РАЗРАБОТКА МАТЕМАТИЧЕСКОГО ОПИСАНИЯ ВНУТРЕННЕГО

реклама
531/534:[57+61]
. .
,
. .
A.A. Zaborskikh, V.M. Tverier
Perm National Research Polytechnic University
DEVELOPMENT OF MATHEMATICAL DESCRIPTION
OF THE INTENAL STRUCTURE OF CANCELLOUS BONE
.
,
.
;
(fabric tensor).
,
.
:
,
(
,
)
,
,
,
.
Consideration of structural features of the dentofacial system units is one of the main problems of
contemporary dental biomechanics. Heterogeneity of spongy structure can be described by methods
of quantitative stereology. At the same time, structural bone tissue features are described by means of
the fabric tensor . The measuring procedure for stereological investigations is analyzed. Properties
of fabric tensor by constructing it for a sample of cancellous bone, carved out of the femoral
head of human was investigated.
Keywords: biomechanical modelling, Wolff’s law, bone tissue structure, cancellous bone tissue,
fabric tensor, ellipse structure.
200
,
158
,
.
(substantia compacta)
.
(substantia spongiosa)
,
,
-
.
.
,
,
-
[1].
.
,
[2].
,
,
,
,
,
,
.
-
,
,
,
,
,
-
.
(
)
.
.
-
:
,
[2].
.
.
-
,
, ,
[3–9].
,
-
,
,
[10–12].
.
-
Image Tool
.
.
:
.
(
L.
)
.
L
-
.
. Underwood [6],
–
159
,
.
L
(
. 1.
-
L
,
( . 1).
Ab.
I( ).
–
–
.
[13]
,
;
,
–
)
-
L b ( θ ) = 2 ∑ AAb ,
I ( θ)
l
l–
–
,
Lb( )
;
; I( ) –
Ab –
.
-
Lb( ),
.
-
2
 1 
mαα + mββ mαα − mββ
+
cos 2θ + mαβ sin 2θ,

 =
L
θ
2
2
(
)
b


g
Harrigan
(
,
.
(1).
Mann
,
)
:
!)
eg
e
,
1984 . [14],
,
2
 1 

 = n ⋅ M ⋅ n,
 L b ( θ) 
160
(1)
,
-
(
Lb
-
n–
–
-
n = cos θeα + sin θeβ ,
,
.
:
mgg, m , mg
,
 m11
M =  m12
 m13
m13 
m23  .
m33 
m12
m22
m23
Whitehouse (1974) [15], Harrigan
,
[18].
[17]
Mann (1984) [16], Turner (1987)
,
,
[12]
.
(
Lb( )
-
)
.
1986 . Cowin
,
,
.
,
:
(
)
1
2
= M −1 .
,
H
,
,
.
.
R
def
α=
mαα + mββ
2
def
, β=
mαα − mββ
2
def
, γ =mαβ ,
1
2
α+c
R=
 .
α−c
161
,
,
 mαα
M =
 mαβ
)
mgg, m
Lb( )
mαβ 
.
mββ 
M
(
,
(1)
mg [19].
(1)
f( ),
-
,
2
 1 
f ( θ) = 
.
 L b ( θ ) 


.
:
def
-
def
f l = f ( θl ) , ψ l = 2θl , l = 1, 2, 3,
fl –
-
l.
mgg, m
mg
-
:
mαα =
f 2 (1 − cos ψ1 ) − f1 (1 − cos ψ 2 )
  ψ + ψ2 

+ κ  ctg  1
 (1 − cos ψ1 ) − sin ψ1  , (2)
cos ψ 2 − cos ψ1
  2 

mββ =
f1 (1 + cos ψ 2 ) − f 2 (1 + cos ψ1 )
  ψ + ψ2 

− κ  ctg  1
 (1 + cos ψ1 ) + sin ψ1  , (3)
cos ψ 2 − cos ψ1
2

 

