2’2012 , , 3.7. . , [6], - . t c, t , [8]. ., .- - , ., ., - [1], ; ., .- ., , - . [1] , . . . . - , . , . , - , , [3]. , [3]. , [3], . , . , , , - , . . , . , . n Xn 1. (DDM) - . Xn . . , n [4, 5]. . , X(t ) , [2] . , t , u [0, ) X ( 0 ) u. . t (1) X , pt ( u , E ) e t 1 e 2 ct e t ( t )m t (1 e ) m 0 m! - , . , a [7] - , [7]. - ( v u ) 2 / 2 ct dv . , , , , 0 . , , , , - , E . , , 0 . [3]. - , - (u,E ) E R1 , , [6]. , ma , E ), ; - . (2) (u 0 [7], , X (t ) [3]: , , ) - E . [0, 0 ( .) : , , - , , R1 . pt ( u , v ) (1) X(t ) : u . . X(t ) - - ., . pt ( u , v ) 1 t e x1 ,..., x N ( u v ) 2 / 2 ct e 2 t (1 e t e ) m 0 (u t ( t )m (u m! ma v ), , v) . - , : (v ) (u (v ) (u ) . x ( 1 ),..., x ( N ) . 1 N l mN ( l , x ) ( x n k x k ). N lk 1 (3) E (u . - l N l N v )dv . N l N 1 , u: u v (u 1 M v) u. x( t ( xn k x( t ) , l) . M ( mN ( l , x )) (4) v )dv . x (8) l M( xn k 1 D x(l ) E k 1 k M( x( t M( x( t xk xk ) 0. l ) x( t ) x ( t ))2 l) [ x( t l) x ( t )], 2. x 1 ,..., x N ( N N , (3) . - , 1 dN ( l , x ) N (3), mu ( t ) e * (u t) : (1 e t u t (1 e )* mu ( t ) , k x k )2 . D x ( l ),0 (1 e t L , [8] a 0, 0. a (10) K L. l N K L, D x(l ) c l 1 L ly l (11) . l2 l 1 3.2. t1 , t 2 ,... 0 3. Xk , yk 0 . 0 , 0 t1 , t 2 ,... Xk X ( tk ) . . , l ,t - 0 D x(l ) c , 1 ,2 ,..., K , : K c tk yk k 1 K (12) . ( t k )2 k 1 c l ) x( t ) M x(l ) 0 X ( t k ), k tk , Xk 3.1. x( t cl : ) t N c : [ mu ( t ) u ] / t l (8-10). d N ( l , x ),0 yl t. , cl . D x(l ) l ( xn k 1 (9) - (7) , x xk K (6) ,t mu ( t ) k N l l mN ( l , x )) 2 . ( xn k 1 , M ( d N ( l , x )) u, u N 0) (5) ) t. , mu ( 0 ) l 1 dN ( l , x ) t N l l . X - X (t ) (5). , 0 pt ( x , E1 : [x ,x ]) o( 1 ), (13) 1,2 ,..., L . 1 2’2012 x. , ; [3, . 150]. (8), ; ; o( t ) [3, . 149]. ( ; ; ; ); - . - , (2) [7], pt ( u , E ) ; ; pt ( u v ,v . , (14) E) v. (13-8) ( - . [3, . 150]), , , . - , , ). , , - . - , - , - . . ( ., , , [7]), . , , - , , . , (8). , [7], . , , . o( t ) , , , . O( 1 ) ( , - [7], – (8), , . - , . . - - , ), ., - . - (8), - . , , , , . . - , [7]. - (8), , , . , . , . « , » . « ., .., ». , , 1. . ] / - [ . . – 2010. , 2. . . // . ]/ . 3. , . . – 2007. – [ . , 1973. , . 5. – . 42-46. ] / . // . . : 184 . 4. / « 2003- 5. . 6. » [ 2005. [ .– . . 7. ] : . – 2010. – . . / .: , [ 2 « » ] // Deloitte&Touche. – . 4. – ]/ . . , 2002. , [ ]/ // . 105-108. . . – 2011. – , . 3. – . 200-203. // - - 3.7. ABOUT THE PROGNOSTICATION OF BUSINESS PRICE ON THE BASE OF MIXED DISCRETECONTINUOUS NON-STATIONARY PROCESS A.I. Lesik, Doctor of Science, Assistant Professor of Mathematical Statistics and System Analysis Department; A.G. Perevozchikov, Doctor of Economics, Professor of the Economics Department Tver Institute of Ecology and Law The task of calculating the prognostication of business sale value within the framework of income approach is regarded. Earlier we regarded the prognostication method of business sale value based on non-stationary model of Brown’s process of share price change. Brown’s process is a unique example of the continuous Winner’s independent increments. Thus, it would be interesting to consider ., . the discrete processes which meet the needs of increments independence but they are only piecewise continuous functions. The example of such process is given by Poison’s process which was regarded in our previous work. Eventually, the idea of the same distribution combining the Winner’s and Poison’s processes occurred. Such prognostication model is given in this work. Literature 1. Valuation of Business: A Manual. Edited by A.G.Gryaznova, M.A. Fedotova – M.: Finance and Statistics. 2002. 2. Methodology and Manual on Conducting Valuation of Business and Assets of Public Limited Company «United Energy Systems of Russia». Deloitte & Touche. Dec.2003-March 2005. 3. O.U. Baturina, U.M. Basaganov, A.G. Perevozchikov. The Prognostication of the Net Operational Income from the Real Estate Rent Depending on its Expected Cost Exchange. Financial Analytics. 2007, 5, p. 42-46. 4. A.G.Perevozchikov, A.I. Lesik. About the Prognostication of Business Value Change within the Framework of Additive Jumps Model on the Base of Brown’s Process. Audit and Financial Analysis. 2011, 3, p. 200-203. 5. A.G.Perevozchikov, A.I. Lesik. About the Additive Form of Recurrent 6. Equation for Cash Flow Discounting. . Audit and Financial Analysis. 2010, 4, p. 105-108. 7. A.G. Perevozchikov. About the Prognostication of Business Value Change within the Framework of Additive Jumps Model on the Base of Brown’s Process. Audit and Financial Analysis. 2011, 3, p. 200-203. Keywords Real estate evaluation; income approach; income discounting method; business sale value; discount rate; invested capital; equity; revenue; cash flow; cash flow change rate. 3