674.023 Ⱥɥɟɤɫɚɧɞɪ Ⱥɧɚɬɨɥɶɟɜɢɱ Ɍɹɩɢɧ, [email protected] - ɄɂɇȿɆȺɌɂɑȿɋɄɂȿ ɋɈɈɌɇɈɒȿɇɂə ȼ ɉɅȺɇȿɌȺɊɇɈɆ ɆȿɏȺɇɂɁɆȿ ɊȿɁȺɇɂə ɄɊɍȽɅɈɉɂɅɖɇɈȽɈ ɋɌȺɇɄȺ Ɋɚɫɩɢɥɨɜɤɚ, ɤɪɭɝɥɵɟ ɩɢɥɵ, ɪɚɛɨɬɨɫɩɨɫɨɛɧɨɫɬɶ, ɭɫɬɨɣɱɢɜɨɫɬɶ, ɛɨɥɶɲɚɹ ɜɵɫɨɬɚ ɩɪɨɩɢɥɚ, ɩɥɚɧɟɬɚɪɧɵɣ ɩɪɢɧɰɢɩ ɞɜɢɠɟɧɢɹ. Sawing, circular saws, efficiency, stability, high length of stroke, circular saw differential motion. ȼɜɟɞɟɧɢɟ. - . . . . . – – , , . . . 1. Ɍɪɚɟɤɬɨɪɢɹ ɪɟɡɚɧɢɹ ɜ ɤɪɭɝɥɨɩɢɥɶɧɨɦ ɫɬɚɧɤɟ ɫ ɤɪɭɝɨɜɵɦ ɜɪɚɳɟɧɢɟɦ ɩɢɥɵ. – . . , ( ) ( ) ( . 2). 153 . 1. . 2. – - O– R, . * . 154 .: A R * t x1 R sin A R sin t , y R cos A R cos t. . . , 2002. 584 . (1) . ( x– ) . vs - x2 vst , y2 0. (2) ( ) : - . (1), (2) x x1 x2 R sin t vst , y y1 y2 R cos t. : (3) 1( . 3). 1', 2', 3' - . . ( tz = D / z, D– , ): (4) ; z– , . , , ( . . ), ( ): Tz = 60 / nz, n – , . (5) , / ; z – , , ( ): Uz = 103vs / nz, 3 10 – vs – z– (6) ( , / . ,n– , / ), ; 155 . 3. 2( 2–2, 4–4, Sz , 3Sz . . 3) 3– 3–3, . . 2Sz , 2, 3, 4 1 4– . ., 1. . , , Sz , ( ), - . ( Sz , ) . e e S z sin . (7) . , . - , , - . – . Ɍɪɚɟɤɬɨɪɢɹ ɪɟɡɚɧɢɹ ɜ ɤɪɭɝɥɨɩɢɥɶɧɨɦ ɫɬɚɧɤɟ ɫ ɩɥɚɧɟɬɚɪɧɵɦ ɞɜɢɠɟɧɢɟɦ ɩɢɥɵ. 156 . – , – , . P : X r sin 1t R cos(t (1 2 )) vst , Y r cos 1t R sin(t (1 2 )), r– (8) ( – ); R – ( ( ) ); OX; – - . X ( / ): Y – Vx r1 cos 1t R(1 2 )sin(t (1 2 )) vs , Vy r1 sin 1t R(1 2 ) cos(t (1 2 )). X (9) Y( / ) Ve Vx2 Vy2 . (10) . 4. 157 1 ( 1', 2', 3' . 5). . . , , , (5). , , Uz OY ( x U z r sin1t , y r cos 1t. ): 2( Sz , 2–2, OX (11) . 5) OX OY, 3– 2Sz , 1 1. . . 5. 2, 3, 4 3–3, . . . ., - , 1/2 = 2 Ʉɢɧɟɦɚɬɢɱɟɫɤɢɟ ɫɨɨɬɧɨɲɟɧɢɹ ɜ ɩɥɚɧɟɬɚɪɧɨɦ ɦɟɯɚɧɢɡɦɟ ɪɟɡɚɧɢɹ. , , , , 158 , - , . . - . –1 ( 1 ) = 1 + 2 . 2 – (12) , VA ΩCA. VA – , –1 . ( / ) (13) / ; – , . , , , - , . - – K: K n 2 – n n (14) ; 1 – – , 1 , 2 . U ( U ( / ; –1 ) ) ( ), . ( ) U U e, U – (15) - , ; – , . 159 . 6. R– ,e– , = , 1 1 = R; () C– , , K, - . K , , . , 1 O1C , 2 OC 1 ( - . 6): (16) – 1 = 2 , . . , ; – , . , 1 / = 1. ( . 7). , . K = 1,5 K = 2,5 . 8. . 9. 160 , 1 = 2 . 7. K = 2,5 . 8. . . 6. K = 2,5. ( –1). V = 60 / , D = 500 ,e=5 = V / CA, V– (17) , / ; CA – A , C, . 161 . 9. CA CA CA ( ): eK R ( K 1) , ( K 1)1000 (18) 52,5 250(2,5 1) 0, 253. (2,5 1)1000 Ω 60 –1 240 c . 0, 25 (12), ( –1 ): 2 2 Ω , K 1 (19) 240 –1 68 c . 2,5 1 1 = K2 , ( –1 1 2,5 68 170 c–1. 162 ) (20) n n n ( 30 ; –1 ) (21) 68 30 650, 3,14 170 30 1624 . 3,14 50–60–70 . 