Uploaded by Xasan Majiev

LISI Laboratornie ispitaniya uzlov fragmentov uprugoplasticheskogo kompensatora sdvig uzlov PROTOKOLBailey bridge USA 559 str

advertisement
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат
№ RA.RU.21СТ39, выд. 27.05.2015), организация"Сейсмофонд" при СПб ГАСУ ОГРН: 1022000000824
ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул.
Политехническая, д 29, организация «Сейсмофонд» при СПб ГАСУ 190005, 2-я
Красноармейская ул. д 4 ОГРН: 1022000000824, ИНН: 2014000780 https://www.spbstu.ru
89219626778@mail.ru t9516441648@gmail.com 9967982654@mail.ru (996) 798-26-54,
(921) 962-67-78, т/ф (812) 694-78-10 (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)
190005 , 2-я Краноармейская ул.д 4 СПб ГАСУ. 195251, СПб , ул
Политехническая , д 29 Политехнический Университет Всего :551 стр
Испытания на соответствие требованиям (тех. регламент , ГОСТ, тех.
условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 43552016 Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ
30546.3-98 (сейсмостойкость - 9 баллов). (951) 644-16-48, 6947810@mail.ru
«УТВЕРЖДАЮ»
Президент «Сейсмофонд» при СПб ГАСУ /Мажиев Х.Н. 17.12.2022
ПРОТОКОЛ лабораторных испытаний фрагментов, узлов упругопалстического сдвигового компенсатора, для
армейского сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров ,
ширина проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ
"Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным
настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60
метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно
напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС
А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 с использованием 3D -модель конечных
элементов в ПK SCAD № 576 от 16.12.2022
Для сборника тезисных докладоа ПГУПС IV -й
Бетанкуровский международный инженерный форум
УДК
69.059.22
План лабораторных испытаний
в СПб ГАСУ фрагментов, узлов упругопалстического сдвигового компенсатора, для
армейского сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров ,
ширина проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ
"Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным
настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60
метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно
напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС
А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 с использованием 3D -модель конечных
элементов в ПK SCAD (оценка несущей способности узлов крепления сооружений, предназначенных для
сейсмоопасных районов Одесской области с сейсмичностью до 9 баллов, серийный выпуск (в рай-онах с
сейсмичностью 8 баллов и выше для упргоплатической фермы сбороно- разбороного надвижного , однопутного ,
автомобильного армейского моста необходимо использование сейсмостойких телескопических опор, а для
соединения пролетных ферм на фланцевых фрикционно- подвижных сое-динений, работающих на сдвиг, с
использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз
шпильки медным обожженным клином, согласно рекомендациям ЦНИИП им. Мельникова, ОСТ 36-146-88, ОСТ
108.275.63-80,РТМ 24.038.12-72, ОСТ 37.001.050- 73, альбома 1-487-1997.00.00 и изобретениям №№ 1143895,
1174616,1168755, 2550777 " Сейсмостойкий мост" SU, 4,094,111 US, TW201400676 Restraintanti-windandanti-seismicfriction-damping-device, в местах для упргоплатической фермы сбороно- разбороного надвижного , однопутного ,
автомобильного армейского моста устанавливать сейсмостойкие опорах согласно изобретения, патент № 165076
МПК E04H 9/02 "Опора сейсмостойкая", Бюл. № 28 от 10.10.2016).
Настоящий протокол касается испытаний на сейсмостойкость в механике деформируемых сред в ПК SCAD математических моделей
сооружений (с применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия
1.460.314 ГПИ "Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со
встроенным бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон ,
длиной 205 футов (60 метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет
предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн
ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 с использованием 3D -модель
конечных элементов в ПK SCAD , предназначенных для сейсмоопасных районов Одеской области с сейсмичностью до 9 баллов,
серийный выпуск и фрикционно-подвижных соединений для упргоплатической фермы сбороно- разбороного надвижного ,
однопутного , автомобильного армейского моста, установленных на сейсмостойких опорах(в районах с сейсмичностью 8 баллов
и выше для упргоплатической фермы сбороно- разбороного надвижного , однопутного , автомобильного армейского
моста, необходимо использование сейсмостойких телескопических опор, а для соединения трубопроводов - фланцевых фрикционноподвижных соединений, работающих на сдвиг, с использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней
пазом и с забитым в паз шпильки медным обожженным клином) согласно рекомендациям ЦНИИП им Мельникова, ОСТ 36-146-88, ОСТ
108.275.63-80,РТМ 24.038.12-72, ОСТ 37.001.050- 73, альбома 1-487-1997.00.00 и изобретениям №№ 1143895, 1174616,1168755 SU,
4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-device, в местах опоры моста на сейсмостойких опорах
согласно изобретения, патент № 165076 МПК E04H 9/02 "Опора сейсмостойкая", согласно заявки на изобретение № 2018105803/
20(008844) от 15.02.208 "Антисейсмическое фланцевое фрикционо -подвижное соединение для трубопро-водов". Узлы и фрагменты
(дугообразный зажим с анкерной шпилькой) прошли испытания на осевое статическое усилие сдвига в ИЦ "ПКТИ-СтройТЕСТ"
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 2
(приложение: протокол №1516-2 от 25.11.2013). Настоящий протокол не может быть полностью или частично воспроизведен без
письменного согласия ОО «Сейсмофонд», Адрес: ОО «Сейсмофонд» ИНН:2014000780, СПб ГАСУ 190005, 2-я Красноармейская ул. д. 4
т/ф (812) 694-78-10, (951) 644-16-48, (921) 962-67-78 89219626778@mail.ru c6947810@yandex.ru f6947810@yahoo.com
t9516441648@gmail.com
ПРОТОКОЛ СОДЕРЖИТ:
1. Введение
2. Место проведения испытаний СПб ГАСУ 190005, 2 -я Красноармейская дом 4 812 694-78-10
3. Условия проведения испытания на скольжение и податливость
4. Цель и условия лабораторных испытаний фрикционно-подвижных соединений (ФПС), работающих на
растяжение. Методика испытаний. Результаты испытаний фрагментов фланцевых фрикционно-подвижных
соединений и демпфирующих узлов крепления при динамических нагрузках и математических моделей
объектов в ПК SCAD.
5. Испытательное оборудование и измерительные приборы
6. Характеристики механических ВВФ (внешние воздействующие факторы) при испытаниях на сейсмостойкость фрагментов демпфирующих податливых узлов крепления.
5
11
11
11
7. Результат испытаний. Испытание математических моделей в ПК SCAD сооружений предназначенных для
сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск и фрикционно-подвижных
соединений для крепления упргоплатической фермы сбороно- разбороного надвижного , однопутного ,
автомобильного армейского моста установленных на сейсмо-стойких опорах(в районах с сейсмичностью 8
баллов и выше необходимо использование сейсмостойких телескопических опор, а для соединения
трубопроводов - фланцевых фрикционно- подвижных соединений, работающих на сдвиг, с использованием
фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки
медным обожжен-ным клином).
8. Заключение по испытанию на сейсмостойкость математических моделей в ПК SCAD сооружений (с
54
29
33
56
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314
ГПИ "Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со
встроенным бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку
Суон , длиной 205 футов (60 метров) в штате Монтана (США), с экономией строительных материалов до 30
процентов, за счет предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса
ферм, по изобретения проф дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076,
1760020 с использованием 3D -модель конечных элементов в ПK SCAD , предназначенных для сейсмоопасных
районов с сейсмичностью до 9 баллов, серийный выпуск и фрикционно-подвижных соединений для
упргоплатической фермы сбороно- разбороного надвижного , однопутного , автомобильного армейского
моста, установ-ленных на сейсмостойких опорах(в районах с сейсмичностью 8 баллов и выше для установки
блок-контей-неров и трубопроводов необходимо использование сейсмостойких телескопических опор, а для
соединения трубопроводов - фланцевых фрикционно- подвижных соединений, работающих на сдвиг, с
использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в
паз шпильки медным обожженным клином).
Заказчик
Редакция газеты "Земля РОССИИ" и ИА "Крестьнское информ агентство"
Изготовитель
Организация"Сейсмофонд" при СПб ГАСУ ОГРН: 1022000000824
Основание для проведения
испытаний
Наименование продукции
Договор № 576 от 16.12. 2022 г., ОО "Сейсмофонд" ИНН 2014000780, СПб ГАСУ 190005, 2-я Красноарм
ул. д. 4
Фрагменты и узлы упругопалстического сдвигового компенсатора, для армейского сбороно- разбо
пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров , ширина
проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мост
км/час ), с применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молод
( серия 1.460.314 ГПИ "Ленпроектстальконструкция") для системы несущих элементов плаcтинча
балочных ферм, со встроенным бетонным настилам ( ускоренным методом в полевых условиях) , п
аналогу переправы через реку Суон , длиной 205 футов (60 метров) в штате Монтана (США), с экон
строительных материалов до 30 процентов, за счет предварительно напряжения гнутосварных замк
профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС А.М.Уздина №№ 11438
1168755, 1174616, 2010136746, 2550777, 165076, 1760020 с использованием 3D -модель конечных элем
ПK SCAD , предназначенные для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск
районах с сейсмичностью 8 баллов и выше для упргоплатической фермы сбороно- разбороного
надвижного , однопутного , автомобильного армейского моста необходимо использование сейсмо
телескопические опоры, а для соединения трубопроводов - фланцевых фрикционно- подвиж-ных соединен
работающих на сдвиг, с использованием фрикци -болта, состоящего из латун-ной шпильки с пропиленным
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 3
пазом и с забитым в паз шпильки медным обожженным кли-ном, согласно рекомендациям ЦНИИП им.
Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80,РТМ 24.038.12-72, ОСТ 37.001.050- 73, альбома 1-487-199
изобретениям №№ 1143895, 1174616, 1168755, 2550777 " Сейсмостойкий мост" SU, 4,094,111 US, TW20140
Restraintanti-windandanti-seismic-friction-damping-device, в местах подключения трубопро-водов к контейне
пунктам трубопроводы должны быть уложены в виде "змейки" или "зиг-зага " на сейсмостойких опорах со
изобретения, патент № 165076 МПК E04H 9/02 "Опора сейс-мостойкая", Бюл. № 28 от 10.10.2016).
Акт приемки образцов
От 16.12.2022г. ОО "Сейсмофонд" не несет ответственности за отбор образцов фрагментов ФПС . ОГРН
1027810280255
tf6947810@outlook.com (921) 962-67-78, (812) 694-78-105
Дата проведения испытаний
Начало: 17.12.2022 г. Окончание: 01.11.2022 г.
Определяемые показатели
Геометрические размеры, ГОСТ 22853-86.2, ГОСТ 25957-83. Нагрузки на образец ФПС.
Методика испытаний
Испытания на соответствие требованиям нормативных документов ГОСТ 22853-86, ГОСТ 25957-83.
За единичные результаты испытаний одного образца принимаются значения испытательной нагрузки,
соответствующие:
- начала пластических деформаций фрикционно-подвижного соединения (ФПС);
- перемещение скобы по шпильке при постоянной нагрузке;
- срыв гайки; - смятие грани гайки М16- М22.
Описание образцов:
Фрагменты фрикционно-подвижных соединений для сооружений предназначенных для сейсмоопасных ра
сейсмич-ностью до 9 баллов, серийный выпуск и фрикционно-подвижных соединений для упргоплатичес
фермы сбороно- разбороного надвижного , однопутного , автомобильного армейского моста
и установленных на сейсмостойких опорах(в районах с сейсмичностью 8 баллов и выше для установки бло
упргоплатической фермы сбороно- разбороного надвижного , однопутного , автомобильного
армейского моста необходимо использование сейсмостойких телескопических опор, а для соединения
Испытательное
оборудование и средства
измерения
трубопроводов - фланцевых фрикционно- подвижных соединений, работающих на сдвиг, с использованием
фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки ме
обожженным клином)
Испытательная машина ZD-10/90 (сертификат о калибровке № 13 -1371 от 28.08.2017) испы-тательного Це
«ПКТИ – СтройТЕСТ» 197341, СПб, Афонская ул., д.2, тел. +7(996) 798-26-54 +7(921) 962-67-78 Линейка
измерительная (ГОСТ 427-75). Штангенциркуль ШЦ-1-0,05 (ГОСТ 166-89). Индикатор часового типа ИЧ1
(ГОСТ 577-68).
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 4
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 5
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 6
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 7
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 8
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 9
УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ
ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ упргоплатической фермы
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 10
сбороно- разбороного надвижного , однопутного , автомобильного армейского моста
БЛОК-ФЕРМЫ
ПОКРЫТИЯ 2228415
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 228 415
(13)
C2
(51) МПК
 E04C 3/17 (2000.01)
 E04B 1/19 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина:Патент перешел в общественное достояние.
(21)(22) Заявка: 99123410/03, 04.11.1999
(24) Дата начала отсчета срока действия патента:
04.11.1999
(43) Дата публикации заявки: 10.09.2001 Бюл. № 25
(45) Опубликовано: 10.05.2004 Бюл. № 13
(56) Список документов, цитированных в отчете о поиске: ЕНДЖИЕВСКИЙ Л.В. и др. Трехгранная бло
12-3Р // Информ. листок №49-97 / ЦНТИ - Красноярск, 1997. SU 1742435 A1, 23.06.1992. SU 1310488 A1
SU 1281651 A1, 07.01.1987. RU 2117117 C1, 10.08.1998. RU 2136822 C1, 10.09.1999. RU 2102566 C1, 20.01.
4389829 A, 28.06.1983. FR 2551789 A, 15.03.1985.
Адрес для переписки:
660041, г.Красноярск, пр. Свободный, 82, КрасГАСА
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ
ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ
ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
промышленных и сельскохозяйственных зданий и сооружений. Технический результат повышение прочности и жесткости за счет предварительного напряжения и создания “следящих”
за деформациями ползучести усилий предварительного напряжения. Узловое сопряжение
представляет собой металлический элемент соединения раскосов, образованный трубой с
приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические
фасонки к металлическому элементу соединения раскосов, и металлический стержень,
пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на
конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 11
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
промышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и
сооружений, а также для несущих элементов транспортных галерей, переходов и других
аналогичных объектов. Преднапряженная панель покрытия представляет собой тонкую
облегченную железобетонную плиту, выполняющую роль верхнего пояса, к которой присоединены
металлические подкрепляющие элементы в виде пространственно ориентированных шпренгелей,
состоящих из стержней решетки, нижнего пояса. Она снабжена дополнительно криволинейным
поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками,
присоединенными к узлам нижнего пояса, снабженным натяжным устройством.
Недостатком этой системы является неэффективность конструкции за счет большего веса и
расхода материалов в отличие от предлагаемой авторами [1].
Более близким по техническому решению к предлагаемому изобретению (прототипом) является
трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс П-образного
сечения выполнен из крупноразмерных плит, имеющих каркас из цельнодеревянных элементов и
прикрепленной к нему сверху шурупами обшивки из плоских асбестоцементных листов. Между
вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается
утеплитель из полистирольного пенопласта. Гидроизоляция устанавливается из трех слоев
рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним
пространственной решеткой регулярного типа, выполненной из деревянных раскосов квадратного
сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками.
Нижний пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление
для сопряжения с основными ребрами верхнего пояса [2].
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей
способности, потери усилия предварительного напряжения в нижнем поясе за счет ползучести и
температурно-влажностных деформаций в древесине и температурных деформаций металла и, как
следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и
жесткости, за счет предварительного напряжения и создания “следящих” за деформациями
ползучести усилий предварительного напряжения.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 12
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, на металлический стержень между гайками и металлическим
элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения
материалоемкости, создания “следящих” за деформациями ползучести усилий предварительного
напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь
ведет к повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции
представлено на чертежах.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,
Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов 3, образованный трубой 4 с приваренными сверху V-образно двумя
фасонками 5, раскосы 1, присоединенные через металлические фасонки 5 к металлическому
элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический
элемент соединения раскосов 3, имеющий резьбовую нарезку на конце и закрепленный с помощью
гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения
раскосов 3 размещены две шайбы 9, выполненные из швеллера, и между ними винтовая пружина 8.
Сборка конструкции производится следующим образом: к металлическому элементу соединения
раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя фасонками 5,
присоединяются раскосы 1, затем через 3 пропускается металлический стержень 6, имеющий
резьбовую нарезку на конце. Далее стержень пропускается через шайбу 9, винтовую пружину 8,
шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения,
сохраняя его несмотря на ползучие и температурно-влажностные деформации в древесине и
температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие
предварительного напряжения и сохраняет его в процессе эксплуатации, что в свою очередь
позволяет создать экономичную конструкцию за счет повышения несущей способности и
жесткости пространственной решетчатой конструкции.
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 13
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р
// Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками,
раскосы, присоединенные через металлические фасонки к металлическому элементу соединения
раскосов, и металлический стержень, пропущенный через металлический элемент соединения
раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, отличающееся
тем, что на металлический стержень между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, и между ними винтовая пружина.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 14
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 15
(21) Регистрационный номер заявки: 0099123410 Извещение опубликовано: 27.10.2006БИ:
30/2006
СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИ РАСКОСАМИ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
2503783
RU
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
2 503 783
(13)
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 16
СОБСТВЕННОСТИ
C1
(51) МПК
 E04C 3/11 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 26.12.2021)
Пошлина: учтена за 6 год с 26.06.2017 по 25.06.2018. Возможность восстановления: нет.
(21)(22) Заявка: 2012126474/03,
25.06.2012
(24) Дата начала отсчета срока действия
патента:
25.06.2012
Приоритет(ы):
(22) Дата подачи заявки: 25.06.2012
(45) Опубликовано: 10.01.2014 Бюл.
№1
(72) Автор(ы):
Хисамов Рафаиль Ибрагимович (RU),
Шакиров Руслан Анфрузович (RU)
(73) Патентообладатель(и):
Федеральное государственное бюджетное образовательное
учреждение высшего профессионального образования
"Казанский государственный архитектурно-строительный
университет" (КГАСУ) (RU),
Закрытое акционерное общество "Казанский
Гипронииавиапром" (ЗАО "Казанский Гипронииавиапром")
(RU)
(56) Список документов, цитированных
в отчете о поиске: RU 103115 U1,
27.03.2011. RU 2354789 C1,
10.05.2009. AU 568956 B2,
14.01.1988.
Адрес для переписки:
420043, РТ, г.Казань, ул. Зеленая,
1, КГАСУ, Ф.И. Давлетбаевой
(54) СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИ РАСКОСАМИ
(57) Реферат:
Изобретение относится к области строительства, в частности к способу изготовления
фермы с нисходящими раскосами. Технический результат заключается в снижении
трудоемкости изготовления. Ферму выполняют из прямых коробчатых поясов с треугольной
или раскосной решеткой. Односрезные концы раскосов соединяют сваркой с поясами.
Сначала по проекту изготавливают полуфермы. Укладывают верхний пояс, содержащий
фланцевый монтажный стык пояса и опорный узел полуфермы. Опорный узел с остоит из двух
фасонок, приваренных к поясу в продолжении плоскости стенок верхнего пояса.
Перпендикулярно фасонкам приваривают опорную плиту полуфермы. Затем укладывают
нижний пояс фермы с шириной, равной верхнему поясу, который содержит фланцевый
монтажный стык нижнего пояса полуфермы. После чего к поясам встык приваривают стержни
решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по
ширине поясам полуферм. Затем на узлы полуфермы накладывают внахлест стержни решетки
нисходящего направления, выполняя их из двух параллельных неравнобоких уголков или
полос. Полосы преднапрягают, стягивая их в середине болтом. 4 ил.
Изобретение относится к строительству и касается способа изготовления решетчатых ферм из прокатных
профилей, выполняемых на сварке.
Известен способ изготовления фермы с нисходящими раскосами, выполняемой из прямых поясов и треугольной
решетки с сечением из коробчатых профилей, заключающийся в соединении сваркой односрезных концов раскосов с
поясами в притык (см. Справочник проектировщика. Металлические конструкции, М. 1998, стр.175, 181. Рис.7.16,
7.17).
Недостатком способа является расцентровка в узле осей соединяемых раскосов с поясами, что требует
повышенного расхода металла на стержни ферм.
Прототипом изобретения является способ изготовления треугольной подстропилььной фермы с нисходящими
раскосами, выполняемой из прямого коробчатого пояса, заключающийся в соединении сваркой односрезных концов
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 17
двух нисходящих раскосов с верхним поясом (см. Альбом типовой серии на фермы из гнутосварных профилей. Серия
1.460.3-23.98.1 - 27КМ, лист подстропильная ферма). Такой способ не может быть применен вцелом для изготовления
ферм с треугольной или раскосной решеткой, т.к. ширина сходящихся в узлах стержней решетки ферм и поясов
выполняется различной, что требует применения в узлах ферм фасонок и ведет к трудоемкости изготовления фермы.
Изобретение направлено на снижение трудоемкости изготовления фермы с обеспечением выполнения
центрирования осей сходящихся в узлах раскосов.
Результат достигается тем, что в способе изготовления фермы с нисходящими раскосами, выполняемой из прямых
коробчатых поясов с треугольной или раскосной решеткой, заключающийся в соединении сваркой односрезных
концов раскосов с поясами, согласно изобретению, сначала по проекту изготавливают полуфермы: укладывают
верхний пояс из коробчачатого профиля, содержащий фланцевый монтажный стык пояса и опорный узел полуфермы,
состоящий из двух фасонок, приваренных к поясу в продолжении плоскости стенок верхнего пояса и приваре нную
перпендикулярно фасонкам опорную плиту полуфермы; затем укладывют нижний пояс фермы с шириной равной
верхнему поясу, который содержит фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам
встык приваривают стержни решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по
ширине поясам полуферм; затем на узлы полуфермы накладывают внахлест стержни решетки нисходящего
направления, выполняя их из двух параллельных неравнобоких уголков или полос, при этом полосы предна прягают
стягивая их в середине болтом.
На Фиг.1 изображена двускатнвя ферма с треугольной решеткой. На Фиг.2,3 и 4 - последовательности
изготовления фермы.
Ферма с треугольной или раскосной решеткой состоит из верхнего пояса 1 и нижнего пояса 2, выполняемы х из
коробчатых профилей равной ширины «b» (Фиг.1). Все восходящие раскосы фермы с треугольной или раскосой
решеткой выполняют из коробчатых профилей 3 с шириной профиля равного щирине поясов (при этом толщина
профилей принимается по расчету). Нисходящий приопорный раскос 4 выполняют из двух неравнобоких уголков или
полос (Фиг.1). Остальные раскосы 5 фермы нисходящего направления изготавливают из двух полос, которые
накладывают на узлы фермы и приваривают (Фиг.1). Ферму в заводских условиях собирают в следу ющей
последовательности. Сначала по проекту изготавливают полуфермы, для чего: укладывают верхний пояс 1 из
коробчатого профиля (Фиг.2), который содержет фланцевый монтажный стык 6, и опорный узел полуфермы (Фиг.2),
состоящий из двух фасонок 7, приваренных к поясу 1 в продолжении плоскости стенок верхнего пояса 1 и
приваренную перпендикулярно фасонкам 7 опорную плиту 8 полуфермы; затем укладывют нижний пояс 2 фермы с
шириной пояса 2 равного ширине верхнего пояса 1, который содержит фланцевый монтажный стык 9 нижнего пояса 2
полуфермы; после чего к поясам 1 и 2 встык приваривают односрезные раскосы решетки восходящего направления 3,
выполняя их коробчатыми и равными по ширине поясам полуферм 1 и 2 (Фиг.3); затем на узлы полуфермы
накладывают внахлест раскосы 4 и 5 решетки нисходящего направления (Фиг.4), выполняя их из двух параллельных
неравнобоких уголков 4 или полос 5, при этом полосы 5 преднапрягают в середине стягивая их болтом 10.
Задаваемое полосам 5 преднапряжение позволяет исключить податливость в их работе, что полезно для работы
фермы по деформативности.
Способ позволяет все стержни фермы выполнить односрезными с обеспечением центрирования осей сходящихся в
узле раскосов, кроме того при изготовлении нисходящих раскосов нахлестом на узлы полуферм прои сходит усиление
стенок коробчатых профилей поясов и раскосов, что также является полезным для работы узлов фермы.
Наиболее эффективно изобретение может быть использовано при проектировании и изготовлении ферм из
коробчатых и открытых профилей пролетами до 36 метров и более.
Формула изобретения
Способ изготовления фермы с нисходящими раскосами, выполняемой из прямых коробчатых поясов с треугольной
или раскосной решеткой, заключающийся в соединении сваркой односрезных концов раскосов с поясами,
отличающийся тем, что сначала по проекту изготавливают полуфермы: укладывают верхний пояс из коробчатого
профиля, содержащий фланцевый монтажный стык пояса и опорный узел полуфермы, состоящий из двух фасонок,
приваренных к поясу в продолжении плоскости стенок верхнего пояса, и приваренную перпендикулярно фасонкам
опорную плиту полуфермы; затем укладывают нижний пояс фермы с шириной, равной верхнему поясу, который
содержит фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам встык приваривают стержни
решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по ширине поясам полуферм;
затем на узлы полуфермы накладывают внахлест стержни решетки нисходящего направления, выполняя их из двух
параллельных неравнобоких уголков или полос, при этом полосы преднапрягают, стягивая их в середине болтом.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 18
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 19
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 20
УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 21
ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ
ПОКРЫТИЯ 2228415
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 228 415
(13)
C2
(51) МПК
 E04C 3/17 (2000.01)
 E04B 1/19 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина:Патент перешел в общественное достояние.
(21)(22) Заявка: 99123410/03, 04.11.1999
(24) Дата начала отсчета срока действия патента:
04.11.1999
(43) Дата публикации заявки: 10.09.2001 Бюл. № 25
(45) Опубликовано: 10.05.2004 Бюл. № 13
(56) Список документов, цитированных в отчете о поиске: ЕНДЖИЕВСКИЙ Л.В. и др. Трехгранная бло
12-3Р // Информ. листок №49-97 / ЦНТИ - Красноярск, 1997. SU 1742435 A1, 23.06.1992. SU 1310488 A1
SU 1281651 A1, 07.01.1987. RU 2117117 C1, 10.08.1998. RU 2136822 C1, 10.09.1999. RU 2102566 C1, 20.01.
4389829 A, 28.06.1983. FR 2551789 A, 15.03.1985.
Адрес для переписки:
660041, г.Красноярск, пр. Свободный, 82, КрасГАСА
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ
ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ
ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
промышленных и сельскохозяйственных зданий и сооружений. Технический результат повышение прочности и жесткости за счет предварительного напряжения и создания “следящих”
за деформациями ползучести усилий предварительного напряжения. Узловое сопряжение
представляет собой металлический элемент соединения раскосов, образованный трубой с
приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические
фасонки к металлическому элементу соединения раскосов, и металлический стержень,
пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на
конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 22
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
промышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и
сооружений, а также для несущих элементов транспортных галерей, переходов и других
аналогичных объектов. Преднапряженная панель покрытия представляет собой тонкую
облегченную железобетонную плиту, выполняющую роль верхнего пояса, к которой присоединены
металлические подкрепляющие элементы в виде пространственно ориентированных шпренгелей,
состоящих из стержней решетки, нижнего пояса. Она снабжена дополнительно криволинейным
поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками,
присоединенными к узлам нижнего пояса, снабженным натяжным устройством.
Недостатком этой системы является неэффективность конструкции за счет большего веса и
расхода материалов в отличие от предлагаемой авторами [1].
Более близким по техническому решению к предлагаемому изобретению (прототипом) является
трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс П-образного
сечения выполнен из крупноразмерных плит, имеющих каркас из цельнодеревянных элементов и
прикрепленной к нему сверху шурупами обшивки из плоских асбестоцементных листов. Между
вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается
утеплитель из полистирольного пенопласта. Гидроизоляция устанавливается из трех слоев
рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним
пространственной решеткой регулярного типа, выполненной из деревянных раскосов квадратного
сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками.
Нижний пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление
для сопряжения с основными ребрами верхнего пояса [2].
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей
способности, потери усилия предварительного напряжения в нижнем поясе за счет ползучести и
температурно-влажностных деформаций в древесине и температурных деформаций металла и, как
следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и
жесткости, за счет предварительного напряжения и создания “следящих” за деформациями
ползучести усилий предварительного напряжения.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 23
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, на металлический стержень между гайками и металлическим
элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения
материалоемкости, создания “следящих” за деформациями ползучести усилий предварительного
напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь
ведет к повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции
представлено на чертежах.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,
Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов 3, образованный трубой 4 с приваренными сверху V-образно двумя
фасонками 5, раскосы 1, присоединенные через металлические фасонки 5 к металлическому
элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический
элемент соединения раскосов 3, имеющий резьбовую нарезку на конце и закрепленный с помощью
гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения
раскосов 3 размещены две шайбы 9, выполненные из швеллера, и между ними винтовая пружина 8.
Сборка конструкции производится следующим образом: к металлическому элементу соединения
раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя фасонками 5,
присоединяются раскосы 1, затем через 3 пропускается металлический стержень 6, имеющий
резьбовую нарезку на конце. Далее стержень пропускается через шайбу 9, винтовую пружину 8,
шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения,
сохраняя его несмотря на ползучие и температурно-влажностные деформации в древесине и
температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие
предварительного напряжения и сохраняет его в процессе эксплуатации, что в свою очередь
позволяет создать экономичную конструкцию за счет повышения несущей способности и
жесткости пространственной решетчатой конструкции.
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 24
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р
// Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками,
раскосы, присоединенные через металлические фасонки к металлическому элементу соединения
раскосов, и металлический стержень, пропущенный через металлический элемент соединения
раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, отличающееся
тем, что на металлический стержень между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, и между ними винтовая пружина.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 25
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 26
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 27
(21) Регистрационный номер заявки: 0099123410 Извещение опубликовано: 27.10.2006БИ:
30/2006
УЗЛОВОЕ СОПРЯЖЕНИЕ ВЕРХНЕГО И НИЖНЕГО ПОЯСОВ В
ПРОСТРАНСТВЕННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК ФЕРМЕ
(19)
РОССИЙСКАЯ
ФЕДЕРАЦИЯ
RU 2247813
(11)
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ C1
СОБСТВЕННОСТИ,
(51) МПК
ПАТЕНТАМ И ТОВАРНЫМ
 E04C 3/00 (2000.01)
ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса:
02.07.2021)
Пошлина: учтена за 13 год с 26.08.2015 по 25.08.2016.
Возможность восстановления: нет.
(21)(22) Заявка: 2003126076/03, 25.08.2003
(
(24) Дата начала отсчета срока действия патента:
25.08.2003
(45) Опубликовано: 10.03.2005 Бюл. № 7
(
(56) Список документов, цитированных в отчете о поиске: SU1638284 A1, 30.03.1991.
RU2228415 C2, 10.09.2001. RU2184819 C1, 10.07.2002.
Адрес для переписки:
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 28
660041, г.Красноярск, пр. Свободный, 82, НИС Красноярская
государственная архитектурно-строительная академия
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ ВЕРХНЕГО И НИЖНЕГО ПОЯСОВ В
ПРОСТРАНСТВЕННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОКФЕРМЕ 2247813
(57) Реферат:
Изобретение относится к строительству и может быть использовано для
покрытия отапливаемых промышленных и сельскохозяйственных зданий и
сооружений. Достигаемый технический результат изобретения - более полное
использование прочностных свойств конструкции за счет предварительного
напряжения и создания “следящих” за деформациями ползучести усилий
предварительного напряжения в целях уменьшения потерь преднапряжения. Для
решения поставленной задачи узловое сопряжение верхнего и нижнего поясов в
пространственной предварительно напряженной блок-ферме, включающее
траверсу с ребрами жесткости, на которой закреплены посредством фиксаторов
гибкие арки верхнего пояса и нижний пояс-затяжка в виде тонкой полосы,
согласно изобретению снабжено средством для сохранения усилия
предварительного напряжения в виде рессор, связанных с нижним поясом,
установленным с возможностью перемещения, при этом на концах нижнего
пояса вварены металлические стержни, которые пропущены через отверстия,
выполненные в траверсе, и оперты при помощи упорных шайб и гаек на рессоры,
расположенные с наружной стороны траверсы, фиксаторы гибких арок
приварены к ребрам жесткости траверсы и расположены совместно с
установленными в них гибкими арками в прорезах, выполненных на концах
нижнего пояса-затяжки. 5 ил.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 29
Изобретение относится к строительству и может быть использовано для
покрытия отапливаемых промышленных и сельскохозяйственных зданий и
сооружений.
Известна пространственная предварительно напряженная металлическая
блок-ферма, содержащая верхний и нижний гибкие пояса, составной по
длине жесткий стержень, соединенный с концами фермы при помощи
траверс [Авт. свид. №421743, Е 04 С 3/04].
Недостатком известной фермы является низкая ее эффективность из -за
сложности создания предварительного напряжения путем распирания
домкратами отдельных частей жесткого стержня и установки в
образовавшийся зазор вставки.
Наиболее близким по технической сущности к изобретению является
узловое сопряжение верхнего и нижнего поясов в известной
пространственной предварительно напряженной ферме, принятой за
прототип [Авт. свид. №1638284, Е 04 С 3/00]. Известная ферма состоит
верхнего пояса, включающего ребристые плиты с утеплителем и кровлей,
уложенные на гибкие арки, нижнего пояс а-затяжки в виде тонкой полосы,
установленных между ними вертикальных распорок, раскосов и
поперечных траверс, установленных по концам фермы, к которым
прикреплены верхний и нижний пояса, причем поперечные траверсы
снабжены наклонной полкой, к которой на в ысокопрочных ботах
прикреплены концы нижнего пояса и фиксаторы -карманы с гибкими
арками.
Недостатком прототипа являются потери усилия предварительного
напряжения в нижнем поясе, обусловленные деформациями ползучести и
температурно-влажностными деформациями в древесине ребер плит
верхнего пояса, температурными деформациями металла нижнего пояса, и,
как следствие, не в полной мере использование прочностных свойств
конструкции с жестким выполнением соединения верхнего и нижнего
поясов.
Задача изобретения - более полное использование прочностных свойств
конструкции за счет предварительного напряжения и создания “следящих”
за деформациями ползучести усилий предварительного напряжения в
целях уменьшения потерь преднапряжения.
Для решения поставленной задачи узлово е сопряжение верхнего и
нижнего поясов в пространственной предварительно напряженной блок ферме, включающее траверсу с ребрами жесткости, на которой закреплены
посредством фиксаторов гибкие арки верхнего пояса и нижний пояс затяжка в виде тонкой полосы, согласно изобретению снабжено средством
для сохранения усилия предварительного напряжения в виде рессор,
связанных с нижним поясом, установленным с возможностью
перемещения, при этом на концах нижнего пояса вварены металлические
стержни, которые пропущены через отверстия, выполненные в траверсе, и
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 30
оперты при помощи упорных шайб и гаек на рессоры, расположенные с
наружной стороны траверсы, фиксаторы гибких арок приварены к ребрам
жесткости траверсы и расположены совместно с установленными в них
гибкими арками в прорезах, выполненных на концах нижнего пояса затяжки.
