Узнай свой собственный коэффициент интеллекта

реклама
Узнай свой собственный коэффициент интеллекта / Айзенк Г. Дж. - Б. м.: Ай Кью, 1993. - 170 с.:
ил.
ISBN 5861150079: 3.100.
УДК 159.9.07
1. психология. 2. тесты. 3. интеллект. 4. коэффициент интеллекта
Книга известного английского психолога, автора семисот научных статей и более тридцати
книг, профессора Лондонского университета Г.Дж.Айзенка "Узнай свой собственный
коэффициент интеллекта" дает возможность любому человеку с достаточным интеллектом, следуя
приведенным инструкциям, получить довольно точную меру собственного коэффициента
интеллекта. Книга включает в себя введение, объясняющее сущность КИ, способы его
определения и ограничения его применения; восемь тестов для определения КИ, а также ответы и
объяснения.
Книга Г.Дж.Айзенка может использоваться как для измерения собственного коэффициента
интеллекта с целью "Познать самого себя!", так и для конкурсного тестирования при приеме на
работу и в учебные заведения.
© H.J. Eysenck, 1962
© PENGUIN BOOKS
Н.А. Журавлев, перевод с английского, 1993 г.
Редактор русского перевода Котляр И.Б.
3
СОДЕРЖАНИЕ
ВВЕДЕНИЕ .............................................................................................................. 5
Коэффициенты интеллекта и измерение интеллекта ....................................... 5
КАК ИЗМЕРИТЬ СВОЙ СОБСТВЕННЫЙ КИ ................................................. 21
ИНСТРУКЦИИ ...................................................................................................... 23
ПЕРВЫЙ ТЕСТ ..................................................................................................... 24
ВТОРОЙ ТЕСТ ...................................................................................................... 31
ТРЕТИЙ ТЕСТ....................................................................................................... 37
ЧЕТВЕРТЫЙ ТЕСТ .............................................................................................. 44
ПЯТЫЙ ТЕСТ........................................................................................................ 50
ШЕСТОЙ ТЕСТ..................................................................................................... 56
ВОСЬМОЙ ТЕСТ .................................................................................................. 68
ОТВЕТЫ И РАЗЪЯСНЕНИЯ .............................................................................. 74
ПЕРВЫЙ ТЕСТ .................................................................................................. 74
ВТОРОЙ ТЕСТ ................................................................................................... 76
ТРЕТИЙ ТЕСТ .................................................................................................... 78
ЧЕТВЕРТЫЙ ТЕСТ ........................................................................................... 80
ПЯТЫЙ ТЕСТ ..................................................................................................... 82
ШЕСТОЙ ТЕСТ .................................................................................................. 84
СЕДЬМОЙ ТЕСТ................................................................................................ 86
ВОСЬМОЙ ТЕСТ ............................................................................................... 88
Преобразование очков в КИ ................................................................................. 90
4
ВВЕДЕНИЕ
Коэффициенты интеллекта и измерение интеллекта
"Познай сам себя!" был одним из лозунгов, которые древние греки завещали нам, и хотя
такое знание не всегда может быть настолько выгодным и полезным, как верили древние греки и
верят современные психоаналитики, тем не менее очевидно, что большинство людей проявляет
повышенный интерес к своей собственной личности, темпераменту,, интеллекту, характерным
чертам, способностям, комплексам и тому подобному. Я часто читал лекции о природе и
измерении интеллекта непрофессиональным аудиториям и почти всегда замечал их
разочарование, когда говорил им, что нет простого и прямого способа, с помощью которого они
могли бы измерить свой собственный КИ. Эта книга предназначена для того, чтобы исправить
такое положение дел и дать возможность любому человеку с достаточным интеллектом, следуя
приведенным инструкциям, получить довольно точную меру его или ее коэффициента интеллекта.
Делая это возможным, книга может внести некоторый вклад в реализацию заповеди,
процитированной в начале этого абзаца.
Однако, перед тем как пуститься в это предприятие, читателю можно настоятельно
порекомендовать дочитать до конца эту главу, где кратко и, я надеюсь, понятно объясняется, чем
именно является КИ, как он определяется, что под ним подразумевается и каким ограничениям и
критике подвержены его применения. Недостаток знаний, о котором мы говорили, является
опасным, а обладание этой книгой превратит читателя в опытного психолога в такой же степени,
как покупка термометра превратит его во врача. Тем не менее, знание того, есть у человека жар
или нет, может представлять интерес и важность, и ясно, что владение термометром может помочь
в ответе на этот вопрос, даже если его владелец не получил медицинской подготовки.
Я думаю, что при обсуждении вопроса об измерении интеллекта необходимо прежде всего
развеять одно широко распространенное заблуждение. Часто полагают, что тесты интеллекта
подготовлены и составлены в соответствии с логическими выводами из строгой научной теории;
однако, многие считают, что хотя "научное" измерение интеллекта может выполняться, его
практическое значение очень мало, в особенности из-за определенных трудностей, свойственных
переходу из "башни из слоновой кости" на рыночную площадь, и подозрений в неприменимости
психологической науки к практическим проблемам повседневной жизни. В действительности
ситуация прямо противоположная. Тесты интеллекта не основаны на очень строгих научных
принципах, и среди специалистов нет общего согласия относительно природы интеллекта.
Дискуссии по этому вопросу были очень популярны в 20-е и 30-е годы, но они почти полностью
прекратились в настоящее время, поскольку стало очевидным, что они были весьма
многословными и не приводили к какому-либо разумному решению. С другой стороны, тесты
интеллекта с самого начала оказались весьма успешными в практическом применении; мы вкратце
рассмотрим, что имеем в виду, когда говорим, что тест интеллекта "успешный", но доказательства
этого настолько бесспорные, что ни один человек, знакомый даже с небольшой их частью, не
сочтет их преувеличением.
В какой-то степени эти два явно противоречивых факта - тестирование интеллекта не имеет
твердой научной базы и тестирование интеллекта имеет большой успех в практических
применениях - в действительности дополняют друг друга. Поскольку тесты интеллекта, впервые
разработанные в начале нашего столетия, работали достаточно хорошо, когда применялись для
решения различных практических проблем, то интересующиеся этой темой психологи стали
склоняться к превращению в технологов, стремящихся эксплуатировать и совершенствовать эти
средства с большей энергией, чем ученые стремились провести необходимые фундаментальные
исследования, большинство из которых еще предстоит выполнить. Разумеется, общество, всегда
заинтересованное в немедленном применении технологических достижений и не интересующееся
чистой наукой, должно нести свою долю ответственности за это неправильное положение дел.
Всегда было намного легче получить деньги на технологические исследования, цель которых
состоит в некотором улучшении существующего инструмента или в применении его к какой-либо
новой группе объектов, чем на проведение высокоабстрактной, сложной и не приносящей
немедленной пользы работы по созданию прочного научного обоснования измерения интеллекта.
Читателю может показаться удивительным, что интеллект можно успешно измерять при
отсутствии прочной теоретической основы. Чтобы ответить на это, можно вернуться к аналогии с
5
термометром, использованной выше. Измерение температуры связано с простым и очевидным
фактом, а именно, что наши органы чувств воспринимают различные значения температур в
диапазоне от очень низких, затем средних, и до очень высоких. Ясно, что субъективные оценки
такого рода не очень точны. Читатель может провести следующий опыт. Приготовьте три сосуда с
водой. Один из них наполните водой настолько горячей, чтобы ее можно было выдержать без
особо неприятных ощущений, другой сосуд заполните водой, близкой к точке замерзания, средний
заполните тепловатой водой. Если читатель теперь погрузит на одну минуту левую руку в горячую
воду, а правую руку в холодную, а затем переместит обе руки одновременно в третий сосуд, то он
почувствует, что его правой руке в тепловатой воде станет нестерпимо горячо, в то время как
левой руке будет очень холодно. Таким образом ясно, что одна и та же температура может
показаться как высокой, так и низкой в зависимости от непосредственно предшествующего опыта.
Читатель может также попробовать провести другой опыт. Пригласите американского приятеля
зимой в дом, в котором, как он наивно полагает, достаточно тепло. Вскоре читатель обнаружит,
что то, что для него тепло, чрезмерно холодно для его американского друга, обычно живущего в
помещении, нагретом до температуры на 10 - 15 градусов выше, чем обычно у нас.
Таким образом, мы начали с очень субъективного, но, тем не менее, реального явления,
которое может быть измерено очень и очень субъективно. Однако, такие измерения, сделанные на
основе реакции живых существ, могут быть удивительно точными, о чем свидетельствует закон
Долбера. Этот закон, сформулированный в 1897 году физиком Долбером, экспериментировавшим
с белыми древесными сверчками, звучит примерно так: "Подсчитайте число стрекотаний, которое
это насекомое производит за пятнадцать секунд, и прибавьте сорок; сумма равна температуре,
измеренной в это время, в градусах Фаренгейта .
Однако, белые древесные сверчки редки, их трудно поймать и их нелегко встроить в общую
систему физических законов, на которой базируется ваша система измерений. Поэтому
изобретение термометра было признано всеми как весьма значительное достижение, и люди
отказались от измерения температуры на основе своих собственных реакций на горячее и
холодное, а вместо этого стали пользоваться сжатием и расширением различных веществ. Важно
помнить также следующее. Не существует однозначной связи между показаниями термометра и
субъективными индивидуальными ощущениями. Если мы будет считать последнее в качестве
критерия, а первое в качестве теста, достоверность которого мы хотим установить, нам следует
сделать заключение, что тест оставляет желать много лучшего. В случае с термометром,
разумеется, мы довольно четко понимаем, что причиной неоднозначности связи является
ошибочный критерий, т.е. отклонения и ошибки в наших субъективных ощущениях, а не
недостатки самого теста; во многом это справедливо при сравнении результатов теста интеллекта
с нашим субъективным мнением о чьем-либо интеллекте. Рассогласования могут возникать из-за
недостатков теста, но скорее всего они возникают из-за ошибок наших субъективных оценок.
Стоит обратить внимание также на следующее. В то время, когда был изобретен термометр,
науке мало что было известно о природе теплоты и ее измерения. Измерение температуры
производилось не на основе развитого теоретического анализа теплоты; более того, современная
теория теплоты была во многом основана на результатах, полученных при использовании
термометра и других измерительных приборов. Этот факт следует хорошо помнить многим
людям, которые придерживаются весьма строгой точки зрения на научные достижения и ничего
не будут делать с тестами интеллекта, пока у нас не будет строгой теории о его природе. Это
происходит из-за недопонимания сущности научных достижении по какому-либо предмету;
теория имеет тенденцию стать конечным продуктом и предметом славы в результате длительного
ряда исследований, начинающихся с новых открытий и новых измерительных инструментов.
Изобретение теста интеллекта в должное время приведет к лучшему пониманию мыслительного
процесса, и это во многом уже произошло. Одно это может вызвать справедливые нарекания на то,
что на практике психологи уделяли слишком мало времени научному применению этого нового
изобретения, в отличие от его коммерческого и прикладного использования.
Впервые тестирование стало применяться менее столетия назад. Психология является
ребенком двух весьма несхожих родителей: философии, в которой возникли многие из ее первых
задач, и физиологии, в которой были предложены многие из ее первых методов. Философы всегда
интересовались познавательными силами разума, т.е. такими силами, которые имеют отношение к
интеллектуальной деятельности, мышлению и восприятию внешнего мира, и похоже, что именно
первые психологи сделали физиологическое предположение о том, что относительная скорость
6
нервных импульсов в центральной нервной системе может быть причиной различий в
интеллектуальных способностях. Был проведен ряд исследований, включая измерение скорости
реакции в коленном рефлексе, т.е. скорости, с которой нога выпрямляется, когда пониже коленной
чашечки ударяют резиновым молоточком. Результаты этой работы были в большинстве
отрицательными: неврологические различия исследованного вида не позволили отличить
высокоинтеллектуальных студентов от умственно отсталых людей; возможно, используемые
методы не были достаточно точными, чтобы обнаружить такие различия. Такой же результат был
получен при взвешивании и анатомировании мозга очень способных и очень глупых людей;
некоторые различия были обнаружены, но они были слишком неопределенными, чтобы считать
этот подход результативным. Наконец французский психолог Бине выдвинул идею, которая
оказалась не только правильным ответом, но сейчас представляется очевидной, а именно, что
умственные способности и функции должны измеряться при помощи тестов ума, в явном виде
учитывающих эти способности и функции. В 1904 году министерство общественного образования
в Париже создало комиссию по изучению методов обучения умственно неполноценных детей,
посещающих парижские школы, и в ответ на этот практический запрос Бине подготовил свою
первую шкалу. Он создал серию из тридцати задач, или тестов, которые предназначались для того,
чтобы задействовать здравомыслие, понятливость и рассудительность. Задачи имели такую
природу, что их можно было решить, не имея специальной школьной подготовки. Так, например,
ребенку могла предлагаться карточка, на которой была нарисована окружность с разрезом; ему
давали карандаш и говорили: "Это - сад, в котором ты потерял свой мяч; разрез -это вход. С
помощью карандаша покажи, как бы ты стал искать свой мяч." Любой систематический поиск, т.е.
сужающиеся круги или переход вверх и вниз по параллельным направлениям считался
правильным решением, в то время как неопределенные блуждания считались неправильным
ответом.
Задачи значительно различались по сложности, и Бине рассортировал их от простейших до
наиболее сложных, подсчитав процент правильных ответов, даваемых различными группами
детей. Этот подход в итоге привел его к концепции ментального возраста, в соответствии с
которой он группировал на трехлетнем уровне все тесты, обычно успешно выполняемые
трехлетними детьми, на четырехлетний уровень - все тесты, обычно выполняемые
четырехлетними и т.д. Проделав это, он смог присваивать ментальный возраст любому ребенку,
который выполнял тест, отмечая высший уровень сложности, на котором тот добивался успеха.
Так, про ребенка, который прошел восьмилетний тест, но потерпел неудачу на девятилетнем тесте,
говорилось, что у него восьмилетний ментальный возраст, независимо от его хронологического
возраста. В учет принимались, разумеется, дополнительно выполняемые тесты, поэтому ребенок,
который проходил все тесты восьмилетнего уровня и половину для девятилетнего уровня, имел
ментальный возраст девять с половиной лет. Вначале исследователи выражали ум или глупость
ребенка как разницу между его хронологическим возрастом и ментальным. Поэтому десятилетний
ребенок с ментальным возрастом восьми лет считался отстающим на два года, а шестилетний
ребенок с ментальным возрастом девять лет считался имеющим опережающее развитие в три года.
Это был не очень хороший способ выражения умственного превосходства или умственной
отсталости по двум причинам. В возрасте двух лет опережающее развитие в два года бывает
крайне редко и является весьма выдающимся достижением; достигнуть такого отличия может
лишь один ребенок из более чем 50 000. Наличие опережающего развития в два года в возрасте
тринадцати или четырнадцати лет малозаметно и стоит немногого. Поэтому ясно, что необходима
более однородная мера. Кроме того, если вы повторите измерение детей, то обнаружите, что
количество лет опережения или отставания увеличивается с их возрастом. Ребенок, который имел
двухлетнее опережающее развитие в возрасте два года, должен был бы иметь в возрасте восьми
лет опережающее развитие около восьми лет. Постоянным остается отношение ментального
возраста к хронологическому, а не разница между ними, и это отношение (обычно умножаемое на
100, чтобы удалить дробную часть) называется коэффициентом интеллекта. Сравним, например,
двух детей с ментальным возрастом восемь у каждого. Первый имеет хронологический возраст
шесть лет и его КИ, следовательно, будет 133; у второго хронологический возраст двенадцать лет
и его КИ, следовательно, равен 67. КИ быстро приобрел популярность и, несмотря на его многие
несовершенства, остается одним из наиболее широко известных психологических понятий у
учителей, психиаторов, социологов и людей других профессий, до некоторой степени связанных с
психологией.
7
Что означают два различных КИ с социальной точки зрения и насколько часто встречаются
люди с КИ, равным 140 или, например, 80? Рассмотрим сначала второй вопрос. В типичных
современных тестах интеллекта можно обнаружить, что около 50 процентов населения имеют КИ
между 90 и 110, 25 процентов выше и 25 процентов ниже. (Разумеется, отметка 100 является по
определению средней для населения.) Выше этой центральной группы находятся около 14,5
процента с КИ от 110 до 120, 7 процентов с КИ между 120 и 130,3 процента с КИ между 130 и 140
и только примерно 0,5 процента с КИ выше 140. У студентов университетов можно ожидать КИ в
среднем около 125. Для получения первой степени или эквивалентного отличия студент, вероятно,
должен иметь КИ по меньшей мере от 135 до 140.
Если мы вернемся к уровню ниже среднего, то обнаружим дополняющую картину, где 14,5
процента имеют КИ между 80 и 90, 7 процентов имеют КИ между 70 и 80, а остальные - КИ ниже
этого уровня. На самом деле эта очень симметричная картина, дающая те же самые проценты
выше и ниже среднего уровня, несколько идеализирована; имеется небольшое число
метаболических и других нарушений, отрицательно влияющих на интеллект и увеличивающих
число людей с очень низким КИ, однако мы не будем уделять какого-либо внимания этой
малочисленной группе в нашей описательной схеме.
Люди с КИ ниже 70 иногда классифицируются в учебниках как умственно неполноценные,
и внутри этой группы имеется еще более точное деление на дебилов с КИ между 50 и 70,
имбецилов с КИ между 25 и 70 и идиотов с КИ ниже 25. Дебилы, как считается, могут овладеть
трудовыми навыками и нормально вести себя под наблюдением. Имбецилы должны жить в
специальных медицинских учреждениях, но способны обслуживать сами себя и избегать простых
опасностей, в то время как идиоты не могут даже этого. На практике, однако, классификация
умственной неполноценности выполняется на основе более сложных критериев, чем простой тест
КИ и в любом случае мало связана с интеллектом. Когда больные в таких медицинских
учреждениях были протестированы, оказалось, что у некоторых из них КИ достигал 125 и хотя во
многих случаях это могло происходить из-за ошибок при первом тестировании, которое позже
проводилось в неизмененном виде медицинским персоналом, имеющим слабую подготовку в
организации тестов интеллекта и низкие знания об интерпретации результатов, тем не менее
вопрос остается в том, что понятие умственной недостаточности в его правовом аспекте только
формально относится к интеллекту.
