Uploaded by Xasan Majiev

8126947810 Protokol SPb GASU ispitaniya kabelenesuchx sistem lyudmila.tikhomirova@meka.eu 9219535331 3133144 meka@meka.eu 367 str

advertisement
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат
№ RA.RU.21СТ39, выд. 27.05.2015), организация"Сейсмофонд" при СПб ГАСУ ОГРН: 1022000000824
ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я
Красноармейская ул.,д. 4, ИЦ «ПКТИ - Строй-ТЕСТ», «Сейсмофонд»
при СПб ГАСУ ИНН: 2014000780 89219626778@mail.ru
9967982654@mail.ru (951) 644-16-48, (994) 434-44-70, (812) 694-78-10
ООО «МЕКА» ИНН 7802719681. Адрес: 194292, г. Санкт-Петербург, ул.
Домостроительная, д. 16. Телефон 8 (812) 3 133144, факс 8 (812) 3133145.
Всего : 64 стр
Испытания на соответствие требованиям (тех. регламент , ГОСТ, тех.
условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 43552016 Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ
30546.3-98 (сейсмостойкость - 9 баллов). (812) 694-78-10, (921) 962-67-78
«УТВЕРЖДАЮ»
Президент «Сейсмофонд» при СПб ГАСУ /Мажиев Х.Н. 23.06.2022
ПРОТОКОЛ № 565 от 16.06.2022оценка сейсмостойкости в ПК SCAD Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM выполненные из горячеоцинкованной листовой стали,
оцинкованные методом погружения после изготовления, из нержавеющей стали, и окрашенные РЕХ, крепѐж, аксессуары,
монтажные принадлежности согласно приложению на 3 листах (бланки №№ 0822157, 0822158, 0822159). Серийный
выпуск, предназначенные для сейсмоопасных районов с сейсмичностью до 9 баллов, В районах с сейсмичностью более 9
баллов при динамических, импульсных растягивающих нагрузках для поглощения сейсмической энергии необходимо
использование фрикционно-демпфирующих компенсаторов, соединенных с кабеленесущими системами с помощью
фланцевых фрикционно-подвижных демпфирующих компенсаторов (с учетом сдвиговой прочности), согласно заявки на
изобретение: " Фрикционно -демпфирующий компенсатор для трубопроводов" F 16L 23/00 , регистрационный № 2021134630
(ФИПС), от 25.11.2021, входящий № 073171, "Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами", Минск № а 20210217 от 28 декабря 2021 , "Компенсатор для трубопроводов " Минск , регистрационный № а
20210354 от 27 декабря 2021, изготовленные согласно изобретениям патенты №№ 165076 ("Опора сейсмостойкая"),
2010136746, 1143895, 1168755, 1174616, 2550777, предназначенных для сейсмоопасных районов с сейсмичностью
более 9 баллов (в районах с сейсмичностью более 8 баллов необходимо использование демпфирующих опор на
фрикционно-подвижных соединениях и для соединения кабеленсущих систем с демпфирующими компенсаторами с
болтовыми соединениями, расположенными в длинных овальных отверстиях с целью обеспечения многокаскадного
демпфирования при динамических нагрузках). Испытания проводились на соответствие группам механической
прочности на вибрационные ударные воздействия: М5-М7, М38-М39 методом численного моделирования на
взаимодействие опор скользящих и трубопровода с геологической средой в ПК SСАD. Фрикционно-подвижные
демпфирующие соединения выполнены в виде болтовых соединений с контролируемым натяжением, расположенных
в длинных овальных отверстиях согласно СП 14.13330.2014 «Строительство в сейсмических районах» п. 9.2).
1. Введение
1
2. Место проведения испытаний СПб ГАСУ 190005, СПб, 2-я Красноармейская ул, д. 4 89219626778@mail.ru
3.Испытательное оборудование и измерительные приборы. Условия проведения испытания узлов крепления
3
4
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM выполненные из
горячеоцинкованной листовой стали, оцинкованные методом погружения после изготовления, из нержавеющей
стали, и окрашенные РЕХ, крепѐж, аксессуары, монтажные принадлежности согласно приложению на 3 листах
(бланки №№ 0822157, 0822158, 0822159). Серийный выпуск, предназначенные для сейсмоопасных районов с
сейсмичностью до 9 баллов, В районах с сейсмичностью более 9 баллов при динамических, импульсных
растягивающих нагрузках для поглощения сейсмической энергии необходимо использование фрикционнодемпфирующих компенсаторов, соединенных с кабеленесущими системами с помощью фланцевых фрикционноподвижных демпфирующих компенсаторов (с учетом сдвиговой прочности), согласно заявки на изобретение: "
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 2
Фрикционно -демпфирующий компенсатор для трубопроводов" F 16L 23/00 , регистрационный № 2021134630
(ФИПС), от 25.11.2021, входящий № 073171, "Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами", Минск № а 20210217 от 28 декабря 2021 , "Компенсатор для трубопроводов " Минск ,
регистрационный № а 20210354 от 27 декабря 2021. на скольжение и податливость
4. Цель испытаний: оценка сейсмостойкости в ПК SCAD математических моделей Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM и фрагментов антисейсмического фрик-ционно-
5
демпфирующего соединения с контролируемым натяжением трубопровода, предназначенных для сейсмоопас-ных
районов с сейсмичностью более 9 баллов, серийный выпуск.
5.Применение численного метода моделирования при испытании в ПК SCAD Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM с помощью фрикционных протяжных
демпфирующих компенсаторов (ФПДК), предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов.
Испытание фрагментов ФДПК.
5
6. Изобретения, используемые при испытаниях Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80,
MEK70,MEK 110,CT,VM ? предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с помощью
фрикционных протяжных демпфирующих компен-саторов (ФПДК).
7. Результаты и выводы по испытаниям математических моделей Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM с помощью косых антисейсмических
компенсаторов, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами.
8.Литература, использованная при испытаниях на сейсмостойкость математической модели Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM при испытаниях в ПК SCAD и при испытаниях
узлов крепления опоры скользящей к трубопроводу, предназначенных для сейсмоопасных районов с сейсмичностью
более 9 баллов.
22
59
60
1.Введение
При испытаниях в ПК SCAD математических моделей Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80,
MEK70,MEK 110,CT,VM предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, с креплением
трубопровода с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях было использовано численное моделирование в ПК SCAD Office (метод
аналитического решения задач строительной механики с помощью физи-ческого, математического и компьютерного моделирования
взаимодействия оборудования и трубопроводов с геологической средой, метод оптимизации и идентификации динамических и
статических задач теории устойчивости, в том числе нелинейным методом расчета с целью определения возможности их
использования в районах с сейсмичностью более 9 баллов (в районах с сейсмичностью более 8 баллов необходимо использование
для соединения трубопровода косых компенсаторов с применением фрикционно-под-вижных болтовых соединений с длинными
овальными отверстиями согласно изобретениям №№ 1143895, 1174616,1168755, с использованием сейсмостойких маятниковых
опор на фрикционно- демпфирующих соединениях (для трубопроводов) согласно изобретения, патент № 165076 ( «Опора
сейсмостойкая»), согласно СП 14.13330.2014 «Строительство в сейсмических районах» п. 9. Фрикционно- подвижные соединения,
работающие на сдвиг выполнены с использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и
с забитым в паз шпильки медным обожженным клином, согласно рекомендациям ЦНИИП им Мельникова, ОСТ 36-146-88, ОСТ
108.275.63-80, РТМ 24.038.12-72, ОСТ 37.001. -050- 73,альбома 1-487-1997.00.00 и изобрет. №№ 4,094,111 US, TW201400676
Restraintanti-windandanti-seismic-friction-damping-device Мкл E04H 9/02, в местах подключения трубопроводов к сооружениям,
изготавливаемых в соответствии с техническими условиями и ГОСТ, трубопроводы должны быть уложены в виде "змейки" или
"зиг-зага "согласно ГОСТ 15150, ГОСТ 5264-80-У1- 8 , ГОСТ Р 55989-2014, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5)).
produktsiisertifikatsiya@yahoo.com (921) 962-67-78, (996) 798-26-54.
Узлы и фрагменты антисейсмического компенсатора для трубопровода (дугообразный зажим с анкерной шпилькой) прошли
испытания на осевое статическое усилие сдвига в ИЦ "ПКТИ-СтройТЕСТ" (протокол №1516-2 от 25.11.2019). Настоящий протокол
не может быть полностью или частично воспроизведен без письменного согласия «Сейсмофонд» т/ф. (812) 694-78-10 (996) 79826-54
Испытания на сейсмостойкость математических моделей Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80,
MEK70,MEK 110,CT,VM с помощью фрикционных протяжных демпфи-рующих компенсаторов (ФПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях производились нелинейным методом расчета в ПК SCAD согласно
СП 16.13330. 2011 (СниП II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012(02250), п.10.3.2-10.10.3, ГОСТ Р 58868-2007, ГОСТ
30546.1-98, ГОСТ 30546. 3-98, СП 14.13330-2014, п.4.7, согласно инструкции «Элементы теории трения, расчет и технология
применения фрикционно-подвижных соединений», НИИ мостов, ПГУПС (д.т.н. Уздин А.М. и др.) проводились в соответствии с
ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.1330-2011, п. 4.6, ГОСТ Р 54257-2010, ГОСТ 17516. 1-90, МДС 53-1.2001, ОСТ 36-72-82,
СТО 0051- 2006, СТО 0041-2004, СТП 006-97, СП «Здания сейсмостойкие и сейсмоизо-лированные», Правила проектирования.2013,
Москва. Д.т.н. Кабанов Е.Б. «Направления развития фрикционных соединений на высо-копрочных болтах», НПЦ мостов СПб,
согласно мониторингу землетрясений и согласно шкалы землетрясений, с учетом требований НП-31-01, в части категории
сейсмостойкости II «Нормы проектирования сейсмостойких атомных станций» и с учетом требований предъявляемых к
оборудованию (группа механического исполнения М39; I и II категории по НП 031-01; сейсмостойкость при воздействии МП3 7
баллов ПЗ 6 баллов при уровне установки на отметке до 10 (25) м включительно, с учетом спектров отклика здания АЭС, согласно
научного отчета: Синтез тестовых воздействий для анализа сейсмостойкости объектов атомной энергетики.
Обеспечение высокой надежности Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK
110,CT,VM, осуществляется за счет увеличения демпфирующей способности опоры при импульсных растягивающих
нагрузках путем использования фрикционно-подвижных соединений для скользящих опор( изобретение, патент №
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 3
165076 "Опора сейсмостойкая") и согласно изобретениям патенты №№ 1143895, 1168755, 1174616, автор проф.д.т.н.
ПГУПС А.М.Уздин, и использования Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK
110,CT,VM для демпфирующих компенсаторов (заявка № а 20210217 от 15.07.21 "Фланцевое соединение растянутых
элементов трубопровода со скошенными торцами" Минск ).
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 4
Рис.К протоколу лабораторных испытаний прилагаются чертежи, фигуры, описание изобретения, формула изобретения, реферат
к направленной заявке на полезную модель от 19 ноября 2021–«Фрикционно – демпфирующий ком-пенсатор для трубопроводов»,
(МПК F0416L)для крепления трубопровода на опорах скользящих для Кабеленесущей системы: KS20,KS80,KSF80,PEXKS80,
PEXKSF80, MEK70,MEK 110,CT,VM Адрес отправления заявки на изобретение: Федеральная служба по интеллектуальной
собственности, Бережковская наб., 30, корп.1, Москва, Г-59, ГСП-3, 125993 Российская Федерация
2. Место проведения испытаний.
Испытания на сейсмостойкость математических моделей опоры скользящей с трубопроводом для Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, с помощью фрикционных протяжных демпфи-рующих
компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях производились
нелинейным методом расчета в ПК SCAD в соответствии с ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.1330-2011, п. 4.6, ГОСТ Р
54257-2010, ГОСТ 17516. 1-90, МДС 53-1.2001, ОСТ 36-72-82, СТО 0051- 2006, СТО 0041-2004, СТП 006-97, СП «Здания сейсмостойкие и сейсмоизолированные», Правила проектирования.2013, Москва. Д.т.н. Кабанов Е.Б. «Направления развития фрикционных
соединений на высокопрочных болтах», НПЦ мостов СПб, согласно мониторингу землетрясений и согласно шкалы землетрясений,
с учетом требований НП-31-01, в части категории сейсмостойкости II «Нормы проектирования сейсмостойких атомных станций» и
с учетом требований предъявляемых к оборудованию (группа механического исполнения М39; I и II категории по НП 031-01;
сейсмостойкость при воздействии МП3 7 баллов ПЗ 6 баллов при уровне установки на отметке до 10 (25) м включительно, с
учетом спектров отклика здания АЭС.