На фиг.1 изображено узловое сопряжение верхнего и нижнего поясов в
пространственной предварительно напряженной блок -ферме; на фиг.2 - то
же, вид сверху; на фиг.3 - то же, вид сбоку; на фиг.4 - вид в объеме с
наружной стороны блок-фермы; на фиг.5 - вид в объеме с внутренней
стороны блок-фермы.
Узловое сопряжение верхнего и нижнего поясов в пространственной
предварительно напряженной блок-ферме включает траверсу 1 с ребрами
жесткости 2 и 3, расположенными с обеих сторон траверсы. К ребрам 2
приварены фиксаторы 4, в которых закреплены гибкие арки 5 верхнего
пояса посредством болтовых соединений 6. С наружной стороны траверсы
на ребра 3 приварены рессоры 7, взаимодействующие с нижним поясом 8,
выполненным в виде металлической полосы. При этом на конце нижнего
пояса 8 выполнены прорези 9 под гибкие арки, по контуру приварены
стержни 10, выступающие концы которых пропущены через отверстия 11 в
траверсе 1 и между рессорами 7. Стержни 10 оперты на рессоры 7 чер ез
упорные шайбы 12, например, в виде швеллеров и гайки 13. С внутренней
стороны траверсы 1 нижний пояс 8 установлен с возможностью
перемещения на скошенных ребрах 14 и закреплен на приваренной к
ребрам 14 пластине 15 посредством болтовых соединений 16,
расположенных в пазах 17, выполненных в нижнем поясе 8.
В процессе эксплуатации конструкции рессоры будут регулировать
усилие предварительного напряжения, сохраняя его, несмотря на ползучие
и температурно-влажностные деформации в древесине и температурные
деформации металла.
Использование предлагаемого изобретения по сравнению с прототипом
позволяет создавать и сохранять усилие предварительного напряжения в
процессе эксплуатации, тем самым сохраняя несущую способность и
жесткость конструкции.
Такое решение дает более полное использование прочностных свойств
конструкции, уменьшает потери преднапряжения, что приведет к
сохранению несущей способности и жесткости.
Формула изобретения
Узловое сопряжение верхнего и нижнего поясов в пространственной
предварительно напряженной блок-ферме, включающее траверсу с
ребрами жесткости, на которой закреплены посредством фиксаторов
гибкие арки верхнего пояса и нижний пояс -затяжка в виде тонкой полосы,
отличающееся тем, что оно снабжено средством для сохранения усилия
предварительного напряжения в виде рессор, связанных с нижним поясом,
установленным с возможностью перемещения, при этом на концах
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 31
нижнего пояса вварены металлические стержни, которые пропущены через
отверстия, выполненные в траверсе, и оперты при помощи упорных шай б и
гаек на рессоры, расположенные с другой стороны траверсы, фиксаторы
гибких арок приварены к ребрам жесткости траверсы и расположены
совместно с установленными в них гибкими арками в прорезах,
выполненных на концах нижнего пояса -затяжки.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 32
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 33
СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИ
РАСКОСАМИ 2503783
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
2 503 783
(13)
C1
(51) МПК
 E04C 3/11 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 26.12.2021)
Пошлина: учтена за 6 год с 26.06.2017 по 25.06.2018. Возможность восстановления: нет.
(21)(22) Заявка: 2012126474/03,
25.06.2012
(24) Дата начала отсчета срока действия
патента:
25.06.2012
Приоритет(ы):
(22) Дата подачи заявки: 25.06.2012
(45) Опубликовано: 10.01.2014 Бюл.
(72) Автор(ы):
Хисамов Рафаиль Ибрагимович (RU),
Шакиров Руслан Анфрузович (RU)
(73) Патентообладатель(и):
Федеральное государственное бюджетное образовательное
учреждение высшего профессионального образования
"Казанский государственный архитектурно-строительный
университет" (КГАСУ) (RU),
Закрытое акционерное общество "Казанский
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 34
№1
(56) Список документов, цитированных
в отчете о поиске: RU 103115 U1,
27.03.2011. RU 2354789 C1,
10.05.2009. AU 568956 B2,
14.01.1988.
Гипронииавиапром" (ЗАО "Казанский Гипронииавиапром")
(RU)
Адрес для переписки:
420043, РТ, г.Казань, ул. Зеленая,
1, КГАСУ, Ф.И. Давлетбаевой
(54) СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИ РАСКОСАМИ
(57) Реферат:
Изобретение относится к области строительства, в частности к способу изготовления
фермы с нисходящими раскосами. Технический результат заключается в снижении
трудоемкости изготовления. Ферму выполняют из прямых коробчатых поясов с треугольной
или раскосной решеткой. Односрезные концы раскосов соединяют сваркой с поясами.
Сначала по проекту изготавливают полуфермы. Укладывают верхний пояс, содержащий
фланцевый монтажный стык пояса и опорный узел полуфермы. Опорный узел с остоит из двух
фасонок, приваренных к поясу в продолжении плоскости стенок верхнего пояса.
Перпендикулярно фасонкам приваривают опорную плиту полуфермы. Затем укладывают
нижний пояс фермы с шириной, равной верхнему поясу, который содержит фланцевый
монтажный стык нижнего пояса полуфермы. После чего к поясам встык приваривают стержни
решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по
ширине поясам полуферм. Затем на узлы полуфермы накладывают внахлест стержни решетки
нисходящего направления, выполняя их из двух параллельных неравнобоких уголков или
полос. Полосы преднапрягают, стягивая их в середине болтом. 4 ил.
Изобретение относится к строительству и касается способа изготовления решетчатых ферм из прокатных
профилей, выполняемых на сварке.
Известен способ изготовления фермы с нисходящими раскосами, выполняемой из прямых поясов и треугольной
решетки с сечением из коробчатых профилей, заключающийся в соединении сваркой односрезных концов раскосов с
поясами в притык (см. Справочник проектировщика. Металлические конструкции, М. 1998, стр.175, 181. Рис.7.16,
7.17).
Недостатком способа является расцентровка в узле осей соединяемых раскосов с поясами, что требует
повышенного расхода металла на стержни ферм.
Прототипом изобретения является способ изготовления треугольной подстропилььной фермы с нисходящими
раскосами, выполняемой из прямого коробчатого пояса, заключающийся в соединении сваркой односрезных концов
двух нисходящих раскосов с верхним поясом (см. Альбом типовой серии на фермы из гнутосварных профилей. Серия
1.460.3-23.98.1 - 27КМ, лист подстропильная ферма). Такой способ не может быть применен вцелом для изготовления
ферм с треугольной или раскосной решеткой, т.к. ширина сходящихся в узлах стержней решетки ферм и поясов
выполняется различной, что требует применения в узлах ферм фасонок и ведет к трудоемкости изготовления фермы.
Изобретение направлено на снижение трудоемкости изготовления фермы с обеспечением выполнения
центрирования осей сходящихся в узлах раскосов.
Результат достигается тем, что в способе изготовления фермы с нисходящими раскосами, выполняемой из прямых
коробчатых поясов с треугольной или раскосной решеткой, заключающийся в соединении сваркой односрезных
концов раскосов с поясами, согласно изобретению, сначала по проекту изготавливают полуфермы: укладывают
верхний пояс из коробчачатого профиля, содержащий фланцевый монтажный стык пояса и опорный узел полуфермы,
состоящий из двух фасонок, приваренных к поясу в продолжении плоскости стенок верхнего пояса и приваре нную
перпендикулярно фасонкам опорную плиту полуфермы; затем укладывют нижний пояс фермы с шириной равной
верхнему поясу, который содержит фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам
встык приваривают стержни решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по
ширине поясам полуферм; затем на узлы полуфермы накладывают внахлест стержни решетки нисходящего
направления, выполняя их из двух параллельных неравнобоких уголков или полос, при этом полосы предна прягают
стягивая их в середине болтом.
На Фиг.1 изображена двускатнвя ферма с треугольной решеткой. На Фиг.2,3 и 4 - последовательности
изготовления фермы.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 35
Ферма с треугольной или раскосной решеткой состоит из верхнего пояса 1 и нижнего пояса 2, выполняемы х из
коробчатых профилей равной ширины «b» (Фиг.1). Все восходящие раскосы фермы с треугольной или раскосой
решеткой выполняют из коробчатых профилей 3 с шириной профиля равного щирине поясов (при этом толщина
профилей принимается по расчету). Нисходящий приопорный раскос 4 выполняют из двух неравнобоких уголков или
полос (Фиг.1). Остальные раскосы 5 фермы нисходящего направления изготавливают из двух полос, которые
накладывают на узлы фермы и приваривают (Фиг.1). Ферму в заводских условиях собирают в следу ющей
последовательности. Сначала по проекту изготавливают полуфермы, для чего: укладывают верхний пояс 1 из
коробчатого профиля (Фиг.2), который содержет фланцевый монтажный стык 6, и опорный узел полуфермы (Фиг.2),
состоящий из двух фасонок 7, приваренных к поясу 1 в продолжении плоскости стенок верхнего пояса 1 и
приваренную перпендикулярно фасонкам 7 опорную плиту 8 полуфермы; затем укладывют нижний пояс 2 фермы с
шириной пояса 2 равного ширине верхнего пояса 1, который содержит фланцевый монтажный стык 9 нижнего пояса 2
полуфермы; после чего к поясам 1 и 2 встык приваривают односрезные раскосы решетки восходящего направления 3,
выполняя их коробчатыми и равными по ширине поясам полуферм 1 и 2 (Фиг.3); затем на узлы полуфермы
накладывают внахлест раскосы 4 и 5 решетки нисходящего направления (Фиг.4), выполняя их из двух параллельных
неравнобоких уголков 4 или полос 5, при этом полосы 5 преднапрягают в середине стягивая их болтом 10.
Задаваемое полосам 5 преднапряжение позволяет исключить податливость в их работе, что полезно для работы
фермы по деформативности.
Способ позволяет все стержни фермы выполнить односрезными с обеспечением центрирования осей сходящихся в
узле раскосов, кроме того при изготовлении нисходящих раскосов нахлестом на узлы полуферм прои сходит усиление
стенок коробчатых профилей поясов и раскосов, что также является полезным для работы узлов фермы.
Наиболее эффективно изобретение может быть использовано при проектировании и изготовлении ферм из
коробчатых и открытых профилей пролетами до 36 метров и более.
Формула изобретения
Способ изготовления фермы с нисходящими раскосами, выполняемой из прямых коробчатых поясов с треугольной
или раскосной решеткой, заключающийся в соединении сваркой односрезных концов раскосов с поясами,
отличающийся тем, что сначала по проекту изготавливают полуфермы: укладывают верхний пояс из коробчатого
профиля, содержащий фланцевый монтажный стык пояса и опорный узел полуфермы, состоящий из двух фасонок,
приваренных к поясу в продолжении плоскости стенок верхнего пояса, и приваренную перпендикулярно фасонкам
опорную плиту полуфермы; затем укладывают нижний пояс фермы с шириной, равной верхнему поясу, который
содержит фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам встык приваривают стержни
решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по ширине поясам полуферм;
затем на узлы полуфермы накладывают внахлест стержни решетки нисходящего направления, выполняя их из двух
параллельных неравнобоких уголков или полос, при этом полосы преднапрягают, стягивая их в середине болтом.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 36
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 37
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы дорожного покрытия , включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, на металлический стержень между гайками и металлическим
элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения
материалоемкости, создания “следящих” за деформациями ползучести усилий предварительного
напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь
ведет к повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции
представлено на чертежах.
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов , образованный трубой с приваренными сверху V-образно двумя фасонками
5, раскосы , присоединенные через металлические фасонки 5 к металлическому элементу
соединения раскосов , и металлический стержень , пропущенный через металлический элемент
соединения раскосов , имеющий резьбовую нарезку на конце и закрепленный с помощью гаек . На
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 38
металлический стержень между гайками и металлическим элементом соединения раскосов
размещены две шайбы , выполненные из швеллера, и между ними винтовая пружина .
Сборка конструкции производится следующим образом: к металлическому элементу соединения
раскосов , образованному трубой с приваренными сверху V-образно двумя фасонками ,
присоединяются раскосы , затем через пропускается металлический стержень , имеющий
резьбовую нарезку на конце. Далее стержень пропускается через шайбу , винтовую пружину ,
шайбу и закрепляется с помощью гаек .
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения,
сохраняя его несмотря на ползучие и температурно-влажностные деформации в древесине и
температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие
предварительного напряжения и сохраняет его в процессе эксплуатации, что в свою очередь
позволяет создать экономичную конструкцию за счет повышения несущей способности и
жесткости пространственной решетчатой конструкции.
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия проезжей части , включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, отличающееся тем, что на металлический стержень между гайками
и металлическим элементом соединения раскосов размещены две шайбы, выполненные из
швеллера, и между ними винтовая пружина.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р
// Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
https://patentimages.storage.googleapis.com/bd/9a/cd/4f500c0445ccf4/RU2136822C1.pdf
УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ ПОЯСОМ ТРЕХГРАННОЙ
ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ ПОКРЫТИЯ
ДМИТРИЕВ П.А.,
ИНЖУТОВ И.С.,
ЧЕРНЫШОВ С.А.,
ДЕОРДИЕВ С.В.,
ФИЛИППОВ А.П.
Тип: патент на изобретение
Номер патента: RU 2228415 C2 Патентное ведомство: РоссияГод публикации: 2004
Номер заявки: 99123410/03Дата регистрации: 04.11.1999Дата публикации: 10.05.2004
Патентообладатели: Красноярская государственная архитектурно-строительная академия
МЕЖДУНАРОДНАЯ ПАТЕНТНАЯ КЛАССИФИКАЦИЯ:
E04C 3/17
Длинномерные несущие строительные элементы / балки; прогоны; фермы или подобные конструкции, например,
полуфабрикаты; сборные дверные и оконные перемычки; переплеты / балки; прогоны; фермы или подобные конструкции из
дерева, например армированные, с предварительно напряжёнными элементами / с непараллельным верхним и нижним
поясом, например стропильные фермы
E04B 1/19
Строительные конструкции общего назначения; сооружения, не обуславливаемые конструкцией стен, например перегородок,
полов, перекрытий или крыш / строительные конструкции, состоящие из длинномерных несущих элементов, например
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 39
колонн, балок, каркасов / трехмерные строительные конструкции
АННОТАЦИЯ:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и
сельскохозяйственных зданий и сооружений. Технический результат - повышение прочности и жесткости за счет предварительного
напряжения и создания “следящих” за деформациями ползучести усилий предварительного напряжения. Узловое сопряжение
представляет собой металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя
фасонками, раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический
стержень, пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и закрепленный с
помощью гаек. Между гайками и металлическим элементом соединения раскосов размещены две шайбы, выполненные из швеллера, а
между ними винтовая пружина. 4 ил.
https://www.elibrary.ru/item.asp?id=37938622
SPb GASU NIOKR Provedenie patentno-issledovatelskix rabot primeneniyu bistrosobiraemix pereprav mostov 485 str
https://ppt-online.org/1281358
https://patentimages.storage.googleapis.com/bd/9a/cd/4f500c0445ccf4/RU2136822C1.pdf
УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ
ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ
ПОКРЫТИЯ https://findpatent.ru/patent/222/2228415.html
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
промышленных и сельскохозяйственных зданий и сооружений. Технический результат повышение прочности и жесткости за счет предварительного напряжения и создания “следящих”
за деформациями ползучести усилий предварительного напряжения. Узловое сопряжение
представляет собой металлический элемент соединения раскосов, образованный трубой с
приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические
фасонки к металлическому элементу соединения раскосов, и металлический стержень,
пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на
конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 40
промышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и
сооружений, а также для несущих элементов транспортных галерей, переходов и других
аналогичных объектов. Преднапряженная панель покрытия представляет собой тонкую
облегченную железобетонную плиту, выполняющую роль верхнего пояса, к которой присоединены
металлические подкрепляющие элементы в виде пространственно ориентированных шпренгелей,
состоящих из стержней решетки, нижнего пояса. Она снабжена дополнительно криволинейным
поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками,
присоединенными к узлам нижнего пояса, снабженным натяжным устройством.
Недостатком этой системы является неэффективность конструкции за счет большего веса и
расхода материалов в отличие от предлагаемой авторами [1].
Более близким по техническому решению к предлагаемому изобретению (прототипом) является
трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс П-образного
сечения выполнен из крупноразмерных плит, имеющих каркас из цельнодеревянных элементов и
прикрепленной к нему сверху шурупами обшивки из плоских асбестоцементных листов. Между
вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается
утеплитель из полистирольного пенопласта. Гидроизоляция устанавливается из трех слоев
рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним
пространственной решеткой регулярного типа, выполненной из деревянных раскосов квадратного
сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками.
Нижний пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление
для сопряжения с основными ребрами верхнего пояса [2].
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей
способности, потери усилия предварительного напряжения в нижнем поясе за счет ползучести и
температурно-влажностных деформаций в древесине и температурных деформаций металла и, как
следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и
жесткости, за счет предварительного напряжения и создания “следящих” за деформациями
ползучести усилий предварительного напряжения.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, на металлический стержень между гайками и металлическим
элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 41
винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения
материалоемкости, создания “следящих” за деформациями ползучести усилий предварительного
напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь
ведет к повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции
представлено на чертежах.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,
Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов 3, образованный трубой 4 с приваренными сверху V-образно двумя
фасонками 5, раскосы 1, присоединенные через металлические фасонки 5 к металлическому
элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический
элемент соединения раскосов 3, имеющий резьбовую нарезку на конце и закрепленный с помощью
гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения
раскосов 3 размещены две шайбы 9, выполненные из швеллера, и между ними винтовая пружина 8.
Сборка конструкции производится следующим образом: к металлическому элементу соединения
раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя фасонками 5,
присоединяются раскосы 1, затем через 3 пропускается металлический стержень 6, имеющий
резьбовую нарезку на конце. Далее стержень пропускается через шайбу 9, винтовую пружину 8,
шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения,
сохраняя его несмотря на ползучие и температурно-влажностные деформации в древесине и
температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие
предварительного напряжения и сохраняет его в процессе эксплуатации, что в свою очередь
позволяет создать экономичную конструкцию за счет повышения несущей способности и
жесткости пространственной решетчатой конструкции.
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р
// Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками,
раскосы, присоединенные через металлические фасонки к металлическому элементу соединения
раскосов, и металлический стержень, пропущенный через металлический элемент соединения
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 42
раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, отличающееся
тем, что на металлический стержень между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, и между ними винтовая пружина.
STU Spetsialnie texnisheskie usloviya montaja sborno-razbornix bisrosobiraemix odnoputnix avtomobilnix mostov pereprav 469 str
https://ppt-online.org/1283117
Спец военный Вестник газеты "Земля России" №37
https://ppt-online.org/1142605
NIOKR Provedenie patentno-issledovatelskix rabot primeneniyu
bistrosobiraemix pereprav mostov 517 str
https://studylib.ru/doc/6381752/niokr-provedenie-patentno-issledovatelskix-rabot-primenen...
https://patents.google.com/patent/RU2136822C1/ru
УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ
ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ
ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
промышленных и сельскохозяйственных зданий и сооружений. Технический результат повышение прочности и жесткости за счет предварительного напряжения и создания “следящих”
за деформациями ползучести усилий предварительного напряжения. Узловое сопряжение
представляет собой металлический элемент соединения раскосов, образованный трубой с
приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические
фасонки к металлическому элементу соединения раскосов, и металлический стержень,
пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на
конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 43
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
промышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и
сооружений, а также для несущих элементов транспортных галерей, переходов и других
аналогичных объектов. Преднапряженная панель покрытия представляет собой тонкую
облегченную железобетонную плиту, выполняющую роль верхнего пояса, к которой присоединены
металлические подкрепляющие элементы в виде пространственно ориентированных шпренгелей,
состоящих из стержней решетки, нижнего пояса. Она снабжена дополнительно криволинейным
поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками,
присоединенными к узлам нижнего пояса, снабженным натяжным устройством.
Недостатком этой системы является неэффективность конструкции за счет большего веса и
расхода материалов в отличие от предлагаемой авторами [1].
Более близким по техническому решению к предлагаемому изобретению (прототипом) является
трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс П-образного
сечения выполнен из крупноразмерных плит, имеющих каркас из цельнодеревянных элементов и
прикрепленной к нему сверху шурупами обшивки из плоских асбестоцементных листов. Между
вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается
утеплитель из полистирольного пенопласта. Гидроизоляция устанавливается из трех слоев
рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним
пространственной решеткой регулярного типа, выполненной из деревянных раскосов квадратного
сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками.
Нижний пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление
для сопряжения с основными ребрами верхнего пояса [2].
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей
способности, потери усилия предварительного напряжения в нижнем поясе за счет ползучести и
температурно-влажностных деформаций в древесине и температурных деформаций металла и, как
следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и
жесткости, за счет предварительного напряжения и создания “следящих” за деформациями
ползучести усилий предварительного напряжения.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, на металлический стержень между гайками и металлическим
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 44
элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения
материалоемкости, создания “следящих” за деформациями ползучести усилий предварительного
напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь
ведет к повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции
представлено на чертежах.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,
Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов 3, образованный трубой 4 с приваренными сверху V-образно двумя
фасонками 5, раскосы 1, присоединенные через металлические фасонки 5 к металлическому
элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический
элемент соединения раскосов 3, имеющий резьбовую нарезку на конце и закрепленный с помощью
гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения
раскосов 3 размещены две шайбы 9, выполненные из швеллера, и между ними винтовая пружина 8.
Сборка конструкции производится следующим образом: к металлическому элементу соединения
раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя фасонками 5,
присоединяются раскосы 1, затем через 3 пропускается металлический стержень 6, имеющий
резьбовую нарезку на конце. Далее стержень пропускается через шайбу 9, винтовую пружину 8,
шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения,
сохраняя его несмотря на ползучие и температурно-влажностные деформации в древесине и
температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие
предварительного напряжения и сохраняет его в процессе эксплуатации, что в свою очередь
позволяет создать экономичную конструкцию за счет повышения несущей способности и
жесткости пространственной решетчатой конструкции.
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р
// Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками,
раскосы, присоединенные через металлические фасонки к металлическому элементу соединения
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 45
раскосов, и металлический стержень, пропущенный через металлический элемент соединения
раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, отличающееся
тем, что на металлический стержень между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, и между ними винтовая пружина.
СТРУКТУРНОЕ ПОКРЫТИЕ НА ОСНОВЕ ТРЕХГРАННОЙ
МЕТАЛЛОДЕРЕВЯННОЙ БЛОК-ФЕРМЫ
УДК 693.98
СТРУКТУРНОЕ ПОКРЫТИЕ НА ОСНОВЕ ТРЕХГРАННОЙ
МЕТАЛЛОДЕРЕВЯННОЙ БЛОК-ФЕРМЫ
Леоненко А.В.
научный руководитель канд. техн. наук Деордиев С.В.
Сибирский федеральный университет
Древесина всегда была одним из наиболее распространённых материалов используемых для
строительства на территории нашей страны. Это обусловлено не только тем, что она всегда
была и остаётся самым доступным и сравнительно недорогим материалом, но и наличием
целого ряда других преимуществ по сравнению с другими традиционными материалами.
Древесина имеет высокие прочностные характеристики при достаточно небольшой плотности, а
значит и небольшом собственном весе, что в свою очередь исключает необходимость
сооружения массивных и дорогостоящих фундаментов. Кроме того к положительным свойствам
древесины как строительного материала относятся: низкая теплопроводность, способностью
противостоять климатическим воздействиям, воздухопроницаемость, экологическая чистота, а
также природной красота и декоративностью, что для современных строений играет
немаловажную роль.
Деревянные структуры обладают рядом преимуществ, правильное использование которых
позволяет повысить экономическую эффективность по сравнению с традиционными решениями. К
преимуществам относятся: пространственность работы системы; повышенная надёжность от
внезапных разрушений; возможность перекрытия больших пролётов; удобство проектирования
подвесных потолков; максимальная унификация узлов и элементов; существенное снижение
транспортных затрат; возможность использования совершенных методов монтажа-сборки на земле
и подъёма покрытия крупными блоками; архитектурная выразительность и возможность
применения для зданий различного назначения.
В качестве объекта исследования и компоновки структурного покрытия принята
металлодеревянная блок-ферма пролетом 18 метров (рис. 1). Конструкция блок-фермы
представляет собой двускатную четырехпанельную пространственную ферму, верхний пояс
которой выполнен из однотипных клеефанерных плит, пространственная решетка регулярного
типа выполнена из деревянных поставленных V-образно взаимозаменяемых раскосов, верхний
пояс соединен по концам с нижним поясом раскосами через опорные узлы. Нижние узлы крайних
и средних раскосов соединены между собой металлическим элементом нижнего пояса, средний
элемент нижнего пояса выполнен из круглой стали, также в ферму введены крайние стальные
стержни нижнего пояса, имеющие по концам V-образное разветвление и напрямую соединяющие
опорные узлы со средним стальным элементом нижнего пояса [1]
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 46
Рис. 1. Блок ферма пролетом 18м
Структурное покрытие представляет собой совокупность одиночных блок-ферм связанных
между собой в узлах примыкания раскосов решетки к верхнему поясу и установки
дополнительных затяжек между узлами раскосов, что позволяет комбинировать структурные
покрытия различных пролетов.
С помощью программного комплекса SCAD v.11.5, реализующий конечно-элементное
моделирование были проведены расчеты различных вариантов структур пролетами 6, 9, 12, и 15
метров. Расчет структурной конструкции блок-фермы проводился на основное сочетание нагрузок,
состоящее из постоянных и кратковременных нагрузок. На основе полученных результатов расчета
составлена сводная таблица усилий и напряжений различных элементов структурного покрытия
(таблица 1).
Таблица 1 – Таблица усилий и напряжений
Пролет
Мах.сжимающие Мах.растягивающе
структур усилие раскоса, е усилие раскоса,
ы
кН (напряжение кН
МПа)
(напряжение МПа)
6
120,15 (7,68)
99,06 (6,34)
9
183,95 (11,16)
159,9 (10,23)
12
254,1 (15,56)
215,47 (12,73)
15
296,77 (18,99)
264,35 (13,79)
Мах.усилие в затяжке, Мах.перемещение, мм
кН (напряжение МПа)
244,58 (240,4)
280,36 (275,58)
331,54 (325,88)
398,92 (392,12)
46,03
57,44
73,34
98,26
Проведенный анализ структурных покрытия пролетами 6, 9, 12, 15 метров показывает, что
более оптимально конструкция работает при относительно небольших пролетах. Увеличение
пролета структуры приводит к увеличению напряжений и деформаций конструкции.
Использование структурных покрытий больших пролетов приводят к значительному повышению
собственного веса конструкции и нерациональному использованию материала. Наиболее
оптимальным вариантом структурного покрытия является пролет структуры 18 х 9 метров (рис 2.).
Предлагаемая конструкция представляет собой структуру образованную посредством
соединения отдельных блок-ферм, размерами в плане 18х9м, в единый конструктивный элемент
покрытия шарнирно опертый по углам.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 47
Рис. 2 Структурное покрытие размерами 18 х 9 метров
В настоящее время проводится работа по дальнейшему решению задачи применения
металлодеревянных структурных покрытий в условиях повышенной сейсмической опасности.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Инжутов И.С.; Деордиев С.В.; Дмитриев П.А.; Енджиевский З.Л.; Чернышов С.А Патент
на изобретение № 2136822 от 10.09.1999 г.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 48
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 49
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 50
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 51
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 52
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 53
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 54
Д
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 55
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 56
Рис Показано: УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С
НИЖНИМ ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОКФЕРМЫ ПОКРЫТИЯ фрагментов, узлов упругопалстического сдвигового компенсатора, для армейского сбороноразборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров , ширина проезжей
части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с применением
замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ
"Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным
настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60
метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно
напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС
А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 с использованием 3D -модель конечных
элементов в ПK SCAD № 576 от 16.12.2022
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 57
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 58
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 59
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 60
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 61
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 62
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 63
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 64
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 65
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 66
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 67
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 68
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 69
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 70
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 71
Основанием для лабортарных испатений узлов и фрагменто надвижного мосоа послужил
ПРЯМОЙ УПРУГОПЛАТИЧЕСКИЙ РАСЧЕТ ПРОЛЕТНЫХ СТРОЕНИЙ
ЖЕЛЕЗНОДОРОЖНОГО МОСТА С БОЛЬШИМИ ПЕРЕМЕЩЕНИЯМИ НА
ПРЕДЕЛЬНОЕ РАВНОВЕСИЕ И ПРИСПОСОБЛЯЕМОСТЬ , НА ПРИМЕРЕ БЫСТРО
СОБИРАЕМОГО АМЕРИКАНСКОГО МОСТА, ДЛЯ ПЕРЕПРАВЫ ЧЕРЕЗ РЕКУ СУОН
В ШТАТЕ МОНТАНА, СКОНСТРУИРОВАННОГО СО ВСТРОЕННЫМ БЕТОННЫМ
НАСТИЛОМ, С ИСПОЛЬЗОВАНИЕМ УПРУГОПЛАСТИЧЕСКИХ ПРОЛЕТНЫХ
СТРОЕНИЙ МОСТА, СКРЕПЛЕННЫХ БОЛТОВМИ СОЕДЕИНЯИМИ, С
ДИАГОНАЛЬНЫМИ НАТЯЖНЫМИ РАСКОСАМИ, ВЕРХНЕГО И НИЖНЕГО ПОЯСА
УДК 69.059.22
Уздин Александр Михайлович ПГУПС проф. дтн: uzdin@mail.ru
Мажиев Хасан Нажоевич Президент организации «Сейсмофонд» при CПб ГАСУ ИНН:
2014000780 E-Mail: 89219626778@mail.ru т/ф (812) 694-78-10, ( 921) 962-67-78, Коваленко Елена
Ивановна - заместитель Президента организации "Сейсмофонд" при СПб ГАСУ
fax8126947810@gmail.com
(996) 798-26-54. Коваленко Александр Ивановича - зам .Президент организации "Сейсмофонд"
при СПб ГАСУ. ОГРН: 1022000000824. t9516441648 @gmail.com тел ( 951) 644-16-48
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 72
Рис. 1. Пролетное строение из упруго пластинчатых балок, через реку Суон, штат Монтана, США
построенное в 2017 по изобретениям проф дтн Уздина А.М
Рис. 1. Пролетное строение из упруго пластинчатых балок, через реку Суон, штат Монтана, США
построенное в 2017 по изобретениям проф дтн Уздина А.М
Ключевые слова: Сборно-разборные мосты, временные мосты, быстровозводимые мосты,
мостовые сооружения, мостовые конструкции, реконструкция мостов.
В данной работе описывается разработанный авторами прямой метод упругопла- стического
анализа стальных пространственных ферм в условиях больших перемещений, для ускоренного
монтажа временной надвижки длиной 60 метров шириной 3 метра упругопластинчетых
пространственных пролетных ферм быстро -собираемого моста с применением замкнутых
гнутосварных профилей прямоугольного сечения типа "Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих элементов и элементов проезжей части
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 73
пролетного надвижного строения моста с быстросъмеными упруго пластическими
компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое фрикционно подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от -7.06.2018 ФИПС
заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и приспособляемость с учетом больших
перемещений за счет использования медной обожженной гильзы, бронзовой втулки, тросовой
гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2010136746,
2550777, 165076, 1760020, 154506
За основу был принят инкрементальный метод геометрически нелинейного анализа
пространственных ферм, разработанный ранее одним из авторов, и выполнена его модификация,
позволяющая учесть текучесть и пластические деформации в стержнях ферм. Предложенный
метод реализован в виде программного приложения на платформе Java. При помощи этого
приложения выполнен ряд примеров, описанных в данной работе. Приведенные примеры
демонстрируют, что прямой расчет пространственных ферм на пластическое предельное
равновесие и приспособляемость при больших перемещениях может быть успешно реализован в
программе. Алгоритмы охватывают широкий спектр упругопластического поведения фермы:
упругую работу, приспособляемость, прогрессирующие пластические деформации и разрушение
при формировании механизма. Программное приложение может быть использовано в качестве
тестовой платформы для исследования упругопластического поведения ферм и как инструмент
для решения прикладных задач.
КЛЮЧЕВЫЕ СЛОВА: стальная ферма, большие перемещения, пластичность, для ускоренного
монтажа временной надвижки длиной 60 метров шириной 3 метра упругопластинчетых
пространственных пролетных ферм быстро -собираемого моста с применением замкнутых
гнутосварных профилей прямоугольного сечения типа "Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих элементов и элементов проезжей части
пролетного надвижного строения моста с быстросъмеными упруго пластическими
компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое фрикционно подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от -7.06.2018 ФИПС
заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и приспособляемость с учетом больших
перемещений за счет использования медной обожженной гильзы, бронзовой втулки, тросовой
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 74
гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2010136746,
2550777, 165076, 1760020, 154506
1. Теоретические основы расчета на пластическое предельное равновесие и приспособляемость
Деформации и устойчивость стальных конструкций зависят от геометрической и физической
нелинейности их поведения. При больших перемещениях конструкции условия равновесия и
зависимости «перемещения-деформации» нелинейны. Если материал в отдельных частях
конструкции достигает предела текучести, то изменяются соотношения «напряжениядеформации», а также отношения жесткостей элементов конструкции, и в ней могут
образовываться механизмы. Данная статья посвящена анализу таких конструкций при помощи
компьютерных моделей и для ускоренного монтажа временной надвижки длиной 60 метров
шириной 3 метра упругопластинчетых пространственных пролетных ферм быстро собираемого моста с применением замкнутых гнутосварных профилей прямоугольного сечения
типа "Молодечно! ( серия 1.460-3-14 ГПИ "Ленпроектстальконструкция" для системы несущих
элементов и элементов проезжей части пролетного надвижного строения моста с
быстросъмеными упруго пластическими компенсаторами ( заявка на изобретение:
"Антисейсмическое фланцевое фрикционно -подвижное соединение для трубопроводов " №
2018105803 F16L 23/02 от -7.06.2018 ФИПС заявитель СПб ГАСУ ) , со сдвиговой фрикционо
-демпфирующей жесткостью, приспособленных на предельную нагрузку и приспособляемость
с учетом больших перемещений за счет использования медной обожженной гильзы, бронзовой
втулки, тросовой гильзы стального троса в полимерной оплетке или фрикци-болта с забитым
медным обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2010136746,
2550777, 165076, 1760020, 154506
Теоретические основы расчета на предельную пластическую нагрузку и приспособляемость
изложены в сопутствующей статье [1]. Показано, что при малых перемещениях такие задачи
традиционно решаются при помощи методов оптимизации. При использовании методов
оптимизации, рассматривается последовательность статически возможных состояний
конструкции и определяется максимальный коэффициент нагружения, называемый
коэффициентом надежности приспособляемости. Альтернативно, может быть рассмотрена
последовательность кинематически возможных перемещений конструкции и определен
минимальный коэффициент нагружения.
