1 . . . , !. ." , #.$.% , #.&.' " , (.!.) . ".!.% 119991, " ,% , .1, .12 .: (495)939-5560; e-mail: [email protected] - [11]. " , , " $ " . & " [46, 60, 75], 2025 . , 4-5 , - .. $ - . & , & $? 0 & - & - ." 35 [66], & $ 2 , 3 4.5.6 . 2 $ , 9.:.; - – $ 8 & - [11], & 2 , - , & $ [3]. [54] , 8 - : 2 1. : , 8, , , & - " - . 2. : & $ 8 , , , 3. . = . , , . 4. " 8 , ", . . , , & , - & $- 8 8 - . 5. " 1-4 - .: 8 . 6. 5 , " = ) $". 9 ( - , - , . 7. @ , , 9 . , , . , & , , , . , - 3 . = 8 = 8 , 5.A.B = 8 $ [2] & $ $ . , - = ." ( $ ). ( – – 7-8 ) 2 – 2 8-10. 4 & - 8 2 , . . $ 3-4, & , - , , 8, - , ( . . ) 2-3 [22]. & $ 8 . D 2 8 2 , .5 ( ) , ,= 2 - & - $ [2]. D ( ), , $ . , " $ , $ " ( = ), 8 –" " 4 ( ) [2]. E 8 , . 1. & A : 1. A = , 2. A , 3. A & 8 . . A = 8 , , 8 ." $ , 8 - $ - $ & & , , 8 $ .: - , , 2 $ = 8 8 , : , - .. 8 2 & " - , . . 8 - [4, 31, 37]. . = & – $ = - " ". 3 ,& , . 3 = - $ – & - , , - , , 8 - & 8 " 8 = . 5 - - = 2 , = 2 20 = , .F " " , , - 5 8 = = = $ $ [28]. 6 - " " & & = , , , , 2 , ."& - = - $. " & $ , , &== 8 , - , [11]. .0 - .. & - , $ (" , – [27]. G $ ") (" 8 & , 8 8 8 , 8 2 – ") & & - [4, 31, 37]. .: , – , .. , , , - – ." = & 2 .D & 8 $ 8 - . " 2 .. , & 2 , - . A - 6 .0 - , = 8 8 .@ .0 - & $ , 2 2 . . $ - & - : 1. A . H & . " $ ( ) , , - $ 8 . 2. " = & & & 8 , - & . 2. & " & - , ( - ) , , . 5 $ .9 = , $ - = . 3 - 7 , , , = 8 $ , , . I$ $ & $ , & .. –" , "– $ 2 = . J 2 - ." - , - $ $ , & . : , & , & - . . = & .. , == 8 , , - & - = - , - & 2 .0 , " , ", 8 8 $ 8 $ - ." $ $ = 8 , : I = , - $ 8 = A = = & 2 $ $ , , 8 - $ . : , 8 – 2 , 2 , . @ 2 $ , $ == 8 [34]. 5 , - 8 & 8 $ & 8 - [35]. A , [34]. F , , == $ - 8 $ - 8 8 , , , 8 $ .@ $ . 2 8 8 $ , 8 , . $ 8 - & , , . F $ $ , , .0 $ - &== 8 . (4 m $ w , $ , , == , $- 8 - , w + mw + m $ = 8 2w + 4mw .) . – $ – & $ , , , - $ . 5 = - 8 8 == ( ) . 9 $ & 8 - . - 8 , , $ , 2 , & , ." 9 : , 2 L - , . , , & $ " ", 8 8 .9 $ , = 8 2 "8 = , , = 8 - = 8 , $ " - 5. .I & 8 [77]; 8 [85]; [47]; 8 - 8 - : 8 & 8 8 8 $8 [10]; 8 [32, 78]; 8 [36]; 8 - 8 [65], [83]; [42]; [25]; 8 8 8 & [26]; 8 [86]; & [34] 8 [13]; $ 8 8 - & [17]; [23]; 8 - 8 - & [24]; [81]. . , - [63]; 8 8 8 8 8 8 [29]; - 2 .".H [68, 72, 80], 8 ,& $8 [84]. " & ( & "8 & 8 ", , ." & = ), - & . M $ $ & 8 , & 8 10 = 8 [82]. . & [30]. " 8 & , &== 8 , ,& & & $8 , 8 8 9 ,& [56, 59, 69, 70]. G 2 8 8 2 2 [12]. 2 = & 8 . & 8 - , L $ & & $ = 8 - , , & . , & & – - $ & [39, 55]. 3 4.5.6 [11], , 8 , , 8 & , .A 2 2 , , 2 .4 - – , = , . . - & $ $ $ 8 , $ [3, 49]. 