Загрузил vanjapotkin

ТЕОРИЯ

реклама
1. Предмет химической кинетики.
2. Основные задачи химической кинетики.
3. Кинетическая классификация химических реакций: простые и сложные; по
числу молекул; по типу перераспределения электронов и химических связей; по
типу внешнего воздействия.
4. Кинетическая классификация химических реакций: по фазовому состоянию;
по типу реагента; сложные реакции; по скорости.
5. Скорость химической реакции. Закон действия масс.
6. Порядок реакции (частный и общий). Константа скорости.
7. Принцип независимости протекания реакций. Обратимость химических
реакций. Кинетическая кривая.
8. Прямая и обратная кинетическая задачи.
9. Формальная кинетика. Кинетическое уравнение химического процесса.
10. Кинетическое и стехиометрическое уравнения реакции.
11. Односторонние реакции второго порядка.
12. Обратимые реакции второго порядка.
13. Односторонние реакции третьего порядка
14. Методы определения порядка реакции: по одной кинетической кривой; по
нескольким кинетическим кривым; по значениям tp; определение суммарного
порядка реакции.
15. Влияние температуры на скорость реакции: правило Вант-Гоффа, уравнение
Аррениуса, энергия активации.
16. Теория активных соударений, ее применение к бимолекулярным реакциям.
17. Теория абсолютных скоростей реакций, выводы уравнения теории.
18. Последовательные реакции.
19. Параллельные реакции.
20. Экспериментальные методы изучения радикальных реакций.
Инициированная цепная реакция.
21. Односторонние реакции первого порядка.
22. Обратимые реакции первого порядка.
23. Предельные явления в разветвленных цепных реакциях, тепловой взрыв.
24. Кинетика реакций в растворе: сходства и различия газовой, жидкой и
твердой фаз, влияние среды.
25. Цепные разветвленные реакции на примере окисления водорода.
26. Цепные реакции с вырожденным разветвлением цепей.
27. Экспериментальные методы изучения радикальных реакций.
28. Методы определения порядка реакции: общая характеристика; графический;
по начальным скоростям; по уравнению кинетической кривой произвольного
порядка.
29. Механизм и кинетика радикальной полимеризации.
30. Цепные реакции: общая характеристика, стадии цепных реакций.
31. Цепной механизм окисления органических соединений молекулярным
кислородом.
32. Сопряженные реакции.
33. Прямая и обратная кинетическая задачи.
1. Предмет химической кинетики.
Основными разделами физ. Химии является:
- Хим. Термодинамика
- Хим. Кинетика
Изучая строение в-ва можно получить представление о реакционной
способности молекул и составить уравнение предполагаемой хим. Реакции.
Термодинамика – направление хим. Превращений, оценивающее состояние исх.
в-в и реакции при достижении равновесия.
Позволяет определить направление химических превращений, также позволяет
оценить соотношение исходных веществ исходной реакции.
Хим. Кинетика - учения о хим. Процессе, его закономерности протекания во
времени.
Механизм – путь химической реакции.
Для установления механизма необходимо знать:
- Все этапы превращения исх. механизмов в конце.
- Природу промежуточных стадий
-Распределение энергии для всех участников реакции.
-Влияние условий поведения реакции.
- Св-ва поверхности, характер абсорбции реагентов и продуктов
В хим. Кинетике можно выделить 3 подраздела:
- Формальная и феменологическая кинетика
-Теоретическая кинетика или химическая физика.
- Макрокинетика
Формальная кинетика изучает зависимость скорости реакции от времени, tры, и кол-ва участвующих в-в, а так же других внешних воздействий на основе
предполагаемой кинетической схемы.
Причем реальный хим. Процесс рассматривается как некая формальная схема,
хим. Р-ции заменяются не символьным изображением, которое отражают лишь
число частиц, принимающих участие в элементарном акте. При этом св-ва
процесса описывается набором диф. Уравнений.
Теоретическая кинетика
-вычисляет значение константы скорости и энергии активации реакции с
использованием молекулярной постоянной на основе теории строения молекул
и статической физики.
Макрокинетика описывает закономерности протекания хим. Процессов при
тепло и массопередаче
Кинетическая кривая
Эксперимент заключается в том, что походу проведения реакции анализируется
концентрация исход. Промеж. И конечных частиц. Результат этих изменений
выражают в виде графика.
Кин. Кривая - это график зависимости концентрации или образовавшихся в-в
от времени.
Математическая функция кинетической кривой – уравнение кинетической
кривой
Кинетическое уравнение и уравнение кинетической кривой – 2 разные вещи
Если скорость накопленная продолжении в сложных хим. Процессов,
состоящего из нескольких стадий зависит от абсолютного значения константы
скорости только одной из этих стадий, то она называется лимитирующей
Она зависит от абсолютного значения константы скорости одной из этих
стадий.
2. Основные задачи химической кинетики
Прямая и обратная кинетические задачи
Прямая задача – расчет кинетики расходования реагентов и накопления
продуктов с использованием:
1) Кинет. Схемы реакции
2) Экспериментально-измеренных или теоретически-рассчитанных
значений константы скорости элементарной стадии
3) Проведение экспериментов (условие)
Обратная задача - расчет значения константы скорости одной или нескольких
элементарных стадий на основе полученных экспериментальных данных с
использованием кинет. Схемы и заданных начальных условий, в более широком
смысле – это обоснование предполагаемого механизма реакции с
использованием экспериментальной информации.
3. Кинетическая классификация химических реакций: простые и сложные; по
числу молекул; по типу перераспределения электронов и химических связей; по
типу внешнего воздействия.
Химические реакции делятся на:
-простые
1) Без участия катализатора, инициатор
2)Одно переходное состояние
-сложные
1) По числу частиц в элементарном акте (можно ди-, три- и т. д.)
2) В зависимости от перераспределения электронов (окисление-восстановление,
гомолитические, гетеролитические, асинхронные)
3) Хим. Реакции, которые идут под каким-либо физ. Воздействием.
-По фазовому состоянию ( гомофазные, гетерофазные)
-В зависимости от типа реагента: молекула, ион, радикал
-Слож. Хим. Реакции делятся на обратные последовательные параллельные и т.
д.
-скорость реакции (быстрая, медленная) ДОПИСАТЬ
4. Кинетическая классификация химических реакций: по фазовому состоянию;
по типу реагента; сложные реакции; по скорости.
По фазовому состоянию химические реакции делятся на
-Гомофазные ( В реакциях такого типа реакционная смесь является гомогенной,
а реагенты и продукты принадлежат одной и той же фазе)
- Гетерофазные (реакции, которые протекают в системе, состоящей из
нескольких фаз, т. е. когда компоненты (реаген-ты и продукты) находятся в
двух или более фазах)
В зависимости от типа реагента:
-молекула
-ион
-радикал
или
-электронные (Е)
-нуклеофильные (N)
-радикальные (R)
Сложные химические реакции делятся на
- Обратимые, т.е. химические реакции, протекающие одновременно в двух
противоположных направлениях (прямом и обратном)
- Последовательные или реакции, протекающие одна за другой, то
есть реакции с промежуточными стадиями. Таких реакций большинство, однако
характер промежуточных веществ не всегда удается установить из-за
экспериментальных трудностей
- Параллельными называют химические реакции, в которых одни и те же
исходные вещества одновременно могут образовывать различные
продукты реакции, например, два или более изомера
- Сопряжённые реакции — две реакции, из которых одна даёт заметный выход
продуктов лишь в условиях, когда идёт другая реакция. Подобное взаимно
обусловленное химическое взаимодействие называется химической индукцией
- Цепные химические реакции, в ходе которых непрерывно регенерируется одна
или неск. реакционноспособных промежуточных частиц (атомов, радикалов,
ион-радикалов, ионов) через повторяющийся цикл элементарных стадий
По скорости химической реакции
Скорость реакции - это величина, показывающая как изменяются концентрации
исходных веществ или продуктов реакции за единицу времени.
-Быстрая
-Медленная
5. Скорость химической реакции. Закон действия масс.
Скорость химической реакции — это величина, показывающая как
изменяются концентрации исходных веществ или продуктов реакции за
единицу времени.
Для простой химической реакции диференциальное уравнение изменения
концентраций реагирующих веществ можно записать по её химическому
уравнению:
Закон действующих масс в кинетической форме (основное уравнение
кинетики) гласит, что скорость элементарной химической реакции
пропорциональна произведению концентраций реагентов в степенях, равных
стехиометрическим коэффициентам в уравнении реакции.
Из интернета вставлю на всякий случай
Скорость химической реакции (Х.Р.) – основное понятие химической кинетики.
- Для простой гомогенной химической реакции скорость равна числу
элементарных актов в единицу времени.
- В замкнутой системе (не способной к обмену энергией с внешней средой
путем совершения работы) при постоянном объеме и равномерном
распределению реагентов по объему реактора скорость реакции прямо
пропорциональна концентрации реагентов в единицу времени.
Стехиометрические коэффициенты должны сохраняться постоянными в ходе
всего процесса
- Для сложных реакций следует различать скорость процесса в целом и
скорость отдельных составляющих его стадий, причем скорость стадий может
быть меньше или больше общей скорости процесса. W = [моль/л*с].
Если реагенты неравномерно распределены по объему, то реакция может
протекать в разных точках реактора с разной скоростью. В этих случаях надо
различать скорость реакции в данном микрообъеме от средней скорости:
Если система замкнута, но объем её изменяется в ходе реакции, то
концентрация будет изменяться не только за счет хим. реакции, но и за счет
изменения объема системы.
В этом случае для исходных веществ: W = - dC/dt – C0/V0*dV/dt
В открытой системе концентрации вещества изменяются как в следствие хим.
реакции, так и в следствие массопереноса, т.е. поступлением в реактор новых
количеств веществ. Когда скорость реакции сравнялась со скоростью подачи
реагентов справедливо выражение: W = - U/V*(C0-C), где U – объемная
скорость подачи, С0 – концентрация на входе, С – на выходе.
В гетерогенной системе скорость хим. превращения относят не к единице
объема, а к единице поверхности на которой оно происходит [моль/м2*с]. Для
перехода от объемной скорости к скорости на поверхности необходимо знать
соотношение между объемом и площади поверхности на которой происходит
это превращение: WS (моль/м2*с)= W(моль/л*с)* V(л)/S(м2).
6. Порядок реакции (частный и общий). Константа скорости
Порядок химической реакции по данному веществу - это число, равное
степени ni в которой концентрация этого вещества входит в кинетическое
уравнение реакции :
Сумма показателей степеней N1 + n2 +….+ nn , в которых концентрации всех
исходных веществ входят в кинетическое уравнение (2), определяет порядок
реакции в целом.
Различают частный и общий порядок реакции. Частным называется
порядок, характеризующийся изменением концентрации одного из веществ,
вступающих в реакцию. Сумма частных порядков дает общий порядок
реакции. Частный порядок находится несколькими методами.
Самый простой метод определения – метод подстановки кинетических данных
в уравнение 1, 2, 3 – го порядков. Однако при этом приходится последовательно
подставлять экспериментальные данные в эти уравнения и выбирать какие из
них выполняются.
Для определения порядка реакции широко используют зависимость начальной
скорости от начальной концентрации. Наиболее просто и точно определяется
порядок реакции по какому-либо компоненту если скорость р-ии является
функцией концентрации только этого реагента, это возможно в следующих
случаях:
1) В реакциях принимает участие одно исходное вещество
2) В реакциях участвуют несколько исх веществ, но в кинетическое
уравнение входит только концентрация одного
3) Скорость реакции зависит от концентрации одного вещества и
катализатора, т.к. концентрация катализатора постоянна, то её можно
включить в константу скорости
4) Концентрация всех реагентов кроме одного поддерживается постоянно
каким либо искусственным путем
5) Все реагенты кроме 1 (порядок определяется) берутся в большом
избытке и их концентрация по ходу реакции остается постоянной
6) Из эксперимента находится зависимость начальной скорости к
начальной концентрации одного из компонентов, при этом начальная
концентрация остальных остается неизменной.
Способы определения
Эти два метода позволяют определить порядок при его целых и дробных
значениях. Недостаток: дифференцирование экспериментальных зависимостей
не всегда выполнимо с достаточной точностью.
(Возможно это уже для 7 вопроса хз)
Если экспериментально получено несколько кин кривых, то данное
соотношение удобнее использовать определив из каждой кривой время tальфа ,
которое является временем достижения определенной доли превращения
исходного в-ва, т.е. определенного значения α.
При точном определении α достаточно провести два эксперимента с разными
начальными концентрациями и найти соотв значение времени.
Это уравнение может быть решено относительно n графически или путем
подбора.
Это уравнение трансцендентно (взаимозависимо). Его решение может
приводить к существенным погрешностям при расчете n. Однако его решение
можно значительно упростить если выбрать на кинетической кривой два
значения α, которое связяно соотношением α12 = α2
Константа скорости
Скорость химической реакции прямо пропорциональна произведению
концентраций реагирующих веществ, взятых в некоторых степенях.
Т. е. для реакции
аА + bВ + dD + ... → еЕ + ...
можно записать
V= k*CaX * CBy *CDz (II.4)
Коэффициент пропорциональности k есть константа скорости
химической реакции. Константа скорости численно равна скорости реакции
при концентрациях всех реагирующих веществ, равных 1 моль/л.
Зависимость скорости реакции от концентраций реагирующих веществ
определяется экспериментально и называется кинетическим
уравнением химической реакции. Очевидно, что для того, чтобы записать
кинетическое уравнение, необходимо экспериментально определить величину
константы скорости и показателей степени при концентрациях реагирующих
веществ. Показатель степени при концентрации каждого из реагирующих
веществ в кинетическом уравнении химической реакции (в уравнении (II.4)
соответственно x, y и z) есть частный порядок реакции по данному
компоненту. Сумма показателей степени в кинетическом уравнении химической
реакции (x + y + z) представляет собой общий порядок реакции.
7. Принцип
независимости протекания реакций. Обратимость химических
реакций. Кинетическая кривая.
Принцип независимости реакций
Принцип независимости или сосуществования различных реакций означает, что
при одновременном протекании нескольких простых реакций, скорость каждой
из них можно записать в соответствии с основным постулатом химической
кинетики. Константы скорости каждой из этих реакций не зависят от
протекания любой другой. Используя этот принцип можно составлять
кинетические уравнения сложной реакции как совокупности кинетических
уравнений простых. Обоснованием этого положения химической кинетики
является выполнимость статистически равновесного распределения энергии в
реакционной системе. Это позволяет рассматривать участников химической
реакции как статистически независимые частицы, реакционная способность
которых не зависит от присутствия в системе других. Отсюда понятно, что
принцип независимости не является абсолютным. Очевидно, что при изменении
свойств среды в результате протекания химических взаимодействий, особенно в
растворах с участием ионов, в неидеальных системах константа скорости одной
реакции может зависеть от протекания другой. Для очень быстрых реакций,
способных нарушить распределение молекул по энергиям Максвелла –
Больцмана, скорость более медленной химической стадии также будет
меняться. Однако теоретическое рассмотрение и опытные данные показывают,
что принцип независимости достаточно хорошо выполняется для большинства
химических превращений.
Обратимость хим реакций
Обратимые реакции — химические реакции, протекающие одновременно в
двух противоположных направлениях (прямом и обратном)
Обратимые реакции первого порядка
Кинетика такого типа применима ко многим простым реакциям, например,
изомеризации, и основное уравнение можно записать в виде
Для этой реакции можно записать:
.
Для концентрации исходного вещества получим:
Из представленных уравнений по зависимостям CA, CB или Х от времени можно
рассчитать велbчины k1 и k -1 однако эти уравнения взаимозависимы
относительно искомых значений параметров.