В прямом методе расчета, излагаемом в данной работе, удовлетворяются как статические, так
и кинематические условия, и оптимизация не требуется. Прямой метод требует расчета
последовательности конфигураций конструкции, так как при наступлении пластичности ее
жесткость изменяется. Если какой-то из стержней фермы достигает пластического состояния
или наоборот, если стержень восстанавливает упругое состояние при разгрузке, должно быть
выполнено переформирование и разложение матрицы жесткости системы. На начальных этапах
развития теории предельного пластического равновесия и приспособляемости мощности
компьютеров не соответствовали объему вычислений прямого метода. В связи с этим,
предпочтение отдавалось методам, основанным на теории оптимизации, для которых был
разработан ряд теорем.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 75
Все теоремы оптимизации, рассмотренные в [1] основаны на линейной суперпозиции нагрузок при
формировании их сочетаний. Если поведение конструкции геометрически нелинейно, то
суперпозиция нагрузок неправомерна. В этом случае теоремы теряют справедливость, и
оптимизационный подход не может быть использован для анализа приспособляемости.
При современном уровне развития компьютеров преимущество непрямого оптимизационного
подхода становится спорным даже для задач с малыми перемещениями. В представленной
работе поставлена задача оценить возможность использования прямого метода
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 76
упругопластического расчета для практических инженерных задач расчета стальных
пространственных ферм.
Инкрементальный метод геометрически нелинейного анализа пространственных ферм, который
использован в настоящем исследовании, был описан в ряде публикаций [2-7], и поэтому в данной
статье не представлен. Авторами статьи была выполнена модификация этого метода,
позволяющая учесть текучесть и пластические деформации в стержнях ферм.
2. Упругопластическое поведение стального стержня для ускоренного монтажа временной
надвижки длиной 60 метров шириной 3 метра упругопластинчетых пространственных
пролетных ферм быстро -собираемого моста с применением замкнутых гнутосварных
профилей прямоугольного сечения типа "Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих элементов и элементов проезжей части
пролетного надвижного строения моста с быстросъмеными упруго пластическими
компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое фрикционно подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от -7.06.2018 ФИПС
заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и приспособляемость с учетом больших
перемещений за счет использования медной обожженной гильзы, бронзовой втулки, тросовой
гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2010136746,
2550777, 165076, 1760020, 154506
Ускоренный способ надвижки американского автомобильного быстро-собираемого моста (
длиной 205 футов = 60 метров ) в штате Монтана ( США ) ,для переправы через реку Суон в
2017 сконструированного со встроенном бетонным настилом в полевых условиях с
использованием упруго пластических стальных ферм, скрепленных ботовыми соединениями
между диагональными натяжными элементами верхнего и нижнего пояса пролетного строения
моста, с экономией строительным материалов до 26 %
Аннотация. В статье приведен краткий обзор характеристик существующих временных
мостовых сооружений, история создания таких мостов и обоснована необходимость
проектирования универсальных быстровозводимых мостов построенных в штате Монтана через
реку Суон в США
Стальные ферменные мосты являются эффективным и эстетичным вариантом для пересечения
автомобильных дорог. Их относительно небольшой вес по сравнению с пластинчато-балочными
системами делает их желательной альтернативой как с точки зрения экономии материалов, так и с
точки зрения конструктив-ности. Прототип сварной стальной фермы, сконструированной со
встроенным бетонным настилом, был предложен в качестве потенциальной альтернативы для
проектов ускоренного строительства мостов (ABC) в Монтане. Эта система состоит из сборноразборной сварной стальной фермы, увенчанной бетонным настилом, который может быть отлит
на заводе-изготовителе (для проектов ABC) или в полевых условиях после монтажа (для обычных
проектов). Чтобы исследовать возможные решения усталостных ограничений некоторых сварных
соединений элементов в этих фермах, были оценены болтовые соединения между диагональными
натяжными элементами и верхним и нижним поясами фермы. В этом исследовании для моста со
стальной фермой, скрепленной болтами /сваркой, были оценены как обычная система настила на
месте, так и ускоренная система настила моста (отлитая за одно целое с фермой). Для более
точного расчета распределения нагрузок на полосу движения и грузовые автомобили по отдельным
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 77
фермам была использована 3D-модель конечных элементов. Элементы фермы и соединения для
обоих вариантов конструкции были спроектированы с использованием нагрузок из комбинаций
нагрузок AASHTO Strength I, Fatigue I и Service II. Было проведено сравнение между двумя
конфигурациями ферм и длиной 205 футов. пластинчатая балка, используемая в ранее
спроектированном мосту через реку Суон. Оценки материалов и изготовления показывают, что
стоимость традиционных и ускоренных методов строительства на 10% и 26% меньше,
соответственно, чем у пластинчатых балок, предназначенных для переправы через реку Суон.
Специальные технические условия надвижки пролетного строения из стержневых
пространственных структур с использованием рамных сбороно-разборных конструкций с
использованием замкнутых гнутосварных профилей прямоуголного сечения, типа "Молодечно"
(серия 1.460.3-14 ГПИ "Ленпроектстальконструция"), МАРХИ ПСПК", "Кисловодск" ( RU 80471
"Комбинированная пространсвенная структура" ) на фрикционно -подвижных соедеиний для
обеспечения сейсмостойкого строительства железнодорожных мостов в Киевской Руси https://pptonline.org/1148335
Предпосылкой для необходимости проектирования новой временной мостовой конструкции
послужили стихийные бедствия в ДНР, ЛНР во время специальной военной операции на Украине
в 20222012 г., где будут применены быстровозводимых сооружений, что могло бы значительно
увеличить шансы спасения человеческих жизней.
Разработанную, в том числе автором, новую конструкцию моста, можно монтировать со скорость
не менее 25 метров в сутки без применения тяжелой техники и кранов и доставлять в любой
пострадавший район воздушным транспортом. Разрезные пролетные строения могут достигать в
длину от 3 до 60 метров, при этом габарит пролетного строения так же варьируется. Сечение моста
подбирается оптимальным из расчета нагрузка/количество металла.
Рис. 2. Пролетное строение из упруго пластинчатых балок, через реку Суон, штат Монтана, США
построенное в 2017 по изобретениям проф дтн Уздина А.М
На настоящий момент построена экспериментальная модель моста в штате Минесота , через реку
Суон. Американской стороной проведены всесторонние испытания, показавшие высокую
корреляцию с расчетными значениями (минимальный запас 4.91%). Мостовое сооружение не
имеет аналогов на территории Российской Федерации.
На конструкцию армейского моста получен патенты №№ 1143895, 1168755, 1174616, 168076,
2010136746.
Доработан авторами , в том числе авторами способ бескрановой установки надстройки опор при
строительстве временного железнодорожного моста № 180193 со сборкой на фланцевых
фрикционно-подвижных соединениях проф дтн А.М.Уздина для сборно-разборного
железнодорожного моста демпфирующего компенсатора гасителя динамических колебаний и
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 78
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011
SCAD п.7.1.1 сдвиговая с учетом действий поперечных сил ) антисейсмическое фланцевое
фрикционное соединение для сборно-разборного быстрособираемого железнодорожного моста
из стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м с
применением замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно»
(серия 1.460.3-14 ГПИ «Ленпроект-стальконструкция» ) для системы несущих элементов и
элементов проезжей части армейского сборно-разборного пролетного надвижного строения
железнодорожного моста, с быстросъемными упругопластичными компенсаторами, со
сдвиговой фрикционно-демпфирующей прочностью и предназначенные для сейсмоопасных
районов с сейсмичностью до 9 баллов, серийный выпуск. В районах с сейсмичностью более 9
баллов, необходимо использование демпфирующих компенсаторов с упругопластическими
шарнирами на фрикционно-подвижных соединениях, расположенных в длинных овальных
отверстиях, с целью обеспечения многокаскадного демпфирования при импульсных
растягивающих и динамических нагрузках согласно изобретениям, патенты: №№ 1143895,
1174616, 1168755 (автор: проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 , 2550777, с
использованием сдвигового демпфирующего гасителя сдвиговых напряжений , согласно заявки
на изобретение «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА
НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных
серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий
производственных» № 2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост»
№ 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от
21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний пролетного
строения моста» № 2022115073 от 02.06.2022 ФИПС : "Огнестойкого компенсатора -гасителя
температурных напряжений" заявка № 2022104632 от 21.02.2022 , вх 009751, "Фрикционнодемпфирующий компенсатор для трубопроводов" заявка № 2021134630 от 29.12.2021,
"Термический компенсатор гаситель температурных колебаний" Заявка № 2022102937 от
07.02.2022 , вх. 006318, "Термический компенсатор гаситель температурных колебаний СПб
ГАСУ № 20222102937 от 07 фев. 2022, вх 006318, «Огнестойкий компенсатор –гаситель
температурных колебаний»,-регистрационный 2022104623 от 21.02.2022, вх. 009751, "Фланцевое
соединения растянутых элементов трубопровода со скошенными торцами" № а 20210217 от 23
сентября 2021, Минск, "Спиральная сейсмоизолирующая опора с упругими демпферами сухого
трения" № а 20210051, "Компенсатор тов. Сталина для трубопроводов" № а 20210354 от 22
февраля 2022 Минск , заявка № 2018105803 от 27.02.2018 "Антисейсмическое фланцевое
фрикционно-подвижное соединение для трубопроводов" № а 20210354 от 22.02. 2022, Минск,
"Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов №
2018105803 от 15.02.2018 ФИПС, для обеспечения сейсмостойкости сборно-разборных
надвижных армейских быстровозводимых мостов в сейсмоопасных районах в сейсмичностью
более 9 баллов
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 79
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 80
Рис. 3. Показано пролетное строение из упруго пластинчатых балок, через реку Суон, штат
Монтана, США
В результате стихийных бедствий (наводнение, сход сели, землетрясение, техногенная
катастрофа), военных или других чрезвычайных ситуаций происходит разрушение мостов и
путепроводов. Разрыв транспортных артерий существенно осложняет оказание помощи
пострадавшим местам. Максимально быстрое возобновление автомобильного и железнодорожного
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 81
движения является одной из главных задач восстановления жизнеобеспечения отрезанных стихией
районов. Мостовой переход - это сложное инженерное сооружение, состоящее из отдельных
объектов (опор, пролетных строений, эстакад, подходных насыпей и т.д.), капитальный ремонт или
новое строительство которых может длится годы. Поэтому в экстренных случаях используют
временные быстровозводимые конструкции, монтаж которых занимает всего несколько суток, а
иногда и часов. Последовательно рассмотрим существующие варианты восстановления мостового
перехода.
В исключительных случаях, при возникновении чрезвычайной ситуации могут сооружать
примитивные мосты, например, срубив дерево и опрокинув его на другой берег. На рисунке 1.
показан такой способ переправы, мост через реку Суон США , штат Монтана.
Примитивные мосты - это и подвесные мосты, сооруженные из подручных материалов.
Сплетенные из лиан и других ползучих растений веревки натягивают через ущелье, горный поток
или овраг, пространство между ними застилают или досками.. Ненадежность конструкции, низкая
грузоподъёмность все это практически исключает примитивные мосты для серьезного
использования при ликвидации последствий стихийных бедствий.
Самым распространенным и самым быстрым способом устройства мостового перехода на
сегодняшний день является наведение понтонной переправы. Для её монтажа требуется доставить
понтоны к месту строительства и спустить на воду, после чего происходит их объединение.
Плавучие элементы несут нагрузку за счет герметично устроенного корпуса.
Также возникают проблемы в организации такой переправы на быстротоках и мелководье. Для
доставки и монтажа требуется мощная, как правило, венная техника.
Дешевой и быстровозводимой разновидностью понтонных мостов через водную преграду
являются понтонно-модульные платформы. На каждой платформе предусмотрены специальные
проушины, которые позволяют собирать конструкцию любого габарита и любой длины.
Существенный недостаток этих мостов - низкая грузоподъемность. Максимальная нагрузка на
пластиковый модуль не превышает 400 кгс/м2. Применение таких мостов оправдано для переправы
людей в экстренных ситуациях, а так же для устройства причалов или плавучих ферм.
В основном, существующие в Российской Федерации временные сборно-разборные мостовые
переходы разработаны еще во времена СССР и «морально» устарели. Их конструкции, как
правило, не универсальны, т.е. неизменны по длине и величине пропускаемой нагрузки.
Максимальная длина одного балочного разрезного пролетного строения составляет 33 метра.
Пролетное строение моста через реку Суон 60 метров в Монтане США . Это влечет
необходимость устройства промежуточных опор при перекрытии широких препятствий, что не
всегда возможно и занимает дополнительное время. У всех рассмотренных сборно-разборных
конструкций невозможна оптимизация сечений элементов в зависимости от массы пропускаемой
нагрузки. Единственным решением, которое смогло исключить этот недостаток, является
разрезное пролетное строение с двумя решетчатыми фермами (патент РФ №2010136746, 1143895,
1168755, 1174616, 2550777, 165076, ). В конструкции этого моста имеется два варианта
грузоподъемности: обычный и повышенный. Для монтажа практически всех без исключения
существующих решений временных сооружений необходимо применение тяжелой техники и
большого числа монтажников. Соответственно, даже при возможности быстрого монтажа самой
конструкции, доставка в район постройки необходимой техники займет много времени. Целью
данного исследования является обеспечение возобновление пешеходного, автодорожного или
железнодорожного движения в зоне стихийного бедствия в кратчайшие сроки за счет применения
при временном восстановлении мостовых сооружений универсальной, сборно-разборной
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 82
конструкции временного моста.
7. Заключение
Примеры, приведенные в данной статье, демонстрируют, что прямой расчет
пространственных ферм на пластическое предельное равновесие и приспособляемость при
больших перемещениях может быть успешно реализован в программе. Алгоритмы охватывают
широкий спектр упругопластического поведения фермы: упругую работу, приспособляемость,
прогрессирующие пластические деформации и разрушение при формировании механизма.
Полный набор результатов расчета включает переменные состояния узлов и стержней на всех
шагах нагружения всех шагов по времени во всех циклах для всех коэффициентов надежности и
является чрезвычайно объемным. Так как состояние стержня не изменяется на шаге нагружения,
на печать выводятся лишь каждое изменение состояния каждого стержня фермы. Эта
детальная информация позволяет выполнить тщательный анализ поведения конструкции.
Разработанное программное приложение позволяет определять последовательность, в
которой стержни достигают текучести, величину нагрузки, при которой это происходит,
накопление пластических деформаций в стержнях, остаточные напряжения в стержнях, а
также перемещения узлов при знакопеременной пластичности. Оно может быть использовано в
качестве тестовой платформы для исследования упругопластического поведения ферм и как
инструмент для решения многих прикладных задач.
Рис. 11. История перемещений узлов n5 и щ3 при коэффициенте X= 4,22656
Время, требуемое для расчета описанной выше двухпролетной фермы при 25 бисекциях и
максимальном количестве циклов для каждой бисекции равном 24, составляет 5 секунд для
стандартного портативного компьютера. Требуемое время зависит в основном от времени,
затрачиваемого на составление и решение систем уравнений. Ожидаемое время расчета
аналогичной фермы с 300 узлов - менее 1 часа. Для инженерной точности расчета время может
быть сокращено до 30 минут. Задачи большей размерности могут решаться на компьютерах
большей производительности, в том числе вычислительных кластерах.
Литература
1. Хейдари А., Галишникова В.В. Аналитический обзор теорем о предельной нагрузке и
приспособляемости в упругопластическом расчете стальных конструкций // Строительная
механика инженерных конструкций и сооружений.- 2014.- № 3. - С. 318.
2. Галишникова В.В. Вывод разрешающих уравнений задачи геометрически нелинейного
деформирования пространственных ферм на основе унифицированного подхода // Вестник
ВолгГАСУ, серия: Строительство и архитектура. - Волгоград, 2009.-Вып. 14(33). - С. 39-49.
3. Галишникова В.В. Постановка задачи геометрически нелинейного деформирования
пространственных ферм на основе метода конечных элементов // Вестник ВолгГА- СУ, серия:
Строительство и архитектура. - Волгорад, 2009. -Вып.14(33). - С. 50-58.
4. Галишникова В.В. Модификация метода постоянных дуг, основанная на использовании
матрицы секущей жесткости // Вестник МГСУ. - Москва, 2009. №2. - С. 63-69.
5. Галишникова В.В. Конечно-элементное моделирование геометрически нелинейного поведения
пространственных шарнирно-стержневых систем // Вестник гражданских инженеров
(СПбГАСУ). - СПб, 2007. -№ 2(11). - С. 101—106.
6. Галишникова В.В. Алгоритм геометрически нелинейного расчета пространственных
шарнирно-стержневых конструкций на устойчивость // МСНТ «Наука и технологии»: Труды
XXVII Российской школы. - М.: РАН, 2007. - С. 235—244.
7. Галишникова В.В. Обобщенная геометрически нелинейная теория и численный анализ
деформирования и устойчивости пространственных стержневых систем. Диссертация на
соискание ученой степени доктора технических наук. -М.: МГСУ, 2011.
Refeгences
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 83
1. Heidari, А, Galishnikova, VV. (2014). A Review of Limit Load and Shakedown Theorems for the
Elastic-Plastic Analysis of Steel Structures.Structural Mechanics of Engineering Constructions and
Buildings, № 3, 3-18.
2. Galishnikova, VK(2009). Derivation of the governing equations for the problem of geometrically
nonlinear deformation of space trusses on the basis of unified approach. J. of Volgograd State University
for Architecture and Civil Engineering.Civil Eng. & Architecture, 14(33), 39-49 (in Russian).
3. Galishnikova, VV. (2009). Finite element formulation of the problem of geometrically nonlinear
deformations of space trusses. Journal of Volgograd State University for Architecture and Civil
Engineering.Civil Eng. & Architecture, 14(33), 50-58 (in Russian).
4. Galishnikova, VV. (2009). Modification of the constant arc length method based on the secant matrix
formulation. Journal of Moscow State University of Civil Engineering, №2, 63-69 (in Russian).
5. Galishnikova, VV. (2007). Finite element modeling of geometrically nonlinear behavior of space
trusses. Journal of Civil Engineers. Saint-Petersburg University if Architecture and Civil Engineering,
2(11), 101—106 (in Russian).
6. Galishnikova, VV. (2007). Algorithm for geometrically nonlinear stability analysis of space trussed
systems. Proceedings of the XXVII Russian School "Science and Technology". Moscow: Russian Academy
of Science, 235-244 (in Russian).
7. Galishnikova VV. (2011). Generalized geometrically nonlinear theory and numerical deformation
and stability analysis of space trusses.Dissertation submitted for the degree of Dr. of Tech. Science.
Moscow State University of Civil Engineering, 2011.
DIRECT ELASTIC-PLASTIC LIMIT LOAD AND SHAKEDOWN ANALYSIS OF STEEL SPACE TRUSSES
WITH LARGE DISPLACEMENTS
A. Heidari, V.V. Galishnikova
Peoples Friendship University of Russia, Moscow
A direct method for elastic-plastic limit load and shakedown analysis of steel space trusses with large
displacements is treated in this paper. The incremental method for the geometrically nonlinear analysis of
space trusses, developed by one of the authors was modified to account for yielding and plastic strains in
the bars of the truss. The new method has been implemented in computer software. The examples in this
paper show that the direct analysis of space trusses with large displacements can be implemented
successfully for both the limit and the shakedown analysis of space trusses on the Java platform. The
algorithms cover a wide range of elastic-plastic truss behavior: purely elastic behavior, shakedown,
ratcheting and collapse due to the formation of a mechanism. The sequence in which the bars yield, the
load levels at which this occurs, the accumulation of the plastic strains in the bars, the residual stresses in
the bars and the node displacements during ratcheting can all be evaluated. The computer application is
therefore suitable as a test platform for elastic-plastic truss behavior. It can be applied to many other
problems of elastic-plastic space truss analysis.
KEY WORDS: steel space trusses, large displacements, plasticity, limit analysis, shakedown.
Строительная механика инженерных конструкций и сооружений, 2014, № 3
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 84
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 85
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 86
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 87
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 88
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 89
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 90
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 91
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 92
Соглано проведенным выше испытаниям в СПб ГАСУ следует, что такая мостовая
конструкция должна соответствовать следующим современным требованиям соглано
лабораторным испытаниям фрагментов, узлов упругопалстического сдвигового компенсатора, для армейского
сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров , ширина
проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ
"Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным
настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60
метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно
напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС
А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и изобртений Красноярского ГАСУ
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 93
№№ 228415, 2503783, 2247813, и Казанского ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD
:
1. Максимальная длина пролетного строения не менее требованиям соглано лабораторным
испытаниям для армейского сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6 метров,
9 метров, 12 метров , ширина проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда
по мосту - 4 км/час ), с применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" (
серия 1.460.314 ГПИ "Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со
встроенным бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон ,
длиной 205 футов (60 метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет
предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн
ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и изобртений Красноярского
ГАСУ №№ 228415, 2503783, 2247813, и Казанского ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD
, ширина проезжей части 3,0 метра , максимальная длина 12 метров, однопутный , армейский для
ДНР, ЛНР ;
2. Длина пролета должна быть переменной и кратной 3 метрам для случая его использования на
сохранившихся опорах капитального моста;
3. Максимальный вес любого элемента пролетного строения, не должен превышать одной тонны,
что позволит ограничиться легким крановым оборудованием;
4. Конструкция пролетного строения должна обеспечивать возможность изменять его
геометрические характеристики, определяющие его несущую способность, в зависимости от массы
и габарита пропускаемой нагрузки;
5. Продолжительность монтажа пролетных строений для малых и средних мостов не должна
превышать 2-3 суток, что соответствует скорости его монтажа примерно 25 метров в сутки;
6. Конструкция должна обеспечивать многократность применения;
7. Время доставки конструкций моста в любую точку России не должно превышать одних суток.
С учетом всех вышеперечисленных требований, были разработаны конструкция и технология
сооружения временного моста, названного УЗДИН, по аналогу моста ТАЙПАН. Основная идея
состоит в том, что мост собирают подобно конструктору из отдельных элементов (панель,
поперечная балка, ортотропная плита, опорная стойка) максимальной массой 800 кг и габаритом
3,00 х 1,50 х 0,12 м. Ортотропные плиты проезда покрыты полимерным материалом,
обеспечивающим надежное сцепление колес автомобиля с проезжей частью.
Сборка не требует применения спецтехники: собирается жесткий каркас посредством
различных сборно-разборных соединений. При отсутствии опор, либо при невозможности их
устройства (в случае, когда необходим максимально быстрый монтаж конструкции), фундаментом
могут служить любые близлежащие бетонные блоки, при достаточности их размеров.
Отдельные конструктивные элементы пролетного строения и общий вид моста приведены на
рисунке 7. На конструкцию моста получен патент №137558, кл. E01D 15/133 от 20.02.2014 года.
Применение коротких блоков позволяет получить мосты практически любой длины, как с
разрезными, так и неразрезными балочными пролетными строениями, рассчитанными на пропуск
автомобильной нагрузки А11 и Н11 или колонны танков массой до 70 тонн каждый.
Промежуточные опоры собирают из тех же элементов, что и пролетное строение. В качестве
фундамента и устоев могут быть использованы любые бетонные блоки или бескрановая установка
надстроечных опор по изобретению № 180193 .
Сборка пролетного строения происходит на берегу соединением элементов жесткого
каркаса шплинтами, в необходимых случаях с применением легкого кранового оборудования автомобиля с гидроманипулятором (самопогрузчик). По предварительным оценкам скорость
монтажа составит не менее 25 метров в сутки. После сборки пролетного строения производят его
надвижку в русло. При надвижке необходимо использовать аванбек, который позволяет отказаться
от противовеса. Надвижку осуществляет либо группа людей (например, рота солдат), либо
бульдозер, толкающий пролетное строение.
Предельные автомобильно-дорожные нагрузки А11 и Н11 (одиночная нагрузка 80 тонн: 4 оси
по 20 тонн) . При тех же характеристиках, грузоподъемность моста достаточна для пропуска
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 94
колонны танков до 50 тонн каждый.
Все элементы моста типовые и схемы сооружений отличаются большим или меньшим их
количеством. Основными несущими элементами являются панели размером 3х1.5 метра, которые
связывают между собой при помощи шарнирных соединений - пинов, а левый и правый пояса
моста объединяют поперечными балками. Таким образом, можно оптимизировать конструкцию
исходя из заданых задач - длина и грузоподъемность, тем самым обеспечив рациональную
материалоемкость (меньше нагрузка - меньше металла).
Транспортировку элементов можно выполнять автомобилями или по железной дороге.
Доставка конструкций моста в труднодоступные районы может быть осуществлена по воздуху в
контейнерах, так как это показано на рисунке 10.
Материалы лабораторным испытаниям
фрагментов, узлов упругопалстического сдвигового компенсатора, для
армейского сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров ,
ширина проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ
"Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным
настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60
метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно
напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС
А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и изобртений Красноярского ГАСУ
№№ 228415, 2503783, 2247813, и Казанского ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD ,
хранятся в библиотеке СПб ГАСУ 190005, 2-я Красноармейская дом 4 6947810@mail.ru
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 95
Рис. 6.
Пролетное строение из упруго пластинчатых балок, через реку Суон, штат Монтана,
США
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 96
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 97
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 98
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 99
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 100
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 101
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 102
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 103
Рис. 3. Проверка при лабораторных испытаниях в СПб ГАСУ ,
состояния стержня в конце цикла итерации, для ускоренного
монтажа временной надвижки длиной 12 метров
шириной
3 метра упругопластинчетых
пространственных пролетных ферм быстро собираемого моста с применением замкнутых
гнутосварных профилей прямоугольного сечения типа
"Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих
элементов и элементов проезжей части пролетного
надвижного строения моста с быстросъмеными упруго
пластическими компенсаторами ( заявка на изобретение:
"Антисейсмическое фланцевое фрикционно -подвижное
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 104
соединение для трубопроводов " № 2018105803 F16L
23/02 от -7.06.2018 ФИПС заявитель СПб ГАСУ ) , со
сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и
приспособляемость с учетом больших перемещений за
счет использования медной обожженной гильзы,
бронзовой втулки, тросовой гильзы стального троса в
полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в
стальной шпильке стягивающего -контрольным
натяжением болта, расположенного в длинных овальных
отверстиях , согласно изобретениям проф ПГУПС
А.М.Уздина №№ 1143895Ю 1168755, 1174616,
2010136746, 2550777, 165076, 1760020, 154506
Стержень, упругий в начале шага, остается упругим в конце
шага нагружения, если абсолютное значение напряжения в нем
меньше предела текучести. В противном случае стержень в
конце шага считается достигшим текучести. Коэффициент
снижения нагрузки вычисляется следующим образом:
Рассмотрим стержень, состояние которого на шаге было
принято пластическим состоянием. Для упругой и пластической
деформаций задаются пределы погрешностей Se и ёр. Типичными
значениями пределов погрешностей можно
считать 5S = 10-10 и 5р = 10 6 . Стержень испытывает на шаге
пластическую
деформацию, если значение абсолютной величины инкремента
пластической деформации | sp| превосходит погрешность ёр. В
противном случае стержень во время шага был упругим вопреки
допущению, принятому в начале шага, и в программе
устанавливаются соответствующие флажки.
Если проверка состояния стержней в конце первого цикла
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 105
итераций показывает, что ни один их стержней не изменил
состояния, то цикл считается завершенным. Если хотя бы один
из стержней перешел в упругое состояние, шаг нагружения
повторяется с использованием новых состояний стержней.
В противном случае хотя бы один из стержней перешел в
пластическое состояние, и вычисляется наименьший
коэффициент редуцирования rmm. Пробное состояние
масштабируется при помощи этого коэффициента, и цикл
завершается.
В начале второго и всех последующих циклов итераций на шаге
нагруже- ния, состояние стержня принимается равным его
состоянию в конце предыдущего цикла. Вычисляется матрица
секущей жесткости для текущих инкрементов перемещений и
состояния стержней. Процедура продолжается так же, как и в
предыдущем цикле. Итерации на шаге нагружения завершаются,
когда норма погрешности пробного решения становится меньше
заданного предельного значения. Пошаговое нагружение
завершается, когда достигается предельная нагрузка или когда
выполняется заданное число шагов нагружения. Предельная
нагрузка считается достигнутой, когда максимальное заданное
число делений длины хорды в методе постоянных дуг не
приводит к формированию положительно определенной
матрицы секущей жесткости или к сходимости метода для
пробного состояния фермы на шаге нагружения.
4. При лабортарных испытаниях в СПб ГАСУ проводился расчет двухпролетной фермы на
предельную нагрузку Данный пример демонстрирует применение прямого метода расчета на
предельную пластическую нагрузку, описанного в разделе 3, к анализу двухпролетной фермы, для
ускоренного монтажа временной надвижки длиной 60 метров шириной 3 метра
упругопластинчетых пространственных пролетных ферм быстро -собираемого моста с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно! (
серия 1.460-3-14 ГПИ "Ленпроектстальконструкция" для системы несущих элементов и
элементов проезжей части пролетного надвижного строения моста с быстросъмеными упруго
пластическими компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое
фрикционно -подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от 7.06.2018 ФИПС заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 106
жесткостью, приспособленных на предельную нагрузку и приспособляемость с учетом
больших перемещений за счет использования медной обожженной гильзы, бронзовой втулки,
тросовой гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2010136746,
2550777, 165076, 1760020, 154506
Рис. 4. При лаборотрных испытаниях в СПб ГАСУ исползовался американский аналог моста
Bailie bridge его аксонометрическую проекцию двухпролетной фермы (диагонали на показаны)
для ускоренного монтажа временной надвижки длиной 60 метров шириной
3 метра
упругопластинчетых пространственных пролетных ферм быстро -собираемого моста с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно! (
серия 1.460-3-14 ГПИ "Ленпроектстальконструкция" для системы несущих элементов и
элементов проезжей части пролетного надвижного строения моста с быстросъмеными упруго
пластическими компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое
фрикционно -подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от 7.06.2018 ФИПС заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей
жесткостью, приспособленных на предельную нагрузку и приспособляемость с учетом
больших перемещений за счет использования медной обожженной гильзы, бронзовой втулки,
тросовой гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2010136746,
2550777, 165076, 1760020, 154506
Узлы и фрагнетиы испытвались при испвтаниях в СПб ГАСУ конструкций фермы состоит из
четырех поясов, крестовой решетки и вертикальных связей-диафрагм, установленных в каждой
панели длиной 2 м. Площади сечения элементов поясов и диагональных элементов равны 0,0008
м2; площади сечения вертикальных и горизонтальных элементов связей - 0,0006м2. Опоры в
середине длины фермы представляют собой неподвижные шарниры (перемещения по трем
направлениям координационных осей равны нулю), крайние опоры - подвижные шарниры
(перемещения по направлениям осей х2и х3 равны нулю, перемещение вдоль оси x1 возможно). Все
стержни имеют пре5
2
8
2
дел текучести 2,4^10 кН/м и модуль упругости 2,1^10 кН/м . Схема нагружения состоит из двух
вертикальных сосредоточенных сил в 100 кН каждая, приложенных в средних узлах верхнего пояса
правого пролета фермы (см. рис. 4). Результаты расчета приведены на рис. 5 для грани фермы x2
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 107
= 0 с учетом симметрии задачи. Стержни, находящиеся на шаге нагружения в пластическом
состоянии, показаны на рисунке сплошной жирной линией. Стержни, достигающие предела
текучести на данном шаге, показаны жирным пунктиром. На рисунке показаны все изменения в
состояниях стержней и нагрузки, при которых они происходят. При уровне нагрузки 435,787 кН
наступает текучесть в поперечной связи между загруженными узлами, и формируется механизм
разрушения конструкции. Предельный коэффициент нагружения равен 4,542.
В протоколе отражены графики зависимости вертикальных перемещений от нагрузки для
трех свободных узлов нижнего пояса правого пролета фермы n11, n13 и n15 (см. рис. 5).
Поведение фермы остается почти линейным до уровня нагрузки около 370,0 кН, что составляет
81,5% от предельной. Время, затраченное на выполнение прямого пошагового расчета 36-узловой
фермы на предельную пластическую нагрузку, составляет долю секунды. для ускоренного
монтажа временной надвижки длиной 60 метров шириной 3 метра упругопластинчетых
пространственных пролетных ферм быстро -собираемого моста с применением замкнутых
гнутосварных профилей прямоугольного сечения типа "Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих элементов и элементов проезжей части
пролетного надвижного строения моста с быстросъмеными упруго пластическими
компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое фрикционно подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от -7.06.2018 ФИПС
заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и приспособляемость с учетом больших
перемещений за счет использования медной обожженной гильзы, бронзовой втулки, тросовой
гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777,
165076, 1760020, 154506
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 108
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 109
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 110
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 111
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 112
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 113
Рис. 6.
Пролетное строение из упруго пластинчатых балок, через реку Суон, штат Монтана,
США
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 114
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 115
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 116
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 117
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 118
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 119
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 120
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 121
Рис. 3. При лабораторных испывтаниях в СПб ГАСУ
проводилассь визуальная проверка состояния стержня в конце
цикла испытаний для ускоренного монтажа временной
надвижки длиной 60 метров шириной 3 метра
упругопластинчетых пространственных пролетных
ферм быстро -собираемого моста с применением
замкнутых гнутосварных профилей прямоугольного
сечения типа "Молодечно! ( серия 1.460-3-14 ГПИ
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 122
"Ленпроектстальконструкция" для системы несущих
элементов и элементов проезжей части пролетного
надвижного строения моста с быстросъмеными упруго
пластическими компенсаторами ( заявка на изобретение:
"Антисейсмическое фланцевое фрикционно -подвижное
соединение для трубопроводов " № 2018105803 F16L
23/02 от -7.06.2018 ФИПС заявитель СПб ГАСУ ) , со
сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и
приспособляемость с учетом больших перемещений за
счет использования медной обожженной гильзы,
бронзовой втулки, тросовой гильзы стального троса в
полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в
стальной шпильке стягивающего -контрольным
натяжением болта, расположенного в длинных овальных
отверстиях , согласно изобретениям проф ПГУПС
А.М.Уздина №№ 1143895Ю 1168755, 1174616,
2010136746, 2550777, 165076, 1760020, 154506
Стержень, упругий в начале шага, остается упругим в конце
шага нагружения, если абсолютное значение напряжения в нем
меньше предела текучести. В противном случае стержень в
конце шага считается достигшим текучести. Коэффициент
снижения нагрузки вычисляется следующим образом:
Рассмотрим стержень, состояние которого на шаге было
принято пластическим состоянием. Для упругой и пластической
деформаций задаются пределы погрешностей Se и ёр. Типичными
значениями пределов погрешностей можно
считать 5S = 10-10 и 5р = 10 6 . Стержень испытывает на шаге
пластическую
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 123
деформацию, если значение абсолютной величины инкремента
пластической деформации | sp| превосходит погрешность ёр. В
противном случае стержень во время шага был упругим вопреки
допущению, принятому в начале шага, и в программе
устанавливаются соответствующие флажки.
Если проверка состояния стержней в конце первого цикла
итераций показывает, что ни один их стержней не изменил
состояния, то цикл считается завершенным. Если хотя бы один
из стержней перешел в упругое состояние, шаг нагружения
повторяется с использованием новых состояний стержней.
В противном случае хотя бы один из стержней перешел в
пластическое состояние, и вычисляется наименьший
коэффициент редуцирования rmm. Пробное состояние
масштабируется при помощи этого коэффициента, и цикл
завершается.