4 , & & , , 11 [38, 55, 67, 71]. F , 5.O.0 $ , $ , & $ 2 3 M ,3 - 3 - [43]. , " .A " , 2 . & & . $ 4.5.6 [11], $ - , ".".A 2 [19]: " - , , $ - , , - ( ), , , & = , $ - 8 $ , P ". , , – $ .4 8 , – - & - & 8 , & 8 $, . . = & - & $ . - , $ , , & , - , - 12 " , . . , $ $ , : , , .D ," & == ", $ 8 = , 8 , 8 = - . E 2 = 8 $ & , , .: 2 $ , & - , $ - , = 8 .9 $ - , $ 8 - 2 , - , 2 . . : , 8 $ , , $ - , . . & & = 8 & 8 8 & & . 5 , E Q.5.J $ &== , - [33]. G , , - . 8 8 $ - 8 $ = 8 & . 13 6 & , x(t0), t0), . . & x(t). 9 , 8 $ , $ ; 4) = ; 6) ; 7) ; 9) ; 12) ; 10) ; 13) ; 15) = ; 14) ; 16) ; 17) .A ( ( 8 ; 5) = ; 8) = - ; 2) ; 3) ; 11) . .A - : 1) & 8 t (t > & & – , 20 ) E - , , ), - . , $ 8 2 [79]. " $ = - , , , ." - 2 & - . 9 , [50, 61]. " = , - 9 : 3 ") B @ , [18]. : - B 5 8 ("3 - 14 = 8 . 0 - 8 . = = 8 = = 8 $ ( 2 8 = = . = = = = $ ) 8 : $ .G , $ . . = - = [48]. . 8 - 8 & 2 - [45]. " - &== , A 8 8 2 (9 G , . . & P ). 0 - $ 2 , - $ & $ - [7, 8]. A 8 - = , 8 " = ,& = = ), ( " ; ( , 8 ). , 8 , D 8 ( = ), - 15 ( , ). F , - [64]. 0 8 H - (" ) CLAMM, HADCM2. 9 8 2 90 [51]. : & , FINNECO, $ , $ EPAECO [14]. EPAECO & , 2 - FINNECO – , $ == 2 . $ , EPAECO, FINNECO , , , ( & ) .6 2 FINNECO = - $ 8 8 - , 8 $ - ; - ( EPAECO 2 ); $ , H 2 ; ; - = 8 - 16 – 8 , 8 = - . " 4.5.6 [11] = 8 $ - 8 - &== : = .A 8 2 .F 2 = 5 8 [53], , = = = 8 [41], 9M5, = = = 8 [76] - [52]. 5 $ 9 2 . , 3 $ . A , LAKE [54] 8 - 8 8 - & .G , - $ SALMOSED, = = 7 , 2 2 , 2 [40, 73]. O = = 8 , 2 $ (OG9), $ ."& 2 , . 17 [44]. " & [62]. a 2 $ $ 8 $ = , " " [55], 9.:.; , 1992 , ( 2 , , 2 LAKE), 20 . B " 2 - 3 , & $. 3 , 450 [58], , 2 ( 8 , ) 2 2 ) O >6 8 $, $ : : - 3 ,6 >B - = ( = $ $ >6 8 >0 6 = . ! , $ ( 8 - ) . E ( 8 ) @ = $ 8 ( ,= , ,B 3 $ - . , 2 8 = , 8 . [20]. 3 8 ) = , = = , , - 8 , 18 = 2 - 999E, E - , - . 0 A G .A , $ - "9 , ", - $ = [9]. " 8 2 , - $ 2 . 8 , ( , 8 $ 8 & ) $ - . B , - & 8 , , . $ , , , , , , Q - B & [74]. G . 2 , .I 2 8 . $ - 19 [1]. 5 $ 5 , , $ = ( - , - , B 31 ) ( 8 , ), 8 $ 2 - .E $ - 8 . & - 2 $ - . @ , [11]. $ $ 8 8 = $ 1. B , 8 = [15], & , : & , , 2. " ,$ & , 2 - [57]. & $ . . $ $ 8 . 3. 3 , , $ , = . . , 20 4. : . " , , & $ - : $ = , & , , , $ , , $ $ , , - ; = = $ $ - ; = $ - [5]; , 2 , - [16]. b , - 8 , ".0.H [33]. . - & 999E, 1930-1950- ., [21]. P 8 , , ( = = , .. $8 8 .3 ,= , 8 8 ) = = = - .. .F , & , $ = - 21 (3 ) 3 " - .6 3 , & ( , $ ) 2 ." 2 2 $ ( " 2 8 - 2 ). 8 . & = , - 8 ( )– 2 8 .F , 8 = - , $ $ $ .B , - .A 2 E ,3 7 : – 2 – ," 5 – 2 ," 8 – .@ 6 – 3-4- , = , – & 28 . 2 1. 6 8 = 4 – = &== , ,O 8 7-10 P – , , - = - 23- ,3 8, & . F , G & - $ - : , . - 22 2. @ = 8 8 .0 $ = , $ & , 2 $ = 8 $ .0 - , - & , = 8 - ." - - , " (http://ecograde.belozersky.msu.ru) - 2 - ": = = - , 999E. : - , & , , 0 3. . . 