.
,
-
Z/R
,
,
.
-
103
.
,
,
.
:
Cs+ > Rb+ > K+ > Na+ > Li+
Ba2+ > Sr2+ > Ca2+ > Mg2+
Hg >2+ Cd2+ > Zn2+
,
,
-
(Sposito, 1989):
Cu2+ > Ni2+ > Co2+ > Fe2+ > Mn2+
,
(
.
«
2).
»
< 0,25
»
,
-
.
«
-
»
0,32,
(
.
. 4.16).
104
. 4.16
,
,
-
,
»
.
,
.
,
-
.
«
»
«
»
(
.4.2).
-
105
. 4.2.
(
Sposito, 1989)
Hg > Cu > Cd > Fe > Cr > Zn > Co > Mn
Hg > Pb > Cu > Cd > Ni > Zn
Ag > Hg > Cu > Cd > Cr > Ni > Pb > Co > Zn > Fe
Hg > Cu > Cd > Zn > Pb
.
,
,
-
.
Fe
3) –
Al (
.
.
(
50
. 4.17).
,
–
-
,
.
.
.
Al(OH)2+
Al3+
,
Al(OH)2+
.
,
Al3+;
Al
.
, Fe
,
,
-
Al ,
-
106
.
-
,
.
,
.
4.2
Cu
.
4.1,
,
-
,
S-
,
-
.
,
,
Cu
.
-
,
.
.
-
107
,
,
,
-
.
.
,
.
,
,
,
,
-
.
Fe
Al,
.
,
-
G0ads
– G0
( G0int)
G0
-
.
-
( G0coul):
G0ads = G0int + G0coul
(4.27)
G0coul
,
,
:
Kads = Kint Kcoul
(4.28)
:
G0coul = F
0
(4.29)
108
F–
, Z–
,
.
0
-
,
:
G 0 coul
RT
Kcoul = exp
exp
F Z
RT
(4.30)
0
.
-
(Stumm, 1992)
.
,
Fe
,
Al,
-
.
S–OH,
2+
,
-
:
S–OH2+
S–OH
+
S–OH
S–O-
+
S–OH + Me+
S–OMe+ +
S–O
S–A
HA
+ HA
log KS1
(1)
+
log KS2
(2)
H+
logKMS
(3)
log KLS
(4)
logKHA
(5)
+
+ H2O
H+ + A2
.
–
KMS
,
S
–
surface –
KLS
).
.
,
S–OHTOT
:
-
109
S–OHTOT = [ S–OH2+] + [ S–OH] + [ S–O] +[ S–OMe+]
(1) – (4):
S–OHTOT =
[ S OH ][ H ] [ S OH ]K 2
S
[H ]
K1
S
S
[ S OH ]K M [ Me 2 ]
[H ]
:
S
S OH TOT
K2
[H ]
1
S
[H ]
K1
[ S OH ]
S
K M [ Me 2 ]
[H ]
(4.31)
MeTOT
:
[MeTOT] = [Me2+] +
S–OMe+]
(3),
[MeTOT ] [ Me 2 ]
:
[ Me 2 ][ S OH ]K M
[H ]
S
:
S
K M [ S OH ]
[H ]
[MeTOT ] [Me 2 ] 1
(4.32)
,
,
(4.31)
– [Me2+] (
)
S-OH] (
(4.32)
.
-
.
).
,
,
:
S–OHTOT = [ S–OH2+] + [ S–OH] + [ S–O] +[ S- ]
ATOT = [HA] + [A-] + [ S- ]
-
110
. 4.18
4.19
,
: log K1S = – 4; log
K1S = – 9; log KMS = –1; log KLS = 5, log KHA = –5;
10-4
10-7
;
-
.
.
4.18
,
,
,
.
(
2
Pb
,
. 4.19) .
4
Al,
,
(Essington, 2004).
-
111
4.5.
,
,
,
.
,
.
,
(
, 1941,
., 1963, 1964
-,
.),
-
-
.
-
,
–
(
-
…, 2006).
,
,
,
,
.
,
,
(
…, 1999).
.
,
-
.
.
,
112
Al
–
Al
(Robarge, 1999).
,
-
(Nordstrom 1982, Nordstrom,
1986
.).
Ball,
,
,
.
,
-
,
,
.
-
,
.
.
,
.
3.1
3
).
,
:
-
,
–
,
.
,
,
(
.
Cl-
NO3-,
-
2),
-
.
Cl-,
,
«
»–
,
,
-
.
–
-
113
.
,
-
,
.
l-
,
-
,
.
«
»
,
«
»
-
,
-
.
,
,
, ,
,
-
.
: Cl- < NO3- <
SO42- << PO42- < SiO44- (
, 1997).
,
Cl-
:
-
NO3-
,
PO42-
;
< SiO44-
;
,
-
.
.
Fe
.
. 4.20
3
Al (Rajan, 1978).
Al
-
114
(1)
,
-
,
(
.,
–
)
-
Al.
(2)
.
(3)
,
-
Al
.
,
-
,
,
,
-
.
,
.
.
.
.
,
,
.
Fe
Al
4.3.
(1830
8
).
. 4.3.
(
,
0-10
Gillman, Fox, 1980)
,
10,9
,
1830
14,4
7,5
1830
8,2
115
10-20
20-30
6,8
4,2
6,8
5,2
4,2
3,0
5,6
3,0
.
,
.
.
116
4.21,
,
-
,
.
,
(
.
. 4.22),
.
117
. 4.22
F-
,
-
~ 4,
–
~ 8-9.
-
.
,
>
,
-
,
(
-
. 4.23).
,
-
–
.
,
Fe
.
,
.
Al,
.
,
-
. 4.24
-
,
-
118
~ 4,
-
,
,
-
Al.
.
,
, –
.
-
.
,
Fe
Al,
Fe
Al,
,
.
. 4.25
,
-
119
,
(
, 2006).
,
-
.
(Rajan, 1978)
Al
800
Fe
-
.
Al,
-
.
<
,
.
,
–
.
–
.
,
,
.
,
120
.
,
.
(Singh, 1984)
.
,
,
(
,
2004).
,
,
,
.,
-
,
-
.
.
,
.
-
,
.
. 4.26
-
,
P/S
(Pigna, Violante, 2003).
,
.
-
.
(Karltun, 1998)
-
.
,
<7
-
121
.
.
122
5.
5.1.
,
.
,
.