Испытания фрагментов антисейсмического фрикционно- демпфирующего соединения трубопроводов, выполненного в виде
болтового соединения (латунная шпилька с пропиленным пазом, с забитым в паз шпильки медным обожженным энергопоглощающим клином, свинцовые шайбы), расположенного в длинных овальных отверстиях, с контролируемым натяжением для обеспечения многокаскадного демпфирования при динамических нагрузках, преимущественно при импульсных растягивающих нагрузках, предназначенного для трубопроводов опоры скользящей для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80,
PEXKSF80, MEK70,MEK 110,CT,VM, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов
производились в ИЦ «ПКТИ-СтройТЕСТ».
В качестве объекта исследования были выбраны фрагменты антисейсмического фрикционно- демпфирующего компен-сатора
трубопроводов, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов .
Испытания производились на вибростойкость (на осевое статическое усилие сдвига по линии нагрузки соединений) фрикционно-
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 5
подвижного соединения для трубопроводов с косым антисейсмическим компенсатором, предназначенных для сейсмоопасных
районов с сейсмичностью более 9 баллов). Дата проведения испытаний: 16 06 2022 г.
Основание для проведения испытаний договор № 565 от 16.06.2022 : Оценка сейсмостойкости в ПК SCAD Кабеленесущие
системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, и испытание на сейсмостойкость фрагментов
антисейсмического фрикционно- демпфирующего компенсатора для соединения трубопроводов, предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов по шкале MSK-64.
Испытание фрагментов фрикционного протяжного демпфирующего компенсатора с контролируемым натяжением на сдвиг и
скольжение проходили в испытательном Центре «ПКТИ–Строй-ТЕСТ» (протокол испытаний№ 1516-2 от 26.01.2022, № 1506-1 от
23.12.21). Аттестат аккредитации федерального агентства по техническому регулированию и метрологии № ИЛ/ЛРИ-00804 (ООО
ФПГ «РОССТРО», ИЦ «ПКТИ-Строй-ТЕСТ»), выдано ОАО «НТЦ» Промышленная безопасность», 25.03.2018 г.и в СПбГАСУ,
аттестат аккредитации №RA.RU.21 CT39 от 27.05.2015.
Наименование продукции: Фрагменты антисейсмического фрикционно- демпфирующиего компенсатора
3. Испытательное оборудование и измерительные приборы. Условия проведения испытания узлов крепления
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM на скольжение и податливость
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 6
Перечень (приведен в таблице 1) испытательного оборудования и измерительных приборов для проведения испытаний фрагментов
фрикционно-подвижных соединений для крепления опоры скользящей для Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов с трубопроводами, с креплением трубопроводов с помощью фрикционных протяжных
демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях.
Таблица 1
№
Испытания на перемещение демпфирующих
Тип прибора,
Диапазон
Примечание
п/п
узлов с амортизирующими элементами
оснастки,
измерения
оборудование
1
Определение статических усилий для сдвига податливого анкера, установленного в изолирующей
трубе с амортизирующими податливыми элементами в виде тросового «или» дугообразного зажима
с анкерной шпилькой производилось в ИЦ «ПКТИСтрой-ТЕСТ» («Протокол испытания на осевое
статическое усилие сдвигу дугообразного зажима с
анкерной шпилькой»)
Рулетка,
штангенциркуль
+- (2- 5) см
Протокол испытания на
осевое статическое усилие
сдвига дугообразного зажима
с анкерной шпилькой согласно патента на полезную модель № 102228 «Анкерная
крепь для горных выработок»
и № 44350 «Анкерная крепь».
2
Индикатор с манометром до 10 тонн, для измерения
перемещения податливого анкера по дугообразному
зажиму с анкерной шпилькой (тросовому зажиму).
Индикатор
измерений
перемещений с
ценой деления в
динах 2 мм
1%
См. Протокол испытания на
осевое статическое усилие
сдвига дугообразного зажима
с анкерной шпилькой
3
Домкрат до 10 тонн для отрыва демпфирующего
крепления
Рулетка,
штангенциркуль
+- (2- 5) см
См. Протокол испытания на
осевое статическое усилие
сдвигу дугообразного зажима
с анкерной шпилькой согласно патента на полезную
модель № 102228 «Анкерная
крепь для горных выработок»
и № 44350 «Анкерная крепь»
4
Лебедка рычажная (усилие 5 тонн) для определения смятия при выдергивании анкера со
свинцовым «тормозным» клином, забитым в
прорезанный паз в резьбовой части анкера М16
Теодолит
1%
См. Протокол испытания на
осевое статическое усилие
сдвигу дугообразного зажима
с анкерной шпилькой
5
Кувалда, вес 4 кг. (для определения перемещения
демпфирующего анкера с тормозным клином во
время испытания на монтажной строительной
площадке)
Нивелир
+/- 0,0 T/c2
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Годен до 12.2025 г.
Всего листов 65
Лист 7
6
Лабораторный механический манометр для
измерения перемещения анкера М16 ГОСТ 24376.1
на податливость
Штатив с
манометром
0,01 мм – 1000
мм
Свид. №1 до 12.2023 г.
7
Аналогично вибростенду ES -180-590
использовалась испытательная машина ZD-10/90 на
сдвиг, скольжение и податливость согласно ГОСТ
53166-2008 «Землетрясения»
Усилия
выдергивания
шкала 100 кгс.
Заводской №
66/79
(сертификат о
калибровке №
143-1371 от
28.08.2013г.)
Годен до 12.2022 г.
8
Ключ динамометрический
Нивелир
+/- 0,0 T/c2
Годен до 12.2022 г.
9
Нивелир
Штатив с
манометром
0,01 мм. – 1000
мм.
Свид. № 1 до 12.2023 г.
10
Домкрат 5 т
Усилия
выдергивания
шкала 5 тонн
Заводской № 1
(сертификат №
14 от
18.09.2013г.)
Годен до 12.2022 г.
11
Лебедка 5 тонная
Для определения
сдвига или
скольжение анкера в
изолированной
трубе
5%
Годен до 12.2023 г.
12
Болгарка для простукивания пазов в анкерных
болтах для забивки стопорного свинцового клина
Болгарка дисковая
пила
Паз пропила 2
мм
Свидетельство № 3 до
01.12.2023 г.
13
Гайковерт ИП-3128 исползовался при испыта-ниях
на фрагментах, деталях сдвигоустойчи-вых
скользящих сейсмостойких и взрывостой-ких узлах
крепления.
При испытаниях на
демпфирован-ность
и сдвигоустойчивость, допускает настройку
величины крутя-щих
моментов от 80до
150 кгс
Заводской № 1
№ 19 от 18.09.
2013г.)
Годен до 12.2023
Условия проведения испытания узлов крепления опоры скользящей для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80,
PEXKSF80, MEK70,MEK 110,CT,VM , на скольжение и податливость -согласно нормативным документам, действующим на 09.11
2021 г., действующим ГОСТ Р и специальным техническим условиям (СТУ).
4. Цель испытаний на сейсмостойкость в ПК SCAD математических моделей опоры скользящей с трубопроводом для
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 8
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, и фрагментов
антисейсмического фрикционно- демпфирующего соединения с контролируемым натяжением трубопровода,
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 9
Цель испытаний: оценка сейсмостойкости в ПК SCAD математических моделей Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM , предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск и возможность эксплуатации опоры скользящей с трубопроводом в районах с сейсмичностью более 9 баллов.
Цель лабораторных испытаний фрагментов антисейсмического фрикционно- демпфирующего соединения с контроли-руемым
натяжением трубопроводов для опоры скользящей для кабеленесущей системы , предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов - определение возможности их использова-ния в районах с сейсмичностью более 9 баллов по шкале
MSK-64.
5.Применение численного метода моделирования при испытании в ПК SCAD Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, скользящее с помощью фрикционных протяжных
демпфирующих компенсаторов (ФПДК), предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов.
Испытание фрагментов ФДПК.
Испытания производились нелинейным методом расчета в ПК SCAD согласно СП 16.13330. 2011 (СНиП II-23-81*), п.14,3 -15.2.4,
ТКТ 45-5.04-274-2012(02250), п.10.3.2-10.10.3, ГОСТ Р 58868-2007, ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.13330-2014, п.4.7,
согласно инструкции «Элементы теории трения, расчет и технология применения фрикционно-подвижных соединений», НИИ
мостов, ПГУПС (д.т.н. Уздин А.М. и др.).
РАСЧЕТНАЯ СХЕМА испытания СКАД Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK
110,CT,VM, с креплением трубопровода с помощью демпфирующих компенсаторов, предназначенных для сейсмоопасных районов
с сейсмичностью более 9 баллов.
Геометрические характеристики схемы испытания математических моделей Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, с креплением трубопровода с помощью демпфирующих
компенсаторов, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов в ПК SCAD.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 10
Нагрузки приложенные на схему
Результата расчета
Эпюры усилий
Вывод : Фасонки - накладки прошли проверку прочности по первой и второй группе предельных состояний.
РАСЧЕТНАЯ СХЕМА Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Геометрические характеристики схемы Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK
110,CT,VM
Нагрузки приложенные на схему Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK
110,CT,VM
Результата расчета
Эпюры усилий
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 11
РАСЧЕТНАЯ СХЕМА
Геометрические характеристики схемы (Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80,
PEXKSF80, MEK70,MEK 110,CT,VM ).
Нагрузки приложенные на схему
Результата расчета
Эпюры усилий
«N»
«Му»
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 12
«Qz»
«Qy»
Деформации
Коэффициент использования профилейОпорыскользящая для Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 13
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 14
Для лабораторных испытаний были разработаны рабочие чертежи стадии КМ и КМД. Изготовление элементов конструкции и
контрольная сборка производилась в организации «Сейсмофонд». Инструкция по креплению фланцев к трубам предусматривала
такую последовательность производства работ:
1.
2.
3.
4.
5.
6.
Cобрать фланцы, обеспечив плотное примыкание фланцев и упоров друг с другом. Стянуть проектными фрикци-болтами
с пропиленным пазом, куда при монтаже и сборке забивается медный обожженный клин;
Установить в одной плоскости {в плане и по высоте}.
Соединить фланцы трубопровода с помощью фланцевых вибростойких соединений
Выполнить именную маркировку с ФФПС.
После производилась окончательная установка и затяжка всех высокопрочных болтов.
Изобретения, используемые при испытаниях фланцевых фрикционно-подвижных соединений для трубопроводов по
ГОСТ 15150, ГОСТ 5264-80-У1- 8, СП 73.13330 (п.п.4.5, 4.6, 4.7); СниП 3.05.05 (раздел 5).Трубопроводы
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов соединены с помощью фрикци-анкерных,
протяжных соединений (ФПС) с контролируемым натяжением, выполненных в виде болтовых соединений (латунная
шпилька с пропиленным пазом, с забитым в паз шпильки медным обожженным энергопоглощающим клином, свинцовые
шайбы), расположенных в длинных овальных отверстиях.
7.
Для испытания на сейсмостойкость опоры скользящей для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80,
PEXKSF80, MEK70,MEK 110,CT,VM, использовались узлы крепления опоры к трубопроводу в виде фланцевых фрикционно –
демпфирующих соединений (ФПС) с контролируемым натяжением, расположенных в длинных овальных отверстиях,
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов.
№
п/п
1
Наименование проверок и испытаний
2
Проверка крепления скольжения и
податливости сдвигоустойчивого анкера
3
Величина усилия, кгс при котором
происходит, вырыв болтового
крепления из стального листа (Ст3)
4
5
6
7
8
9
Проверка крепления скольжения и
податливости сдвигоустойчивого анкера
Величина усилия, кгс при котором
происходит, вырыв болтового
крепления из стального листа (Ст3)
Величина усилия, кгс при котором
происходит, вырыв болтового
крепления из стального листа (Ст3)
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Испытательное
оборудование
Создание осевого
усилия испытательной
машиной ZD -10/90 зав
№ 66/79 (сертификат о
калибровке № 13-1371
от 28.08.2018
При испытаниях
податливых
сдвигоустойчивых и
скользящих узлов
крепления
Величина контролируемого
параметра
Величина усилия 580 кгс при котором
происходит скольжение или
перемещение стального тросового
зажима по стальному анкеру
Величина усилия 1420 кгс при котором
происходит скольжение или
перемещение стального тросового
зажима по стальному анкеру
Величина усилий кгс 2420
Срыв резьбы на стальном листе
Величина усилий кгс 4000
Регистрация усилий
производилось по
шкале до 1000 кгс
сдвигоустойчивого
податливого крепления
подогревателя
топливного газа
Срыв резьбы на стальном листе
Величина усилий кгс 730
Срыв резьбы на стальном листе
Величина усилий 30 кгс
Смятие граней полимидальной гайки
М12на резьбе гайки М22
Величина усилий 40 кгс
Смятие граней полимодальной гайки
М12на резьбе гайки М22
Величина усилий 50 кгс
Смятие граней полимидальной гайки
М12на резьбе гайки М22
Величина усилий 150 кгс
Смятие граней полимидальной гайки
М12 на резьбе гайки М22
Результаты
испытаний
800 кгс
340 кгс
Характер
разрушения срыв
резьбы на
стальном листе
Характер
разрушения срыв
резьбы на
стальном листе
Характер
разрушения срыв
резьбы на
стальном листе
Срыв гайки М10
на резьбе гайки
Срыв гайки М12,
М22
Срыв гайки М14,
М22
Срыв гайки М16,
М22
Таблица комплектующих фрикционно-подвижного соединения (ФПС) с контролируемым натяжением (протяжное повышенной
надежности), работающего на растяжение согласно СП 4.13130.2009 п. 6.2.6, ТКТ 45-5.04-274-2012(02250), Минск, 2013, 10.3.2, 10.8
Стальные конструкции, Технический кодекс, СП 16.13330.2011 (СниП II -23-81*) Стальные конструкции, Москва, 2011г., п.п. 14.3,
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 15
14.4, 15, 15.2, в соответствии с изобретением № TW201400676 Restraint anti-wind and anti-seismic friction damping device (МПК)
E04B1/98; F16F15/10 (демпфирующая опора с фланцевыми, фрикционно–подвижными соединениями), Тайвань, согласно
изобретениям №№ 1143895,1174616,1168755, 2357146, 2371627, 2247278, 2403488, 2076985, SU United States Patent 4,094,111 [45]
June 13, 1978, согласно изобретения «Опора сейсмостойкая, патент № 165076 (авторы: Андреев Б.А, Коваленко А.И) (проходили
испытания).