Мы можем ожидать, что тесты интеллекта выявят различия в умственных способностях у
людей, занятых различными формами деятельности, в зависимости от требований к интеллекту со
стороны этих видов деятельности.
Было проведено множество исследований на эту тему, результаты некоторых из них
приведены ниже в таблице для восьми различных социальных слоев. Они приведены в графе
"Родители". (Есть аналогичная графа для "детей". Это не означает, что эти конкретные дети имеют
этих конкретных родителей, а просто что дети имеют родителей в той же социальной группе.)
КИ ГРУПП ИЗ ВОСЬМИ СОЦИАЛЬНЫХ СЛОЕВ
Профессиональная группа
КИ
Родители
Дети
1. Администраторы и профессионалы
высшей квалификации
153
120
2. Профессионалы менее высокой
квалификации
132
115
3. Высококвалифицированные
специалисты; священники
4. Квалифицированные специалисты
117
110
109
105
5. Специалисты средней квалификации
98
97
6. Неквалифицированные рабочие
7. Временные рабочие
87
82
92
89
8
8. Пациенты психобольниц
57
67
Эти цифры взяты из таблицы, опубликованной сэром Сирилом Бертом.
Рассмотрим цифры, приведенные для родителей; тот факт, что цифры для детей совсем
другие, будет обсуждаться позже. Видно, что КИ постепенно убывает от среднего значения 153
для группы администраторов и профессионалов высшей квалификации до менее чем 80 для
неквалифицированных и временных рабочих. Это, разумеется, средние цифры для всех групп;
обычно между членами разных групп имеется значительное перекрытие. Умнейший мусорщик,
несомненно, оценивается много выше, чем глупейший юрист; умнейший бродяга - выше
глупейшего врача; умнейший матрос - выше глупейшего капитана. Общая взаимосвязь между
интеллектом и социальным положением выражена довольно сильно, но далека от абсолютности;
если вы попытаетесь предсказать интеллект человека, зная кем он работает, то вы окажетесь
правы чаще, чем если бы вы делали случайные предположения, но вы ошибетесь столь часто, что
все это занятие окажется бессмысленным.
Об интеллекте и его "значении" с точки зрения профессии и социального положения сказано
достаточно.
Теперь нам следует рассмотреть некоторые затруднения, связанные с понятием КИ. Первым
из них является проблема постоянства. Мы можем использовать КИ двумя путями. Можем
задаться вопросом: есть двое детей, какой из них имеет более высокий КИ и, следовательно, более
пригоден для какой-нибудь конкретной сложной работы, чем другой? В этом случае нам
следовало бы рассматривать КИ как меру способностей в данный момент времени, независимо от
их будущих применений. Мы можем, однако, использовать КИ совершенно по-другому и задаться
вопросом: какой из этих детей имеет более высокий КИ? Мы пошлем его учиться в
специализированную среднюю школу, а другой будет учиться в средней школе без преподавания
классических языков. Поэтому мы используем КИ как частично постоянную характеристику
ребенка, полагая, что, поскольку он умнее сейчас, то останется умнее и на всю оставшуюся жизнь.
Если мы делаем это второе предположение, которое явно подразумевается в таких процедурах, как
экзамен 11+, то мы должны быть способны доказать, что КИ остается относительно постоянным
от года к году, т.е. что у ребенка, который имел КИ равный 120, когда он сдал экзамен 11+, этот
показатель не снизится до 80, когда он окончит школу.
Проблема определения постоянства КИ очень сложна, однако, в конечном счете она
сводится к простому сравнению КИ. полученного ребенком в детском возрасте, и КИ,
полученного им же в более позднем возрасте. На это сравнение влияют несколько факторов.
Прежде всего оно зависит от возраста ребенка при первом тестировании. КИ, полученные в очень
юном возрасте, практически не имеют смысла, и за исключением случаев серьезных умственных
дефектов, КИ, полученные до шести лет, используются очень редко. Связь между одним набором
переменных и другим обычно выражается через коэффициент корреляции, который достигает
значения единицы при полном соответствии, и значения нуль, когда нет даже случайного
соответствия. Когда КИ, полученные детьми в возрасте четырех лет или около этого,
сравниваются с их же КИ, когда они подросли, обычно обнаруживается, что корреляция очень
низка и обычно близка к нулю, поэтому предсказание невозможно. Поэтому шесть лет, вероятно самый низкий возраст, в котором тесты КИ должны проводиться со всей серьезностью, но даже в
этом возрасте их не следует воспринимать слишком серьезно!
Второй переменной, которую мы будем рассматривать, является тот факт, что соответствие
между результатами начального и конечного тестирования уменьшается с увеличением времени
между этими двумя тестами. Похоже, что здесь имеется закономерная связь. Если начальное и
конечное тестирования очень близки по времени, т.е. разделены неделей или менее, то корреляция
будет близка к 0,95. Для каждого прошедшего года он уменьшается на 0,04 пункта вплоть до
возраста примерно 16 лет.
Это приводит нас к третьему фактору, которым является окончательный возраст. К тому
времени, когда человек достигает зрелости, его КИ в значительной степени стабилизируется и
маловероятно, что он может сильно измениться (при условии, что его центральная нервная
система не подвергалась болезням). Поэтому корреляция между начальным и конечным тестами,
если оба проводились примерно после 20 лет, стремится к отметке примерно в 0,8 независимо от
9
промежутка времени между ними.
В рамках этого обсуждения становится довольно ясным, что многие участники обсуждения
методики 11+ стоят на позициях, которые не подтверждаются фактами. Сторонники современных
методик неправы, когда считают, что КИ одиннадцатилетних строго постоянен; существуют
весьма определенные изменения, которые, вероятно, имеют место, и по крайней мере для
некоторых детей эти изменения могут быть весьма значительными. Те же, кто не приемлет
методику 11+ на том основании, что интеллект ребенка к одиннадцати годам недостаточно
установился, чтобы было возможным его предсказание, также неправы, поскольку предсказание,
хотя и несовершенное, все же возможно до такой степени и с такой точностью, какая не часто
достигается непосвященными. Как часто бывает, обе стороны стараются обсуждать вопрос с точки
зрения своих предубеждений, а не на основании установленных данных.
Здесь имеет смысл проиллюстрировать замечания, которые я сделал в начале этой главы в
отношении технологического использования тестов интеллекта при отсутствии фундаментального
научного обоснования. Тесты проводятся и обосновываются с точки зрения первого способа их
применения, о котором я упоминал один или два абзаца выше, т.е. с точки зрения сравнения
мальчиков Джонни и Джимми в одно и то же время и в одном и том же месте. Нет достаточных
причин считать, что конкретные задачи тестов, которые соответствуют этой цели, должны также
лучшим образом подходить для предсказания интеллектов Джонни и Джимми относительно друг
друга через десять лет. И действительно, в одном или двух небольших исследованиях у групп
детей на протяжении периода времени, пока они не становились взрослыми, измерялись КИ и
сравнивались предсказывающая способность каждого элемента теста с его пригодностью для
определения текущего интеллектуального состояния ребенка. Вывод заключался в том, что между
этими двумя понятиями взаимосвязь была небольшая, т.е. элемент, который служил хорошей
мерой интеллекта ребенка в данный момент, может служить хорошей мерой его будущих
способностей, а может и нет. Если мы хотим использовать наши тесты интеллекта как меру
будущих способностей так же, как настоящих, т.е. так же, как явно предполагается в методике
11+, то очевидно, что эту проблему следует глубоко исследовать иразработать совершенно новые
наборы тестов, которые обеспечили бы больше точности предсказания, чем это делают
используемые в настоящее время тесты. Насколько мне известно, таких исследований не
проводилось и попыток улучшения существующих тестов в этом направлении не было сделано.
Пока работы по этому вопросу не начнутся, мы вряд ли получим какие-либо сведения о причинах
того, почему у некоторых детей КИ возрастает, а у других убывает, как эти изменения можно
предсказать и можем ли мы что-нибудь сделать, чтобы повлиять на них таким образом, чтобы
ускорить улучшение и уменьшить ухудшение.
Допуская, что КИ достаточно постоянный при некоторых строго определенных условиях,
мы сталкиваемся со значительной трудностью в определении КИ детей старшего возраста и
взрослых. Увеличение и уменьшение умственных способностей с возрастом изучалось многими
психологами и результаты выглядят примерно так, как показано на графиках на рис. 1. Довольно
быстрый рост наблюдается от рождения до двенадцати лет или около этого, затем рост
замедляется, достигает своего пика годам к пятнадцати, остается некоторое время на одном
уровне, а затем сокращается. Это средняя картина, но среднее может быть весьма обманчивым. У
людей с низким интеллектом, т.е. с КИ не выше 80, рост раньше приостанавливается, уменьшение
происходит раньше и оно более стремительное, чем у большой средней группы с КИ между 90 и
110. Наоборот, у людей с высоким КИ, т.е. с КИ 120 и выше более продолжительный рост и более
медленное уменьшение. Видно, что рост интеллекта почти линейный только между возрастами
шесть и двенадцать лет, и из этого следует в большинстве случаев, что мы не можем правильно
вычислить КИ за пределами двенадцати- или пятнадцатилетнего возраста.
Читателю это станет понятно, если он представит себе совершенно среднего человека, у
которого хронологический и ментальный возраст равны пятнадцати, что дает КИ, равный 100. Как
видно из рис. 1, его ментальный возраст не будет более увеличиваться, а останется примерно
постоянным. Его хронологический возраст, однако, будет увеличиваться и, когда он достигнет
тридцати, а ментальный возраст останется равным пятнадцати, КИ этого человека станет равным
50! В возрасте шестидесяти лет, когда ментальный возраст фактически уменьшается, а
хронологический возраст все еще увеличивается, его КИ стал бы равным примерно 20. Ясно, что
это бессмыслица, и КИ, определяемый как отношение ментального возраста к хронологическому,
неприменим после возраста двенадцати или пятнадцати лет. То, что мы сделали, чтобы избавиться
10
от этого затруднения,
преобразования.
представляет
собой
довольно
простой
статистический
прием
Рис. 1. Повышение и понижение умственных способностей с возрастом для групп людей: умных, средних и глупых.
Мы все так же предлагаем нашему испытуемому определенного вида тест интеллекта и все
так же подсчитываем число правильных ответов, полученных им. Затем находим среднее число
правильных ответов; это число, являющееся нормальной или средней реакцией для группы,
устанавливается в качестве КИ, равного 100, который, опять же по определению, является
средним или нормальным КИ для группы. Аналогичным способом мы отыскиваем пределы,
между которыми находятся 50 процентов оценок и идентифицируем их как КИ 90 и 110. Этот
процесс мы можем продолжить, чтобы согласовать распределение значений оценок с известным
распределением значений КИ до тех пор, пока мы не сможем выразить каждое значение оценки
как индивидуальную оценку КИ. Таким образом, присвоение КИ взрослому человеку является
своего рода игрой ума; тот КИ, о котором мы ему сообщаем, в действительности может им быть
лишь в том случае, если понятие КИ применимо к его возрасту. Существуют, разумеется, лучшие
статистические методы измерения относительных способностей человека, однако концепция КИ
стала настолько широко известной и ее смысл настолько хорошо понят психологами, что принятие
этих методов привело бы, возможно, к большим потерям, чем сохранение этого чисто
статистического представления. Теперь мы должны перейти к вопросу об обоснованности КИ как
меры интеллекта. Начнем с того, что удовлетворительного критерия фактически не существует.
Согласие между непрофессионалами по вопросу о природе интеллекта или приемлемых
доказательств его существования даже меньше, чем среди экспертов; в самом деле, если бы
существовал действительно удовлетворительный критерий, то тесты интеллекта были бы
совершенно лишними! Однако, грубо говоря, мы готовы согласиться с тем, что люди с высоким
интеллектом будут, при прочих равных условиях, иметь больший успех в интеллектуальных
задачах, т.е. задачах, включающих изучение взаимосвязанных новых фактов и принципов,
применение таких фактов и принципов к новым ситуациям, изобретение или открытие связей
между явлениями и другие аналогичные задачи. До некоторой степени (хотя, конечно, не в полной
мере) школы и университеты стараются ознакомить учеников и студентов с областями знании,
требующих использования таких способностей, а успех студентов частично измеряется с
помощью экзаменов. Понятно, разумеется, что успех на экзаменах определяется многими другими
факторами, а не только интеллектуальными способностями, и вряд ли успехи в школе и
университете полностью связаны с КИ: тем не менее, если не будет найдено никакой связи, то нам
следовало бы весьма скептически относиться к значению наших тестов.
Результаты очень большого числа тщательно спланированных исследований подтверждают
заключение о том, что тесты КИ, надлежащим образом составленные, проводимые и оцениваемые,
показывают значительное соответствие успехов ребенка в школе и юноши в университете.
Студенты, которые получили степень первого класса, обычно оцениваются примерно на десять
пунктов по КИ выше при поступлении в университет, чем студенты, получившие степени более
низких классов; успевающие студенты имеют обычно оценку примерно на пятнадцать пунктов
выше, чем студенты, которые не смогли получить никакой степени. Тесная связь, обнаруженная
между КИ и успехом в университете, до некоторой степени удивительна в свете того факта, что
полный диапазон способностей всех студентов очень сильно ограничен тем, что вряд ли ктонибудь с КИ менее 115 может быть принят в университет из-за весьма жесткой политики
11
предварительного отбора, принятой в университетах. Это означает, что различия в КИ между
студентами университета довольно незначительны, что затрудняет успешное предсказание. Тот
факт, что в этих условиях были получены очень высокие корреляции, является хорошим
показателем значимости тестов КИ как меры способностей. Этот успех следует сравнить с почти
неизменными неудачами, которые постигали традиционные методы отбора с помощью процедур
собеседования.
Неоднократно выяснялось, что практически нет связи между предсказанием успехов в учебе,
сделанным опытными преподавателями, проводящими собеседование без помощи тестов КИ, и
реальными успехами в учебе. Поэтому очевидно, что тесты КИ оказались успешными в измерении
чего-то существенного в той сфере, которая неясна даже опытным преподавателям, проводящим
собеседования и экспертам, которые посвятили много лет совершенствованию субъективных
способностей в оценке. Часто оспаривается утверждение, что мнение школьного учителя об
интеллекте школьника имеет большее значение, чем результаты экзаменов, однако, когда были
вычислены корреляции между оценками, выставленными школьными учителями, и тестами КИ,
оказалось, что они имеют тенденцию к довольно тесной связи. Интересно во всех этих случаях
изучить рассогласования, т.е. те случаи, когда тесты интеллекта и оценки школьного учителя или
тесты интеллекта и результаты экзаменов не соответствуют друг другу. Когда это происходит,
обычно выясняется, что расхождение происходит из-за одной или нескольких следующих причин:
(1) Мнение школьного учителя об интеллекте ребенка слишком сильно зависит от
способности или интереса ребенка к конкретному предмету, который преподает этот школьный
учитель. Часто это можно показать, сравнивая оценки, выставленные несколькими учителями
одним и тем же детям. Мальчик Джонни скорее всего будет высоко оценен своим учителем
английского языка, поскольку ему нравится этот предмет и он довольно силен в нем, но его
интеллект низко оценивается учителем математики, поскольку он не склонен к математике, питает
к ней отвращение и не силен в вычислениях. Напротив, Джимми, у которого КИ такой же, как у
Джонни, выше оценивается учителем математики и ниже учителем английского, поскольку ему
нравится обращаться с цифрами, но он не очень способный в языках. Тест интеллекта не
подвержен таким посторонним и не относящимся к делу соображениям и, как часто оказывалось,
его корреляция с оценками различных групп детей, сделанными различными учителями, была
выше, чем у этих оценок между собой. Самые высокие корреляции обычно получались при
сравнении результатов тестов КИ с оценками, выставленными группой учителей, в которых такие
индивидуальные симпатии и антипатии были исключены.
(2) Ребенок или студент может провалиться на экзамене не из-за недостатка интеллекта, а
из-за недостатка настойчивости. Ясно, что для овладения каким-либо предметом необходимы
определенные старания и нет оснований полагать, что умному ребенку будет необходимо
заниматься более энергично, чем довольно глупому. К счастью, можно объективно измерить
такую черту характера как настойчивость (это рассмотрено мной в книге "Смысл и бессмыслица в
психологии"), и результаты довольно ясно демонстрируют, что она действительно является
важным фактором, дополняющим интеллект и не зависимым от него. Тесты интеллекта часто
критикуют за то, что в них не уделяется внимания таким важным вещам как характер и личность,
а настойчивость часто упоминается как одно из качеств, определяющих успех. Однако, эти
возражения несправедливы. Вы не можете критиковать термометр за то, что он сообщает вам
только температуру пациента, а не его рост и вес; понятно, что ценность и полезность научного
измерительного прибора определяется той степенью точности, до которой он измеряет только
одну характеристику. Тест КИ измеряет интеллект, а если его используют для измерения других
качеств, таких как настойчивость, то следует считать, что он не соответствует своему
первоначальному назначению. Если мы хотим узнать о настойчивости человека, его склонности к
сильным желаниям и о других индивидуальных чертах, то нам не следует ожидать, что эту
информацию мы получим с помощью теста КИ. Если КИ действительно определяется
интеллектом, настойчивостью и целеустремленностью, тогда тот факт, что мальчик Джонни имел
КИ, равный 90, мог бы быть обусловлен тем, что он был очень глупым, но настойчивым и немного
целеустремленным или же тем, что он был очень умным, но не целеустремленным и недостаточно
настойчивым. Фактически это может быть обусловлено любым числом комбинаций этих
элементов, поэтому такая информация была бы почти бесполезной при отсутствии какого-либо
знания об этих трех качествах Джонни по отдельности. Если мы хотим узнать об интеллекте,
настойчивости и целеустремленности человека, то нам потребуются три меры, а не одна, поэтому
12
критиковать измерение интеллекта за то, что оно ничего не говорит нам о неинтеллектуальных
качествах, нет никаких оснований.