–
-
,
.
,
,
–
,
,
,
-
.
–
-
,
.
,
–
,
.
-
.
.
,
,
-
,
.
,
-
,
,
,
,
,
.
-
-
123
,
(
)
,
-
,
-
,
.
,
(Sposito, 1984, 1989, Essington, 2004).
-
.
.
,
-
:
F
q q
r2
(5.1)
F–
, q+
q- –
, –
–
,r
.
,
–
,
.
.
,
.
(
–
):
Li+(0,059) < Na+(0,102) < K+(0,138) < Rb+(0,152) < Cs+ (0,167)
-
124
Mg2+(0,072) < Ca2+(0,100) < Sr2+(0,118) < Ba2+(0,135)
(
,
.
)
-
.
,
,
3
,
K+
,
.
Cs+,
-
.
,
-
.
.
,
,
.
-
(KS),
-
(
–
)
-
.
,
.
,
.
.
(1)
,
,
–
,
,
-
125
,
-
.
(2)
-
,
.
,
,
.
(3)
,
,
(
)
-
,
.
,
-
,
.
,
Al3+, Al(OH)2+, Al(OH)2+ (
,
,
, 1947, Reuss, Johnson, 1986
.).
.
(4)
-
,
.
,
-
,
,
:
Na2X(s) + a2+(aq)
2 NaX(s) + a2+(aq)
CaX(s) + 2Na+(aq)
CaX2(s) + 2Na+(aq)
NaX(s) + 0,5 a2+(aq)
–
(5.2 )
(5.2 )
Ca0,5X(s) + Na+(aq)
,
(s)
(5.2 ),
(aq)
.
126
,
:
KS
(CaX )( Na ) 2
( Na 2 X )(Ca 2 )
(5.3 )
KS
(CaX 2 )( Na ) 2
( Na 2 X ) 2 (Ca 2 )
(5.3 )
KS
(CaX ) 0,5 ( Na )
( NaX )(Ca 2 ) 0,5
(5.3 ),
.
.
5.4
)
.
,
,
,
,
-
,
,
.
,
.
»(
., 1986),
.
.
CaX(s) + 2Na+(aq)
:
Na2X(s) + a2+(aq)
(5.4)
:
KS
{Na 2 X }[Ca 2 ]
{CaX }[ Na ]2
KS
[ Na ]2
[Ca 2 ]
{Na 2 X }
{CaX }
(5.5)
-
127
.
1
, ,
,
,
,
:
{Na 2 }
{CaX }
KS
(5.6)
(5.5)
KS
[0,1]2
[0,1]
{Na 2 }
{CaX }
:
(5.7)
,
2+
Na+
+
.
,
-
.
» («ratio law»),
(Schofield, 1947).
-
,
,
2
,
3
,
–
-
(
.
, 1988).
,
.
,
Ca2+
,
Na+
Mg2+
Na+,
.
,
2+
2+
Na+,
,
(
., 1980).
,
,
128
,
(United States Salinity Laboratory…, 1954)
(Reuss, Johnson,
1986).
.
,
,
-
.
.
(
)
-
.
.
.
,
(
, 1992,
1989, Sparks, 1999, Essington, 2004
, 1997, Sposito, 1984,
.).
,
,
.
-
–
.
.
5.2.
,
(1997)
4.2
.
-
129
(
. 5.1.).
,
. (I)
,
. (II)
,
-
,
;
). (III)
-
,
-
,
,
,
.
3
(I),
.
.
L-
.
-
1
K+
(I)
Na+
Ca
2–
Mg
.
.
.
-
.
Ca2+
. 5.1
Mg2+
.
(I)
.
S.
Ca2+
1)
(
(
(II)
2),
NH4+
Na+
K+
-
3).
.
,
-
,
,
130
L
.
,
,
-
.
2+
Pb2+
2)
(
(
1),
(
3).
(II)
.
.
,
-
.
-
,
Fe
Ca
1)
2)
(
.
-
2+
Pb2+
Cd
(
(II)
.
3).
,
S-
-
,
Ca2+
.
(
(
1
2)
Pb2+
-
3).
-
,
.
(III)
.
S-
.
.
Ca2+
(
1
Cd2+
Ca2+
. III ),
(
Ca
-
Cu2+
2
3
. III )
-
Mg
1
3
. III ).
,
.
-
131
(III),
.
,
.
Ca2+
Cu2+ a
.
,
-
,
,
(
,
)
-
.
.
,
(
)
(
.
)
,
,
.
.
-
132
–
450
,
.
Ca
MgX(s) + a2+(aq)
MgX(s) + C
X(s)
Mg.
2+
(5.8),
(aq)
(
(aq)
)
-
.
,
:
KS =
[ MgX ] [Ca 2 ]
[CaX ] [ Mg 2 ]
(5.9)
([Ca2+]/[Mg2+])
(5.9)
,
KS = 1
([MgX]/[CaX])
,
-
133
450
,
.
.
. 5.1.
-
.
-
2+
aX2(ex) + 2K+(aq)
+
(Essington, 2004).
2K(ex) + Ca2+(aq)
(
(5.10)
Ca
)
( )
1,
:
~
2[ 2 ]
[ K ] [Ca 2 ]
E~K
[K ]
[ K ] [Ca 2 ]
(5.11)
(5.12),
.
(NCa)
(N )
-
1,
:
N Ca
[CaX 2 ]
[ KX ] [CaX 2 ]
(5.13)
NK
[ KX ]
[ KX ] [CaX 2 ]
(5.14),
.
1,
( )
:
ECa
EK
2 N Ca
2 N Ca N K
NK
2 N Ca
NK
(5.15)
(5.16)
134
(KV),
(
).
:
KV = 1=
2
N Ca
NK
K
2
[ K ]2
(5.17),
[Ca 2 ]
–
,
.