Поз.
1
2
3
4
5
6
Кол
4
4
4
4
4
4
Наименование изделия
Шпилька
Нормативная документация
ГОСТ 9066-75
Применение
Фрикционно-подвижное соединение по ГОСТ 12815-80
Шпилька полнорезьбовая
Гайка
Шайба
Шайба
Болт
Заклѐпка вытяжная
Шпилька
DIN 976-1
ГОСТ 9064-75
ГОСТ 9065-75
ГОСТ 6402-70
ГОСТ 7798-70
Хомут
БОЛТЫ
АТК-25.000.000
Для крепления транспортировочных брусков
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Установка доборного элемента
Закрепления металлосайдинга и дополнительного
оборудования
Фиксация кабельтрасс
№
1
Обозначение
Фрикци-шпилька ( латунный болт с контролируемым натяжением М12x30
Шайба гровер Г.12
Шайба медная обожженная – плоская С.12
Шайба свинцовая плоская С.12
Медная труба ( гильза, втулка) С.14-16
Медный обожженный забивной клин , который забивается в пропиленный паз
латунной или обожженной стальной шпильки (болта)
Испытание в ПК SCAD спектральным
методом на основе синтезированных
акселерограмм на соответствие ГОСТ
17516.-90 п.5 (к сейсмическим воздействиям 9 баллов по шкале MSK-64) на
основе рекомендаций: ОСТ -34-10-75797, ОСТ 36-72-82, СТО 0041-2004, МДС
53-1.2001, РТМ 24. 038.12-72, альбома
серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые, шариковые) ВСН 382-87, ОСТ
108.275.51-80, ГОСТ 25756-83
Наименование и тип
Диап
Класс
лабораторного
азон
точности
измерительного
измер или предел
оборудования
ений
допускаемо
контр й
олир
погрешност
уемы
и
х
велич
ин
Испытание в ПК SCAD
узлов крепления спектральным методом на основе синтезированных
акселерограмм на соответствие ГОСТ 17516.-90
п.5 (к сейсмическим
воздействиям 9 баллов по
шкале MSK-64) на основе
рекомендаций: ОСТ -34-10757-97, ОСТ 36-72-82,
СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72,
альбома серии 4.903, вып. 5
«Опоры трубопроводов
подвижные» (скользящие,
Испытание фрагментов демпфирующих
узлов крепления согласно «Руководства
по креплению технологического оборудования фунд. Болтами»,
ЦНИИПРОМЗДАНИЙ, М., Стройиздат,
1979 г. И альбома «Анкерные болты», сер.
4.402-9, в.5.
Заводско
й№
Примечание
Согласно программному комплексу
«Интегрированная система анализа
конструкции SCADOffice» № 0896002 от
28.12.2013.
http://www.youtube.com/watch?v=pHelYxRUhttp://www.youtube.com/watch?v=siCT9
DhdhjAhttp://smotri.com/video/view/?id=v2275
5810d79
Испытание в ПК SKAD на основе синтезированных акселерограмм фрагментов
демпфирующего узла крепления выполненного в виде болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами, расположенными
с двух сторон болтового крепления, изготов-
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 16
катковые, шариковые)
ВСН 382-87, ОСТ
108.275.51-80, ГОСТ
25756-83.
Наименование и тип лабораторного
измерительного оборудования
1
Испытание в ПК SCAD спектральным методом на основе синтезированных акселерограмм на соответствие ГОСТ 17516.-90 п.5 (к сейсмическим воздействиям 9 баллов по
шкале MSK-64) на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 3672-82, СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72, альбома
серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (сколь-зящие,
катковые, шариковые) ВСН 382-87,
ОСТ 108.275.51-80, ГОСТ 25756-83.
№
Наименование и тип
лабораторного
измерительного
оборудования
ленного согласно «Ру-ководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ,
ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979, предназначенного для
работы в сейсмоопасных районах с сейсмичностью 8 баллов по шкале MSK-64.
Диап
азон
изме
рени
й
конт
роли
руем
ых
вели
чин
Класс
точности
или предел
допускаемо
й
погрешност
и
Завод
ской
№
Примечание
В программе SCAD и программмах SCADOffice реализованы и
сертифицированы положения следующих
нормативных документов:
1) СниП 2.01.07-85* – Нагрузки и
воздействия;
2) СниП II-23-81* – Стальные конструкции;
3) СниП 2.03.01-84* – Бетонные и
железобетонные конструкции;
4) СниП II-22-81 – Каменные и
армокаменные конструкции;
5) СниП II-7-81* Строительство в
сейсмических районах;
6) СниП 2.02.01-83* – Основания зданий и
сооружений;
7) СниП 2.02.03-85 – Свайные фундаменты;
8) СниП II-25-80 – Деревянные конструкции;
9) СниП 52-01-2003 – Бетонные и
железобетонные конструкции. Основные
положения.
9) СП 52-101-2003 – Бетонные и
железобетонные конструкции без
предварительного напряжения арматуры;
10) СП 53-101-96 – Общие правила
проектирования элементов стальных
конструкций и соединений;
11) СП 50-101-2004 – Проектирование и
устройство оснований и фундаментов зданий
и сооружений;
12) СП 50-102-2003 – Проектирование и
устройство свайных фундаментов
Диапазон
измерений
контролируемы
х величин
Класс
точнос
ти или
предел
допуск
аемой
погре
шност
и
Заводск
ой №
Примечание
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 17
1
Испытание в ПК SCAD
спектральным методом на
основе синтезированных
акселерограмм на соответствие ГОСТ 17516.-90 п.5 (к
сейсмическим воздействиям 9
баллов по шкале MSK-64) на
основе рекомендаций: ОСТ 34-10-757-97, ОСТ 36-72-82,
СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72,
альбома серии 4.903, вып. 5
«Опоры трубопроводов
подвижные» (скользящие,
катковые, шариковые) ВСН
382-87, ОСТ 108.275.51-80,
ГОСТ 25756-83
1)
ДБН В.1.2-2:2006 – Нагрузки и
воздействия (Украина);
2) СП 31-114-2004 –
Строительство в сейсмических
районах (Россия);
3) СниП В1.2-1-98 –
Строительство в сейсмических
районах (Казахстан);
4) СниП РК 2.03-30-2006 –
Строительство в сейсмических
районах. Нормы
проектирования (Казахстан);
5) СНРА ІІ-2.02-94 –
Сейсмостойкое строительство.
Нормы проектирования
(Армения);
6) МГСН 4-19-2005 –
Временные нормы и правила
проектирования многофункциональных высотных зданий и
зданий-комплексов в городе
Москве.
НОРМЫ ПРОЕКТИРОВАНИЯ
СЕЙСМОСТОЙКИХ АТОМНЫХ
СТАНЦИЙ НП-031-01 УДК
621.039 Введены в действие с 1 января
2002 г. Утверждены постановлением
Госатомнадзора России от 19 октября
2001 г. № 9
Результаты испытаний фрагментов демпфирующих узлов крепления (работают на растяжение) и фрикционно-подвижных
соединений (ФПС), расположенных в длинных овальных отверстиях, работающих на растяжение, с контролируемым натяжением
согласно изобретениям № 1143895, 1174616, 1168755 для крепления опоры скользящей для Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов с тру-бопроводами, с креплением трубопроводов с помощью фрикционных протяжных
демпфирующих компенсаторов (Ф ПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях
Проверка фрагментов демпфирующих узлов крепления работающих на сдвиг и выполненных в виде болтовых соединений (латунная шпилька с подпиленным пазом, установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и
медного клина)
Наименование проверок и
испытаний
№ пункта
по ПМ
Величина контролируемого
параметра
Результаты испытаний
п.6
Величина усилий в кгс согласно
протокола ПКТИ –Строй-ТЕСТ
При величине усилий 800 кгс
происходит перемещение скобы
зажима по шпильке при испытании
Уточняется опытным путем
2
Проверка скольжения ,
податливости
Проверка скольжения гайки
в ИЦ «ПКТИ-Строй-ТЕСТ»,
адрес: 197341, СПб,
Афонская ул.2 .
3
Проверка смятия свинцовой шайбы.
4
Проверка свинцовой
прокладки
Проверка фланцевого
соединения
№
п/п
1
5
6
Проверка фрагментов
фрикционно-подвижных
соединений
7
Проверка срыва резьбы на
шпильке согласно протокола № 1506-1 от 18.11.
Смотри протокол ПКТИ –СтройТЕСТ от 18.11.2020
strotr77@inbox.ru
Соответствуют требованиям
Функционирует при податливых
характеристиках и перемещениях
до 2-4 см
Фрикционно-подвижное соединение
(происходит многокаскадное демпфирование при импульсных растягивающих нагрузках)
Осевое статическое усилие отрыва в
кгс(Ст3) 1500-600 кгс ПКТИ –
Строй-ТЕСТ
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Соответствует при монтаже
зданий для сейсмоопасных
районов 8 баллов (по шкале
MSK-64), необходимо
испытание на перемещение
узла крепления
Определяется при установке
зданий
соответствует
соответствует
Проверяются перемещения
домкратом или лебедкой
Регистрационные усилия
выдергивания производились по шкале до 4000 кгс
Всего листов 65
Лист 18
8
9
2020
Проверка соединения латунной гайки и полиамидальной гайки
Маркировка, таблички, надписи
соответствуют требованиям КД
Величина усилия кгс (при котором
происходит перемещение гайки в
узле крепления)
После испытаний фрагменты демпфирующих узлов крепления и
фрикционно-подвижных соединений
для объектов проходят проверку на
соответствие Инструкции "Элементы теории трения, расчет и технология применения фрикционноподвижных соединений".
Проверка гайки М12 с
пазом
Происходит пере-мещение
гайки при 30-150 кгс,
уточняется при монтаже
Соответствует после
испытания фрагментов
демпфирующих узлов
крепления, фланцевых
соединений и фрикционноподвижных сое-динений для
объ-ектов для сейсмоопасных районов 8 баллов
по шкале MSK-64.
Проверка фрагментов демпфирующих узлов крепления работающих на сдвиг и выполненных в виде болтовых соединений
(латунная шпилька с подпиленным пазом, установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой
шайбы и медного стопорного «тормозного» клина) для опоры скользящей с трубопроводами для Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов, с креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов
(ФПДК) с конт-ролируемым натяжением, расположенных в длинных овальных отверстиях. При осмотре не обнаружено
механических повреждений и ослабления демпфирующего фрикци-анкерного крепления.
Проверка податливости
п.6
Необходимо обернуть свинцовым или
соответствует
латунной шпильки .
медным листом шпильку
2
Проверка подпиленной
Наблюдается перемещение шпильки
соответствует
латунной гайки
3
Проверка латунной шпильки с
Энергию поглощает стопорный (торсоответствует
пропиленным пазом для
мозной) клин на шпильке
стопорного клина
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления, фрикционноподвижных соединений работающих на сдвиг и выполненных в виде болтового соединения (латунная шпилька с подпиленным
пазом, установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и медного стопорного
«тормозного» клина) для крепления опоры скользящей для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80,
MEK70,MEK 110,CT,VM.