На практике k1 и k -1 находят следующим образом:
В начале из экспериментальных данных находят константу равновесия
(величина, определяющая для данной химической реакции соотношение между
термодинамическими активностями исходных веществ и продуктов в состоянии
химического равновесия):
Зная K, k1 и k -1 можно найти значения констант прямой и обратной реакции
раздельно
k1 = …
k -1 = …
Из интернета на всякий случай
Первичные данные кинетических экспериментов представляют собой набор
концентраций химических компонентов реагирующей системы (или некоторых
пропорциональных им величин) при разных значениях времени
реакции. Кинетическая кривая — изменение концентрации реагента или
продукта, или связанного с ними свойства системы во времени в результате
протекания химического процесса. Эта зависимость концентрации вещества от
времени протекания реакции может быть выражена в графической, табличной
или аналитической форме. Одним из основных кинетических параметров,
характеризующих химическую реакцию, является скорость химической
реакции — количество реакционных частиц определенного вида, реагирующих
в единицу времени (dc/dt).
Математическая функция кинетической кривой – уравнение кинетической
кривой.
Форма полученных кинетических кривых позволяет выявить особенности
кинетики изучаемой реакции. Эти кривые характеризуют 4 основных типа
расходования и накопления соединений в реакционной смеси:
1. Реагент расходуется практически нацело. Его концентрация уменьшается во
времени: c(t1) > c(t2) при t1 < t2, или dc/dt ≤ 0, и, если реакция идет до конца,
то с(t) → 0 при t → ∞.
2. Реагент расходуется до конечной степени превращения, меньшей 100 %, что
характерно для химических процессов, основу которых составляют: обратимые
реакции; каталитические реакции, в ходе которых катализатор отравляется;
сложные реакции, протекающие с образованием ингибитора. Кроме того, не
расходуются до конца реагенты в многокомпонентной реакции, если реагенты
взяты в нестехиометрическом соотношении. В этих случаях при t → ∞ с∞ ≠ 0.
3. Концентрация продукта возрастает монотонно. Если вещество — конечный
продукт, то его концентрация увеличивается во времени: c(t1) < c(t2) при t1 < t2,
или dc/dt ≥ 0.
4. Концентрация продукта проходит через максимум. Подобный тип
зависимости характерен для промежуточного продукта, его концентрация
увеличивается, проходит через максимум и уменьшается, т. е. какое-то
время dc/dt ≥ 0 для t1 < tmax, а затем dc/dt ≤ 0 для t ≥ tmax (где tmax — время
достижения максимальной концентрации промежуточного продукта).
8. Прямая и обратная кинетическая задачи.
Выделяют прямую и обратную задачи химической
кинетики. Прямой задачей называется расчет кинетических закономерностей,
т.е. по известным константам скоростей протекания этапов химической реакции
рассчитываются зависимости концентрации всех реагентов от времени.
Определение на основании экспериментальных данных о зависимости
концентраций от времени проведения процесса параметров кинетического
уравнения – порядка реакции и значения константы скорости – составляет так
называемую обратную задачу химической кинетики.
Прямая задача – расчет кинетики расходования реагентов и накопления
продуктов с использованием:
1) Кинет. Схемы реакции
2) Экспериментально-измеренных или теоретически-рассчитанных
значений константы скорости элементарной стадии
3) Проведение экспериментов (условие)
Обратная задача - расчет значения константы скорости одной или нескольких
элементарных стадий на основе полученных экспериментальных данных с
использованием кинет. Схемы и заданных начальных условий, в более широком
смысле – это обоснование предполагаемого механизма реакции с
использованием экспериментальной информации.
9. Формальная кинетика. Кинетическое уравнение химического процесса
Формальная кинетика изучает зависимость скорости реакции от времени, tры, и количества участвующих веществ, а так же других внешних воздействий
на основе предполагаемой кинетической схемы.
Причем реальный хим. Процесс рассматривается как некая формальная схема,
химические реакцииции заменяются не символьным изображением, которое
отражают лишь число частиц, принимающих участие в элементарном акте. При
этом св-ва процесса описывается набором дифференцированных уравнений.
Для простой химической реакции диференциальное уравнение изменения
концентраций реагирующих веществ можно записать по её химическому
уравнению:
10. Кинетическое и стехиометрическое уравнения реакции.
Стехиометрическому уравнению подчиняются приращения количеств реагентов
и продуктов, и на его основе определяется материальный баланс веществ при
химических превращениях. Количества веществ принято измерять в молях. При
необходимости через них выражают иные массовые характеристики системы.
Использование стехиометрических уравнений является основным способом
описания химических реакций в классической химии. Однако
стехиометрическое уравнение не описывает механизма реакции. Любая
химическая реакция достаточно сложна. Её стехиометрическое уравнение, как
правило, не учитывает всю сложность элементарных процессов.
Односторонние реакции первого порядка
Период полураспада τ1/2 = ln 2/k. Наряду с τ1/2 часто используется такое понятие
как среднее время жизни частицы CA = CAoe-kt
n = n0e-kt ; -dn = knoe-kt dt
Среднее время жизни частицы :
С помощью уравнения в безразмерных координатах можно совместить две
кинетические кривые реакций первого порядка. Для этого надо выбрать только
соответствующий масштаб.
11. Односторонние реакции второго порядка.
Рассмотрим 2 случая
А1 + А2 → С
2А → С
(СА1 = СА2)
1-й случай:
dx/dt = k(CA1(0) -X)*(CA2(0) - X)
2-й случай:
dx/dt = K(CA - X)2
12. Обратимые реакции второго порядка.
К обратимым реакциям второго порядка относят реакции в которых одна из
стадий (прямая или обратная) являются реакцией второго порядка, а другая
реакция может быть либо 1-го или 2-го порядка.
Для решения граничное условие определяется тем, что физический смысл
имеют только те значенрия Х¯, которые лежат в интервале от СА1(0) до СВ1(0).
13. Односторонние реакции третьего порядка
К таким реакциям относятся реакции, в элементарном акте которых принимают участие
три молекулы: А1 + А2 + А3 = Р
Для данной реакции, согласно закона действия масс, можно записать:
dx/dt = K*(CA)*(CB)*(Cc); dx/dt = K*(CA1(0) – X)*(CA2(0) – X)*( CA3(0) – X)
Интегрирование проводим методом раздельных переменных (метод
решения
дифференциальных уравнений, основанный на алгебраическом преобразовании
исходного уравнения к равенству двух выражений, зависящих от разных
независимых переменных): dx/(CA1(0) – X)*(CA2(0) – X)*( CA3(0) – X) = K+t
Левая часть разлагается на 2 простые дроби:
14. Методы определения порядка реакции: по одной кинетической кривой; по
нескольким кинетическим кривым; по значениям tp; определение суммарного
порядка реакции.
Самый простой метод определения – метод подстановки кинетических данных
в уравнение 1, 2, 3 – го порядков. Однако при этом приходится последовательно
подставлять экспериментальные данные в эти уравнения и выбирать какие из
них выполняются.
Для определения порядка реакции широко используют зависимость начальной
скорости от начальной концентрации. Наиболее просто и точно определяется
порядок реакции по какому-либо компоненту если скорость р-ии является
функцией концентрации только этого реагента, это возможно в следующих
случаях:
1) В реакциях принимает участие одно исходное вещество
2) В реакциях участвуют несколько исх веществ, но в кинетическое
уравнение входит только концентрация одного
3) Скорость реакции зависит от концентрации одного вещества и
катализатора, т.к. концентрация катализатора постоянна, то её можно
включить в константу скорости
4) Концентрация всех реагентов кроме одного поддерживается постоянно
каким либо искусственным путем
5) Все реагенты кроме 1 (порядок определяется) берутся в большом
избытке и их концентрация по ходу реакции остается постоянной
6) Из эксперимента находится зависимость начальной скорости к
начальной концентрации одного из компонентов, при этом начальная
концентрация остальных остается неизменной.
Способы определения
Эти два метода позволяют определить порядок при его целых и дробных
значениях. Недостаток: дифференцирование экспериментальных зависимостей
не всегда выполнимо с достаточной точностью.
Если экспериментально получено несколько кин кривых, то данное
соотношение удобнее использовать определив из каждой кривой время tальфа ,
которое является временем достижения определенной доли превращения
исходного в-ва, т.е. определенного значения α.
При точном определении α достаточно провести два эксперимента с разными
начальными концентрациями и найти соотв значение времени.
По одной кинетической кривой
Это уравнение может быть решено относительно n графически или путем
подбора.
Это уравнение трансцендентно (взаимозависимо). Его решение может
приводить к существенным погрешностям при расчете n. Однако его решение
можно значительно упростить если выбрать на кинетической кривой два
значения α, которое связяно соотношением α12 = α2
Определение суммарного порядка реакции
Общим или суммарным порядком реакции называют сумму всех показателей
степеней при концентрациях в выражении закона действующих масс,
установленным опытным путем:
n = a + b + c …,
где a, b, с  частные порядки реакции, соответственно по веществам A, B и C.
15. Влияние температуры на скорость
химических реакций
Скорость реакций должна увеличиваться с ростом температуры, т.к. при этом
возрастает энергия сталкивающихся частиц и повышается вероятность того, что при
столкновении произойдет химическое превращение. Для количественного описания
температурных эффектов в химической кинетике используют два основных
соотношения - правило Вант-Гоффа и уравнение Аррениуса.
о
Правило Вант-Гоффа заключается в том, что при нагревании на 10 С скорость
большинства химических реакций увеличивается в 2 4 раза. Математически это
означает, что скорость реакции зависит от температуры степенным образом:
,
где y - температурный коэффициент скорости (y = 2-4). Правило Вант-Гоффа является
весьма грубым и применимо только в очень ограниченном интервале температур.
Гораздо более точным является уравнение Аррениуса, описывающее температурную
зависимость константы скорости:
,
где R - универсальная газовая постоянная; A - предэкспоненциальный множитель,
который не зависит от температуры, а определяется только видом реакции; EA энергия активации, которую можно охарактеризовать как некоторую пороговую
энергию: грубо говоря, если энергия сталкивающихся частиц меньше EA, то при
столкновении реакция не произойдет, если энергия превышает EA, реакция
произойдет. Энергия активации не зависит от температуры.
Графически зависимость k(T) выглядит следующим образом:
При низких температурах химические реакции почти не протекают: k(T)
0. При очень
высоких температурах константа скорости стремится к предельному
значению: k(T)
A. Это соответствует тому, что все молекулы являются химически
активными и каждое столкновение приводит к реакции.
Энергию активации можно определить, измерив константу скорости при двух
температурах. Из уравнения (4.2) следует:
. (4.3)
Более точно энергию активации определяют по значениям константы скорости при
нескольких температурах. Для этого уравнение Аррениуса (4.2) записывают в
логарифмической форме
и записывают экспериментальные данные в координатах ln k - 1/T. Тангенс угла
наклона полученной прямой равен -EA / R.
Для некоторых реакций предэкспоненциальный множитель слабо зависит от
температуры. В этом случае определяют так называемую опытную энергию
активации:
. (4.4)
Если предэкспоненциальный множитель - постоянный, то опытная энергия активации
равна аррениусовской энергии активации: Eоп = EA.
16. Теория активных соударений, ее применение к бимолекулярным реакциям.
теория Аррениуса была усовершенствована путем применения положений
молекулярно-кинетической теории газов и статистической термодинамики. В
первоначальном своем виде теория применима к реакциям, протекающим в
газовой фазе. Основные исходные положения теории активных соударений
(краткое название ТАС) можно сформулировать следующим образом:
1) элементарные акты происходят за счет двойных соударений, включая и
мономолекулярные реакции;
2) при двойном соударении молекул образование продукта происходит
мгновенно;
3) к образованию продукта приводит не любое двойное соударение, а только
такое, в котором участвуют молекулы, обладающие энергией выше средней
(активные молекулы);
4) Максвелл-Больцмановское распределение молекул по энергии
поступательного движения в ходе реакции не нарушается (то есть скорость
установления этого распределения значительно выше скорости реакции).
В теории последовательно решаются две основные задачи:
1) определение общего числа двойных соударений в процессе А + В → С;
2) определение числа активных соударений.
Применение теории столкновений к бимолекулярным реакциям.
Расчет константы скорости.
Исходя из МКТ и гипотезы активных столкновений, теоретическая
интерпретация бимолекулярной реакции типа
А + В ® продукты
может быть следующей. Элементарный акт происходит только при
столкновении
реагирующих
частиц.
Если
суммарная
энергия
сталкивающихся молекул меньше некоторой критической величины e а,
вероятность реакции равна нулю; если суммарная энергия равна e а или
как угодно больше e а, вероятность реакции равна некоторой конечной
величине Р. Тогда скорость реакции (в молекул/см 3×с) равна
–
= PZ a = PnA nB s2AB [8pkT (
+
)]1/2 ×
Это соотношение и есть основное математическое выражение
теории столкновений для бимолекулярных реакций. Из него может быть
получена
связь
между
константой
скорости
и
молекулярными
параметрами реагирующей системы.
Если концентрации реагирующих молекул выразить в моль/см 3 :
СА =
–
СВ =
,
=
–
Р
=
=
РСА СВ Ns2AB [8pkT
(
+
)]1/2 ×
Из основного постулата химической кинетики для бимолекулярной
реакции имеем
–
= k СА СВ
Сравнение уравнений дает теоретическое выражение для константы
скорости бимолекулярной реакции:
k = РNs2AB [8pkT (
)]1/2 ×
+
= РNs2AB [8pRT (
+
)]1/2 ×
Постоянный
множитель
const
Ns2AB [8pR
=
(
+
)]1/2
называется фактором столкновений.
k = P × const ×
×
Прологарифмируем, а затем продифференцируем это выражение:
ln k = ln (P × const) +
lnT –
=
(1)
Сравнив уравнение (1) с уравнением Аррениуса, получим:
Е = Еа +
RT
Поскольку большинство химических реакций проводится при Т до
1000 К, а Е имеет порядок 104 – 105 кал/моль, величиной 1/2RT » Т < 1000
кал/моль можно пренебречь и уравнение (1) записать так:
=
(2)
или k = const × e – E/RT, что совпадает с уравнением Аррениуса.
Использование
уравнения
(2)
оправдано,
когда
Е
(энергия
активации) достаточно высоки (Е >> RT); если это условие не
соблюдается, следует использовать более точное уравнение (1).
В ходе химической реакции непрерывно убывает число активных
молекул, превращающихся в продукты реакции. Если скорость реакции
значительно меньше скорости молекулярно-кинетической активации,
относительное число активных молекул будет сохраняться постоянным и
максвелл-больцмановское распределение не будет искажено. Если же
реакция протекает достаточно быстро и скорость ее сравнима со
скоростью активации, относительное число активных частиц будет
убывать, т.е. будет происходить так называемое выгорание активных
частиц. Это явление имеет большое значение для интерпретации
быстрых процессов – взрывных и разветвленных цепных.
Практически
удобным критерием
соблюдения
максвелл-
больцмановского распределения во время реакции будет неравенство:
Е а >> RT (e a >> kT). Это неравенство показывает, что при данной энергии
активации любой процесс с повышением Т может перейти в область
несоблюдения максвелл-больцмановского распределения.
Пусть
соблюдается
максвелл-больцмановское
распределение.