(5.15)
(5.16)
-
:
ECa
2 ECa
N Ca
(5.18)
2EK
1 EK
NK
(5.19)
(5.18)
-
:
1 EK
1 EK
N Ca
(5.20)
(5.20)
,
2
4EK
2
1 EK
[ K ]2
,
[Ca 2 ]
(5.17)
-
:
2
=
(5.21)
K
Ca
:
1
2
EK
4[Ca 2 ]
1
[ K ]2
(5.22)
(5.22)
1
EK
2
1
:
4[Ca 2 ] (2[Ca 2 ] [ K ]) 2
[ K ] (2[Ca 2 ] [ K ]) 2
(5.11)
(5.12)
(5.23)
(5.23)
:
135
1
EK
2
1
~
4 E Ca
1
~ 2
2 E K (2[Ca 2 ] [ K ])
(1 E~ K )
2
2 E~ K ( 2[ Ca 2 ] [ K ])
(5.24)
-
1
EK
2
NT = 2[Ca2+] + [K+],
4(1 E~K )
1+
2
2 E~ N
K
(5.24)
:
(5.25)
T
(5.25)
:
0,5
EK
1
2
1
~
NT E K 2
1
~
EK
(5.26)
(5.26)
,
)
(
,
1
(
)–
-
,
5).
-
( ),
-
( ).
NT,
,
.
,
.
,
-
,
,
.
,
,
-
:
0,5
EK
1
2
3
~
I EK 2
4
~
EK
(5.27)
1
. 5.2.
,
136
,
.
–
.
5.3
Mg
-
K
.
,
(
,
5.27),
.
-
.
. 5.4
2+
(2004)
I =0,05
.
+
137
. 5.4.
,
–
,
5.27 (
5.3.
).
-
138
,
-
,
,
-
.
-
.
-
,
(
, 1997, Sposito, 1989, Essington, 2004,
.).
30-
-
(1932, 1934
.).
,
,
–
,
-
:
KX(ex) + Na+(aq)
Na(ex) + K+(aq)
KX(ex) + 0,5Ca2+(aq)
0,5X(ex)
(5.28)
+ K+(aq)
(5.29)
-
:
[ NaX ][ K ]
[ KX ][ Na ]
KG
(5.30)
[Ca 0,5 X ][ K ]
KG
(5.31)
[ KX ][Ca 2 ]0, 5
,
–
.
,
.
,
-
,
-
.
139
,
,
.
-
(N ) (
).
,
,
–
-
,
-
.
:
KG
N Na ( K )
N K ( Na )
(5.32)
KG
ECa ( K )
E K (Ca 2 ) 0,5
(5.33)
.
(Ca2+ + Mg2+)
Na+,
,
Ca2+
Mg2+
-
.
:
Na+(aq) + (Ca + Mg)0,5X(ex)
KG
NaX(ex) + 0,5(Ca2+ + Mg2+) (aq)
[ NaX ][Ca 2 Mg 2 ]0,5
[(Ca Mg ) X 0,5 ][ Na 2 ]
(5.34)
[NaX] : [(Ca + Mg0,5) X]
sodium ratio),
(5.33)
ESR (exchangeable
[Na+] : [Ca2+ + Mg2+]0,5
SAR (sodium adsorption
ratio),
Ca2+
KG
ESR
SAR
Na+:
(5.35)
SAR
(
140
),
,
Na
.
.
1934 .
:
1
Z
( Mei i )
zi
1
Z
Me j j
zj
1
Z
( Me j j )
zj
1
Z
Mei i
zi
(5.36),
(
,
–
; zi
,
zj –
)
-
(
-
).
:
1
KN
Ni
1
Zi
j
Ci
(5.37),
1
Zj
1
Zj
Nj –
Ni
Ci
1
Zi
1
N j Zj Ci Zi
/100 ,
–
,
i
j
–
.
,
K
(
Na)
:
(K+) + Na+
KN
(Na) + K+
(5.38)
N Na a K
N K a Na
(5.39)
,
.
,
Ca2+
,
Na+:
1
( a 2 ) Na
2
( Na )
1
KN
,
N Na C 2 Ca
1
C Na
N 2 Ca
1
2
Ca
Na
1 2
Ca
2
(5.40)
(5.41)
,
141
(5.33)
(5.41)
,
-
,
-
.
(Vanselow, 1932,
.
Essington, 2004)
-
.
,
Na
:
[ KX ]( Na )
[ NaX ]( K )
KV
(5.42)
.
,
,
,
-
.
,
,
KX(ex)
.
,
CaX2(ex).
-
.
,
,
-
,
,
,
.
.
-
,
-
142
,
,
+
-
,
2+
:
2KX(ex) + Ca(aq) = CaX2(ex) + 2K+
(5.43)
:
N Ca ( K ) 2
KV
(5.44)
2
N K (Ca 2 )
NCa
NK –
,
.
.
(Gaines, Thomas, 1953,
.
Essington,
2004)
,
,
,
.
:
K GT
ECa ( K ) 2
E 2 K (Ca 2 )
(5.45)
,
(
-
,
1)
,
-
.
-
,
,
.
.
.
-
143
(Rothmund und Kornfeld, 1918,
, 1997)
.
,
.
,
,
:
{2CaX 2 } {K }2
{KX }2 {2Ca}
k
(5.46),
,
.
k
-
N,
,
(
.
4.2
-
4).
-
(Essington, 2004).
:
1
K RK
( K ) 2 ECa
(Ca 2 ) ( E 1 ) 2
(5.47)
K
2
K RK
( K ) 2 ECa
(Ca 2 ) ( E 1 ) 2
(5.48)
K
(5.46)
(5.47),
,
-
.
(5.47) (
2
(
(
2
)
)/(
2
:
))
E 2 Ca
E 2K
)
RK
(5.49)
,
:
.
144
2 log
E Ca
EK
log K RK
log
(Ca 2 )
(K )2
(5.50)
log
log(
2+
)/(
+ 2
).
,
,
,
,
-
,–
.
5.4.
.
,
,
-
.
-
.
,
,
,
-
.
,
.
,
-
.
,
.
-
,
-
,
.
145
. 5.5.
,
(
).
-
,
,
,
.
,
-
.
. 5.1
Ca
1
.
Na
,
,
-
,
-
,
Na
,
,
Na (
0,46
0,65).
,
-
,
(
,
-
146
)
.
. 5.1.