При лаборатрных
испытаниях фрагментов, узлов упругопалстического сдвигового компенсатора,
для армейского сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12
метров , ширина проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4
км/час ), с применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314
ГПИ "Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным
бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205
футов (60 метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет
предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн
ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и изобртений Красноярского
ГАСУ №№ 228415, 2503783, 2247813, и Казанского ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD
Испытания проводились циклов итераций при шаговому
нагруже- ния, состояние стержня принимается равным его
состоянию в конце предыдущего цикла. Вычисляется матрица
секущей жесткости для текущих инкрементов перемещений и
состояния стержней. Процедура продолжается так же, как и в
предыдущем цикле. Итерации на шаге нагружения завершаются,
когда норма погрешности пробного решения становится меньше
заданного предельного значения. Пошаговое нагружение
завершается, когда достигается предельная нагрузка или когда
выполняется заданное число шагов нагружения. Предельная
нагрузка считается достигнутой, когда максимальное заданное
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 124
число делений длины хорды в методе постоянных дуг не
приводит к формированию положительно определенной
матрицы секущей жесткости или к сходимости метода для
пробного состояния фермы на шаге нагружения.
4.Испытание узлов и фрагментов двухпролетной фермы на
предельную нагрузку Данный пример демонстрирует применение
прямого метода расчета на предельную пластическую нагрузку,
описанного в разделе 3, к анализу двухпролетной фермы, для
ускоренного монтажа временной надвижки длиной 60
метров шириной
3 метра упругопластинчетых
пространственных пролетных ферм быстро собираемого моста с применением замкнутых
гнутосварных профилей прямоугольного сечения типа
"Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих
элементов и элементов проезжей части пролетного
надвижного строения моста с быстросъмеными упруго
пластическими компенсаторами ( заявка на изобретение:
"Антисейсмическое фланцевое фрикционно -подвижное
соединение для трубопроводов " № 2018105803 F16L
23/02 от -7.06.2018 ФИПС заявитель СПб ГАСУ ) , со
сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и
приспособляемость с учетом больших перемещений за
счет использования медной обожженной гильзы,
бронзовой втулки, тросовой гильзы стального троса в
полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в
стальной шпильке стягивающего -контрольным
натяжением болта, расположенного в длинных овальных
отверстиях , согласно изобретениям проф ПГУПС
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 125
А.М.Уздина №№ 1143895Ю 1168755, 1174616,
2010136746, 2550777, 165076, 1760020, 154506
Рис. 4. Ппоказаны узлы для исптвнеи монтажных узлов надвижки длиной 60 метров шириной
3 метра упругопластинчетых пространственных пролетных ферм быстро собираемого моста с применением замкнутых гнутосварных профилей прямоугольного сечения
типа "Молодечно! ( серия 1.460-3-14 ГПИ "Ленпроектстальконструкция" для системы несущих
элементов и элементов проезжей части пролетного надвижного строения моста с
быстросъмеными упруго пластическими компенсаторами ( заявка на изобретение:
"Антисейсмическое фланцевое фрикционно -подвижное соединение для трубопроводов " №
2018105803 F16L 23/02 от -7.06.2018 ФИПС заявитель СПб ГАСУ ) , со сдвиговой фрикционо
-демпфирующей жесткостью, приспособленных на предельную нагрузку и приспособляемость
с учетом больших перемещений за счет использования медной обожженной гильзы, бронзовой
втулки, тросовой гильзы стального троса в полимерной оплетке или фрикци-болта с забитым
медным обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2010136746,
2550777, 165076, 1760020, 154506
Конструкция фермы состоит из четырех поясов, крестовой решетки и вертикальных связейдиафрагм, установленных в каждой панели длиной 2 м. Площади сечения элементов поясов и
диагональных элементов равны 0,0008 м2; площади сечения вертикальных и горизонтальных
элементов связей - 0,0006м2. Опоры в середине длины фермы представляют собой неподвижные
шарниры (перемещения по трем направлениям координационных осей равны нулю), крайние опоры
- подвижные шарниры (перемещения по направлениям осей х2и х3 равны нулю, перемещение вдоль
оси x1 возможно). Все стержни имеют пре5
2
8
2
дел текучести 2,4^10 кН/м и модуль упругости 2,1^10 кН/м . Схема нагружения состоит из двух
вертикальных сосредоточенных сил в 100 кН каждая, приложенных в средних узлах верхнего пояса
правого пролета фермы (см. рис. 4). Результаты расчета приведены на рис. 5 для грани фермы x2
= 0 с учетом симметрии задачи. Стержни, находящиеся на шаге нагружения в пластическом
состоянии, показаны на рисунке сплошной жирной линией. Стержни, достигающие предела
текучести на данном шаге, показаны жирным пунктиром. На рисунке показаны все изменения в
состояниях стержней и нагрузки, при которых они происходят. При уровне нагрузки 435,787 кН
наступает текучесть в поперечной связи между загруженными узлами, и формируется механизм
разрушения конструкции. Предельный коэффициент нагружения равен 4,542.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 126
На рис. 6 показаны графики зависимости вертикальных перемещений от нагрузки для трех
свободных узлов нижнего пояса правого пролета фермы n11, n13 и n15 (см. рис. 5). Поведение
фермы остается почти линейным до уровня нагрузки около 370,0 кН, что составляет 81,5% от
предельной. Время, затраченное на выполнение прямого пошагового расчета 36-узловой фермы на
предельную пластическую нагрузку, составляет долю секунды. для ускоренного монтажа
временной надвижки длиной 60 метров шириной
3 метра упругопластинчетых
пространственных пролетных ферм быстро -собираемого моста с применением замкнутых
гнутосварных профилей прямоугольного сечения типа "Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих элементов и элементов проезжей части
пролетного надвижного строения моста с быстросъмеными упруго пластическими
компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое фрикционно подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от -7.06.2018 ФИПС
заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и приспособляемость с учетом больших
перемещений за счет использования медной обожженной гильзы, бронзовой втулки, тросовой
гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777,
165076, 1760020, 154506
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 127
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 128
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 129
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 130
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 131
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 132
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 133
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 134
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 135
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 136
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 137
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 138
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 139
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 140
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 141
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 142
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 143
При лаборатоных испытаниях и конструирования нагрузки
использовались , чертежи , рисунки и фигуры на полезную
модель согласно требованиям СПб ГАСУ при лабораторных испытаниях фрагментов и узлов
упругопалстического сдвигового компенсатора, для армейского сбороно- разборного пролетного надвижного строения моста
(надвижной пролет 6 метров, 9 метров, 12 метров , ширина проезжей части 3 метра , грузоподъемность однопутного моста
10-15 тонн, скорость проезда по мосту - 4 км/час ), с применением замкнутых гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.314 ГПИ "Ленпроектстальконструкция") для системы несущих элементов
плаcтинчато -балочных ферм, со встроенным бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу
переправы через реку Суон , длиной 205 футов (60 метров) в штате Монтана (США), с экономией строительных материалов
до 30 процентов, за счет предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по
изобретения проф дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и
изобртений Красноярского ГАСУ №№ 228415, 2503783, 2247813, и Казанского ГАСУ с использованием 3D -модель
конечных элементов в ПK SCAD
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 144
Антисейсмическое фланцевое фрикционное соединение для
сборно-разборного моста F 16 L 23/12
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 145
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 146
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 147
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 148
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 149
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 150
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 151
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 152
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 153
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 154
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 155
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 156
Материалы лабораторным испытаниям ,
фрагментов и узлов демпфирующего компесатора проф дтн ПГУПС
А.М.Уздина на испытание в СПб ГАСУ упругопалстического сдвигового компенсатора, для армейского сбороно- разборного
пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров , ширина проезжей части 3 метра ,
грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с применением замкнутых
гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ "Ленпроектстальконструкция")
для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным настилам ( ускоренным методом в
полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60 метров) в штате Монтана (США), с
экономией строительных материалов до 30 процентов, за счет предварительно напряжения гнутосварных замкнутых
профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616,
2010136746, 2550777, 165076, 1760020 и изобртений Красноярского ГАСУ №№ 228415, 2503783, 2247813, и Казанского
ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD, хранятся на Кафедре металлических и
деревянных конструкций 190005, Санкт-Петербург, 2-я , Красноармейская ул., д. 4, СПб ГАСУ у
заведующий кафедрой металлических и деревянных конструкций , дтн проф ЧЕРНЫХ Александр
Григорьевич строительный факультет
Альбом Специальные технические условия (СТУ) по изготовлению и монтажу
энергопоглощающего демпфирующего компенсатора для демпфирующих сдвиговых
компенсаторов согласно альбома ШИФР 1.010.1-1-2с.94 , выпуск 0-2 , 0-3 можно заказать по
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 157
89219626778@mail.ru 9967982654@mai.ru (921) 962-67-78, (966) 798-26-54
Карта Сбербанка № 2202 2006 4085 5233
т/ф (812) 694-78-10
Более подробно об использовании при лабораторных испытаниях фрагментов, узлов упругопалстического
сдвигового компенсатора, для армейского сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6
метров, 9 метров, 12 метров , ширина проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость
проезда по мосту - 4 км/час ), с применением замкнутых гнутосварных профилей прямоугольного сечения типа
"Молодечно" ( серия 1.460.314 ГПИ "Ленпроектстальконструкция") для системы несущих элементов плаcтинчато балочных ферм, со встроенным бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу переправы
через реку Суон , длиной 205 футов (60 метров) в штате Монтана (США), с экономией строительных материалов до 30
процентов, за счет предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по
изобретения проф дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и
изобртений Красноярского ГАСУ №№ 228415, 2503783, 2247813, и Казанского ГАСУ с использованием 3D -модель
конечных элементов в ПK SCAD можно связаться по тел (812) 694-7810 6947810@mail.ru
Лабортарные испытания проходили на основании выпущенных специальных технических
условий, по применения компенсатора -гасителя сдвиговых напряжений , для обеспечения
сдвиговой прочности и сейсмостойкости строительных конструкций в сейсмоопасных районах ,
сейсмичностью более 9 баллов . Серия ШИФР ТУ 8126947810 СПб ГАСУ , с использованием
изобретения Андреева Борис Александровича № 165076 «Опора сейсмостойкая» и патента №
2010136746 «Способ защиты зданий и сооружений с использованием сдвигоустойчивых и легко
сбрасываемых соединений, использующие систему демпфирования фрикционности и
сейсмоизоляцию для поглощения сейсмической энергии» и патент № 154506 «Панель
противовзрывная» для разработки и испытания на сейсмостойкость по применению
изобретения; "Огнестойкого компенсатора -гасителя температурных напряжений" ( отправлено в
ФИПС, Москва, от 14.02.2022 , для получения патента на применение огнестойкого
компенсатора -гасителя температурных напряжений , для гасителя динамических колебаний и сдвиговых
напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил
https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf для
обеспечения сейсмостойкости пролетных строений железнодорожного моста в сейсмоопасных
районах , сейсмичностью более 9 баллов .
Серия ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ
Более подробно о применения упругоплатического компенсатора -гасителя сдвиговых
напряжений ,смотрите внедренные изобретения организации "Сейсмофонд" при СПб ГАСУ
Японо-Американской фирмой RUBBER BEARING FRICTION DAMPER (RBFD)
HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
https://www.damptech.com/for-buildings-cover https://www.youtube.com/watch?v=r7q5D6516qg
https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и запроектирован
амортизирующий демпфер, который совмещает преимущества вращательного трения амортизируя
с вертикальной поддержкой эластомерного подшипника в виде вставной резины, которая не
долговечно и теряет свои свойства при контрастной температуре , а сам резина крошится.
Амортизирующий демпфер испытан фирмы RBFD Damptech , где резиновый сердечник, является
пластическим шарниром, трубчатого в вида Seismic resistance GD Damper
https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s https://www.youtube.com/watch?v=CIZCbPInf5k
https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s https://www.youtube.com/watch?v=bFjGdgQz1iA Seismic
Friction Damper - Small Model QuakeTek https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s https://www.youtube.com/watch?v=oT4Ybharsxo Earthquake
Protection Damper https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s Ingeniería Sísmica Básica explicada con
marco didáctico QuakeTek QuakeTek https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ
https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s Friction damper for impact absorption DamptechDK
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 158
https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s https://www.youtube.com/watch?v=EFdjTDlStGQ
https://www.youtube.com/watch?v=NRmHBla1m8A
Лабораторные испытания фрагментов, узлов
упругопалстического сдвигового компенсатора, для армейского сбороноразборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров , ширина проезжей
части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с применением
замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ
"Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным
настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60 метров)
в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно напряжения
гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС А.М.Уздина №№
1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и изобртений Красноярского ГАСУ №№ 228415, 2503783,
2247813, и Казанского ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD , проходили соглано
инсттрукции проф дтн ПГУПС Уздина А М : Элементы теории тенния фрикционно -подвижных соедений с овальными
отверстиями
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю.,
КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 159
СОДЕРЖАНИЕ
1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка контактных поверхностей элементов и методы контроля
45
6.4
Приготовление и нанесение протекторной грунтовки ВЖС 83-02-87.
Требования к загрунтованной поверхности. Методы контроля
6.4.1
46
Основные требования по технике безопасности при работе с грунтовкой
ВЖС 83-02-87
6.4.2
Транспортировка и хранение элементов и деталей, законсервированных
грунтовкой ВЖС 83-02-87
6.5
47
49
Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
7
Сборка ФПС
49
Список литературы
51
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 160
К протоколу лабортатрных испытаний в СПб ГАСУ прилагается
положительный отзыв об изобретениях организации Сейсмофонд при
СПб ГАСУ МЧС со ссылками оригинала по испытанияю фрагментов, узлов
упругопалстического сдвигового компенсатора, для армейского сбороно- разборного пролетного надвижного строения моста
(надвижной пролет 6 метров, 9 метров, 12 метров , ширина проезжей части 3 метра , грузоподъемность однопутного моста
10-15 тонн, скорость проезда по мосту - 4 км/час ), с применением замкнутых гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.314 ГПИ "Ленпроектстальконструкция") для системы несущих элементов
плаcтинчато -балочных ферм, со встроенным бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу
переправы через реку Суон , длиной 205 футов (60 метров) в штате Монтана (США), с экономией строительных материалов
до 30 процентов, за счет предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по
изобретения проф дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и
изобртений Красноярского ГАСУ №№ 228415, 2503783, 2247813, и Казанского ГАСУ с использованием 3D -модель
конечных элементов в ПK SCAD
МЧС Информация принята к сведению МЧС России проводит постоянную
работу по анализу и внедрению современных методов и технологий, направленных
на обеспечение безопасности населения и территории.
В настоящее время в Российской Федерации содействие в реализации
инновационных проектов и технологий оказывают такие организации, как Фонд
«ВЭБ Инновации», ОАО «Банк поддержки малого и среднего
предпринимательства», ОАО «Российская Венчурная Компания», ОАО
«РОСНАНО», Фонд развития инновационного Центра «Сколково», ФГБУ «Фонд
содействия развитию малых форм предприятий в научно-технической сфере»,
ФГАУ «Российский фонд технологического развития», которые на сегодняшний
день успешно осуществляют свою деятельность.
Считаем целесообразным предложить для реализации предлагаемого Вами
изделия «огнестойкий компенсатор гаситель температурных напряжений на
фрикционно-подвижных болтовых соединениях» обратиться в вышеуказанные
организации. Сайдулаеву К.М. 89219626778@mail.ru u
Также предлагаем принять участие в научных мероприятиях МЧС России, где Вы
сможете поделиться своими технологиями и услышать мнение экспертов.
Информацию о мероприятиях можно получить на официальном сайте МЧС
России (mchs.gov.ru).
Одновременно считаем возможным предложить Вам стать одним из авторов
ведомственных периодических изданий МЧС России (газета «Спасатель МЧС
России», журналы «Пожарное дело», «Гражданская защита» и «Основы
безопасности жизнедеятельности»), в которых публикуется актуальная
информация о перспективных технологиях и основных тенденциях развития в
области гражданской обороны, защиты населения и территорий от
чрезвычайных ситуаций, обеспечения пожарной безопасности, а также
обеспечения безопасности людей на водных объектах
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 161
Директор Департамента образовательной и научно-технической деятельности
А.И. Бондар https://ppt-online.org/1133763
https://ppt-online.org/1114289 https://disk.yandex.ru/d/3X_bSI384fScAw
Начальник инженерных войск ЦВО полковник Дмитрий Коруц
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 162
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 163
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 164
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 165
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 166
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 167
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 168
При лабортаных испытаниях использовалиь разработанные организацией "Сейсмофонд "при СПб ГАСУ
специальные технические условия
надвижки пролетного строения из стержневых пространственных структур с использованием рамных сбороно-разборных конструкций с
использованием замкнутых гнутосварных профилей прямоуголного сечения, типа "Молодечно" (серия 1.460.3-14 ГПИ
"Ленпроектстальконструция"), МАРХИ ПСПК", "Кисловодск" ( RU 80471 "Комбинированная пространсвенная структура" ) на фрикционно
-подвижных соедеиний для обеспечения сейсмостойкого строительства железнодорожных мостов в Киевской Руси https://disk.yandex.ru/d/mUzAI2Nw8dAWQ
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 169
USA BAILEYbridje PEREPRAVA kompensator sdvigovoy proshnosti Protokol 450 str
https://ppt-online.org/1227618
Редакция газеты «Земля России» №119
https://ppt-online.org/1155578
USA BAILEYbridje PEREPRAVA kompensator sdvigovoy proshnosti Protokol 450 str
https://studylib.ru/doc/6357259/usa--baileybridje-pereprava-kompensator-sdvigovoy-proshno...
https://mega.nz/file/faJ1hBCC#WcwDl3neDUxt27tGCFRqSYRGKwcRjgeLFjcy7eD_SYhttps://mega.nz/file/rfRgDRxY#GarDAlLYC6eLIi1TTYC1KofTLq9Msc7EtTYG6zK-cRY
89219626778@mail.ru protokol
kompensator sdvigovoy prochnosti gasitel napryajeniy 449 str
https://ppt-online.org/1228005
Редакция газеты «Земля России» №119 https://ppt-online.org/1155578
https://disk.yandex.ru/d/f_Ed_Zs5TAP8iw
89219626778@mail.ru protokol kompensator sdvigovoy prochnosti gasitel napryajeniy 449 str
https://studylib.ru/doc/6357302/89219626778%40mail.ru-protokol-kompensator-sdvigovoy-prochn...
Специальные технические условия надвижки пролетного строения из стержневых пространственных структур с использованием рамных
сбороно-разборных конструкций с использованием замкнутых гнутосварных профилей прямоуголного сечения, типа "Молодечно" (серия
1.460.3-14 ГПИ "Ленпроектстальконструция"), МАРХИ ПСПК", "Кисловодск" ( RU 80471 "Комбинированная пространсвенная структура" )
на фрикционно -подвижных соедеиний для обеспечения сейсмостойкого строительства железнодорожных мостов в Киевской Руси
Armeyskiy sborno-razborniy most uchetom sdvigovoy prochnosti 446 str
https://ppt-online.org/1229275
Специальные технические условия по применению демпфирующего сдвигового компенсатора для обеспечения сейсмостойкости
https://ppt-online.org/1196946
Специальные технические условия применения огнестойкого компенсатора - гас
ителя температурных напряжений
https://ppt-online.org/1100738
Armeyskiy sborno-razborniy most uchetom sdvigovoy prochnosti 446 str
https://studylib.ru/download/6357475
https://mega.nz/file/bDQiDBSB#iZL-1fviELU2byHwiRLotqqjIN-odYdrscN4MmT7PG4
https://mega.nz/file/Ta4F2LpB#Xh0K3CgSoH-VT84Lx_MSAaVfP2OGJIkv2RbEjhix6gs
https://ppt-online.org/1148335 https://disk.yandex.ru/i/z59-uU2jA_VCxA
Президент ОО «Сейсмофонд» при СПб ГАСУИНН: 2014000780 (аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29
от 27.03.2012 СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12,выдано 28.04.2021 Мажиев Х.Н. https://pub.fsa.gov.ru/ral/view/26088/applicant
При лабортарных испытаниях в СПб ГАСУ использовались рабочие чертежи американского
моста Bailey bridge переданного американской стороной учеными Университета штата
Монтана , Минесата и Иллиноис ( Чикаго) для испытания узлов и фрагементов сборно разборные быстро собираемые армейские переправы многократного применения из стальных
конструкций покрытий производственных здании пролетами 18, 24 и 30 м с применением
замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14
ГПИ «Ленпроектстальконструкция» ) для системы несущих элементов и элементов проезжей
части армейского сборно-разборного пролетного надвижного строения железнодорожного моста,
с быстросъемными упругопластичными компенсаторами со сдвиговой фрикционно-демпфирующей
жесткостью
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 170
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 171
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 172
ИЗГОТОВИТЕЛЬ: Минстрой ЖКХ РФ и организация «Сейсмофонд» при СПб ГАС ИНН 2014000780
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 173
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 174
Ответ МЧС РФ № ИГ -8-32 от 02.03.2022 (495) 983-79-01, (495) 624-1946
Сейсмическая стойкость компенсатора гасителя динамических напряжений на
фрикционно-подвижных болтовых соединениях .
МЧС Информация принята к сведению МЧС России проводит постоянную работу по анализу и
внедрению современных методов и технологий, направленных на обеспечение безопасности
населения и территории.
В настоящее время в Российской Федерации содействие в реализации инновационных проектов
и технологий оказывают такие организации, как Фонд «ВЭБ Инновации», ОАО «Банк
поддержки малого и среднего предпринимательства», ОАО «Российская Венчурная Компания»,
ОАО «РОСНАНО», Фонд развития инновационного Центра «Сколково», ФГБУ «Фонд
содействия развитию малых форм предприятий в научно-технической сфере», ФГАУ
«Российский фонд технологического развития», которые на сегодняшний день успешно
осуществляют свою деятельность.
Считаем целесообразным предложить для реализации предлагаемого Вами изделия
«огнестойкий компенсатор гаситель температурных напряжений на фрикционно-подвижных
болтовых соединениях» обратиться в вышеуказанные организации. Сайдулаеву К.М.
Также предлагаем принять участие в научных мероприятиях МЧС России, где Вы сможете
поделиться своими технологиями и услышать мнение экспертов. Информацию о
мероприятиях можно получить на официальном сайте МЧС России (mchs.gov.ru).
Одновременно считаем возможным предложить Вам стать одним из авторов
ведомственных периодических изданий МЧС России (газета «Спасатель МЧС России»,
журналы «Пожарное дело», «Гражданская защита» и «Основы безопасности
жизнедеятельности»), в которых публикуется актуальная информация о перспективных
технологиях и основных тенденциях развития в области гражданской обороны, защиты
населения и территорий от чрезвычайных ситуаций, обеспечения пожарной безопасности, а
также обеспечения безопасности людей на водных объектах Подробная информация о
ведомственных изданиях размещена на сайте mchsmedia.ru. Получение печатных версий указанных
изданий возможно при оформлении соответствующей подписки.
Благодарим Вас за активную жизненную позицию и стремление оказать содействие в области
защиты населения и территории от чрезвычайных ситуаций.
Директор Департамента образовательной и научно-технической деятельности
Бондар Исп. Кусков Антон Валерьевич 8 (495)400- 99-04 mchsmedia.ru.
А.И.
https://ppt-online.org/1133763
https://ppt-online.org/1104264
https://www.9111.ru/questions/7777777771785870/
https://t89006353172bkru.blogspot.com
https://studylib.ru/doc/6354447/9967982654%40mail.ru-kabelenesyshie-sistemi-mekaseismoopas... https://ppt-online.org/1097460 https://pdsnpsr.ru/articles/11731-kogda-savl-stanetpavlom_10032022
https://anticwar.ru/sistema_dobrovolnoiu_sertifikatsii_podjarnoiu_bezopasnosti_mchs_ko
ndensatootvodchiki_avtomaticheskie_do_pn_40_mpa_dn_10_50_vpuskaeme_ao_zavod_i
m__0242
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 175
ОСНОВАНИе для лабортарных испытаний в СПьб ГАСУ послужило, то что в СПб ГАСУ имеется
аттесат для испытания ИЛ ФГБОУ СПб ГАСУ, № RA.RU. 21СТ39 от 27.05.2015, ФГБОУ ВПО ПГУПС №
SP01.01.406.045 от 27.05.2020, действ. 27.05.2020, организация «Сейсмофонд» при СПб ГАСУ ИНН
2014000780, для лабртаторных испытаний узлов и фраггментов системы несущих элементов и элементов
проезжей части армейского сборно-разборного пролетного надвижного строения железнодорожного
моста, с быстросъемными упругопластичными компенсаторами, со сдвиговой фрикционно-демпфирующей
прочностью и предназначенные для сейсмоопасных районов с сейсмичностью более 9 баллов.
https://disk.yandex.ru/d/m-UzAI2Nw8dAWQ https://ppt-online.org/1227618 https://ppt-online.org/1155578
https://studylib.ru/doc/6357259/usa--baileybridje-pereprava-kompensator-sdvigovoy-proshno...
https://mega.nz/file/faJ1hBCC#WcwDl3neDUxt27tGCFRqSYRGKwcRjgeLFjcy7e-D_SY
https://mega.nz/file/rfRgDRxY#GarDAlLYC6eLIi1TTYC1KofTLq9Msc7EtTYG6zK-cRY
https://ppt-online.org/1228005 https://disk.yandex.ru/d/f_Ed_Zs5TAP8iw
https://studylib.ru/doc/6357302/89219626778%40mail.ru-protokol-kompensator-sdvigovoy-prochn...
Sborno razbornie bistrosobiraemie armeyskie perepravi mnogokratnogo primeneniya 475 str https://pptonline.org/1224871
Спец военный Вестник газеты "Земля России" №38
https://ppt-online.org/1163473
SOS Aktsioneri Bolshogo Gostinogo Dvora jdut pomoshi Tushakovoy dlya
vnedreniyaz izobreteniya armeyskie sborno-razborniy mosti 511 str
https://studylib.ru/doc/6356167/sos-aktsioneri-bolshogo--gostinogo-dvora-jdutpomoshi-tus...
Что подтвержденоно и имется свидетльство и подтверждена
ГАСУ https://pub.fsa.gov.ru/ral/view/13060/applicant
компетентность организации "Сейсмофонд" при СПб
Объект испытаний демпфирующего компенсатора гасителя динамических колебаний и сдвиговых
напряжений с учетом сдвиговой жесткости проводился в ПК SCAD, подтверждает надежность
сдвигового компенсатора проф дтн ПГУПС Уздиан А М и предназначен для сейсмоопасных
районов с сейсмичностью до 9 баллов, серийный выпуск. В районах с сейсмичностью более 9
баллов, необходимо использование в строительных конструкциях демпфирующих
компенсаторов с упругопластическими шарнирами на фрикционно-подвижных соединениях,
расположенных в длинных овальных отверстиях, с целью обеспечения многокаскадного
демпфирования при импульсных растягивающих и динамических нагрузках согласно
изобретениям, патенты: №№ 1143895, 1174616, 1168755 (автор: проф. д.т.н. ПГУПС
А.М.Уздин) , 2010136746 ,165076 , 2550777, с использованием сдвигового демпфирующего
гасителя сдвиговых напряжений , согласно заявки на изобретение от 14.02.2022 "Огнестойкий
компенсатор -гаситель температурных напряжений", заявки № 2022104632 от 21.02.2022 ,
"Фрикционно-демпфирующий компенсатор для трубопроводов", заявки № 2021134630 от
29.12.2021 "Термический компенсатор- гаситель температурных колебаний", заявки №
2022102937 от 07.02.2022 "Термический компенсатор- гаситель температурных колебаний
СПб ГАСУ,"заявки "Фланцевое соединения растянутых элементов трубопровода со
скошенными торцами" № а 20210217 от 23.09. 2021, заявки "Спиральная сейсмоизолирующая
опора с упругими демпферами сухого трения" № а20210051, заявки "Компенсатор .... для
трубопроводов" № а 20210354 от 22.02. 2022, Минск, "Антисейсмическое фланцевое
фрикционное соединения для сборно-разборного моста" для обеспечения сейсмостойкости и
сдвиговой прочности для строительных систем предназначенная для районов с сейсмичностью 9
баллов (шкала MSK-64). https://disk.yandex.ru/d/m-UzAI2Nw8dAWQ
https://ppt-online.org/1227618
Заключение по испытанию на сейсмостойкость демпфирующего сдвигового компенсатора
Уздина А М В соответствии с испытаниями сдвигоустойчивого податливого крепления делается
вывод, что компенстоар соответствует требованиям, которые предъявляются к оборудованию I
и II группы сейсмостойкости, так как сдвигоустойчивые податливые крепления податливого
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 176
выполнены согласно требованиям НП -031-01 «Нормы проектирования сейсмостойких атомных
станций», согласно «Руководство по креплению технологического оборудования фундаментными
болтами», РЧ серия 4.402-9, вып.5 «Анкерные болты» и «Инструкция по выбору рамных
податливых крепей горных выработок». Скользящие (сдвиговые) крепления выполнены в виде
болтовых соединений с изолирующей трубой или свинцовой обоймой, с податливыми элементами в
виде свинцового или из красной меди стопорного клина, забитого в пропиленный в нижней части
анкера паз.
Вывод : Компенсатор – сдвиговые фасонки - накладки прошли проверку прочности по первой и
второй группе предельных состояний и соответвует требованиям согласно лабораторным
испытаниям фрагментов и узлов для упругопалстического сдвигового компенсатора, для армейского сбороно- разборного
пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров , ширина проезжей части 3 метра ,
грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с применением замкнутых
гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ "Ленпроектстальконструкция")
для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным настилам ( ускоренным методом в
полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60 метров) в штате Монтана (США), с
экономией строительных материалов до 30 процентов, за счет предварительно напряжения гнутосварных замкнутых
профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616,
2010136746, 2550777, 165076, 1760020 и изобртений Красноярского ГАСУ №№ 228415, 2503783, 2247813, и Казанского
ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD
РАСЧЕТНАЯ СХЕМА демпфирующих сдвиговых компенсаторов для гасителя динамических
колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011
SCAD п.7.1.1 ghb действий поперечных сил
https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 177
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 178
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 179
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 180
Методика проведения лабораторных испытаний фрагментов и узлов упругопалстического сдвигового компенсатора,
для армейского сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12
метров , ширина проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4
км/час ), с применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314
ГПИ "Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным
бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов
(60 метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно
напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС
А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и изобртений Красноярского ГАСУ №№
228415, 2503783, 2247813, и Казанского ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD
И, антисейсмического фрикционно- демпфирующего соединения пролетных строений моста , соединенного с помощью фрикционных
протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных
отверстиях, подтверждает высокую надежность компенсатора (ФПС) предназначенного для сейсмоопасных районов с сейсмичностью
более 9 баллов.
В соответствии с поставленной «Заказчиком» задачей: определения величины усилия, при котором будет происходить перемещение
зажима по условному длинному овальному отверстию в зависимости от усилия затяжки гаек, испытаны два образца узла крепления
опор скользящих для демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с
учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами с креплением трубопроводов с помощью фрикционных
протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях
(описание в таблице).
Испытание статической нагрузкой проводилось путем жесткого закрепления фрикционно –подвижного соединения (ФПС) на станине
испытательной машины и приложения усилия к дугообразному зажиму в направлении оси шпильки, фрагмента узла протяжного
фрикционно-подвижного соединения на двух болтах М10 с 4 –мя гайками М10 и с 4-мя стальными шайбами(толщина 3 мм, диаметр
34 мм), установленных в длинных овальных отверстиях в соответствии с требованиям : СП 56.13330.2011 Производственные
здания. Актуализированная редакция СНиП 31-03-2001, ГОСТ 30546.1-98 , ГОСТ 30546.2-98, ГОСТ 30546.3-98, СП 14.13330-2011 п
.4.6. «Обеспечение демпфированности фрикционно-подвижного соединения (ФПС)», альбом серия 4.402-9 «Анкерные болты», вып. 5
«Ленгипронефтехим», ГОСТ 17516.1-90 п.5, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012 (02250) , п.10.7, 10.8.
Испытания производились согласно требованиям СП 14.13330. 2014, п.4.7 (демпфирование), п.6.1.6, п.5.2 (моделей), СП 16.13330.
2011 (СНиПII-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3, СТП 006-97 Устройство соединений на
высокопрочных болтах в стальных конструкциях мостов, согласно изобретениям №№ 1143895, 1174616,1168755 SU, 2371627,
2247278, 2357146, 2403488, 2076985 RU № 4,094,111 US, TW 201400676 Restraintanti-windandanti-seismicfrictiondampingdevice.
Испытания проводились на основе прогрессивной теории активной сейсмозащиты зданий согласно ГОСТ 6249-52 «Шкала для
определения силы землетрясения» в ИЦ «ПКТИ-СтройТЕСТ»,адрес: 197341, СПб, ул. Афонская, д.2, (ранее составлен акт испытаний
на осевое статическое усилие сдвига дугообразного зажима анкерной шпильки № 1516-2 ) Проверка податливости (срыв сточенной
резьбы на латунной шпильке) демпфирующих узлов крепления, фрикционно-подвижных соединений работающих на сдвиг и
выполненных в виде болтового соединения (латунная шпилька с подпиленным пазом, установленная в изолирующей трубе,
амортизирующие элементы в виде свинцовой шайбы и медного стопорного «тормозного» клина), при осмотре не обнаружено
механических повреждений и ослабления демпфирующего соединения для гасителя динамических колебаний и сдвиговых напряжений
с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf,
предназначенными для сейсмоопасных районов с сейсмичностью более 9 баллов.
