Uploaded by Leonid99323

4laba nikita 1

advertisement
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "math.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc3;
UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_usart1_tx;
osThreadId defaultTaskHandle;
osThreadId button_taskHandle;
osThreadId parserTaskHandle;
osThreadId potencial_TaskHandle;
osMessageQId uartQueueHandle;
osMutexId uartMutexHandle;
/* USER CODE BEGIN PV */
uint8_t TransmitData[4];
uint8_t ReciveData;
uint32_t DelayTime = 1000;
uint16_t Period;
uint16_t ADC_Value;
uint16_t Period;
uint8_t PartOneDelayTimeLocal;
uint8_t PartTwoDelayTimeLocal;
float Out, Out1, Out2, Out3; //Выход фильтра (k), (k-1), (k-2),(k-3)
float In, In1, In2, In3; //Вход фильтра (k), (k-1), (k-2),(k-3)
uint8_t high_byte;
uint8_t low_byte;
const float b0 = 0.0002196;
const float b1 = 0.0006588;
const float b2 = 0.0006588;
const float b3 = 0.0002196;
const float a1 = -2.7488358;
const float a2 = 2.5282312;
const float a3 = -0.7776385;
uint8_t mode = 1;
uint8_t buttonFlag = SET;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_ADC3_Init(void);
void StartDefaultTask(void const *argument);
void button_function(void const *argument);
void parserFunction(void const *argument);
void potencialFunction(void const *argument);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) {
if (huart == &huart1) {
osMessagePut(uartQueueHandle, ReciveData, 0);
HAL_UART_Receive_IT(&huart1, &ReciveData, 1);
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void) {
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_USART1_UART_Init();
MX_ADC3_Init();
/* USER CODE BEGIN 2 */
TransmitData[0] = 0x37;
/* USER CODE END 2 */
/* Create the mutex(es) */
/* definition and creation of uartMutex */
osMutexDef(uartMutex);
uartMutexHandle = osMutexCreate(osMutex(uartMutex));
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* Create the queue(s) */
/* definition and creation of uartQueue */
osMessageQDef(uartQueue, 16, uint8_t);
uartQueueHandle = osMessageCreate(osMessageQ(uartQueue), NULL);
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* definition and creation of defaultTask */
osThreadDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 128);
defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);
/* definition and creation of button_task */
osThreadDef(button_task, button_function, osPriorityBelowNormal, 0, 128);
button_taskHandle = osThreadCreate(osThread(button_task), NULL);
/* definition and creation of parserTask */
osThreadDef(parserTask, parserFunction, osPriorityNormal, 0, 128);
parserTaskHandle = osThreadCreate(osThread(parserTask), NULL);
/* definition and creation of potencial_Task */
osThreadDef(potencial_Task, potencialFunction, osPriorityLow, 0, 128);
potencial_TaskHandle = osThreadCreate(osThread(potencial_Task), NULL);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1) {
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = { 0 };
RCC_ClkInitTypeDef RCC_ClkInitStruct = { 0 };
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 15;
RCC_OscInitStruct.PLL.PLLN = 216;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/** Activate the Over-Drive mode
*/
if (HAL_PWREx_EnableOverDrive() != HAL_OK) {
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
Error_Handler();
}
}
/**
* @brief ADC3 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC3_Init(void) {
/* USER CODE BEGIN ADC3_Init 0 */
/* USER CODE END ADC3_Init 0 */
ADC_ChannelConfTypeDef sConfig = { 0 };
/* USER CODE BEGIN ADC3_Init 1 */
/* USER CODE END ADC3_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc3.Instance = ADC3;
hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc3.Init.Resolution = ADC_RESOLUTION_12B;
hadc3.Init.ScanConvMode = DISABLE;
hadc3.Init.ContinuousConvMode = DISABLE;
hadc3.Init.DiscontinuousConvMode = DISABLE;
hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc3.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc3.Init.NbrOfConversion = 1;
hadc3.Init.DMAContinuousRequests = DISABLE;
hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc3) != HAL_OK) {
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_8;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES;
if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN ADC3_Init 2 */
/* USER CODE END ADC3_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void) {
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void) {
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream7_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream7_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = { 0 };
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOG, BLUE_Pin | GREEN_Pin, GPIO_PIN_SET);
/*Configure GPIO pins : BLUE_Pin GREEN_Pin */
GPIO_InitStruct.Pin = BLUE_Pin | GREEN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/*Configure GPIO pin : BUTTON_Pin */
GPIO_InitStruct.Pin = BUTTON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(BUTTON_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void const *argument) {
/* USER CODE BEGIN 5 */
/* Infinite loop */
HAL_UART_Receive_IT(&huart1, &ReciveData, 1);
static uint8_t State = RESET;
for (;;) {
switch (mode) {
case 1:
if (State) {
HAL_GPIO_WritePin(BLUE_GPIO_Port, BLUE_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(GREEN_GPIO_Port, GREEN_Pin, GPIO_PIN_SET);
State = RESET;
} else {
HAL_GPIO_WritePin(BLUE_GPIO_Port, BLUE_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GREEN_GPIO_Port, GREEN_Pin, GPIO_PIN_RESET);
State = SET;
}
break;
case 2:
if (State) {
HAL_GPIO_WritePin(BLUE_GPIO_Port, BLUE_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GREEN_GPIO_Port, GREEN_Pin, GPIO_PIN_SET);
State = RESET;
} else {
HAL_GPIO_WritePin(BLUE_GPIO_Port, BLUE_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(GREEN_GPIO_Port, GREEN_Pin, GPIO_PIN_RESET);
State = SET;
}
break;
}
osDelay(DelayTime);
}
/* USER CODE END 5 */
}
/* USER CODE BEGIN Header_button_function */
/**
* @brief Function implementing the button_task thread.