Ca
Na
,
Ca
Na
, 2004)
(
1
G
Na
0,33
0,80
0,93
0,97
0,98
0,991
0,995
0,997
0,9991
0,9996
0,9997
Na
0,67
0,20
0,07
0,03
0,02
0,009
0,005
0,003
0,0009
0,0004
0,0003
-Na
V
-
-Na
Na
0,30
0,34
0,39
0,43
0,43
0,43
0,45
0,46
0,46
0,48
0,48
0,70
0,66
0,61
0,57
0,57
0,57
0,55
0,54
0,54
0,52
0,52
0,46
0,50
0,56
0,60
0,60
0,60
0,62
0,63
0,63
0,65
0,65
0,54
0,50
0,44
0,40
0,40
0,40
0,38
0,37
0,37
0,35
0,35
4,21
1,00
0,61
0,47
0,35
0,24
0,19
0,16
0,08
0,06
0,05
38,27
1,98
0,66
0,36
0,20
0,09
0,06
0,04
0,01
0,005
0,003
,
,
,
,
, 1997, Essington, 2004):
f Ca N Ca
2
f K N 2K
K ex
fCa
2
K
Ca
2
[K ]
[Ca 2 ]
(5.51),
fK –
,
2+
–
, [K+]
+
, NCa NK –
[Ca2+] –
.
,
1.
K ex
(5.44)
f Ca
KV
f 2K
:
(5.52)
:
ln Kex = ln KV + ln fCa – 2 ln fK
(5.53)
147
,
,
,
ln Kex
:
dln Kex = 0 = d ln KV + d ln fCa – 2d ln fK
(5.54)
:
d ln KV = 2d ln fK – d ln fCa
(5.55)
,
,
:
),
.
-
:
mK d
K
mCa d
Ca
(5.56),
0
mCa –
mK
,
–
,
=
Ca
=
:
+ RTln(KX)
Ca
(5.57)
(5.58)
+ RTln(CaX2)
(5.57)
(5.58)
(5.56)
(mK + mCa),
mK
d[
mK mCa
0
K
mK
mK mCa
mCa
d[
mK mCa
RT ln( KX )]
-
:
0
Ca
RT ln(CaX 2 )] 0
(5.59)
mCa
mK mCa
;
0
K
d
d
0
Ca
,
.
(5.59)
RT
:
(5.60)
NK dln (KX) + NCa dln(CaX2) = 0
(KX) = fKNK
aX2) = fCaNCa,
(5.60)
:
(5.61)
NK dln (fKNK) + NCa dln(fCaNCa) = 0
,
-
148
,
= - dNCa.
,
(5.61)
:
(5.62)
NK dlnfK + NCa dlnfCa = 0
(5.62)
dlnfCa:
NK
d ln f K
N Ca
d ln f Ca
. dNK
(5.63)
(5.55):
2d ln f K
NK
d ln f K
N Ca
d ln K V
(5.64)
(5.64)
2dlnfK:
2 N Ca
d ln KV
2 N Ca N K
2d ln f K
(5.65)
,
,
,
2d ln f K
-
:
(5.66)
ECa d ln KV
,
.
EK = 1
f
K=
1(ln fK = 0);
= 0.
(5.66)
:
ECa
ln f K
2
d ln f K
0
(5.67)
ECa d ln K V
0
,
:
ECa
2 ln f K
ECa ln KV
(5.68)
ln KV dECa
0
:
1
ln f Ca
(1 ECa ) ln KV
ln KV dECa
ECa
(5.69)
149
fK
fCa
(5.53),
-
:
1
ln K ex
(5.70)
ln K V dECa
0
(5.70)
ln KV
-
ECa,
.
ln KV
,
ECa
ln K V
.
:
(5.71),
b mECa
m–
, b–
.
(5.71)
(5.70),
-
:
1
ln K ex
(5.72)
[b mECa ]dE Ca
0
xdx ( x 2 / 2)
ln K ex
bECa
:
m 2
E Ca
2
(5.71)
1
b
0
m
2
(5.73)
(5.73)
, ln Kex = ln KV
(5.71)
(5.68)
= 0,5.
(5.69),
:
ln f K
m 2
E Ca
4
ln f Ca
m
(1 ECa ) 2
2
(5.74)
m 2
E K
2
(5.75)
(5.64)-(5.75)
2
5).
.
150
(1)
,
0,5.
.
,
,
0,5,
,
,
.
-
.
Ca
. 5.6
Cd (
, 1997).
,
0,3,
-
.
1,35.
(2)
(5.73).
(Essington, 2004).
. 5.2
-
,
.
. 5.7
,
:
ln K V
0,526 5,109 ECa
(5.76),
151
0,526
5,109
b
m
(5.73),
2,03,
.
(5.71).
,
0,132.
ln Kex = –
(
0,099
. 5.2)
,
-
0,169.
,
0,078
0,926.
152
(3).
.
. 5.8
ln KV
,
,
,
-
.
1
ln K ex
(5.70)),
ln K V dECa
,
-
0
ln Kex
ln KV = 0.
,
,
ln Kex.
. 5.3.
,
(–2,017).
,
. ln Kex,
,
0,133,
,
.
153
:
Gex
0
(5.77)
5,708 log K ex
Gex
KX
8,79
2
0,015
0,15.
7,21
0
154
(1)
4.
.
H2O(ad) –
,
M(aq) –
,
.
(Essington,
2004):
H2O(ad) + M(aq) =
(ad) +
2
(liq)
(1)
(
-
):
( S M )( H 2 O)
( S H 2O )(M )
K ex
(2)
,
N
,
K ex
-
:
(N
(N
)( H 2 O)
H 2O )(C M )
S M
S
(3)
,
,
,
1,
K ex
K ex
(3)
(N S M )
(1 N S M )(C M )
KN
S M
CM
N
K ex (1 N
K ex C M
S M
N
N
S-M
,
:
S M
)C M
K ex C M N
S M
N
N
(4)
S M
(5)
S M
S-M:
K ex C M
1 K ex C M
=
(6)
N
nM,
n S,
(6)
N
S-M
=
nM
K ex C M
=
nS
1 K ex C M
n S,
. N = nM /
:
(7)
155
,
nM =
K ex C M n S
1 K ex C M
(8)
(8)
m,
:
q
bK ex C M
1 K ex C M
(9)
q –
, b = n S/m,
.
,
M
–
-
ceq, Kex = KL.
,
.
,
q + qKL
(9)
eq =
bKL
:
(10)
eq
(10)
eq;
-
:
q
= bKL – qKL
C eq
(11)
(4.2)
Kd ,
,
(4.12)
.
Kd = bKL – qKL
(12)
Kd
q,
.
KL,
bKL;
–
,
-
.
(2)
4.
Pb2+
Al(OH)3
.
Pb2+
Al(OH)3
1,4·10-5
Pb,
4
0,1
7
NaNO3
,
,
Al (
.
156
2,
. 2.3).
2
8
= 10-8,87.