На основании проведенного испытания математических моделей опоры скользящей для демпфирующих сдвиговых компенсаторов
для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD
п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf предназначенных для сейсмоопасных районов с сейсмичностью более 9
баллов, серийный выпуск, с трубопроводами в ПК SCAD и лабораторных испытаний фрагментов узлов крепления опоры скользящей
и трубопровода делается вывод
Опоры скользящие для демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений
пролетного строения моста с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных
сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , предназначенные для сейсмоопасных районов с сейсмичностью более 9
баллов, соединенными между собой с помощью демпфирующих компенсаторов на фланцевых фрикционно–подвижных соединениях
(ФФПС), с контролируемым натяжением, расположен-ных в длинных овальных отверстиях для обеспечения многокаскадного
демпфирования при динамических нагрузках (преимуществен-но при импульсных растягивающих нагрузках в узлах соединения),
выполненных согласно изобретениям, патенты №№ 1143895, 1174616,1168755, № 165076 «Опора сейсмостойкая», согласно
рекомендациям ЦНИИП им. Мельникова, согласно альбома 1-487-1997.00.00 и изобретению №№ 4,094,111 US, TW201400676
Restraintanti-windandanti-seismic-friction-damping-device Мкл E04H 9/02 СООТВЕТСТВУЮТ ТРЕБОВАНИЯМ НОРМАТИВНЫХ
ДОКУМЕНТОВ ГОСТ 15150, ГОСТ 5264-80-У1- 8, ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (при сейсмических
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 181
воздействиях 9 баллов по шкале MSK-64 включительно ), ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90, МЭК 60068-3-3 (1991),
ПМ 04-2014, РД 26.07.23-99 и РД 25818-87, СП 14.13330.2018, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5),ОСТ 36-146-88,
ОСТ 108.275.63-80, РТМ 24.038.12-72, ОСТ 37.001. -050- 73
Начальник инженерных войск ЦВО полковник Дмитрий Коруц
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 182
При лабортарных испытаниях
фрагментов, узлов упругопалстического сдвигового компенсатора, для армейского
сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров , ширина
проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ
"Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным
настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60 метров)
в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно напряжения
гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС А.М.Уздина №№
1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и изобртений Красноярского ГАСУ №№ 228415, 2503783,
2247813, и Казанского ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD использовались
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 183
№ 2010136746 E04C 2/00«СПОСОБ ЗАЩИТЫ
ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ
ЭНЕРГИИ»и изобретению "Панель противовзрывная" о выдачи патента по заявке на полезную
изобретения и патенты ПГУПСЮ СПБ ГАСУ
модель № 154 506, опубликовано 27.08.2015, бюл. № 24, патент на полезную модель изобретение,
"Опора сейсмостойкая», № 165076, бюллетень № 28 , опубликовано 10.10.2016, заявитель Андреев
Борис Александрович, Коваленко Александр Иванович, патент на изобретение «Захватное
устройство для «сэндвич»-панелей № 2471700 , опубликовано 10.01.2013 190005, СПб, 2-я
Красноармейская ул д 4: (911) 175-84- 65, (996) 798-26-54, (921) 962-67-78 т/ф (812) 694-7810 9967982654@mail.ru 89219626778@mail.ru
С рабочими чертежами и фрагментами , узлов упругопалстического сдвигового компенсатора, для армейского сбороноразборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров , ширина проезжей
части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с применением
замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ
"Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным
настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60 метров)
в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно напряжения
гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС А.М.Уздина №№
1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и изобртений Красноярского ГАСУ №№ 228415, 2503783,
2247813, и Казанского ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD
сдвигового компенсатора
для пролетных строений моста Уздиан А М изготавливаемые в соответствии с техническими условиями
ТУ 3680-001-04698606-04 "Опоры трубопроводов" , ОСТ 34-10-616-93 , серия 4.903-10, вып. 4, "Опоры
трубопроводов неподвижные", ГОСТ 14911-82 "Опоры подвижные" изготовленные согласно
изобретений № 165076 "Опора сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616
предназначенные для сейсмоопасных районов с сейсмичностью 9 баллов (в районах с сейсмичностью 8
баллов и более необходимо использование демпфирующих опор на фрикционно-подвижных соединениях для
противопожарных трубопроводов, с целью обеспечения многокаскадного демпфирования при динамических
нагрузках, согласно изобретениям №№ 165076 "Опора сейсмостойкая", 1143895, 1174616, 1168755,
2010136746 , 2550777. Испытание проводились на соответствие групп механической прочности на
вибрационные, ударные воздействия: М5-М7, М38-М39 по результатам испытаний методом численного
моделирования в ПК SCAD на взаимодействие трубопровода с геологической средой ) в СПб ГАСУ на
кафеьре строительных материалов у проф дтн Ю.М.Тихонова (812) 694-78-10 89219626778@mail.ru
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 184
протоколу испытания фрагментов и узлов упругопалстического сдвигового компенсатора, для
армейского сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров ,
ширина проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ
"Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным
настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60 метров)
в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно напряжения
гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС А.М.Уздина №№
1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и изобртений Красноярского ГАСУ №№ 228415, 2503783,
2247813, и Казанского ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD
Приложение к
Прилагается техническое свидетельство пригодности для применения в строительстве сдвигового компенсатора для пролетного строения моста
выполнены в СПб ГАСУ и изготавливаемые в соответствии с техническими условиями и инструкцией проф дтн ПГКПС Уздина А И ТУ 3680-00104698606-04 "Опоры трубопроводов" , ОСТ 34-10-616-93 , серия 4.903-10, вып. 4, "Опоры трубопроводов неподвижные", ГОСТ 14911-82 "Опоры
подвижные" изготовленные согласно изобретений № 165076 "Опора сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616 предназначенные
для сейсмоопасных районов с сейсмичностью более 9 баллов (в районах с сейсмичностью 8 баллов и более необходимо использование термических
компенсатор на демпфирующих опор на фрикционно-подвижных соединениях, с целью обеспечения многокаскадного демпфирования при
температурных и динамических нагрузках, согласно изобретениям №№ 165076 "Опора сейсмостойкая", 1143895, 1174616, 1168755, 2010136746 ,
2550777. Испытание проводились на соответствие групп механической прочности на вибрационные, ударные воздействия: М5-М7, М38-М39 по
результатам испытаний методом численного моделирования в ПК SCAD на взаимодействие трубопровода с геологической средой )с
использованием с компенсатора в виде термических компенсатора в виде «петли, змейка» или с термический компенсаторами
сальниковыми на фрикционно-подвижных соединениях (ФПС)) для сейсмоопасных районов до 9 баллов по шкале MSK-64.Крепление
с применением фрикци -болта на протяжных ФПС производится в сейсмоопасных районах с сейсмичностью более 8 баллов по
шкале MSK-64.
1. Общие требования к технологии производства работ по фланцевому соединению с использованием сдвигового компенсаторов в
местах соединения пролетных строений моста или (использовать с компенсаторами в виде на фрикционно-подвижных соединениях
(ФПС), для сейсмоопасных районов более 9 баллов по шкале MSK-64.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 185
С учетом требований и лаборатрным испытаниям , а также с учетом действующих нормативных документов и в соответствии с
особенностями строящегося сооружения и проекта производства работ должно производиться строго по СП 16.13330.2011 "Стальные
конструкции" ( СНиП II -23-81*)
1. 2. Предусматривается приемка строительной организацией с осуществлением входного контроля, операционного и приемочного контроля качества с
выделением особо важных операций и видов работ.
1. 3. Обязательная проверка соответствия прочностных характеристик фрикционных соединений с использованием термического компенсатора (
заявка на изобретение полезная модель «Фрикционно –демпфирующий компенсатор для трубопроводов» F16L 23/00 от 25.11.2021 , входящий
073171 ФИПС Бережковская наб 30, 1 тел (499) 240-60-15, ф (465) 531-63-18 Соколова Е.А
1. 4. Испытания фланцевых , фрикционно-подвижных соединений с латунным фрикци-болтом проводят на трех контрольных участках.
1.5. Выбор контрольных участков осуществляют на основании результатов визуальногоосмотра по критерию: наихудшее состояние
1. 6. В зависимости от характера разрушения в результате испытаний выносится решение о дополнительном укреплении ФПС .
1.7. Результаты испытаний оформляют протоколом установленной формы.
1.8. Опора скользящая для армейский сборно-разборный быстро собираемый железнодорожный универсальный мост с
использованием упругопластических компенсаторов, гасителей динамических колебаний и сдвиговых напряжений с учетом
сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD п.7.1.1 сдвиговая с учетом действий поперечных сил )
армейский сборно-разборный быстро собираемый железнодорожный универсальный мост с использованием упругопластических
компенсаторов, гасителей динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD (
согласно СП 16.1330.2011 SCAD п.7.1.1 сдвиговая с учетом действий поперечных сил ) использовать с термическими компенсаторами на
фрикционно-подвижных соединениях (ФПС)) для сейсмоопасных районов до 9 баллов по шкале MSK-64 (использовать в сейсмоопасных районах с
сейсмичностью более 8 баллов: - с различными температурно-климатическими условиями по СНиП 23-01-99 в сухой, нормальной и влажной зонах
по СНиП 23-02-2003 при температурах на поверхности облицовки от минус 50°С до плюс 80°С; - с неагрессивной, слабоагрессивной и
среднеагрессивной окружающей средой по СНиП 2.03.11-85.
9. Опора скользящая для армейского сборно-разборный железнодорожного универсального моста необходимо
крепить на фрикционно-подвижных соединениях (ФПС)) по изобретению № 165076 «Опора сейсмостойкая» , для сейсмоопасных
районов более 9 баллов по шкале MSK-64 могут применяться при условии соответствия входящих в комплект изделий и деталей, а
также применяемой технологии и правил контроля качества монтажа и результатов выполненных работ, а также проектной
документации на строительство.
10. При проектировании следует дополнительным расчетом подтвердить компенсацию температурных деформаций, а также деформаций основания
вследствие возможной неравномерной осадки магистрального трубопровода
11. Крепление фланцевого , протяжного ФПС определяется строительной лабораторией
12. Контрольные испытания ФПС применяемых в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64 рекомендуется проводить
в соответствии с ГОСТ Р 53295-2009, ТУ 5728-032-92638584-2014 и ТР 92638584.035.2014.
2. Результаты испытаний оформляют протоколом установленной формы.
2.1. Крепления ФФПС применяемые в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64) необходимо выполнять в полном
соответствии с технической документацией с обязательным проведением контроля технологических операций и составлением актов на скрытые
работы.
ВЫВОДЫ:
3. Использованием упругоплатического компенсаторов допускается со скользящими опорами на ФПС для сейсмозащиты армейский сборно-разборный
быстро собираемый железнодорожный универсальный мост с использованием упругопластических компенсаторов, гасителей
динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD
п.7.1.1 сдвиговая с учетом действий поперечных сил ), рекомендуется использовать фланцевые протяжные и подвижных сдвиговых (скользящих)
соединениях с использованием заявки на изобретение: «Фрикционно-демпфирующих компенсаторов для строительных конструкций, трубопроводов» , на фрикционноподвижных соединениях (ФПС) для сейсмоопасных районов более 9 баллов по шкале MSK-64 можно применять в сейсмоопасных районах с сейсмичностью до 9
баллов по шкале MSK-64) , что соответствуют требованиям нормативных документов: СП 14.13330.2014,п.9.2, НП-031-01, НП-071-06 класса безопасности
3НпоОПБ 88/97 при сейсмических воздействиях более 9 баллов по шкале MSK-64 , включительно при уровне установки над нулевой отметкой 70 м по ГОСТ
30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98, ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90, МЭК 60068-3-3 (1991), МЭК 60980, ANSI/IEEEStd. 344-1987, ПМ
04-2014, РД 26.07.23-99 и РД 25818-87 (синусоидальная вибрация – 5,0-100 Гц с ускорением до 2g).
3.1. Возможность применения в сейсмоопасных районах должна быть подтверждена обоснованными заключениями и рекомендациями
компетентных в области сейсмостойкого строительства организаций, исходя из требований Закона № 384-Ф3, с ограничениями допустимой
сейсмичности площадки строительства и высоты зданий, а также применяемых в этом случае конструктивных решений элементов и их
соединений.
3.2. Заключения и рекомендации должны быть соответствующим образом обоснованы, в т.ч. результатами испытаний на сейс-мические
воздействия фрагментов спиралеобразными компенсаторами ( ФИПС № 2021134630 от 25.11.2021 , входящий 073171) , со смонтированными
на них фрикционно-подвижными фланцевыми соединениями (ФПС). Проектирование, монтажи эксплуатация должны производиться с
согласно лабораторным испытаниям фрагментов, узлов
упругопалстического сдвигового компенсатора, для армейского сбороно- разборного пролетного надвижного строения моста
(надвижной пролет 6 метров, 9 метров, 12 метров , ширина проезжей части 3 метра , грузоподъемность однопутного моста
10-15 тонн, скорость проезда по мосту - 4 км/час ), с применением замкнутых гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.314 ГПИ "Ленпроектстальконструкция") для системы несущих элементов
плаcтинчато -балочных ферм, со встроенным бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу
переправы через реку Суон , длиной 205 футов (60 метров) в штате Монтана (США), с экономией строительных материалов
до 30 процентов, за счет предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по
изобретения проф дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и
изобртений Красноярского ГАСУ №№ 228415, 2503783, 2247813, и Казанского ГАСУ с использованием 3D -модель
конечных элементов в ПK SCAD
учетом указанных заключений и рекомендаций,
Президент ОО «Сейсмофонд» при СПб ГАСУИНН: 2014000780 (аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29
от 27.03.2012 СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12,выдано 28.04.2010 Мажиев Х.Н. https://pub.fsa.gov.ru/ral/view/26088/applicant
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 186
ПЕРЕЧЕНЬ ИСПОЛЬЗОВАННЫХ МАТЕРИАЛОВ И НОРМАТИВНЫХ ДОКУМЕНТОВ при оценке технической армейский сборно-разборный
быстро собираемый железнодорожный универсальный мост с использованием упругопластических компенсаторов, гасителей
динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD
п.7.1.1 сдвиговая с учетом действий поперечных сил ) и сейсмостойкий опор согласно изобретения № 165076 «Опора сейсмостойкая» и
протокола испытаний №576 от 16.12.2022 организация "Сейсмофонд" при СПб ГАСУ ИНН 2014000780 ОГРН 1022000000824
Законодательные акты и нормативные документы:
Федеральный закон № 384-Ф3 от 30.12.2009 "Технический регламент о безопасности зданий и сооружений";
Федеральный закон № 123-Ф3 от 22.07.2008 (ред. от 13.07.2015) "Технический регламент о требованиях пожарной безопасности";
СП 20.13330.201 1 "СНиП 2.01.07-85* Нагрузки и воздействия";
СП 16.13330.2011 "СНиП П-23-81 Стальные конструкции";
СП 28.13330.2012 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии";
СП 50.13330.2012 "СНиП 23-02-2003 Тепловая защита зданий";
ТОСТ 31251-2008 "Конструкции строительные. Методы определения пожарной опасности. Стены наружные с внешней стороны".
11. Действующие нормативные документы:
СНИиП 23-02-2003 "Тепловая зашита зданий";
СП 23-101-2004 "Проект и теплозащита зданий";
СНиП 2.02.01-83 "Основания зданий и сооружений**;
СНиП 2.02.04-88 "Основания с фундаментами на вечномерзлых грунтах9*;
СНиП 21-01 -97^ "Пожарная безопасность зданий и сооружений**;
СНиП 2.03.11-85 "Защита строительных конструкций от коррозии**:
СНиП 2.01.07-85* "Нагрузки и воздействия":
СНиП 2.03.06-85 "Алюминиевые конструкции**;
СНиП 23-01-99 "Строительная климатология**;
СНиП 11-7-81 "Строительство в сейсмических районах";
СНиП 2.02.04-88 "Строительство на вечномерзлых трутах";
СНиП 2.02.01-83 "Строительство на нросадочных грушах";
ГОСТ 14918-80* "Сталь тонколистовая оцинкованная с непрерывных линий. Технические условия";
ГОСТ 5632-72 -Сталь высоколегированная и сплавы коррозионностойкие, жаростойкие и жаропрочные. Марки";
ГОСТ 5582-75. Прокат тонколистовой коррозионностойкий, .жаростойкий и жаропрочный. Технические условия";
ГОСТ 31251-2003 "Конструкции строительные. Методы определения пожарной опасности. Стены наружные с внешней стороны".
Пригодность новой продукции подтверждается Техническим свидетельством, оформленным в соответствии с приказом Минрегиона России от 24
декабря 2008 № 292. зарегистрированным Минюстом России 27 января 2009 г., регистрационный № 13170.
Федеральным законом от 27 декабря 2002 г. № 184-ФЗ "О техническом регулировании"
При наличии этих документов подтверждение пригодности продукции для применения в строительстве не требуется
Более подробно о практическом использовании фланцевых фрикционно -подвижных соединений (ФПС), можно ознакомиться см.
изобретения №TW201400676 Restraintanti-windandanti-seismicfrictiondampingdevice (МПК):E04B1/98; F16F15/10(демпфирующая опора
с фланцевыми, фрикционно–подвижными соединениями с энергопоглощающей втулкой) (Тайвань), патенты
№№1143895,1174616,1168755, 2357146, 2371627, 2247278, 2403488, 2076985, SUUnitedStatesPatent 4,094,111 [45] June 13,
1978STRUCTURALSTEELBUILDINGFRAMEHAVINGRESILIENTCONNECTORS (МПК) E04B 1/98 (США).
Лабораторные испытания проходили с учетом и использованием изобретения на полезную модель «Опора сейсмостойкая № 165076 ,
МПК E04H 9/02, бюллетень № 28 , опубликовано 10.10.2016,авторы: Андреев Б.А, Мажиев Х.Н т/ф (812) 694-78-10
http://www.youtube.com/watch?v=76EkkDHTvgM
ПЕРЕЧЕНЬ ИСПОЛЬЗОВАННЫХ МАТЕРИАЛОВ И НОРМАТИВНЫХ ДОКУМЕНТОВ при оценке технической армейский сборно-разборный
быстро собираемый железнодорожный универсальный мост с использованием упругопластических компенсаторов, гасителей
динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD
п.7.1.1 сдвиговая с учетом действий поперечных сил ) и сейсмостойкий опор согласно изобретения № 165076 «Опора сейсмостойкая» и
протокола испытаний №575 от 23.07.2022 организация "Сейсмофонд" при СПб ГАСУ ИНН 2014000780 ОГРН 1022000000824
Законодательные акты и нормативные документы:
Федеральный закон № 384-Ф3 от 30.12.2009 "Технический регламент о безопасности зданий и сооружений";
Федеральный закон № 123-Ф3 от 22.07.2008 (ред. от 13.07.2015) "Технический регламент о требованиях пожарной безопасности";
СП 20.13330.201 1 "СНиП 2.01.07-85* Нагрузки и воздействия";
СП 16.13330.2011 "СНиП П-23-81 Стальные конструкции";
СП 28.13330.2012 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии";
СП 50.13330.2012 "СНиП 23-02-2003 Тепловая защита зданий";
ТОСТ 31251-2008 "Конструкции строительные. Методы определения пожарной опасности. Стены наружные с внешней стороны".
11. Действующие нормативные документы:
СНИиП 23-02-2003 "Тепловая зашита зданий";
СП 23-101-2004 "Проект и теплозащита зданий";
СНиП 2.02.01-83 "Основания зданий и сооружений**;
СНиП 2.02.04-88 "Основания с фундаментами на вечномерзлых грунтах9*;
СНиП 21-01 -97^ "Пожарная безопасность зданий и сооружений**;
СНиП 2.03.11-85 "Защита строительных конструкций от коррозии**:
СНиП 2.01.07-85* "Нагрузки и воздействия":
СНиП 2.03.06-85 "Алюминиевые конструкции**;
СНиП 23-01-99 "Строительная климатология**;
СНиП 11-7-81 "Строительство в сейсмических районах";
СНиП 2.02.04-88 "Строительство на вечномерзлых трутах";
СНиП 2.02.01-83 "Строительство на нросадочных грушах";
ГОСТ 14918-80* "Сталь тонколистовая оцинкованная с непрерывных линий. Технические условия";
ГОСТ 5632-72 -Сталь высоколегированная и сплавы коррозионностойкие, жаростойкие и жаропрочные. Марки";
ГОСТ 5582-75. Прокат тонколистовой коррозионностойкий, .жаростойкий и жаропрочный. Технические условия";
ГОСТ 31251-2003 "Конструкции строительные. Методы определения пожарной опасности. Стены наружные с внешней стороны".
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 187
Пригодность новой продукции подтверждается Техническим свидетельством, оформленным в соответствии с приказом Минрегиона России от 24
декабря 2008 № 292. зарегистрированным Минюстом России 27 января 2009 г., регистрационный № 13170.
Федеральным законом от 27 декабря 2002 г. № 184-ФЗ "О техническом регулировании"
При наличии этих документов подтверждение пригодности продукции для применения в строительстве не требуется
Более подробно о практическом использовании фланцевых фрикционно -подвижных соединений (ФПС), можно ознакомиться см.
изобретения №TW201400676 Restraintanti-windandanti-seismicfrictiondampingdevice (МПК):E04B1/98; F16F15/10(демпфирующая опора
с фланцевыми, фрикционно–подвижными соединениями с энергопоглощающей втулкой) (Тайвань), патенты
№№1143895,1174616,1168755, 2357146, 2371627, 2247278, 2403488, 2076985, SUUnitedStatesPatent 4,094,111 [45] June 13,
1978STRUCTURALSTEELBUILDINGFRAMEHAVINGRESILIENTCONNECTORS (МПК) E04B 1/98 (США).
Лабораторные испытания проходили с учетом и использованием изобретения на полезную модель «Опора сейсмостойкая № 165076 ,
МПК E04H 9/02, бюллетень № 28 , опубликовано 10.10.2016,авторы: Андреев Б.А, Мажиев Х.Н т/ф (812) 694-78-10
http://www.youtube.com/watch?v=76EkkDHTvgM
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 188
Ссылки лабораторных испытаний в СПб ГАСУ узлов и фрагментов сдвигового компенсатора и
требований , согласно лабораторным испытаниям фрагментов, узлов упругопалстического сдвигового
компенсатора, для армейского сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9
метров, 12 метров , ширина проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по
мосту - 4 км/час ), с применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия
1.460.314 ГПИ "Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со
встроенным бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон ,
длиной 205 футов (60 метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет
предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн
ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и изобртений Красноярского
ГАСУ №№ 228415, 2503783, 2247813, и Казанского ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD
USA BAILEYbridje PEREPRAVA kompensator sdvigovoy proshnosti Protokol 450 str
https://ppt-online.org/1227618
Редакция газеты «Земля России» №119
https://ppt-online.org/1155578
USA BAILEYbridje PEREPRAVA kompensator sdvigovoy proshnosti Protokol 450 str
https://studylib.ru/doc/6357259/usa--baileybridje-pereprava-kompensator-sdvigovoy-proshno...
https://mega.nz/file/faJ1hBCC#WcwDl3neDUxt27tGCFRqSYRGKwcRjgeLFjcy7e-D_SY
https://mega.nz/file/rfRgDRxY#GarDAlLYC6eLIi1TTYC1KofTLq9Msc7EtTYG6zK-cRY
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 189
Опоры скользящие для демпфирующих сдвиговых компенсаторов для гасителя динамических
колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011
Всего листов 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Лист 190
SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , предназначенные для сейсмоопасных
районов с сейсмичностью более 9 баллов, соединенными между собой с помощью демпфирующих
компенсаторов на фланцевых фрикционно–подвижных соединениях (ФФПС), с контролируемым
натяжением, расположенных в длинных овальных отверстиях для обеспечения многокаскадного
демпфирования при динамических нагрузках (преимущественно при импульсных растягивающих
нагрузках в узлах соединения), выполненных согласно изобретениям, патенты №№ 1143895,
1174616,1168755, № 165076 «Опора сейсмостойкая», согласно рекомендациям ЦНИИП им.
Мельникова, согласно альбома 1-487-1997.00.00 и изобретению №№ 4,094,111 US, TW201400676
Restraintanti-windandanti-seismic-friction-damping-device Мкл E04H 9/02 СООТВЕТСТВУЮТ
ТРЕБОВАНИЯМ НОРМАТИВНЫХ ДОКУМЕНТОВ ГОСТ 15150, ГОСТ 5264-80-У1- 8, ГОСТ
30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (при сейсмических воздействиях 9 баллов по шкале
MSK-64 включительно ), ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90, МЭК 60068-3-3
(1991), ПМ 04-2014, РД 26.07.23-99 и РД 25818-87, СП 14.13330.2018, СП 73.13330 (п.п.4.5, 4.6, 4.7);
СНиП 3.05.05 (раздел 5),ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72, ОСТ 37.001. -050- 73
Президент ОО «Сейсмофонд» при СПб ГАСУИНН: 2014000780 (аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29
от 27.03.2021 СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12,выдано 28.04.2010 Мажиев Х.Н. https://pub.fsa.gov.ru/ral/view/26088/applicant
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 191
При лаборатоных испытаниях проводилась в СПбГАСУ проверка податливости по американским
чертехам Bailey bridge (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов
крепления, фрикционно-подвижных соединений работающих на сдвиг и выполненных в виде
болтового соединения (латунная шпилька с подпиленным пазом, установленная в изолирующей
трубе, амортизирующие элементы в виде свинцовой шайбы и медного стопорного «тормозного»
клина), при осмотре не обнаружено механических повреждений и ослабления демпфирующего
соединения для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://pptonline.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
, предназначенными для сейсмоопасных районов с сейсмичностью более 9 баллов.
На основании проведенного испытания математических моделей в ПК SCAD опоры скользящей для
демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых
напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb
действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf предназначенных для сейсмоопасных
районов с сейсмичностью более 9 баллов, серийный выпуск, с трубопроводами в ПК SCAD и
лабораторных испытаний фрагментов узлов крепления опоры скользящей и трубопровода делается
Вывод
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 192
Испытания в СПб ГАСУ производились согласно требованиям СП 14.13330. 2014, п.4.7
(демпфирование), п.6.1.6, п.5.2 (моделей), СП 16.13330. 2011 (СНиПII-23-81*), п.14,3 -15.2.4, ТКТ 455.04-274-2012( 02250), п.10.3.2 -10.10.3, СТП 006-97 Устройство соединений на высокопрочных
болтах в стальных конструкциях мостов, согласно изобретениям №№ 1143895, 1174616,1168755 SU,
2371627, 2247278, 2357146, 2403488, 2076985 RU № 4,094,111 US, TW 201400676 Restraintantiwindandanti-seismicfrictiondampingdevice.
Испытания в СПб ГАСУ проводились на основе прогрессивной теории активной сейсмозащиты
зданий согласно ГОСТ 6249-52 «Шкала для определения силы землетрясения» в ИЦ «ПКТИСтройТЕСТ»,адрес: 197341, СПб, ул. Афонская, д.2, STROYTR77@inbox.ru (ранее составлен акт
испытаний на осевое статическое усилие сдвига дугообразного зажима анкерной шпильки № 15162)
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 193
Президент ОО «Сейсмофонд» при СПб ГАСУИНН: 2014000780 (аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29
от 27.03.2012 СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12,выдано 28.04.2010 Мажиев Х.Н. https://pub.fsa.gov.ru/ral/view/26088/applicant
Методика проведения испытаний фрагментов
антисейсмического фрикционно- демпфирующего
соединения, соединенного с помощью фрикционных протяжных демпфирующих компенсаторов
(ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях,
предназначенного для сейсмоопасных районов с сейсмичностью более 9 баллов для пролетных
строений моста Уздина А М .
В соответствии с поставленной «Заказчиком» задачей: определения величины усилия, при котором
будет происходить перемещение зажима по условному длинному овальному отверстию в
зависимости от усилия затяжки гаек, испытаны два образца узла крепления опор
скользящих для демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1
ghb действий поперечных сил https://ppt-online.org/19380
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 194
https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , предназначенных для сейсмоопасных
районов с сейсмичностью более 9 баллов с трубопроводами с креплением трубопроводов с
помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях (описание в таблице).
Испытание статической нагрузкой проводилось путем жесткого закрепления фрикционно
–подвижного соединения (ФПС) на станине испытательной машины и приложения
усилия к дугообразному зажиму в направлении оси шпильки, фрагмента узла протяжного
фрикционно-подвижного соединения на двух болтах М10 с 4 –мя гайками М10 и с 4-мя
стальными шайбами(толщина 3 мм, диаметр 34 мм), установленных в длинных
овальных отверстиях в соответствии с требованиям : СП 56.13330.2011 Производственные
здания. Актуализированная редакция СНиП 31-03-2001, ГОСТ 30546.1-98 , ГОСТ 30546.2-98, ГОСТ
30546.3-98, СП 14.13330-2011 п .4.6. «Обеспечение демпфированности фрикционно-подвижного
соединения (ФПС)», альбом серия 4.402-9 «Анкерные болты», вып. 5 «Ленгипронефтехим», ГОСТ
17516.1-90 п.5, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012 (02250) , п.10.7, 10.8.
Демпфирующие сдвиговые компенсаторы проф Уздина А М для гасителя динамических колебаний
и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1
ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , которые предназначены для
сейсмоопасных районов с сейсмичностью более 9 баллов с антисейсмическими косых
компенсаторов ( изобретение № 887748 « Стыковое соединение растянутых элементов») илии с
помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях, оценено влияние продолжительности
колебаний на сейсмическую интенсивность. За полвека количество записей и перемещения грунта
резко увеличилось, что позволило существенно повысить точность испытания математических
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 195
моделей в ПК SCAD согласно инструментальной шкалы и оценить величину стандартных
отклонений. Корреляция инструментальных данных о параметрах сейсмического движения грунта с
использованием сейсмоизолирующих опор с использованием ФПС должно уменьшить
повреждаемость фрикционно–подвижных соединений (ФПС) в местах крепления строительных
конструкций , трубопровода , предназначенных для сейсмоопасных районов с сейсмичностью более
9 баллов (с учетом зарубежного опыта в КНР, Новой Зеландии, Японии, Тайваня, США в части
широкого использования сейсмоизоляции для трубопроводов и использования ФФПС и
демпфирующей сейсмоизоляции для трубопроводов).
Испытания математических моделей опор скользящих для демпфирующих сдвиговых
компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://pptonline.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , предназначенных для сейсмоопасных
районов с сейсмичностью более 9 баллов с трубопроводами, с креплением трубопроводов с
помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) согласно программной
реализации в SCAD Office проводились по прогрессивному методу испытания зданий и сооружений
как более новому. Для практического применения фрикционно-подвижных соединений (ФПС) после
введения количественной характеристики сейсмостойкости надо дополнительно испытать узлы
ФПС. Проведены испытания математических моделей в программе SCAD. Процедура оценок
эффекта и обработки полученных данных существенно улучшена и представляет собой стройный
алгоритм, обеспечивающий высокую воспроизводимость оценок.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 196
Испытание математических моделей допускается со шкалой землетрясений Апликаева
(определение интенсивности земле-трясений по значительно расширенному кругу объектов при
различной обеспеченности данными). Шкала также создает основу для оценки и уменьшения
возможного уровня воздействий будущих землетрясений заданной балльности.
При испытании моделей узлов и фрагментов опор скользящих для демпфирующих сдвиговых
компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://pptonline.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
Вывод : Сдвиговый компенсатор -сдвиговые накладки прошли проверку прочности по первой и
второй группе предельных состояний. РАСЧЕТНАЯ СХЕМА демпфирующих сдвиговых
компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://pptonline Вывод.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
В заключение необходимо сказать о соединении работающим на растяжение при контролируемом
натяжении может обеспечить не разрушаемость сухого или сварного стыка при импульсных
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 197
растягивающих нагрузках и многокаскадном демпфировании пролетного строения моста Уздина А
М
ВЫВОДЫ по испытанию математических моделей опоры скользящей для демпфирующих
сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом
сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил
https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , предназначенных для сейсмоопасных
районов с сейсмичностью более 9 баллов с трубопроводами , которые крепились с помощью
фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях и их программная реализация в SCAD Office.
Президент ОО «Сейсмофонд» при СПб ГАСУИНН: 2014000780 (аттестат аккредитации СРО «НИПИ
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012 СРО «ИНЖГЕОТЕХ» № 060-20102014000780-И-12,выдано 28.04.2010 Мажиев Х.Н. https://pub.fsa.gov.ru/ral/view/26088/applicant
Обоснованием технического свидетельство для быстровозводимых армейских сборно-разборный быстро
собираемый железнодорожный универсальный мост с использованием упругопластических компенсаторов,
гасителей динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD (
согласно СП 16.1330.2011 SCAD п.7.1.1 сдвиговая с учетом действий поперечных сил ) антисейсмическое
фланцевое фрикционное соединение для сборно-разборного быстрособираемого железнодорожного
армейского моста из стальных конструкций покрытий производственных здании пролетами 18, 24 и 30
м с применением замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно» (серия
1.460.3-14 ГПИ «Ленпроектстальконструкция» ), согласно заявки на изобретение от 14.02.2022
"Огнестойкий компенсатор -гаситель температурных напряжений", заявки № 2022104632 от 21.02.2022
, "Фрикционно-демпфирующий компенсатор для трубопроводов", послужили изобретения и заявки №
2021134630 от 29.12.2021 "Термический компенсатор- гаситель температурных колебаний", заявки №
2022102937 от 07.02.2022 "Термический компенсатор- гаситель температурных колебаний СПб
ГАСУ,"заявки "Фланцевое соединения растянутых элементов трубопровода со скошенными торцами" № а
20210217 от 23.09. 2021, заявки "Спиральная сейсмоизолирующая опора с упругими демпферами сухого
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 198
трения" № а20210051, заявки "Компенсатор .... для трубопроводов" № а 20210354 от 22.02. 2022, Минск,
"Антисейсмическое фланцевое фрикционное соединения для сборно-разборного моста" проходил испытанияс
использованием демпфирующего компенсатора на болтовых соединений с тросовыми или медными
гильзами, расположенных в длинных овальных отверстиях, согласно изобретениям: №№
1143895,1174616, 1168755 SU, 2010136746 RU, и должны быть выполнены в виде спиралевидной
винтовой -змейки" или «зиг-зага» и уложенные на сейсмоизолирующих опорах, согласно изобретения
№ 165076 RU "Опора сейсмостойкая", опубликованного в Бюл. № 28 от 10.10.2016 ФИПС , с
трубопроводами ( ГОСТ Р 55989-2014), и предназначенное для сейсмоопасных районов с сейсмичностью
до 9 баллов, серийный выпуск (в районах с сейсмичностью 8 баллов и выше для установки оборудования и
трубопроводов необходимо использование сейсмостойких демпфирующих опорах , а соединение
трубопроводов необходимо на фланцевых фрикционно- подвижных соединений, работающих на сдвиг, с
использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с
забитым в паз шпильки медным обожженным клином, согласно рекомендациям ЦНИИП им
Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80,РТМ 24.038.12-72, ОСТ 37.001.050- 73,альбома 1-4871997.00.00 и изобрет. №№ 1143895, 1174616,1168755 SU, 4,094,111 US, TW201400676 Restraintantiwindandanti-seismic-friction-damping-device и согласно изобретения «Опора сейсмостойкая» Мкл E04H
9/02, патент № 165076 RU, Бюл.28, от 10.10.2016 и должны быть уложены в виде "змейки" или "зигзага ") и предназначены для работы в сейсмоопасных районах, сейсмичность более 9 баллов и для
взрывопожароопасных производств категории А, Б и Е), закрепленных на основании фундамента с
помощью демпфирующих фрикционно-подвижных соединений (ФПС), выполненных согласно
изобретениям №№ 1143895,1174616, 1168755 SU, 165076 RU "Опора сейсмостойкая", 2010136746,
2413098, 2148805, 2472981, 2413820, 2249557, 2407893, 2467170, 4094111 US, TW201400676 (участки
соединения пролетного строения моста, выполнены в виде компенсатора или «демпфера ), для
повышения надежности, виброустойчивости и термоустойчивости пролетных строений моста,
которые соответствует группе механического исполнения М13 (в районах с сейсмичностью более 8
баллов и более комплектные распределительные устройства должны быть закреплены на основания с
помощью демпфирующих , сейсмостойких опор на фрикционно-подвижных соединениях с
контролируемым натяжением (ФПС), выполненных в виде болтовых косых или демпфирующих
соединениях с использованием латунной шпильки -болта, с пропиленным в ней пазом и забитым в паз
шпильки упруго-пластичным медным обожженным клином, с использованием тросовой гильзы
(обмотки) вокруг шпильки, согласно изобретениям: патенты №№1143895, 1168755, 1174616, «Опора
сейсмостойкая», патент № 165076 Е04Н 9/02).