При осмотре не обнаружено механических повреждений и ослабления демпфирующего соединения трубопроводов для опоры
скользящей для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, предназначенных
для сейсмоопасных районов с сейсмичностью более 9 баллов для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80,
1
PEXKSF80, MEK70,MEK 110,CT,VM
1
Проверка смятия свинцовой
п.6
Происходит смятие свинцовой шайбы
соответствует
Проверка смятия забитого в
Клин забивается в паз шпильки с
соответствует
паз латунной шпильки
помощью кувалды (4 кг)
шайбы
2
обожженного медного
стопорного клина
3
Проверка изолирующей
Латунная шпилька (расположена в
трубки в виде обертки
изолирующей трубе или обернута
шпильки медным листом
тонким слоем медного листа)переме-
соответствует
щается на 1 градус при ударе кувалдой
4
Проверка гайки со спилен-
Гайка с подпиленным пазом сдвигается
соответствует
Проверка свинцовой
Свинцовая рубашка, нанесенная на
соответствует
рубашки при обвертывании
шпилька демпфирует
ным пазом
5
шпильки
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 19
6
7
Проверка свинцовой
Многослойная медно-свинцовая
соответствует
прокладки
прокладка при ударе сминается
Проверка шпильки, у кото-
Согласно протокола ПКТИ от
рой две противоположные
18.11.2013 № 1506 -1 при нагрузке
стороны сточены 4.0, 3,5 и
1500- 610 кгс ( Ст3) отрыв шпильки
3.0 мм
происходит со срывом резьбы.
Проверка фланцевого
Происходит срыв резьбы и сдвиг на
соединения со стальной
0,5-0,9см
соответствует
соответствует
шпилькой со сточенными
зубьями
8
9
Проверка компенсаторов Z –
Крепление комплектующих элементов
соответствует
образных для трубопровода
не ослаблено. Крепеж не ослаблен.
Проверка компенсаторов
Необходимо дополнительные
«змейка» для трубопровода
испытания при укладке кабельтрасс (до
соответствует
контролируемых неразрушающих
перемещений 2-6 см) .
Результаты испытания болтового соединения на сдвиг для опоры скользящей для Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, серийный выпуск, предназначенных для сейсмоопасных
районов с сейсмичностью более 9 баллов с трубопроводами и с креплением трубопроводов с помощью фрикционных протяжных
демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях.
№ п.п.
Наименование узла крепления Опора
скользящая для Кабеленесущие системы:
Величина усилия, кгс, при
Характеристики
KS20,KS80,KSF80,PEXKS80, PEXKSF80,
MEK70,MEK 110,CT,VM
котором происходит
скольжения,
скольжение или
податливости.
перемещение стального
зажима для троса по
стальному анкеру
1
1.
2
3
Фрикционно-подвижное соединение (ФПС) с
болтовыми
зажимами
с
четырьмя
Было ранее
(50)
Стало
4
Перемещение шайбы с гайкой 2,5 см
по овальному отверстию при
постоянной нагрузке
шестигранными гайками Ml0, затянутыми с
помощью гаечного
усилия или
усилием
ключа
на половина
динамометрического ключа с
40
Н*м.
с
контактирующими
(
между
поверхностями
проложен стальной трос в пластмассой
оплетке диаметром 4 мм)
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 20
2.
Фрикционно –подвижное соединение
с
Было 90-150
четырьмя гайками с двух сторон затянуты
гаечным ключом на максимальную нагрузку
двумя
шестигранными
гайками
М10,
Перемещение шайбы с гайком 3,54.0 см по условному овальному
отверстию при постоянной
Стало
нагрузке
_______
затянутыми с помощью гаечного ключа или
динамометрического ключа с усилием 20
Н*м.
( между контактирующими поверхностями
проложен
стальной
трос
впластмассой
оплетке диаметром 4 мм)
Рис. Общий вид образцов и узлов при лабораторных испытаниях опоры скользящей для Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM ,согласно изобретения № 165076 RU E 04H 9/02 «Опора
сейсмостойкая», изобретения № 2010136746 от 20.01.201 «Способ защиты зданий и сооружений при взрыве с использованием
сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и сейсмоизоляцию
для поглощения взрывной и сейсмической энергии», заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора
сейсмоизолирующая «гармошка», заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое
фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 , испытываемых на сдвиг с болтами ( шпилькой) М 10 с
тросом в оплетке и без оплетки со стальным тросом М 2 мм. Образец № 1 ГОСТ 22353- 77 с платиной 260 мм Х 40 Х 3 мм
Сталь 10 ХСНД
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 21
Рис. Варианты конструктивного решения сейсмозащиты элементов скользящих опор для Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Рис.Испытанияфрагментов фрикционного протяжного демпфирующего компенсатора с контролируемым натяжением на сдвиг и
скольжение проходили в испытательном Центре «ПКТИ–Строй-ТЕСТ» (протокол испытаний№ 1516-2 от 22.12.2020). Аттестат
аккредитации федерального агентства по техническому регулированию и метрологии № ИЛ/ЛРИ-00804 (ООО ФПГ «РОССТРО»,
ИЦ «ПКТИ-Строй-ТЕСТ»), выдано ОАО «НТЦ» Промышленная безопасность»
Типовые альбомы, используемые при испытаниях фрагментов антисейсмического компенсатора для опор скользящих для
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
При испытаниях математических моделей опор скользящих для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80,
PEXKSF80, MEK70,MEK 110,CT,VM , предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный
выпуск с трубопровода-ми с использованием для соединения трубопровода косых компенсаторов, работающих на сдвиг расчетным
способом определялась расчетная несущая способность узлов податливых креплений, стянутых одним болтом с предварительным
натяжением классов прочности 8.8 и 10.9,
, (3.6)
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 22
где ks— принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний поверхностей, приведенных в ссылочных стандартах группы 7
(см. 1.2.7), или в таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным стандартам группы 4 (см. 1.2.4) с контролируемым
натяжением, в соответствии со ссылочными стандартами группы 7 (см. 1.2.7), усилие предварительного натяжения Fp,C в формуле
(3.6) следует принимать равным
(3.7)
Таблица — Значения ks
Описание испытание антисейсмического компенсатора работающего на сдвиг 1-2 смс использованием овальных отверстий
ks
Болты, установленные в нормальные отверстия
1,0
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при передаче усилия перпендикулярно
0,85
продольной оси отверстия
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендикулярно продольной оси отверстия
0,7
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно продольной оси отверстия
0,76
Болты, установленные в длинные овальных отверстиях при передаче нагрузки параллельно продольной оси отверстия
0,63
Таблица — Значения коэффициента трения m для болтов с предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты группы 7 (см. 1.2.7))
Коэффициент
трения m
A
0,5
B
0,4
C
0,3
D
0,2
Примечание 1 — Требования к испытаниям и контролю приведены в ссылочных стандартах группы 7 (см. 1.2.7).
Примечание 2 — Классификация поверхностей трения при любом другом способе обработки должна быть основана
на результатах испытаний образцов поверхностей по процедуре, изложенной в ссылочных стандартах группы 7 (см.
1.2.7). Примечание 3 — Определения классов поверхностей трения приведены в ссылочных стандартах группы 7 (см.
1.2.7). Примечание 4 — При наличии окрашенной поверхности с течением времени может произойти потеря
предварительного натяжения.
Моделирование систем сейсмоизоляции для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80,
MEK70,MEK 110,CT,VM
Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем сейсмоизоляции
при сейсмических воздействиях, представлены в таблице Б.1.
Т а б л и ц а Б.1 —– Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем
сейсмоизоляции для трубопроводов
Струнные и
маятниковые
опоры
Типы сейсмоизолирующих
элементов
Схемы сейсмоизолирующих элементов
Идеализированная зависимость
«нагрузка-перемещение» (F-D)
F
с низкой способностью
к диссипации энергии
D
F
D
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
F
Лист 23
D
D
FF
FF
F
DD
с высокой способностью
к диссипации энергии
D
DD
F
FF
FF
D
С демпфирующими
способностями
DD
D
DD
F
F
FF
FF
DD
с плоскими
горизонтальными
поверхностями скольжения
DD
D
F
F
FF
F
F
Фрикционно-подвижные опоры
Маятниковые с
демпфирующими
способностями за счет
сухого трения скользящих
поверхностей
DD
F
DD
D
D
F
D
D
Струнная опора с ограничителями перемещений за
счет демпфирующих упругих стальных пластин со
скольжением верха опоры
за счет фрикционно-подвижного соединения поверхностями скольжения
при R1=R2 и μ1≈μ2
F
FF
F
F
F
D
DD
DD
D
FF
FF
F
Струнная опора с
трущимися поверхностями
согласно изобретения по
Уздина А.М № 2550777
«Сейсмостойкий мост»
F
D
D
DD
DD
Тарельчатая сейсмоизолирующая опора по изобретению. № 2285835 «Тарельчатый виброизолятор
кочетовых», Бюл № 29
20.10.2006 с демпфирующим сердечником по
изобретению № 165076
«Опора сейсмостойкая»
F
FFFF
F
D
D
DDD
D
Т а б л и ц а Б.1 — Фрикци –демпферы (Фрикционно –демпфирующие энергопоглотители ), используемые для энергопоглощения
F
взрывной энергии, для обеспечения многокаскадного демпфирования при динамических нагрузках, преимущественно при импульсF
ных растягивающих нагрузках для опор скользящих сейсмоизолирующих для Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM Дата проведения испытаний: 16 июня 2022 г.
Типы фрикционно-демпфирующих энергопоглощающих крестовидных, трубчатых,
D
Схемы энергопоглощающих сдвиговых
фрикционно-демпфирующих энергопоглотителей
Идеализированная зависимость фрикционноD
демпфирующей «нагрузки для перемещения»
(F-D)
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 24
Энергопоглотитель квадратный трубчатый
Косой компенсатор
энергопоглотитель ( для
кабеленесущей системы
) из шести уголков
F
F
D
F
D
F
с высокой способностью
к поглощению пиковых
ускорений
F
F
D
F
D
D
F
Винтообразный
,упругопластические
демпфирующий
компенсатор для
трубопроводов на
фланцевых, фрикционо
–подвижных
соединениях (ФФПС )
из шести уголков
Зиг-заго образный
компенсатор для
трубопроводов
повышенной
способности к
энергопоглощению
взрывной и
сейсмической энергии (
из 3-х уголков)
Демпфирующий
GTNKTJ,HFPYSQ
компенсатор ( из шести
уголков) на скользящих
опорах раскачивается
при смятии медного
обож-женного клина,
забитого в пропиленный
паз шпильки
F
Тросовая опора
демпфирующая
перемещающая по
линии нагрузки
(ограничитель
перемещений
одноразовый)
D
D
F
F
D
F
D
D
F
D
F
F
F
FD
F
F
D
D
D
D
D
F
F
D
D
F
F
F
F
F
D
F
F
D
D
D
D
D
F
F
F
D
D
F
D
D
D
F
F
F
F
F
Энергопоглощающие демпфирующие
D
D
F
D
D
D
D
D
F
F
F
F
D
D
D
D
F
Тросовая трубпровдная
опора с упруго
пластичный шарнир –
ограничитель перемещений по линии нагрузки (многоразовая)
F
F
D
D
D
D
F
F
D
D
F
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
ЛистD25
D
Демпфирующая опора
(с короткими овальными
отверстиями ) и
пластическим шарниром
– скольжения,
перемещения по
длинным овальным
отверстиям по линии
нагрузки
(многоразовый)
нагрузки
F
D
Моменты затяжки для крепления трубопровода Опора скользящая для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80,
PEXKSF80, MEK70,MEK 110,CT,VM с фланцевыми фрикционно-подвижными соединениями.
Таблица 1 - Моменты затяжки болтовых (винтовых), резьбовых соединений фланцевого соединенияс помощью фрикционных
протяжных демпфирующих компенсаторов с контролируемым натяжением, для применения в районах с сейсмичностью 9 балловпо
шкале MSK-64,обеспечивающих многокаскадное демпфирование при импульсной динамической растягивающей нагрузке.
Диаметр резьбы, мм
Момент затяжки М, [H∙м] для резьбового или болтового соединения
с шлицевой головкой (винты)
с шестигранной головкой
М3
0,5±0,1
М3,5
0,8±0,2
М4
1,2±0,2
1,5±0,2
М5
2,0±0,4
7,5±1,0
М6
2,5±0,5
10,5±1,0*
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 26
М8
22,0±1,5*
М10
40,0±2,0
М12
70,0±3,5
М16
120,0±6,0
* В соединениях с шайбами тарельчатыми контактными DIN 6796 момент затяжки для М6 – (8,0±1,0) H∙м, для М8 –
(20,0±1,5) H∙м.
Примечание.
Моменты затяжки болтовых (винтовых), резьбовых соединений, клеммных зажимов необходимо выполнить согласно
технической документации завода-изготовителя комплектующих изделий.