-2
,
,
3,5
2
0,1
3,33
.
30
,
,
.
,
1,55·10-4
-
.
:
ST
n S * 1018 * a * S A 8 * 10 18 * 3,33 * 3,5
=
AN
6,022 * 10 23
1,55 * 10
4
(1)(4.33)
ST –
, nS –
2
1
,a–
, SA
2
–
, 1018 –
-
, AN –
.
,
,
Pb
,
-
.
:
0 ,5
AlOH 2
K1, 2
10
AlOH
0,5
H
AlOH 0, 5 ( H )
0,5
AlOH 2
8,87
(2)(4,34)
,
< 8,87
.
-
(+0,5)
-
:
,
0,5
-
Al,
(
.
2
Al
. 3:6 - = 0,5).
,
(+2,5);
(–
2),
(+0,5).
Pb
AlOH
K Pb
0 ,5
Pb 2
H 2O
AlOPbOH 0, 5 ( H ) 2
AlOH 0,5 Pb 2
AlOPbOH
:
0,5
2H
(3)(4.35)
(4)(4.36)
157
,
,
[ AlOPbOH-0,5]
[ AlOPbOH
-0,5
K PbOH
Pb(OH)+ + H+
2O
10
.
Pb2+:
,
Pb2+ +
]
(5)(4.37)
( PbOH )( H )
( Pb 2 )
7,7
(6)(4.38)
,
Pb
PbT
ST
-
:
PbT = [Pb2+] + [Pb(OH)+] + [ AlOPbOH-0,5] = 1,4·10-5 M
(7)(4.39)
ST = [ AlOH2+0,5] + [AlOH2-0,5] + [ AlOPbOH-0,5] = 1,55·10-4 M
(8)(4.40)
(1) – (8)
-
,
,
-
.
(4), (5)
AlOH 2
0 ,5
108,87
[ AlOPbOH
( PbOH )
(6)
0 ,5
10
AlOH
:
0 ,5
(9)(4.41)
(H )
K Pb [ AlOH 0, 5 ] Pb 2
(H ) 2
]
(10)(4.42)
7,7
( Pb 2 )
(H )
(11)(4.43)
Pb
-
:
PbT
[ Pb 2 ]
10
7,7
[ Pb 2 ]
(H )
K Pb [ ALOH 0, 5 ][ Pb 2 ]
(H ) 2
(12)(4.44)
(8)
,
.
.
(8)
:
ST = [ AlOH2+0,5] + [AlOH-0,5]
AlOH2+0,5]
ST = 108,87
AlOH-0,5](H+) + [ AlOH-0,5]
(13) (4.45)
(9),
:
(14)(4.46)
:
[AlOH-0,5] =
S
[1 10
T
8,87
( H )]
(15) (4.47)
158
[AlOH-0,5]
Pb,
PbT
[ Pb 2 ]
10
(15)
0, 5
]
K Pb [ Pb 2 ]ST
[ Pb 2 ]
(H )
( H ) 2 [1 10 8,87 ( H )]
7,7
0 ,5
(16)(4.48)
:
K Pb [ Pb 2 ]ST
( H ) 2 [1 108,87 ( H )]
(16)
[ AlOPbOH
PbT
-
:
(10) (15),
[ AlOPbOH
(12)
(17)
]
2
{( H ) [1 10
(17)(4.49)
8,87
:
K Pb ST
( H )] 10 7, 7 ( H )[1 10 8,87 ( H )] K Pb ST }
(18) (4.50)
(16)
KPb
b
{[ AlOPbOH-0,5]/PbT}
(
.
. 4.19),
(18),
>
-
50.
,
,
(4.28).
-
159
(1)
5
(
+
)
2+
(
)
(Essington, 2004)
+
2+
.
:
2KX (ex) + Ca2+(aq)
CaX2(ex) + 2K+(aq)
(
Ca)
(
)
1,
-
:
~
2[ 2 ]
[ K ] [Ca 2 ]
(1)
E~K
[K ]
[ K ] [Ca 2 ]
(2)
.
(NCa)
1,
(N )
:
N Ca
[CaX 2 ]
[ KX ] [CaX 2 ]
(3)
NK
[ KX ]
[ KX ] [CaX 2 ]
(4)
.
1,
( )
-
,
2
:
ECa
EK
2 N Ca
2 N Ca N K
NK
2 N Ca
NK
(5)
(6)
160
(KV),
(
-
).
,
:
2
N Ca
KV = 1=
NK
K
2
[ K ]2
(7)
[Ca 2 ]
–
,
.
(5)
2 N Ca
E Ca
2 N Ca
2 N Ca
NK
E Ca
ECa N Ca
2 N Ca ;
E Ca
2 N Ca
N Ca
ECa
2 ECa
E Ca N Ca
2 N Ca
2 N Ca
(1 N Ca )
N Ca (2
:
2 N Ca
1 N Ca
ECa )
(8)
NK
EK
(6)
NK
=
2E K
N K EK
2E K
N K (1 E K )
NK
2(1 N K )
Nk
NK
2 NK
NK
2EK
1 EK
NK
(9)
(8)
:
N Ca
1 EK
ECa
=
2 ECa 2 (1 E K )
N Ca
1 EK
1 EK
(10)
(9)
,
KV = 1=
(10)
(7)
-
:
N Ca
NK
1 EK
1 EK
2
K
2
[ K ]2
[Ca 2 ]
:
(1 E K ) (1 E K ) 2
(1 E K ) (2 E K ) 2
2
K
[K ]2 1 E K
=
2
[Ca 2 ]
4E K
2
[ K ]2
,
[Ca 2 ]
2
=
K
Ca
161
[ K ]2
[Ca 2 ]
4E K
2
1 EK
(11)
2
:
[ K ]2
4
2
E K [Ca 2 ]
1 EK
2
2
4 E K [Ca 2 ]
[K ]
4[Ca 2 ]
[K ]
1
2
EK
2
(1 E K )
1
EK
2
1
4[Ca 2 ]
[ K ]2
1
(12)
(12)
:
1
EK
2
1
EK
2
4[Ca 2 ] (2[Ca 2 ] [ K ]) 2
[ K ] 2 (2[Ca 2 ] [ K ]) 2
1
(1)
~
4 E Ca
(2)
(13)
1
~ 2
2 E K (2[Ca 2 ] [ K ])
1
(13)
:
~
2(1 EK )
~ 2
EK (2[Ca 2 ] [ K ])
(14)
-
NT = 2[Ca2+] + [K+],
1
4(1 E~K )
1+
2
2
2 E~K N T
EK
(5.24)
:
(15)
(15)
1
EK
2
1+
4(1 E~K )
4
= 1+= 1+ ~ 2
2
~
2 EK NT
2E K N T
:
~
4E K
~ 2
2 EK NT
0 ,5
EK
2
1
~
NT EK 2
1
1
~
EK
(16)
(16)
,
(
)
)–
.