Откажемся от предположения, согласно которому вероятность реакции
постоянна независимо от избытка энергии столкновений по сравнению с
энергией активации, и будем считать, что каждому значению энергии
столкновения
e i соответствует
определенное
скорости ki . тогда получим уравнение:
=
значение
константы
Сравнение этого уравнения с уравнением Аррениуса показывает,
что энергия активации есть разность между средней энергией активных
столкновений и средней энергией всех столкновений. Такое определение
энергии активации является наиболее строгим в рамках применения МКТ
к изучению скоростей химических реакций.
17. Теория абсолютных скоростей реакций, выводы уравнения теории.
Основным уравнением теории абсолютных скоростей реакции (без
вывода) является уравнение, связывающее константу скорости реакции
со свойствами переходного состояния через суммы по состояниям:
,
где - это добавочный множитель, называемый трансмиссионным
коэффициентом. Он учитывает долю активных комплексов, которые
скатываются с вершины потенциального барьера в долину продуктов
реакции. Для большинства реакций трансмиссионный коэффициент
близок к единице;
= 1,381∙10-23 Дж/К – постоянная Больцмана; T – температура, К;
18. Последовательные реакции.
-Реакции, которые идут через промежуточные стадии, причем один продукт
образующийся в одной стадии расходуется в другой.
Общее решение может быть проведено лишь для системы диф. Уравнений,
описывающих кинетику любой совокупности послед реакций 1-го порядка, а
также кинетику двух последовательных реакций, если первая реакция – 2-го
порядка, вторая реакция – 1-го порядка. Более сложные систем решаются
численным методам.
Рассмотрим систему, которая состоит из 2-х последовательных реакций 1-го
порядка:
А к1 В к2 С
Отметим, что сумма текущих концентраций А,В,С в ходе реакции равна
начальной концентрации А0
А0 = А+В+С
Потом составим систему диф. Уравнений
Введем безразмерные переменные
-k1t
Т. к. для реакции 1-го порядка А=А0*e
выражение будет иметь вид:
-τ
, то для исходного вещества
α=е
Затем приобразуем выражение (2)
После интегрирования это выражения получаем:
Выражение безразмерных переменных для промежуточных
продуктов:
Для конечного продукта
Уравнение расходования исходного вещества А совпадает с уравнением
реакции 1-го порядка, а кинетическая кривая промежуточного вещества В будет
иметь максимум в определенный момент времени
19. Параллельные реакции.
Реакции называются параллельными если в каждой из них принимает участие
по крайней мере одно общее вещество. Чаще всего встречается 3 типа таких
реакций.
3 типа реакции:
1)Вещество А расходуется по 2-м направлениям
А к1 D1
А к2 D2
2)Вещество А само по себе устойчиво и расходуется в реакции с другими
реагентами
В1+А к1 D1
В2 А к2 D2
3) Вещество А – неустойчиво и реагируя с другим исходным
веществом, одновременно расходуется само по себе
А→D
A+B→C
В 2) и 3) – конкурирующие реакции
1)
d[A]/dt = -k1A-k2A = -(k2 + k1)A
A – молярная концентрация
Если проинтегрировать при начальных условиях t=0 A=A0
A=A0e-(k1+k2)t
d[D1]/dt = k1A = k1A0e-(k1+k2)t
Интегрируя при начальных условиях D1 = 0 и t1 = 0
(1)
Аналогично для D2
Если разделить (1) и (2)
D1/D2 = k1/k2
равно k1 и k2
в любом времени состояние D1 и D2 постоянно и
2)
Для 2-го случая имеем 2 диф. уравнения
-d[B1]/dt = k1AB1
-d[B2]/dt = k2AB2
И мат. Баланс из 3-ех уравнений: А0 – А = В1 (0) – В1 + В2 (0) – В2
D1 = B1 (0) – B1
D2 = B2 (0) – B2
d[B2]/d[B1] = k2B2 / k1B1
B1 = B1 (0)
B2 = B2 (0)
B2/B2(0) = (B1/B1(0))k2/k1
Подставляя это соотношение в уравнение мат. Баланса можно
выражать концентрации остальных реагентов и продуктов
20. Экспериментальные методы изучения радикальных реакций.
Инициированная цепная реакция.
ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ИЗУЧЕНИЯ РАДИКАЛЬНЫХ
РЕАКЦИЙ
1. Импульсные методы.
Импульсный фотолиз. В реакционной смеси мощной вспышкой света
генерируют атомы, радикалы или возбужденные (в триплетном состоянии)
молекулы, за превращением которых следят методами скоростной
спекрофотометрии. Вспышку генерирует газоразрядная лампа, на которую
разряжают конденсаторы емкостью 4-10 мкФ, заряженные до 4-20 кВ. Вспышка
длится несколько микросекунд. Кварцевый реакционный сосуд обычно имеет
длину 10-20 см и диаметр 2-4 см. Метод применим как к газам, так и ки
жидкостям , он позволяет наблюдать реакции с временем полупревращения до
10-5с. Мощная вспышка позволяет получить высокую концентрацию активных
частиц за их превращением следят спекрофотометрически по поглощению света
на длине волны, соответствующей максимуму поглощения. Метод позволяет
изучать рекомбинацию атомов и радикалов, их реакции с молекулами. реакции
молекул в триплетном состоянии.
Для успешного использования метода должны выполняться следующие
условия; время жизни исследуемой частицы должно быть много дольше, чем
длительность вспышки, растворитель должен быть прозрачен в области длин
волн, где поглощают изучаемые частицы, должна быть известна или выяснена
схема реакций, в которые вступает изучаемый радикал.
Импульсный радиолиз. Этот метод является радиационно-химическим аналогом
импульсного фотолиза. Для идентификации детектирования частиц используют
скоростную спектрофотометрию. Кинетическую информацию обрабатывают с
помощью ЭВМ. Активные частицы генерируют путем электронного удара
коротким импульсом высокоэнергетических электронов, которые вызывают
ионизацию и электронное возбуждение молекул, а возбужденные молекулы
диссоциируют с образованием радикалов и атомов.
Для создания импульса электронов используют микроволновый линейный
ускоритель (энергия электронов 2 12 МэВ, длительность импульса 100 1000
нс), ускоритель Ван-де-Граафа (электроны с энергией 2 4 МэВ, длительность
1 100 нс), фебетрон (электроны с энергией 0,6 2 МэВ, длительность 10 50
нс). Реакционную ячейку изготавливают из кварца, который достаточно
устойчив к радиационному окрашиванию. Поскольку электроны быстро
тормозятся в жидкости и теряют свою способность ионизовать молекулы,
толщина ячейки не должна превышать 1 2 см. Энергия электронов в пучке
обычно составляет от 1 до 30 МэВ. Чем выше эта энергия, тем равномернее по
сосуду происходит инициирование.
Методом импульсного радиолиза подробно изучены реакции частиц,
возникающих в воде при ее облучении электронами: атомов водорода,
радикалов гидроксила и НО2•. Исключительно ценные данные получены о
реакциях гидратированного электрона с разнообразными ионами, радикалами и
молекулами. При захвате электрона ароматической молекулой образуется
анион-радикал, реакции с их участием также изучены методом импульсного
радиолиза.
2. Лазерный магнитный резонанс (ЛМР).
Метод предназначен для спекроскопических и кинетических исследований
химически активных атомов, радикалов и ионов в газовой фазе. В химической
кинетике он применяется для изучения элементарных и разветвленных цепных
реакций. Метод ЛМР является аналогом метода ЭПР, однако имеет значительно
более высокую чувствительность детектирования двухатомных радикалов в
газе.
В ЛМР наблюдают поглощение лазерного излучения парамагнитными
частицами газа, помещенными в магнитное поле. В случае радикалов
поглощение лазерного излучения обусловлено электрическими дипольными
переходами между магнитными подуровнями двух разных вращательных или
колибательно-вращательных уровней. При этом линия генерации лазера
выбирается так, чтобы с помощью магнитного поля можно было
скомпенсировать разность энергий излучения лазера (hv L) и вращательного или
колебательно-вращательного переходв (hvR)радикала:
hL hR = g1BM1 g2BМ2
(1)
где g1 и g2 - факторы верхнего и нижнего вращательных (колебательновращательных) уровнений; M1 и M2 -магнитные квантовые числа этих
уровнений;  -магнетон Бора; B - индукция магнитного поля. Электрическое
дипольное поглощение имеет место при M1 M2=  1.
Для повышения чувствительности метода ЛМР кювету с исследуемыми
радикалами помещают в резонатор лазера, а режим работы лазера подбирают
таким образом, чтобы получить дополнительный выигрыш по сравнению с
числом проходов луча в резонаторе (обычно 10 проходов). Эффективная длина
пути поглощения в этом случае для внутрирезонаторного ЛМР оказывается не в
10, а в тысячу раз больше геометрической. Отметим, что в ЛМР и ВРЛС
используются различные лазеры и выигрыш внутрирезонаторного поглощения
обусловлен разными причинами.
3. Кинетическая резонансно-флуоресцентная спекроскопия (РФС).
Принцип метода РФС заключается в следующем. В исследуемой системе (смеси
газов) генерируются тем или иным способом атомы или свободные радикалы.
Светом зондирующего источника исследуемые частицы переводятся в
возбужденное состояние. Зондирующий источник настроен на длину волны,
вызывающую возбуждение. Переход из воздужденного состояния в основное
сопровождается излучением (флуоресценцией), что используется для контроля
за изменением концентрации этих частиц во времени. Установка включает
реактор и соединенные с вакуумной системой СВЧ-генератор для
генерирования атомов в разряде, источник зондирующего излучения, приемник
возникающей флуоресценции, фильтры и монохроматоры. Источником
зондирующегося излучения могут быть перестраиваемые лазеры и струевые
разрядные лампы. Они охватывают диапазон длин волн от глубокого
ультрафиолета до коротковолновой инфракрасной области. Для регистрации
флуоресценции используются фотоумножители и счетчики Гейгера. Для
кинетических измерений резонансно-флуоресцентная спекроскопия может быть
применима в трех различных вариантах. Во-первых, в статических условиях,
когда атомы и радикалы генерируются реакционной смесью. В таком вариаенте
РФС-метод предназначался для изучения цепных разветвленных реакций
горения водорода и фосфора. Во-вторых, РФС-метод часто используется в
струевых условиях в сочетании с СВЧ-разрядом. Это позволяет измерить
концентрацию атомов и радикалов и изучать их реакцию с реагентом газом в
обьеме или гибель атомов на поверхности. Этим же способом изучаются
продукты той или иной элементарной реакции. В-третьих, РФС-метод
применяется в сочетании с импульсным фотолизом. Максимальное значение
константы скорости бимолекулярной реакции, измеряемой этим методом,
составляет 1010 л/((моль с). Чувствительность по конценрации регистрируемых
частиц в кинетических установках РФС составляет 103-104 частиц/см3.
Спектральное разрешение в установках РФС 1010, а временное разрешение при
использовании лазерного источника света составляет 10-9с. РФС-метод
используется для метастабильных состояний, для изучения продуктов
элементарных реакций, пламен, цепных разветвленных реакций.
4. Инициированная и автоинициированная цепная реакция.
Изучение кинетики цепной реакции позволяет установить лимитирующую
стадию продолжения цепи, характер обрыва цепей и получить количественную
кинетическую характеристику цепного процесса в виде отношения констант
скорости лимитирующих стадий. Важное значение имеет изучение скорости
цепного процесса в зависимости от скорости инициирования.
Инициированая цепная реакция. В системе, где возможно развитие цепной
реакции, инициирование с известной заданной скоростью создается или путем
введения инициатора, который распадается на радикалы с известной константой
скорости, или фотохимически, или под действием проникающей радиации ( лучи,  -лучи). Зависимость скорости цепной реакции v от скорости
инициирования viпозволяет судить о характере обрыва цепей. Если v vi, то
обрыв цепей первого порядка по концентрации активных центров, если v 
то второго порядка. В жидкой фазе в отсутствие ингибитора цепи обрываются
бимолекулярно, и скорость цепной реакции, например, полимеризации
мономера М, составляет
v = vi + kp(2kt)1/2[M]
.
(2)
Эмпирическая зависимость v от
позволяет определить параметр
a = kp(2kt)1/2, характеризующий скорость цепного процесса. Зная этот параметр,
можно найти значение kp, если известна или независимым методом измерена
константа скорости kt или отношение kp/2kt (см. далее). По параметру а можно
измерить скорость инициирования для неисследованного источника радикалов.
Если такой источник  инициатор, то vi = ki[I], и по серии опытов с разной
начальной концентрацией инициатора находят ki по уравнению
ki = v2/a2[M]2[I]0.
(3)
Параметр а позволяет также оценить верхний предел по vi, когда процесс
протекает цепным путем, т. е. когда  > 1. Поскольку длина цепи
 = v/vi = kp(2kt)1/2[M]
то 1 при выполнении условия
(4)
vi <
[M]2/2kt.
(5)
Поскольку скорость реакции, измеряемая экспериментально, v > vmin (где vmin
нижний предел, определяемый в опыте), то доступный изучению интервал
скоростей реакции в цепном режиме определяется неравенством
vmin< v <
[M]2/2kt.
(6)
Так как отношение
уменьшается с уменьшением температуры (всегда Ер
> Et), то существует Tmin, ниже которой реакцию в цепном режиме
воспроизвести и изучить не удается. При использовании инициатора в таких
опытах важно, чтобы его распад на радикалы протекал, с одной стороны, с
достаточно высокой скоростью, а с другой  не очень быстро, чтобы за время
опыта выполнялось условие vi const,
т. е. kd << t 1 (где t время эксперимента). Это условие выражaется
неравенством
[M]2[I] < ki << t 1.
(7)
.
Для vmin = 107 моль/(л с), [I] = 0,1М и t = 103 с оно приобретает вид
1016
< 103ki << 1.
(8)
Метод смешанного инициирования. Достаточно часто встречаются случаи,
когда компоненты системы участвуют как в инициировании, так и в
продолжении цепи. Например, введение в окисляющийся углеводород спирта и
гидропероксида вызывает, во-первых, дополнительное инициирование (см.
Лекцию ) и, во-вторых, изменяет отношение kp(2kt)1/2 из-за участия обоих
компонентов в продолжении цепи (пероксильные радикалы углеводорода
реагируют с ROH и ROOH, что изменяет состав и концентрацию радикалов).
Метод исследования заключается в следующем. В систему, где развивается
цепная реакция, например, окисляется RH и генерируются радикалы с
неизвестной скоростью vix, вводят инициатор I, для которого известна ki.
Проводят серию опытов с разными концентрациями I и в каждом опыте
измеряют скорость цепной реакции. Если обрыв цепей квадратичный, то
скорость цепной реакции (v >> vi) связана с концентрацией инициатора
соотношением
v2 =
По линейной зависимости v2 от [I], которая имеет вид v2 = = А + В [I],
определяют коэффициенты А и В и следующие величины: vix=
kiA/В,
Условия подбирают такими, чтобы, во-первых,
реакция протекала цепным путем, во-вторых, за время опыта vi const, втретьих, vix и ki[I] должны быть соизмеримы, т. е. должно быть справедливо
неравенство 0,5vix < ki[I] < 5vix. Этот метод применим и в тех случаях, когда
активные центры погибают по реакции первого порядка. В этом случае
зависимость v от [I] носит линейный характер:
(9)
v = kp(kt)1[RH](vix + ki[I]).
(10)
Метод можно использовать и в том случае, когда цепи обрываются
одновременно по реакциям первого и второго порядка, тогда
ki[I] + vix =Аv2 + Bv,
(11)
где А = 2kt(kp[RH])2, В = kt(kp[RH])1. Три опыта с разными концентрациями
инициатора позволяют вычислить vix, A и В.