Заключение по испытанию на сейсмостойкость демпфирующего сдвигового компенсатора Уздина А М
В соответствии с испытаниями сдвигоустойчивого податливого крепления делается вывод, что
компенсатор соответствует требованиям, которые предъявляются к оборудованию I и II группы
сейсмостойкости, так как сдвигоустойчивые податливые крепления податливого выполнены согласно
требованиям
НП -031-01 «Нормы проектирования сейсмостойких атомных станций», согласно
«Руководство по креплению технологического оборудования фундаментными болтами», РЧ серия 4.402-9,
вып.5 «Анкерные болты» и «Инструкция по выбору рамных податливых крепей горных выработок».
Скользящие (сдвиговые) крепления выполнены в виде болтовых соединений с изолирующей трубой или
свинцовой обоймой, с податливыми элементами в виде свинцового или из красной меди стопорного клина,
забитого в пропиленный в нижней части анкера паз.
Президент ОО «Сейсмофонд» при СПб ГАСУ ИНН: 2014000780 (аттестат аккредитации СРО «НИПИ
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2021 СРО «ИНЖГЕОТЕХ» № 060-20102014000780-И-12,выдано 28.04.2010 Мажиев Х.Н.
Объект испытаний испытания демпфирующего компенсатора гасителя динамических колебаний и
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD, серийный выпуск
предназначен для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск. В
районах с сейсмичностью более 9 баллов, необходимо использование в строительных
конструкциях демпфирующих компенсаторов с упругопластическими шарнирами на
фрикционно-подвижных соединениях, расположенных в длинных овальных отверстиях, с целью
обеспечения многокаскадного демпфирования при импульсных растягивающих и динамических
нагрузках согласно изобретениям, патенты: №№ 1143895, 1174616, 1168755 (автор: проф. д.т.н.
ПГУПС А.М.Уздин) , 2010136746 ,165076 , 2550777, с использованием сдвигового
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 199
демпфирующего гасителя сдвиговых напряжений , согласно заявки на изобретение от
14.02.2022 "Огнестойкий компенсатор -гаситель температурных напряжений", заявки №
2022104632 от 21.02.2022 , "Фрикционно-демпфирующий компенсатор для трубопроводов",
заявки № 2021134630 от 29.12.2021 "Термический компенсатор- гаситель температурных
колебаний", заявки № 2022102937 от 07.02.2022 "Термический компенсатор- гаситель
температурных колебаний СПб ГАСУ,"заявки "Фланцевое соединения растянутых элементов
трубопровода со скошенными торцами" № а 20210217 от 23.09. 2021, заявки "Спиральная
сейсмоизолирующая опора с упругими демпферами сухого трения" № а20210051, заявки
"Компенсатор .... для трубопроводов" № а 20210354 от 22.02. 2022, Минск,
"Антисейсмическое фланцевое фрикционное соединения для сборно-разборного моста" для
обеспечения сейсмостойкости и сдвиговой прочности для строительных систем
предназначенная для районов с сейсмичностью 9 баллов (шкала MSK-64). https://disk.yandex.ru/d/mUzAI2Nw8dAWQ https://ppt-online.org/1227618
При лабортарные испытаниях использовались американиеи чертежи и специальные технические
условия разработанные на основании использования опыта инженеров американских организация,
расположенных в г. Анкоридж ( Аляска, США ) с использованием сборно –разборных армейских
мостов без использования упругопластических компенсаторов и гасителей динамических колебаний и
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD п.7.1.1
сдвиговая с учетом действий поперечных сил ) антисейсмическое фланцевое фрикционное соединение для
сборно-разборного быстро собираемого железнодорожного армейского моста из стальных конструкций
покрытий производственных здании пролетами 18, 24 и 30 м с применением замкнутых гнутосварных
профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция»
) предназначены для работы в сейсмоопасных районах, сейсмичность более 9 баллов, для районов с
сейсмичностью 8 баллов и более с использованием термических компенсаторов для строительных
конструкций , трубопроводов должно быть выполнено с помощью демпфирующих фланцевых
фрикционно-подвижных компенсаторов (соединений на ФПС), согласно заявки на изобретение c
названием Сталинский компенсатор для трубопроводов ,( старое название Фрикционно- демпфирующий
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 200
компенсатор для армейский сборно-разборный быстро собираемый железнодорожный универсальный
мост с использованием упругопластических компенсаторов, гасителей динамических колебаний и
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD п.7.1.1
сдвиговая с учетом действий поперечных сил ), аналог компенсатора Сальникова для теплотрасс или
техническое решение предназначено для защиты от сейсмических воздействий за счет использования
фланцевого демпфирующего компенсатора, с упругими демпферами сухого трения при многокаскадном
демпфировании и динамических нагрузках на протяжных фрикционное- податливых соединений проф.
ПГУПС дтн Уздина А М "Болтовое соединение" №№ 1143895 , 1168755 , 1174616 "Болтовое соединение
плоских деталей". Известны фрикционные соединения для защиты объектов от динамических
воздействий. Известно, например, болтовое соединение плоских деталей встык, патент Фланцевое
соединение растянутых элементов замкнутого профиля № 2413820, «Стыковое соединение растянутых
элементов» № 887748 и RU №1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D 66C 7/00 " Узел
упругого соединения трехглавного рельса с подкрановой балкой ", RU № 2148 805 G 01 L 5/24 "Способ
определения коэффициента закручивания резьбового соединения" См. заявку на изобртение №
2021134630 от 25.11.2021 от 25.11.2021 входящий 073171 отдел 17 ФИПС "Фрикционно -демпфирующий
компенстаор для трубопроводов" F16 L 23/00 : https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg https://pptonline.org/1026337
Техническое свидетельство составлено НА ОСНОВАНИИ: Протокола № 576 от 16.12.2022 (ИЛ ФГБОУ
СПб ГАСУ, № RA.RU. 21СТ39 от 27.05.2015, ФГБОУ ВПО ПГУПС № SP01.01.406.045 от 27.05.2020, действ.
27.05.2020, организация «Сейсмофонд» при СПб ГАСУ ИНН 2014000780, для системы несущих элементов и
элементов проезжей части армейского сборно-разборного пролетного надвижного строения
железнодорожного моста, с быстросъемными упругопластичными компенсаторами, со сдвиговой
фрикционно-демпфирующей прочностью и предназначенные для сейсмоопасных районов с сейсмичностью
более 9 баллов. https://disk.yandex.ru/d/m-UzAI2Nw8dAWQ https://ppt-online.org/1227618 https://pptonline.org/1155578 https://studylib.ru/doc/6357259/usa--baileybridje-pereprava-kompensator-sdvigovoy-proshno...
https://mega.nz/file/faJ1hBCC#WcwDl3neDUxt27tGCFRqSYRGKwcRjgeLFjcy7e-D_SY
https://mega.nz/file/rfRgDRxY#GarDAlLYC6eLIi1TTYC1KofTLq9Msc7EtTYG6zK-cRY
https://ppt-online.org/1228005 https://disk.yandex.ru/d/f_Ed_Zs5TAP8iw
https://studylib.ru/doc/6357302/89219626778%40mail.ru-protokol-kompensator-sdvigovoy-prochn...
ОРГАН выдачи технического свидетельство : ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017,
195251, СПб, ул. Политехническая, д 29, организация «Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824,
т/ф:694-78-10 https://www.spbstu.ru 89219626778@mail.ru (994) 434-44-70 (аттестат № RA.RU.21ТЛ09, выдан
26.01.2017)
Президент
ОО
«Сейсмофонд»
при
йhttps://pub.fsa.gov.ru/ral/view/26088/applicant
СПб
ГАСУИНН:
2014000780
Мажиев
Х.Н.
При лабораторных испытаниях в Испытательном центре СПб ГАСУ проводились испытания узлов и
фрагментов быстровозводимого армейского сборно-разборный быстро собираемый железнодорожный универсальный мост с
использованием упругопластических компенсаторов, гасителей динамических колебаний и сдвиговых напряжений с учетом
сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD п.7.1.1 сдвиговая с учетом действий поперечных сил )
фланцевых фрикционно-подвижных компенсаторов, использовалось изобретение Х.Н.Мажиева, согласно
заявки на изобретение "Фрикционно-демпфирующий компенсатор для трубопроводов " F16 L 23/00.
Регистрационный № 2021134630 от 25.11.2021 , входящий № 073171, выданный "Федеральным институтом
промышленной собственности" (ФИПС) , автор Президент организации "Сейсмофонд" при СПб ГАСУ ИНН :
2014000780, ОГРН: 1022000000824 Мажиев Х.Н т/ф (812) 694-78-10 89219626778@mail.ru тел (994) 434-4470
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 201
При лабораторных испытания узлов и фрагментов в Испытательном центре СПб ГАСУ и в ПК SCAD
демпфирующего компенсатора гасителя динамических колебаний для армейский сборно-разборный быстро
собираемый железнодорожный универсальный мост с использованием упругопластических компенсаторов, гасителей
динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD
п.7.1.1 сдвиговая с учетом действий поперечных сил ) на фрикционно-подвижных соединениях с подвижными узлами
крепления рассчитаны на сейсмостойкость, взрывопрочность, устойчивость к воздействию от удара
воздушной волны на основе заявки на изобретение : «Фрикционно –демпфирующий компенсатор для
трубопроводов» F16L 23/00, регистрационный № 2021134630 от 25.11.2021 , входящий 073171 ФИПС
отражены в протоколе № 574 от 24.06.2022 см ссылку: https://disk.yandex.ru/d/svWGsxT58paepw https://pptonline.org/1043075 Смотри : Специальные технические условия, на осевое статическое усилие сдвига
термических компенсаторов на фрикционно-подвижных соединениях для строительных конструкций , зданий и
сооружений на фрикционно-подвижного соединения по линии нагрузки № 1516-2/3 от 20.02.2018 см.
https://disk.yandex.ru/d/163Eui1iXJE8RQ https://ppt-online.org/1043095 https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg
https://ppt-online.org/1026337
ЗАЯВИТЕЛЬ (ИЗГОТОВИТЕЛЬ): Оргканизация "Сейсмофонд" при СПб ГАСУ по проектированию и испытанию
фрагментов и узлов армейского сборно-разборный быстро собираемый железнодорожный универсальный мост с использованием
упругопластических компенсаторов, гасителей динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости
в ПК SCAD ( согласно СП 16.1330.2011 SCAD п.7.1.1 сдвиговая с учетом действий поперечных сил ) для сейсмоопасных районов
более 9 баллов, изготавливаемые в соответствии с техническими условиями ТУ 3680-001-04698606-04 "Опоры
трубопроводов" , ОСТ 34-10-616-93 , серия 4.903-10, вып. 4, "Опоры трубопроводов неподвижные", ГОСТ 14911-82 "Опоры
подвижные" изготовленные согласно изобретений № 165076 "Опора сейсмостойкая", № 2010136746, 1143895, 1168755,
1174616 предназначенные для сейсмоопасных районов с сейсмичностью более 9 баллов (в районах с сейсмичностью 8 баллов
и более необходимо использование демпфирующих винтообразных (спиралеобразных) компенсаторов на фрикционно-подвижных соединениях
для противопожарных трубопроводов, на фрикционно-подвижных соединениях, с целью обеспечения многокаскадного
демпфирования при динамических нагрузках, согласно изобретениям №№ 165076 "Опора сейсмостойкая", 1143895, 1174616,
1168755, 2010136746 , 2550777. Испытание проводились на соответствие групп механической прочности на вибрационные,
ударные воздействия: М5-М7, М38-М39 по результатам испытаний методом численного моделирования в ПК SCAD на
взаимодействие противопожарных трубопровода с геологической средой ).
СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ : СП 56.13330.2011 Производственные здания. Актуализированная редакция СНиП 31-03-2001,ГОСТ
30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98, ГОСТ 17516.1-90, п.5, СП 14.13330-2011 п .4.6. «Обеспечение демпфированности фрикционноподвижного соединения (ФПС) согласно альбома серии 4.402-9 «Анкерные болты», альбом, вып.5, «Ленгипронефтехим», ГОСТ 17516.1-90
(сейсмические воздействия 9 баллов по шкале MSK-64) п.5, с применением ФПС, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012 (02250) , п.10.7, 10.8.
НА ОСНОВАНИИ
Протокола № 576 от 16.12.2022, ОО «Сейсмофонд», ИНН 2014000780 СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015 и протокола испытания на осевое
статическое усилие сдвига дугообразного зажима с анкерной шпиль-кой № 1516-2 от 25.11.2021 и протокола испытаний на осевое статическое усилие
сдвига фрикционно-подвижного соединения по линии нагрузки № 1516-2/3 от 20.02.2021 : См. . https://disk.yandex.ru/d/m-UzAI2Nw8dAWQ
https://ppt-online.org/1227618 https://ppt-online.org/1155578 https://studylib.ru/doc/6357259/usa--baileybridje-pereprava-kompensator-sdvigovoy-proshno...
https://mega.nz/file/faJ1hBCC#WcwDl3neDUxt27tGCFRqSYRGKwcRjgeLFjcy7e-D_SY
https://mega.nz/file/rfRgDRxY#GarDAlLYC6eLIi1TTYC1KofTLq9Msc7EtTYG6zK-cRY
https://ppt-online.org/1228005 https://disk.yandex.ru/d/f_Ed_Zs5TAP8iw
https://studylib.ru/doc/6357302/89219626778%40mail.ru-protokol-kompensator-sdvigovoy-prochn...
При лабораторных испытаниях использовались изобретения: "Опора сейсмостойкая», патент № 165076, БИ № 28 , от 10.10.2016, заявка на
изобретение № 2016119967/20- 031416 от 23.05.2016, Опора сейсмоизолирующая маятниковая", научные публикации: журнал «Сельское
строительство» № 9/95 стр.30 «Отвести опасность», журнал «Жилищное строительство» № 4/95 стр.18 «Использование
сейсмоизолирующего пояса для существующих зданий», журнал «Жилищное
Лабораторные испытания
фрагментов, узлов упругопалстического сдвигового компенсатора, для армейского
сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров , ширина
проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ
"Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным
настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60 метров)
в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно напряжения
гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС А.М.Уздина №№
1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и изобртений Красноярского ГАСУ №№ 228415, 2503783,
2247813, и Казанского ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD проводила организация
"Сейсмофонд" при СПб ГАСУ на основании технического задания в испытательном Центре СПб ГАСУ и Политехническом
Университетт
ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул. Политехническая, д 29, организация
«Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824, т/ф: (812) 694-78-10 https://www.spbstu.ru
89219626778@mail.ru (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)
Испытательного центра СПб ГАСУ, аккредитован Федеральной службой по аккредитации
(аттестат № RA.RU.21СТ39, выдан 23.06.2015), ОО "Сейсмофонд" при СПб ГАСУ 190005,
СПб, 2-я Красноармейская ул. д 4 ( ФГБОУ СПб ГАСУ)ОГРН: 1022000000824
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 202
ЗАКЛЮЧЕНИЕ (экспертиза) № 576 от 16.12.22
О пригодности быстровозводимого армейского сборно-разборного железнодорожного
моста с использованием
упругопластических компенсаторов- гасителей динамических колебаний и сдвиговых напряжений для сейсмоопасных районов более
9 баллов , согласно СП 20.13330.2011, СНиП 2.01.07-85* "Нагрузки и воздействия"
ДЛЯ ПРИМЕНЕНИЯ В СТРОИТЕЛЬСТВЕ НА ТЕРРИТОРИИ РФ (Основание: Постановление Правительства
Российской Федерации от 27 декабря 1997г. № 1636 )
Техническое свидетельство о пригодности быстровозводимого армейского сборно-разборного железнодорожного универсального
моста, с использованием упругопластических компенсаторов, гасителей динамических колебаний и сдвиговых напряжений с
учетом сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD п.7.1.1 сдвиговая с учетом действий поперечных сил )
антисейсмическое фланцевое фрикционное соединение для сборно-разборного быстро собираемого железнодорожного армейского
моста из стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м с применением замкнутых
гнутосварных профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» ) и
взаимодействие моста с геологическое средой, в том числе нелинейным методом расчета конструкция зданий и сооружений с применением
сдвиговых компенсаторов - гасителя сдвиговых напряжений согласно заявки на изобретение «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО
ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14
ГПИ Ленпроектстальконструкция, стальные конструкции покрытий производственных» № 2022111669 от 25.05.2022, «Сборно-разборный
железнодорожный мост» № 2022113052, «Сборно-разборный универсальный мост» № 2022113510 от 21.06.2022, «Антисейсмический сдвиговой
компенсатор для гашения колебаний пролетного строения моста» № 2022115073 от 02.06.2022 ФИПС : "Огнестойкого компенсатора -гасителя
температурных напряжений" заявка № 2022104632 от 21.02.2022 , вх 009751, "Фрикционно-демпфирующий компенсатор для трубопроводов"
заявка № 2021134630 от 29.12.2021, "Термический компенсатор гаситель температурных колебаний" Заявка № 2022102937 от 07.02.2022 , вх.
006318, "Термический компенсатор гаситель температурных колебаний СПб ГАСУ № 20222102937 от 07 фев 2022, вх 006318, «Огнестойкий
компенсатор –гаситель температурных колебаний»,-регистрационный 2022104623 от 21.02.2022, вх. 009751, "Фланцевое соединения растянутых
элементов трубопровода со скошенными торцами" № а 20210217 от 23 сентября 2021, Минск, "Спиральная сейсмоизолирующая опора с
упругими демпферами сухого трения" № а 20210051, "Компенсатор тов. Сталина для трубопроводов" № а 20210354 от 22 февраля 2022 Минск ,
заявка № 2018105803 от 27.02.2018 "Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов" № а 20210354 от 22.02.
2022, Минск, для обеспечения сейсмостойкости в сейсмоопасных районах в сейсмичностью более 9 баллов .
Заявитель Президент организации «Сейсмофонд» при СПб ГАСУ ИНН : 2014000780, ОГРН: 1022000000824 Мажиев Х. Н.
Техническое свидетельство
О ПРИГОДНОСТИ ПРОДУКЦИИ ДЛЯ ПРИМЕНЕНИЯ В СТРОИТЕЛЬСТВЕ НА ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ
(Основание: Постановление Правительства Российской Федерации от 27 декабря 1997г. №1636)
ТС № 2022-0000576
Зарегистрировано 16.12 2022 г.
Действительно до 16 декабря 2025 г.
Настоящим техническим свидетельством подтверждается пригодность продукции указанного наименования для применения в строительстве на
территории Российской Федерации в соответствии с областью применения и при условии соблюдения требований, приведенных в технической оценке
ФЦС (Федеральный научно-технический центр сертификации в строительстве).
НАИМЕНОВАНИЕ ПРОДУКЦИИ Быстровозводимый армейский сбрно-разборный быстро собираемый железнодорожный
универсальный мост с использованием упругопластических компенсаторов, гасителей динамических колебаний и сдвиговых
напряжений, предназначенная для работы в сейсмоопасных районах с сейсмичностью более 9 баллов по шкале MSK-64, для опор
скользящих для трубопроводов для системы противопожарной защиты ( для районов с сейсмичностью более 8 баллов применяется
спиралеобразные компенсаторы на фрикционно–подвижными соединениями (ФПС) с фрикционно- демпфирующими
спиралеобразные компенсаторами для сборно-разборных мосто на фланцевых фрикционно-подвижными соединениями (ФПС) в виде болтовых соединений и
амортизирующими элементами (предназначены для работы в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64), согласно СП 16.13330.2011( СНиП II
-23-81*) п.14.3 -15.2.4, ТКТ 45-5.04-274-2012 (02250) Технический кодекс установившейся практики "Стальные конструкции" Правила расчета, Минск, 2013 , п. 9.7.4 - п
10.3.2,заявка на изобретение № 2021134630 от 25.11.2021 , вх. 073171 «Фрикционно –демпфирующий компенсатор для трубопроводов» Мкл F 16 L 23/00 Федеральный
институт промышленной собственности (ФИПС) Бережковская наб 30 к.1
Руководитель ИЦ ОО «Сейсмофонд», эксперт (аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 24.06.2022
npnardo.ru/news_36.htm СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12, выдано 26.06.2022 . nasgage.ru Мажиев Х Н .
Зарегистрировано " 24 " июня 2022, регистр № 2022-0000574 от 24.06.2022 Настоящее техническое свидетельство с приложением действует до 24 .06 2025
Техническое свидетельство о пригодности быстровозводимых армейских сборноразборных железнодорожных мостов, переправ с использованием
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 203
упругопластических компенсаторов, гасителей динамических колебаний и
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП
16.1330.2011 SCAD п.7.1.1 сдвиговая с учетом действий поперечных сил )
антисейсмическое фланцевое фрикционное соединение для сборно-разборного
быстро собираемого железнодорожного армейского моста из стальных
конструкций покрытий производственных здании пролетами 18, 24 и 30 м с
применением замкнутых гнутосварных профилей прямоугольного сечения типа
«Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» ) и
взаимодействие моста с геологическое средой, в том числе нелинейным методом
расчета конструкций пролетных строений железнодорожных мостов с
применением сдвиговых компенсаторов - гасителя сдвиговых напряжений
согласно заявки на изобретение «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО
ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ,
ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14
ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий
производственных» № 2022111669 от 25.05.2022, «Сборно-разборный
железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный
универсальный мост» № 2022113510 от 21.06.2022, «Антисейсмический сдвиговой
компенсатор для гашения колебаний пролетного строения моста» № 2022115073 от
02.06.2022 ФИПС : "Огнестойкого компенсатора -гасителя температурных
напряжений" заявка № 2022104632 от 21.02.2022 , вх 009751, "Фрикционнодемпфирующий компенсатор для трубопроводов" заявка № 2021134630 от
29.12.2021, "Термический компенсатор гаситель температурных колебаний" Заявка
№ 2022102937 от 07.02.2022 , вх. 006318, "Термический компенсатор гаситель
температурных колебаний СПб ГАСУ № 20222102937 от 07 фев. 2022, вх 006318,
«Огнестойкий компенсатор –гаситель температурных колебаний»,регистрационный 2022104623 от 21.02.2022, вх. 009751, "Фланцевое соединения
растянутых элементов трубопровода со скошенными торцами" № а 20210217
от 23 сентября 2021, Минск, "Спиральная сейсмоизолирующая опора с упругими
демпферами сухого трения" № а 20210051, "Компенсатор тов. Сталина для
трубопроводов" № а 20210354 от 22 февраля 2022 Минск , заявка № 2018105803
от 27.02.2018 "Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов" № а 20210354 от 22.02. 2022, Минск, "Антисейсмическое
фланцевое фрикционно-подвижное соединение для трубопроводов № 2018105803
от 15.02.2018 ФИПС, для обеспечения сейсмостойкости сборно-разборных
надвижных мостов в сейсмоопасных районах в сейсмичностью более 9 баллов .
https://disk.yandex.ru/i/D1HUEOVP2Qwnzg https://ppt-online.org/1229700
POLITEX Bistrovozvodimiy sborno-razborniy armeyskie jeleznodorojnie mosti 30 str
проводилось на основании рабочих чертежей Beile bridge представленные
американской строной для лабортарных испытаний в испытательном Центра СПб
ГАСУ ( ниже прилагаются рабочие чертеджи сбороно-разбороного моста Бейли Великобритания )
https://studylib.ru/docmanager.html?id=6357577&justuploaded=yes
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 204
https://mega.nz/file/CfgyzLRa#J3eUsWrVvnVAZhZ0fT7DAoI58XR3aZqI_ue1WoGZMg8
https://mega.nz/file/zDgHhDqI#PP481T2RhaskeCBeN5Cod2MjQQJtwZHqy90P2j_oKNM
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 205
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 206
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 207
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 208
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 209
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 210
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 211
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 212
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 213
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 214
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 215
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 216
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 217
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 218
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 219
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 220
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 221
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 222
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 223
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 224
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 225
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 226
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 227
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 228
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 229
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 230
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 231
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 232
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 233
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 234
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 235
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 236
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 237
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 238
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 239
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 240
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 241
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 242
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 243
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 244
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 245
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 246
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 247
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 248
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 249
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 250
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 251
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 252
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 253
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 254
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 255
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 256
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 257
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 258
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 259
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 260
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 261
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 262
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 263
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 264
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 265
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 266
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 267
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 268
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 269
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 270
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 271
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 272
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 273
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 274
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 275
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 276
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 277
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 278
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 279
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 280
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 281
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 282
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 283
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 284
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 285
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 286
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 287
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 288
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 289
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 290
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 291
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 292
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 293
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 294
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 295
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 296
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 297
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 298
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 299
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 300
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 301
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 302
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 303
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 304
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 305
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 306
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 307
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 308
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 309
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 310
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 311
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 312
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 313
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 314
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 315
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 316
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 317
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 318
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 319
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 320
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 321
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 322
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 323
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 324
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 325
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 326
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 327
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 328
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 329
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 330
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 331
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 332
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 333
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 334
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 335
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 336
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 337
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 338
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 339
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 340
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 341
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 342
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 343
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 344
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 345
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 346
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 347
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 348
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 349
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 350
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 351
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 352
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 353
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 354
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 355
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 356
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 357
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 358
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 359
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 360
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 361
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 362
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 363
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 364
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 365
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 366
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 367
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 368
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 369
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 370
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 371
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 372
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 373
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 374
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 375
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 376
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 377
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 378
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 379
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 380
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 381
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 382
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 383
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 384
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 385
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 386
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 387
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 388
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 389
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 390
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 391
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 392
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 393
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 394
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 395
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 396
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 397
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 398
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 399
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 400
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 401
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 402
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 403
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 404
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 405
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 406
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 407
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 408
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 409
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 410
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 411
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 412
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 413
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 414
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 415
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 416
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 417
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 418
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 419
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 420
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 421
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 422
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 423
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 424
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 425
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 426
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 427
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 428
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 429
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 430
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 431
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 432
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 433
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 434
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 435
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 436
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 437
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 438
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 439
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 440
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 441
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 442
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 443
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 444
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 445
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 446
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 447
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 448
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 449
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 450
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 451
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 452
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 453
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 454
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 455
Сдвигоустойчивые соединения на высокопрочных
болтах
А. С. Чесноков, А. Ф. Княжев
1974 г. — 121 стр.
На основе систематизации и обобщения отечественного и зарубежного опыта
рассматривается применение сдвигоустойчивых соединений на
высокопрочных болтах. Приведены прочностные характеристика соединений,
технология изготовления высокопрочных болтов. Рассмотрены вопросы,
связанные с производством работ до монтажу конструкций на высокопрочных
болтах.
Книга предназначена для инженерно-технических работников, проектных и
строительно-монтажных организации. Загрузить файл
5.8 MB
Если вы являетесь правообладателем данного произведения, и не желаете его нахождения
в сво https://elima.ru/books/?id=2565
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 456
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 457
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 458
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 459
ОПОРА СЕЙСМОСТОЙКАЯ 165076 организация
Сейсмофонд при СПб ГАСУ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
165 076
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
U1
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина: Возможность восстановления: нет.
(21)(22) Заявка: 2016102130/03,
22.01.2016
(72) Автор(ы):
Андреев Борис Александрович
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 460
(24) Дата начала отсчета срока действия
патента:
22.01.2016
Приоритет(ы):
(22) Дата подачи заявки: 22.01.2016
(45) Опубликовано: 10.10.2016 Бюл.
№ 28
(RU),
Коваленко Александр Иванович
(RU)
(73) Патентообладатель(и):
Андреев Борис Александрович
(RU),
Коваленко Александр Иванович
(RU)
Адрес для переписки:
190005, Санкт-Петербург, 2-я
Красноармейская ул. дом 4 СПб
ГАСУ Коваленко Александр
Иванович
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
Опора сейсмостойкая предназначена для защиты объектов от сейсмических воздействий за
счет использования фрикцион но податливых соединений. Опора состоит из корпуса в котором
выполнено вертикальное отверстие охватывающее цилиндрическую поверхность щтока. В
корпусе, перпендикулярно вертикальной оси, выполнены отверстия в которых установлен
запирающий калиброванный болт. Вдоль оси корпуса выполнены два паза шириной <Z> и
длиной <I> которая превышает длину <Н> от торца корпуса до нижней точки паза,
выполненного в штоке. Ширина паза в штоке соответствует диаметру калиброванного болта.
Для сборки опоры шток сопрягают с отверстием корпуса при этом паз штока совмещают с
поперечными отверстиями корпуса и соединяют болтом, после чего одевают гайку и
затягивают до заданного усилия. Увеличение усилия затяжки приводит к уменьшению
зазора<Z>корпуса, увеличению сил трения в сопряжении корпус-шток и к увеличению усилия
сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений, объектов и оборудования от
сейсмических воздействий за счет использования фрикционно податливых соединений. Известны фрикционные
соединения для защиты объектов от динамических воздействий. Известно, например Болтов ое соединение плоских
деталей встык по Патенту RU 1174616, F15B 5/02 с пр. от 11.11.1983. Соединение содержит металлические листы,
накладки и прокладки. В листах, накладках и прокладках выполнены овальные отверстия через которые пропущены
болты, объединяющие листы, прокладки и накладки в пакет. При малых горизонтальных нагрузках силы трения между
листами пакета и болтами не преодолеваются. С увеличением нагрузки происходит взаимное проскальзывание листов
или прокладок относительно накладок контакта листов с меньшей шероховатостью. Взаимное смещение листов
происходит до упора болтов в края овальных отверстий после чего соединения работают упруго. После того как все
болты соединения дойдут до упора в края овальных отверстий, соединение начинает работать упруго , а затем
происходит разрушение соединения за счет смятия листов и среза болтов. Недостатками известного являются:
ограничение демпфирования по направлению воздействия только по горизонтали и вдоль овальных отверстий; а также
неопределенности при расчетах из-за разброса по трению. Известно также Устройство для фрикционного
демпфирования антиветровых и антисейсмических воздействий по Патенту TW 201400676 (A) -2014-01-01. Restraint antiwind and anti-seismic friction damping device, E04B 1/98, F16F 15/10. Устройство содержит базовое основание,
поддерживающее защищаемый объект, нескольких сегментов (крыльев) и несколько внешних пластин. В сегментах
выполнены продольные пазы. Трение демпфирования создается между пластинами и наружными поверхностями
сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы, проходят запирающие элементы - болты,
которые фиксируют сегменты и пластины друг относительно друга. Кроме того, запирающие элементы проходят через
блок поддержки, две пластины, через паз сегмента и фиксируют конструкцию в заданном положении. Таким образом
получаем конструкцию опоры, которая выдерживает ветровые нагрузки но, при возникновении сейсмических нагрузок,
превышающих расчетные силы трения в сопряжениях, смещается от своего начального пол ожения, при этом сохраняет
конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из -за наличия
большого количества сопрягаемых трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного сопряжения отверстие корпуса - цилиндр штока, а также повышение точности расчета.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 461
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая выполнена из двух частей: нижней корпуса, закрепленного на фундаменте и верхней - штока, установленного с возможностью перемещения вдоль общей
оси и с возможностью ограничения перемещения за счет деформации корпуса под действием запорного элемента. В
корпусе выполнено центральное отверстие, сопрягаемое с цилиндрической поверхностью штока, и поперечные
отверстия (перпендикулярные к центральной оси) в которые устанавливают запирающий элемент -болт. Кроме того в
корпусе, параллельно центральной оси, выполнены два открытых паза, которые обеспечивают корпусу возможность
деформироваться в радиальном направлении. В теле штока, вдоль центральной оси, выполнен паз ширина которого
соответствует диаметру запирающего элемента (болта), а длина соответствует заданному перемещению штока.
Запирающий элемент создает нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы обеспечивают
возможность деформации корпуса и «переход» сопряжения из состояния возможного перемещения в состояние
«запирания» с возможностью перемещения только под сейсмической нагрузкой. Длина пазов корпуса превышает
расстояние от торца корпуса до нижней точки паза в штоке. Сущность предлагаемой конструкции поясняется
чертежами, где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2 изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3
изображен разрез В-В (фиг. 1); на фиг. 4 изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром «D», которое
охватывает цилиндрическую поверхность штока 2 например по подвижной посадке H7/f7. В стенке корпуса
перпендикулярно его оси, выполнено два отверстия в которых установлен запирающий элемент - калиброванный болт 3.
Кроме того, вдоль оси отверстия корпуса, выполнены два паза шириной «Z» и длиной «I». В теле штока вдоль оси
выполнен продольный глухой паз длиной «h» (допустмый ход штока) соответствующий по ширине диаметру
калиброванного болта, проходящего через этот паз. При этом длина пазов «I» всегда больше расстояния от торца
корпуса до нижней точки паза «Н». В нижней части корпуса 1 выполнен фланец с отверстиями для крепления на
фундаменте, а в верхней части штока 2 выполнен фланец для сопряжения с защищаемым объектом. Сборка опоры
заключается в том, что шток 2 сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока совмещают с
поперечными отверстиями корпуса и соединяют калиброванным болтом 3, с шайбами 4, с предварительным усилием
(вручную) навинчивают гайку 5, скрепляя шток и корпус в положении при котором нижняя поверхно сть паза штока
контактирует с поверхностью болта (высота опоры максимальна). После этого гайку 5 затягивают тарировочным
ключом до заданного усилия. Увеличение усилия затяжки гайки (болта) приводит к деформации корпуса и уменьшению
зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит к увеличению допустимого усилия сдвига (усилия
трения) в сопряжении отверстие корпуса - цилиндр штока. Величина усилия трения в сопряжении корпус-шток зависит
от величины усилия затяжки гайки (болта) и для каждой конкр етной конструкции (компоновки, габаритов, материалов,
шероховатости поверхностей, направления нагрузок и др.) определяется экспериментально. При воздействии
сейсмических нагрузок превышающих силы трения в сопряжении корпус -шток, происходит сдвиг штока, в пределах
длины паза выполненного в теле штока, без разрушения конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел, закрепленный запорным
элементом, отличающаяся тем, что в корпусе выполнено центральное вертикальное отверстие, сопряженное с
цилиндрической поверхностью штока, при этом шток зафиксирован запорным элементом, выполненным в виде
калиброванного болта, проходящего через поперечные отверстия корпуса и через вертикальный паз, выполненный в
теле штока и закрепленный гайкой с заданным усилием, кроме того в корпусе, параллельно центральной оси, выполнено
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 462
два открытых паза, длина которых, от торца корпуса, больше расстояния до нижней точки паза штока.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 463
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 464
СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ 2010136746 RU
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 465
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2010 136 746
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
(13)
A
(51) МПК

E04C 2/00 (2006.01)
(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства: Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03,
01.09.2010
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(43) Дата публикации
заявки: 20.01.2013 Бюл. № 2
Адрес для переписки:
443004, г.Самара, ул.Заводская, 5,
ОАО "Теплант"
(71) Заявитель(и):
Открытое акционерное
общество "Теплант" (RU)
(72) Автор(ы):
Подгорный Олег Александрович
(RU),
Акифьев Александр
Анатольевич (RU),
Тихонов Вячеслав Юрьевич
(RU),
Родионов Владимир Викторович
(RU),
Гусев Михаил Владимирович
(RU),
Коваленко Александр Иванович
(RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий
выполнение проема/проемов рассчитанной площади для снижения до допустимой величины
взрывного давления, возникающего во взрывоопасных помещениях при аварийных внутренних
взрывах, отличающийся тем, что в объеме каждого проема организуют зону, представленную в
виде одной или нескольких полостей, ограниченных эластичным огнестойким материалом и
установленных на легкосбрасываемых фрикционных соединениях при избыточном давлении
воздухом и землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем
объеме проема, а в момент взрыва и землетрясения под действием взрывного давления
обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема и
соскальзывают с болтового соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы
на высокоподатливых с высокой степенью подвижности фрикционных, скользящих
соединениях с сухим трением с включением в работу фрикционных гибких стальных затяжек
диафрагм жесткости, состоящих из стальных регулируемых натяжений затяжек сухим трением
и повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в
горизонтали в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 466
вертикали 65 мм, т.е. до 7 см (подъем пятки на уровне фундамента), не подвергая разрушению и
обрушению конструкции при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на
сдвигоустойчивых соединениях со свинцовой, медной или зубчатой шайбой, которая
распределяет одинаковое напряжение на все четыре-восемь гаек и способствует
одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться
основным несущим конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого
податливого соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут
монтироваться как самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и
поглощения сейсмической энергии может определить величину горизонтального и
вертикального перемещения «сэндвич»-панели и определить ее несущую способность при
землетрясении или взрыве прямо на строительной площадке, пригрузив «с эндвич»-панель и
создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение
до землетрясения и аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения опре деляются,
проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9,
MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL
3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном строител ьном полигоне
прямо на строительной площадке испытываются фрагменты и узлы, и проверяются
экспериментальным путем допустимые расчетные перемещения строительных конструкций
(стеновых «сэндвич»-панелей, щитовых деревянных панелей, колонн, перекрытий,
перегородок) на возможные при аварийном взрыве и при землетрясении более 9 баллов
перемещение по методике разработанной испытательным центром ОО «Сейсмофонд» - «Защита
и безопасность городов».