(3) Третий случай расхождений между мерой КИ и внешними критериями может относиться
к мотивации. Если мы можем подвести лошадь к воде, то мы можем также отправить ребенка в
школу, но как мы не можем заставить лошадь пить воду, так мы не можем заставить ребенка
учиться, если он этого не захочет. Иногда критики тестов КИ выдвигают аргумент, что Уинстон
Черчилль (и это только один пример) очень плохо учился в школе и очень медленно усваивал
знания; из этого делается вывод, что он мог бы иметь плохие результаты в тестах КИ, а то, что
впоследствии он продемонстрировал выдающиеся способности, опровергает значимость тестов.
Не говоря уже об абсурдности первой части вопроса, т.е. предположения, что он плохо бы
выполнял тесты, когда никаких тестов на самом деле не проводилось, этот аргумент не
выдерживает критики из-за того, что в нем подразумевается наличие мотивации в получении
школьного образования. Его автобиография явно противоречит этому предположению; в
действительности часто оказывается, особенно у очень способных детей, что изучение школьных
предметов по методике, подходящей для его класса со средним КИ, вызывает в них такое
возмущение, что они предпочитают идти своим собственным путем, читать то, что им интересно и
не уделять внимания тому, чему их учат. В этих условиях очень умный ребенок может плохо
сдавать экзамены и получить должное позже, когда способности и мотивация соединятся в
поисках интересной цели. Это, разумеется, происходит не всегда и существует очень много
способных людей, которые не имеют достижений из-за недостатка мотивации.
Таковы основные случаи расхождений между тестом и работоспособностью или между
тестом и оценкой, но, разумеется, существует неисчислимое множество причин, по которым
человек может не оправдать то, что от него ожидалось. Из картотеки студентов с очень высоким
КИ, которые не смогли получить степень, я выбрал в случайном порядке следующие дела. Т.С.:
КИ - 152, постоянно проваливался по курсу медицины. Когда он только поступил в университет,
умер его отец, и он должен был содержать себя сам; его мать и младшая сестра по ночам работали,
из-за чего у него оставалось слишком мало времени и сил на требующие значительной
аккуратности предметы. Д.Р. с КИ 146 был отчислен из колледжа, несмотря на превосходные
характеристики, поскольку он был уличен в краже денег у своих коллег-студентов. СБ. с КИ 161,
не смог завершить свой курс обучения, вместо этого убежав с женой своего профессора. Список
можно продолжать почти до бесконечности.
Люди с низкими КИ в целом плохо справляются с учебными и интеллектуальными
занятиями; эта закономерность весьма устойчивая. Причина, разумеется, в том, что интеллект
является необходимой предпосылкой успеха, и что никакая настойчивость или другое качество не
могут компенсировать недостаток способностей. Обратное, однако, неверно. Интеллект является
необходимым, но не достаточным условием успеха, поэтому студенты с высоким интеллектом
могут достичь успеха, а могут и не достичь в зависимости от обстоятельств, личных качеств,
степени мотивации и многих других неинтеллектуальных факторов. Некоторые из них, такие как
настойчивость, могут быть измерены, другие - нет, из-за того, что мы недостаточно продвинулись
в точности их измерения, или же из-за того, что в принципе маловероятно, что они могут когдалибо быть измерены. Поэтому существуют определенные ограничения на виды предсказания,
которое может быть сделано на основе тестов КИ, но тем не менее, когда они станут понятными,
станет легче оценить значение этих тестов.
Являются ли оценки учителей, успехи в школе и успехи в колледже единственными
критериями, которые могут применяться в тестах интеллекта? Ответ на этот вопрос определенно
отрицательный, хотя чем дальше мы отвлечемся от учебных занятий, тем больше возникает
сомнений, уместно ли задавать этот вопрос по отношению к интеллекту. Возможно, что наиболее
широкое распространение тесты интеллектуальных и других способностей получили в
вооруженных силах, где они уже используются в целях отбора. Эта работа началась в
Соединенных Штатах во время первой мировой войны и развивалась от использования
индивидуально подбираемых тестов Бине до групп тестов, таких как представленные в этой книге,
которые предлагались одновременно большим группам. Первоначальной целью этих тестов было
содействие в подборе офицеров и отсеивании умственно дефективных. Их успех был настолько
очевиден даже для консервативного военного сознания, что их использование распространилось
во всем западном мире, и до наших дней эти тесты используются в армии для отбора самых
разнообразных групп различных специалистов. Чтобы дать читателю представление о качестве
13
полученных результатов, я воспроизвожу на рис. 2 и 3 результаты двух крупномасштабных
исследовании, в которых принимало участие большое число людей, относящихся к выбору
кандидатов в офицеры и в пилоты. Оба исследования проводились в Соединенных Штатах во
время второй мировой войны и, в случае отбора пилотов, дополнительно использовались другие
тесты, отличные от тестов КИ, но вместе с ними образующие единый набор тестов, предлагаемый
кандидатам.
Эти диаграммы о многом говорят сами за себя. Из всех людей с оценкой 140 и выше по
общеармейскому классификационному тесту (ОКТ) более 90 процентов успешно прошли
приемную комиссию; среди тех, у кого оценка была 110 и ниже, менее 50 процентов были
приняты комиссией. В случае пилотов - из тех, кто помечен как "готовность к пилотированию 9".
т.е. тех, у кого были наивысшие оценки по комплексу тестов, только 4 процента были исключены
во время первичной подготовки пилотов; из тех, у кого "готовность к пилотированию 1", т.е. с тех,
у кого были наименьшие оценки по комплексу тестов, были исключены 77 процентов. Отметим
также, что в каждом случае наблюдается постепенное изменение от одной крайности к другой,
происходящее таким образом, что при увеличении результативности тестов уменьшается
вероятность неудачи.
Рис. 2. (Приводится с разрешения Б. Г. Боринга из книги "Психология для армейских служб".)
На читателя может произвести впечатление демонстрация такой определенной взаимосвязи,
но может и удивить, почему эта взаимосвязь не более тесная, чем показано на этих рисунках.
Ответ на этот вопрос во многом заключается в недостатках, связанных с критерием. Для
достижения более близких корреляций между тестом и критерием, критерий, также как и тест,
должен быть совершенным. В случае двух упомянутых выше исследований критерием был успех
в курсе специальной подготовки в одном случае и успех в первичной летной подготовке в другом.
Имеются достаточно веские доказательства, показывающие, что эти критерии были, вне сомнения,
совершенными, но сопровождались серьезными ошибками. Так, кандидат мог быть зачислен в
офицеры одной комиссией, но отклонен другой. Аналогично, пилот мог быть принят одной
группой преподавателей и отклонен другой. Подробное обсуждение доказательства было бы
слишком специальным в смысле терминологии и здесь неуместным, но непредвзятая проверка
фактов подтверждает, что нарушение взаимосвязи происходит скорее всего из-за ошибочного
14
критерия, а не из-за ошибок в самих тестах. Поэтому подобное можно наблюдать и в военной
области и несмотря на то, что как офицерам, так и пилотам необходимы, очевидно, многие другие
качества, отличные от развитых умственных способностей, тесты интеллекта все же имеют важное
практическое применение в качестве инструмента отбора.
Рис. 3. Приводится с разрешения Дж. К. Флананга из журнала "Science" ("Наука").
В качестве примера мы можем взять успех в повседневной жизни. И в этом случае,
очевидно, что он определяется многими отличными от интеллекта качествами, такими как
настойчивость, удачливость, связи, дерзость, агрессивность и т.п. Но, тем не менее, мы вновь
могли бы усомниться в значении тестов интеллекта, если бы оказалось, что их взаимосвязь с
жизненным успехом отсутствует. Некоторые данные об этом приведены выше в таблице, из
которой видно, что есть тенденция к связи КИ с положением в обществе. Другие исследования, в
которых искалась связь КИ с денежными заработками, показали, что и здесь можно проследить
отчетливую взаимосвязь. Существуют, разумеется, определенные ограничения на использование
этой аргументации, а также на данные, на которых она основана. Есть отдельные группы
высокоинтеллектуальных преподавателей, а также школьных учителей, чей высокий интеллект,
показанный в тестах, не оплачивается обществом соразмерно вкладу их труда. Если нарисовать
график зависимости КИ и денежных доходов, то эти группы выделяются подобно наросту в
группе "высокий КИ - низкие и средние заработки". Однако, эти и другие исключения,
включающие работающих в промышленности ученых и некоторые категории гражданских
служащих, понятны в рамках исторического развития и не противоречат нашему выводу о том,
что в общем случае успех в жизни до определенной степени связан с КИ. Эта взаимосвязь
определенно ниже, чем та, которая достигается в школе или в университетах или даже в
вооруженных силах, и поэтому по КИ нельзя достаточно надежно предсказать вероятность
жизненного успеха. Здесь также более вероятно, что отрицательное предсказание (низкий КИ недостаточный успех) будет более точным, чем положительное (высокий КИ - жизненный успех),
хотя в этом нет полной уверенности. Был отмечен по крайней мере один случай, когда умственно
отсталый человек с КИ даже ниже 70, окончил институт по настояниям его жены, стал удачливым
торговцем, владельцем большого дома в городе, виллы на морском побережье и нескольких
автомобилей, причем все его дети окончили университет. В этом случае удачливость,
заинтересованность во внешнем успехе и другие свойства характера, вероятно, сыграли чрезмерно
большую роль в восхождении его к успеху, но его случай (который не уникален) демонстрирует
ненадежность любых предсказаний вероятного уровня доходов, которые можно сделать, исходя из
КИ.
Таким образом, мы рассмотрели некоторые из возражений относительно тестов КИ и кашли
их недостаточными. Теперь нам следует рассмотреть некоторые другие возражения, которые,
возможно, лучше обоснованы, и которые довольно сильно ограничивают применимость КИ, если
не соблюдаются меры предосторожности, позволяющие преодолеть эти затруднения. Первое
замечание, которое делается довольно часто, относится к влиянию практики и репетиторства.
Очевидно, что было бы несправедливо сравнивать КИ двух детей, один из которых никогда не
15
видел теста интеллекта, в то время как другой получил интенсивную подготовку по тестам этого
типа, если не показать, что эта подготовка не имеет никакого значения. Положение даже более
сложное, но, похоже, факты говорят о следующем. Большинство детей получают высокий КИ во
втором или третьем случае выполнения теста интеллекта, даже если тест каждый раз был другим.
Это увеличение КИ может составлять от пяти до семи пунктов и вызвано, возможно,
приобретением навыков в тесте, знанием процедуры, уменьшением беспокойства, которое
естественно, когда человеку предлагают что-нибудь новое, и просто опыта в решении проблем
того же вида, который представлен в тестах такого типа. Это увеличение после проведения трех
тестов, если и есть, то небольшое. Подготовка может добавить немногое по сравнению с обычным
выполнением тестов, но и это сомнительно и во всяком случае это добавление может быть самым
различным, в зависимости от вида этой подготовки; вполне возможно, что неквалифицированная
подготовка может даже понизить, а не повысить КИ по сравнению с простым выполнением серии
тестов. Поэтому следует принять критику того факта, что практика и подготовка влияют на КИ,
но, к счастью, трудности, возникающие вследствие этого, легко преодолеваются тестируемыми
детьми, студентами или кандидатами не один раз, а многократно. Экзаменам 11+, в частности, не
следует подвергать детей, которые полностью не приспособились к тестам интеллекта, и если эти
меры предосторожности соблюдаются, то соответствующие трудности скорее всего будут
невелики.
Второе возражение относится к влиянию мотивации и волнения. Может ли слабо
заинтересованный или сильно волнующийся за результат ребенок не полностью проявить свои
способности? Имеется много научных работ о влиянии мотивации и волнения на детей, из
которых видно, что низкая степень мотивации не оказывает серьезного отрицательного влияния на
выполнение тестов интеллекта, если только она не настолько низка, чтобы вынудить испытуемого
отказаться от теста. Такие случаи редки и почти наверняка паталогические и такие тесты,
разумеется, не следует принимать во внимание. Сильное волнение действительно оказывает
вредное влияние на детей и это может представлять серьезный аргумент против использования
тестов КИ, если нет уверенности, что это волнение можно уменьшить какими-либо способами.
Многое зависит от способа предложения теста, а также от того, кто предлагает тест ребенку знакомый или незнакомый человек. Наиболее важным является повторение. Волнение наиболее
сильно в первый раз, когда предлагается новый тест, но адаптация наступает быстро, и после трех
раз редко кто волнуется настолько сильно, что это влияет на результативность. Ясно также, что
повторение тестирования и привыкание ребенка к выполнению тестов является ключевым
моментом успешного измерения. Действительно, эта рекомендация имеет много аргументов в
свою пользу. Единственное тестирование может оказаться неудачным по многим причинам. У
ребенка может болеть голова или он может оказаться не в форме по другим причинам. Он может
быть обеспокоен или расстроен из-за того, что случилось с ним или в его семье. У него может
болеть живот или сломаться карандаш; потом ему может захотеться спать. Существует тысяча и
одна причина, каждая из которых по отдельности не оказала бы значительного влияния на оценку,
но которые в случае их совпадения могут привести к заметному отличию от действительного КИ
ребенка. Однако, если ребенок тестируется неоднократно, то маловероятно, чтобы эти причины
возникли во время проведения каждого теста, и резко отличающиеся результаты тестов можно не
принимать во внимание. Ясно, что среднее значение оценок в нескольких тестах надежнее, чем
оценка в одном тесте и там, где решение может иметь крайне важное значение, как в случае 11+,
никогда не следует полагаться на одиночный тест.
Этот вопрос имеет отношение также к одному часто возникающему возражению, а именно,
что текущий КИ ребенка не может быть хорошим предсказателем его КИ несколько лет спустя.
Мы уже обсуждали этот вопрос более подробно и нашли, что хотя для зрелого возраста этот
вопрос не имеет большого значения, он вызывает затруднения в случае детей. Доказательства, к
сожалению, не очень ясно обоснованы и убедительны, но похоже, что повторение тестов КИ год
за годом как до, так и после решающего экзамена 11+, может дать дополнительную информацию
для решения о том, улучшился интеллект или ухудшился, а также быть полезным для уменьшения
волнения из-за причин, которые обсуждались выше.
Из нашего обсуждения становится ясным, что с точки зрения специалиста, проводящего
тестирование, крайне нежелательно иметь дело со смешанными группами, т.е. с группами, в
которых у одних уже есть опыт работы с тестами интеллекта, а у других нет. Поэтому в идеале для
них привлекательнее было бы население, где ни у кого бы не было опыта работы с тестами, или
16
все бы прошли два или три теста того или иного вида. Ясно, что при существующем состоянии дел
это недостижимо. Все дети в возрасте около двенадцати лет уже имеют опыт работы с тестами, и
многие взрослые также время от времени проходили тестирование в армии или в связи с какимлибо видом конкурсного отбора. Поэтому в данных обстоятельствах было бы идеальным
стремиться к тому, чтобы у каждого был какой-нибудь опыт решения задач, которые встречаются
в тестах интеллекта и с этой точки зрения я считаю, что следует приветствовать появление таких
телепрограмм как "Карандаш и бумага и "Проверь свои способности", в которых группы,
насчитывающие до 14.000.000 человек без особого труда знакомятся с задачами, встречающимися
в тестах интеллекта, и методами их решения. Аналогичным образом я могу вообразить, что
публикация книги, подобной этой, будет хорошо воспринята психологами, серьезно
занимающимися этой проблемой, поскольку число людей, знакомых с современными тестами
интеллекта, несомненно будет возрастать. В не очень далеком будущем, возможно, будет
достигнута идеальная ситуация, когда каждый человек достигнет достаточно высокого уровня
обращения с тестами, который сделает дальнейшую подготовку или практику бесполезной и
непроизводительной.
Теперь мы должны перейти к другому возражению против КИ, которое бьет гораздо ближе к
цели, чем те, которые рассматривались до сих пор. Это возражение высказывается психологами
более часто, чем непрофессионалами и, несомненно, имеет веские обоснования. Его аргументация
следующая. Измерение КИ предполагает, что мы имеем дело с одной общей умственной
способностью, называемой интеллектом, который определяет в большей или меньшей степени
наш успех в самых разнообразных интеллектуальных задачах. Это предположение можно
подтвердить только до определенной степени и возможно, что наша результативность в решении
различных задач определяется не только этой общей способностью, но также и другими, более
специфическими способностями. Если это так, к КИ можно относиться просто как к средней
величине этих более специфических способностей различных уровней и, поэтому, принять все
недостатки так же как и преимущества, которыми, как известно, обладают средние величины.
Есть несколько направлений, в которых мы можем искать эти более узкие способности.
Основными направлениями являются: (а) различное содержание тестов и (б) включение в тесты
различных психологических функций. В тесте интеллекта могут быть представлены полностью
однотипные задачи в словесном, числовом или пространственном виде и успех человека может
зависеть от того, в каком виде представлена задача. Рассмотрим три вопроса:
(1) Черное относится к белому как высокое к:
(1) низкому, (2) зеленому, (3) верхнему, (4) далекому.
(2) 14 относится к 7 как 30 к:
(1) 15, (2) 13, (3) 20, (4) 11.
(3)  относится к  как  к:
(1) , (2)  , (3) , (4) .
Фактически ясно, что это предположение верное; вид представления материала - словесный,
пространственный или числовой - в значительной степени определяет реакцию человека, и
поэтому мы имеем право измерить отдельно его речевой интеллект, числовой интеллект,
пространственное воображение и т.д.
