Y F T ra n sf o A B B Y Y.c bu to re he C lic k he k lic C w. om w w w w rm y ABB PD re to Y 2.0 2.0 bu y rm er Y F T ra n sf o ABB PD er Y 541.138; 541.183 w. A B B Y Y.c - . , . , , - , (IV) . - : , « . , - , , , ». - , - [1-6], ( - , ) . , , , , , . ln [1] c - arcsh : ( Al2O3), (Fe3O4), « - ) ( - ( -TiO2). »( 1200 20-50 4 ) . - , . , -TiO2 2A c . -Al2O3 , 98, 53 62±2 « » 5 HCl NaCl Fe3O4, 2 . , 5 NaOH. - (303 , 1 ). /50 -001-3-0.1» « .1 - . .1. ), -TiO2 ( ), -Al2O3 Fe3O4 ) : 1-3; 2-4; 3-5. + , Cl-. (H+, OH-) . - om Y F T ra n sf o A B B Y Y.c bu to re he C lic k he k lic C w. om w w w w rm y ABB PD re to Y 2.0 2.0 bu y rm er Y F T ra n sf o ABB PD er Y , MOH S0 MOH 2( S ) 0 S MO S », 0 S H MOH Kt NS MOH K 20 exp K2 H MOH 2 ( S ) MOH S0 H MOH 2( S ) F RT MOS H MOH S 0 MOH 2 ... An S (1) (2) MOH H An MOH 2 ...An S (3) MO ...Kt S H q0 F RT MOH S0 Kt MO ...Kt S (4) MO S MOH S0 MO ...Kt S MOH 2 ( S ) MOH 2 ... An S 2 ); , , ; Kt , An - NS – , ( , ; A B B Y Y.c 0 S q0 F K 01 RT K 40 exp K4 H F RT 0 K 30 exp K3 An MO ...Kt S 0 S K 10 exp K1 0 S w. (q) H MOH 2 ... An S MOH « , [5-14]: 0) MOH . MO S - , q0 – 0 ;F– , 01 – . , ( 0 - 1), ( 1 – 2), q, q1, q2 2 , . ( 0 0 1 ) ( 1 2 ) q0 K 01 2 q2 K12 2 , (5) 12 – . q0 q1 [4]: , , , q2 [4]: q0 q1 q2 0 (6) , : c0 i exp i i zF RT i (7) – , i c0 i ( 1, ) (8). , q1 q1 zF ( l ) , (Cl-) - l (8) (Cl-) (7), i 1: ( l ) k– [10,11] zF RT kc0 (Cl ) exp , 1 (9) q1 om Y F T ra n sf o A B B Y Y.c bu to re he C lic k he k lic C w. om w w w w rm y ABB PD re to Y 2.0 2.0 bu y rm er Y F T ra n sf o ABB PD er Y c0 (Cl ) KCl w. A B B Y Y.c 1 : q1 2 A c sh A NS F RT q1 RT arcsh F 2 A c0 (Cl ) 1 1 (10) H0 K 30 , H 0 (10) 0. (9), : ( l ) kc0 (Cl ) exp arcsh zq1 2 A c0 (Cl ) (11) (11) ln ( l ) c 0 (Cl ) ln k arcsh , : q1 2 A c 0 (Cl ) (12) (12), ln ( l ) c0 (Cl ) arcsh - q1 2 A c0 (Cl ) ln ) ) ( l ) c0 (Cl ) ( arcsh . 2). q1 2 A c0 (Cl ) . 2. ( =0,001-1 =298 ) : 1-3; 2-4; 3-5; ( =0,001-1 , =298 , = 5): 1 - -TiO2; 2 - Fe3O4; 3 - -Al2O3 , - , , 21,55; 21,30 k ( ) Fe3O4, -TiO2, -Al2O3 . -ln k 22,50 ± 0,05. , . , . . 205 2009-2013 :« .». The method of calculating the parameters of electric double layer and constants of the acid-base equilibria for magnetite, titanium oxide (IV) and aluminum oxide by studying of the dependence of adsorption of chloride ions at various pH values. The applicability of the virial adsorption isotherms and Graham-Parsons theory to describe the parameters of acid-base equilibria on the boundary of the oxide / electrolyte interface was shown. he key words: magnetite, oxides, Graham-Parsons model, the adsorption of ions, the electric double layer theory of the "related places". om Y F T ra n sf o A B B Y Y.c bu to re he C lic k he k lic C w. om w w w w rm y ABB PD re to Y 2.0 2.0 bu y rm er Y F T ra n sf o ABB PD er Y 1. .// 2. // . 3. 4. . . .: . ., . 1994. . 30. . ., . // . ., w. A B B Y Y.c . . 1988. .26. . 3-39. . ., . 6. . 795-802. . ., . . . 1994. . 30 . . ., . . - 4. . 444-458. . .: . 1983. 400 . 5. . ., . ., . ., . . . I. . // . . 1994. . 30. 10. . 330-346. 6. ., . ., . . // . 4 (2010): – : , 2010. . 209-212. 7. Westall J., Hohl H. A. A Comparison of Electrostatic Models for the Oxide/Solution Interface. // Adv. Colloid Interface Sci. 1980. V. 12. N2. p. 265-294. 8. Ahmed S. M. Oxides and Oxide Films. / V.1. Ed. by J. W. Diggle. N. Y.: Marcel Dekker Inc. 1978. p. 319517. 9. ., ., . . // . 4 (2010): – : , 2010. . 63-68. 10. . . , . . . . // . 1993. . 29. 3. . 304-309. 11. . . , . . , . . . . // . 1994. . 30. 1. .119-123. 12. Sposito Garrison. On the Surface Complexation Model of the Oxide-Aqueous Solution. // Colloid Interface Sci. 1980. V. 74. N.1. p. 32-43. 13. . . .: . 1971. . 138. 14. Fokking L. G. J., De Keiser A., Kleijn J. M., Lyklema J. Uniformity of the electrical double layer on oxides. // J. Electroanal. Chem., 208 (1986). p. 401-403. . – , « », [email protected] . – , , [email protected] ., [email protected] . – , « », om