2 - ( , [31, 37]. " & & , . " & & $ = = & , , 8 . .) & , $ $ $ . , , , = $ & . F = 8 = ( , 23 & P $ = , & - (:0P), = , - - - ." = :0P & $ , , , 8 8 . 2 F & 8 8 - , = . 8 8 & & , :0P , 8 , & , 2 $ & - & 8 . := , 8 :0P. 8 ). & 8 :0P 8 - , & 8 . 0 , 8 , , 8 " 2 & , :0P = , . @ , 8 ,8 00:). 6 .( , :0P 1991 . - 1978-1990 8 [6]. 9 & = , 0 - $ . 8 8 , & = - 24 8 8 1991 . 8 &== , - . F $ :0P 1991 . 2 $ = $ , :0P $ (100% = $ , , - 2 , = - 1991 . " 89% ) - .@ (43%), , 1991 . , 5 . $ 5.".I ..5.b - . E E ( = = 07-04-00045 , 09-07-00204 ). 9 G9.3 IGF4E5FPEw 1. " #.$., & '.(. // F . . 9 " . .A =. :G - G@E., 2004. 9. 197-199. 2. & ". ., ) &.*., & + & 3. & A.: @ .@ ".*. // 9 , 1985. 9. 12-24. ). . - :@ , 1985. 126 . $ . 25 4. 5. & ,- $... // @ A.: 6 , 1983. z5. 64 . & + , . 9 . «B ). . 3 & .9 6. , &+ .. /., 0 ». - :G - - , 1987. 104 . ". )., $. H. // G E5H. 9 . . 1997. z 3. 9. 374-379. 7. &+ , $.$. // 5 = :" 8 8 .F . 8. &+ , $.$. // F . E5@. F 9. .b , 2002. 9. 40-41. . 9 , ,9 2 - O , 2006. 9. 32. &. ., '. . // " . . 2007. F. 34. z 3. 9. 324-336. 10. ( (.$. 8 & ). 5 = (F - 8 .3 11. # (.". : , 1999. 40 . 8 = & B ( ). 0 8 .A 12. # ". ., # & . A.: @ 13. - , 2004. 311 . ".". @ $8 8 : F , & , 1999. 320 . /.3. // 3 , 1975. 9. 114-121. . A.: @ - 26 14. * + *. A 5 15. @ * 4 17. : 99E: " 5. . // :@ 16. & * 4 0 . F . .@ - , 1989. 79 . & 8 , 1986. 9. 27-34. 5. ., ) &.*. // G .@ :@ ".). 9 & , 1982. 9. 141-152. . A.: G - A . - , 1980. 181 . 18. $..., / 6. . // F . .9 " = - 8 . A :G - 19. -+ G@E., 2004. 9. 251-253. $.$. A 8 . I.: @ 20. + ".). .8 A.: @ 21. . 22. 5 & . . // " . 7 I.@. A.: @ ) ) + ) . . , 1982. 183 . ..6. 3 .. . A.: @ - , 1991. 309 c. ..6. : .@ 25. . . 1980. z 5. 9. 100. & 24. , 1971. 196 . , 2001. 192 . H 23. - :@ ".*. 8 8 , 1982. 112 c. 8 . 3 : G - 3 . . - , 1974. 123 c. 26. ! !. 8 . A.: A , 1969. 215 c. 27 27. ! 8 /.6. // D = . A.: G - AOP, 1983. " .8. 9.86-108. 28. !79 './., 0. ., ) & 29. .@ 6 4 :. . // J 4 :. ., 0 /.). O & :@ , 1984. 217 . . 1991. F. 52. z 6. 9. 840- 853. 30. 6 . A.: @ 31. 6 32. ' 2.5. P , 1978. 352 . 0. . // 5 . 1997. z 5. 9. 20-22. ".'. . 8 - . 5 8 & = $8 - 8 .A 33. ; $.2. // B . 34. ;+ ).$., 0 ".). // , 2001. 53 c. . 1982. z 7. 9. 5-20. $ - . A.: "G@GFG, 2002. 98 . 35. ;+ ).$., 0 ".)., " $.0. // P - . 2003. F. 123. z 2. 9. 115-137. 36. < .". // A . A.: @ , 1982. 9. 177-187. 37. < 7 ). . O & . A.: : 38. 8 - PE99, 2002. 400 . Bartell M.S., Gardner R.H., O'Neill R.V. Ecological risk estimation. Boca Raton – Ann Arbor – London – Tokyo: Lewis Publishers, 1992. 