(
(
)
),
,
,
,
162
.
.
NT,
,
.
,
.
,
-
,
-
,
.
,
,
:
0,5
EK
1
2
3
~
I EK 2
4
~
EK
(17)
1
(2)
5.
,
(1997)
.
(Essington, 2004)
.
-
:
2+
2KX (ex) + Ca (aq)
CaX2(ex) + 2K+(aq)
,
-
:
K ex
fCa
f Ca N Ca
2
f K N 2K
2
K
Ca 2
[K ]
[Ca 2 ]
(1)
fK –
,
2+
[K+]
+
, NCa
[Ca2+] –
–
NK –
,
.
1.
,
:
K ex
f Ca
KV
f 2K
(2)
-
163
:
ln Kex = ln KV + ln fCa – 2 ln fK
(3)
,
,
ln Kex
,
:
dln Kex = 0 = d ln KV + d ln fCa – 2d ln fK
(4)
:
d ln KV = 2d ln fK – d ln f Ca
(5)
,
,
:
(
),
.
:
mK d
mK
mCa d
K
0
Ca
mCa –
(6)
,
–
,
=
Ca
:
+ RTln(KX)
=
Ca
(7)
+ RTln(CaX2)
(8)
(7)
(mK + mCa),
mK
d[
mK mCa
0
K
mK
mK mCa
(8)
(6)
:
RT ln( KX )]
mCa
d[
mK mCa
0
Ca
RT ln(CaX 2 )] 0
(9)
mCa
mK mCa
;
d
0
K
d
0
,
Ca
-
.
(9)
RT
-
:
NK dln (KX) + NCa dln(CaX2) = 0
(KX) = fKNK
(10)
aX2) = fCaNCa,
(10)
NK dln (fKNK) + NCa dln(fCaNCa) = 0
:
(11)
,
-
,
,
:
. dNK = - dNCa.
(11)
164
NK dlnfK + NCa dlnfCa = 0
(12)
(12)
dlnfCa:
NK
d ln f K
N Ca
d ln f Ca
(13)
(5):
2d ln f K
d ln K V
2d ln f K
d ln f K
2
NK
d ln f K
N Ca
(14)
(14)
2dlnfK:
NK
d ln f K
N Ca
d ln K V ; d ln f K 2
NK
d ln K v ; d ln f K
N Ca
d ln K V
d ln K V ;
N Ca
2 NK
2 N Ca
d ln KV
2 N Ca N K
2d ln f K
(15)
,
,
,
2d ln f K
NK
N Ca
-
:
ECa d ln KV
(16)
(Gains,Thomas,1953)
,
.
EK = 1
f K = 1(ln fK = 0);
= 0.
(16)
-
:
ECa
ln f K
2
d ln f K
0
(17)
ECa d ln K V
0
» ( udv uv
«
vdu ),
:
ECa
2 ln f K
ECa ln KV
(18)
ln KV dECa
0
.
NCa,
(13)
(
,
(8)
,
d ln fK
(16):
1
5)
165
(1 N Ca )
d ln f K
N Ca
NK
d ln f K
N Ca
d ln f Ca
1
(2 2 E ca )(2 E Ca ) 1
ECa d ln K V
2
E Ca (2 ECa )
E Ca
2 E Ca
d ln f K =
ECa
2 ECa
(1 E ca )d ln K V
:
dlnfCa = (1– ECa ) lnKV
:
1
ln f Ca
(1 ECa ) ln KV
ln KV dECa
(19)
ECa
fK
fCa
(3),
:
ln Kex = ln KV + ln fCa – 2 ln fK
ECa
1
ln K ex
ln K V
(1 E Ca ) ln K V
ln K V dE Ca – E Ca ln K V
ln K V dE Ca
ECa
0
ECa
1
ln K ex
ln K V
ln K V
ln K V dE Ca – E Ca ln K V
ln K V ECa
ECa
ln K V dE Ca
0
1
ln K ex
(20)
ln K V dECa
0
(20)
ECa,
ln KV
.
ln KV
,
.
ln K V
ECa
:
b mECa
(21)
m–
, b–
.
(21)
(20),
:
1
ln K ex
(22)
[b mECa ]dE Ca
0
xdx ( x 2 / 2) ,
(22)
:
166
1
ln K ex
1
[b
mE Ca ]dE Ca
(b
mE Ca ) E Ca
E Ca d (b
0
mE Ca )
0
1
ln K ex
bE Ca
2
mE Ca
E Ca dE ca
bE Ca
mE Ca
mE Ca
2
2
0
0
,
ln K ex
(21)
0
1
,
1
m
2
b
0
(23)
(23)
, ln Kex = ln KV
(21)
(18)
(( udv uv
vdu )
= 0,5.
(19),
:
ECa
ln KV dECa = E Ca (b
ECa ln KV
-
xdx ( x 2 / 2)
ECa
2 ln f K
1
:
m 2
E Ca
2
bE Ca
2
mE Ca )
(b
0
mE Ca )dE Ca
0
E
2 ln f K
ECa (b
mECa )
ECa (b
mE Ca )
E Ca d (b
mE Ca )
0
mECa
2
2 ln f K
ln f K
2
m 2
E Ca
4
(24)
1
ln f Ca
(1 ECa ) ln KV
ln KV dECa
ECa
1
ln f Ca
( E Ca
1)(b mE Ca )
(b
mECa )dEca
ECa
ln f Ca
bECa
bE Ca
b
m
(E 2
2 Ca
ln f Ca
b mE Ca
mECa 2
2 E Ca
2
mECa
mECa
b
bE Ca
m
2
bECa
E
m Ca
2
2
mECa
2
2
1
ECa
mECa 2
2
mECa
m
2
1)
m
(1 ECa ) 2
2
m 2
E K
2
(25)
167
.
.
., 1980
.
.
(
).
.
.
.,
2006, -25
.
.
-
. I.
.