Автоинициированный режим цепной реакци. Противоположная ситуация
наблюдается в реакциях автоокисления органических соединений, когда
скорость генерирования радикалов нарастает в ходе реакции из-за образования
гидропероксидов. Если ROOH распадается на радикалы по реакции первого
порядка, то в начальный период окисления, когда скорость образования ROOH
много больше скорости его распада,
v = kp(2kt)1/2[RH]
vi = vi0 + ki[ROOH],
(12)
и кинетика накопления гидропероксида описывается формулой:
a[RH]vi0,
[ROOH]/t = 0,25a2[RH]2kit +
(13)
где vi0 скорость генерирования радикалов без участия ROOH; а = kp(2kt)1/2.
Очень часто скорость зарождения цепей настолько мала, что при достаточно
больших временах членом a[RH]vi0 в (13) можно пренебречь. Тогда кинетика
накопления ROOH описывается простым выражением
(14)
Так как коэффициент а легко определить в экспериментах по инициированному
окислению RH, то спрямление зависимости по (14) позволяет определить
константу скорости ki. Спрямляя экспериментальные результаты по (13), можно
оценить скорость зарождения цепей vi0.
При достаточно высокой концентрации ROOH радикалы генерируются по
бимолекулярной реакции со скоростью [ROOH]2, так что суммарная скорость
генерирования радикалов
vi = vi0 + ki[ROOH] +
(15)
Кинетика накопления ROOH, когда ее распад протекает незначительно, а
vi0очень мала, описывается при достаточно больших t и [ROOH] выражением
 ln[ROOH] = kp[RH](ki /2kt)1/2t +
которое позволяет оценить ki при известном kp(2kt)1/2.
(16)
5. Фотохимические методы изучения элементарных стадий.
Изучение кинетики цепных реакций в стационарном режиме позволяет
определить сочетание констант скорости kp(2kt)1/2 при бимолекулярном обрыве
цепей и kp/kt при обрыве цепей по реакции первого порядка. Для оценки
абсолютных значений констант скорости необходимо использовать
нестационарные кинетические методы. При изучении механизма реакций
радикальной полимеризации широкое применение нашли секторный метод и
метод фотохимического последствия.
Секторный метод (метод прерывистого освещения). Теория этого метода была
разработана Д.Чэпменом, Ф.Бриером и Е.Уолтерсом в 1926 г., но только в 1937
г. этот метод получил экспериментальное воплощение и был использован для
изучения радикальной полимеризации виниловых соединений (Х.Мелвилл, 1937
г.). Метод применяют для измерения времени жизни активных центров (атомов
и радикалов) в цепных реакциях с квадратичным обрывом цепей. Принцип
метода заключается в том, что в системе периодически инициируют светом
образование активных центров и от опыта к опыту изменяют длительность
светового и темнового периодов. Чередование световых и темновых периодов
осуществляют с помощью вращающегося диска с прорезями (секторами). Когда
длительность темнового периода меньше времени жизни активного центра
(сектор вращается быстро), реакция идет быстро, как при непрерывном
инициировании со скоростью vi(1 + r)1, где r отношение темнового периода к
световому, а скорость vб~
При большой длительности темнового
периода (сектор вращается медленно) реакция идет только в периоды
освещения и средняя скорость vм~(1+ r)1
Переход от одного режима к другому происходит при таком темновом периоде,
длительность которого соизмерима со временем жизни активного центра,
Рис. 1. Схема секторной установки:
1 источник света; 2 диафрагмы; 3 линзы; 4 вращающийся диск; 5 фильтр;
6 реакционная ячейка; 7 фотоумножитель; 8 термостат
ведущего цепную реакцию. В основе метода лежит зависимость длины цепи от
скорости инициирования при квадратичном обрыве цепей (~
При непрерывном освещении скорость цепного превращения RH
v0 = kp(vi /2ki)1/2[RH].
(17)
При быстром вращении диска, когда темновой период tт << (2ktvi)1,
концентрация радикалов соответствует средней скорости инициирования v i(1 +
r)1, где r = tт/tсв и vб = v0(1 + r)1/2. При медленном вращении диска реакция
протекает только в период освещения, и средняя скорость за много периодов
vм = v0(1 + r)1.
(18)
Отношение vб/vм = (1 + r)1/2 = 2 при r = 3. Переход от одного режима к другому
происходит при tт (2ktvi)1/2.
Эксперимент проводят следующим образом (рис. 1). Реакционную смесь
помещают в термостатированный сосуд 6 с прозрачными плоскопараллельными
стенками. Сосуд освещается светом такой длины волны, которая вызывает
генерирование радикалов. Диск 4 помещают в точке, где фокусируются лучи
света, и приводят его во вращение. От опыта к опыту измеряют тем или иным
способом скорость реакции и строят эмпирическую зависимость отношения v/v0
от lgtт, tтнаходят из скорости вращения диска и соотношения между размерами
темнового и светового секторов (обычно r = 3). Эту эмпирическую зависимость
сопоставляют с теоретической и из сопоставления находят 2ktvi, откуда
вычисляют 2kt . Скорость инициирования измеряют отдельно методом
ингибиторов (см. выше) или через скорость цепной реакции и отношение kp /2kt .
Секторный метод дает надежные результаты при выполнении таких условий,
как равномерное инициирование по всему объему реактора, прямоугольная (или
близкая к ней) форма светового импульса (это достигается сведением светового
пучка в точку, где световой пучок пересекается диском), длинные цепи,
квадратичный характер обрыва цепей, отсутствие (или низкая скорость)
темновой реакции. Секторный метод можно использовать и в тех случаях, когда
цепи обрываются и квадратично, и линейно. Однако в таких случаях
необходимо в специальных опытах (по зависимости v0 от vi) выяснить
соотношение между
и 2kt и сопоставить v/v0 с lgm при соответствующем
параметре
(19)
Если есть темновая реакция инициирования, то это также необходимо
учитывать, так как отношение v/v0 зависит в этом случае от отношения vi/viт ,
где viт скорость темнового инициирования. Секторный метод используется
при измерении констант скорости реакции радикалов, ведущих полимеризацию
и окисление. Он позволяет измерить 2kt от 108 л/(моль x с) и ниже, погрешность
составляет обычно  25%. Из величины [R'H] и стационарной скорости v при
известном vi находят kt. Метод применим только к цепным реакциям,
инициируемым фотохимически. Достаточно надежное измерение kt и
возможно, когда время развития цепи больше 1 с.
Метод фотохимического преддействия и последействия. При фотохимическом
инициировании цепной реакции после включения света проходит некоторый
отрезок времени, пока установятся стационарная концентрация радикалов и
постоянная скорость реакции. Это используется для измерения константы
скорости обрыва цепей. Если цепи обрываются линейно, то после включения
света
и
(20)
При небольшой степени превращения [R' H] = [R' H]0 имеем
(21)
Рис. 2. Кинетическая кривая цепной реакции при
выключении (t = 0) и включении света (момент
отмечен стрелкой) в методе фотохимического
последействия (при больших t), что позволяет
найти , экстраполируя асимптотическую
прямую накопления [R'H] к t = 0.
.
Если цепи обрываются квадратично, то d[R ]/dt
= vi 2kt[R ] 2 и [R ] = (vi/2kt)1/2[(e 1)/(e+ 1)],
где
;
(22)
где a = (2vikt)1/2, что позволяет найти 2ktvi и вычислить kt, экстраполируя
асимптотическую кинетическую прямую накопления [R'H] к t = 0 (отсекается
отрезок t = (2vikt)1/2 ln2, рис. 2).
Выключение света приводит не к мгновенной остановке цепной реакции, а к
постепенному ее затуханию. Если цепи обрываются линейно и свет выключен в
момент t = 0, то
и
(23)
где v стационарная скорость цепной реакции:
При квадратичном обрыве цепей необходимо после выключения света
сохранить некоторую небольшую скорость инициирования
Тогда после
выключения света прореагирует за счет нестационарной концентрации
радикалов в момент t = 0 количество вещества
где
(24)
Использование метода ограничено такими системами, где за время жизни
активного центра  вступает в реакцию такое количество вещества [R' H] = ,
которое превышает чувствительность аналитического метода контроля.
6. Хемилюминесцентные методы.
Жидкофазное окисление органических соединений сопровождается слабой
хемилюминесценцией, которая была обнаружена в 1959 г. Р.Ф.Васильевым,
В.Я.Шляпинтохом и О.Н.Карпухиным. Хемилюминесценция обусловлена тем,
что при диспропорционировании вторичных пероксильных радикалов
образуется триплетно-возбужденный кетон. Выход возбужденных молекул
кетона составляет 103  102 на один акт диспропорционирования. Большая
часть возбужденных молекул тушится; выход испускания составляет 105 103
квантов на одну возбужденную молекулу. Низкий квантовый выход свечения
обусловливает низкую интенсивность свечения.
Для изучения хемилюминесценции стеклянный термостатированный реактор
помещают в светонепроницаемую камеру, вводят углеводород (чаще всего это
хорошо изученный этилбензол), источник инициирования, фотосенсибилизатор
и ведут окисление при непрерывном барботировании кислорода. В качестве
сенсибилизатора используют 9,10-дибромантрацен или хелат европия
(тристеноилтрифторацетонат европия с фенантролином). Возникающее в ходе
реакции свечение собирают зеркальным отражателем, усиливают
фотоумножителем, полученный сигнал записывают на самописце.
Интенсивность свечения, возникающего при окислении, прямо
пропорциональна скорости диспропорционирования RO2, а в
квазистационарном режиме скорости инициирования
I = 2kt хл[RO2]2 = хлvi,
(25)
где хлквантовый выход хемилюминесценции.
Для определения неизвестной скорости инициирования проводят в идентичных
условиях опыты с известной и неизвестной скоростью инициирования vi,
измеряя интенсивности хемилюминесценции Iхл ' и Iхлсоответственно. Скорость
инициирования находят по формуле:
(26)
Хемилюминесцентный метод широко использовали для изучения распада
инициаторов. Поскольку Iхл = хлvi, vi = 2еkd[I], то по мере распада инициатора
Iхлпадает во времени, так что по кинетике хемилюминесценции можно измерить
kd и е :
ln(Iхл/I0,хл) =  kdt и е = vi/2kd[I]0,
(27)
где vi определяют по формуле (26).
Хемилюминесценцию можно использовать для контроля за [RO2] и в
нестационарном режиме. Если вести окисление, инициируя радикалы светом со
скоростью vi, то такому режиму соответствует [RO2] = (vi/2kt)1/2 и
интенсивность свечения I0,хл. После выключения света концентрация
RO2уменьшается в соответствии с уравнениями:
d[RO2/dt = 2kt[RO2]2, [RO2]0/[RO2]  1 = 2kt[RO2]0t.
(28)
Спад интенсивности свечения описывается соответственно формулой
(I0,хл /I)1/2 1 = (2ktvi)1/2t.
(29)
По наклону прямой в координатах (I0,хл /Iхл)1/2t определяют время жизни RO2: 
= (2ktvi)1/2, и при известной vi находят 2kt . Для нахождения kt достаточно часто
использовали метод кислородного последействия. Он заключается в том, что
систему RO2+ инициатор быстро насыщают кислородом. Это сопровождается
изменением интенсивности свечения во времени от I0,хл при t = 0 до I ,хлпри
t : I0,хлсоответствует концентрация [RO2]0 = [R]0 в момент t = 0, когда
концентрация R определяется их рекомбинацией в отсутствие О2:
[R] = (vi /2k't)1/2,
(30)
где
R.
константа скорости гибели (рекомбинации и диспропорционирования)
Изменение Iхлво времени связано с установлением квазистационарной
концентрации
[RO2]ст = (vi /2kt).
Алкильные радикалы гибнут с диффузионно-контролируемой скоростью и kt 
108 1010 л/(моль x с), а RO2погибают гораздо медленнее [kt 105 107
.
л/(моль с)], поэтому [RO2] [RO2]0 и наблюдается усиление свечения во
времени. Константу скорости 2kt находят из графика
ln(I0,хл/Iхл) t :
(31)
В хемилюминесцентном методе должен выполняться ряд условий. Опыты
следует проводить в углеводороде, при окислении которого возникают
вторичные (или первичные) пероксильные радикалы. Метод хорошо опробован
на этилбензоле. Важно, чтобы все радикалы инициатора реагировали с
углеводородом, обмениваясь в итоге на вторичные пероксильные радикалы.
Инициатор не должен тушить хемилюминесценцию. Так как тушащим
действием обладает кислород, опыты нужно проводить при таких парциальных
давлениях О2, которые обеспечивают быстрое превращение Rв RO2, но
тушащее действие О2 минимально. Для усиления слабого свечения вводят
фотосенсибилизатор. Необходимо, кроме того, иметь в виду, что
хемилюминесценцию в окисляющихся системах могут вызывать и другие
процессы, в частности, внутриклеточная рекомбинация радикалов.
21.
Односторонние реакции первого порядка
Согласно закону действующих масс кинетическое уравнение для
односторонней мономолекулярной реакции первого порядка
следует записать следующим образом:
(11)
где С – концентрация реагента А.
Константа скорости реакции первого порядка имеет размерность (время)1
, например, с-1, мин-1, ч-1, поэтому ее числовое значение зависит от
единиц, в которых выражается время.
Для характеристики скорости реакции, наряду с константой скорости,
часто пользуются временем полупревращения или полураспада (),
равным промежутку времени, в течение которого реагирует половина
взятого количества вещества. Например, из уравнения (11),
при
, получаем для времени полупревращения реакции
первого порядка выражение:
(12)
Уравнение первого порядка описывает не только скорость элементарных
мономолекулярных реакций. Многие сложные реакции подчиняются
уравнению первого порядка. Например, зависимость скорости реакции
гидролиза этилацетата в водной среде:
от концентрации описывается уравнениями первого порядка. Для
указанной реакции это обусловлено тем, что концентрация воды,
находящейся в избытке, в ходе реакции остается практически
постоянной, поэтому ее можно ввести в константу скорости
, (13)
где
;
-концентрация воды.
Такие реакции называются псевдомономолекулярными.
Определенное интегрирование уравнения (11) позволяет получить
уравнение в интегральной форме:
(14)
из которого следует
(15)
где С0 - начальная концентрация исходного вещества А, отвечающая
моменту времени, равному нулю; С - концентрация этого вещества к
моменту времени .
При кинетическом изучении реакции первого порядка вместо
концентраций можно использовать любые другие величины, которые
меняются пропорционально концентрации, так как в уравнение (14)
входит отношение концентраций. Если в это уравнение подставить
вместо концентрации пропорциональную ей величину, то коэффициент
пропорциональности сократится и величина под логарифмом не
изменится. Например, концентрации можно заменить через количество
исходного вещества в системе
(16)
где а=C0V - начальное количество вещества в молях;
а-х=CV - количество вещества, которое осталось во всем
объеме V системы к моменту времени , в молях;
х - количество прореагировавшего вещества, в молях.
+Из уравнения (15) можно определить количество прореагировавшего
вещества:
, (17)
а также количество непрореагировавшего вещества к моменту времени
:
(18)
По первому порядку протекают многие реакции разложения и
изомеризации.
Односторонние реакции первого порядка (ИЗ ЛЕКЦИЙ)
Период полураспада τ1/2 = ln 2/k. Наряду с τ1/2 часто используется такое понятие
как среднее время жизни частицы CA = CAoe-kt
n = n0e-kt ; -dn = knoe-kt dt
Среднее время жизни частицы :
С помощью уравнения в безразмерных координатах можно совместить две
кинетические кривые реакций первого порядка. Для этого надо выбрать только
соответствующий масштаб.
22.Обратимые реакции первого порядка
Обратимые элементарные реакции первого порядка состоят из прямой и
обратной элементарных реакций первого порядка: A <=> B. k1 – константа
скорости прямой реакции, k2
– обратной.