252 pp. 39. Beyers R.J., Odum H.T. Ecological Microcosms. NY: Springer-Verlag, 1993. 557 pp. 28 40. Canale R.P., Seo D.I. // Water Resources. 1996. V. 30. P. 95-102. 41. Chapra S.C., Canale R.P. // Water Resources. 1991. V. 25. P. 707-715. 42. Chaudhuri K. A bioeconomic model of harvesting a multispecies fishery // Ecological Modelling. 1986. V. 32. Pp. 267-279. 43. Degermendzhy A.G. // Abstracts of ANSWER'97. 1997. P. 28. 44. Fedra K. // Informatik fuer den Umweltschutz. Wien: Springer, 1990. P. 735-744. 45. Garcia A., Revilla J.A., Medina R. Alvarez C., Juanes J. A. // Hidrobiologia. 2002. V. 475. P. 205-211. 46. Gleick P.H. // Ecological Applications. 1998. V. 8. P. 571-579. 47. Goel N.S., Doggenweiler C.F. and Thompson R.L. // Bull. Math. Biol. 1986. V. 48. z 2. P. 167-187. 48. Gophen M. // Verh. Int. Ver. theor. und angew. Limnol. 2001. V. 27. z 3. P. 1239-1242. 49. Gross L.J. // Biomathematics. 1986. V. 17. P. 3-15. 50. Hakanson L., Parparov A., Hambright K.D. // Ecol. Modell. 2000. V. 128. z 2-3. P. 101-125. 51. Howard A., Easthope M.P. // Sci. Total Environ. 2002. V. 282-283. P. 459-469. 52. Howarth R.W., Billen G., Swaney D. // Biogeochemistry. 1996. V. 20. P. 1-65. 53. Imberger J., Patterson J.C. // Advances in Applied Mechanics. 1990. V. 27. P. 303-475. 54. Jorgensen S.E. // Vie Milieu. 1994. V. 44. P. 11-20. 55. Jorgensen S.E. // Korean Journal of Limnology. 1997. V. 30. P. 481-495. 29 56. Jørgensen S.E., Mejer H. // Proceedings of the Work Conf. on Envir. Syst. Anal. and Manag. Rome. 1982, P. 485-493. 57. Jorgensen S.E., Nielsen S.N., Jorgensen L.A. Handbook of ecological parameters and ecotoxicology. Amsterdam: Elsevier, 1991. 1263 p. 58. Jorgensen S.E., Halling-Soerensen B., Nielsen S.N. (Eds.) Handbook of ecological and environmental modeling. Baton Rouge: Lewis Publishers, 1995. 1150 p. 59. Jørgensen S.E., Nielsen S.N., Mejer H. // Ecological modelling. 1995. V. 77. P. 99-109. 60. Kira T. // Mem. Ist. Ital. Idrobiol. 1993. V. 52. P. 1-7. 61. Kowalewska-Kalkowska H., Kowalewski M. // Hydrobiologia. 2006. V. 554. z 1. P. 47-55. 62. Lam D.C.L., Mayfield C.I., Swayne D.A., Hopkins K. // Journal of Biological System. 1994. V. 2. P. 499-517. 63. Lurie D., Valls J., Wagensberg J. // Bull. Math. Biol. 1983. V. 45. P. 869872. 64. Malan H., Bath A., Day J., Joubert A. // Water SA. 2003. V. 29. z 3. P. 305-311. 65. Margalef R. Perspectives in ecological theory. Chicago: Chicago University Press, 1968. 122 p. 66. Margalef R. // Oekologie und Lebensschutz in internationaler Sicht. Freiburg: Rombach, 1973. P. 307-353. 