, 1947, . 9,
.,
2, . 81-96.
.
.
. II.
, 1947, . 9,
3, . 161-168.
.,
.
-
. III.
.
, 1947, . 9,
.
», 1988, -375
5, . 315-324
.
.,
.,
.,
.,
.
2003
.,
1
.,
.,
-
.
17
-
. 19-25
.
.
.,
.
-
.
. 317-327
3
.
2008
., «
.
., 1998, – 217
.
–
.
., 2005, –110
As, Pb
).
.
Zn
2007
.
6,
, 1998, –272
.
(
. 681-691
.
.
-
.
1932,
.
.
.
.
EXAFS-
., 2003 , – 238
.
11-12,
1934,
2,
. 18-32
. 190-201
168
.
.
302
.
.
., 1955,
.
.
.
.
., 1963, – 302
,
.
. 250-384
.
.
.
.
.
.
,
., 1974, –
.
.
.
,
., 1978, –
. «
»
.
293
.
.
1976 – 128
.,
.,
., «
.
.,
.
.
-
». 1987
.
.
.
.
,
., 2005,
», 1990, – 260
.
»,
,
.
., 1983, –219
.
.
.,
«
» 2006, – 855
.
.
.
.
.,
.«
.,
, 1984,
»,
.
.
, 1992, –224
,
.
.
.
. 54-62
., 1982, –207
.
-
.
.,
.
.
, 1963 N3,
.,
.
.,
.
.
.
.
.«
I.
.:
. 239-257
.,
.
.,
.
-
. 27-35
.,
.
.
.
.
, 1964,
.
45-61
.
,«
.,
», 1986, –281
.
(
.,
.
1999 –320
.
.
.
).
-
169
.
2004, -25
.
.
.
.
.
.
,
., 196
.
. «
1978,
»
., «
»,
. 279-284
.,
.,
.,
.
,
1972
1
.
. 107-114
.,
.,
.,
,
.
.
1972
5
. 107-
120
.
.
, 1981
.
.
2004
.
. 1067-1076
., 1934, – 123
.,
.
9
-
.,
, 1980 -272
.
.,
.
.
.
.,
.
-
.
.,
, 1986, –231
.,
.
.
.
,
1981, –52
.,
.,
.
.,
17
2008
.
.
.
.
.
.,
.
. 14-19
2
., 1974, –332
. 180-190
.
.
.
.,
.,
.
.
,«
1
.,
1934
.
1990, –323
-
.
.
.
», 1990, – 188
.
.
,
., 1992. –400
.
.
.
, 1997, –165
170
.
.
.
.
.
.
.
,
., 1990, -25
.«
.
», ., 1989, –190
.
, 19787, –142
.
,
.
.
.
-
., 1957
.
.
-
.:
.«
»
., «
», 1989,
.
.
.
.
, 1941, N3,
:
1988
.
.
.
.,
., 2005, -336
7
. 54-58
.
.
,
. 103-128
., 2005, –300
.,
.
.
.
.
.
.
.
,
., 1937
.
.«
» . 2,
, 1990
.
.«
» . 5,
, 1998
.
.
(
)
,
., «
1947, 185
», 1978, –304
.
.
.
.
.
.
-
.
.
,
1991
2
., 1991 , –48
.
.
.
.
.
. 65-81
.
,
., 2005, – 431
.
Courchesne F. and Hendershot W.H. Sulfate retention in some podzolic soils of the
Southern Laurentias, Quebec. Canadian Journal of Soil Science, 1989 v. 69, pp. 337-350
Dixon J.B., Weed S.B. (Ed) Minerals in Soil Environments. Madison Wisconsin USA
1989 – 1244 p.
Dixon J.B., Schulze D.G. (Ed.) Soil Mineralogy with Environmental Application. Madison, Wisconsin, USA, 2002 – 866 p.
171
Edwards P.J. Sulfur Cycling, Retention and Mobility in Soils: a Review. USDA, Forest
Service. Northeastern Research Station General Technical Report NE-250, 1998, – 18p
Essington M.E. Soil and Water Chemistry. CRC Press. Boca Raton London New York
Washington D.C. 2004, – 534 p.
Gaines G.L., and Thomas H.C. Adsorption studies on clay minerals. II. A formulation of
the thermodynamics of exchange adsorption. Journ. Chem. Phys. 1953 V. 21 pp. 714-718
Geelhoed J.S., Hiemstra T., and Van Riemsdijk W. Phosphate and sulfate adsorption on
goethite: Single anion and competitive adsorption. Geochimica et Cosmochimica Acta 1997, v.
61, N12, pp. 3773-3797
Giles C.H., Smith D., Huitson A. A general treatment and classification of the solute adsorption isotherm. Colloid Interface Science. 1974 v. 47 pp. 755-765
Gillman G.P., Fox R.L. Increase in the Cation Exchange Capacity Of Variable Charge
Soils Following Superphosphate Application. Soil Science Society of America Journal 1980 v.
44 N 5, pp. 934-938
Hayes M.S.B. Influence of the acid/base status on the formation and interaction of acids
and bases in soils. Trans. 13 Congr. Int. Soc. Soil Sci., Hamburg, 13-20 August, 1986, v.5, pp.
93-109, Hamburg, 1987
Israelashvili J.N. Intermolecular and Surface Forces. London. Academic Press. 1985
Jackson M.L. Clay transformation in soil Genesis during the Quaternary. Soil Science.
1965 v. 99 N 1, pp. 15-22.
Jackson M.L. Weathering of primary and secondary minerals in soils. In: 9-th International Congress of Soil Science Transactions, v. 4 Adelaida 1968 pp. 281-292
Karltun E. Modelling SO42- surface complexation on variable charge minerals. II. Competition between SO42-, oxalate and fulvate. European Journal of Soil Science, 1998, v.49 pp.
113-120
Nordstrom D.K., and Ball J.W. The geochemical behavior of aluminum in acidified surface waters. Science 1986 v. 232 pp. 54-56
Nordstrom D.K., The effect of sulfate on aluminum concentrations in natural waters:
Some stability relations in the system Al2O3-SO3- H2O at 298 K. Geochimica et Cocmochimica
Acta 1982 v. 56 pp. 681-692
Parks G.A. Surface Energy and Adsorption at Mineral/Water Interface: An Introduction.