Скорость обратимой реакции равна разности скоростей прямой и обратной
реакций:
w=w1−w2=k1 cA−k 2 cB , где cA, cB – концентрации веществ A и B в момент времени
t.
Пусть cA = a – x, cB = b+ x, где x — убыль вещества A за время t с момента
начала реакции, a, b - начальные концентрации веществ A и B. Тогда:
dxdt =k 1 (a− x)−k 2 (b+x)=(k1 +k2 )( k1 a−k2 b −x)
При наступлении равновесия скорости прямой и обратной реакции равны, а
концентрация веществ не изменяется:
dx
k1 a−k2 b
k1 a−k 2 b
=0=(k1+k 2)(
− x) x=
=x∞ , где x∞ - равновесная убыль
dt
k1+k 2
k 1+k2
концентрации, т. е. то изменение концентрации, которое произойдет от начала
реакции до наступления равновесия. Тогда перепишем уравнение:
dxdt =(k1 +k2 )( x∞− x)
ИЗ ЛЕКЦИЙ
Обратимые реакции — химические реакции, протекающие одновременно в
двух противоположных направлениях (прямом и обратном)
Обратимые реакции первого порядка
Кинетика такого типа применима ко многим простым реакциям, например,
изомеризации, и основное уравнение можно записать в виде
Для этой реакции можно записать:
Для концентрации исходного вещества получим:
.
Из представленных уравнений по зависимостям CA, CB или Х от времени можно
рассчитать велbчины k1 и k -1 однако эти уравнения взаимозависимы
относительно искомых значений параметров.
На практике k1 и k -1 находят следующим образом:
В начале из экспериментальных данных находят константу равновесия
(величина, определяющая для данной химической реакции соотношение между
термодинамическими активностями исходных веществ и продуктов в состоянии
химического равновесия):
Зная K, k1 и k -1 можно найти значения констант прямой и обратной реакции
раздельно
k1 = …
k -1 = …
23Предельные явления в разветвленных цепных реакциях, тепловой взрыв.
Предельные явления в разветвленных цепных реакциях
Характерная особенность разветвленной цепной реакции – наличие
предельных явлений.
Если обрыв быстрее разветвления (g > f) – стационарная реакция.
Если разветвление быстрее обрыва (f > g) – нестационарное
автоускорение с цепным воспламенением.
Переход от (g > f) к (f > g) может происходить при незначительном
изменении одного из параметров, определяющих скорость обрыва и
разветвления: давления, температуры, состава смеси, размера
реакционного сосуда, состояния стенок.
В связи с этим для реакции окисления водорода установлены пределы
воспламенения или взрываемости.
+В области малых давлений (A-B) реакция идет с малой скоростью, g > f.
В точке B скорость бесконечно велика, f > g, т.е. происходит взрыв.
P1 – нижний предел взрываемости.
В области P1P2 смесь кислорода с водородом взрывается. В области
давлений выше P2 реакция протекает с измеримой скоростью.
P2 – верхний предел воспламенения или взрываемости.
Если дальше повышать давление (т.е. концентрацию кислорода), то в
точке D, при давлении P3, произойдет тепловой взрыв.
P3 – третий предел взрываемости.
В точках B и C – цепной взрыв.
Тепловой взрыв
При давлениях выше P3 имеет место тепловой взрыв – третий предел
воспламенения.
q1 – тепло, выделяющееся в реакции;
q2 – тепло, отдаваемое в окружающую среду.
–
экспоненциальная функция;
q2 = K(T – T0)S – линейная функция, где
K – коэффициент теплопередачи;
T – температура смеси; T0 – температура стенок;
S – площадь поверхности.
Если q1 > q2, произойдет повышение температуры смеси. Это приведет к
росту q1, что вновь увеличит температуру, а ее повышение снова
вызовет рост q1 и т.д., т.е. произойдет тепловой взрыв.
В точке пересечения q1 = q2, и воспламенение или взрыв произойдет при
давлениях равных или больших P2.
24 Кинетика реакций в растворе: сходства и различия газовой, жидкой и
твердой фаз, влияние среды.
В растворе образование активированного комплекса из исходных частиц
сопровождается теми или иными изменениями молекулярных взаимодействий
реагирующих частиц с молекулами растворителя.
Жидкое состояние вещества является промежуточным между твердым и
газообразным. Отличаясь от газа и твердого тела, жидкость имеет черты
сходства с каждым из этих состояний.
Для применения теории активированного комплекса к жидкости необходимо
учесть межмолекулярные взаимодействия исходных частиц и активированного
комплекса с молекулами окружающей среды.
Рассмотрим уравнение переходного состояния:
.
Раствор нельзя считать идеальным, так как имеется межмолекулярное
взаимодействие, поэтому необходимо вместо Kc ввести Ka:
;
,
,
.
При g = 1 система идеальная.
Если перейти к изобарному потенциалу, то
,
где
– изобарный потенциал при активности, равной единице.
,
k0 – константа скорости в среде, для которой коэффициенты активности
исходных частиц и активированного комплекса приняты равными единице.
Это соотношение называется уравнением Бренстеда-Бьеррума. Данное
уравнение в принципе решает вопрос о влиянии среды на скорость
элементарной химической реакции, сводя задачу к определению коэффициента
активности исходных веществ и активированного комплекса. Однако в то время
как существует ряд методов, позволяющих измерить коэффициент активности
исходных веществ, величину g¹ не удается экспериментально измерить из
независимых данных. Поэтому уравнение Бренстеда-Бьеррума имеет лишь
теоретическое значение.
Влияние среды на скорость гомолитических реакций
В гомолитических реакциях образование активированного комплекса не
сопряжено с существенным перераспределением электрических зарядов между
реагирующими атомами. Поэтому оно не должно сопровождаться сильным
изменением межмолекулярных взаимодействий. В связи с этим можно ожидать,
что переход от газовой фазы к жидкой не должен сильно сказываться на
величине константы скорости гомолитической реакции. Как правило,
изменение k лежит в пределах одного порядка.
Наиболее заметно влияние среды в гомолитических процессах реализуется при
наличии клеточного эффекта. В общем случае, явление клеточного эффекта
состоит в том, что две частицы растворенного вещества, оказавшись вблизи
друг друга, как бы попадают в клетку из молекул растворителя и не могут сразу
разойтись на значительное расстояние. Пока частицы находятся в клетке,
существует повышенная вероятность их столкновения, и, следовательно,
взаимодействия между ними. Особенно это проявляется в том случае, если
частицы образуются в одной клетке.
Наиболее яркий пример – реакции гомолитического распада:
Вероятность выхода радикалов в объем (e) равна:
;
.
Влияние среды на скорость гетеролитических реакций
В разбавленных растворах зависимость коэффициента активности иона от
ионной силы описывается уравнением Дебая-Гюккеля:
,
где zi – заряд иона.
Если реагируют zA и zB, то z¹ = zA + zB.
,
,
,
.
Это влияние ионной силы называют первичным солевым эффектом.
Уравнение Дебая-Гюккеля является приближением и верно лишь для
разбавленных растворов. Изменение ионной силы приводит к изменению
степени диссоциации слабого электролита.
,
.
С ростом ионной силы величины gA и gH убывают, так как Kg падает, Ka = Const.
В результате Kc растет и константа скорости реакции увеличивается. Это
явление называют вторичным солевым эффектом.
25 Цепные разветвленные реакции на примере окисления водорода.
Цепная реакция – радикальная реакция, в которой превращение исходных
веществ в продукты осуществляется путем многократного циклического
чередования элементарных актов с участием свободных радикалов.
Цепные реакции, включающие стадии зарождения, разветвления и обрыва цепи
называются разветвлёнными. Это процессы окисления белого фосфора и
фосфина, водорода и оксида углерода (IV).
Если в результате одного элементарного акта регенерируются две или
больше активных частиц, то происходит цепная реакция с
разветвленными цепями. Примером такого процесса цепной реакции с
разветвленными цепями может служить реакция окисления водорода
кислородом.
В этой цепной реакции, наряду с образующимися радикалами
и Н,
обеспечивающими развитие неразветвленной цепи, возникает атом
кислорода, имеющий две свободные валентности.
В простейшем виде реакцию горения водорода в кислороде можно
представить в виде схемы:
1.
радикалов)
зарождение цепи (образование свободных
2.
продолжение цепи (образование продукта
реакций с сохранением АЦ)
3.
разветвление цепи
4.
разветвление цепи
5.
гетерогенный обрыв (первый предел)
6.
гомогенный обрыв (второй предел)
Обрыв цепей – совокупность реакций, в результате которых погибают
ведущие цепную реакцию радикалы.
Образовавшиеся активные частицы в результате разветвленной цепной
реакции вызывают превращение большой массы исходных веществ в
конечные продукты, что может привести к взрыву или воспламенению
(первый и второй пределы воспламенения). Предел воспламенения
означает переход от стационарного процесса к взрывному.
Для регулирования скорости и торможения разветвленных цепных
реакций в реакционную смесь добавляют вещества, называемые
замедлителями, или ингибиторами. Обрывая цепь, они уменьшают
скорость процесса. Так ведет себя, например, тетраэтилсвинец,
прибавляемый в небольших количествах к авиационным и
автомобильным бензинам. Переходя вместе с бензином в парообразное
состояние в камере двигателя, тетраэтилсвинец обрывает цепь при
горении топлива. При хранении мономеров часто добавляют
ингибиторы, чтобы предотвратить цепную реакцию самопроизвольной
полимеризации.
Цепная реакция является разветвленной, если в ней протекает такая стадия, в
которой один радикал или атом генерирует образование нескольких атомов и
радикалов. В результате при благоприятных условиях в ходе реакции нарастает
концентрация активных центров и, соответственно, увеличивается скорость
реакции. Это часто приводит к воспламенению или взрыву. Если разветвление
происходит в результате взаимодействия атома (радикала) с молекулой, то в
силу сохранения нечетного числа электронов в радикальных реакциях в системе
из одной возникают 3 частицы с неспаренным электроном (в общем случае 2n +
1). Увеличение числа частиц может происходить в одну стадию.
При горении водорода разветвление происходит в два последовательных акта в
соответствии с брутто-уравнением:
H+ + O2 + H2→ 2HO- + H+
26 Цепные реакции с вырожденным разветвлением цепей.
Вырожденное разветвление цепей - образование свободных радикалов (
инициирование цепей) в результате превращения стабильных продуктов цепной
реакции окисления - гидропероксидов. При таком способе инициирования
новые цепи возникают через промежуток времени, значительно превосходящий
время существования цепи.
По механизму цепных реакций с вырожденными разветвлениями протекает
окисление кислородом ряда углеводородов и родственных соединений , а также
медленное окисление сероводорода.
При окислении углеводородов цепная реакция осуществляется в результате
чередования элементарных стадий продолжения цепи:
С образованием двух свободных радикалов, инициирующих две новые цепи.
При высокотемпературном окислении углеводородов вырожденное
разветвление обусловлено превращением альдегидов, например окисление
метана осуществляется в результате чередования элементарных стадий
продолжения цепи:
При низкотемпературном окислении сероводорода в начальной стадии идет
цепная реакция образования малоактивного свободного бирадикала
В приведенных выше схемах, написанные реакции являются реакциями
вырожденного разветвления. В результате этих реакций зарождаются новые
цепи. Однако, в отличие от разветвленных цепных реакций, возникновение
новых цепей при вырожденном разветвлении происходит не при участии
активных центров, а при участии стабильных продуктов цепной реакции.
27 Экспериментальные методы изучения радикальных реакций.
1. Импульсные методы.
Импульсный фотолиз. В реакционной смеси мощной вспышкой света
генерируют атомы, радикалы или возбужденные (в триплетном состоянии)
молекулы, за превращением которых следят методами скоростной
спекрофотометрии. Вспышку генерирует газоразрядная лампа, на которую
разряжают конденсаторы емкостью 4-10 мкФ, заряженные до 4-20 кВ. Вспышка
длится несколько микросекунд. Кварцевый реакционный сосуд обычно имеет
длину 10-20 см и диаметр 2-4 см. Метод применим как к газам, так и ки
жидкостям , он позволяет наблюдать реакции с временем полупревращения до
10-5с. Мощная вспышка позволяет получить высокую концентрацию активных
частиц за их превращением следят спекрофотометрически по поглощению света
на длине волны, соответствующей максимуму поглощения. Метод позволяет
изучать рекомбинацию атомов и радикалов, их реакции с молекулами. реакции
молекул в триплетном состоянии.
Для успешного использования метода должны выполняться следующие
условия; время жизни исследуемой частицы должно быть много дольше, чем
длительность вспышки, растворитель должен быть прозрачен в области длин
волн, где поглощают изучаемые частицы, должна быть известна или выяснена
схема реакций, в которые вступает изучаемый радикал.
Импульсный радиолиз. Этот метод является радиационно-химическим аналогом
импульсного фотолиза. Для идентификации детектирования частиц используют
скоростную спектрофотометрию. Кинетическую информацию обрабатывают с
помощью ЭВМ. Активные частицы генерируют путем электронного удара
коротким импульсом высокоэнергетических электронов, которые вызывают
ионизацию и электронное возбуждение молекул, а возбужденные молекулы
диссоциируют с образованием радикалов и атомов.
Для создания импульса электронов используют микроволновый линейный
ускоритель (энергия электронов 2 12 МэВ, длительность импульса 100 1000
нс), ускоритель Ван-де-Граафа (электроны с энергией 2 4 МэВ, длительность
1 100 нс), фебетрон (электроны с энергией 0,6 2 МэВ, длительность 10 50
нс). Реакционную ячейку изготавливают из кварца, который достаточно
устойчив к радиационному окрашиванию. Поскольку электроны быстро
тормозятся в жидкости и теряют свою способность ионизовать молекулы,
толщина ячейки не должна превышать 1 2 см. Энергия электронов в пучке
обычно составляет от 1 до 30 МэВ. Чем выше эта энергия, тем равномернее по
сосуду происходит инициирование.
Методом импульсного радиолиза подробно изучены реакции частиц,
возникающих в воде при ее облучении электронами: атомов водорода,
радикалов гидроксила и НО2•. Исключительно ценные данные получены о
реакциях гидратированного электрона с разнообразными ионами, радикалами и
молекулами. При захвате электрона ароматической молекулой образуется
анион-радикал, реакции с их участием также изучены методом импульсного
радиолиза.
2. Лазерный магнитный резонанс (ЛМР).
Метод предназначен для спекроскопических и кинетических исследований
химически активных атомов, радикалов и ионов в газовой фазе. В химической
кинетике он применяется для изучения элементарных и разветвленных цепных
реакций. Метод ЛМР является аналогом метода ЭПР, однако имеет значительно
более высокую чувствительность детектирования двухатомных радикалов в
газе.
В ЛМР наблюдают поглощение лазерного излучения парамагнитными
частицами газа, помещенными в магнитное поле. В случае радикалов
поглощение лазерного излучения обусловлено электрическими дипольными
переходами между магнитными подуровнями двух разных вращательных или
колибательно-вращательных уровней. При этом линия генерации лазера
выбирается так, чтобы с помощью магнитного поля можно было
скомпенсировать разность энергий излучения лазера (hv L) и вращательного или
колебательно-вращательного переходв (hvR)радикала:
hL hR = g1BM1 g2BМ2
(1)
где g1 и g2 - факторы верхнего и нижнего вращательных (колебательновращательных) уровнений; M1 и M2 -магнитные квантовые числа этих
уровнений;  -магнетон Бора; B - индукция магнитного поля. Электрическое
дипольное поглощение имеет место при M1 M2=  1.