ПАНЕЛЬ ПРОТИВОВЗРЫВНАЯ 154506
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
154 506
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
U1
(51) МПК
 E04B 1/92 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина: Возможность восстановления: нет.
(21)(22) Заявка: 2014131653/03,
30.07.2014
(24) Дата начала отсчета срока действия
патента:
30.07.2014
(72) Автор(ы):
Андреев Борис Александрович
(RU),
Коваленко Александр Иванович
(RU)
(73) Патентообладатель(и):
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 467
Приоритет(ы):
(22) Дата подачи заявки: 30.07.2014
(45) Опубликовано: 27.08.2015 Бюл.
№ 24
Андреев Борис Александрович
(RU),
Коваленко Александр Иванович
(RU)
Адрес для переписки:
190005, Санкт-Петербург, 2-я
Красноармейская ул. д 4 СПб
ГАСУ тел (812) 694-7810
(54) ПАНЕЛЬ ПРОТИВОВЗРЫВНАЯ
(57) Реферат:
Техническое решение относится к области строительства и предназначено для защиты
помещений от возможных взрывов. Конструкция позволяет обеспечить надежный и быстрый
сброс легкосбрасываемой панели, сброс давления при взрыве и зависание панели на опорной
плите, Конструкция представляет собой опорную плиту с расчетным проемом, которая жестко
крепится на каркасе защищаемого сооружения. На опорной плите крепежными элементами,
имеющими ослабленное резьбовое поперечное сечение, закреплена панель легкосбрасываемая.
Ослабленное резьбовое соединение каждого крепежного элемента образовано лысками
выполненными с двух сторон резьбовой части. Кроме того опорная плита и легкосбрасываемая
панель соединены тросом один конец которого жестко закреплен на опорной плите, а другой
конец соединен с крепежным элементом через планку, с возможностью перемещения. 4 ил.
Техническое решение относится к области строительства и предназначено для защиты помещений содержащих
взрывоопасные среды.
Известна панель для легкосбрасываемой кровли взрывоопасных помещений по Авт.св. 617552, М.Кл. 2 E04B 1/98 с
пр. от 21.11.75. Панель включает ограждающий элемент с шарнирно закрепленными на нем поворотными скобами,
взаимодействующими через опоры своими наружными полками с несущими элементами. С целью защиты от
воздействия ветровой нагрузки, панель снабжена подвижной плитой, шарнирно соединенной с помощью тяг с
внутренними концами поворотных скоб, которые выполнены Т-образными. Недостатком предлагаемой конструкции
является низкая надежность шарнирных соединений при переменных внешних и внутренних нагрузках. Известна также
легкосбрасываемая ограждающая конструкция взрывоопасных помещений по Патенту SU 1756523, МПК5 E06B 5/12 с
пр. от 05.10.1990. Указанная конструкция содержит поворотную стеновую панель, состоящую из нижней и верхней
секций и соединенную с каркасом временной связью. Нижняя секция в нижней части шарнирно связана с каркасом
здания, а в верхней части - шарнирно соединена с верхней секцией панели. Верхняя секция снабжена роликами,
установленными в направляющих каркаса здания. Недостатком указанной конструкции является низкая надежность
вызванная большим количеством шарнирных соединений, требующих высокой точности изготовления в условиях
строительства. Известна также противовзрывная панель по Патенту RU 2458212, E04B 1/92 с пр. от 13.04.2011, которую
выбираем за прототип. Изобретение относится к защитным устройствам применяемым во взрывоопасных объектах.
Противопожарная панель содержит металлический каркас с бронированной обшивкой и наполнителем-свинцом. Панель
имеет четыре неподвижных патрубка-опоры, а в покрытии взрывоопасного объекта жестко заделаны четыре опорных
стержня, которые телескопически вставлены в неподвижные патрубки-опоры панели. Наполнитель выполнен в виде
дисперсной системы воздух-свинец, а опорные стержни выполнены упругими. Недостатком вышеуказанной панели
является низкая надежность срабатывания телескопических сопряжений при воздействии переменных внешних и
внутренних нагрузок.
Задачей заявляемого устройства является обеспечение надежности открывания проема при взрыве (сбрасывания
легкосбрасываемой панели) за минимальное время и обеспечение зависания панели после сброса.
Сущность заявляемого решения состоит в том, что для защиты стен, оборудов ания и персонала от возможного
взрыва, помещение снабжено панелью противовзрывной, обеспечивающей надежное и быстрое открытие проема при
взрыве и сброс избыточного давления, а также зависание панели на плите опорной. Панель противовзрывная содержит
плиту опорную которая жестко закреплена на стене защищаемого помещения и имеет проем соответствующий проему в
стене, а с другой стороны плиты опорной винтами с резьбой, ослабленной по сечению, закреплена панель
легкосбрасываемая. Площадь проема плиты опорной и проема помещения определяется в зависимости от объема
помещения, от взрывоопасной среды, температуры горения, давления, скорости распространения фронта пламени и др.
параметров. Винты имеют резьбовую часть, ослабленную по сечению с двух сторон лысками до раз мера <Z> и т. о.
образуется ослабленное резьбовое сопряжение, разрушаемое под воздействием взрывной волны.
Сущность предлагаемого решения поясняется чертежами где:
на фиг. 1 изображен разрез Б-Б (фиг. 2) панели противовзрывной;
на фиг. 2 изображен разрез Α-A (фиг. 1);
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 468
на фиг. 3 изображен вид по стрелке В (фиг. 1) в увеличенном масштабе;
на фиг. 4 изображен разрез Г-Г (фиг. 2), узел крепления троса в увеличенном масштабе.
Панель противовзрывная состоит из опорной плиты 1, которая жестко крепится к каркасу з ащищаемого помещения
(на чертеже не показано). В каркасе помещения и в опорной плите выполнен проем 2, имеющий расчетную площадь
S=b*h, которая зависит от объема защищаемого помещения, температуры горения, давления, скорости распространения
фронта пламени и др. параметров. На опорной плите 1, резьбовыми крепежными элементами, например саморежущими
шурупами 3, имеющими ослабленное поперечное резьбовое сечение, закреплена легкосбрасываемая панель 4. Кроме
того, легкосбрасываемая панель соединена с опорной плитой гибким узлом, состоящим из планки 5, закрепленной с
одной стороны на тросе 6, а с др. стороны сопряженной с крепежным элементом 3. Ослабленное поперечное сечение
резьбовой части образовано лысками, выполненными с двух сторон по всей длине резьбы до раз мера <Z>. Ослабленная
резьбовая часть в совокупности с обычным резьбовым отверстием в опорной плите 1, образуют ослабленное резьбовое
сопряжение, разрушаемое под действием взрывной волны. Разрушение (вырыв) в ослабленном резьбовом соединении
возможно или за счет разрушения резьбы в опорной плите, или за счет среза резьбы крепежного элемента -самореза 3, в
зависимости от геометрии резьбы и от соотношения пределов прочности материалов самореза и плиты опорной.
Рассмотрим пример. На опорной плите 1 толщиной 5 мм, изготовленной из стали 3, самосверлящими шурупами 3
размером 5,5/6,3×105, изготовленными из стали У7А, закреплена легкосбрасываемая панель 4, изготовленная из
стали 20. Усилие вырыва при стандартной резьбе для одного шурупа составляет 1500 кгс. Опытным путем
установлено, что после доработки шурупа путем стачивания резьбы с двух сторон до размера Z=3 мм, величина усилия
вырыва составляет 700 кгс. Соответственно, при креплении плиты четырьмя шурупами, усилие вырыва составит 2800
кгс. При условии, что площадь проема S=10000 см 2, распределенная нагрузка для вырыва должна быть не менее 0,28
кгс/см 2. Таким образом, зная параметры взрывоопасной среды, объем и компоновку защищаемого помещения, выбираем
конструкцию крепежных элементов после чего, в зависимости от заданного усилия вырыва, можно определить величину
<Z> - толщину ослабленной части резьбы.
Панель противовзрывная работает следующим образом. При возникновении взрывной нагрузки, взрывная волна
через проем 2 в опорной плите 1 воздействует по площади легкосбрасываемой панели 4, закрепленной на опорной плите
1 четырьмя саморежущими шурупами 3, имеющими ослабленное резьбовое сечение. При превышении взрывным
усилием предела прочности резьбового соединения, резьбовое соединение разрушается по ослабленному сечени ю,
легкосбрасываемая панель освобождается от механического крепления, после чего сбрасывается, сечение проема
открывается и давление сбрасывается до атмосферного. После сбрасывания панель легкосбрасываемая зависает на тросе
6, один конец которого закреплен на опорной плите, а другой, через планку 5 сопряжен с крепежным элементом 3.
Формула полезной модели
1. Панель противовзрывная, содержащая опорную плиту, на которой резьбовыми крепежными элементами
закреплена панель легкосбрасываемая, отличающаяся тем, что в опорной плите выполнен проем, а панель
легкосбрасываемая выполнена сплошной, при этом крепежные элементы, скрепляющие панель легкосбрасываемую с
опорной плитой, имеют ослабленное поперечное сечение резьбовой части, образованное лысками, выполненными с двух
сторон по всей длине резьбы и, кроме того, панель легкосбрасываемая соединена с опорной плитой тросом, один конец
которого жестко закреплен в опорной плите, а другой конец соединен с панелью легкосбрасываемой.
2. Панель противовзрывная по п.1, отличающаяся тем, что трос соединен с панелью легкосбрасываемой через планку,
сопряженную с крепежным элементом.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 469
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 470
Bailey bridge usa standart http://www.bits.de/NRANEU/others/amd-us-archive/fm5-277%2886%29.pdf
https://web.mst.edu/~rogersda/umrcourses/ge342/Bailey%20Bridge-revised.pdf
https://na.eventscloud.com/file_uploads/47781e7c6918d9df625cd15c442c90b8_Newhouse.pdf
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 471
Army Manual TM 5-277. Panel Bridge, Bailey Type, M2. (April 1948)
https://archive.org/details/DepartmentOfTheArmyTechnicalManualTM5277.Pan
elBridgeBaileyTypeM2.April1948/page/n469/mode/2up
https://www.dpwh.gov.ph/dpwh/sites/default/files/references/standard_design/St
andard%20Plan%20for%20Bailey%20Bridge.pdf
Evaluation of bailey bridge at arundu
https://ppt-online.org/1159974
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 472
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 473
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 474
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 475
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 476
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 477
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 478
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 479
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 480
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 481
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 482
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 483
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 484
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 485
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 486
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 487
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 488
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 489
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 490
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 491
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 492
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 493
Ссылки армейские мосты переправы НАТО США чертежи
расчеты на английском языке Bailey bridge usa standart ,
котрые использовались при лабораторных испытаниях фрагментов, узлов
упругопалстического сдвигового компенсатора, для армейского сбороно- разборного пролетного надвижного строения моста
(надвижной пролет 6 метров, 9 метров, 12 метров , ширина проезжей части 3 метра , грузоподъемность однопутного моста
10-15 тонн, скорость проезда по мосту - 4 км/час ), с применением замкнутых гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.314 ГПИ "Ленпроектстальконструкция") для системы несущих элементов
плаcтинчато -балочных ферм, со встроенным бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу
переправы через реку Суон , длиной 205 футов (60 метров) в штате Монтана (США), с экономией строительных материалов
до 30 процентов, за счет предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по
изобретения проф дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и
изобртений Красноярского ГАСУ №№ 228415, 2503783, 2247813, и Казанского ГАСУ с использованием 3D -модель
конечных элементов в ПK SCAD в СПб ГАСУ
http://www.bits.de/NRANEU/others/amd-us-archive/fm5277%2886%29.pdf
https://web.mst.edu/~rogersda/umrcourses/ge342/Bailey%20Bridge
-revised.pdf
https://na.eventscloud.com/file_uploads/47781e7c6918d9df625cd15
c442c90b8_Newhouse.pdf
Army Manual TM 5-277. Panel Bridge, Bailey Type, M2. (April
1948)
https://archive.org/details/DepartmentOfTheArmyTechnicalManual
TM5277.PanelBridgeBaileyTypeM2.April1948/page/n469/mode/2u
p
https://www.dpwh.gov.ph/dpwh/sites/default/files/references/standar
d_design/Standard%20Plan%20for%20Bailey%20Bridge.pdf
Evaluation of bailey bridge at arundu
https://ppt-online.org/1159974
Verifiche a fatica di ponti Bailey
https://ppt-online.org/1160010
Dimensionamento de uma ponte provisória metálica para um vão
de 80 metros
https://ppt-online.org/1160012
Bridging the World
https://ppt-online.org/1161565
Prefabricated Steel Bridge Systems: Final Report
https://ppt-online.org/1161569
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 494
Общие сведения о разборных мостах иностранных армий
https://ppt-online.org/1155573
Антисейсмические устройства в мостостроении
https://ppt-online.org/1159783
Конструктор для взрослых
https://ppt-online.org/1161574
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 495
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 496
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 497
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 498
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 499
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 500
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 501
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 502
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 503
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 504
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 505
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 506
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 507
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 508
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 509
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 510
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 511
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 512
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 513
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 514
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 515
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 516
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 517
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 518
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 519
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 520
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 521
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 522
На правах рукописи Хейдари Алиреза
Прямой упругопластический расчет стальных пространственных ферм
на предельную нагрузку и приспособляемость с учетом больших
перемещений
Специальность 05.23.17 - Строительная механика
Автореферат диссертации на соискание ученой степени кандидата
технических наук
Москва - 2014
Работа выполнена в федеральном государственном бюджетном
образовательном учреждении высшего профессионального образования
«Российский университет дружбы народов».
кандидат технических наук, доцент Галишникова Вера Владимировна
Агапов Владимир Павлович доктор технических наук, профессор,
профессор кафедры «Прикладная механика и математика» Московского
государственного строительного университета
Копнов Валентин Алексеевич доктор технических наук, профессор,
профессор кафедры «Механика» Военной академии РВСН им. Петра
Великого
Ведущая организация:
Федеральное государственное бюджетное
образовательное учреждение высшего профессионального образования
«Саратовский государственный технический университет им. Гагарина
Ю.А.»
Защита диссертации состоится 10 сентября 2014 г. в 14:00 часов на
заседании диссертационного совета Д 218.005.05 на базе федерального
государственного бюджетного образовательного учреждении высшего
профессионального образования «Московский государственный
университет путей сообщения» по адресу: 127994, Москва, ул. Образцова,
д.9, стр.9. корпус 7, ауд. 7618.
Научный руководитель: Официальные оппоненты:
С диссертацией можно ознакомиться в библиотеке Московского
государственного университета путей сообщения МГУПС и на сайте
(МИИТ) www.miit.ru.
Шавыкина Марина Витальевна
Автореферат разослан « »
2014 г.
Ученый секретарь диссертационного совета:
Общая характеристика работы
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 523
Актуальность работы. Расчет стальных конструкций с учетом
пластических деформаций стали позволяет использовать дополнительный
ресурс материала, и ведет к более экономичному проектированию. Нормы
проектирования стальных конструкций разных стран требуют, чтобы
при проектировании отдельных элементов учитывались неупругие
деформации стали. Особое место занимает проблема прочности
конструкций, испытывающих повторные действия нагрузок. Задачи об
определении условий возникновения предельных состояний стальных
конструкций, работающих в упругопластической стадии,
рассматриваются в теории предельного пластического равновесия, а
также теории приспособляемости, которая является обобщением теории
предельного равновесия на случай переменных внешних воздействий. В
решении таких задач возможны два подхода - использование прямого
метода, основанного на численном решении задачи, или непрямой подход,
использующий методы оптимизации. На начальных этапах развития
теории предельного пластического равновесия и приспособляемости
мощности компьютеров не соответствовали объему вычислений прямого
метода. В связи с этим предпочтение отдавалось методам, основанным
на теории оптимизации, для которых был разработан ряд теорем. Все
теоремы оптимизации основаны на линейной суперпозиции нагрузок при
формировании их сочетаний. Если поведение конструкции геометрически
нелинейно, то суперпозиция нагрузок неправомерна. В этом случае
теоремы теряют справедливость, и оптимизационный подход не может
быть использован для анализа предельного равновесия и
приспособляемости.
При современном уровне развития компьютеров преимущество
непрямого оптимизационного подхода становится спорным даже для
задач с малыми перемещениями. В связи с вышеизложенным, выполненная
в настоящей диссертации разработка метода прямого
упругопластического расчета стальных ферм по предельному равновесию
и приспособляемости, позволяющего учесть геометрическую нелинейность
конструкций является весьма актуальной задачей.
Цели и задачи работы. Целью настоящей диссертации являлась
разработка методик и алгоритмов упругопластического расчета
пространственных ферм на предельную нагрузку и приспособляемость с
учетом больших перемещений, а также программная реализация
разработанных алгоритмов в объектно-ориентированном приложении на
платформе Java.
3
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 524
Исходя из поставленной цели работы решались следующие задачи:
• Аналитический обзор результатов отечественных и зарубежных
исследований в данной области.
• Исследование доказательств расширенных теорем о приспособляемости
и анализ их применимости в условиях геометрической нелинейности.
• Разработка тестового аналитического примера расчета стальной балки
на предельную нагрузку и приспособляемость при помощи прямого метода
для оценки предлагаемого подхода.
• Разработка методик и алгоритмов прямого упругопластического
расчета пространственных стальных ферм на предельную нагрузку и
приспособляемость в условиях больших перемещений.
• Реализация разработанных алгоритмов в объектно-ориентированном
программном приложении на платформе Java.
• Демонстрация возможностей разработанного программного
приложения путем выполнения ряда практических примеров расчета
шарнирно- стержневых систем на предельное пластическое равновесие и
приспособляемость.
Методы и средства исследований. Методами и средствами
исследований являются современные математические модели механики
деформируемого твердого тела, численные методы решения
геометрически и физически нелинейных задач деформирования
стержневых конструкций, а также методы и средства строительной
информатики и средства объектно-ориентированной платформы
разработки программных приложений Java.
Научная новизна:
1. Выявлено, что основные и дополнительные теоремы
приспособляемости конструкций основаны на принципе линейной
суперпозиции, а, следовательно, не могут быть использованы при наличии
геометрической нелинейности.
2. Обоснован переход от оптимизационного подхода к упругопластическому анализу к прямому методу расчета стальных ферм с большими
перемещениями, разработанному в данной диссертации.
3. Показана эффективность прямого метода расчета и возможность его
использования при геометрической нелинейности. Получено в общем виде
на аналитическом безразмерное решение задачи предельного равновесия и
приспособляемости двухпролетной балки, не подверженное влиянию
численных погрешностей.
4. Разработана методика прямого пошагового расчета стальных
пространственных ферм, испытывающих большие перемещения, на
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 525
предельное равновесие с учетом образования пластических шарниров в
отдельных стержнях и последующего образования механизма разрушения.
Методика позволяет также выявить местную потерю устойчивости в
узле вследствие потери несущей способности всех сходящихся в нем
стержней.
5. Разработана методика прямого пошагового расчета стальных
пространственных ферм, испытывающих большие перемещения, на
приспособляемость, основанная на точном моделировании каждого
перехода между упругим и пластическим состояниями стержней.
6. Выполнена модификация метода геометрически нелинейного расчета
пространственных ферм, разработанного В.В. Галишниковой,
позволяющая учитывать возникновение пластических шарниров в
стержнях и потерю устойчивости вследствие образования пластического
механизма разрушения, а также оценивать явление приспособляемости в
конструкции.
7. Разработан алгоритм, реализующий предложенные методики, и
позволяющий с высокой точностью получать значения перемещений,
реакций и усилий в стержнях, а также надежно предсказывать
исчерпание несущей способности конструкции как вследствие потери
устойчивости в упругой стадии работы материала, так и вследствие
образования пластического механизма разрушения.
8. Разработаны процедура автоматического изменения размера шага
нагружения при изменении состояния стержня и процедура бисекции для
расчета упругопластических стальных ферм на приспособляемость с
учетом больших перемещений.
9. Разработано объектно-ориентированное приложение на платформе
Java, позволяющее одновременно учесть геометрическую и физическую
нелинейность и выявлять как потерю устойчивости вследствие
геометрической нелинейности, так и потерю устойчивости вследствие
формирования пластического механизма.
10. Выполненные примеры расчета пространственных ферм, позволили
установить, что максимальная нагрузка, при которой происходит
приспособляемость, существенно выше, нагрузки, при которой
конструкция теряет упругие свойства. Это означает, что учет
приспособляемости перепроектировании может дать существенную
экономию материала.
Практическое значение работы:
1. Разработанный метод прямого упругопластического расчета
стальных пространственных ферм на предельную нагрузку и
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 526
приспособляемость позволяет реализовать современные требования
строительных норм по одновременному учету геометрической и
физической нелинейности при расчетах сложных конструктивных систем.
2. Разработанные методики и алгоритмы получили реализацию в виде
программного приложения, которое может быть использовано в научных
исследованиях, а при условии разработки пользовательского интерфейса в практике реального проектирования.
3. Разработанный метод упругопластического расчета позволяет
оптимальное проектирование стальных пространственных ферм. Так как
этот метод позволяет определять последовательность наступления
текучести в стержнях, то увеличение сечения отдельных стержней
может привести к существенному увеличению несущей способности и к
более экономичному проектированию конструкции.
4. Новый инкрементальный метод расчета на предельную нагрузку
увеличивает надежность предсказания потери устойчивости конструкции
и позволяет выявить причину возможной потери устойчивости.
Например, становится возможным надежно выявить различие между
потерей общей устойчивости конструкции в результате упругого
выпучивания и потерей устойчивости в результате образования
пластического механизма. Метод позволяет также выявить местную
потерю устойчивости в узле вследствие потери несущей способности всех
сходящихся в нем стержней.
Достоверность:
Достоверность результатов проведенных исследований основана на
корректной математической постановке решаемых задач, использованием
апробированных математических моделей механики деформируемого
твердого тела, численных методов решения нелинейных задач
деформирования и устойчивости конструкций и подтверждается
аналитическим решением, полученным автором для демонстрационной
задачи расчета стальной балки на приспособляемость, а также
сопоставлением результатов решения примеров, полученных с помощью
разработанных автором программ с результатами, полученными при
помощи приближенных аналитических методов.
Личный вклад соискателя. Все исследования и разработки, приведенные
в диссертационной работе, выполнены лично соискателем в процессе
научной деятельности. Из совместных публикаций в диссертацию включен
материал, непосредственно принадлежащий соискателю. На защиту
выносятся:
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 527
• Методы и алгоритмы прямого расчета стальных пространственных
ферм на предельную нагрузку и приспособляемость с учетом больших
перемещений.
• Аналитическое решение задачи прямого упругопластического расчета
стальной неразрезной балки на предельную нагрузку и приспособляемость.
• Новое исследование, демонстрирующее непригодность
оптимизационного подхода для расчета конструкций с большими
перемещениями на предельную нагрузку и приспособляемость.
• Реализация разработанных алгоритмов в объектно-ориентированном
приложении на платформе Java.
• Результаты выполненных расчетов пространственных ферм на
предельную нагрузку и приспособляемость, выполненные при помощи
разработанного программного приложения.
Публикации. По тематике диссертации опубликовано семь работ, в
том числе шесть работ в изданиях, включенных в перечень рекомендуемых
ВАК.
Структура и объем работы. Диссертационная работа состоит из
четырех глав (с выводами по каждой главе), двух приложений, списка
литературы. Общий объём диссертации - 184 страниц, 79 рисунков и 14
таблиц. Основное содержание работы
Во введении приводится обоснование актуальности работы,
определены предметы, цели и задачи исследований, перечислены основные
научные и практические результаты, приведено краткое содержание
диссертации по главам.
В первой главе приведены исторический обзор и современное состояние
исследований по проблеме расчетов стальных конструкций на предельную
нагрузку и приспособляемость. В области расчетов стальных конструкций
с учетом пластических деформаций основополагающие работы были
выполнены Ф.С. Ясинским, Е.О. Патоном, В.Н. Горбуновым, Н.Д.
Жудиным, Н.И. Безуховым.
Труды Б.А. Броуде, А.А. Гвоздева, А.В. Геммерлинга, А.А. Ильюшина, А.Р.
Ржаницына заложили основу для развития метода предельного равновесия
в задачах теории пластичности. В развитие этого метода в теории
расчета стальных конструкций внес значительный вклад Н.С. Стрелецкий.
7
Среди трудов зарубежных ученых в этой области необходимо
отметить основополагающие работы Д. Друкера, В. Прагера, В. Койтера,
Ф. Ходжа.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 528
Теория приспособляемости получила первоначальное развитие в
работах Х. Блейха и Е. Мелана и была связана преимущественно со
стержневыми конструкциями и задачами, интересующими инженерастроителя. В 1938 г. Е. Меланом была доказана статическая теорема
теории приспособляемости для трехмерной среды. В 1956 г. Койтером
была установлена вторая (кинематическая) теорема и затем дано
наиболее ясное и последовательное изложение научных основ теории
приспособляемости, рассматриваемой как часть общей теории идеальных
упругопластических сред. В Советском Союзе проблемой прочности и
деформируемости конструкций при многократных приложениях нагрузки
занимались еще в 30-х годах Е.О. Патон, Б.Н. Горбунов, Н.С. Стрелецкий и
др. Значительный вклад в теорию приспособляемости внесли исследования
А. Р. Ржаницына и его учеников. А. А. Гвоздев в 1936 г. заложил начало
предельного анализа.
Первые решения задач о приспособляемости сплошных тел содержатся
в работах Ф. Ходжа и П. Симондса. Дальнейшее развитие теории
приспособляемости связано с именами Дж. Кёнига, Г Майера и др. В
Советском Союзе теорией приспособляемости занимались Д.А. Гохфельд.
О.Ф. Чернявский, А.А. Чирас, Ю.М. Почтман, З.И. Пятигорский и другие
исследователи.
В главе систематически представлены фундаментальные теоремы, на
которых основан оптимизационный подход к упругопластическому
анализу. Рассмотрены теоремы пластического предельного равновесия и
теоремы приспособляемости. Все теоремы выводятся на основе
общепринятых идеализированных свойств стали в одноосном и
многоосном напряженном состоянии. В явном виде сформулированы все
допущения, использованные при формулировке теорем о нижней и верхней
границах пластической предельной нагрузки, статической теоремы
приспособляемости Мелана и кинематической теоремы Койтера.
Систематическое изложение данного материала необходимо для
обоснование перехода от оптимизационного подхода к упругопластическому анализу к прямому методу расчета стальных ферм с
большими перемещениями, разработанному в данной диссертации.
Во второй главе приведено введение в инкрементальный метод упругопластического анализа стальных конструкций под воздействием малых
перемещений. Целью являлось введение концепций инкрементального
анализа, которые затем использованы в третьей главе для того чтобы
разработать ин8
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 529
крементальный метод упругопластического анализа ферм, который
учитывает большие перемещения конструкций.
Концепции инкрементального упругопластического анализа вводятся в
этой главе для неразрезных балок, хотя в третий главе они будут
применены к фермам. Балки выбраны, так как концепции формирования
пластических шарниров в балках особенно подходят для визуализации
упругопластическо- го поведения. В дополнение учет работы
упругопластической работы в конструкции с влиянием приспособляемости
очень хорошо иллюстрируется на примере неразрезных балок.
В 2007 году краткие результаты решения этой задачи были
представлены Т. Галамбо на Американской конференции по стальным
конструкциям (США). В данной работе выполнено детальное исследование
всех шагов расчета, позволяющее выявить главные особенности
разрабатываемого подхода. Автором было получено безразмерное решение
задачи в общем виде, не подверженное влиянию численных погрешностей.
На рисунке 1 показана призматическая неразрезная балка расчет
которой приведен в этой главе.
Рис. 1. Неразрезная балка под действием поперечных нагрузок Балка
подвержена поперечным нагрузкам W1 и W3 в середине пролетов. Нагрузки
являются квазистатическими но изменяются с псевдовременем t. На
рисунке 2 показан цикл нагружения с периодом T. Нагрузка в точке 3
возрастает от 0 во время 0 до значении W3 во время 0.25T а затем
уменьшается до 0 во время 0.5T, тогда как нагрузка в точке 1 остается
равной 0 весь период времени т от 0 < t < 0.5T. затем обе нагрузки
возрастают одновременно от 0 во время 0.50 T до W во время 0.75T а
затем уменьшаются до 0 во время T. Затем цикл нагружения
повторяется. Прогибы в точках 1 и 3 а также изгибающие моменты
балки необходимо определить как функции псевдовремени.
0.25T 0.50T нагрузка в точке 1
0.75T
T
0.25T нагрузка в точке 3
0.50T
0.75T
T
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 530
Рис. 2. Цикл нагрузок приложенных к балке на рисунке 1 Результаты
расчета. Инкрементальный упругопластический анализ неразрезной балки
дает следующий взгляд на поведение конструкции при действии шаблонной
нагрузки:
- нагрузка, при которой образуется первый пластический шарнир в балке,
равна:
e = 64mp/13L = 4.9231mp/L
(1)
- Максимальная нагрузка приспособляемости балки равна:
Ws = 96mp/19L = 5.0526 mp/L (2)
- нагрузка, при которой формируется механизм пластического разрушения
в балке, равна:
Wp = 6.0 mp/L (3)
Если амплитуда цикла
нагружения не превосходит We , то балка деформируется упруго во все
время нагружения. Если амплитуда цикла нагру- жения превосходит W , но
не превышает W , балка претерпевает пластическую деформацию в
нескольких первых циклах нагружения и осатется упругой во всех
последующих циклах нагружения. Максимальное перемещение в балке
таким образом ограничено. Если амплитуда цикла нагружения
превосходит Ws , но не превосходит Wp , балка подвергается пластической
деформации в каждом цикле нагружения. Эта балка становится не
пригодной к эксплуатации, потому что перемещение ее не ограничено.
Если амплитуда цикла нагружения превосходит Wp , балка разрушается,
потому что образуется механизм.
Главными задачами этого анализа является определение нагрузок и
положений, при которых образуются и удаляются пластические шарниры,
а также определение приспосабливаемости конструктивной системы при
каждом инкременте нагрузки к существующим шарнирам. Изменение в
конструктивной системе от одного инкремента нагрузки к следующему
инкременту нагрузки должны быть эффективно моделированы в
программном обеспечении по алгоритму этого метода.
В третьей главе главной целью является формулировка
инкрементального геометрического нелинейного упругопластического
расчета ферм с учетом приспособляемости. В упругопластическом
геометрически нелинейном расчете ферм, предполагается, что каждый
стержень находится либо в абсолютно упругом состоянии или абсолютно
пластическом состоянии во время каждого нагружения расчета. Размер
шагов нагружения определяется в алгоритме решения таким образом, что
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 531
это требование оправдывается. Если стержень является упругим на шаге
нагружения - то его вклад в секущую матрицу жесткости определяется
по теории геометрически нелинейного поведения. Если стержень
находится в пластическом состоянии, то его модуль упругости
принимается равным нолю, так что его местная жесткость становится
равной нолю.
Так как алгоритм составлен таким образом, что стержень может
изменять свое состояние напряжения только в конце каждого шага
нагружения, то различия между стержнями находящимися в упругом и
пластическом состоянии на шаге нагружения зависят от возможных
изменений в состоянии стержня в конце предыдущего шага нагружения:
- если стержень испытывает текучесть в конце шага нагружения, то
он является пластическим на данном шаге;
- если стержень стал упругим в конце шага нагружения, то он является
упругим на текущем шаге;
- если состояние стержня не изменилось в конце предыдущего шага то
стержень остается в том состоянии, которое он имел на предыдущем
шаге. Это состояние может быть упругим или пластическим.
-ay < a < ay
(4)
Изменения состояния стержня в конце шага нагружения определяется
по критерию текучести. Так как состояние напряжения в ферме является
одноосным, то достаточно сравнить состояние напряжения в стержне с
напря
жением текучести материала. Накопленная пластическая информация
хранится для каждого стержня фермы.
Инкрементальный метод решения. В формулировке этой диссертации
модельная нагрузка, состоит из вектора узловых сил p и вектора заданных
узловых перемещений U. Предполагается, что некоторый инкремент
коэффициента нагружения задан для шага нагружения АХ, во время
которого состояние стержней не изменяется. Это происходит, например,
во время первой итерации первого шага нагружения, когда все стержни
упруги. Инкремент нагрузки АХ p прикладывается к ферме в первой
итерации первого шага нагружения. Вычисленные значения называются
пробным решением для первого шага. Осевое напряжение стержня, равно
as в начале шага нагружения. Полное напряжение at в стержне в пробном
состоянии вычисляется. Если напряжение at нарушает условие (4), то
значение коэффициента нагружения ДХС , которое приведет к состоянию
текучести at = ay в стержне в конце шага нагружения интерполируется
так как это показано на рисунке 3.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 532
Рис. 3. Интерполяция коэффициента нагружения
Модифицированный коэффициент нагружения стержня задается
уравнением
Аналогичные модифицированные значения коэффициента нагружения
вычисляются для других стержней фермы, в которых не выполняется
условие (4). Модифицированные коэффициенты нагружения полагается
равным минимуму вычисленных инкрементов коэффициента нагружения
ДХС . Перемещение, реакции и усилие в стержнях, приспосабливаются к
модифицированному инкременту коэффициента нагружения путем
умножения на коэффициент ДХС /ДХ. Как показано в блоке-схеме
алгоритма.