67. Mauersberger P. // Mathematical Modelling of Water Quality. Chichester: Wiley, 1983. P. 42-115. 68. Mauersberger P. // Sci. Total Environ. 1996. V. 183. P. 99-106. 30 69. Patten B.C. // Ecosystem Theory for Biological Oceanography. Can. Bull. Fish. Aquat. Sci. 1986. V. 213. P. 119-138. 70. Pérez-España H., Arreguin-Sánchez F. // Ecological Modelling. 1999. V. 119. P. 79-85. 71. Sanders W.M. // Aquatic Toxicology. Philadelphia, 1979. P. 271-283. 72. Schneider E.D., Kay J.J. // Math. Comput. Model. 1994. V. 19. P. 25-48. 73. Seo D.I., Canale R.P. // Water Resources. 1996. V. 30. P. 83-94. 74. Souto R., Filho J., Bemvenuti C., Elliot M. // Bras. Arch. Biol. and Technol. 2004. V. 47. z 4. P. 13-627. 75. Straškraba M., Tundisi J.G. Reservoir water quality management. Shiga: ILEC & UNEP, 1999. 229 p. 76. Straškraba M., Dostalkova I., Hejzlar J., Vyhnalek V. // Internationale Revue gesammte Hydrobiologie. 1995. V. 80. P. 403-413. 77. Schuster S., Heinrich R. // J. Math. Biol. 1991. V. 29. P. 425-442. 78. Teriokhin A.T. // Evolutionary Ecology. 1998. V. 12. P. 291-307. 79. Turak E., Flack L., Norris R., Simpson J. // Freshwater Biol. 1999. V. 41. z 2. P. 283-298. 80. Ulanowicz R.E., Hannon B.M. // Proc. R. Soc. Lond. 1987. V. 232. P. 181-192. 81. Washida T. // Ecological Modelling. 1995. V. 78. P. 173-193. 82. Webb J.N. // Ecological Modelling. 1995. V. 80. P. 35-40. 83. Whittaker R.H., Woodwell G.M. // Ecosystem Structure and Function. Corvallis: Oregon State University Press, 1971. P. 137-159. 84. Wilhelm T., Brüggemann R. // Ecological Modelling. 2000. V. 132. P. 231-246. 31 85. Wilhelm T., Hoffmann-Klipp E., Heinrich R. // Bull. Math. Biol. 1994. V. 56. z 1. P. 65-106. 86. Zeide B. // Ecological Modelling. 1991. V. 55. z 3-4. P. 161-174. 32 E = & = 8 & : ), , .E ), $ $ ." , = & 8 - ( ( 8 .9 , $ , .3 & , ( , .0 & ) , $ 8 . The literary overview of methods of ecological prediction is carried out. The classification of predictions is made up: by degree of homogeneity of describing ecosystem (point or distributed), by time of forecast (short-term, intermediate-term and long-term), by level of detailing. Qualitative and quantitative forecast are distinguished. In turn, in the qualitative forecast it is possible to mark out morphological analysis, method of expert estimations, analog method. The quantitative methods of ecological prognostication can be identified with the simulation, directed toward the quantitative prediction (calculation) of the indicator biological indices, as a rule, of the numbers of forms or other groups of organisms. Imitation and regression models are used for this.