Аналогичные различия существуют в отношении функций интеллекта, которые
пересекаются с функциями тестового материала. Мы можем попросить наших испытуемых
обнаружить связи и выявить соотношения такие же, как в приведенных выше примерах. Мы
можем попросить их заучить наизусть, а затем воспроизвести по памяти словесные, числовые или
пространственные элементы. Это только несколько из многочисленных способов, с помощью
которых мы можем подразделить как материал, так и функции, но, как можно увидеть, если взять
только по три примера каждого, мы получим девять различных типов тестов, каждый из которых
отличается от остальных по крайней мере в одном важном пункте. Поэтому вместо того, чтобы
присваивать человеку общий КИ, мы могли бы посоветовать предложить ему отдельные тесты по
17
каждой из этих комбинаций и оценить набор его способностей в зависимости от его оценки в
каждой из этих категорий. Разумеется, это трудная задача; существует около 140 различных
категорий этого вида, которые должны быть тестированы, поэтому при скорости один тест в час и
при сорокачасовой рабочей неделе достаточно полный охват умственных способностей человека
занял бы целый месяц непрерывного тестирования! С практической точки зрения это, разумеется,
неосуществимо, хотя временные периоды такой длительности не являются чем-то необычным в
физике, когда, например, определяется эффективность новой установки или усталость металла и
тесты могут длиться годами при одних и тех же условиях.
Можно рассматривать КИ как среднюю величину, которая дает приблизительное
представление об общем уровне результативности на выбранном наборе всех этих различных
типов тестов; в каждом тесте этот набор будет разным в соответствии с фактическим набором
выбранных функций и материала. Поэтому некоторые тесты КИ основаны целиком на словесном
материале, другие полностью несловесные, а во многих используется целиком числовой материал.
Аналогично, тестируемые функции и принятые формы тестирования различны для различных
тестов КИ, и из всего этого следует, что различные тесты КИ не согласуются достаточно близко
друг с другом в своих оценках КИ конкретного человека. Эта согласованность между различными
хорошо отработанными тестами обычно достаточно велика, но, тем не менее, далека от идеальной
и совсем не редки случаи, когда в разных тестах КИ отличаются на десять пунктов. Как уже
упоминалось выше, лучшие оценки индивидуальных КИ вероятнее всего получаются с помощью
тестов, в которых используются различные материалы для тестирования способностей личности;
по этой причине задачи в восьми сериях тестов, приведенных в этой книге, были объединены
именно по этому принципу.
Для большинства случаев практического применения, таких как профессиональная
ориентация или подбор кадров в промышленности, следует понимать, что КИ, вероятно, гораздо
менее полезен, чем более точное измерение более специфических видов способностей. Если нам
пришлось бы проконсультировать мальчиков Джимми и Джонни, которые теперь выросли и хотят
поступить в университет, по вопросу о том, к каким предметам они более всего предрасположены,
то нам не очень помогло бы знание того, что у мальчика Джонни КИ составляет 135, а у Джимми 128. Нам весьма помогло бы знание того, что в тесте словесных способностей у Джимми КИ
составляет 150, а у Джонни - 115 и напротив - в тестах числовых и зрительно-пространственных
способностей положение было противоположным. Ясно, что принять решение о том, что изучать современные языки или физику, гораздо легче на основе такой информации, чем на основе
обобщенного КИ. Признание этого утверждения стало гораздо более широким сейчас, чем это
было даже десять лет назад, но, справедливости ради, следует сказать, что тесты специальных
способностей не используются так широко, как должны были бы использоваться. Причины отказа
от использования этих более совершенных и мощных методов во многом вызваны
консерватизмом учителей и других специалистов, которые воспитывались на традиционных
тестах КИ; частично причина отказа обусловлена тем, что разработка таких измерительных
инструментов стоит дорого и требует серьезных исследований в течение многих лет. Не видно,
чтобы общество особенно интересовалось достижениями в усовершенствовании обычных тестов
КИ, полученными современными исследователями, и отказ от поддержки необходимых
исследований привел к тому, что у нас в стране доступны только несколько стандартизованных
тестов, пригодных для этой цели. Часто возникает вопрос о том, является ли интеллект
врожденным или приобретенным качеством; часто он имеет отношение к спору о естественном и
искусственном. Перед тем, как обсудить этот аспект КИ более подробно, можно сказать несколько
слов об этой противоречивой проблеме. Прежде всего ясно, что дети обычно походят на своих
родителей в отношении КИ; действительно, когда ребенку шесть лет или около этого, то измерив
КИ его родителей, можно предсказать будущий КИ ребенка более точно, чем измерив его
собственный! Однако, этот факт проясняет не очень многое, поскольку это сходство может
возникать как из-за наследственных, так и из-за внешних факторов; ребенок может походить на
своих родителей из-за того, что он унаследовал гены, способствующие его разумному поведению,
или же он может походить на своих родителей из-за того, что он рос в окружающей среде,
соответствующей их интеллекту. Фактически основную информацию о врожденности интеллекта
мы получаем скорее из того факта, что, хотя дети сильно похожи на своих родителей, существуют
систематические отклонения, которые можно объяснить только наследственными факторами,
Явление, которое я имею в виду, обычно называют регрессией и наблюдалось оно впервые по
18
отношению к росту, который, как известно, является во многом наследственной характеристикой,
по крайней мере в странах с достаточным потреблением продовольствия. Было обнаружено, что
дети очень высоких родителей имеют рост выше среднего, но они не выше своих родителей;
аналогично, у низкорослых родителей дети имеют рост ниже среднего, но выше, чем у своих
родителей. В обоих случаях дети проявляют регрессию к среднему и очень легко объяснить этот
факт с точки зрения теории наследственности Менделя. В настоящее время точно такое же
явление было обнаружено в отношении интеллекта, и если читатель вернется к приведенной ранее
таблице, в которой даны КИ родителей из различных социальных слоев и детей, чьи родители
вышли из тех же социальных слоев, он увидит степень регрессии, которая почти идентична
регрессии, обнаруженной при изучении роста. Поэтому нашим основным свидетельством
важности наследственности является не сходство между родителями и детьми, а открытие
систематических различий между ними, которые находят простое объяснение с точки зрения
генетики, но которые очень трудно объяснить влиянием окружающей среды.
Второй тип доказательства, часто выдвигаемого, относится к изучению близнецов и
двойней. Близнецы обладают полностью одинаковой наследственностью, а двойни похожи не
более чем просто дети одних родителей, т.е. их наследственность составляет около 50 процентов.
Ясно, что если бы окружающая среда оказывала сильное влияние, то близнецы были бы похожи
друг на друга не более, чем двойни. Было проведено много исследований выросших вместе
близнецов и двойней и общий вывод был таким, что близнецы имеют гораздо большее сходство.
Не очень большие по объему исследования в Соединенных Штатах и недавние более широкие
исследования в Великобритании показали, что если близнецы или двойни в раннем возрасте были
разлучены и росли в разных условиях, то тем не менее остается явная тенденция к тому, что
близнецы гораздо более похожи друг на друга, чем двойни. Этот метод исследований также в
значительной мере поддерживает преобладающее влияние наследственности, а не окружающей
среды.
В качестве третьего доказательства можно рассмотреть результаты исследований в области
разведения животных. Был разработан тест способностей, подходящий для животных, и
тестирована группа животных. Животные с высокой оценкой скрещивались с целью получения
умной породы, а животные с низкой оценкой скрещивались с целью получения глупой породы.
Животные в каждом последующем поколении тестировались, и умнейшие и глупейшие животные
отбирались для последующего скрещивания. После примерно дюжины поколений было
обнаружено, что практически нет перекрытий в характеристиках у глупой и умной пород - все
умные потомки выполняли тест лучше любого глупого. Значение, которое мы придаем этому
факту, зависит, разумеется, от того, считаем ли мы интеллект биологической характеристикой,
которая не обязательно относится только к человеку, но может также оцениваться, хотя и на
довольно низком уровне, применительно к другим млекопитающим. Данное доказательство,
вместе с другими, уже сделанными, имеет, возможно, особую ценность.
Четвертое доказательство до некоторой степени основано на рассмотрении доказательства, в
котором использовались близнецы. В экспериментах с близнецами и двойнями наследственность
была одинаковой, а окружающая среда изменялась; ясно, что мы можем попытаться оставить
окружающую среду неизменной и изменять наследственность. Это делается при изучении детей из
сиротских приютов, которые попали туда вскоре после рождения. Вся жизнь этих детей протекает
в условиях, которые практически идентичны для всех детей; если окружающая среда определяет
интеллект, то все дети имели бы очень близкие КИ. Только наследственность может внести
различия в КИ у детей. Когда этот эксперимент был проведен, было обнаружено, что интеллект у
детей из приютов практически является таким же разнообразным, как и у обычных детей, у
которых условия жизни самые разнообразные; поэтому и в данном случае наследственность
проявляется как основной фактор в определении индивидуальных различий интеллекта.
Было испробовано много других типов тестов и экспериментальных разработок, но те, о
которых говорилось выше, являются наиболее убедительными, и они не вступают в противоречие
с другими данными. Они совершенно отчетливо показывают важное значение наследственности и
можно определить грубую, но в основном верную цифровую оценку относительного вклада
наследственности и окружающей среды в западных странах в настоящее время. Выяснено, что
около 80 процентов от всех факторов, вносящих различия в индивидуальный интеллект,
обусловлены наследственностью и 20 процентов - влиянием окружающей среды; другими словами
наследственность в четыре раза важнее окружающей среды.
19
Следует отметить, что все эти цифры являются лишь грубыми средними величинами, и что
они применимы только к западному миру в настоящее время. Они не имеют абсолютного
значения, поскольку целиком зависят от установившихся социальных и образовательных порядков
в конкретной стране. Там, где имеется всеобщее обучение для детей, а также всеобщий свободный
доступ в университеты, наследственные факторы проявляют себя в полной мере. В странах, где
образование доступно только привилегированному меньшинству, потенциальный интеллект
остальных людей может до значительной степени подавляться. Поэтому мы не можем
экстраполировать цифры "80 процентов - 20 процентов", например, на нашу страну 100 лет назад
или на современный Иран, мы не можем экстраполировать их на будущее; вполне возможно, что
через пятьдесят лет относительный вклад наследственности будет даже выше, чем сейчас, при
условии, что сохранится тенденция к все большему равенству в образовании.
Относительно вышесказанного мной, необходимо сделать одну последнюю оговорку. Я
упомянул, что цифры являются лишь средними; это означает, что было бы неверным считать, что
для любого конкретного человека окружающая среда вносит 20, а наследственность 80 процентов
в его индивидуальные способности. У отдельных детей и взрослых, полностью лишенных
образовательных и других возможностей в течение всей их жизни, значение окружающей среды
возрастает значительно, возможно даже до 70 или 80 процентов. Есть также другие дети, у
которых это соотношение противоположное. Для того, чтобы сказать что-нибудь в конкретном
случае, требуется более близкое и более подробное исследование, чем простое применение обшей
средней величины.
На этом мы закончим краткое обсуждение интеллекта, его природы и его измерения. Эта
область сильно специализирована и почти невозможно представить ее с помощью общепринятых
терминов и в очень узких границах, не проявляя при этом невольного догматизма. Тем не менее,
многие из фактов совершенно очевидны, и я не верю, что многие профессиональные психологи
могли бы всерьез придраться к чему-нибудь из того, что я сказал. Может случиться так, что в
течение двадцати ближайших лет мы узнаем лишь немного нового о действительной природе
интеллекта по сравнению с тем, что мы знаем сейчас; до той поры нам придется довольствоваться
нашей способностью измерять его с некоторой степенью точности и теми данными, которые могут
быть получены с помощью тестов интеллекта.
20
КАК ИЗМЕРИТЬ СВОЙ СОБСТВЕННЫЙ КИ
Теперь мы должны перейти к рассмотрению тестов, опубликованных в этой книге и
возможным их применениям. Имеется восемь тестов, в каждом из которых содержится по сорок
задач; каждый тест представляет собой единое целое и может использоваться и оцениваться
независимо от остальных семи. Каждый тест состоит из нескольких серий задач различного типа,
причем в начале задачи наиболее легкие, а в конце наиболее трудные, хотя не следует считать, что
уровень сложности возрастает равномерно. Каждый тест должен хронометрироваться, желательно
другим человеком, а не тем, который решает тест, причем каждый тест ограничен
тридцатиминутным пределом. Поэтому через тридцать минут после начала решения первой
задачи, работа с тестом должна быть прекращена; оценка, разумеется, представляет собой число
правильных ответов, данных за это время. Ответы приведены в конце книги вместе с
разъяснениями того, почему именно этот ответ правильный. Оценка за тест в очках должна затем
использоваться для получения КИ с помощью таблиц, приведенных на двух последних страницах
книги. С остальными семью тестами следует работать точно таким же образом, чтобы читатель
закончил работу, имея восемь отдельных оценок своего КИ, которые могут быть затем усреднены
для получения более точной оценки, чем та, которую может дать один тест. (Советуем читателю
делать не более одного теста в день, а растянуть их на несколько дней.) Другой вариант
использования тестов этой книги - тестировать восемь различных людей или дать по два теста
четверым людям и так далее.
Чтобы результат теста оказался достаточно достоверным, следует соблюдать некоторые
определенные предосторожности. Читатель, разумеется, волен поступать с этой книгой как ему
захочется, но если он проигнорирует хоть одно из них, то результат теста не может претендовать
даже на приблизительное измерение КИ. Прежде всего, временные требования должны строго
соблюдаться; даже дополнительные "несколько секунд" в конце работы с тестом могут привести к
значительным расхождениям. Для этой цели лучше всего иметь ручной секундомер, однако,
подойдут и обычные часы с секундной стрелкой, при условии, что за временем будет следить
надежный человек.
Во-вторых, испытуемому не должно оказываться никакой посторонней помощи: весьма
желательно, чтобы за выполнением теста никто не наблюдал. Проведение тестов интеллекта
может показаться скучным занятием, особенно когда тест групповой, но даже в этих случаях
большинство психологов иногда сталкивались с грубыми отклонениями от установленных
методов. Например, учителя, которые часто проводят такие тесты, поддавались своей
укоренившейся привычке к исправлению ошибок и, указывая пальцем на ответ мальчика Джонни,
говорили: "Неправильно!", а также делали подсказки и вмешивались другими способами.
Посторонние люди оказывают отвлекающее влияние, и их не следует допускать в помещение, в
котором проводится тестирование.
Читателю следует приступать к тесту хорошо отдохнувшим, и ему не следует просматривать
тестовый материал перед началом работы с задачами. Несоблюдение этого требования даст ему
преимущество перед теми людьми, для которых тест стандартизован, что, разумеется, изменит
время, затрачиваемое на знакомство с задачами, но уменьшит значимость результата теста.
Читателю не следует подсчитывать результаты каждого теста или смотреть разъяснения к
решениям до тех пор, пока он не закончит все тесты, которые он собрался сделать. Проверка
решений и чтение пояснений к ним эквивалентно тренировке и, поэтому, увеличит его оценку в
последующих тестах, по сравнению с оценкой, которую он получил бы в противном случае. Если
читатель хочет выполнить все восемь тестов, ему не следует оценивать результаты, пока он не
закончит восьмой тест. Это ограничение выполнить трудно, поскольку большинство людей хотят
как можно скорее узнать результаты своих усилий; если нельзя удержаться от любопытства,
читатель может попросить кого-нибудь, кто уже выполнял эти тесты или не собирается их
выполнять, оценить для него тесты и преобразовать результат в КИ. Такая степень
информированности допустима и не поможет получить в дальнейшем более высокие оценки.
Когда читатель определит свой КИ на основе одного или нескольких тестов, приведенных в
этой книге, ему следует учесть, что точность всех чисел, которые показывают меру его
интеллекта, кажущаяся. Говорить что тест обнаружил КИ, равный 128, было бы слишком
оптимистичным; в действительности результат означает примерно следующее: "Этот парень
довольно способный, и его средний уровень результативности находится между 120 и 135. Кроме
21
того, он может быть весьма хорош или плох в некоторых, более специализированных областях,
таких как словесный или числовой интеллект или по отношению к оригинальности мышления или
памяти; этого мы не можем сказать, исходя из результатов теста."
Если для каждого из восьми тестов в этой книге получены близкие значения КИ, то средняя
величина является, вероятно, хорошим приближением к истинному КИ.
Если расхождения значительные, то к среднему значению следует относиться как к не
слишком надежному. Следует, однако, заметить, что эти расхождения не обязательно означают,
что тест имеет недостатки. Имеется достаточно свидетельств того, что у некоторых людей есть
склонность проявлять различную результативность на различных видах теста, и эта личностная
характеристика может проявляться к тестах этого типа.
Какое применение может найти определенный таким образом КИ? Я настоятельно
посоветовал бы читателю относиться к нему исключительно как к помощи в "познании себя" в
духе первого абзаца этой книги. Он не должен основывать на полученных результатах никаких
серьезных решений, таких как определение, есть ли у него достаточная квалификация для
поступления в университет, заняться каким-либо конкретным видом деятельности или поступить
на конкретную работу. Если он нуждается в совете по любому из этих вопросов, ему следует
обратиться в достаточно компетентную организацию, такую как Национальный институт
промышленной психологии или психологическое отделение местного университета, где он
получит квалифицированный совет и рекомендации, а также будет профессионально
протестирован. Как я указывал раньше, нет причин, по которым человеку не следовало бы
измерить свою температуру, но существует масса причин, по которым ему не следует самому себе
ставить диагноз о заболевании на основе показаний термометра при отсутствии медицинской
подготовки. Я не верю, что определение собственного КИ грубым, но эффективным способом
может принести кому-нибудь вред, но существует масса причин, по которым интерпретацию
результатов или их применение для практических целей следует оставить кому-нибудь достаточно
квалифицированному. Все это еще более справедливо, если понять, что при определении
собственного КИ можно сделать, гораздо больше ошибок, чем при определении своей
температуры, и хотя я предупреждал о некоторых очевидных ошибках, невозможно
предусмотреть и исключить все возможные действия человека, которые могут обесценить
результаты измерения его КИ. Короче говоря, тесты в этой книге должны использоваться только
для развлечения, и их не следует воспринимать слишком серьезно. Если нужно принять какоелибо решение, предполагающее знание интеллекта человека, то тестов, содержащихся в этой
книге, совершенно недостаточно, и их следует дополнить тестами, выбранными и предложенными
достаточно квалифицированными психологами.