* @param argument: Not used
* @retval None
*/
int q = 0;
int k = 0;
/* USER CODE END Header_button_function */
void button_function(void const *argument) {
/* USER CODE BEGIN button_function */
/* Infinite loop */
for (;;) {
if (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin) == GPIO_PIN_RESET) //&& buttonFlag == RESET)
{
if (k == 1) {
osDelay(10); //Устраняем дребезг и помехи
if (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin)
== GPIO_PIN_RESET) {
q++;
if (q == 2) {
q = 0;
osDelay(35);
k = 0;
}
if (q == 0) {
if (osMutexWait(uartMutexHandle, osWaitForever)
== osOK) {
TransmitData[1] = 0x79;
TransmitData[2] = 0x50;
HAL_UART_Transmit_DMA(&huart1, TransmitData, 3);
osDelay(35);
osDelay(10); //задержка до конца отправки
osMutexRelease(uartMutexHandle); //отпускание мютекса
k = 0;
}
}
if (q == 1) {
if (osMutexWait(uartMutexHandle, osWaitForever)
== osOK) {
TransmitData[1] = 0x79;
TransmitData[2] = 0x51;
HAL_UART_Transmit_DMA(&huart1, TransmitData, 3);
osDelay(35);
osDelay(10); //задержка до конца отправки
osMutexRelease(uartMutexHandle); //отпускание мютекса
k = 0;
}
}
}
}
} else {
{
k = 1;
}
}
osDelay(50);
}
/* USER CODE END button_function */
}
/* USER CODE BEGIN Header_parserFunction */
/**
* @brief Function implementing the parserTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_parserFunction */
void parserFunction(void const *argument) {
/* USER CODE BEGIN parserFunction */
osEvent event;
/* Infinite loop */
for (;;) {
event = osMessageGet(uartQueueHandle, osWaitForever);
if (event.status == osEventMessage) {
if (event.value.v == 0x37) {
event = osMessageGet(uartQueueHandle, 10);
if (event.status == osEventMessage) {
if (event.value.v == 0x34) {
event = osMessageGet(uartQueueHandle, 10);
if (event.status == osEventMessage) {
PartOneDelayTimeLocal = event.value.v;
event = osMessageGet(uartQueueHandle, 10);
if (event.status == osEventMessage) {
PartTwoDelayTimeLocal = event.value.v;
DelayTime = (PartOneDelayTimeLocal << 8)
| PartTwoDelayTimeLocal;
}
}
} else if (event.value.v == 0x79) {
event = osMessageGet(uartQueueHandle, 10);
if (event.status == osEventMessage) {
if (event.value.v == 0x50) {
//светодиоды переключаются
mode = 1;
}
else if (event.value.v == 0x51) {
//попеременное мигание
mode = 2;
}
}
}
}
}
}
}
/* USER CODE END parserFunction */
}
/* USER CODE BEGIN Header_potencialFunction */
/**
* @brief Function implementing the potencial_Task thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_potencialFunction */
void potencialFunction(void const *argument) {
/* USER CODE BEGIN potencialFunction */
/* Infinite loop */
for (;;) {
HAL_ADC_Start(&hadc3);
ADC_Value = HAL_ADC_GetValue(&hadc3);
In = (float) ADC_Value;
Out = b0 * In + b1 * In1 + b2 * In2 + b3 * In3 - a1 * Out1 - a2 * Out2
- a3 * Out3;
Out3 = Out2;
Out2 = Out1;
Out1 = Out;
In3 = In2;
In2 = In1;
In1 = In;
osDelay(10);
Period = (uint16_t) roundf((float) 1024 / (0.01 * Out + (float) 1));
high_byte = (Period >> 8) & 0xFF;
low_byte = (Period) & 0xFF;
if (osMutexWait(uartMutexHandle, osWaitForever) == osOK) {
TransmitData[1] = 0x34;
TransmitData[2] = high_byte;
TransmitData[3] = low_byte;
HAL_UART_Transmit_DMA(&huart1, TransmitData, 4);
osDelay(10);
osMutexRelease(uartMutexHandle); //отпускание мютекса
}
osDelay(1);
}
/* USER CODE END potencialFunction */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void) {
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1) {
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
Download