Расчет на предельную нагрузку. В предельном расчете с большими
перемещениями, наибольшее значение коэффициента нагружения X
определяется, для которого внутренние силы находятся в равновесии с
приложенной нагрузкой X p и условие (4) соблюдается для каждого
стержня фермы. Значение предельного коэффициента нагружения
вычисляется путем вычисления коэффициента нагружения X пошагово до
тех пор, пока касательная матрица жесткости с нагрузкой Xp является
сингулярной.
Уменьшение жесткости стержня с нарастающей нагрузкой
происходит частично благодаря геометрической нелинейности и частично
благодаря текучести в некоторых стержнях фермы. Невозможно
разделить эти два эффекта в расчете.
Расчет на приспособляемость. Ферма подвергается циклическому
нагружению p(t). Нагрузка, которая приложена к ферме во время t равна
Xp(t) , где коэффициент нагружения X не зависит от времени. Целью
расчета на приспособляемость при больших перемещениях, является
вычисление коэффициента запаса приспособляемости Xa, который
является наибольшим значением коэффициента нагружения, для которого,
конструкция приспосабливается.
Приспособляемость под циклическим нагружением вычисляется путем
вычисления упругопластического поведения для истории нагружения X p(t),
которая учитывает большие перемещения. Во время каждого периода
истории нагружения, количество изменений в значении Xp(t), состояния
стержня фермы подсчитывается. Приспособляемость наступила, если не
один из стержней не изменяет своего состояния во время этого периода.
Состояние остаточных напряжений в стержне затем остается
постоянным (смотри раздел 1.2 и пример во 2 главе). Если конструкция
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 533
после заданного количества циклов нагружения приспособляется, то
принимается, что конструкция не приспосабливается для данного
коэффициента нагружения.
Коффициент запаса по приспособляемости определяется новым
методом бисекции разработанным в этой диссертации. Первоначальный
коэффициент нагружения X0 задается априори, а поведение фермы под
нагрузкой анализируется. Если ферма не приспосабливается при действии
этого коэффициента нагружения, то коэффициент нагружения
уменьшается на половину. Если ферма приспосабливается, то величина
коэффициента нагружения удваивается. Процедура повторяется до тех
пор, пока коэффициент нагру- жения для которого конструкция
приспосабливается, и коэффициент
13
нагружения X2 для которого конструкция не приспосабливается,
определены. Интервал [Xl5 X2] включает коэффициент запасп по
приспосабливаемо- сти.
Интервал, включающий коэффициент запаса по приспосабливаемости
уменьшается путем бисекции. Ферма рассчитывается для среднего
коэффициента нагружения Xm = 0.5 (X + X2). Если ферма
приспосабливается для коэффициента нагружения Xm, интервал [X15 X2]
заменяется на интервал [Xm, X2], в противном случае он заменяется
интервалом [Xl5 Xm]. После десяти циклов бисекции, интервал
сокращается до 1/1024 от своего первоначального размера, после
двадцати циклов он сокращается примерно до 10-6 от своего исходного
размера.
В четвертой главе в первой и второй её частях, реализированны прямые
методы расчета по предельному равновесию и на приспособляемость.
Прямой метод расчета по предельному равновесию. В прямом методе
расчета на пластическое предельное равновесие задается схема
нагружения (модельная нагрузка), которая затем умножается на
коэффициент нагружения X , давая значение нагрузки на шаге нагружения.
Определяется максимальное значение коэффициента нагружения, при
котором конструкция сохраняет устойчивость. Так как предполагается,
что конструкция испытывает большие перемещения, то заранее не
известно, какое предельное состояние наступит раньше: потеря
устойчивости формы конструкции или образование пластического
механизма.
Прямой метод расчета на приспособляемость. На рисунке 4 приведена
структурная схема алгоритма определения максимального коэффициента
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 534
запаса приспособляемости пространственной фермы для заданной
истории нагружения q (t).
Алгоритм состоит из четырех вложенных циклов. Внешний цикл
выполняется по периодам времени до выявления приспособляемости или ее
отсутствия. Второй цикл выполняется по временным шагам в одном
периоде. Третий цикл выполняется по шагам нагружения в одном
временном шаге. Во внутреннем цикле итерационно вычисляется матрица
секущей жесткости на шаге нагружения.
Расчет на приспособляемость состоит из последовательности расчетов
с изменяющимися коэффициентами запаса приспособляемости. Если для
заданного коэффициента запаса приспособляемости ферма остается
упругой в
первом цикле, то она останется упругой во всех последующих циклах, и,
следовательно, приспосабливается. Если ферма на шаге нагружения
теряет устойчивость, то приспособляемость не наступит. Если ферма
испытывает пластические деформации в первом цикле, но
восстанавливает упругость в следующем цикле и сохраняет ее в
последующих, то она считается приспособившейся. Если ферма
испытывает пластические деформации в последнем цикле расчета, то она
не приспосабливается. Расчет на приспособляемость прекращается после
того, как интервал содержащий наибольший коэффициент запаса
приспособляемости, уменьшен до заданного размера, который может
меняться в зависимости от назначения программы.
Выполнить цикл итераций на МЖ при половинном шаге нагружения
Возврат к состоянию в начале шага
Достигнута предельная нагрузка ^
Возврат к состоянию в начале шага
\
/ Вычисление к-та редукции Масштабирование перменных состояния
Вычисление пробного состояния
Рис. 4а. Схема алгоритма расчета на приспособляемость (продолжение)
Разработанный алгоритм реализован в программном приложении на
платформе Java2, при помощи которого авторами выполнен ряд примеров.
Примеры расчета пространственных ферм. В третьей части
четвертой главы были выбраны фермы-стойки, арочные конструкции и
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 535
двухпролетные фермы, которые рассчитывались по предельному
равновению и на приспо
собляемость. Надо отметить, что ферма-стойка рассчитывалась на
приближенный расчет и результаты сравнивались с алгоритмом другого
метода полученного в данной диссертации.
Расчет двухпролетной фермы на предельную нагрузку Данный пример
демонстрирует применение прямого метода расчета на предельную
нагрузку.
2,0 —р— 2,0 —р— 2,0 —р— 2,0 —2,0 2,0 2,0 2,0
8,0 А
8,0
Рис. 5. Аксонометрическая проекция двухпролетной фермы
Конструкция фермы состоит из четырех поясов, крестовой решетки и
вертикальных связей-диафрагм, установленных в каждой панели длиной 2
м. Площади сечения элементов поясов и всех диагональных элементов
равны 0.0008 м2; площади сечения вертикальных и горизонтальных
элементов связей - 0.0006 м2. Все стержни имеют предел текучести
2.4Ч105 кН/м2 и модуль упругости 2.1Ч108кН/м2. Схема нагружения
состоит из двух вертикальных сосредоточенных сил по 100 кН каждая,
приложенных в средних узлах верхнего пояса правого пролета фермы (см.
рис. 5).
Результаты расчета приведены на рисунке 6 для грани фермы х2 = 0 с
учетом симметрии задачи. Стержни, находящиеся на шаге нагружения в
пластическом состоянии, показаны на рисунке сплошной жирной линией.
Стерни, достигающие предела текучести на данном шаге, показаны
жирным пунктиром. На рисунке показаны все изменения в состояниях
стержней и нагрузки, при которых они происходят. При уровне нагрузки
435.787 кН наступает текучесть в поперечной связи между
загруженными узлами, и формируется механизм разрушения конструкции.
Предельный коэффициент нагружения равен 4.542.
На рисунке 7 показаны графики зависимости вертикальных
перемещений от нагрузки для трех свободных узлов нижнего пояса правого
пролета фермы пп,п13 и п15 (см. рис. 6). Поведение фермы остается
почти линейным до уровня нагрузки около 370.0 кН, что составляет 81.5%
от предельной. Время, затраченное на выполнение прямого пошагового
расчета 36-узловой фермы на предельную нагрузку, составляет долю
секунды.
Рис. 6. Последовательный переход стержней фермы в пластическое
состояние
10 15 20 25
вертикальное перемещение (мм)
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 536
100
5
W = 435,785 J
0
0
Рис. 7. Вертикальные перемещения узлов правого пролета Расчет
двухпролетной фермы на приспособляемость
0 1 2 3 4 5 6 7 8 псевдовремя t нагрузка W,
0 1 2 3 4 5 6 7 8 псевдовремя t нагрузка W2
Рис. 8. Периодичность изменения нагрузок
а 1.00 0.50 0.00
На ферму действуют периодические вертикальные сосредоточенные
силы: силы W, приложенные в двух верхних узлах в середине левого пролета
и силы W2, приложенные в двух верхних узлах в середине правого пролета
фермы. Графики изменения нагрузок по времени показаны на рисунке 8.
а., 1.00 0.50 0.00
Результаты расчета фермы на приспособляемость приведены в
таблице и на рисунке 9 показаны последовательности наступления
текучести в стержнях.
Упругопластическое поведение фермы характеризуется следующими
параметрами:
- максимальный коэффициент упругой работы
Xe = 3.281
- максимальный коэффициент приспособляемости Xs = 4.206
- коэффициент предельной нагрузки
Xu = 4.542
Таблица 1. Результаты расчета фермы на приспособляемость
Xs
Приспособляемость
Xs
Приспособляемость
Xs
Приспособляемость
1,000000
да
4,144531
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 537
да
4,205894
да
1,500000
да
4,185547
да
4,205975
да
2,750000
да
4,206055
нет
4,206015
да
5,375000
нет
4,200928
да
4,206035
да
4,062500
да
4,203491
да
4,206045
да
4,718750
нет
4,204773
да
4,206050
нет
4,390635
нет
4,205414
да
4,206047
нет
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 538
4,226562
нет
4,205734
да
4,206046
нет
Интервал [4.206045; 4.206046] коэффициента запаса
приспособляемости определен при двадцати пяти бисекциях. После
четырнадцати бисекций был получен интервал [4.2054; 4.2061], который
является достаточно точным для инженерных целей.
Рис. 9. Текучесть в стержнях на шаге по времени 5-6
На рисунке 10 показано изменение абсолютных значений пластических
деформаций в наиболее нагруженном поясе и диагональном стержне в
зависимости от псевдовремени для коэффициентов X =4.60250 и 4.22656.
К-т 4,06250
К-т 4,22656
Рис. 10. История пластических деформаций в стержнях Ь13 и Ь71
Время, требуемое для расчета описанной выше двухпролетной фермы
при 25 бисекциях и максимальном количестве циклов для каждой бисекции
равном 24, составляет 5 секунд для стандартного портативного
компьютера. Требуемое время зависит в основном от времени,
затрачиваемого на составление и решение систем уравнений. Ожидаемое
время расчета аналогичной фермы с 300 узлов - менее 1 часа. Для
инженерной точности расчета время может быть сокращено до 30
минут.
Основные результаты и выводы
1. Представлены фундаментальные теоремы, на которых основан
оптимизационный подход к упругопластическому анализу. Рассмотрены
теоремы пластического предельного равновесия и теоремы
приспособляемости. В явном виде сформулированы все допущения,
использованные при формулировке теорем о нижней и верхней границах
пластической предельной нагрузки, статической и кинематической
теорем о приспособляемости. Систематическое изложение данного
материала позволило обосновать переход от оптимизационного подхода к
упругопластическому анализу к прямому методу расчета стальных ферм с
большими перемещениями, разработанному в данной диссертации.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 539
2. Выполнен пример прямого аналитического расчета стальной двухпролетной неразрезной балки на предельную нагрузку и приспособляемость.
Детальное исследование всех шагов расчета позволило выявить главные
особенности разрабатываемого подхода. Получено безразмерное решение
задачи в общем виде, не подверженное влиянию численных погрешностей.
Пример доказывает преимущество прямого подхода, удовлетворяющего
одновременно статическим и кинематическим условиям, а также
иллюстрирует главные особенности шагов разгрузки в
упругопластическом расчете. Выявленные особенности поведения
конструкции учтены при разработке алгоритма прямого метода.
3. Выполнено исследование доказательств расширенных теорем
приспособляемости, и показано, что они основаны на принципе линейной
суперпозиции, а следовательно теряют свою справедливость в условиях
геометрической нелинейности. Показано, что оптимизационный подход не
может быть использован для расчета конструкций с большими
перемещениями на предельную нагрузку и приспособляемость.
4. Разработан прямой инкрементальный метод геометрически и
физически нелинейного расчета пространственных стальных ферм.
Метод основан на точном моделировании каждого перехода между
упругим и пластическим состояниями стержней и использовании бисекции
интервала для определения нагрузок приспособляемости ферм любой
сложности.
5. Разработаны методика автоматического изменения размера шагов
нагружения при изменении состояния стержня и процедура бисекции для
расчета упругопластических стальных ферм на приспособляемость с
учетом больших перемещений, которая позволяет получить значения
коэффициента запаса приспособляемости с высокой точностью. Эти
методики независимы от теорем о приспособляемости, используемых в
методах оптимизации. Разработанные методики включены в алгоритм
упругопластического расчета на предельную нагрузку и
приспособляемость.
6. Новые алгоритмы, разработанные в диссертации, реализованы на
объектно-ориентированной платформе Java. Разделы программного
приложения, реализующие мониторинг состояния стержней,
автоматическое определение редукции шага нагружения и алгоритм
бисекции, разработаны автором диссертации. Все результаты расчетов,
представленные в диссертации, были получены при помощи
разработанного программного приложения.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 540
7. Разработанное программное приложение позволяет одновременно
учесть геометрическую и физическую нелинейность. Неустойчивые
состояния конструкции выявляются путем отслеживания диагональных
коэффициентов разложения инкрементальной матрицы жесткости.
Таким образом выявляется как потеря устойчивости вследствие
геометрической нелинейности, так и потеря устойчивости вследствие
формирования пластического механизма.
8. Разработанное программное приложение позволяет определять
последовательность, в которой стержни достигают текучести, величину
нагрузки, при которой это происходит, накопление пластических
деформаций в стержнях, остаточные напряжения в стержнях, а также
перемещения узлов при знакопеременной пластичности.
9. При помощи программного приложения выполнены примеры расчета
двухпролетной фермы и арки демонстрирующие, что максимальный
коэффициент приспособляемости может быть существенно выше, чем
коэффициент нагружения, при котором конструкция теряет упругие
свойства. Приспособляемость конструкции ведет к тому, что ее
перемещения стабилизируются после первых циклов нагружения, и
конструкция остается пригодной к нормальной эксплуатации в течение
многих последующих циклов. Надежное предсказание приспособляемости
при помощи разработанного нового метода расчета позволяет
существенно повысить величину эксплуатационной нагрузки, и,
следовательно, экономичность конструкции.
10. Новый инкрементальный метод расчета на предельную нагрузку
увеличивает надежность предсказания потери устойчивости конструкции
и позволяет выявить причину потери устойчивости. Например,
становится возможным надежно выявить различие между потерей
общей устойчивости конструкции в результате упругого выпучивания и
потерей устойчивости в результате образования пластического
механизма. Метод позволяет также выявить местную потерю
устойчивости в узле вследствие потери несущей способности всех
сходящихся в нем стержней.
11. Разработанный новый метод упругопластического расчета дает
основу для оптимального проектирования стальных пространственных
ферм. Так как метод дает возможность определять последовательность
наступления текучести в стержнях, то увеличение сечения отдельных
стержней может привести к существенному увеличению несущей
способности и к более экономичному проектированию конструкции.
22
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 541
Основные положения и выводы диссертации опубликованы в изданиях из
Перечня ВАК Минобрнауки России:
1. Хейдари, А., "Инкрементальный упругопластический расчет стальной
неразрезной балки с учетом приспособляемости", ВЕСТНИК Российского
университета дружбы народов. Серия инженерные исследования , 2014,
№1, С. 56-67.
2. Хейдари А., Галишникова В.В. Аналитический обзор теорем о
предельной нагрузке и приспособляемости в упругопластическом расчете
стальных конструкций // Строительная механика инженерных
конструкций и сооружений, 2013, №3, С. 3-18.
3. Хейдари А., Галишникова В.В. Факторы, влияющие на критическую
нагрузку и распространение местной потери устойчивости в сетчатых
оболочках (Современные достижения). ВЕСТНИК Российского
университета дружбы народов. Серия инженерные исследования, 2013,
№1, С. 118-133.
4. Хейдари А., Галишникова В.В. Прямой упругопластический расчет
стальных ферм с большими перемещениями на предельное равновесие и
приспособляемость // Строительная механика инженерных конструкций и
сооружений, 2013, №3, С. 51-64.
5. Heidari A., Galishnikova V.V. Shakedown analysis of the truss and
comparing with the fundamental theorems of elastic-plastic analysis
implemented in a home-package and ANSYS". ВЕСТНИК Российского
университета дружбы народов. Серия инженерные исследования, 2014,
№1, стр. 5-15.
6. Heidari A., Galishnikova V.V, Mahmoudzadeh Kani I, "Difficulties for
detecting the singular points with commercial programs in space structures and
a method for determining the real capacity of the structures". ВЕСТНИК
Российского университета дружбы народов. Серия инженерные
исследования, 2013, №1, стр. 100-108.
Положения диссертации отражены также в других изданиях:
7. Heidari A, Galishnikova V.V, Mahmoudzadeh Kani I, "A Protective
Structure, Saver During Structural Collapse", ASME 2012 International
Mechanical Engineering Congress and Exposition, Volume 3: Design, Materials
and Manufacturing, Parts A, Houston, Texas, USA, November 9-15, 2012 "
Основные положения диссертации доложены на следующих научнотехнических конференциях:
1. Международные научно-практические конференции «Инженерные
системы - 2012», «Инженерные системы - 2013», «Инженерные системы 2014» (РУДН, Москва, 2012, 2013, 2014 гг.).
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 542
2. Международный семинар "Building Information Modeling" в
Московском государственном строительном университете, Москва, март
2013.
3. XIV Международная конференция по компьютеризации в
строительстве (14th ICCCBE). 27-29 июня 2012 г. Москва.
4. IX Объединенный открытый научно-практический семинар
"Сейсмостойкое строительство - Высшая школа" (РУДН, Москва, 2014)
Хейдари Алиреза
Прямой упругопластический расчет стальных пространственных ферм на
предельную нагрузку и приспособляемость с учетом больших перемещений
Специальность 05.23.17 - Строительная механика
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата
технических наук
Подписано в печать «
»
2014 Заказ - . Тираж 100 экз.
Формат бумаги 60х84 1/16. Объем п.л.
УПЦ ГИ МИИТ, Москва, 127994, ул. Образцова, д,9, стр.9.
Mossad Betankurovskiy forum PGUPS Pryamoy uprugoplasticheskiy raschet
proletnix stroeniy mosta bolshimi peremesheniyami predelnoe ravnovesie
prisposoblyaemost 439
https://ppt-online.org/1278181
Pryamoy uprugoplasticheskiy raschet proletnix stroeniy zheleznodorozhnogo mosta bolshimi
peremesheniyami na predelnoe ravnovesiy prisposoblyaemost 493 str
https://ppt-online.org/1282931
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 543
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 544
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 545
Быстрособираемый мост- переправа, из упруго -платических
ферм: Для морпехов - для Новороссии - для Победы.
Кто может помогите копейкой. Нужны чертежники,
конструкторы, знающие английский, китайский язык.
Американцы ( комунисты) из США, в знак доброй воли прислали
из Университет штата Монтана и Минисота рабочие чертежи
сбороно-разбороно моста Bailey bridge , расчеты , альбомы
пояснительные записки на анлийском языке .
Можно работать удаленно, но пока на обшественных началах .
Меч для морпехов куется учеными "Сейсмофонд" при СПб ГАСУ
вмета с проф дтн ПГУСП А.М.Уздины . Братья Нас пока двое .
Нужна помощь , поддержка копейкой научной «шарашке»
fakh8126947810@gmail.com t9516441648@gmail.com
seysmofund@yandex.ru (812) 694-78-10, (921) 962-67-78, (996) 79826-54, (951) 644-16-48
Нищета и разруха обманутые надежды социальное
неравенство, несправедливость. Эти простые и страшные слова
, мрачная реальность ученых, гоев -изобретателей организации
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 546
"Сейсмофонд"при СПб ГАСУ и морпехов Черноморского Флота , у
котрых нет надежд и преспектив ПРИМЕНЕНИЯ БЫСТРО
ВОЗВОДИМЫХ МОСТОВ И ПЕРЕПРАВ при бюрократическом аппарате сытых и холеных
чиновников из Минтранса РФ и Минстроя ЖКХ Горькая и печальная
реальность морпехов Черноморского Флота
Выводы : лабораторные испытаниям сдвиговых компенсаторов фланцевых фрикционных
подвижных соединения проф дтн ПГУП Уздтна для использования при соединении сборных
пролетных строений БЫСТРО-ВОЗВОДИМЫХ МОСТОВ, ПЕРЕПРАВ из стальных
конструкций покрытий производственных здании пролетами 18, 24 и 30 м с применением
замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно» (серия 1.460.314 ГПИ «Ленпроект-стальконструкция» ) для системы несущих элементов и элементов
проезжей части армейского сборно-разборного пролетного надвижного строения
железнодорожного моста, с быстросъемными упругопластичными компенсаторами, со
сдвиговой фрикционно-демпфирующей жесткостью по изобретению УЗЕЛ СОЕДИНЕНИЯ
КазГАСУ № 2382151 сдвиговой упругоплатичное шарнирное соединение колонны с ригелем и
демпфирующих ограничителей перемещений ( по изобретению изобретение № 165076 «Опора
сейсмостойкая» на фланцевых фрикционо-подвижных болтовых соединениях
Акционерное общество "Почта банк" Карта МИР 2200 7706
1665 8870 Номер счета 40817810000493256933. к/с " №
30101810245250000214 в ГУ Банк России по Центральному
федеральному округу. Поэтоу вся надежда на морпехо у кторых
не быстросо бираемой перправы через реку Днепр в Смоленской
обоасти !
РОССИЙСКАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ
«СОЮЗ МОРСКИХ ПЕХОТИНЦЕВ КРЫМА»
297406, Республика Крым, г.о. Евпатория, г. Евпатория ОГРН: 1229100000865, ИНН/КПП: 9110029665/911001001
тел. +79780520181, +79785275936. e-mail: morpeh.rk@mail. ru Исх. № 1202/22 г. Евпатория, Республика Крым
от 02 декабря 2022 г.
Некоммерческая организация «СОЮЗ МОРСКИХ ПЕХОТИНЦЕВ КРЫМА» в лице
Председателя Рамазанова Валерия Алексеевича, действующего на основании Устава
(член Всероссийской общественной организации морских пехотинцев «ТАЙФУН»),
совместно с ВОО МП «ТАЙФУН», в лице заместителя председателя ВОО МП
«Тайфун» Мотяковым Евгением Сергеевичем, проводят акцию по сбору материальной
и финансовой помощи подразделениям Черноморского Флота (810 Бригада Морской
пехоты, 68 Инженерно-морской полк), участвующим в Специальной Военной
Операции на Украине.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 547
Перечень необходимых первичных товаров:
1. Пятиточечник (на нём боец может сидеть и лежать на земле)
2. Носки вязанные (спрашивают постоянно)
3. Дождевик/плащ
4. Маскхалаты
5. Подсумки разные
6. Одеяла/пледы
7. Спальный мешок
8. Снуды и балаклавы
9. Перчатки (х/б рабочие, тёплые зимние);
10. Жилет с карманами
11. Термобельё
12. Толстовки, свитера
13. Красные повязки на руку
14. Вязанные и стёганые шерстяные пояса для поясницы
15. Шевроны (можно не уставные)
16. Сигареты, зажигалки;
17. Кофе, чай, супы и пюре быстрого приготовления в пачках; 18. Влажные салфетки,
мыло (не жидкое), зубная паста и зубные щетки; 19. Стельки тёплые размеры 41-46;
20. Трусы, носки (обычные и теплые, размер 40-45);
21. Медикаменты;
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 548
22. Батарейки (разные);
23 Одноразовая посуда.
Вся предоставленная помощь будет доставлена в пункты постоянной дислокации
вышеуказанных частей – г. Севастополь и г. Евпатория для их дальнейшей отправки в
районы проведения СВО.
Банковские реквизиты: РАО «СОЮЗ МОРСКИХ ПЕХОТИНЦЕВ КРЫМА»
ИНН: 9110029665
ОГРН:1229100000865
Наименование Банка: ПАО «Российский Национальный Коммерческий Банк»,
Операционный офис № 24 г. Евпатория.
Расчетный счет: 40703810840240000008
Корр. счет:30101810335100000607 в отделении по Республике Крым Южного главного
управления Центрального банка Российской Федерации.
БИК: 043510607
ИНН: 7701105460
ОКПО: 09610705
Или банковская карта: РНКБ Банк 2200 0202 2015 6873. Платежная система МИР.
Привязанный тел: +7 978-527-59-36
Назначение платежа – Помощь Морпехам.
С уважением и пониманием, Председатель Совета Союза Морских пехотинцев
Крыма полковник запаса Валерий Рамазанов
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 549
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 550
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 551
А.М.Уздин докт. техн. наук, профессор кафедры «Теоретическая механика» ПГУПС (812) 694-78-10
Х.Н.Мажиев -. Президент ОО «СейсмоФонд» при СПб ГАСУ seysmofund@yandex.ru (951) 644-16-48
А.И.Кадашов - стажер СПб ГАСУ, зам президента организации «Сейсмофонд» при СПб ГАСУ
6947810@mail.ru (996) 79826-54
Е.И.Андреева зам Президента организации «СейсмоФонд», инженер –механик ЛПИ им Калинина
89219626778@mail.ru ( 921) 962-67-78
Научные консультанты по недению изобретений проф дтн П.М.Уздина изобретенных еще в
СССР в ЛИИЖТе проф дтн ПГУПС Уздиным А.М №№ 1143895, 1168755, 1174616, 2550777,
165076, 154506, 1760020 2010136746, с натяжными диагональными элементами верхнего и нижнего
пояса ферм и с креплениями болтовыми и сварочными креплениями, ускоренным способом и
сконструированным со встроенным фибробетонным настилом, с пластическими шарнирами, по с
расчетом , как встроенное пролетное строение железнодорожного ( штат Минисота , река
Лебедь) и автомобильного моста ( штат Монтана , река Суон) для более точного расчета ПK
SCAD инженерами организации «Сейсмофонд» при СПб ГАСУ , при распределения нагрузок на
полосу движения железнодорожного и грузового автомобильного транспорта, по отдельным
фермам, и была рассчитана с использованием 3D –модели конечных элементов в США, при
финансировании проектных и строительных работ ускоренной переправы через реку Суон
Министерством транспорта США и Строительным департаментом штата Монтана США
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 552
Богданова И А зам Президента организации «СейсмоФонд», инженер –стрроитель СПб ГАСУ
karta2202200640855533@gmail.com ( 921) 962-67-78 Безвозмездно оказала помощь при расчет в
ПK SCAD прямой упругоплатический расчет стальных ферм пролетом 60 метро для
однопутного железнодорожного моста грузоподьемностью 70 тонн , ширина пути 3, 5 для
перправы через реку Лнепр в Смоленской области для военных целях t9516441648@gmail.com (
951) 644-16-48
Научный консультан прямого упругопластического расчет стальных американских
пролтетных ферм с большими перемешениями на прельное равновестие и
приспособлчемость , теоретическеи основы расчет на плпмтиснмелн предельное
равновесие и приспособляемость и упругоплатическое поведение стального стержня и
бронзовой или тросовй втулки , гильзы и бота с пропиленным пазом болгаркой для создания
упругоплатическо соедения пролетного строения для создания предельного равновесия
Титова Тамила Семеновна Первый проректор - проректор по научной работе - Ректорат,
Заведующий кафедрой - Кафедра «Техносферная и экологическая безопасность»,
Заместитель Председателя - Учёный совет Контакты: (812) 436-98-88 (812) 457-84-59
titova@pgups.ru Санкт-Петербург, Московский пр., д. 9, ауд. 7-223 оказала помощь при
расчет в лабораторных испытаниях в ПK SCAD и перводе на русский американских и
китайских публикаций , чертежей, о прямом упругоплатическом расчете стальных
ферм пролетом 60 метро для однопутного железнодорожного моста грузоподьемностью
70 тонн , ширина пути 3, 5 для перправы опытного, учебного сбороно- разбороно моста
через реку Днепр в Смоленской области для военных целях в Новроссии ЛНР, ДНР
соместро с Белорусской Республики
Бенин Андрей Владимирович
- научный консультан
по проведению лабортаорных
испытаний в ПК SCAD узлов , ффрагментов и математических моделей прямого
упругопастического расчет пролетных строений армейского быстрособираемого
железножорожного моста с большими перемещениями напредельное равновесие и
приспособлемость с учето опыта американских и китайских инженеров из шатат Монтан и
Министоа при переправе через реку Суон и Лбедь в шатет Министоа ( см Китайскую статью на
английском языке)
Контакты:
(812) 457-80-19, (812) 310-31-28, nich@pgups.ru
Санкт-Петербург, Московский пр., д. 9, ауд. 7-225
СМК РД 09.36-2022 «Положение о Научно-исследовательской части» (sig)
Контакты (812) 310-31-28, 58-019 Санкт-Петербург, Московский пр., д. 9,
ауд. 7-225
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 553
Видюшенков Сергей Александрович -- научный
консультан
по проведению
лабортаорных испытаний в ПК SCAD узлов , ффрагментов и математических моделей прямого
упругопастического расчет пролетных строений армейского быстрособираемого
железножорожного моста с большими перемещениями напредельное равновесие и
приспособлемость с учето опыта американских и китайских инженеров из шатат Монтан и
Министоа при переправе через реку Суон и Лбедь в шатет Министоа ( см Китайскую статью на
английском языке)
Контакты: (812) 457-82-34
СМК РД 09.31-2020 «Положение о кафедре ФГБОУ ВО «Петербургский
государственный университет путей сообщения Императора Александра I»
Контакты
pmik@pgups.ru (812) 457-82-34 (812) 571-53-51
Санкт-Петербург, Московский пр., д. 9, ауд. 3-309
Декан факультета
Андрей Вячеславович ЗАЗЫКИН--- научный
консультан
по проведению
лабортаорных испытаний в ПК SCAD узлов , ффрагментов и математических моделей прямого
упругопастического расчет пролетных строений армейского быстрособираемого
железножорожного моста с большими перемещениями напредельное равновесие и
приспособлемость с учето опыта американских и китайских инженеров из шатат Монтан и
Министоа при переправе через реку Суон и Лбедь в шатет Министоа ( см Китайскую статью на
английском языке) https://www.spbgasu.ru/Studentam/Fakultety/Avtomobilno-transportnyy_fakultet/
Контакты автомобильно-дорожного факультета
Адрес:
Санкт-Петербург, Курляндская ул., д. 2/5
Адрес для корреспонденции: СПбГАСУ, 2-я Красноармейская ул., д. 4, г. Санкт-Петербург,
Россия, 190005
Деканат:
Каб. 102-К
На карте
Тел.:
(812) 251-93-61, (812) 575-01-82, (812) 575-05-12
E-mail:
faat@spbgasu.ru
ВКонтакте:
https://vk.com/id337348801
Задать вопрос о приёме на факультет:
Заместителю ответственного секретаря приёмной комиссии СПбГАСУ по работе на
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 554
автомобильно-дорожном факультете
Щербакову Александру Павловичу
➠ Писать на электронную почту: shurbakov.aleksandr@yandex.ru
Научно исследовательские и проектные центры при университет организации
«Сейсмофонд» при СПб ГАСУ
Научно-исследовательские и проектные центры при организации «Сейсмофонд» при
СПб ГАСУ , научне консультанты организации «Сейсмофонд» при СПб ГАСУ
Научный и производственно-консалтинговый центр геотехнологий (НПКЦГ)
Рашид Абдулович Мангушев
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 555
Директор
Заведующий кафедрой геотехники
Член-корреспондент РААСН, доктор технических наук, профессор
Адрес:
Телефон:
E-mail:
190005, Санкт-Петербург, 2-я Красноармейская, д. 5, комн. 103, 105
(812) 316-48-06; тел./факс: 316-33-86
npk-cgt@yandex.ru
Научные и прикладные исследования грунтов оснований, фундаментов и подземных сооружений,
инженерные изыскания, проектирование, строительство и геотехнический мониторинг. Консультации и
экспертизы по вопросам строительства.
Центр испытаний строительных материалов и изделий
Виктор Борисович Зверев
Зам. директора Испытательного центра СПбГАСУ
Кандидат технических наук, доцент
Адрес:
Телефон:
E-mail:
190005, Санкт-Петербург, 2-я Красноармейская ул., д. 4, ауд. 113-С
(812) 316-00-85
icenter@spbgasu.ru
Сертификация строительных материалов в системах Гост Р и ГАЗПРОМСЕРТ, испытания любых
строительных материалов для заказчика. Центр имеет государственную аккредитацию и лицензию на
проведение работ.
Центр физико-технических испытаний строительных конструкций
Тамара Александровна Дацюк
Зам. директора Испытательного центра СПбГАСУ
Заведующая кафедрой общей и строительной физики
Доктор технических наук, профессор
Адрес:
Телефон:
E-mail:
190005, Санкт-Петербург, 2-я Красноармейская ул., д. 4, ауд. 25
+7 (921) 944-10-13
tdatsuk@mail.ru
Энергоаудит зданий и сооружений, акустические испытания и расчеты, сертификационные испытания и
контроль качества строительных конструкций. Центр имеет государственную аккредитацию и лицензию на
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 556
проведение работ.
Центр механических испытаний строительных конструкций
Сергей Николаевич Безпальчук
Директор Испытательного центра СПбГАСУ
Адрес:
Телефон:
E-mail:
190005, Санкт-Петербург, 2-я Красноармейская ул., д. 4, ауд. 40
(812) 316-40-96
icenter@spbgasu.ru
Центр оснащен испытательным оборудованием и средствами измерений, аттестованными и поверенными в
установленном порядке, располагает фондом нормативных и других необходимых документов, достаточным
для проведения испытаний продукции, включенной в область аккредитации.
Центр негосударственной экспертизы проектной документации и результатов
инженерных изысканий
Юлия Николаевна Леонтьева
Директор
Адрес:
Телефон:
E-mail:
190005, Санкт-Петербург, 2-я Красноармейская ул., д. 4, каб. 305
8 (921) 352-88-42
Leonteva_GASU@mail.ru
Проведение строительно-технических экспертиз.
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 557
Проектная Студия
Светлана Владимировна Бочкарева
Директор
Адрес:
Телефон:
E-mail:
190005, Санкт-Петербург, 3-я Красноармейская ул., д. 8
(812) 712-77-93
studio10a@mail.ru
Проектирование общественных зданий и сооружений (офисы, кафе, автосервис) и жилых домов (коттеджи),
интерьеры квартир и коттеджей, проекты ландшафтной организации приусадебных участков.
Для сборника тезисных докладоа ПГУПС IV -й
Бетанкуровский международный инженерный форум
УДК
69.059.22
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 558
Исп. фраг, узл. упругоплатического компенсатора на пермещ. использ 3D модель конч элем
Всего листов 558
Лист 559
Download