22
ИНСТРУКЦИИ
Каждый тест содержит сорок задач. У вас есть ограниченное время (см. выше) для того,
чтобы ответить на все вопросы, поэтому работайте как можно быстрее. Не засиживайтесь
слишком долго над каким-нибудь вопросом; возможно вы выбрали неверный путь решения, а
следующую задачу вы сделаете лучше. С другой стороны, не сдавайтесь слишком легко;
большинство задач можно решить, имея немного терпения. Полагайтесь лишь на свой здравый
смысл, чтобы решить, когда отказаться от нерешенной задачи. И помните, что в целом сложность
задач возрастает к концу теста. Любой человек способен правильно решить некоторое число
задач, но никто не сможет правильно решить все задачи в отведенное время.
Ваш ответ в каждом случае будет состоять из единственного числа, буквы или слова. Вы
можете выбирать из нескольких предложенных вариантов или придумывать правильный ответ.
Пишите свой ответ в указанном месте. Если вы не можете ответить на вопрос, не стройте догадок;
однако если у вас есть идея, но вы не уверены полностью, что это действительно правильный
ответ, все равно укажите ее. В тестах нет "хитрых" вопросов, но вам всегда придется
рассматривать множество путей подхода к решению задачи. Убедитесь, что вы понимаете, что от
вас требуется, прежде чем приступать к решению задачи; вы зря потратите время, если сразу
перейдете к решению, не попробовав выяснить, в чем заключается задача.
Для некоторых задач существуют альтернативные ответы, которые действительно
удовлетворяют всем требованиям, на которые случайно может натолкнуться читатель. В этом
случае читатель может считать свой ответ правильным.
ПРИМЕЧАНИЕ. Точки указывают число букв в пропущенном слове; так, например (....)
показывает, что пропущенное слово состоит из четырех букв.
23
ПЕРВЫЙ ТЕСТ
1. Вставьте пропущенное число.
2, 5, 8, 11, _
2. Подчеркните лишнее.
дом иглу бунгало контора хижина
3. Найдите пропущенные числа.
7 10 9 12 11 __ __
4. Подчеркните лишнее.
селедка кит акула барракуда треска
5. Подчеркните слово, которое не является маркой автомобиля.
ГОЛАВ
УГЛИИЖ
ЧИВСМОК
АНРУЛС
КАЙАЧ
6. Вставьте слово, пропущенное в скобках.
облик (вид) зрелище
глушь (. . . .) отверстие
7. Вставьте слово, которое заканчивает первое слово и начинает второе.
СТ ( . . . ) ЬЕР
8. Какая из шести пронумерованных фигур подходит для свободного места в квадрате ?
(Напишите ее номер в квадрате).
24
9. Какая из шести пронумерованных фигур подходит для свободного места в квадрате? (Напишите
ее номер в квадрате.)
10. Вставьте пропущенное число.
11. Подчеркните лишнее.
25
12. Вставьте пропущенные числа.
13. Вставьте пропущенную букву.
Д Ж К Н С __
14. Вставьте слово, которому могут предшествовать буквы слева.
15. Подберите слова в скобках.
Д + (злак) - (мелкие сокращения мышц)
16. Вставьте пропущенное число.
2
4
3
5
7
6
7
5
__
17. Подчеркните слово в нижней строке, которое подходит ко всем словам в верхней строке
ДАЧА ДАТЧИК ГОНКА
волка вода палка птица страх макака
18. Какая из шести пронумерованных фигур подходит для свободного места в квадрате?
(Напишите ее номер в квадрате.)
26
19. Вставьте слово, которое заканчивает первое слово и начинает второе.
(Ключ: судьба.)
ЗА (. . .) ОТ
20. Подчеркните того, кто не является известным поэтом.
КБОЛ
ИКШНУП
НЕИСНЕ
ВУНОЛАА
ВОСКАРНЕ
21. Вставьте пропущенное число.
22. Закончите слово в скобхах.
ОЛ (СТРЕЛОК) РТ
НА (Т . . П . . Г) ЕР
23. Вставьте слово, которое означает то же самое, что и два слова вне скобок.
дерево (. . . .) подделка
24. Подчеркните лишнее.
27
25. Подчеркните, кто из них не является известным композитором.
ЦОМТАР
УСТРАШ
РЕВИД
ЕТОЛОЛ
26. Вставьте пропущенную букву.
27. Какая из пяти пронумерованных фигур подходит для пустого места?
28. Какая из пяти пронумерованных фигур подходит для свободного места? (Напишите ее номер.)
28
29. Вставьте слово, пропущенное в скобках.
конфетка (тент) бортник консул (. . . .) нагель
30. Вставьте слово, которое заканчивает первое слово и начинает второе.
(Ключ: Трехмерная геометрическая фигура)
Ф(...)Г
31. Какая из пяти пронумерованных фигур подходит для свободного места? (Напишите ее номер в
квадрате.)
32. Какая из шести пронумерованных фигур подходит для пустого квадрата?
29
33. Вставьте пропущенное число.
34. Подчеркните, какой из этих городов лишний.
Канберра
Вашингтон
Лондон
Париж
Нью-Йорк
Бонн
Оттава
35. Вставьте пропущенное число.
36. Вставьте пропущенные буквы.
37. Вставьте слово в скобках, которое заканчивает первое слово и начинает второе. (Ключ: место
несения службы)
аван (. . . .) ник
38. Вставьте пропущенное число.
8 10 14 18 __ 34 50 66
39. Вставьте следующую букву в ряду.
Б Д Б Е Б Ж Б И Б М Б __
40. Вставьте пропущенное число.
2 7 24 77 __
30
ВТОРОЙ ТЕСТ
1. Вставьте пропущенное число 8 12 16 20 __
2. Какая из шести пронумерованных групп подходит для пустого места в квадрате? (Напишите ее
номер в квадрате.)
3. Подчеркните лишнее.
лев лиса жираф селедка собака
4. Вставьте два пропущенных числа.
6 9 18 21 42 45 __ __
5. Подчеркните лишнее.
Юпитер Апполон Марс Нептун Меркурий
6. Подчеркните, какой из этих городов не находится в Европе.
ИНФЫА
ВОАКСМ
ЛИНАМ
ГАТШВОННИ
ОВКАКР
7. Вставьте слово, пропущенное в скобках.
безбилетник (заяц) косой
стопка (. . . . .) юбка
8. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: Напиток)
Г (. . .) Б
9. Какая из пронумерованных фигур подходит для пустого квадрата?
31
10. Вставьте пропущенную букву А Г Ж Л С __
11. Вставьте пропущенное число.
12. Подчеркните лишнее.
32
13. Вставьте пропущенное число.
14. Вставьте слово в скобках, к которому можно приставить любые из букв слева.
15. Вставьте слово, пропущенное в скобках.
авто (. . . .) кран
16. Какая из шести пронумерованных фигур подходит для пустого квадрата?
17. Вставьте пропущенное число.
33
18. Подчеркните лишнее.
циклоп туф краб смарагд жалюзи гонг
19. Вставьте слово, которое заканчивает первое слово и начинает второе.
де (. . .) ва
20. Подчеркните название, которое не является островом.
БАУК
ОУЙОРБВ
ЛИДАЯНИР
ПИКРА
21. Вставьте пропущенное число.
22. Подчеркните лишнее.
23. Вставьте слово, отсутствующее в скобках.
14 (бега) 62
12 (. . . .) 18
24. Вставьте слово, которое означает то же самое, что и два слова вне скобок.
рысак (. . . .) снаряд
25. Закончите следующее:
СВАЗИЛЕНД 271864539 ВИЗА 8792 ЛИСА 6854 ЛЕС _____
26. Вставьте пропущенную букву. М П К С И У __
27. Какая из пяти пронумерованных фигур завершает верхнюю строку?
34
28. Вставьте слово, пропущенное в скобках.
ЙП (КРУГ) ФД
БН (. . . .) МЛ
29. Вставьте слово, которое заканчивает первое слово и начинает второе.
У (. . .) ОД
30. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
35
31. Какая из пяти пронумерованных фигур подходит для пустого места? (Напишите номер в
квадрате.)
32. Вставьте пропущенное число.
33. Подчеркните лишнее.
педантичность уход гриб пароход
34. Вставьте пропущенное число.
35. Вставьте число и букву в последнее домино этого рада.
36. Подчеркните слово, которое заканчивает предложение.
Аппетит относится к пище, как сладострастие к:
еде сексу силе обжорству пьянству
37. Вставьте в скобки слово, которое означает то же самое, что и два слова вне скобок.
чета (. . . .) двойка
38. Подчеркните слово, которое заканчивает предложение.
Палимпсест относится к палиндрому так же, как стирание к:
повторению переворачиванию отступлению сокращению уменьшению
перепродаже
39. Вставьте пропущенную букву.
Б Д __ П Щ
40. Вставьте число, которое завершает ряд.
7 9 40 74 1526
36
ТРЕТИЙ ТЕСТ
1. Вставьте пропущенное число.
25 20 15 10 __
2. Подчеркните лишнее.
колесница автомобиль автобус вагон сани
3. Вставьте пропущенное число.
3 7 16 35 __
4. Подчеркните лишнее.
муравей
паук пчела моль мошка
5. Подчеркните, какое из этих животных, в названиях которых буквы перемешаны, имеет
наименьшие размеры.
НОБИЗ
НЕТКОКО
ВАРОКО
ЫМШЬ
ИРЖАФ
6. Вставьте слово, которое означает то же самое, что и два слова вне скобок.
среда (. . . . .) область
7. Какая из шести пронумерованных фигур подходит для пустого места? (Напишите номер в
квадрате.)
8. Вставьте слово, которое заканчивает первое слово и начинает второе.
Е3 (. . .) ЛАД
37
9. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
10. Вставьте пропущенную букву,
Л М Н К Р З Ф __
11. Вставьте пропущенное число.
12. Подчеркните лишнее.
13. Вставьте пропущенное число.
38
14. Какая из шести пронумерованных фигур подходит для свободного квадрата? (Напишите номер
в квадрате.)
15. Вставьте в скобки слово, которому могут предшествовать любые из букв слева.
16. Вставьте слово, пропущенное в скобках.
алло (пат) руль
под (. . .) тик
17. Вставьте пропущенное число.
18. Подчеркните лишнее.
опунция дегазация станция зимовка абориген милиция
19. Вставьте слово, которое заканчивает первое слово и начинает второе.
ПОД (. . . . .) ИКА
39
20. Подчеркните слово, которое не является мужским именем.
ТЕБОРР
ТЕЕНВИКД
ЛАВИЙИС
ЯИРАМ
21. Вставьте пропущенное число.
22. Вставьте слово, пропущенное в скобках.
уксус (скит) штифт
тостер (. . . .) тавот
23. Вставьте слово, которое означает то же самое, что и два слова вне скобок.
авторитет (. . .) тяжесть
24. Подчеркните лишнее.
25. Вставьте букву, которая заканчивает ряд.
два Д четыре Т три __
26. Вставьте пропущенную букву.
40
27. Какая из пронумерованных фигур завершает верхнюю строку?
28. Вставьте слово, пропущенное в скобках.
арка (крен) снег
таль (. . . .) рама
29. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: Часть лица)
К (. . .) А
30. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
41
31. Вставьте пропущенную букву.
32. Вставьте пропущенное число.
33. Подчеркните слово, которое отличается от остальных, коралл Германия север
Япония
34. Вставьте пропущенное число.
35. Вставьте пропущенные буквы.
36. Какая из шести пронумерованных фигур является следующей фигурой в ряду?
42
37. Подчеркните имя, которое завершает четвертую строку.
Жанна любит Костю
Гриша любит Инну
Ираида любит Романа
Кого любит Инна - Толю, Гришу или Женю?
38. Я договорился встречаться со своей девушкой по воскресеньям в полдень.
Первый раз она пришла в 12.30, в следующий раз в 1.20, затем в 2.30, а потом в
4.00. Во сколько она придет в следующий раз?
39. Подчеркните лишнее.
АЗЕЕТРИВОС
ОГЕЛОРРУМАЕЛУС
НИВОЕРИННИЕРИРОЕА
РЕАЛОППООСИЛИОН
40. Вставьте пропущенные цифры.
43
ЧЕТВЕРТЫЙ ТЕСТ
1. Вставьте пропущенное число.
36 30 24 18 __
2. Подчеркните лишнее.
Байрон Шелли Китс Чемберлен Чосер
3. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
4. Вставьте пропущенное число.
4 9 17 35 __ 139
5. Подчеркните город, который здесь лишний.
Шанхай
Дели
Новый Орлеан
Льяса
Каир
Квебек
6. Подчеркните слово, которое не является названием хоккейной команды.
ДЕПОТРО
МИОНДА
АРТААР
АТПКРАС
ОТРРКТА
7. Вставьте слово, пропущенное в скобках.
потрясение (удар) паралич
сыщик (. . . .) сало
44
8. Вставьте пропущенное число.
9. Какая из шести пронумерованных фигур подходит для пустого квадрата?
10. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: такелаж)
МА (. . . .) ТЬ
11. Подчеркните, какие две из этих шести фигур не образуют пары.
45
12. Вставьте пропущенную букву.
Д Й Ж М __ П М Т
13. Вставьте пропущенное число.
14. Вставьте слово в скобках, которому могут предшествовать любые из букв слева.
15. Найдите слова, которые означают то же самое, что и слова в скобках.
С + (свод правил) = (часть конечности)
16. Вставьте пропущенное число.
17. Подчеркните лишнее.
Организация: нора, гроза, горн, грация, зарница, нагар, базар.
18. Вставьте слово, которое заканчивает первое слово и начинает второе (ключ: словесная
информация.)
КОН (. . . . .) ИЛЬ
19. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
46
20. Подчеркните, какое из этих слов не является женским именем.
АРЬЯД
ЯРИМА
ЯНТЛЕЙ
ТЕЕНИААРК
21. Вставьте пропущенное число.
22. Подчеркните лишнее.
23. Вставьте число, пропущенное в скобках.
188 (300) 263
893 ( ) 915
24. Вставьте слово, которое означает то же самое, что и два слова вне скобок.
вещь (. . . . . . .) дисциплина
25. Завершите следующее соответствие одной из пяти пронумерованных фигур. (Подчеркните
правильную фигуру.)
26. Подчеркните, кто из них не является кинозвездой.
АНДБОР
ОРЛЭЙТ
ПРАЛМ
АДРОБ
АНОФД
27. Вставьте пропущенную букву.
47
28. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
29. Вставьте число, пропущенное в скобках.
347 (418) 489
643 ( ) 721
30. Какая из шести пронумерованных фигур является следующей в этом ряду? (Подчеркните
нужную фигуру).
48
31. Вставьте пропущенное число.
32. Подчеркните лишнее.
апломб марципан город капрал кубрик
33. Вставьте слово, которое заканчивает первое слово и начинает второе.
(Ключ: способ передвижения.)
РАЗ (. . .) УН
34. Вставьте пропущенную букву.
35. Вставьте пропущенное число.
36. Вставьте пропущенные буквы.
37. Вставьте слово, которое заканчивает первое слово и начинает второе.
(Ключ: монета.)
ПРО (. . . .) НЕР
38. Подчеркните фразу, которая заканчивает предложение. Михаил купил замок; Борис купил
крючок: Леонид купил книгу. Какая пара должна быть следующей: Иосиф и трубка,
Герасим и Муму, Тарас и люлька, Карл и кларнет или Леопольд и мышь?
39. Вставьте букву, которая заканчивает ряд. В Ы Ж Ф П __
40. Вставьте пропущенное число.
49
ПЯТЫЙ ТЕСТ
1. Вставьте пропущенную букву.
Б Д Ж Й __
2. Подчеркните лишнее.
Рембрандт Шекспир Тинторетто Рафаэль Моне
3. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
4. Вставьте пропущенное число.
2 5 9 19 37 __
5. Подчеркните, какое из этих животных лишнее.
селедка дельфин акула скат палтус камбала
6. Подчеркните, какой из этих городов находится в Англии.
РИНЛЕБ
РЕТСЕНАМЧ
ДАДРИМ
НАФЫИ
7. Вставьте слово, пропущенное в скобках.
гигант (. . . . .) нагреватель
8. Вставьте число, пропущенное вверху на рисунке.
50
9. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
10. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: цветок.)
СКОР (. . . .) ЕР
11. Подчеркните, какие две из этих фигур не образуют пары.
12. Вставьте слово в скобках, которому могут предшествовать буквы слева.
51
13. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в квадрате.)
14. Вставьте пропущенную букву.
М Н Л П З __
15. Подберите слова, которые означают то же, что и слова в скобках.
О + (волна) = (фигура)
16. Вставьте пропущенное число.
17. Подчеркните слово в нижней строке, которое подходит к словам в верхней строке.
ЛЕКТОР КОСТЬ БОЧКА
труха лилия мышь голова ода глупец
18. Подчеркните, что из перечисленного не является животным.
ОДОКРИЛК
КРОЧЕВС
АЛАУК
ОКААК
19. Вставьте пропущенное число.
52
20. Вставьте слово, которое заканчивает первое слово и начинает второе, (Ключ: торжество.)
ТА (. . .) С
21. Подчеркните лишнее.
22. Вставьте слово, пропущенное в скобках.
ОЛ (ДЕЛО) 76
АР (. . . .) 63
23. Подчеркните, какой из городов не находится в Англии.
ФИДКРАФ
ДОЛНОН
ПУРЛИВЕЛЬ
ЗОЛГАГ
РОФДСКО
24. Вставьте слово, которое означает то же самое, что и два слова вне скобок.