Для повышения чувствительности метода ЛМР кювету с исследуемыми
радикалами помещают в резонатор лазера, а режим работы лазера подбирают
таким образом, чтобы получить дополнительный выигрыш по сравнению с
числом проходов луча в резонаторе (обычно 10 проходов). Эффективная длина
пути поглощения в этом случае для внутрирезонаторного ЛМР оказывается не в
10, а в тысячу раз больше геометрической. Отметим, что в ЛМР и ВРЛС
используются различные лазеры и выигрыш внутрирезонаторного поглощения
обусловлен разными причинами.
3. Кинетическая резонансно-флуоресцентная спекроскопия (РФС).
Принцип метода РФС заключается в следующем. В исследуемой системе (смеси
газов) генерируются тем или иным способом атомы или свободные радикалы.
Светом зондирующего источника исследуемые частицы переводятся в
возбужденное состояние. Зондирующий источник настроен на длину волны,
вызывающую возбуждение. Переход из воздужденного состояния в основное
сопровождается излучением (флуоресценцией), что используется для контроля
за изменением концентрации этих частиц во времени. Установка включает
реактор и соединенные с вакуумной системой СВЧ-генератор для
генерирования атомов в разряде, источник зондирующего излучения, приемник
возникающей флуоресценции, фильтры и монохроматоры. Источником
зондирующегося излучения могут быть перестраиваемые лазеры и струевые
разрядные лампы. Они охватывают диапазон длин волн от глубокого
ультрафиолета до коротковолновой инфракрасной области. Для регистрации
флуоресценции используются фотоумножители и счетчики Гейгера. Для
кинетических измерений резонансно-флуоресцентная спекроскопия может быть
применима в трех различных вариантах. Во-первых, в статических условиях,
когда атомы и радикалы генерируются реакционной смесью. В таком вариаенте
РФС-метод предназначался для изучения цепных разветвленных реакций
горения водорода и фосфора. Во-вторых, РФС-метод часто используется в
струевых условиях в сочетании с СВЧ-разрядом. Это позволяет измерить
концентрацию атомов и радикалов и изучать их реакцию с реагентом газом в
обьеме или гибель атомов на поверхности. Этим же способом изучаются
продукты той или иной элементарной реакции. В-третьих, РФС-метод
применяется в сочетании с импульсным фотолизом. Максимальное значение
константы скорости бимолекулярной реакции, измеряемой этим методом,
составляет 1010 л/((моль с). Чувствительность по конценрации регистрируемых
частиц в кинетических установках РФС составляет 103-104 частиц/см3.
Спектральное разрешение в установках РФС 1010, а временное разрешение при
использовании лазерного источника света составляет 10-9с. РФС-метод
используется для метастабильных состояний, для изучения продуктов
элементарных реакций, пламен, цепных разветвленных реакций.
4. Инициированная и автоинициированная цепная реакция.
Изучение кинетики цепной реакции позволяет установить лимитирующую
стадию продолжения цепи, характер обрыва цепей и получить количественную
кинетическую характеристику цепного процесса в виде отношения констант
скорости лимитирующих стадий. Важное значение имеет изучение скорости
цепного процесса в зависимости от скорости инициирования.
Инициированая цепная реакция. В системе, где возможно развитие цепной
реакции, инициирование с известной заданной скоростью создается или путем
введения инициатора, который распадается на радикалы с известной константой
скорости, или фотохимически, или под действием проникающей радиации ( лучи,  -лучи). Зависимость скорости цепной реакции v от скорости
инициирования viпозволяет судить о характере обрыва цепей. Если v vi, то
обрыв цепей первого порядка по концентрации активных центров, если v 
то второго порядка. В жидкой фазе в отсутствие ингибитора цепи обрываются
бимолекулярно, и скорость цепной реакции, например, полимеризации
мономера М, составляет
v = vi + kp(2kt)1/2[M]
.
(2)
Эмпирическая зависимость v от
позволяет определить параметр
a = kp(2kt)1/2, характеризующий скорость цепного процесса. Зная этот параметр,
можно найти значение kp, если известна или независимым методом измерена
константа скорости kt или отношение kp/2kt (см. далее). По параметру а можно
измерить скорость инициирования для неисследованного источника радикалов.
Если такой источник  инициатор, то vi = ki[I], и по серии опытов с разной
начальной концентрацией инициатора находят ki по уравнению
ki = v2/a2[M]2[I]0.
(3)
Параметр а позволяет также оценить верхний предел по vi, когда процесс
протекает цепным путем, т. е. когда  > 1. Поскольку длина цепи
 = v/vi = kp(2kt)1/2[M]
(4)
то 1 при выполнении условия
vi <
[M]2/2kt.
(5)
Поскольку скорость реакции, измеряемая экспериментально, v > vmin (где vmin
нижний предел, определяемый в опыте), то доступный изучению интервал
скоростей реакции в цепном режиме определяется неравенством
vmin< v <
[M]2/2kt.
(6)
Так как отношение
уменьшается с уменьшением температуры (всегда Ер
> Et), то существует Tmin, ниже которой реакцию в цепном режиме
воспроизвести и изучить не удается. При использовании инициатора в таких
опытах важно, чтобы его распад на радикалы протекал, с одной стороны, с
достаточно высокой скоростью, а с другой  не очень быстро, чтобы за время
опыта выполнялось условие vi const,
т. е. kd << t 1 (где t время эксперимента). Это условие выражaется
неравенством
[M]2[I] < ki << t 1.
(7)
.
Для vmin = 107 моль/(л с), [I] = 0,1М и t = 103 с оно приобретает вид
1016
< 103ki << 1.
(8)
Метод смешанного инициирования. Достаточно часто встречаются случаи,
когда компоненты системы участвуют как в инициировании, так и в
продолжении цепи. Например, введение в окисляющийся углеводород спирта и
гидропероксида вызывает, во-первых, дополнительное инициирование (см.
Лекцию ) и, во-вторых, изменяет отношение kp(2kt)1/2 из-за участия обоих
компонентов в продолжении цепи (пероксильные радикалы углеводорода
реагируют с ROH и ROOH, что изменяет состав и концентрацию радикалов).
Метод исследования заключается в следующем. В систему, где развивается
цепная реакция, например, окисляется RH и генерируются радикалы с
неизвестной скоростью vix, вводят инициатор I, для которого известна ki.
Проводят серию опытов с разными концентрациями I и в каждом опыте
измеряют скорость цепной реакции. Если обрыв цепей квадратичный, то
скорость цепной реакции (v >> vi) связана с концентрацией инициатора
соотношением
v2 =
(9)
По линейной зависимости v2 от [I], которая имеет вид v2 = = А + В [I],
определяют коэффициенты А и В и следующие величины: vix=
kiA/В,
Условия подбирают такими, чтобы, во-первых,
реакция протекала цепным путем, во-вторых, за время опыта vi const, втретьих, vix и ki[I] должны быть соизмеримы, т. е. должно быть справедливо
неравенство 0,5vix < ki[I] < 5vix. Этот метод применим и в тех случаях, когда
активные центры погибают по реакции первого порядка. В этом случае
зависимость v от [I] носит линейный характер:
v = kp(kt)1[RH](vix + ki[I]).
(10)
Метод можно использовать и в том случае, когда цепи обрываются
одновременно по реакциям первого и второго порядка, тогда
ki[I] + vix =Аv2 + Bv,
(11)
где А = 2kt(kp[RH])2, В = kt(kp[RH])1. Три опыта с разными концентрациями
инициатора позволяют вычислить vix, A и В.
Автоинициированный режим цепной реакци. Противоположная ситуация
наблюдается в реакциях автоокисления органических соединений, когда
скорость генерирования радикалов нарастает в ходе реакции из-за образования
гидропероксидов. Если ROOH распадается на радикалы по реакции первого
порядка, то в начальный период окисления, когда скорость образования ROOH
много больше скорости его распада,
v = kp(2kt)1/2[RH]
vi = vi0 + ki[ROOH],
(12)
и кинетика накопления гидропероксида описывается формулой:
a[RH]vi0,
[ROOH]/t = 0,25a2[RH]2kit +
(13)
где vi0 скорость генерирования радикалов без участия ROOH; а = kp(2kt)1/2.
Очень часто скорость зарождения цепей настолько мала, что при достаточно
больших временах членом a[RH]vi0 в (13) можно пренебречь. Тогда кинетика
накопления ROOH описывается простым выражением
(14)
Так как коэффициент а легко определить в экспериментах по инициированному
окислению RH, то спрямление зависимости по (14) позволяет определить
константу скорости ki. Спрямляя экспериментальные результаты по (13), можно
оценить скорость зарождения цепей vi0.
При достаточно высокой концентрации ROOH радикалы генерируются по
бимолекулярной реакции со скоростью [ROOH]2, так что суммарная скорость
генерирования радикалов
vi = vi0 + ki[ROOH] +
(15)
Кинетика накопления ROOH, когда ее распад протекает незначительно, а
vi0очень мала, описывается при достаточно больших t и [ROOH] выражением
 ln[ROOH] = kp[RH](ki /2kt)1/2t +
(16)
которое позволяет оценить ki при известном kp(2kt)1/2.
5. Фотохимические методы изучения элементарных стадий.
Изучение кинетики цепных реакций в стационарном режиме позволяет
определить сочетание констант скорости kp(2kt)1/2 при бимолекулярном обрыве
цепей и kp/kt при обрыве цепей по реакции первого порядка. Для оценки
абсолютных значений констант скорости необходимо использовать
нестационарные кинетические методы. При изучении механизма реакций
радикальной полимеризации широкое применение нашли секторный метод и
метод фотохимического последствия.
Секторный метод (метод прерывистого освещения). Теория этого метода была
разработана Д.Чэпменом, Ф.Бриером и Е.Уолтерсом в 1926 г., но только в 1937
г. этот метод получил экспериментальное воплощение и был использован для
изучения радикальной полимеризации виниловых соединений (Х.Мелвилл, 1937
г.). Метод применяют для измерения времени жизни активных центров (атомов
и радикалов) в цепных реакциях с квадратичным обрывом цепей. Принцип
метода заключается в том, что в системе периодически инициируют светом
образование активных центров и от опыта к опыту изменяют длительность
светового и темнового периодов. Чередование световых и темновых периодов
осуществляют с помощью вращающегося диска с прорезями (секторами). Когда
длительность темнового периода меньше времени жизни активного центра
(сектор вращается быстро), реакция идет быстро, как при непрерывном
инициировании со скоростью vi(1 + r)1, где r отношение темнового периода к
световому, а скорость vб~
При большой длительности темнового
периода (сектор вращается медленно) реакция идет только в периоды
освещения и средняя скорость vм~(1+ r)1
Переход от одного режима к другому происходит при таком темновом периоде,
длительность которого соизмерима со временем жизни активного центра,
Рис. 1. Схема секторной установки:
1 источник света; 2 диафрагмы; 3 линзы; 4 вращающийся диск; 5 фильтр;
6 реакционная ячейка; 7 фотоумножитель; 8 термостат
ведущего цепную реакцию. В основе метода лежит зависимость длины цепи от
скорости инициирования при квадратичном обрыве цепей (~
При непрерывном освещении скорость цепного превращения RH
v0 = kp(vi /2ki)1/2[RH].
(17)
При быстром вращении диска, когда темновой период tт << (2ktvi)1,
концентрация радикалов соответствует средней скорости инициирования v i(1 +
r)1, где r = tт/tсв и vб = v0(1 + r)1/2. При медленном вращении диска реакция
протекает только в период освещения, и средняя скорость за много периодов
vм = v0(1 + r)1.
(18)
Отношение vб/vм = (1 + r)1/2 = 2 при r = 3. Переход от одного режима к другому
происходит при tт (2ktvi)1/2.
Эксперимент проводят следующим образом (рис. 1). Реакционную смесь
помещают в термостатированный сосуд 6 с прозрачными плоскопараллельными
стенками. Сосуд освещается светом такой длины волны, которая вызывает
генерирование радикалов. Диск 4 помещают в точке, где фокусируются лучи
света, и приводят его во вращение. От опыта к опыту измеряют тем или иным
способом скорость реакции и строят эмпирическую зависимость отношения v/v0
от lgtт, tтнаходят из скорости вращения диска и соотношения между размерами
темнового и светового секторов (обычно r = 3). Эту эмпирическую зависимость
сопоставляют с теоретической и из сопоставления находят 2ktvi, откуда
вычисляют 2kt . Скорость инициирования измеряют отдельно методом
ингибиторов (см. выше) или через скорость цепной реакции и отношение kp /2kt .
Секторный метод дает надежные результаты при выполнении таких условий,
как равномерное инициирование по всему объему реактора, прямоугольная (или
близкая к ней) форма светового импульса (это достигается сведением светового
пучка в точку, где световой пучок пересекается диском), длинные цепи,
квадратичный характер обрыва цепей, отсутствие (или низкая скорость)
темновой реакции. Секторный метод можно использовать и в тех случаях, когда
цепи обрываются и квадратично, и линейно. Однако в таких случаях
необходимо в специальных опытах (по зависимости v0 от vi) выяснить
соотношение между
параметре
и 2kt и сопоставить v/v0 с lgm при соответствующем
(19)
Если есть темновая реакция инициирования, то это также необходимо
учитывать, так как отношение v/v0 зависит в этом случае от отношения vi/viт ,
где viт скорость темнового инициирования. Секторный метод используется
при измерении констант скорости реакции радикалов, ведущих полимеризацию
и окисление. Он позволяет измерить 2kt от 108 л/(моль x с) и ниже, погрешность
составляет обычно  25%. Из величины [R'H] и стационарной скорости v при
известном vi находят kt. Метод применим только к цепным реакциям,
инициируемым фотохимически. Достаточно надежное измерение kt и
возможно, когда время развития цепи больше 1 с.
Метод фотохимического преддействия и последействия. При фотохимическом
инициировании цепной реакции после включения света проходит некоторый
отрезок времени, пока установятся стационарная концентрация радикалов и
постоянная скорость реакции. Это используется для измерения константы
скорости обрыва цепей. Если цепи обрываются линейно, то после включения
света
и
(20)
При небольшой степени превращения [R' H] = [R' H]0 имеем
(21)
Рис. 2. Кинетическая кривая цепной реакции при
выключении (t = 0) и включении света (момент
отмечен стрелкой) в методе фотохимического
последействия (при больших t), что позволяет
найти , экстраполируя асимптотическую
прямую накопления [R'H] к t = 0.
.
Если цепи обрываются квадратично, то d[R ]/dt
= vi 2kt[R ] 2 и [R ] = (vi/2kt)1/2[(e 1)/(e+ 1)],
где
;
(22)
где a = (2vikt)1/2, что позволяет найти 2ktvi и вычислить kt, экстраполируя
асимптотическую кинетическую прямую накопления [R'H] к t = 0 (отсекается
отрезок t = (2vikt)1/2 ln2, рис. 2).
Выключение света приводит не к мгновенной остановке цепной реакции, а к
постепенному ее затуханию. Если цепи обрываются линейно и свет выключен в
момент t = 0, то
и
(23)
где v стационарная скорость цепной реакции:
При квадратичном обрыве цепей необходимо после выключения света
сохранить некоторую небольшую скорость инициирования
Тогда после
выключения света прореагирует за счет нестационарной концентрации
радикалов в момент t = 0 количество вещества
где
(24)
Использование метода ограничено такими системами, где за время жизни
активного центра  вступает в реакцию такое количество вещества [R' H] = ,
которое превышает чувствительность аналитического метода контроля.
6. Хемилюминесцентные методы.