Результаты определения параметров ФПС
6
k2 106,кН-1
k ,
с/мм
S0,
мм
SПЛ
мм
q,
мм-1
f0
N0, кН
к
11
32
0.25
11
9
0.00001
0.34
105
260
8
15
0,24
8
7
0.00044
0.36
152
90
3
12
27
0.44
13.5
11.2
0.00012
0.39
125
230
4
7
14
0.42
14.6
12
0.00011
0.29
193
130
5
14
35
0.1
8
4.2
0.0006
0.3
370
310
6
7
6
8
11
20
0.2
0.2
12
19
9
16
0.00002
0.00001
0.3
0.3
120
106
100
130
8
15
0.3
9
2.5
0.00028
0.35
Результаты статистической обработки значений параметров ФПС
154
75
параметры N
подвижки
k110 , кН-
1
2
8
1
Значения параметров
Параметры
соединения
математическое
ожидание
среднеквадратичное
отклонение
k1 106, КН-1
9.25
2.76
6
21.13
9.06
kv с/мм
0.269
0.115
S0, мм
11.89
3.78
Sпл , мм
8.86
4.32
0.00019
0.00022
f0
0.329
0.036
Nо,кН
165.6
87.7
k2 10 , кН-
q,мм
-1
1
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 27

165.6
88.38
Результаты определения параметров ФПС
6
k2 106,кН-1
k ,
с/мм
S0, мм
SПЛ
мм
q,
мм-1
f0
N0, кН
к
11
32
0.25
11
9
0.00001
0.34
105
260
2
8
15
0,24
8
7
0.00044
0.36
152
90
3
12
27
0.44
13.5
11.2
0.00012
0.39
125
230
4
7
14
0.42
14.6
12
0.00011
0.29
193
130
5
14
35
0.1
8
4.2
0.0006
0.3
370
310
6
7
6
8
11
20
0.2
0.2
12
19
9
16
0.00002
0.00001
0.3
0.3
120
106
100
130
8
8
0.35
154
75
параметры N
подвижки
k110 , кН-
1
1
15
0.3
9
2.5
0.00028
Таблица коэффициентов трения скольжения и качения.
к (мм)
f ск
Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Регистрация усилия выдергивания производилась по шкале до 1000 кгс.
6. Изобретения, используемые при испытаниях опоры скользящей для системы Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, предназначенных для сейсмоопасных районов с
сейсмичностью более 9 бал-лов с трубопроводами, с креплением трубопроводов к опоре скользящей с помощью
фрикционных протяжных демпфирующих компенсаторов (ФПДК).
Материалы научного сообщения, изобретения, специальные технические решения, альбомы, чертежи используемые при
испытаниях на сейсмостойкость в ПК SCAD опоры скользящей для системы Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов, с креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов
(ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях (используются в США, Канаде, Японии,
Китае (фирма STARSEIMIC).,,.
1.Изобретения, патенты №№ 1143895, 1168755, 1174616, автор- проф. д.т.н. ПГУП А.М.Уздин
2.Изобретения, патенты №№ 2382151, 2208096, 2629514 " УЗЕЛ СОЕДИНЕНИЯ", КазГАСУ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
RU
(11)
165 076
(13)
U1

(51) МПК
E04H 9/02 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 26.09.2019)
(21)(22) Заявка: 2016102130/03, 22.01.2016
(72) Автор(ы):
Андреев Борис Александрович (RU),
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 28
(24) Дата начала отсчета срока действия патента:
22.01.2016
Приоритет(ы):
(22) Дата подачи заявки: 22.01.2016
КоваленкоАлександр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(45) Опубликовано: 10.10.2016 Бюл. № 28
Адрес для переписки:
190005, Санкт-Петербург, 2-я
Красноармейская ул дом 4 СПб ГАСУ
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
Опора сейсмостойкая предназначена для защиты объектов от сейсмических воздействий за счет использования
фрикцион но податливых соединений. Опора состоит из корпуса в котором выполнено вертикальное отверстие
охватывающее цилиндрическую поверхность щтока. В корпусе, перпендикулярно вертикальной оси, выполнены отверстия
в которых установлен запирающий калиброванный болт. Вдоль оси корпуса выполнены два паза шириной <Z> и длиной
<I> которая превышает длину <Н> от торца корпуса до нижней точки паза, вып олненного в штоке. Ширина паза в штоке
соответствует диаметру калиброванного болта. Для сборки опоры шток сопрягают с отверстием корпуса при этом паз
штока совмещают с поперечными отверстиями корпуса и соединяют болтом, после чего одевают гайку и затягиваю т до
заданного усилия. Увеличение усилия затяжки приводит к уменьшению зазора<Z>корпуса, увеличению сил трения в
сопряжении корпус-шток и к увеличению усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений, объектов и оборудования от сейсмических
воздействий за счет использования фрикционно податливых соединений. Известны фрикционные соединения для защиты
объектов от динамических воздействий. Известно, например Болтовое соединение плоских деталей вс тык по Патенту RU
1174616, F15B 5/02 с пр. от 11.11.1983. Соединение содержит металлические листы, накладки и прокладки. В листах,
накладках и прокладках выполнены овальные отверстия через которые пропущены болты, объединяющие листы,
прокладки и накладки в пакет. При малых горизонтальных нагрузках силы трения между листами пакета и болтами не
преодолеваются. С увеличением нагрузки происходит взаимное проскальзывание листов или прокладок относительно
накладок контакта листов с меньшей шероховатостью. Взаимное смещение листов происходит до упора болтов в края
овальных отверстий после чего соединения работают упруго. После того как все болты соединения дойдут до упора в края
овальных отверстий, соединение начинает работать упруго, а затем происходит разрушение соединения за счет смятия
листов и среза болтов. Недостатками известного являются: ограничение демпфирования по направлению воздействия
только по горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из -за разброса по трению.
Известно также Устройство для фрикционного демпфирования антиветровых и антисейсмических воздействий по Патенту
TW 201400676 (A)-2014-01-01. Restraint anti-wind and anti-seismic friction damping device, E04B 1/98, F16F 15/10.Устройство
содержит базовое основание, поддерживающее защищаемый объект, нескольких сегментов (крыльев) и несколько внешних
пластин. В сегментах выполнены продольные пазы. Трение демпфирования создается между пластинами и наружными
поверхностями сегментов. Перпендикулярно вертикальной поверхн ости сегментов, через пазы, проходят запирающие
элементы - болты, которые фиксируют сегменты и пластины друг относительно друга. Кроме того, запирающие элементы
проходят через блок поддержки, две пластины, через паз сегмента и фиксируют конструкцию в задан ном положении.
Таким образом получаем конструкцию опоры, которая выдерживает ветровые нагрузки но, при возникновении
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от своего начального положения,
при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из -за наличия большого
количества сопрягаемых трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного сопряжения отверстие корпуса - цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая выполнена из двух частей: нижней корпуса, закрепленного на фундаменте и верхней - штока, установленного с возможностью перемещения вдоль общей оси
и с возможностью ограничения перемещения за счет деформации корпуса под действием запорного элемента. В корпусе
выполнено центральное отверстие, сопрягаемое с цилиндрической поверхностью штока, и поперечные отверстия
(перпендикулярные к центральной оси) в которые устанавливают запирающий элемент -болт. Кроме того в корпусе,
параллельно центральной оси, выполнены два открытых паза, которые обеспечивают корпусу во зможность
деформироваться в радиальном направлении. В теле штока, вдоль центральной оси, выполнен паз ширина которого
соответствует диаметру запирающего элемента (болта), а длина соответствует заданному перемещению штока.
Запирающий элемент создает нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы обеспечивают
возможность деформации корпуса и «переход» сопряжения из состояния возможного перемещения в состояние
«запирания» с возможностью перемещения только под сейсмической нагрузкой. Длина пазо в корпуса превышает
расстояние от торца корпуса до нижней точки паза в штоке. Сущность предлагаемой конструкции поясняется чертежами,
где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2 изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3 изображен
разрез В-В (фиг. 1); на фиг. 4 изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром «D», которое
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 29
охватывает цилиндрическую поверхность штока 2 например по подвижной посадке H7/f7. В стенке корпуса
перпендикулярно его оси, выполнено два отверстия в которых установлен запирающий элемент - калиброванный болт 3.
Кроме того, вдоль оси отверстия корпуса, выполнены два паза шириной «Z» и длиной «I». В теле штока вд оль оси
выполнен продольный глухой паз длиной «h» (допустмый ход штока) соответствующий по ширине диаметру
калиброванного болта, проходящего через этот паз. При этом длина пазов «I» всегда больше расстояния от торца корпуса
до нижней точки паза «Н». В нижней части корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в
верхней части штока 2 выполнен фланец для сопряжения с защищаемым объектом. Сборка опоры заключается в том, что
шток 2 сопрягается с отверстием «D» корпуса по подвижной посад ке. Паз штока совмещают с поперечными отверстиями
корпуса и соединяют калиброванным болтом 3, с шайбами 4, с предварительным усилием (вручную) навинчивают гайку 5,
скрепляя шток и корпус в положении при котором нижняя поверхность паза штока контактирует с поверхностью болта
(высота опоры максимальна). После этого гайку 5 затягивают тарировочным ключом до заданного усилия. Увеличение
усилия затяжки гайки (болта) приводит к деформации корпуса и уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою
очередь приводит к увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие корпуса - цилиндр
штока. Величина усилия трения в сопряжении корпус-шток зависит от величины усилия затяжки гайки (болта) и для
каждой конкретной конструкции (компоновки, габаритов, материалов, шероховатости поверхностей, направления нагрузок
и др.) определяется экспериментально. При воздействии сейсмических нагрузок превышающих силы трения в сопряжении
корпус-шток, происходит сдвиг штока, в пределах длины паза выполненного в теле штока, без разрушения конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел, закрепленный запорным элементом,
отличающаяся тем, что в корпусе выполнено центральное вертикальное отверстие, со пряженное с цилиндрической
поверхностью штока, при этом шток зафиксирован запорным элементом, выполненным в виде калиброванного болта,
проходящего через поперечные отверстия корпуса и через вертикальный паз, выполненный в теле штока и закрепленный
гайкой с заданным усилием, кроме того вкорпусе, параллельно центральной оси, выполнено два открытых паза, длина
которых, от торца корпуса, больше расстояния до нижней точки паза штока.
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU 2010136746
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(13)
A
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 30
(51) МПК

(12)
E04C 2/00 (2006.01)
ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:
Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теп
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(72) Автор(ы):
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Адрес для переписки:
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU)
Тихонов Вячеслав Юрьевич (RU),
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ
ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение проема/проемов
рассчитанной площади для снижения до допустимой величины взрывного давления, возникающего во взрывоопасных
помещениях при аварийных внутренних взрывах, отличающийся тем, что в объеме каждого проема организуют зону,
представленную в виде одной или нескольких полостей, ограниченных эластичным огнестойким материалом и
установленных на легкосбрасываемых фрикционных соединениях при избыточном давлении воздухом и землетрясении,
при этом обеспечивают плотную посадку полости/полостей во всем объеме проема, а в момент взрыва и землетрясения под
действием взрывного давления обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема
и соскальзывают с болтового соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподат ливых с
высокой степенью подвижности фрикционных, скользящих соединениях с сухим трением с включением в работу
фрикционных гибких стальных затяжек диафрагм жесткости, состоящих из стальных регулируемых натяжений затяжек
сухим трением и повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в горизонтали
в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от вертикали 65 мм, т.е. до 7 см (подъем пятки
на уровне фундамента), не подвергая разрушению и обрушению конструкции при аварийных взрывах и сильных
землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со
свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое напряжение на все четыре-восемь гаек и
способствует одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться основным
несущим конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения на
шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут монтироваться как самонесущие без стального каркаса для
малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмической
энергии может определить величину горизонтального и вертикального перемещения «сэндвич» -панели и определить ее
несущую способность при землетрясении или взрыве прямо на строительной площадке, пригрузив «сэндвич»-панель и
создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и
аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения о пределяются, проверяются и затем
испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES
2006, SoliddWorks 2008, Ing+2006, FondationPL 3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном
строительном полигоне прямо на строительной площадке испытываются фрагменты и узлы, и проверяются
экспериментальным путем допустимые расчетные перемещения строительных конструкций (стеновых «сэндвич» -панелей,
щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные при аварийном взрыве и при
землетрясении более 9 баллов перемещение по методике разработанной испытательным центром ОО «Сейсмофонд» «Защита и безопасность городов».
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 31
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU(11)
2367917(13) C1
(51) МПК
G01L5/24 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: по данным на 27.09.2013 - прекратил действие
Пошлина:
(21), (22) Заявка: 2008113689/28, 07.04.2008
(24) Дата начала отсчета срока действия патента:
07.04.2008
(45) Опубликовано: 20.09.2009
(72) Автор(ы):
Устинов Виталий Валентинович (RU)
(73) Патентообладатель(и):
ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ИНГЕРСОЛЛ-РЭНД СиАйЭ
(56) Список документов, цитированных в отчете о
поиске: RU 2296964 C1 10.04.2007. SU 1580188 A1
23.07.1990. RU 2066265 C1 10.09.1996. RU 2025270 C1
30.12.1994. SU 1752536 A1 07.08.1992. RU 2148805 C1
10.05.2000.