склон (. . . .) покрышка
25. Какая из пяти пронумерованных фигур подходит для пустого места? (Напишите номер в
квадрате.)
26. Вставьте пропущенное число.
3 7 15 31 __
27. Вставьте пропущенные буквы.
53
28. Вставьте слово, пропущенное в скобках.
осторожность (сода) адресат
подпись (. . . .) лампа
29. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
30. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: часть лица.)
ЗА (. . .) ОК
31. Вставьте пропущенную букву.
32. Подчеркните лишнее.
капитан феномен огород работа стрелок
33. Вставьте пропущенную букву.
в 4 й 2 н 3 __
54
34. Вставьте пропущенное число.
35. Вставьте пропущенное число.
36. Подчеркните, какая из четырех пронумерованных фигур подходит для пустого места.
37. На сеансе спиритизма медиум вызвал Брежнева, Годунова, Ежова и Жданова. Кого он вызовет
следующим: Сталина, Троцкого, Ибаррури, Хрущева или Мао-Цзедуна?
38. Подчеркните лишнее.
739 1341 522 1862
39. Вставьте пропущенное число.
40. Вставьте пропущенное число.
55
ШЕСТОЙ ТЕСТ
1. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
2. Вставьте пропущенную букву.
Е И М Р __
3. Подчеркните лишнее.
Александр Наполеон Веллингтон Нельсон Ганнибал
4. Вставьте пропущенное число.
8 12 10 16 12 __
5. Подчеркните лишнее.
ял пакетбот рикша барка джонка
6. Подчеркните, какое из этих животных существует в природе, в отличие от мифологических.
НАРДОК
ФНИСКС
ФИРГОН
ГЕРНУУК
7. Вставьте слово, пропущенное в скобках.
банда (. . . . .) таз
56
8. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: часть украшения
лица.)
ПАР (. .)ТАВ
9. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
10. Вставьте пропущенное число.
11. Подчеркните лишнее.
57
12. Вставьте пропущенную букву.
13. Подчеркните лишнее домино.
14. Вставьте слово в скобки, которому могут предшествовать любые из букв слева.
15. Вставьте слово, пропущенное в скобках.
алло (пат) руль
ком (. . .) порт
16. Вставьте пропущенное число.
17. Подчеркните лишнее.
акселератор: село, тара, скат, трек, торг, сера, карт, корт, река, сало
18. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: напиток.)
МОЛО (. . .) НИК
19. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
скобках.)
58
20. Подчеркните, какой из этих городов не находится в США.
ГИКОЧА
ДРИМАД
ТОНСОБ
ГОТНИНШАВ
21. Вставьте пропущенное число.
22. Подчеркните лишнее.
23. Вставьте слово, пропущенное в скобках.
глубина (бинт) бантик
разлука (. . . .) шпала
24. Вставьте слово, которое означает то же самое, что и два слова вне скобок.
передача (. . . . . .) задержание
25. Подчеркните, какая из пяти пронумерованных фигур подходит для пустого места.
26. Подчеркните, у какого животного, в названиях которых буквы переставлены, число ног
меньше четырех.
АСКЫР
ГРИТ
НОМАТМ
СОРБААЛЬТ
ГУАЯР
27. Вставьте число, пропущенное в скобках.
164 (225) 286
224 ( ) 476
28. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: химическое
соединение.)
КО (. . . .) Н
29. Подчеркните лишнее.
837 612 549 422 342
59
30. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
31. Вставьте пропущенное число.
32. Вставьте слово, пропущенное с скобках.
15 (беда) 62
15 (. . . .) 96
33. Подчеркните лишнее.
стул кровать раскладушка стол тахта
34. Вставьте пропущенное число.
60
35. Вставьте пропущенную букву.
36. Подчеркните лишнее.
9 25 36 78 144 196
37. Вставьте пропущенную букву.
38. Вставьте пропущенное число.
7 15 32 __ 138 281
39. БЗБВ соответствует Кутузову, как БДИВ соответствует ... (кому?)
40. Вставьте пропущенное число.
61
СЕДЬМОЙ ТЕСТ
1. Вставьте пропущенную букву.
Р Н К З _
2. Подчеркните лишнее.
Моцарт Бах Сократ Гендель Бетховен
3. Вставьте пропущенное число.
17 19 __ 20 15
4. Подчеркните, какой из этих городов лишний.
Осло Лондон Нью-Йорк Каир Бомбей Каракас Мадрид
5. Поставьте на место буквы в этих словах, которые являются названиями животных.
Подчеркните, какое животное самое большое.
ЛАРПОДЕ
АГКАЙС
СНУСК
ГИТР
ЕАРЗБ
ОЛЬС
ОКЛИРК
6. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: интервал
времени.)
ЧЕЛО (. . .) СЕЛЬ
7. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
62
8. Вставьте слово, пропущенное в скобках.
помощь (уход) кончина
талант (. . .) подношение
9. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
10. Вставьте пропущенное число.
11. Подчеркните, какие две фигуры нарушают общий порядок.
63
12. Вставьте пропущенную букву.
Д Й М Т __
13. Вставьте пропущенное число.
14. Вставьте слово в скобках, которому могут предшествовать любые буквы слева.
15. Вставьте слово, пропущенное в скобках.
бал (бес) порядок
под (. . .) кот
16. Вставьте пропущенное число.
17. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
64
18. Найдите пропущенное число.
19. Подчеркните слово в нижней строке, которое подходит к словам в верхней строке.
ГОНКА КАЧКА РОСТОК
тигр грация сказка момент страх машина
20. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: дерево)
С (. . .) АН
21. Подчеркните, что из перечисленного не является командной игрой.
ТЕРСБАЛЬ
ИГБЕР
ЛООП
ЛОТБУФ
22. Вставьте пропущенное число.
23. Подчеркните лишнее.
24. Вставьте слово, пропущенное в скобках.
апологет (паук) кукуруза
опрессовка (. . . .) тренировка
25. Вставьте слово, которое означает то же самое, что и два слова вне скобок.
бугор (. . . . .) синяк
26. Какая из пяти пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате).
65
27. Вставьте слово в скобках, которому могут предшествовать любые буквы слева.
28. Вставьте пропущенные букву и цифру.
29. Вставьте число, пропущенное в скобках.
132 (834) 285
214 ( ) 117
30. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: орудие.)
О (. . . . .) РЬ
31. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
скобках.)
66
32. Подчеркните, какое из этих чисел не подходит к остальным.
625 361 256 197 144
33. Вставьте пропущенное число.
34. Подчеркните лишнее.
антитеза позитрон дециметр опасность единорог
35. Вставьте пропущенное число.
4 6 9 14 __
36. Вставьте пропущенную букву.
37. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: гора.)
ТУ (. . .) НИК
38. Вставьте пропущенное число.
28 33 31 36 34 __
39. Вставьте пропущенное число.
40. Если DGJ + JAE + BHF = DDAB, а
= GA, то чему равно
?
67
ВОСЬМОЙ ТЕСТ
1. Вставьте пропущенную букву.
Ц Т О К _
2. Подчеркните лишнее.
Август Сентябрь Октябрь Ноябрь Декабрь
3. Вставьте пропущенное число.
36 28 24 22 _
4. Подчеркните лишнее.
Греция Дания Германия Франция Италия Финляндия
5. Расставьте по своим местам буквы в этих словах, которые являются названиями различных
средств передвижения, подчеркните, какое из них отличается от остальных.
РАКТ
КИТСА
АМТОКСА
ИНСА
ОГНАВ
6. Вставьте слово, которое означает то же самое, что и два слова за скобками.
рейка (. . . . . .) предел
7. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: военное
укрепление.)
КОМ (. . . .) ЕЛЬ
8. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
68
9. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
10. Вставьте пропущенное число.
11. Подчеркните лишнее.
69
12. Вставьте пропущенную букву.
13. Вставьте пропущенное число.
14. Вставьте слово в скобки, которому могут предшествовать любые из букв слева.
15. Подберите слово в скобках.
С + (битва) = (отказ)
16. Вставьте пропущенное число.
17. Какая из шести пронумерованных фигур подходит для пустого квадрата? (Напишите номер в
квадрате.)
70
18. Подчеркните, какое из слов в нижней строке подходит к словам в верхней строке.
ВЕРСИЯ РЕКТОР ЛЕММА ЭЛЕКТРИК
дождь кость животное свет бумага
19. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: звуковой сигнал.)
ВС (. . . .) ЕТ
20. Подчеркните, какой из этих городов не находится в Италии.
ЦНОРЛЕИФЯ
ДАРДИМ
ЗАИП
ЛИМНА
21. Вставьте пропущенное число.
22. Подчеркните лишнее.
23. Вставьте число, пропущенное в скобках.
243 (222) 317
548 ( ) 621
24. Вставьте слово, которое означает то же, что и два слова за скобками.
разряд (. . . . . .) застежка
25. Какая из пяти пронумерованных фигур подходит для пустого места? (Напишите номер.)
26. Вставьте пропущенную букву.
27. Вставьте пропущенные буквы.
28. Вставьте слово, пропущенное в скобках.
меломан (Марс) карст
ледостав (. . . .) каламбур
71
29. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: физическая
характеристика человека.)
НА (. . . .) ОК
30. Подчеркните в нижней строке число, которое подходит к числам верхней строки.
372 258 441
283 488 137 381 242
31. Вставьте пропущенное число.
32. Вставьте пропущенное число.
5 6 7 8 10 11 14 __
33. Какая из шести пронумерованных фигур подходит для пустого круга? (Напишите номер в
круге.)
34. Подчеркните, какое из слов в нижней строке подходит к словам верхней строки.
БЛЕСК ЗРЕНИЕ ЯВЛЕНИЕ
погода грация пуск книга змея
72
35. Вставьте число, пропущенное в скобках.
532 (630) 217
648 (
) 444
36. Подчеркните лишнее.
5 7 9 17 23 37
37. Вставьте слово, которое заканчивает первое слово и начинает второе. (Ключ: судьба.)
ЗА (. . .) ЕР
38. Вставьте пропущенное число.
8 24 12 __ 18 54
39. Подчеркните, какое слово заканчивает следующее предложение:
СВТЫРСЛОМКНО относится к УНГИРЗОКАО как ГВДЕАРСХ к:
ГЛИТХГИНРЫО
АНЛИЙЗВ
ТИПСЫЦХАТРИ
СХАСТИПЛАВ
40. Вставьте пропущенное число.
260 216 128 108 62 54 __ 27
73
ОТВЕТЫ И РАЗЪЯСНЕНИЯ
ПЕРВЫЙ ТЕСТ
1. 14. (Числа увеличиваются каждый раз на три.)
2. Контора. (Люди не живут в конторах.)
3. 14 и 13. (Приведены два чередующихся ряда чисел, увеличивающихся каждый раз на два.)
4. Кит. (Млекопитающее, остальные - рыбы.)
5. Руслан. (Волга, Жигули, Москвич и Чайка - марки автомобилей, Руслан - марка самолета.)
6. Дыра. (Слово в середине имеет то же значение, что и два слова с каждой стороны.)
7. ВОЛ.
8. 5. (Фигуры уменьшаются слева направо.)
9. 3. (Каждая строка содержит окружность, квадрат и ромб; картинки чередуются по вертикали и
по горизонтали. Поэтому пропущенной фигурой должен быть квадрат с вертикальной и
горизонтальной линиями внутри.)
10. 32. (Первое число умножается на второе, чтобы получить третье: 1x2 = 2; затем второе
умножается на третье, чтобы получить четвертое и т.д. 4x8 = 32, поэтому 32 и есть
пропущенное число. Возможен другой вариант: 8. (Числа слева равны произведению 4 на
число напротив.)
11. 5. (Жирные линии вращаются против часовой стрелки, кружки по часовой стрелке, а два
штриха расположены перед кружком, кроме пятой фигуры, где они расположены после него).
12.
13. Ф. (В алфавитной последовательности пропускаются поочередно две и три буквы.)
14. УРОК.
15. Рожь и дрожь. (Рожь- злак, а дрожь - мелкие сокращения мышц.)
16. 16.6. (Каждое число в нижнем ряду равно половине суммы двух чисел над этим числом.)
17. Палка. (Всем этим словам может предшествовать приставка "пере".)
18. 3. (В каждом ряду и столбце есть три типа лиц (круглые, квадратные и треугольные), носы черные, белые и в крапинку, глаза - белые, черные или один черный, другой белый, а также один, два или три волоса. Поэтому недостающим лицом должен быть квадрат с черным носом,
тремя волосами и с глазами - одним черным, другим белым.)
19. РОК.
20. Уланова. (Поэты - Блок, Пушкин, Есенин и Некрасов.)
21. 6. (Сложить цифры на концах длинных стрелок и вычесть из суммы цифры на концах
коротких стрелок.)
22. ТРЕПАНГ. (Подставить четыре буквы за скобками на место шестой, пятой, третьей и второй
пропущенных букв.)
23. ЛИПА.
24. 5. (При каждом повороте кружок и квадрат меняются местами; в последнем случае этого не
происходит, поэтому 5 - лишняя фигура Стрелка и знак вопроса остаются на своих местах.)
25. ОТЕЛЛО. (Композиторы: Моцарт, Штраус и Верди.)
26. Г. (Буква во втором столбце всегда находится на столько букв ниже буквы в первом столбце,
74
на сколько буква в третьем столбце выше буквы в первом столбце. М на четыре буквы ниже З,
а Г на четыре буквы выше З.)
27. 2 (Поскольку квадрат с кругом внутри превращается в круг с повернутым квадратом внутри,
то треугольник с квадратом внутри становится квадратом с повернутым треугольником
внутри. Штриховка переходит с внутренней стороны на внешнюю. Три прямоугольника
снаружи переходят вниз и те, которые были заштрихованными, становятся черными, а те,
которые были черными, становятся заштрихованными.
28. 2. (Основная фигура поворачивается на 90 градусов. Заштрихованные и белые области
меняются местами, а фигура в центре сама поворачивается на 90 градусов.)
29. СНЕГ. (Слово в скобках образуется из второй и третьей букв с конца слова перед скобками и
тех же букв слова после скобок.)
30. ТОР.
31. 3. (У всех фигур или по три линии с прямым углом или по шесть линий без прямого угла.)
32. 1. (В каждом ряду и столбце имеется круглое, квадратное и линейное туловища; круглые,
квадратные и линейные ступни; круглая, квадратная и треугольная головы; опущенные вниз,
поднятые вверх или горизонтально расположенные руки. Поэтому недостающий человечек
должен иметь линейное туловище, круглые ступни, квадратную голову и опущенные вниз
руки.
33. 10. (Число в последнем столбце равно сумме чисел в первых двух столбцах минус число в
третьем столбце. 13 + 8-11 = 10.)
34. Нью-Йорк. (Нью-Йорк - не столичный город.)
35. 18. (Три числа снаружи треугольника перемножаются друг на друга и результат делится на
десять.)
36.
37. ПОСТ.
38. 26. (Есть два чередующихся ряда, начинающихся с двух первых чисел, причем каждый
элемент образуется удвоением предыдущего числа в своем ряду и вычитанием 2. 2 х 24 =28; 28
- 2 = 26.)
39. И. (Число букв между Б и каждой последующей буквой всегда простое: 2, 3, 5, 7, 11 и 13.
Между Б и Н тринадцать букв.
40. 238. (Каждый элемент ряда образуется следующим образом: число 3 возводится в первую,
вторую, третью, четвертую и пятую степени и из результата вычитается 1, 2, 3, 4 и 5
соответственно.
31 - 1 = 2; 32 - 2 = 7; 33 - 3 = 24; 34 - 4 = 77; 35 - 5 = 238.)
75
ВТОРОЙ ТЕСТ
1. 24. (Числа увеличиваются каждый раз на четыре.)
2. 3. (Число точек уменьшается на единицу в любом направлении.)
3. Селедка. (Единственная рыба среди млекопитающих.)
4. 90 и 93. (Ряд образуется попеременным сложением и удвоением предшествующего числа;
поэтому 45 х 2 = 90, а 90 + 3 = 93.)
5. Апполон. (Единственный греческий бог, остальные - римские.)
6. Вашингтон. (Афины, Москва, Милан и Краков находятся в Европе.)
7. Пачка. (Среднее слово имеет то же самое значение, что и слова по краям)
8. РОМ.
9. 5. Фигуры в нижнем ряду такие же, как в верхнем, только черный и белый цвет меняются
местами.)
10. Ш. (Г - третья буква после А, Ж - четвертая буква после Г, Л - пятая после Ж, С - шестая после
Л, а Ш - седьмая после С.)
11. 39. (Каждое число, начиная с 3, равно удвоенному предшествующему минус один, минус два,
минус три и т.д. 22 x 2 = 44; 44 - 5 = 39.)
12. 4. (1 и 3 образуют пару, то же самое - 2 и 5. В каждой паре одна фигура повернута на 90
градусов, причем черные и белые части меняются местами. Фигура 4 не соответствует этому.)
13. 22. (Для получения нижнего числа верхнее удваивается и из результата вычитается один, два,
три и четыре для первого, второго, третьего и четвертого домино. 13 x 2 = 26; 26 - 4 = 22.)
14. ОДА.
15. Стоп. (Слово в скобках служит мостом между словом перед скобками и словом после скобок;
оно может заканчивать первое слово и начинать второе.)
16. 4. (Есть три типа форм головы, туловища и хвоста, а также один, два и три уса. Каждый тип
появляется только один раз в каждом ряду и столбце.)
17. 13. (Для получения числа в центре складываются первое и последнее числа в ряду.)
18. Гонг. (Во всех остальных словах две последние буквы являются последовательными буквами
алфавита; в слове "гонг" этого нет.)
19. БИТ.
20. Воробей. (Острова: Куба, Ирландия и Капри.)
21. 16. (Взять верхнее число, разделить его на правое и удвоить результат.)
22. 2. (1 и 5 - идентичны, то же самое - 3 и 4.)