Жидкофазное окисление органических соединений сопровождается слабой
хемилюминесценцией, которая была обнаружена в 1959 г. Р.Ф.Васильевым,
В.Я.Шляпинтохом и О.Н.Карпухиным. Хемилюминесценция обусловлена тем,
что при диспропорционировании вторичных пероксильных радикалов
образуется триплетно-возбужденный кетон. Выход возбужденных молекул
кетона составляет 103  102 на один акт диспропорционирования. Большая
часть возбужденных молекул тушится; выход испускания составляет 105 103
квантов на одну возбужденную молекулу. Низкий квантовый выход свечения
обусловливает низкую интенсивность свечения.
Для изучения хемилюминесценции стеклянный термостатированный реактор
помещают в светонепроницаемую камеру, вводят углеводород (чаще всего это
хорошо изученный этилбензол), источник инициирования, фотосенсибилизатор
и ведут окисление при непрерывном барботировании кислорода. В качестве
сенсибилизатора используют 9,10-дибромантрацен или хелат европия
(тристеноилтрифторацетонат европия с фенантролином). Возникающее в ходе
реакции свечение собирают зеркальным отражателем, усиливают
фотоумножителем, полученный сигнал записывают на самописце.
Интенсивность свечения, возникающего при окислении, прямо
пропорциональна скорости диспропорционирования RO2, а в
квазистационарном режиме скорости инициирования
I = 2kt хл[RO2]2 = хлvi,
(25)
где хлквантовый выход хемилюминесценции.
Для определения неизвестной скорости инициирования проводят в идентичных
условиях опыты с известной и неизвестной скоростью инициирования vi,
измеряя интенсивности хемилюминесценции Iхл ' и Iхлсоответственно. Скорость
инициирования находят по формуле:
(26)
Хемилюминесцентный метод широко использовали для изучения распада
инициаторов. Поскольку Iхл = хлvi, vi = 2еkd[I], то по мере распада инициатора
Iхлпадает во времени, так что по кинетике хемилюминесценции можно измерить
kd и е :
ln(Iхл/I0,хл) =  kdt и е = vi/2kd[I]0,
(27)
где vi определяют по формуле (26).
Хемилюминесценцию можно использовать для контроля за [RO2] и в
нестационарном режиме. Если вести окисление, инициируя радикалы светом со
скоростью vi, то такому режиму соответствует [RO2] = (vi/2kt)1/2 и
интенсивность свечения I0,хл. После выключения света концентрация
RO2уменьшается в соответствии с уравнениями:
d[RO2/dt = 2kt[RO2]2, [RO2]0/[RO2]  1 = 2kt[RO2]0t.
(28)
Спад интенсивности свечения описывается соответственно формулой
(I0,хл /I)1/2 1 = (2ktvi)1/2t.
(29)
По наклону прямой в координатах (I0,хл /Iхл)1/2t определяют время жизни RO2: 
= (2ktvi)1/2, и при известной vi находят 2kt . Для нахождения kt достаточно часто
использовали метод кислородного последействия. Он заключается в том, что
систему RO2+ инициатор быстро насыщают кислородом. Это сопровождается
изменением интенсивности свечения во времени от I0,хл при t = 0 до I ,хлпри
t : I0,хлсоответствует концентрация [RO2]0 = [R]0 в момент t = 0, когда
концентрация R определяется их рекомбинацией в отсутствие О2:
[R] = (vi /2k't)1/2,
(30)
где
R.
константа скорости гибели (рекомбинации и диспропорционирования)
Изменение Iхлво времени связано с установлением квазистационарной
концентрации
[RO2]ст = (vi /2kt).
Алкильные радикалы гибнут с диффузионно-контролируемой скоростью и kt 
108 1010 л/(моль x с), а RO2погибают гораздо медленнее [kt 105 107
.
л/(моль с)], поэтому [RO2] [RO2]0 и наблюдается усиление свечения во
времени. Константу скорости 2kt находят из графика
ln(I0,хл/Iхл) t :
(31)
В хемилюминесцентном методе должен выполняться ряд условий. Опыты
следует проводить в углеводороде, при окислении которого возникают
вторичные (или первичные) пероксильные радикалы. Метод хорошо опробован
на этилбензоле. Важно, чтобы все радикалы инициатора реагировали с
углеводородом, обмениваясь в итоге на вторичные пероксильные радикалы.
Инициатор не должен тушить хемилюминесценцию. Так как тушащим
действием обладает кислород, опыты нужно проводить при таких парциальных
давлениях О2, которые обеспечивают быстрое превращение Rв RO2, но
тушащее действие О2 минимально. Для усиления слабого свечения вводят
фотосенсибилизатор. Необходимо, кроме того, иметь в виду, что
хемилюминесценцию в окисляющихся системах могут вызывать и другие
процессы, в частности, внутриклеточная рекомбинация радикалов.
28 Методы определения порядка реакции: общая характеристика; графический;
по начальным скоростям; по уравнению кинетической кривой произвольного
порядка.
Самый простой метод определения – метод подстановки кинетических данных
в уравнение 1, 2, 3 – го порядков. Однако при этом приходится последовательно
подставлять экспериментальные данные в эти уравнения и выбирать какие из
них выполняются.
Для определения порядка реакции широко используют зависимость начальной
скорости от начальной концентрации. Наиболее просто и точно
определяется порядок реакции по какому-либо компоненту если скорость р-ии
является функцией концентрации только этого реагента, это возможно в
следующих случаях:
1) В реакциях принимает участие одно исходное вещество
2) В реакциях участвуют несколько исх веществ, но в кинетическое
уравнение входит только концентрация одного
3) Скорость реакции зависит от концентрации одного вещества и
катализатора, т.к. концентрация катализатора постоянна, то её можно
включить в константу скорости
4) Концентрация всех реагентов кроме одного поддерживается постоянно
каким либо искусственным путем
5) Все реагенты кроме 1 (порядок определяется) берутся в большом
избытке и их концентрация по ходу реакции остается постоянной
6) Из эксперимента находится зависимость начальной скорости к
начальной концентрации одного из компонентов, при этом начальная
концентрация остальных остается неизменной.
Способы определения
Графический
Эти два метода позволяют определить порядок при его целых и дробных
значениях. Недостаток: дифференцирование экспериментальных зависимостей
не всегда выполнимо с достаточной точностью.
По уравнению кинетической кривой произвольного порядка
Если экспериментально получено несколько кин кривых, то данное
соотношение удобнее использовать определив из каждой кривой время tальфа ,
которое является временем достижения определенной доли превращения
исходного в-ва, т.е. определенного значения α.
При точном определении α достаточно провести два эксперимента с разными
начальными концентрациями и найти соотв значение времени.
По одной кинетической кривой
Это уравнение может быть решено относительно n графически или путем
подбора.
Это уравнение трансцендентно (взаимозависимо). Его решение может
приводить к существенным погрешностям при расчете n. Однако его решение
можно значительно упростить если выбрать на кинетической кривой два
значения α, которое связяно соотношением α12 = α2
29. Механизм и кинетика радикальной полимеризации.
Радикальная полимеризация виниловых мономеров CH2=CHX лежит в основе
технологии производства разнообразных полимерных материалов. Mеханизм и
кинетические закономерности полимеризации интенсивно иизучались в 50-х и
60-х годах; по этому вопросу опубликован ряд монографий. От других цепных
реакций полимеризацию отличают следующие две особенности. Во-первых, в
результате цепного процесса последовательного присоединения молекул
мономера к растущему макрорадикулу происходит материализация
многократно повторяющихся актов продолжения цепи в виде конечного
продукта -макромолекулы. Во-вторых, ведет цепную реакцию всего один тип
активных центров, а именно, макрорадикал со свободной валентностью на
углероде. Присоединение мономера CH2=CHX к радикалу R происходит, как
правило, по СH2-группе, так что образуется радикал RCH2C HX, последующее
присоединение идет по типу голова к хвосту, энергетически наиболее
выгодному:
RCH3C HX + CH2=CHX  RCH2CHXCH2CHX
Присоединения другого типа (голова к голове и т.д.) протекает лишь в
незначительной степени. Например, при полимеризации винилацетата (300400К) присоединение по типу голова к голове происходит не более, чем в 2%
случаев.
Мономер
СH2=CH2
CH2=CHOCOCH3
CH2=CHCOOCH3
CH2=CHC6H5
 H, кДж/моль
103.2
89.0
78.2
69.4
Инициированная полимеризация непредельного соединения включает в себя
следующие стадии:
1
r + CH2=CHX
rСН2C HX(R1 )
R1  + M
R2
Rn  + M
Rn+1
Rn + Rm
RnRm
Rn + Rm
RnH + Rm-1CH=CHX
При выводе кинетических соотношений обычно делаются следующие 4
допущения:
1. Рассматривается случай, когда полимеризация протекает с длинными цепями,
т.е.скорость полимеризации v >> vi;
2. Допускается, что kp и kt не зависят от длины реагирующего макрорадикала,
т.е. kp1 = kp2=...kpn, и то же для ktc и ktd. Такое предположение представляется
разумным, особенно
для высокомолекулярных радикалов, так как реакционная способность радикала
определяется его молекулярной структурой вблизи свободной валентности, а
при гомополимеризации строение всех макрорадикалов одинаково и
различаются они только своей длиной.
3. Предполагается протекание реакции в квазистационарном режиме. Это
справедливо для экспериментов с vi = const и длительностью t >>  R, где R=
(2kt/vi)-1/2. При vi = 10-8 - 10-6 моль/л и 2kt = 106  108 л/моль с время жизни
макрорадикалов R меняется в диапазоне 0,1 10 с, что значительно короче
периода прогрeва реактора (50-200 с).
4. Обычно пренебрегают обрывом с участием первичных радикалов,
образующихся из инициатора (этой реакции r + R нет в схеме), так как в
большинстве случаев практически все r реагируют с мономером , а доля r ,
реагирующих с макрорадикалами, мала, так как [r ] << [R ]. При таких
преположениях для скорости полимеризации v и длины кинетической цепи v
получаются следующие выражения :
v = kp[M](vi/2kt)1/2,
(1)
 = v/vi = kp[M](2ktvi)
-1/2
(2)
В качестве инициатора полимеризации используются разнообразные пероксидные соединения,
азосоединения, полиарилэтаны, дисульфиды. Механизм распада инициатора рассмотрен в
Лекции 2.
При распаде инициатора в конденсированной фазе образуются два радикала,
окруженные молекулами растворителя или мономера (при полимеризации в
массе). Часть таких пар погибает в клетке (вступает в реакции рекомбинации
или диспропорционирования), а часть выходит в объем. Если с мономером
реагируют все вышедшие в обьем радикалы, то скорость инициирования равна
скорости генерирования радикалов: vi = 2ekd[I]. Если часть радикалов
инициатора, вышедших в обьем, реагирует с макрорадикалами, то vi растет с
ростом [M], пока не достигает значения 2ekd[I]. В литературе описаны такого
рода примеры. На выход радикалов в объем концентрация мономера
практически не влияет, так как рекомбинация радикальных пар в клетке
протекает неизмеримо быстрее, чем реакция радикала с мономером.
Обычно инициатор распадается медленно, так что в течение опыта vi = const.
Однако встречаются случаи, когда за время опыта распадается его значительная
часть. В этом случае при квазистационарном режиме реакции кинетика
расходования мономера описывается уравнением:
In
(3)
Реакция продолжения цепи определяет как скорость полимеризации, так и
строение образующегося полимера. Виниловые мономеры полимеризуются по
типу голова к хвосту (см. выше). Константа скорости продолжения цепи kp
определяется активностью мономера и ведущего цепную реакцию
макрорадикала. Ниже приведены константы скорости kp для ряда мономеров :
Стирол: kp = 2.4  108exp( 37,6/RT), л/моль с;
Метилметакрилат: kp = 2.5  106exp( 22.6/RT), л/моль c;
Винилацетат: kp = 2.0  106exp( 19.6/RT), л/моль с;
Метилакрилат: kp = 1.1  106exp( 17.6/RT), л/моль c;
Винилхлорид: kp = 3.3  106exp( 36.4/RT), л/моль с;
Акрилонитрил: kp = 2.3  105exp( 16.2/RT), л/моль с
Присоединение, естественно, протекает с уменьшением энтропии,
предэкспоненте 106 л/моль соответствует энтропия активации  S = 
52Дж/(моль л). Мономеры CH2=СHX, содержащие полярную группу
(сложноэфирную, нитрильную и т.д.), образуют комплексы с ионами металлов.
Например, метилметакрилат образует комплексы состава 1:1 c солями металлов
Li+, Mn2+, Fe3+, Co2+, Zn2+, акрилонитрил-с солями металлов Li+i, Mg+, Fe3+, Mn2+,
Co2+, Ni2+. Такие комплексы часто вступают в реакцию с макрорадикалами
быстрее. Например, метилметакрилат реагирует с kp = 2.5  102 л/моль с, а его
комплекс c
ZnCl2  c kp = 6.1  102л/моль с . Хлористый цинк ускоряет полимеризацию
метилметакрилата.
С повышением температуры заметную роль начинает играть реакция
деполимеризации, т.е. распада макрорадикала на мономер и радикал
R n
R n-1  + М
Поскольку реакция роста макрорадикала экзотермична, то реакция
деполимеризации эндотермична и разность E U Ep = H0. С повышением
температуры достигается такое состояние , что скорости роста цепи и
деполимеризации становятся равными : kp[R ][M] = kU[R ], и скорость
полимеризации равна нулю. Этому состоянию соответствует максимальная
температура полимеризации, равная:
Tmax =
(4)
Для чистого мономера (при полимеризации в массе) Tmaх = 583K (стирол), Tmaх =
493K (метилметакрилат), Tmaх = 334K ( -метилстирол).
Обрыв цепей, как это видно из схемы, происходит в результате реакции между
макрорадикалами. Эти радикалы вступают между собой в реакции двух типов, а
именно рекомбинации:
2  CH2C XY
CH2 CXY CXY CH2
и диспропорционирования:
2  CH2C XY
 CH2 CHXY +  CH=CXY
2  CH2C XY
 CH2 CHXY +  CH=CXY
От соотношения между константами скорости этих двух реакций зависит
средняя степень полимеризации :
или
P = kp[M]
(5)
Это соотношение влияет и на молекулярно-массовое распределение: M /Mn =
1.5 при рекомбинации R и M /Mn = 2 при их диспропорционировании.
Константы скорости kt = ttc + ktd в зависимости от строения мономера меняются
в диапазоне 108  106 л/моль с . Mежду константой скорости обрыва цепей и
вязкостью растворителя существует антибатная зависимость. Это
свидетельствует о том, что реакция между двумя макрорадикалами
лимитируется диффузионными процессами. Ряд фактов свидетельствует о том,
что поступательная диффузия макрорадикалов в растворе не является
лимитирующей стадией обрыва цепей при полимеризации. Для макрорадикалов
с полярной группой X на конце ( CH2CHX) имеет место очевидная
симбатность (если не совпадение) между kt и частотой переориентации группыдиполя (Т = 300К).
X
Cl
Br
C6H4Cl
 , c-1
2  108
3  107

2kt, л/моль с
5  108
2.5  108
7.7  107
По-видимому, в большинстве случаев именно сегментальная подвижность
лимитирует скорость и определяет величину константы скорости гибели
макрорадикалов.
Передача цепи.
Молекулярная масса образующегося полимера зависит не только от скорости и
способа гибели макрорадикалов, но и от реакции передачи цепи, когда рост
макрорадикала прекращается, а цепная реакция полимеризации продолжается,
например:
  CH2C X(CH3) + CH2=CX(CH3) CH2CHX(CH3) + CH2=CXC H2
CH2=CXC H2 + CH2=CXCH3  CH2=CXCH2CH2C XCH3 и т.д.