Адрес для переписки:
606100, Нижегородская обл., г. Павлово, ул.
Чапаева, 43, корп.3, ЗАО "Ингерсолл-Рэнд СиАйЭс"
(54) СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА ЗАТЯЖКИ РЕЗЬБОВЫХ СОЕДИНЕНИЙ И
ДИНАМОМЕТРИЧЕСКИЙ КЛЮЧ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 32
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
 G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(24) Дата начала отсчета срока действия патента:
26.11.1997
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
(45) Опубликовано: 10.05.2000 Бюл. № 13
Миролюбов Юрий
Павлович (RU)
(21)(22) Заявка: 97120444/28, 26.11.1997
(56) Список документов, цитированных в отчете о поиске: Чесноков
(72) Автор(ы):
А.С., Княжев А.Ф. Сдвигоустойчивые соединения на
Рабер Лев Матвеевич (UA),
высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A, Кондратов В.В.(RU),
Хусид Р.Г.(RU),
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 33
15.09.80. SU 993062 A, 30.01.83. EP 0170068 A'', 05.02.86.
Миролюбов Ю.П.(RU)
Адрес для переписки:
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
(73) Патентообладатель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий Павлович
(RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО
СОЕДИНЕНИЯ
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
 F16B 31/02 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
 G01N 3/00 (2006.01)
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.08.2017)
Пошлина:
учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете
о поиске: SU 1753341 A1, 07.08.1992. SU
1735631 A1, 23.05.1992. JP 2008151330 A,
03.07.2008. WO 2006028177 A1, 16.03.2006.
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА
"ПАРТНЁР" (RU)
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5,
корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ
МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 34
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 35
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 36
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 37
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 38
Патент ОПОРА СЕЙСМОСТОЙКАЯ № 165 076 МПК E04H
9/02 (2006.01) Опубликовано: 10.10.2016 Бюл.
№ 28
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 39
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 40
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 41
СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостов
Определение коэффициента трения между контактными поверхностями соединяемых элементов
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии дву хсрезны х одн
оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 42
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при исполь зовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в плане. Отверстия
образуются сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях конструкции. Натяжени е
болта осуществляется динамометрическими ключами, применяемыми на строительстве при сборке соединений на высокопрочных
болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины должна быть не
ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется нагрузка Т,
характеризующая исчерпание несущей способности образца. Испытания рекомендуется проводить с записью диаграммы сжатия
образца. Для суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата испытания, маркировка образца, нагрузка, соответствующая сдвигу
(прик ладывается диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте сооружения, которое
может быть воспринято каждой п о верхностью трения соединяемых элеме нтов, стянутых одним высокопрочным болтом (одним болт
оконт акт ом), оценивается соотношением Q bh ≤ Т/ 2 в каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика, проектной и научноисследоват е льской организаций.
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и предназнечено для защиты шаровых
кранов и трубопровода от возможных вибрационных , сейсмических и взрывных воздействий Конструкция фрикци -болт
выполненный из латунной шпильки с забитмы медным обожженным клином позволяет обеспечить надежный и быстрый погашение
сейсмической нагрузки при землетрясении, вибрационных вождействий от железнодорожного и автомобильно транспорта и взрыве
.Конструкция фрикци -болт, состоит их латунной шпильки , с забитым в пропиленный паз медного клина, которая жестко
крепится на фланцевом фрикционно- подвижном соединении (ФФПС) . Кроме того между энергопоглощаюим клином вставляютмс
свинффцовые шайбы с двух сторо, а латунная шпилька вставлдяетт фв ФФПС с медным ободдженным кгильзоц или втулкой ( на
чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и трубопроводов от сейсмических воздействий за
счет использования фрикционное- податливых соединений. Известны фрикционные соединения для защиты объектов от
динамических воздействий. Известно, например, болтовое фланцевое соединение , патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки происходит взаимное демпфирование колец тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного соедиения (ФФПС), при импульсных
растягивающих нагрузках при многокаскадном демпфировании, корые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только по горизонтали и
вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по трению. Известно также устройство для
фрикционного демпфирования и антисейсмических воздействий, патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое
соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин и несколько внешних пластин. В сегментах выполнены
продольные пазы. Сжатие пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает сейсмические нагрузки но, при
возникновении динамических, импульсных растягивающих нагрузок, взрывных, сейсмических нагрузок, превышающих расчетные
силы трения в сопряжениях, смещается от своего начального положения, при этом сохраняет трубопровод без разрушения.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 43
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого количества
сопрягаемых трущихся поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей до
одного или нескольких сопряжений в виде фрикци -болта , а также повышение точности расчета при использования фрикциболтовых демпфирующих податливых креплений для шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с пропиленным пазом, в который
забит медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой , установленный с возможностью
перемещения вдоль оси и с ограничением перемещения за счет деформации трубопровода под действием запорного элемента в виде
стопорного фрикци-болта с пропиленным пазом в стальной шпильке и забитым в паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки или свинцовых шайб)
поглотителями сейсмической и взрывной энергии за счет сухого трения, которые обеспечивают смещение опорных частей
фрикционных соединений на расчетную величину при превышении горизонтальных сейсмических нагрузок от сейсмических
воздействий или величин, определяемых расчетом на основные сочетания расчетных нагрузок, сама опора при этом начет
раскачиваться за счет выхода обожженных медных клиньев, которые предварительно забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается взрывная, ветровая,
сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясении и
при взрывной, ударной воздушной волне. Фрикци –болт повышает надежность работы оборудования, сохраняет каркас здания,
моста, ЛЭП, магистрального трубопровода, за счет уменьшения пиковых ускорений, за счет использования протяжных фрикционных
соединений, работающих на растяжение на фрикци- болтах, установленных в длинные овальные отверстия с контролируемым
натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП
16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4, кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный клин и снабжен
энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с пропиленныым пазом , кужа забиваенься
стопорный обожженный медный, установленных на стержнях фрикци- болтов Медный обожженный клин может быть также
установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является медный
обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении, осуществляется смянанием с
энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами , расположенными между цилиндрическими
выступами . При этом промежуток между выступами, должен быть больше амплитуды колебаний вибрирующего трубчатого элемента,
Для обеспечения более надежной виброизоляции и сейсмозащиты шарового кран с трубопроводом в поперечном направлении,
можно установить медный втулки или гильзы ( на чертеже не показаны), которые служат амортизирующие дополнительными
упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на чертеже не показан)
.
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является амортизирующим
элементом при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединени , выполненные из латунной шпильки с забиты с
одинаковым усилием медный обожженный клин , например латунная шпилька , по названием фрикци-болт . Одновременно с
уплотнением соединения оно выполняет роль упругого элемента, воспринимающего вибрационные и сейсмические нагрузки. Между
выступами устанавливаются также дополнительные упругие свинцовые шайбы , повышающие надежность виброизоляции и
герметичность соединения в условиях повышенных вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится стягивание
соединения гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную величину,
обеспечивающую рабочее состояние медного обожженного клина . свинцовые шайбы применяются с одинаковой жесткостью с двух
сторон .
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 44
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобы их жесткость
соответствовала расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию и герметичность фланцевого соединения
трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность соединения и надежность
его работы в тяжелых условиях вибронагрузок при моногкаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты вынужденных
колебаний вибрирующего трубчатого элемента с учетом частоты собственных колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта будет меньше
единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные элементы, подпружиненные и
энергопоглощающие со стороны одного из фланцев, амортизирующие в виде латунного фрикци -болта с пропиленным пазом и
забитым медным обожженным клином с медной обожженной втулкой или гильзой , охватывающие крепежные элементы и
установленные в отверстиях фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем, что, с целью расширения области
использования соединения, фланцы выполнены с помощью энергопоглощающего фрикци -болта , с забитимы с одинаковм усилеи м
медым обожженм коллином расположенными во фоанцемом фрикционно-подвижном соедиении (ФФПС) , уплотнительными
элемент выполнен в виде свинцовых тонких шайб , установленного между цилиндрическими выступами фланцев, а крепежные
элементы подпружинены также на участке между фланцами, за счет протяжности соединения по линии нагрузки .
2. Соединение по и. 1, отличающееся тем, что между медным обожженным энергопоголощающим клином установлены тонкие
свинцовые или обожженные медные шайбы, а в латунную шпильку устанавливает медная обожженная гильза или втулка .
Фиг 1
Фиг 2
Фиг 3
Фиг 4
Фиг.5
Фиг 6
Фиг 7
Фиг 8
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 45
Фиг 9
Характеристики тросовой сейсмостойкой опоры (один из вариантов).
Жѐсткость удобнее брать как среднециклическую. Жѐсткость математически точно описывает поведение системы в динамике. В
ADAMS мы применяем зависимость среднециклической жѐсткости от амплитуды деформации, взятой из эксперимента.
При амплитуде колебаний 0,4 мм:
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 46
Жѐсткость: 139/0,4=348 Н/мм
Коэф. рассеяния энергии: 2,06
Коэф. демпфирования: 0,328
При амплитуде колебаний 1 мм:
Жѐсткость: 246/1=246 Н/мм
Коэф. рассеяния энергии: 2,79
Коэф. демпфирования: 0,444
При амплитуде колебаний 2 мм:
Жѐсткость: 332/2=166 Н/мм
Коэф. рассеяния энергии: 2,44
Коэф. демпфирования: 0,39
Основные размеры
Основные характеристики
7. Результаты и выводы по испытаниям математических моделей опоры скользящей для кабеленесущей системы и узлов
крепления опоры скользящей к трубопроводу с помощью демпфирующих и косых антисейсмических компенсаторов,
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 47
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 48
ВЫВОДЫ по испытанию математических моделей опоры скользящей для кабеленесущей системы: KS20,KS80,KSF80,PEXKS80,
PEXKSF80, MEK70,MEK 110,CT,VM, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с
трубопроводами , которые крепились с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с
контролируемым натяжением, расположенных в длинных овальных отверстиях и их программная реализация в SCAD Office.
Испытания математических моделей опор скользящих для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80,
MEK70,MEK 110,CT,VM , серийный выпуск, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с
трубопроводами, с креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК)
согласно программной реализации в SCAD Office проводились по прогрессивному методу испытания зданий и сооружений как более
новому. Для практического применения фрикционно-подвижных соединений (ФПС) после введения количественной характеристики
сейсмостойкости надо дополнительно испытать узлы ФПС. Проведены испытания математических моделей в программе SCAD.
Процедура оценок эффекта и обработки полученных данных существенно улучшена и представляет собой стройный алгоритм,
обеспечивающий высокую воспроизводимость оценок.
Испытание математических моделей допускается со шкалой землетрясений Апликаева (определение интенсивности землетрясений по значительно расширенному кругу объектов при различной обеспеченности данными). Шкала также создает основу для
оценки и уменьшения возможного уровня воздействий будущих землетрясений заданной балльности.
При испытании моделей узлов и фрагментов опор скользящих для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80,
PEXKSF80, MEK70,MEK 110,CT,VM, которые предназначены для сейсмоопасных районов с сейсмичностью более 9 баллов с
трубопроводами с антисейсмическими косых компенсаторов ( изобретение № 887748 « Стыковое соединение растянутых
элементов») илии с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях, оценено влияние продолжительности колебаний на сейсмическую интенсивность. За
полвека количество записей и перемещения грунта резко увеличилось, что позволило существенно повысить точность испытания
математических моделей в ПК SCAD согласно инструментальной шкалы и оценить величину стандартных отклонений. Корреляция
инструментальных данных о параметрах сейсмического движения грунта с использованием сейсмоизолирующих опор с
использованием ФПС должно уменьшить повреждаемость фрикционно–подвижных соединений (ФПС) в местах крепления
трубопровода , предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов (с учетом зарубежного опыта в КНР,
Новой Зеландии, Японии, Тайваня, США в части широкого использования сейсмоизоляции для трубопроводов и использования
ФФПС и демпфирующей сейсмоизоляции для трубопроводов).
Методика проведения испытаний фрагментов антисейсмического фрикционно- демпфирующего соединения трубопро-вода,
соединенного с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях, предназначенного для сейсмоопасных районов с сейсмичностью более 9 баллов.
В соответствии с поставленной «Заказчиком» задачей: определения величины усилия, при котором будет происходить перемещение зажима по условному длинному овальному отверстию в зависимости от усилия затяжки гаек, испытаны два образца узла
крепления опор скользящих для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM,
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами с креплением трубопроводов с
помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в
длинных овальных отверстиях (описание в таблице).