mαβ = κ.
,
def
κ=
k–
,
:
162
(4)
,
f 3 − k ⋅ f 2 + f1 ( k − 1)
,
sin ψ 3 − k ⋅ sin ψ 2 + sin ψ1 ( k − 1)
-
cos ψ 3 − cos ψ1
.
cos ψ 2 − cos ψ1
def
k=
sin ( ψ1 − ψ 2 ) + sin ( ψ 2 − ψ 3 ) + sin ( ψ 3 − ψ1 )
≠ 0.
2 f1 f 2 f 3
:
,
1
= 0°,
2 = 120°
3
= 240°.
(2)–(4)
:
mαα = f1 ,
mββ =
1
( 2 ⋅ ( f 2 + f3 ) − f1 ) ,
3
3
( f3 − f 2 ) ,
3
mαβ =
k = 1.
f1 > 0,
(
)
2 ( f1 f 2 + f 2 f3 + f1 f3 ) > f12 + f 22 + f32 .
(
,
),
-
,
[20].
,
(
,
, . . )
= H (d, N,
d, N
,
–
(
,
)
-
),
,
.
,
-
.
163
,
.
[21] (
. 2).
-
600 °
4 .
-
Image Tool.
(
. 3).
,
.
. 2.
[22]
(
(
. 3.
164
-
. 5).
. 4.
. 4),
-
. 5.
–
; –
; –
;
:
–
–
;
165
,
,
-
.
,
,
.
–
.
.
-
,
.
,
-
[23–25].
1.
: . 1 /
. .
.–
:
, 1973. – 315 .
2. Martin R.B., Burr D.B., Sharkey N.A. Skeletal tissue mechanics. –
2nd edition. – New York: Springer-Verlag, 1998. – 392 p.
3.
. .
. – .:
,
1958. – 446 .
4. Lloyd E., Hodges D. Quantitative characterisation of bone. A computer
analysis of microradiographs // J. Clin. Orthop. – 1971. – Vol. 78. – P. 230–250.
5. Underwood E. Quantitative stereology. – Mass.: Addision Wesley,
1970. – 274 .
6. Whitehouse W.J., Dyson E.D., Jakcson K.C. The scanning electron
microscope in studies of trabecular bone in a human vertebral body // J. Anat. –
1971. – Vol. 108. – P. 481–496.
7. Whitehouse W.J. The quantitative morphology of anisotropic trabecular
bone // J. Microscopy. – 1974. – Vol. 101. – P. 153–168.
8. Whitehouse W.J. A stereological method for calculating the internal surface areas in structures which have become anisotropic as the result of linear expansions or contractions // J. Microscopy. – 1974. – Vol. 101. – P. 169–176.
9. Whitehouse W.J., Dyson E.D. Scanning electron microscope studies of
trabecular bone in the proximal end of the human femur // J. Anat. – 1974. – Vol.
118. – P. 417–444.
10. Cowin S.C. Fabric dependence of an anisotropic strength criterion //
J. Mech. Materials. – 1986. – Vol. 5. – P. 251–260.
166
11. Cowin S.C. Bone Mechanics Handbook. – 2nd edition. – New York: CRC
Press, 2001.
12.
. .
. .
:
. 1. – .:
«
», 1998. – 463 .
13. Turner C.H., Cowin S.C. On the dependence of elastic constants of an
anisotropic porous material upon porosity and fabric // J. Mater. Sci. – 1987. – Vol.
22. – P. 3178–3184.
14. Harrigan T.P., Mann R.W. Characterization of microstructural anisotropy
in orthotropic materials using a second rank tensor // J. Mater. Sci. – 1984. –
Vol. 19. – P. 761–767.
15. Whitehouse W.J. A stereological method for calculating the internal surface areas in structures which have become anisotropic as the result of linear expansions or contractions // J. Microscopy. – 1974. – Vol. 101. – P. 169–176.
16. Cowin S.C., Mehrabadi M.M. Identification of the elastic symmetry of
bone and other materials // J. Biomechanics. – 1989. – Vol. 22. – P. 503–515.
17. Telega J.J., Jemiolo S. Fabric tensor in bone mechanics // J. Engineering
Transactions. – 1998. – Vol. 46. – P. 3–26.
18. Fabric and elastic principal directions of cancellous bone are closely related / A. Odgaard, J. Kabel, B. van Rietbergen, M. Dalstra, R. Huiskes //
J. Biomechanics. – 1997. – Vol. 30. – P. 487–495.
19.
/ . .
, . .
, . .
,
. . , . .
//
. – 2007. –
. 11, ヽ 1. – . 9–24.
20. Wolff J. Das Gesetz der Transformation der Knochen. – Berlin: Hirshwald, 1892.
. .,
. .,
. .
21.
//
. – 2010. –
. 14, ヽ 4. – . 7–16.
. .,
. .,
. .
22.
//
.
.
. – 2007. – ヽ 1. –
. 3–11.
23.
/
. .
, . .
, . .
, . . //
. – 2004. – . 8, ヽ 4. – . 15–26.
167
24.
, . .,
.
.,
. .
. – 2006. –
//
ヽ 1. – . 9–13.
25.
,
. .,
.
.,
. .
. – 2005. – . 9, ヽ 3. – . 9–15.
. 10,
//
18.10.2012
–
,
,
,
-11, e-mail: [email protected].
,
168
–
, -mail: [email protected].
,
,
Скачать