23. Жаба. (Цифры относятся к соответствующим буквам алфавита, т.е. 4 - это Г - четвертая буква
и т.д. Эти буквы подставляются затем вместо цифр и читаются в обратном порядке.)
24. Конь. (Рысак - это конь, кроме того конь - это спортивный снаряд.)
25. 785. (Цифры после слова "Свазиленд" соответствуют буквам в этом слове; слова "виза", "лиса"
и "лес" образованы из букв в слове "Свазиленд", а цифры после них являются цифрами,
соответствующими этим буквам в исходном слове, только после слова "виза" к каждой цифре
прибавляется 1, после слова "лиса" - 2, а после слова "лес" - 3.)
26. Ж. (Число букв в алфавите, которые находятся между последовательными буквами, равно 2, 4,
6, 8, 10 и 12, а направление поочередно меняется вперед и назад по алфавиту (т.е. от А до Я и
от Я до А.) Альтернативное объяснение: чередующиеся буквы переходят на две позиции вниз
по алфавиту и на две вверх; последовательность М, К, И приводит к Ж как к следующей букве.
27. 2. (Исходный круг делится пополам, а квадрат поворачивается на 45 градусов и помещается
сверху полукруга; аналогично большой квадрат делится пополам и получается прямоугольник,
ромб поворачивается на 45 градусов и помещается сверху прямоугольника. Кроме того,
штриховка исходной фигуры удаляется на второй фигуре и наоборот.)
76
28. ВОЛК. (Буквы перед скобками являются буквами, которые в алфавите непосредственно
предшествуют первым двум буквам в слове внутри скобок, а буквы после скобок являются
буквами, стоящими в алфавите непосредственно после двух букв слова внутри скобок. Б
стоит перед В, Н - перед О, М - после И, а Л - после К.)
29. ГОЛ.
30. 1. (Каждый крест снаружи квадрата имеет значение плюс единица, внутри - минус единица; в
нижнем ряду: + 3 - 1 = + 2. Следовательно, ответом будет два креста внутри квадрата.
31. 2. (У нее нет прямых углов.)
32. 2. (Все строки и столбцы дают в сумме тридцать; 12 + 16 = 28, поэтому для получения
тридцати нужно прибавить 2.)
33. Пароход. (Остальные три слова в разговорной речи связываются с тремя национальностями:
немецкая педантичность, уход по-английски, японский гриб, а пароход - нет.)
34. 52. (Во второй фигуре числа равны половине соответствующих чисел первой фигуры; в
третьей они в два раза больше чисел первой фигуры. Поэтому пропущенное число должно
равняться: 26 х 2 = 52. Позиции чисел не соответствуют друг другу, а сдвигаются каждый раз
на одну.)
(Числа увеличиваются каждый раз на единицу; буква отстоит в алфавите от
35.
предшествующей на число букв, равное числу букв над ней. Поэтому Ж на четыре буквы
отстоит от Г, Л - на 5 от Ж, а С - на 6 от Л.)
36. Секс. (Сладострастие - сексуальный аппетит.)
37. ПАРА.
38. Переворачивание. (Палимпсест - это манускрипт, первоначальный текст которого был стерт,
чтобы его можно было использовать вновь; палиндром - это слово или фраза, которые
читаются одинаково как в прямом, так и в обратном направлениях, например ЗАКАЗ.)
39. И. (Пронумерованные последовательно буквы имеют номера 2, 5, 10, 17 и 26. Эти числа
являются квадратами первых пяти цифр (1, 2, 3, 4 и 5) из которых вычтена каждый раз
единица. Квадрат трех равен девяти, 9 + 1 = 10, а десятая буква - И.)
40. 5436. (Есть два ряда, начинающиеся соответственно с 7 и 9 и идущих через одну цифру. В
первом ряду: 7 возводится в квадрат и из результата вычитается число, предшествующее 7, т.е.
7 в квадрате минус 9 равно 40. Аналогично 40 в квадрате минус 74 равно 1526. Во втором ряду
9 возводится в квадрат и из результата вычитается число предшествующее 9, т.е. 7. 9 в
квадрате минус 7 равно 74. Для получения пропущенного числа 74 возводится в квадрат и из
результата вычитается 40; получается 5436.)
77
ТРЕТИЙ ТЕСТ
1. 5. (Каждый раз из числа вычитается пять.)
2. Сани. (У них нет колес.)
3. 74. (Каждое число равно удвоенному предшествующему числу плюс один, два, три и, наконец,
четыре; поэтому 35 x 2 + 4 = 74.)
4. Паук. (У него восемь ног, а у остальных по шесть.)
5. Мышь. (Остальные животные: бизон, котенок, корова и жираф.)
6. СФЕРА.
7. 4. (В каждой группе - три фигуры: круг, квадрат и треугольник; одна из них черная, остальные
- белые,)
8. ДОК.
9. 6. (Сектор поворачивается на 90 градусов против часовой стрелки в каждом столбце и в
каждом ряду.)
10. Д. (Есть два чередующихся ряда: в первом вы переходите через одну, две, три и т.д. буквы
вперед, во втором через одну, две, три и т.д. буквы назад. Перейдя через три буквы назад от З
вы получите Д.)
11. 33. (Каждое число равно предшествующему, умноженному на два, минус единица; поэтому
17 x 2 = 34, а 34 - 1 = 33.)
12. 4. (У белых овалов прилегающие стрелки направлены вправо или вверх; у черных - влево или
вниз. Овал 4 черный, но его стрелка направлена вверх.)
(Верхние числа увеличиваются на 2, 3, 4, 5; нижние числа на удвоенные величины,
13.
т.е. 4,6, 8, 10.)
14. 1. (Есть три очертания голов, три типа носов, ртов и бровей; каждый встречается один раз в
каждом ряду и в каждом столбце.)
15. БОР.
16. Бор. (Слово в скобках служит связкой между словом перед скобками и словом после скобок;
оно может заканчивать первое слово и начинать второе.)
17. 19. (Чтобы получить третье число в каждом ряду, надо вычесть второе из первого.)
18. Милиция. (Во всех остальных словах две первые буквы являются последовательными буквами
алфавита; в слове "милиция" этого нет.)
19. КЛАСС.
20. Мария. (Мужские имена: Роберт, Венедикт и Василий.)
21. 97. (Переход по часовой стрелке по восьмерке, начиная с 4; каждое число равно удвоенному
предшествующему числу минус один. 49 х 2 = 98; 98 - 1 = 97.)
22. Сова. (Слово в скобках образовано третьими и вторыми буквами слов за скобками.)
23. Вес.
24. 4. (Идентичные фигуры: 1 и 3, а также 2 и 5.)
25. Р. (Д - первая буква в слове "два", Т - третья буква в слове "четыре", а Р - вторая буква в слове
"три". Номер буквы, таким образом, всегда на единицу меньше, чем определяется словом.)
26. И. (Нижние буквы находятся на 4, 6, 8 и 10 букв выше по алфавиту от верхней буквы.)
27. 2. (Три идентичных малых фигуры снизу от большой фигуры становятся главной фигурой, а
первоначально основная фигура превращается в три малых фигуры, которые теперь переходят
78
на противоположную сторону. Три малых фигуры справа, слева и сверху основной фигуры
меняют позиции. Фигуры черные или белые на первом рисунке остаются черными или белыми
на втором.)
28. Лама. (Слово в скобках образуется из второй и третьей букв слов за скобками, взятыми в
обратном порядке.)
29. РОТ.
30. 6. (В каждом ряду и в каждом столбце есть три типа туловищ (круглое, квадратное и
треугольное), три типа голов (также круглые, квадратные и треугольные), три типа хвостов
(прямой, волнистый и колечком), три типа ног (линейные, черные и белые). Кроме того,
туловища могут быть белые, черные и заштрихованные. Поэтому пропущенным цыпленком
является 6.)
31. М. (Если читать через одну букву по часовой стрелке, получаются слова "гром" и "грим".)
32. 20. (Число в последнем столбце образуется вычитанием из числа во втором столбце числа х.
х - число, на которое нужно умножить число в первом столбце, чтобы получить число во
втором столбце. 4 x 6 = 24; 24- 4 = 20.)
33. Германия. (Все остальные слова связаны с названиями морей: Коралловое море, Северное
море и Японское море.)
34. 14. (Есть два ряда: один из нечетных, другой из четных чисел. Элементы каждого ряда
увеличиваются на два и меняют позиции, т.е. переходят вверх и вниз.)
35.
(Буквы вверху отстоят друг от друга по алфавиту на три, а внизу на четыре в
обратном порядке.)
36. 1. (Стрелка, треугольник и черный и белый квадраты поворачиваются каждый раз на 90
градусов. Крест и кружок перемещаются таким же образом, но каждый раз меняются
местами.)
37. Толю. (Первые буквы имен влюбленных отстоят друг от друга на три, пять и семь букв; Ира и
Толя продолжают этот ряд - между И и Т девять букв.)
38. 5.50. (Первый раз она опоздала на 30 минут,
второй раз - на 30 + 50 минут,
третий раз - на 30 + 50 + 70 минут,
четвертый раз - на 30 + 50 + 70 + 90 минут
и, наконец, на 30 + 50 + 70 + 90 + 110 минут.)
39. НИВОЕРИННИЕРИРОЕА (Зевс, Гермес и Апполон - греческие боги, Венера - римская богиня.
Имена богов зашифрованы и могут быть раскрыты, если учитывать только буквы, которым
предшествуют гласные, не образующие части их имен.)
40.
(Ряд начинается с 1/2. Последующие значения получаются при сложении с 1, 2, 3 и 4
соответственно. Каждый результат делится на 1x1, 1x2, 1x2x3, 1x2x3x4.)
79
ЧЕТВЕРТЫЙ ТЕСТ
1. 12. (Числа уменьшаются каждый раз на шесть.)
2. Чемберлен. (Он не поэт.)
3. 2. (Руки - подняты вверх, опущены вниз, на уровне плеч, голова - белая, черная или
заштрихованная в каждом ряду столбца.)
4. 69. (Каждое число равно удвоенному предыдущему и единице, поочередно прибавляемой или
вычитаемой из результата.)
5. Квебек. (Все остальные находятся примерно на одной широте. Квебек намного севернее.)
6. Арарат. (Торпедо, Динамо, Трактор и Спартак - хоккейные команды, Арарат - только
футбольная.)
7. Шпик. (Слово в середине имеет то же самое значение, что и два слова вне скобок; шпик - это
сало, а также сыщик.)
8. 64. (Одно из чисел, расположенных друг против друга, является квадратом другого; 8 в
квадрате равно 64.)
9. 5. (Число линий внутри и на стабилизаторах ракеты уменьшается от начала к концу ряда.)
10. ТРОС.
11. 2 и 4. (1 и 5, 3 и 6 образуют пары; одна фигура получается из другой поворотом на 180
градусов. Для 2 и 4 это не выполняется.)
12. Й. (Есть два чередующихся ряда букв; в каждом пропускаются по две буквы; пропустив З и И
получим Й.)
13. 79. (Разница между двумя числами в каждой паре всегда равна двадцати одному; нижнее
число всегда больше. Таким образом 58 + 21 = 79.)
14. РОЛЬ.
15. Устав и сустав. (С + устав = сустав.)
16. 4. (В каждом ряду второе число вычитается из первого и умножается на четыре.
7 - 6 = 1; 1 x 4 = 4.)
17. Базар. (Все остальные слова могут быть образованы из букв слова "организация".)
18. ТЕКСТ.
19. 1. (Есть три формы фюзеляжа, три вида крыльев, одно, два или три места в кабине, а крылья белые, черные или заштрихованные. Каждая форма встречается только один раз в каждом ряду
и в каждом столбце.)
20. Лентяй. (Женские имена - Дарья, Мария и Екатерина.)
21. 21. (Два числа сверху перемножаются и из результата вычитается нижнее число. 9 х 3 = 27;
27 - 6 = 21.)
22. 4. (1 и 5, 2 и 3 являются дополнительными друг для друга в треугольниках, которые белые в
одной фигуре и черные в другой. 4 не соответствует этой схеме. Кроме того, в тех фигурах две
стороны (справа и слева от стрелки) дополняют друг друга; в 4 они одинаковые.)
23. 88. (Число в скобках в четыре раза больше разницы между числами вне скобок.)
24. ПРЕДМЕТ.
25. 4. (Большая фигура переворачивается и помещается сверху малой фигуры; малая фигура
становится большой, а большая малой; заштрихованная фигура становится одноцветной и
наоборот.)
26. Марпл. (Кинозвезды: Брандо, Тэйлор, Фонда и Бардо.)
27. И. (Буквы во втором столбце образуются путем перехода вверх по алфавиту соответственно на
две, три и четыре буквы относительно букв первого столбца. Буквы в третьем столбце
образуются путем перехода
вверх по алфавиту относительно букв второго столбца
соответственно на три, четыре и пять букв. Через пять букв от О находится И.)
80
28. 4. (В каждом ряду и в каждом столбце есть один автомобиль со сплошными колесами, один с
белыми и один с крестом на колесах. Может быть одна, две или три щели на капоте. Может
быть дверка и окно, только дверка или ни того, ни другого. Может быть еще заводная ручка
или крыло или ни того, ни другого. Ответ соответствует этому набору признаков.)
29. 682. (Число в скобках равно половине суммы чисел за скобками.)
30. 1. (Большой квадрат поворачивается против часовой стрелки каждый раз на 45 градусов. Крест
и кружок поворачиваются на тот же угол, но по часовой стрелке.)
31. 9. (Число в третьем столбце образуется сложением чисел в первом и втором столбцах и
вычитанием числа из последнего столбца. 6 + 8 - 5 = 9.)
32. Кубрик. (Во всех других словах первая и последняя буквы следуют друг за другом по
алфавиту. В слове "кубрик" они одинаковые.)
33. БЕГ.
34. Т. (Буквы, прочитанные по часовой стрелке, образуют слово "арестант".)
35. 89. (Все числа снаружи круга делятся пополам и результаты складываются.)
36.
(Сверху каждый раз пропускаются две буквы. Снизу пропускаются три, четыре и
пять.)
37. ЦЕНТ.
38. Тарас и люлька. (Число букв в именах равно 6, 5, 6. У следующего также должно быть 5 букв.
Число букв в предметах 5, 6, 5; у следующего снова должно быть 6 букв. Этой закономерности
удовлетворяет Тарас и люлька.)
39. Й. (Каждая буква в ряду отстоит на некоторое число букв попеременно от начала и от конца
алфавита. Это число начинается с 3 и увеличивается на 2, 3, 4, 5 и, наконец, на 6.)
40. 112. (В каждом домино нижнее число получается из верхнего путем возведения его в квадрат,
делением на два и вычитанием из результата верхнего числа.
Квадрат 16 = 256; 256 : 2 = 128; 128 - 16 = 112.)
81
ПЯТЫЙ ТЕСТ
1. М. ( Переход через две буквы по алфавиту.)
2. Шекспир. (Все остальные - художники.)
3. 4. (Стрелки поворачиваются на 90 градусов по часовой стрелке в каждом ряду и в каждом
столбце и каждый раз теряют по одному перу.)
4. 75. (Каждое число равно удвоенному предыдущему и единице, поочередно прибавляемой или
вычитаемой. Таким образом 37 равно удвоенному 19 минус 1, а 75 равно удвоенному 37 плюс
1.)
5. Дельфин. (Дельфин - млекопитающее, остальные рыбы.)
6. Манчестер. (Остальные города - Берлин, Мадрид и Афины.)
7. Титан. (Слово в середине имеет то же самое значение, что и слова справа и слева. Гигант - это
титан, титан - нагреватель.)
8. 469. (Начиная с 4, каждая цифра удваивается и поочередно вычитается или прибавляется
единица.)
9. 4. (Уши: круглые квадратные или треугольные, пробор: слева, справа или посредине. Каждая
из примет встречается один раз в каждом ряду и столбце.)
10. ПИОН.
11. 2 и 5. (1 и 3, 4 и 6 образуют пары, поскольку одну фигуру из другой можно получить
поворотом на 90 градусов; это невозможно для 2 и 5.)
12. ТОК.
13. 2. (Труба может быть слева, справа или посредине и может быть белой, черной или
заштрихованной. В верхней комнате может быть одно, два или три окна, а дверь может быть
слева, справа или посредине. Каждый признак встречается один раз в каждом ряду и столбце.)
14. Ч. (Каждая буква поочередно переходит вверх и вниз по алфавиту, причем число
пропускаемых букв каждый раз удваивается, т.е. 1, 2, 4, 8, 16. Шестнадцатой буквой от З
является Ч.)
15. Вал и овал
16. 3. (Перемножить цифры в первых двух столбцах и разделить произведение на число в
четвертом столбце; получится число в третьем столбце.
.)
17. Ода. (Всем этим словам может предшествовать слово "кол".)
18. Какао. (Остальные слова: крокодил, сверчок и акула.)
19. 14. (Перемножить числа внутри кругов и разделить на число слева.)
20. ПИР.
21. 5. (Имеются две пары рисунков: 1 и 3, 2 и 4. Одна фигура получается из другой поворотом на
180 градусов. 5 не соответствует этой схеме.)
22. ВЕРА. (Буквы перед скобками, в обратном порядке, являются двумя последними буквами
слова в скобках. Седьмая и шестая буквы буквы алфавита, расположенные в обратном
порядке, дают первые две буквы слова "дело", а шестая и третья буквы алфавита,
расположенные в обратном порядке дают первые две буквы слова "вера".)
23. Глазго, который находится в Шотландии. (Остальные города: Кардифф, Лондон, Ливерпуль и
Оксфорд.)
24. Скат. (Склон - это скат, а скат в разговорной речи означает покрышку.)
25. 4. (У нее, как и у остальных фигур, четыре прямых линии.)
26. 63. (Каждое число удваивается и к результату прибавляется единица. 31 x 2 = 62; 62 + 1 = 63.)
82
(Начиная с Г и Й, буквы образуют ряды, в которых пропускаются одна, две и три
27.