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 49
Испытание статической нагрузкой проводилось путем жесткого закрепления фрикционно –подвижного соединения (ФПС) на станине
испытательной машины и приложения усилия к дугообразному зажиму в направлении оси шпильки, фрагмента узла протяжного
фрикционно-подвижного соединения на двух болтах М10 с 4 –мя гайками М10 и с 4-мя стальными шайбами(толщина 3 мм, диаметр
34 мм), установленных в длинных овальных отверстиях в соответствии с требованиям : СП 56.13330.2011 Производственные
здания. Актуализированная редакция СНиП 31-03-2001, ГОСТ 30546.1-98 , ГОСТ 30546.2-98, ГОСТ 30546.3-98, СП 14.13330-2011 п
.4.6. «Обеспечение демпфированности фрикционно-подвижного соединения (ФПС)», альбом серия 4.402-9 «Анкерные болты», вып. 5
«Ленгипронефтехим», ГОСТ 17516.1-90 п.5, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012 (02250) , п.10.7, 10.8.
Испытания производились согласно требованиям СП 14.13330. 2014, п.4.7 (демпфирование), п.6.1.6, п.5.2 (моделей), СП 16.13330.
2011 (СНиПII-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3, СТП 006-97 Устройство соединений на
высокопрочных болтах в стальных конструкциях мостов, согласно изобретениям №№ 1143895, 1174616,1168755 SU, 2371627,
2247278, 2357146, 2403488, 2076985 RU № 4,094,111 US, TW 201400676 Restraintanti-windandanti-seismicfrictiondampingdevice.
Испытания проводились на основе прогрессивной теории активной сейсмозащиты зданий согласно ГОСТ 6249-52 «Шкала для
определения силы землетрясения» в ИЦ «ПКТИ-СтройТЕСТ»,адрес: 197341, СПб, ул. Афонская, д.2, STROYTR77@inbox.ru (ранее
составлен акт испытаний на осевое статическое усилие сдвига дугообразного зажима анкерной шпильки № 1516-2 )
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления, фрикционно-подвижных
соединений работающих на сдвиг и выполненных в виде болтового соединения (латунная шпилька с подпиленным пазом,
установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и медного стопорного «тормозного»
клина), при осмотре не обнаружено механических повреждений и ослабления демпфирующего соединения для Кабеленесущие
системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, предназначенными для сейсмоопасных районов с
сейсмичностью более 9 баллов.
На основании проведенного испытания математических моделей опоры скользящей для Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, предназначенных для сейсмоопасных районов с сейсмичностью
более 9 баллов, серийный выпуск, с трубопроводами в ПК SCAD и лабораторных испытаний фрагментов узлов крепления опоры
скользящей и трубопровода делается вывод
Опоры скользящие для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM,
предназначенные для сейсмоопас-ных районов с сейсмичностью более 9 баллов, серийный выпуск, с трубопроводами, соединенными
между собой с помощью демпфиру-ющих компенсаторов на фланцевых фрикционно–подвижных соединениях (ФФПС), с
контролируемым натяжением, расположен-ных в длинных овальных отверстиях для обеспечения многокаскадного демпфирования
при динамических нагрузках (преимуществен-но при импульсных растягивающих нагрузках в узлах соединения), выполненных
согласно изобретениям, патенты №№ 1143895, 1174616,1168755, № 165076 «Опора сейсмостойкая», согласно рекомендациям
ЦНИИП им. Мельникова, согласно альбома 1-487-1997.00.00 и изобрете-нию №№ 4,094,111 US, TW201400676 Restraintantiwindandanti-seismic-friction-damping-device Мкл E04H 9/02 СООТВЕТСТВУЮТ ТРЕБОВАНИЯМ НОРМАТИВНЫХ ДОКУМЕНТОВ
ГОСТ 15150, ГОСТ 5264-80-У1- 8, ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (при сейсмических воздействиях 9 баллов по
шкале MSK-64 включительно ), ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90, МЭК 60068-3-3 (1991), ПМ 04-2014, РД
26.07.23-99 и РД 25818-87, СП 14.13330.2018, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5),ОСТ 36-146-88, ОСТ 108.275.6380, РТМ 24.038.12-72, ОСТ 37.001. -050- 73
8.Литература, использованная при испытаниях на сейсмостойкость математической модели опоры скользящей для
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM, при испытаниях в ПК SCAD и при
испытаниях узлов крепления опоры скользящей к трубопроводу, предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов
1. Гладштейн Л. И. Высокопрочные болты для строительных стальных конструкций с контролем натяжения по срезу торцевого элемента / Л. И.
Гладштейн, В. М. Бабушкин, Б. Ф. Какулия, Р. В. Гафу- ров // Тр. ЦНИИПСК им. Мельникова. Промышленное и гражданское строительство. - 2008. № 5. - С. 11-13.
2. Ростовых Г. Н. И все-таки они крутятся! / Г. Н. Ростовых // Крепеж, клеи, инструмент и...- 2014. - № 3. - С. 41-45.
3. СП 35.13330.2011. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84*.
4. СТП 006-97. Устройство соединений на высокопрочных болтах в стальных конструкциях мостов.
5. ТУ 1282-162-02494680-2007. Болты высокопрочные с гарантированным моментом затяжки резьбовых соединений для строительных стальных
конструкций / ЦНИИПСК им. Мельникова.
References
1. Gladshteyn L. I., Babushkin V. M., Kakuliya B. F. & Gafurov R. V. Trudy TsNIIPSK im. Melnikova. Pro- myshlennoye i grazhdanskoye stroitelstvo - Proc.
of the Melnikov Construction Metal Structures Institute. Industrial and Civil Construction, 2008, no. 5, pp. 11-13.
2. Rostovykh G. N. Krepezh, klei, instrument i... - Bolting, Glue, Tools and... 2014, no. 3, pp. 41-45.
3. Mosty i truby [Bridges and Pipes]. SP 35.13330. 2011. Updated version of SNiP 2.05.03-84*.
4. Ustroystvo soyedineniy na vysokoprochnykh boltakh v stalnykh konstruktsiyakh mostov [Setting up High-Strength Bolt Connections in Steel Constructions
of Bridges]. STP 006-97.
Строительные нормы и правила, глава СниП П-23-81. Нормы проектирования / Стальные конструкции. - М.: Стройиздат, 1982. - С. 40 - 41.
1. Стрелецкий Н.Н. Повышение эффективности монтажных соединений на высокопрочных болтах / Сб. тр. ЦНИИПСК, вып. 19. - М.:
Стройиздат, 1977. - С. 93-110.
2. Лукьяненко Е.П., Рабер Л.М. Совершенствование методов подготовки соприкасающихся поверхностей соединений на высокопрочных
болтах // Бущвництво Украши. - 2006. - № 7. - С. 36-37
3. АС. № 1707317 (СССР) Сдвигоустойчи- вое соединение / Вишневский И. И., Кострица Ю.С., Лукьяненко Е.П., Рабер Л.М. и др. - Заявл.
04.01.1990; опубл. 23.01.1992, Бюл. № 3.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 50
4.
Пат. 40190 А. Украша, МПК G01N19/02, F16B35/04. Пристрш для випрювання сил тертя спокою по дотичних поверхнях болтового зсувос-
тшкого з 'езнання з одшею площиною тертя / Рабер Л.М.; заявник iпатентовласник Нацюнальна металургшна акадспя Украши. - № 2000105588;
заявл. 02.10.2000; опубл. 16.07.2001, Бюл. № 6.
5.
Пат. 2148805 РФ, МПК7G01 L5/24. Способ определения коэффициента закручивания резьбового соединения / Рабер Л.М., Кондратов В.В.,
Хусид Р.Г., Миролюбов Ю.П.; заявитель и патентообладатель Рабер Л.М., Кондратов В.В., Хусид Р.Г., Миролюбов Ю.П. - № 97120444/28; заявл.
26.11.1997; опубл. 10.05.2000, Бюл. № 13.
Рабер Л. М. Использование метода предельных состояний для оценки затяжки высокопрочных болтов // Металлург, и горноруд. пром-сть. - 2006. -№ 5.
- С. 96-98
Библиографический список
i.
ii.
iii.
iv.
v.
vi.
vii.
viii.
Х. Ягофаров, В.Я. Котов, 1979. Описание изобретения к авторскому свидетельству 887748
Х. Ягофаров, А. Будаев Стык растянутых элементов на косых фланцах. Промышленное строительство и инженерные сооружения,
1986, №2
К. Кузнецова, М. Радунцев «Проектирование и изготовление стыков на косых фланцах» Методические указания для студентов
всех форм обучения специальности «Промышленное и гражданское строительство» и слушателей Института дополнительного
профессионального образования, УрГУПС, 2010
А.С. Марутян «Стыковые болтовые соединения стержневых элементов с косыми фланцами и их расчет» Пятигорский
государственный технологический университет, 2011
А.З. Клячин Металлические решетчатые пространственные конструкции регулярной структуры
Н.Г. Горелов Пространственные блоки покрытия со стержнями из тонкостенных гнутых стержней
. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата опубликования
20.01.2013
5. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 .
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий»
16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
Список перечень типовых альбомов серий переданных заказчиком для лабораторных испытаний методом оптимизации и
идентификации в механике деформируемых сред и конструкций физическим и математическим моделирование в ПК
SCAD,предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами из полиэтилена .djvu
ix.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные
железобетон
x.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные
железобетон
xi.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные
конструкций
xii.
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
xiii.
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением.
Книга 1 - 1996.djvu
xiv.
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
xv.
А.К Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
xvi.
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963.djvu
xvii.
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
xviii.
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961 .djvu
xix.
Одельский_ Гидравлический расчѐт трубопроводов_1967.djvu
xx.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxi.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxii.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxiii.
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
xxiv.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxv.
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu 3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр = PH.djvu 3.501.3183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 4.90310_л1_Тепловые сети. Детали трубопроводов.djvu
xxvi.
4.903-10_и4_Тепловые сети. Опоры трубопроводов неподвижные
xxvii.
4.903-10_м5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые).djvu 4.903-10_м6_Тепловые
сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu 4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов
сальниковые.djvu
xxviii.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 51
xxix.
xxx.
xxxi.
xxxii.
xxxiii.
xxxiv.
xxxv.
xxxvi.
xxxvii.
xxxviii.
xxxix.
xl.
xli.
xlii.
xliii.
xliv.
xlv.
xlvi.
xlvii.
xlviii.
xlix.
l.
li.
lii.
liii.
liv.
lv.
lvi.
lvii.
lviii.
lix.
lx.
lxi.
lxii.
lxiii.
lxiv.
lxv.
lxvi.
lxvii.
lxviii.
lxix.
lxx.
lxxi.
lxxii.
lxxiii.
lxxiv.
lxxv.
lxxvi.
lxxvii.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl5230.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4.
Компенсаторы сальниковые.djvl 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu 4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu Серия
3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и автомобильных.djvu 3.501.3-183.01 в.0
Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3-183.01 в.0 Трубы
водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01
в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 5.903-13
Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы
водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu Крепления трубопроводов к ЖБ
конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvl
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
Типовые альбомы чертежи серии разработанные в СССР
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные
конструкций vu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы в.0 Материалы для
проектирования^^
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные
железобето.djvu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные
железобето.djvu
А.К. Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963. djvu
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961.djvu Одельский_ Гидравлический расчѐт
трубопроводов_1967.djvu
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением.
Книга 1 - 1996.djvu
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . РЧ.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = РЧ.djvu
3.501.3-184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu
3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр = P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
4.903-10_v. 1_Тепловые сети. Детали трубопроводов^уи 4.903-10_у.4_Тепловые сети. Опоры трубопроводов неподвижные^уи
4.903-10_у.5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые)^уи
4.903-10_у.6_Тепловые сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu
4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl52 30.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Серия 3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и автомобильныхdjvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые^уи
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 52
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu
ПРИЛОЖЕНИЕ. Типовые альбомы котрые использовались в лаборатории СПб ГАСУ для
lxxviii.
lxxix.
lxxx.
lxxxi.
lxxxii.
lxxxiii.
lxxxiv.
