ln 2 arcsh c

реклама
Y
F T ra n sf o
A B B Y Y.c
bu
to
re
he
C
lic
k
he
k
lic
C
w.
om
w
w
w
w
rm
y
ABB
PD
re
to
Y
2.0
2.0
bu
y
rm
er
Y
F T ra n sf o
ABB
PD
er
Y
541.138; 541.183
w.
A B B Y Y.c
-
.
,
.
,
,
-
,
(IV)
.
-
:
,
«
.
,
-
,
,
,
».
-
,
-
[1-6],
(
-
,
)
.
,
,
,
,
,
.
ln
[1]
c -
arcsh
:
(
Al2O3),
(Fe3O4),
«
-
)
( -
( -TiO2).
»(
1200
20-50
4
)
.
-
,
.
,
-TiO2
2A c .
-Al2O3
,
98, 53
62±2
« »
5
HCl
NaCl
Fe3O4,
2
.
,
5
NaOH.
-
(303 , 1
).
/50
-001-3-0.1»
«
.1 - .
.1.
), -TiO2 ( ), -Al2O3
Fe3O4
)
: 1-3; 2-4; 3-5.
+
, Cl-.
(H+, OH-)
.
-
om
Y
F T ra n sf o
A B B Y Y.c
bu
to
re
he
C
lic
k
he
k
lic
C
w.
om
w
w
w
w
rm
y
ABB
PD
re
to
Y
2.0
2.0
bu
y
rm
er
Y
F T ra n sf o
ABB
PD
er
Y
,
MOH S0
MOH 2( S )
0
S
MO S
»,
0
S
H
MOH
Kt
NS
MOH
K 20 exp
K2
H
MOH 2 ( S )
MOH S0 H
MOH 2( S )
F
RT
MOS H
MOH S
0
MOH 2 ... An S
(1)
(2)
MOH H An
MOH 2 ...An S
(3)
MO ...Kt S H
q0 F
RT
MOH S0 Kt
MO ...Kt S
(4)
MO S
MOH S0 MO ...Kt S
MOH 2 ( S ) MOH 2 ... An S
2
);
,
,
; Kt , An -
NS –
,
(
,
;
A B B Y Y.c
0
S
q0 F
K 01 RT
K 40 exp
K4
H
F
RT
0
K 30 exp
K3
An
MO ...Kt S
0
S
K 10 exp
K1
0
S
w.
(q)
H
MOH 2 ... An S
MOH
«
,
[5-14]:
0)
MOH
.
MO S - ,
q0 –
0
;F–
,
01
–
.
,
(
0
-
1),
(
1
–
2),
q, q1, q2
2
,
.
(
0
0
1
) (
1
2
)
q0
K 01
2
q2
K12
2
,
(5)
12 –
.
q0
q1
[4]:
,
,
,
q2 [4]:
q0
q1
q2
0
(6)
,
:
c0 i exp
i
i
zF
RT
i
(7)
–
,
i
c0 i
(
1,
)
(8).
,
q1
q1
zF
( l )
,
(Cl-)
-
l
(8)
(Cl-)
(7),
i
1:
( l )
k–
[10,11]
zF
RT
kc0 (Cl ) exp
,
1
(9)
q1
om
Y
F T ra n sf o
A B B Y Y.c
bu
to
re
he
C
lic
k
he
k
lic
C
w.
om
w
w
w
w
rm
y
ABB
PD
re
to
Y
2.0
2.0
bu
y
rm
er
Y
F T ra n sf o
ABB
PD
er
Y
c0 (Cl )
KCl
w.
A B B Y Y.c
1
:
q1
2 A c sh
A
NS
F
RT
q1
RT
arcsh
F
2 A c0 (Cl )
1
1
(10)
H0
K 30 , H 0 (10)
0.
(9),
:
( l )
kc0 (Cl ) exp
arcsh
zq1
2 A c0 (Cl )
(11)
(11)
ln
( l )
c 0 (Cl )
ln k
arcsh
,
:
q1
2 A c 0 (Cl )
(12)
(12),
ln
( l )
c0 (Cl )
arcsh
-
q1
2 A c0 (Cl )
ln
)
)
( l )
c0 (Cl )
(
arcsh
. 2).
q1
2 A c0 (Cl )
. 2.
( =0,001-1
=298 )
: 1-3; 2-4; 3-5;
( =0,001-1
, =298 ,
= 5): 1 - -TiO2; 2 - Fe3O4; 3 - -Al2O3
,
-
,
,
21,55; 21,30
k (
)
Fe3O4, -TiO2, -Al2O3
.
-ln k
22,50 ± 0,05.
,
.
,
.
.
205
2009-2013
:«
.».
The method of calculating the parameters of electric double layer and constants of the acid-base equilibria for magnetite,
titanium oxide (IV) and aluminum oxide by studying of the dependence of adsorption of chloride ions at various pH values.
The applicability of the virial adsorption isotherms and Graham-Parsons theory to describe the parameters of acid-base
equilibria on the boundary of the oxide / electrolyte interface was shown.
he key words: magnetite, oxides, Graham-Parsons model, the adsorption of ions, the electric double layer theory of the
"related places".
om
Y
F T ra n sf o
A B B Y Y.c
bu
to
re
he
C
lic
k
he
k
lic
C
w.
om
w
w
w
w
rm
y
ABB
PD
re
to
Y
2.0
2.0
bu
y
rm
er
Y
F T ra n sf o
ABB
PD
er
Y
1.
.//
2.
//
.
3.
4.
.
. .:
. .,
. 1994. . 30.
. .,
. //
. .,
w.
A B B Y Y.c
.
. 1988. .26. . 3-39.
. .,
.
6. . 795-802.
. .,
. .
. 1994. . 30
. .
.,
.
.
-
4. . 444-458.
.
.:
. 1983.
400 .
5.
. .,
. .,
. .,
. .
. I.
. //
.
. 1994. . 30. 10. . 330-346.
6.
.,
. .,
. .
//
. 4 (2010):
–
:
, 2010.
. 209-212.
7. Westall J., Hohl H. A. A Comparison of Electrostatic Models for the Oxide/Solution Interface. // Adv.
Colloid Interface Sci. 1980. V. 12. N2. p. 265-294.
8. Ahmed S. M. Oxides and Oxide Films. / V.1. Ed. by J. W. Diggle. N. Y.: Marcel Dekker Inc. 1978. p. 319517.
9.
.,
.,
.
. //
. 4 (2010):
–
:
, 2010. . 63-68.
10. . .
, . .
.
. //
. 1993. . 29. 3. . 304-309.
11. . .
, . .
, . .
.
. //
. 1994. . 30. 1. .119-123.
12. Sposito Garrison. On the Surface Complexation Model of the Oxide-Aqueous Solution. // Colloid
Interface Sci. 1980. V. 74. N.1. p. 32-43.
13.
.
. .:
. 1971. . 138.
14. Fokking L. G. J., De Keiser A., Kleijn J. M., Lyklema J. Uniformity of the electrical double layer on
oxides. // J. Electroanal. Chem., 208 (1986). p. 401-403.
. –
,
«
»,
[email protected]
. –
,
,
[email protected]
.,
[email protected]
. –
,
«
»,
om
Скачать