буквы. Эти два ряда вверху и внизу домино меняют позиции следующим образом: Г, Е, З, Л и
Й, Л, О, Т.)
28. Опал. (Слово в скобках образуется из первых двух букв, взятых в обратном порядке, слов,
находящихся за скобками.)
29. 6. (Каждый треугольник может быть белым, заштрихованным или с тремя линиями внутри. Он
может заключать в себе квадрат, круг или горизонтальную восьмерку. Напротив скобки у него
может быть крест, овал или ничего. Кроме того, скобка может находиться на любой из его
сторон. Поэтому пропущенный треугольник можно установить.)
30. НОС.
31. И. (Если прочитать буквы против часовой стрелки, получится слово "иллюзион".)
32. Стрелок. (Во всех остальных словах по три гласных.)
33. У. (Каждая буква удалена от предыдущей на число, вдвое большее числа, указанного между
этими буквами; поэтому Й является восьмой (2 х 4) по счету буквой, начиная с В, а У является
шестой (2 х 3) буквой от Н.)
34. 11. (Сумма чисел в каждом из трех квадратов равняется двадцати.)
35. 35. (Число в третьем ряду образуется путем вычитания из числа во втором ряду удвоенного
числа в первом ряду.)
36. 3. (При переходе от первой картинки ко второй четыре рисунка в углах квадрата
поворачиваются на одну позицию по часовой стрелке, а квадрат помещается внутрь ромба;
рисунки в углах ромба поворачиваются на одну позицию против часовой стрелки, а ромб
перемещается внутрь квадрата. Положение ромба в квадрате для третьей фигуры снова
обратное и поворот по часовой и против часовой стрелки рисунков в углах выполняется еще
раз.)
37. Ибаррури. (Начальные буквы фамилий этих людей сдвигаются на две позиции по алфавиту: Б,
Г, Е, Ж, поэтому следующей будет буква И.)
38. 1862. (Все остальные числа являются третьими степенями 9, 11 и 8, к которым прибавлено
десять.)
39. 1560. (Числа внизу получаются из квадратов чисел 24, 32 и 40, т.е. из трех чисел, каждое из
которых больше предыдущего на 8. Из этих квадратов вычитается 8, и результат умножается
на верхнее число, т.е. на 3, 4 и 5 соответственно. 402 - (5 x 8) = 1560.)
40. 216. (Каждое из чисел снаружи треугольника является почти квадратом. Так 848 равно
квадрату 29 плюс 7; 967 равно квадрату 31 плюс 6; 489 равно квадрату 22 плюс 5. Перемножив
7 х 6 х 5 вы получите число в треугольнике, т.е. 210.
680 = 262 + 4; 738 = 27 2 + 9; 582 = 242 + 6. 6 x 4 x 9 = 216.)
83
ШЕСТОЙ ТЕСТ
1. В каждом ряду есть круг, квадрат и треугольник, причем как в качестве внутренней фигуры,
так и в качестве внешней.)
2. Ф. (Буквы переходят по алфавиту через три позиции.)
3. Нельсон. (Он единственный адмирал среди генералов.)
4. 20. (Поочередное удвоение и вычитание четырех или деление пополам и сложение с
четырьмя.)
5. Рикша. (Остальные - суда различных типов.)
6. Кенгуру. (Ни дракона, ни сфинкса, ни грифона в природе не существует.)
7. Шайка. (Банда - это шайка, а шайка - то же, что и таз.)
8. УС.
9. 6. (В каждом столбце черные, белые и заштрихованные области перемещаются на один
квадрат.)
10. 8. (Числа напротив друг друга образуют пары, в которых одно число в два раза больше
другого. Удвоив четыре, получим восемь.)
11. 3. (На всех других картинках кружок на один шаг отстоит от черного треугольника по часовой
стрелке; на рисунке 3 он отстоит на один шаг против часовой стрелки.)
12. У. (Буквы во втором столбце стоят в алфавите относительно букв первого столбца на третьем,
четвертом и пятом местах соответственно; буквы в третьем столбце стоят на шестом, восьмом
и десятом местах относительно букв второго столбца. Другими словами они в два раза дальше
от букв второго столбца, чем буквы первого столбца от букв второго.)
13. Последнее. (Разница между верхним и нижним числами в остальных домино увеличивается на
единицу, те. равняется 1, 2, 3, и 4; у последнего домино она увеличена на 2. 7 - 1 = 6.)
14. КЛАД.
15. ПАС.
16. 17. (Верхние числа увеличиваются на четыре слева направо, средние на пять, нижние на
шесть.)
17. Торг. (Все остальные слова могут быть образованы из букв слова "акселератор".)
18. ЧАЙ.
19. 2. (В каждом ряду и каждом столбце имеется по три формы носа, уха, глаза и один, два или три
волоса. Каждая форма встречается только один раз в каждом ряду и подходящая комбинация
дает отсутствующий профиль.)
20. Мадрид, который находится в Испании. (Остальные города: Чикаго, Бостон и Вашингтон.)
21. 7. (Сложить числа вверху слева и справа и разделить на 3. 16 + 5 = 21; 21/3 = 7.)
22. 3. (Только у нее нет вертикальной линии.)
23. Лупа. (Слово в скобках образовано четвертой и третьей с конца буквами слов за скобками.)
24. Привод. (Привод в милицию - это задержание, а в механизмах привод - это передача энергии.)
25. 3. (Фигуры с прямой линией заштрихованы вверху, остальные -внизу.)
26. Альбатрос. (Остальные: крыса, тигр, мамонт и ягуар.)
27. 350. (Сложить два числа за скобками и разделить пополам.)
28. БУРА.
29. 422. (Все остальные числа делятся на девять.)
30. 1 (В каждом ряду есть одна белая рамка, одна заштрихованная и одна черная. Сверху рамки, а
также внутри ее находятся фигуры трех типов. Внутренние фигуры - черные, белые и
заштрихованные. Пропущенный рисунок находится, если заметить, каких признаков нет на
первых двух фигурах в первом ряду.)
84
31. 22. (Умножить число в правом столбце на число во втором столбце и вычесть из произведения
число во втором столбце. 2 х 12 = 24; 24 - 2 = 22.)
32. ЕЗДА. (Берутся буквы, соответствующие их порядковому номеру (т.е. А = 1, Б = 2 и т.д.) в
обратном порядке.)
33. Раскладушка. (У остальных по четыре ножки.)
34. 4. Перемножить числа справа и слева от треугольника и разделить результат на число под
треугольником. 8 x 12 = 96; 96/24 = 4.)
35. Ц. (Каждая буква в третьем столбце расположена в два раза дальше от буквы во втором
столбце, чем буква во втором столбце от соответствующей буквы в первом столбце. Между О
и С две буквы, а между С и Ц - четыре.)
36. 78. (Все остальные числа - квадраты.)
37. Ш. (Нижняя буква отстоит от верхней по алфавиту на четыре, шесть, восемь и десять букв от
верхней; десятой буквой после О является Ш.)
38. 67. (Каждое число удваивается и к результату прибавляется последовательно один, два, три и
т.д. 2 х 32 = 64; 64 + 3 = 67.)
39. Христофор Колумб. (Напишите над первыми десятью буквами алфавита цифры от 0 до 9;
буквам БЗБВ соответствует число 1812, связанное с М.И. Кутузовым. Буквам БДИВ
соответствует 1492 - год открытия Америки Колумбом.)
40. 1152. (Умножить число внизу на квадрат числа слева и разделить на число справа.)
85
СЕДЬМОЙ ТЕСТ
1. Е. (Каждая последующая буква перескакивает две позиции назад по алфавиту.)
2. Сократ. (Остальные - композиторы.)
3. 16. (Цифры поочередно увеличиваются или уменьшаются на: +2, -3, +4, -5. 19 - 3 = 16.)
4. Мадрид. (Каждый из остальных городов расположен примерно на 10 градусов южнее
предыдущего.)
5. Лось. (Лось крупнее леопарда, сайгака, скунса, тигра, зебры и кролика.)
6. ВЕК.
7. 5. (Черная область каждый раз поворачивается на 90 градусов.)
8. Дар. (Слово в скобках имеет то же значение, что и слова вне скобок; талант - это дар, дар
означает также подношение.)
9. 4. (Спирали имеют один виток, полтора витка и полвитка и образец каждой спирали
встречается только один раз в каждом ряду и в каждом столбце.)
10. 39. (Каждое число равно удвоенному предыдущему минус один, два, три, четыре и т.д.
Поэтому 2 х 22 - 5 = 39.)
11. 5 и 6. (Звезда поворачивается каждый раз на одну позицию вправо (по часовой стрелке), крест
и кружок перемещаются каждый раз на одну позицию против часовой стрелки. Если 5 и 6
поменять местами, они будут удовлетворять этим условиям.)
12. Ч. (Буквы в этом ряду являются четвертыми после каждой из первых пяти гласных; Ч четвертая буква после У.)
13. 256. (Числа в верхней части каждого домино каждый раз удваиваются, в нижней части возводятся в квадрат; квадрат 16 = 256.)
14. КОЛ.
15. БОЙ.
16. 5. (Каждое число в нижнем ряду равно сумме чисел в первом и втором рядах минус один.
5 + 1 - 1 = 5.)
17. 1. (В каждом ряду и столбце есть два, три или четыре колеса; черная, белая или
заштрихованная передняя часть; длинная, короткая или средняя труба; одна, две или три
полоски. В кабине одно, два или три окна. Этим определяется, каким должен быть
пропущенный локомотив.)
18. 33. (Числа в среднем ряду образуются путем сложения числа в верхнем ряду с удвоенным
числом в нижнем ряду. 13 + 20 = 33.)
19. Сказка. (Всем этим словам может предшествовать приставка "под".)
20. ТУК.
21. Стрельба. (Регби, футбол и поло - командные игры.)
22. 26. (Сложить числа верхнее и нижнее и вычесть числа правое и левое.)
23. 2. (Только у второй фигуры нет ни одной замкнутой части, окруженной кривыми или прямыми
линиями.)
24. ПОРТ. (Слово в скобках образуется из второй и третьей букв слов за скобками.)
25. ШИШКА. (В разговорной речи шишкой называют и синяк и бугор.)
26. 3. (На ней есть кривые линии, на остальных нет.)
27. ХОД.
28.
(Числа увеличиваются каждый раз на четыре, а буквы в каждом случае - 4-я, 8-я, 12-я
86
и 16-я буквы алфавита.)
29. 662. (Число в скобках образуется сложением двух чисел за скобками и удвоением результата.
214 + 117 = 331; 331 x 2 = 662.)
30. ПУШКА.
31. 4. (Фигура в прямоугольнике может быть треугольником, полукругом или волной и может
быть белой, черной или заштрихованной. Кружок вверху может быть справа, слева или
посередине, а три стрелки могут быть расположены в трех направлениях. Поэтому
пропущенной фигурой должен быть заштрихованный полукруг с кружком в левом углу и
одной стрелкой вправо и двумя влево.)
32. 197. (Все остальные являются квадратами, 197 - нет).
33. 24. (Вычесть сумму чисел в двух первых столбцах из их произведения. (6 x 6) - (6 + 6) = 24.)
Или 18. (Первое число плюс удвоенное второе.)
34. ЕДИНОРОГ. (Во всех остальных словах первая и последняя гласные одинаковые.)
35. 23. (Удвоить предыдущее число и вычесть два, три, четыре и т.д. 2 x 14 - 28; 28 - 5 = 23.) Или
22. (Сложить два предшествующих числа и из результата вычесть 1.)
36. Ц. (Есть два ряда, начинающиеся с В и Н соответственно; в каждом для получения очередной
буквы пропускаются две буквы. Пропуск двух букв после У дает Ц.)
37. ПИК.
38. 39. (Числа попеременно увеличиваются на пять и уменьшаются на два.)
39. 25. (Каждая из троек образуется путем возведения одного из чисел в квадрат и деления его на
два; остальные два числа, будучи перемноженными, дают тот же результат. Половина квадрата
32 равна 512, что равно 16 х 32. Половина квадрата 48 равна 1152, что равно 8 х 144. Половина
квадрата 40 равна 800, что равно 32 х 25, поэтому пропущенное число равно 25.)
40. G. Допускается также ответ 2. (Соответствующие буквы и цифры:
.)
87
ВОСЬМОЙ ТЕСТ
1. Ж. (Буквы перескакивают через три позиции вверх по алфавиту.)
2. Август. (В нем нет буквы "р".)
3. 21. (Каждое число равно половине предыдущего плюс десять. Половина 22 равна 11; 11 + 10 =
= 21.)
4. Дания. (Единственная монархическая страна.)
5. Сани. (В отличие от карта, такси, самоката и вагона, у саней нет колес.)
6. Планка. (Планка - это то же, что рейка, а также означает предел возможностей.)
7. ФОРТ.
8. 2. (Черная линия каждый раз поворачивается на 90 градусов по часовой стрелке.)
9. 6. (Фигуры в третьем ряду образуются из больших частей фигур во втором ряду и малой части
фигуры в первом ряду; штриховка чередуется по рядам.)
10. 35. (При переходе по часовой стрелке каждое число принимает значение, равное предыдущему
числу, умноженному на два и уменьшенному на три. 19 х 2 = 38. 38 - 3 = 35.)
11. 4. (1 и 5, 2 и 3 образуют пары; они повернуты относительно друг друга на 180 градусов;
черные и белые части меняются местами. 4 не подходит под эту схему.)
12. К. (Буквы во втором столбце являются третьей, второй и четвертой буквами относительно
букв в первом столбце; в третьем столбце эти номера утроены, т.е. это девятая, шестая и
двенадцатая буквы, а порядок отсчета по алфавиту обратный; двенадцатая буква от Ц в
обратном порядке это К.)
13. 47. (Разделить пополам верхнее число и прибавить нижнее число.)
14. ЕЛЬ.
15. Бой и сбой. (С + бой = сбой.)
16. 4. (Разница между первыми двумя числами возводится в квадрат и получается третье число.
6 - 4 = 2; квадрат 2 равен 4.) Или 8. (Разница между числами в первом и втором столбце,
умноженная на 2, 3 и 4.)
17. 1. (Есть три вида туловища, которое может быть белым, черным и заштрихованным; три вида
шеи, которая может быть прямой, изогнутой или с загибом; три вида головы: круглая,
квадратная или треугольная; три вида хвоста: вверх, вниз и горизонтально. Каждая из этих
деталей встречается только один раз в каждом ряду и в каждом столбце и это определяет
комбинацию деталей пропущенного дракона.)
18. Кость. (Всем этим словам может предшествовать префикс "ди".)
19. КРИК.
20. Мадрид. (Остальные города: Пиза, Милан и Флоренция.)
21. 35. (Перемножить три числа снаружи треугольника и разделить на два.)
22. 3. (На рисунке 3 более четырех замкнутых областей.)
23. 219. (Число в скобках в три раза больше разницы между числами вне скобок.)
24. Молния. (Молния - это электрический разряд, а также вид застежки.)
25. 1. (Минутная стрелка перемещается каждый раз на пять минут назад, а часовая - на два часа
вперед.)
26. П. (Буквы в трех рядах, прочитанные в обратном порядке, образуют слова: срок, грог и прок.)
27.
(Буква сверху является четвертой буквой по отношению к предыдущей, внизу - также
четвертой, но в обратном порядке по алфавиту. Четвертая буква после К - это О; четвертая
88
буква перед Н - это Й.)
28. Табу. (Слово в скобках образовано двумя предпоследними буквами слов за скобками.
29. РОСТ.
30. 381. (Все остальные числа делятся на три.)
31. 27. (Перемножить верхние и нижние числа и разделить на четыре.)
32. 15. (Есть две чередующихся последовательности чисел. В обеих числа увеличиваются на два,
затем на три, затем на четыре и т.д. 11 + 4 = 15.)
33. 2. (В каждом ряду одно из колец белое, одно заштрихованное, одно черное; один треугольник
в середине белый, один заштрихованный, один черный; отрезок, торчащий из треугольника,
поочередно прикреплен к каждой из сторон; две фигуры снаружи кольца занимают одну из
трех позиций. Комбинация этих требований дает правильное решение.)
34. Пуск. (Всем остальным словам может предшествовать приставка "про".)
35. 408. (Число в скобках равно удвоенной разнице чисел за скобками; 648 - 444 = 204; 2 х 204 =
408.)
36. 9. (9 не является простым числом; оно делится на три.)
37. РОК.
38. 36. (Числа поочередно умножаются на три и делятся на два. 12 x 3 = 36.)
39. АНЛИЙЗВ. ("Высоко" относится к "низко" как "верх" к "низ". Буквы в этих словах чередуются
с другими буквами.)
40. 29. (Числа образуют два чередующихся ряда. Один ряд начинается с 260; число в нем равно
предыдущему, уменьшенному на четыре и деленному на два. 62 - 4 = 58; 58 : 2 = 29. Другой
ряд образуется путем деления предыдущего числа пополам.)
89
Преобразование очков в КИ
Для получения вашего КИ отметьте набранное число очков на графиках на следующих двух
страницах. Проведите прямую вертикальную линию до пересечения с наклонной линией. Точка на
вертикальной оси, соответствующая точке пересечения, покажет ваш КИ. В качестве примера на
каждом графике иллюстрируется количество очков, равное десяти, соответствующее КИ, равному
100. Оценки точны в следующих пределах:
ТЕСТ
1,2
ОЧКИ
10-22
3,4
9-21
5,7,8
7-19
6
11-23
Вне этих пределов цифры не следует считать слишком надежными.
90
91
Совместное Российско-австралийское предприятие "Ай Кью"
603094 Россия, г. Нижний Новгород, ул. Энгельса, 3 Р/с 467001 в Нижегородском филиале
ТОКОБАНКА при Советском РКЦ г. Н. Новгорода, к/с 700161287, МФО 116819, код 082
телефон для оптовой закупки книг: (831-2) - 238152
Издательство Образование Финансовый инжиниринг Консалтинг
Производство ТНП
92
Скачать