Такая передача цепи на мономер характеризуется константой передачи цепи
Cм=kм/kp; Она не влияет на скорость цепной полимеризации (если все
образовавшиеся в этой реакции радикалы реагируют с мономером), но,
естественно, отражается, на степени полимеризации:
(6)
Константа передачи цепи через мономер определяется отношением
реакционной способности наиболее активной его С H-связи (если атакуется
именно C H-связь) и двойной связи; величина См определяется строением
мономера. Ниже приведены величины Cмдля ряда мономеров.
СH2=CHOCOCH3
CH2=CHCl
CH2=CHC6H5
CH2CHCOOCH3
Т = 323К
323
333
333
Cм = 2.0  10-3
4.5  10-4
6.0  10-5
2.0  10-5
В переносе цепи может участвовать также инициатор. C дибензоилпероксидом
макрорадикал R , например, вступает в реакцию замещения:
R + C6H5C(О)OOC(О)C6H5

ROC(О)C6H5 + C6H5CO2
В таких случаях наблюдается отклонение от линейности в зависимости
v[М]-2 и для средней степени полимеризации имеет место следующая
зависимость:
-1
(7)
Накапливающийся при полимеризации полимер также может участвовать в
реакции передачи цепи:
R +  CH2 CHX RH +  CH2C X
от
В результате возникают разветвленные макромолекулы.
В передаче цепи может принимать участие растворитель S или специальный
агент (например, CСl4), вступающий с макрорадикалом в реакцию отрыва,
замещения или присоединения, например:
R + CCl4  RCl + C Cl3
Степень полимеризации, естественно, уменьшается с ростом [S] и связана с ней
соотношением:
(8)
30. Цепные реакции: общая характеристика, стадии цепных реакций.
Цепные реакции — это процессы, в которых превращение исходных веществ в
продукты осуществляется за счет чередования нескольких реакций с участием
свободных радикалов.
Основные экспериментальные признаки цепных реакций:
1)активирующее действие (поглощение кванта ЭМИ) вызывает многократный
ответ (в продукты превращается более одной частицы исходного вещества);
2)скорость цепных реакций сильно зависит от формы и размеров реакционного
сосуда (S/V);
+
3)процесс очень чувствителен к добавкам посторонних веществ, которые относятся
к устойчивым радикалам;
4)очень часто порядок реакции не целочисленный и кратен ½.
Т.к. свободные радикалы имеют неспаренный электрон, их взаимодействие с
«четными» молекулами (без неспаренных электронов) обязательно будет давать
новую частицу, содержащую неспаренный электрон, поэтому активные центры
всегда сохраняются, они могут быть уничтожены вследствие двух реакций:
1)взаимодействие двух радикалов, которое дает устойчивую молекулу;
2)за счет адсорбции активных частиц на поверхности реакционного сосуда.
Основные стадии цепной реакции
1. Зарождение цепи
Cl2 → hv → Cl* + *Cl *-электрон
В результате какого-либо воздействия (ЭМИ, термическое) возникают активные
частицы, содержащие неспаренный электрон.
2.Развитие (продолжение) цепи Cl* + H2 → HCl + H*
H* + Cl2 → HCl + Cl* Cl* + H2 → HCl + H* …
3.Обрыв цепи
1) Cl* + стенка → Clадс
r ~ [Cl*] - линейный обрыв цепи 2) Cl* + Cl* → Cl2
r ~ [Cl*]2 – квадратичный обрыв цепи
Влюбой цепной реакции одновременно идут оба механизма. При малых
концентрациях Cl* преобладает линейный обрыв, при высоких —
квадратичный.
Взависимости от числа активных частиц, которые образуются в элементарном
акте, в цепные реакции делятся на 2 класса:
1)неразветвленные цепные реакции — из одного радикала образуется один
радикал;
2)разветвленные цепные реакции — из одного радикала образуется несколько
радикалов.
Звено цепи — это совокупность последовательных элементарных актов, из
повторения которых складывается цепной процесс.
Длина цепи — это среднее число полных звеньев на стадии продолжения или
развития цепи. Длина цепи — это отношение числа молекул продуктов реакции к
числу первоначально возникших активных частиц. Она может быть определена как
отношение скорости развития цепи к скорости ее обрыва. Она зависит от давления,
формы и размера сосуда (S/V), присутствия посторонних веществ, относящихся к
ингибиторам цепных реакций.
31 Цепной механизм окисления органических соединений
молекулярным кислородом.
Цепное окисление органического соединения, в котором C H - связь
подвергается атаке, включает в себя следующие стадии:
I
R  + O2 
RO2+ RH 
ROOH 
R + R 
R + RO2 


RO2 + RO2 
r
R
(i)
RO2
(1)
ROOH + R
(2)
RO + HO
RR
(3)
(4)
ROOR
(5)
ROOR + O2 или ROH + R=O + O2
(6)
Так как реакция (1) протекает с высокой константой скорости (107 109 л/моль
с), то в присутствии растворенного кислорода в концентрации, превышающей
103 моль/л , алкильные радикалы очень быстро превращаются в пероксильные.
Поэтому [R ] << [RO2] и обрыв цепей происходит только по реакции (6), а
продолжение цепи лимитируется реакцией (2). В присутствии инициатора, как
правило, распад гидропероксида не играет заметной роли, так что  i = ki [I] +
k3 [ROOH] ki [I]. В квазистационарном режиме  i = k6 [RO2]2 и при длинных
цепях (k2 [RH] [RO2]>> i) скорость цепного окисления
v = a [RH] i1/2 , a = k2 (k6) 1/2 . Эта формула подтверждена большим
экспериментальным материалом. Отклонение от линейной зависимости между v
и [RH] наблюдается в тех случаях, когда или RH, или растворитель имеют
полярные группы, что сказывается на сольватации переходного состояния и
величинах k2 и k6 . В том случае, когда продолжение цепи осуществляется по
реакциям межмолекулярной передачи цепи (константа скорости k2) и
внутримолекулярной изомеризации RO2(константа скорости k2i ), уравнение
для скорости окисления приобретает вид:
(k2 [RH] + k2i ) k6  1/2i1/2
v =
(12.4)
При коротких цепях заметный вклад в суммарную скорость окислительного
процесса может вносить инициирование, так что в общем случае v = v i + a[RH] v
1/2
. Длина цепи  = k2[RH] [RO2] / i = a[RH] i  1/2 , так что с увеличением
i
скорости инициирования длина цепи  уменьшается и при выполнении условия
i >a2[RH]2 окисление протекает как нецепной радикальный процесс, среди
продуктов которого преобладают соединения, образовавшиеся в актах обрыва
цепи. С понижением температуры параметр a уменьшается. Поэтому, для
каждого RH существует такая температура Тmin , ниже которой при  i = const
окисление протекает нецепным путем. Ниже приведены Тminдля ряда
углеводородов, рассчитанные по величинам a при vi = 10 7 моль/л с:
циклогексан (364 K), этилбензол (283 K), тетралин (247 K), кумол (226 K).
Квазистационарный режим цепного окисления RH устанавливается за
некоторое время RO2. Установление квазистационарной концентрации
RO2описывается уравнениями:
,
(12.5)
Для времени жизни пероксильного радикала, т. е. времени, за которое 1
[RO2]/[RO2]ст меняется в e раз, получаем  = 0.74 (ik6)1/2 . При диапазоне
изменения  i от 10 8 до 10 6 моль/л с и варьированиии k6 от 104 до 106 л/моль с
время  меняется в диапазоне от 0.1 до 100 с.
Если за время опыта концентрация инициатора практически не меняется, то  i
= const, и окисление протекает с постоянной скоростью. На самом деле
инициатор расходуется в ходе окисления и скорость инициирования
уменьшается. Если инициатор - единственный источник радикалов в системе ,
то кинетика окисления описывается уравнениями (ki = 2ekd):
 [O2]
=
 [O2]max (1 е0.5kdt),
 [O2]max
=
2a[RH]kd1 (ki[I]0)1/2
Окисление протекает как цепная неразветвлённая реакция когда k3[ROOH] >
ki[I]. В таком случае скорость инициирования будет переменной: Wi = ki[I] +
k3[ROOH]
(12.6)
При широком варьировании парциального давления кислорода реализуются
такие условия, когда заметный вклад в обрыв цепей вносят реакции (5) и (4) см. схему. В этом случае наблюдается зависимость скорости окисления от
парциального давления кислорода. При очень низкой концентрации
растворенного кислорода продолжение цепи лимитирует реакция (1), а цепи
обрываются по реакции (4), так что скорость цепной реакции
v = k1[O2] [R ] = k1k41/2 [O2] vi1/2
(12.7)
В широком диапазоне изменения [O2] скорость окисления связана с [O2] и [RH]
следующим соотношением (  = k2 k61/2 [RH]  i1/2)
(12.8)
Это достаточно сложная зависимость может быть аппроксимирована более
простой формулой:
v = v  (1 +  [O2]1) 1
(12.9)
 = [O2], при которой v = 0.5 v 
32. Сопряженные реакции
Сопряжённые реакции, такие реакции химические, которые
протекают только совместно и при наличии хотя бы одного общего
реагента. Реакция (А + В  продукты), индуцирующая (вызывающая)
прохождение др. реакции, называется первичной, а индуцируемая ею,
или сопряжённая ей (А + С  продукты), — вторичной. Реагент А,
участвующий в обеих реакциях, называется актором, реагент В,
взаимодействие которого с А индуцирует вторичную реакцию, —
индуктором, а реагент С — акцептором. Индукторы в С. р., в отличие
от катализаторов (в каталитических реакциях), расходуются.
Примером С. р. может служить совместное окисление окиси углерода
и водорода: 2H2 + O2 = 2H2O и 2CO + О2 = 2CO2. Вторая реакция в
отсутствие водорода не идёт до очень высоких температур, при
добавлении же в систему H2 она становится легко осуществимой. В
качестве количественной характеристики для С. р. используют фактор
индукции I, равный отношению количеств прореагировавших
акцептора и индуктора, выраженных в молях (грамм-молекулах)
или грамм-эквивалентах; в данном примере
Индуктор (I) – компонент, реакция которого с одним из исходных веществ
индуцирует превращение другого исходного вещества
Актор (А) – исходное вещество, реагирующее с индуктором
Асцептор (С) – вещество, превращение в системе с актором, возможен только
при наличии хим. Индуктора.
Простейший случай:
R – активное промежуточное вещество
B, D – продукты реакции
A+I K0 R
R+I K1 B
R+C K2 D
R – фактор индукции показывает, какое количество молекул акцептора
расходуется на 1 молекулу индуктора
В зависимости от назначения фактора можно выделить 3 вида реакции:
1) В индуцирующей реакции будет происходить часть регенерации
индуктора или исходного вещества, то будет снижаться скорость убыли
акцептора когда продукт будет генерироваться нацело, знаменатель
будет 0, а F будет приближаться к бесконечности
2) Если концентрация активного промежуточного вещества падает, то
процесс затухающий, F приближается к 0
3) Если концентрация промежуточного вещества растет, то наблюдается
самоиндукция (самоускорение) F меньше 0
В результате хим. Индукции, продукты индуцированной реакции могут
оказаться в реакциях превышающий термодинамическое равновесие.
(Это позволяет проводить хим. Процессы, когда равновесие смещено к
исходному веществу)
Кр<<1, дельтаG – положительная)
Для протекании реакций, идущих с увеличением свободной энергии,
необходим источник, таким источником может быть индуцирующая
реакция.
Свободная энергия, которая освобождается в такой реакции меньше
свободной энергии, поглощаемая индуцированной реакцией
33 Прямая и обратная кинетическая задачи.
Выделяют прямую и обратную задачи химической
кинетики. Прямой задачей называется расчет кинетических закономерностей,
т.е. по известным константам скоростей протекания этапов химической реакции
рассчитываются зависимости концентрации всех реагентов от времени.
Определение на основании экспериментальных данных о зависимости
концентраций от времени проведения процесса параметров кинетического
уравнения – порядка реакции и значения константы скорости – составляет так
называемую обратную задачу химической кинетики.
Прямая задача – расчет кинетики расходования реагентов и накопления
продуктов с использованием:
1) Кинет. Схемы реакции
2) Экспериментально-измеренных или теоретически-рассчитанных
значений константы скорости элементарной стадии
3) Проведение экспериментов (условие)
Обратная задача - расчет значения константы скорости одной или нескольких
элементарных стадий на основе полученных экспериментальных данных с
использованием кинет. Схемы и заданных начальных условий, в более широком
смысле – это обоснование предполагаемого механизма реакции с
использованием экспериментальной информации.
ТЕОРИЯ ИЗ 20 БИЛЕТА
Кинетика мономолекулярных реакций.
МОНОМОЛЕКУЛЯРНЫЕ РЕАКЦИИ, элементарные хим. р-ции, в к-рых
изменяется состав или строение только одной молекулы, радикала
или иона, напр. распад, изомеризация. Часто
мономолекулярные реакции, особенно распад молекулы (обычно на два
фрагмента), являются начальными стадиями сложных процессов крекинга, деструкции полимеров и др. В газах при повышении т-ры Т или
уменьшении плотности хим. равновесие смещается в сторону продуктов
распада, вследствие чего значительно
возрастают теплоемкость и энтальпия системы. Константы
равновесия мономолекулярных реакций необходимы для расчета
равновесного состава и термодинамич. ф-ций газов и приводятся в
справочниках.
Мономолекулярные реакции, как правило, эндотермичны, и для р-ции
необходима активация - переход частицы А в активное состояние А*,
энергия к-рого достаточна для преодоления потенц. барьера на пути рции. Активная молекула может самопроизвольно превратиться в продукт
либо дезактивироваться. Эти качеств. черты
мономолекулярных реакций описываются схемой Линдемана:
где М-частицы среды (атомы, молекулы, электроны, ионы) или
стенка сосуда. Стадия самопроизвольного распада в более детальной
схеме (Р.А. Маркус, O.K. Раис) представляется двумя последоват.
переходами:
продукт, где
-переходное состояние
(активир. комплекс), в к-ром энергия, достаточная для р-ции, уже
сосредоточена на разрываемой связи (в общем случае-на координате
реакции).
Константа скорости мономолекулярной реакции
, где
[А]-концентрация реагирующих молекул, t-время. При заданной т-ре k
пропорциональна давлению р в области низких р (обозначается k0) и не
зависит от р в области достаточно высоких р (обозначается
). В
переходной области давлений k монотонно изменяется от k0 до
.
Для молекул, состоящих из 5-10 атомов, при ~ 300-1000 К середина
переходной области, определяемая условием k/
= 1/2, расположена
обычно при р ~ 102-104 Па. С уменьшением числа атомов в молекуле и с
повышением Т переходная область смещается в сторону больших р. В
рамках схемы Линдемана зависимость k от р объясняется тем, что при
низких р лимитирующая стадия р-ции - активация, имеющая второй
порядок, а при высоких р-стадия А* продукт, имеющая первый порядок.
В двухатомных молекулах имеется всего одна колебат. степень свободы,
и колебания всегда соответствуют движению вдоль координаты р-ции.
Состояния А* и
двухатомной молекулы тождественны,
самопроизвольный распад происходит за время порядка периода
колебаний. Это время практически всегда настолько мало, что ниж.
граница переходной области давлений соответствует очень большим
плотностям, не реализуемым в газах.
Поэтому диссоциация двухатомных молекул в газах всегда имеет второй
порядок. Для мономолекулярных реакций в конденсир. средах k
практически не зависит от р.
Скачать