5–15–45 / Ɋɟɡɭɥɶɬɚɬɵ ɪɚɫɱɟɬɨɜ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɫɤɨɪɨɫɬɟɣ ɪɟɡɚɧɢɹ ɢ ɜɟɥɢɱɢɧ ɷɤɫɰɟɧɬɪɢɫɢɬɟɬɨɜ V, / I II e, 1 , –1 2 K –1 , n n 50 5 198 99 99 1,0 946 946 50 15 193 116 77 1,5 738 1107 50 45 177 127 51 2,5 484 1209 60 5 238 119 119 1,0 1135 1135 60 15 232 139 93 1,5 885 1328 60 45 213 152 61 2,5 581 1451 70 5 277 139 139 1,0 1324 1324 III 70 15 270 162 108 1,5 1033 1549 70 45 248 177 2,5 677 1693 71 D, 500 ȼɵɜɨɞɵ. : 1) , ; 2) K e sin t ( ), t – 3) ( . 8) , K e, ; , 11 31 ; 163 4) . - , ; 1 K > 1; 5) 2 6) ; 7) , 3000 8) / 11 31 ( ; . 9) - . , , . . - . . . : ; ; . : , , ( , , , , .). . - . . 164 – , - – , K = e sin t ( , ), . t – . ( , , ), - . 1 2 K > 1. . - , , - . *** Length cutting of wood in circular saws is very important for woodworking industry. Therefore, the study and improvement of this process is necessary for increasing circular machine efficiency. Circular saws have many advantages as compared to frame and belt saws. But during the operation they demonstrate some disadvantages. They are: loss of stability, labour intensiveness when getting ready for work, malfunction of the normal process of chip formation and chip removal from kerf at high length of stroke. There are several ways of increasing stability of circular saws in wood sawing. They are increasing the disc thickness, fogging, rolling and changing the saw design (making in saw blades radial and tangential slits of various shapes; square and elliptical saws). To ensure the circular saws stability, improvement formation and removal of chip we have developed a new method. It’s based on the principle of circular saw differential motion. Circular saw makes a plane-parallel motion with vibrations in the plane of rotation when running planetary gear. Circular saw moves in a complex way. The resulting movement of the saw is composed of two rotational motions around parallel axes. One of them is the axis of saw shaft; the other is an eccentric tail axis, which set the saw blade. The cut pattern is a cycloid. Each loop of it is displaced vertically by an amount = ∙ sin , mm, where ωt – angel angle of shaft rotation. When the eccentricity increases, the curvature of the cycloid increases as well, which leads to a change in the incidence angle. And the cutting speed increases as well as feed per revolution of the saw. To improve the quality of chip formation and cutting surface a saw has to perform a few turns on the cutting arc per revolution of a saw shaft. There is an overlapping of cut patterns for the neighboring teeth on cutting arc when saw makes a differential motion. The cutting arc is divided into several sections, which helps to improve the process of chip formation and chip removal from the kerf. 165