In: M.F. Hochella and A.F.White, Eds., Mineral-Water Interface Geochemistry, Mineralogical
Society of America, 1990, pp. 133-175
Parr R.G. and Pearson R.G. Absolute hardness: companion parameter to absolute electronegativity. J. Amer. Chem. Soc. v.105, pp. 7512-7516, 1983
Pearson R.G. Hard and Soft Acids and Bases. J. Amer. Chem. Soc. v.85, pp. 3533-3539
1963
172
Pearson R.G. Hard and Soft Acids and Bases, HSAB. I. Fundamental Principles. J.
Chem. Educ., v.45, pp. 581-587, 1968
Perdue E.M. Acidic functional groups of humic substances. In: Humic Substances in Soil,
Sediments and Water. Ed. by Aiken G.R. et al. N.Y. John Wiley, 1985, pp. 493-526
Pigna M., Violante A. Adsorption of Sulfate and Phoshate on Andisols. Communications
in Soil Science and Plant Nutrition. 2003 v. 34 Nos. 15&16, pp. 2099-2013
Pignatello J.J., Xing B. Mechanisms of Slow Sorption of Organic Chemicals to Natural
Particles. Environmental Science and Technology 1996, v. 30 N1
Rajan S.S.S. Sulfate adsorbed on hydrous alumina, ligands displayced and changes in
surface charge Soil Science Society of America Journal. 1978, v. 42 N 1, pp. 39-44
Reuss J.O., Johnson D.W. Acid deposition and Acidifications of Soils and Waters. Ecological Studies. V. 59, 1986, Springer Verlag, New York, –114 p.
Robarge W.P. Precipitation/Dissolutions Reactions in Soils. In Sparks Donald L. (Ed.)
Soil Physical Chemistry. CRC Press Boca Raton Boston London New York Washington, DC,
1998 pp. 193-238
Rothmund V., Kornfeld G. Der Basenaustausch in Permutit. Zeitschrift Anorg. und
Allgem. Chem. 1918 Bd. 103, N1-4, pp. 129-133
Sawhney B.L., Brown K. (Eds.) Reactions and Movement of organic Chemicals in Soils.
Soil Science Society of America, Special Publications. Madison WI, 1989
Sahai N. and Sverjenskiy D.A. Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data. Geochim. Cosmochim.
Acta 1997 v.61, pp. 2801-2826
Schnitzer M. Humic Substances, chemistry and reactions. In: “Soil Organic Matter Studies”, Amsterdam, 1978, pp.1
Schofield R.K. A ratio low governing the equilibrium of cations in solutions. Proc. Eleventh Int. Congr. Pure and Appl. Chemistry. London, 1947, v.3, p. 257-261
Senesi N., Loffredo E. The Chemistry of Soil Organic Matter. In: Sparks Donald L. (Ed.)
Soil Physical Chemistry. CRC Press Boca Raton Boston London New York Washington, DC,
1998 pp. 239-271
Singh B.R. 1984 Sulfate Sorption by acid forest soils. 2. Sulfate adsorption isotherms
with and without organic matter and oxides of aluminum and iron. Soil Sci. 1984, v. 138,
4,
pp. 294-297
Sparks D. Kinetics of Soil Chemical Processes. Academic Press. San Diego, 1989, – 210
pp.
Sparks D. L. Soil Physical Chemistry. Second Edition. CRC Press. Boca Raton Boston
London New York Washington, D.C. 1999, – 410 p.
173
Sposito G. Derivation of the Freundlich Equation for Ion Exchange Reactions in Soils.
Soil Sci. Soc. Amer. Journal v. 44 N6, 1980, pp. 652-654
Sposito G. The Operational Definition of the Zero Point of Charge in Soils. Soil Sci. Soc.
Amer. Journal v. 45 N2, 1981, pp. 292–297
Sposito G. The Surface Chemistry of Soils. Oxford University Press, New York, Clarendon Press Oxford 1984, –228 p.
Sposito G. The Chemistry of Soils. New York Oxford, Oxford University Press, 1989, –
279 p.
Sposito G. The Environmental Chemistry of Aluminum. (Ed.) CRC Press, Inc. Boca Raton, 1996
Sposito G., Holtsclaw K.M. Titration Studies on the Polynuclear Poliacidic Nature of
Fulvic Acid Extracted from Sewage Sludge Soil Mixtures. Soil Sci. Soc. Amer. Journal 1977 v.
41, N2 pp. 330-336.
Stevenson F.J. Humus Chemistry, Genesis, Composition, Reaction. N.Y. John Wiley,
1994, –444 p.
Stumm W. Chemistry of the Solid-Water Interface. John Wiley & Sons, Inc. New York /
Chichester / Brisbane / Toronto / Singapore 1992, – 428 p.
Stumm W., Morgan J.J. Aquatic Chemistry. 2-nd Ed. John Wiley & Sons, Inc. New York
1981, -796 p.
Sutton S.R., Rivers M.L. Hard X-ray synchrotron microprobe techiques and applications.
In: Synchrotron X-ray methods in clay science. Eds. Schulse D., Bertch P., Stucki J. Clay Min.
Soc. Amer. 1999
Sverjenskiy D.A. and Sahai N. Theoretical prediction of single-site surface-protonation
equilibrium constants for oxides and silicates in water. Geochimica et Cosmochimica Acta 1996,
v. 60, pp. 3773-3797
Teo B.K. EXAFS: Basic Principles and Data Analysis. Inorganic Chemistry Concepts 9.
Springer-Verlag. Berlin, 1986
Tessens E., Zauyah S. Positive Permanent Charge in Oxisols. Soil Sc. Soc. Amer. Journal
1982, v.46, N 5, pp. 1103-1106
United States Salinity Laboratory Stuff. Diagnosis and improvement of saline and sodic
soils. L.A. Richards (Ed.). USDA Agric. Handbook No. 60 Washington D.C. 1954
Vanselow A.P. Equilibria of the base-exchange reactions of bentonites, permutites, soil
colloids and zeolites. Soil Science 1932 v. 33, N1, pp. 95-113
Xia G., Pignatello J.J. Detailed Sorption Isotherms of Polar and Apolar Compounds in a
High-Organic Soils. Environmental Science and Technology 1996, v. 35 N1, pp. 84-94
174
Xing B., Pignatello J.J., Gigliotti B. Competitive Sorption between Atrazine and Other
Organic Compounds in Soils and Model Sorbents. Environmental Science and Technology 1996,
v. 30 N8, pp. 2432-2440
Скачать