магистральных трубопроводов которые использовались при лабораторных испытаниях в ПК
SCADОпора скользящая для кабеленесущей системы
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск 2
Плиты...._Документация .djvu
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск
1..._Документация^^и
3.407-107_3 = Униф. норм.и спец. ж.б. опоры ВЛ35кВ - На виброванных стойках #A.djvu
3.001-1 вып.1 = Виброизолирующие устройства фундаментов.djvu
5.904-59 Виброизолирующие основания для вентиляторов ВР-12-26. Выпуск 1.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 2 Плиты. Рабочие
чертежи_Документация.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 1 Рабочие
чертежи_Документация^и
3.904-17 = Виброизол.основания и гибкие вставки типа 2 для насосов ВК и ВКС.djvu
Заявка на изобретение (от20.11.2021, отправлена в ФИПС) "Фрикционно-демпфирующий компенсатор для трубопроводов" (F16L23)
РЕФЕРАТ
Фланцевое соединение растянутых элементов трубопровода с упругими демпферами сухого трения предназначена для сейсмозащиты , виброзащиты трубопроводов , оборудования, сооружений, объектов, зданий от сейсмических,
взрывных, вибрационных, неравномерных воздействий за счет использования спиралевидной сейсмоизолирующей
опоры с упругими демпферами сухого трения и упругой гофры, многослойной втулки (гильзы) из упругого троса в
полимерной из без полимерной оплетке и протяжных фланцевых фрикционно- податливых соединений отличающаяся тем,
что с целью повышения сеймоизолирующих свойств спиральной демпфирующей опоры или корпус опоры выполнен
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 53
сборным с трубчатым сечением в виде раздвижного демпфирующего «стакан» и состоит из нижней целевой части и сборной
верхней части подвижной в вертикальном направлении с демпфирующим эффектом, соединенные между собой с помощью
фрикционно-подвижных соединений и контактирующими поверхностями с контрольным натяжением фрикци-болтов с
упругой тросовой втулкой (гильзой) , расположенных в длинных овальных отверстиях, при этом пластины-лапы верхнего и
нижнего корпуса расположены на упругой перекрестной гофры (демпфирующих ножках) и крепятся фрикци-болтами с
многослойным из склеенных пружинистых медных пластин клином, расположенной в коротком овальном отверстии верха и
низа корпуса опоры. https://findpatent.ru/patent/241/2413820.html
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 54
Приложение № 1: Прилагается заявка на изобретение " Фрикционно - демпфирующий
компенсатор для трубопроводов" F16 L 23/00 организации "Сейсмофонд" при СПб
ГАСУ ОГРН : 102000000824 ИНН : 2014000780 № 2021134630 от 2511.2021 ,
входящий № 073171 ФИПС, отдел № 17 направленная в Федеральный институт
промышленной собственности (ФИПС) , автор Президент организации "Сейсмофон"
Мажиев Х Н. ( В Минск, направлено изобретение с названием "Сталинский
компенсатор" См ссылки: https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg https://pptonline.org/1026337
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 55
Предлагаемое изобретение c названием Сталинский компенсатор для трубопроводов
, а старое название Фрикционно- демпфирующий компенсатор для трубопроводов
аналог компенсатора Сальникова для системы противопожарной защиты или
техническое решение предназначено для защиты магистральных трубопроводов,
агрегатов, оборудования, зданий, мостов, сооружений, линий электропередач,
рекламных щитов от сейсмических воздействий за счет использования фланцевого
соединение растянутых элементов трубопровода, с упругими демпферами сухого
трения установленных на пружинистую гофру с ломающимися демпфирующими
ножками при многокаскадном демпфировании и динамических нагрузках на
протяжных фрикционное- податливых соединений проф. ПГУПС дтн Уздина А М
"Болтовое соединение" №№ 1143895 , 1168755 , 1174616 "Болтовое соединение
плоских деталей". Известны фрикционные соединения для защиты объектов от
динамических воздействий. Известно, например, болтовое соединение плоских
деталей встык, патент Фланцевое соединение растянутых элементов
замкнутого профиля № 2413820, «Стыковое соединение растянутых элементов» №
887748 и RU №1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D 66C 7/00 " Узел
упругого соединения трехглавного рельса с подкрановой балкой ", RU № 2148 805 G
01 L 5/24 "Способ определения коэффициента закручивания резьбового соединения
" направлено в г.Минск , Республика Беларусь" : https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg
https://ppt-online.org/1026337
Приложение № 1 Фигуры, чертежи: Фрикционно демпфирующий компенсатор для
трубопроводов
Фиг 1 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг2 Фрикционно демпфирующий компенсатор для трубопроводов
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 56
Фиг3 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг4 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг5 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг6 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг7Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 8 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг9 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг10 Фрикционно демпфирующий компенсатор для трубопроводов
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 57
Фиг11 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг12Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 13 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг14 Фрикционно демпфирующий компенсатор для трубопроводов
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 58
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 59
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 60
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 61
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 62
Ознакомиться с изобретениями и заявками на изобретения, которые использовались при лабораторных испытаниях узлов и
фрагментов сейсмоизоляции для опоры скользящей для Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80,
MEK70,MEK 110,CT,VM, предназначенные для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск, с
трубопроводами можно по ссылкам : «Сейсмостойкая фрикционно –демпфирющая опора» https://yadi.sk/i/JZ0YxoW0_V6FCQ
«Антисейсмическое фланцевое фрикционное соединение для трубопроводов» https://yadi.sk/i/pXaZGW6GNm4YrA «Опора
сейсмоизолирующая «гармошка» https://yadi.sk/i/JOuUB_oy2sPfog «Опора сейсмоизолирующая «маятниковая»
https://yadi.sk/i/Ba6U0Txx-flcsg Виброизолирующая опора https://yadi.sk/i/dZRdudxwOald2w
См. ссылки лабораторный испытаний фрагментов ФПС https://www.youtube.com/watch?v=b5ZvDAGQGe0
https://www.youtube.com/watch?v=LnSupGw01zQ https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=YlCu9fU6A3M
https://www.youtube.com/watch?v=IScpIl8iI1Yhttps://www.youtube.com/watch?v=ktET4MHW-a8&t=637s
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 63
ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015,
190005, СПб, 2-я Красноармейская ул. д 4, «Сейсмофонд»
ОГРН: 1022000000824, т/ф: (812) 694-78-10 , (996) 798-26-54, (911) 175-84-65 , produktsiisertifikatsiya@yahoo.com
Эксперты, СПб ГАСУ, аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от
27.03.2012 http://www.npnardo.ru/news_36.htm и СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12, выдано 28.04.2010
г. t89219626778@yandex.ru эксперт, к.т.н. СПб ГАСУ аттестат аккредитации СРО «НИПИseismofond@list.ruтел (921)
962-67-78 ктн Аубакирова И У, проф дтн Ю.М.Тихонов
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012 http://www.npnardo.ru/news_36.htm и СРО
«ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12, выдано 28.04.2010 г. http://nasgage.ru/produktsiisertifikatsiya@yandex.ru
проф. д.т.н. СПб ГАСУ(996) 798-26-54, (999) 535-47-29 Тихонов Ю.М.
Научные консультанты :
ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015,
190005, СПб, 2-я Красноармейская ул. д 4, «Сейсмофонд»
ОГРН: 1022000000824, т/ф: (812) 694-78-10 , (921) 962-67-78 t9111758465@uotlook.com Копия аттестата
испытательной лаборатории ПГУПС № SP01.01.406.045 от 27.05.2014, действ 27.05.2019
прилагается к
протоколу испытаний организацией СПб ГАСУ и организацией "Сейсмофонд" ИНН 2014000780
Научный консультант д.т.н. проф ПГУПС produktsiisertifikatsiya@yahoo.com
Уздин А.М.
Научный консультант д.т.н. проф.ПГУПС9967982654@mail.ru (996) 798-26-54, (921) 962-677-78 Темнов В.Г.
Президент органа по сертификации продукции Испытательного Центра организации «СейсмоФОНД» при
СПб ГАСУ ОГРН 1022000000824 Хасан Нажоевич Мажиев mo9995354729@yandex.ru
Почтовый адрес испытательной лаборатории организации «Сейсмофнд» при СПб ГАСУ: 190005, СПб, 2-я
Красноармейская ул. д 4 krestianinformburo8.narod.ru t9111758465@yandex.ru
Подтверждение компетентности СПб ГАСУ Номер решения о прохождении процедуры
подтверждения компетентности8590-гу (А-5824) т/ф (812) 694-78-10 (999) 535-47-29
Подтверждение компетентности организации https://pub.fsa.gov.ru/ral/view/13060/applicant
https://disk.yandex.ru/d/YP4toCOL97NPJg
https://ppt-online.org/1002236
https://ppt-online.org/1001983
https://disk.yandex.ru/d/fwW1DQSXVrtXuA
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 64
seismofond@list.ru produktsiisertifikatsiya@yahoo.com produktsiisertifikatsiya@yandex.ru
gazetazemlya1@gmail.comтел (921) 962- 67-78, ( 996) 798 -26-54, (911) 175 -84-65,
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 65
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 66
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 67
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 68
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 69
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 70
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 71
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 72
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 73
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 74
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 75
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 76
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 77
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 78
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 79
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 80
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 81
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 82
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 83
https://disk.yandex.ru/d/jsuUAp-0Un_GkA https://ppt-online.org/941232
https://ru.scribd.com/document/515600203/Ispolzovaniy-Gasiteley-Dinamicheskix-Kolebaniy-Obrusheniem-Pyatogo-EtajaObespecheniya-Seismostoykosti-351-Str
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 84
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 85
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 86
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 87
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 88
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 89
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 90
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 91
Более подробно об использовании ЛСК и фрикционно -подвижных
болтовых соединений для обрушение верхнего пятого этажа для
обеспечения сейсмостойкости оставшихся четырех этажей, на
фрикционно-подвижных соединениях сери ФПС-2015- Сейсмофонд, с
использованием изобретения Андреева Борис Александровича № 165076
«Опора сейсмостойкая» и патента № 2010136746 «Способ защиты зданий
и сооружений с использованием сдвигоустойчивых и легко сбрасываемых
соединений, использующие систему демпфирования фрикционности и
сейсмоизоляцию для поглощения сейсмической энергии» и патент №
154506 «Панель противовзрывная» для г Грозный оставшихся двух
пятиэтажек у памятника Ленина
Более подробно о ФФПС и ЛСК смотрите внедренные изобртения
организации "Сейсмофонд" при СПб ГАСУ Японо-Американской
фирмой RUBBER BEARING FRICTION DAMPER (RBFD)
HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
https://www.damptech.com/for-buildings-cover https://www.youtube.com/watch?v=r7q5D6516qg
https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и запроектирован
амортизирующий демпфер, который совмещает преимущества вращательного трения амортизируя
с вертикальной поддержкой эластомерного подшипника в виде вставной резины, которая не
долговечно и теряет свои свойства при контрастной температуре , а сам резина крошится.
Амортизирующий демпфер испытан фирмы RBFD Damptech , где резиновый сердечник, является
пластическим шарниром, трубчатого в вида
Seismic resistance GD Damper
https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s
https://www.youtube.com/watch?v=CIZCbPInf5k
https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s
https://www.youtube.com/watch?v=bFjGdgQz1iA
Seismic Friction Damper - Small Model
QuakeTek
https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s
https://www.youtube.com/watch?v=oT4Ybharsxo
Earthquake Protection
Damper
https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s
Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek
QuakeTek
https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ
https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 92
Friction damper for impact absorption
DamptechDK
https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s
https://www.youtube.com/watch?v=EFdjTDlStGQ
https://www.youtube.com/watch?v=NRmHBla1m8A
ВСН 144-76
-----------------------------Минтрансстрой, МПС
ВЕДОМСТВЕННЫЕ СТРОИТЕЛЬНЫЕ НОРМЫ
ИНСТРУКЦИЯ
ПО ПРОЕКТИРОВАНИЮ СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ
БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ
Дата введения 1977-01-01
РАЗРАБОТАНА Всесоюзным научно-исследовательским институтом транспортного строительства (ЦНИИС) - авторы
К.П.Большаков, В.А.Зубков - и Научно-исследовательским институтом мостов Ленинградского института инженеров
железнодорожного транспорта (НИИмостов ЛИИЖТ) - авторы В.Н.Савельев, Р.Г.Хусид - взамен действовавших ранее "Указаний по
применению высокопрочных болтов в стальных конструкциях мостов" (ВСН 144-68) в отношении норм проектирования (в отношении
норм и правил выполнения соединений на высокопрочных болтах ВСН 144-68 были ранее заменены ВСН 163-69 - ”Инструкцией по
технологии устройства соединений на высокопрочных болтах в стальных конструкциях мостов”) и п.7.24. ”Указаний по
проектированию вспомогательных сооружений и устройств для строительства мостов” (ВСН 136-67).
При разработке ВСН 144-76 был учтен отечественный и зарубежный опыт в области исследования, проектирования, строительства
и эксплуатации пролетных строений с соединениями на высокопрочных болтах и использованы результаты последних научноисследовательских работ ЦНИИС и НИИмостов ЛИИЖТ по нормам вероятностного расчета фрикционных соединений (авторысоставители настоящей Инструкции), по клеефрикционным (М.Л.Лобков), фланцевым (В.Н.Савельев, А.А.Ровный) соединениям и
фрикционным соединениям с консервацией контактных поверхностей специальным грунтом (Б.П.Кругман, А.Н.Потапов) и др.
Инструкция разработана в развитие действующих нормативных документов по проектированию мостов. В Инструкции учтены
требования действующих государственных и отраслевых стандартов.
ВНЕСЕНА ЦНИИС Минтрансстроя и НИИмостов ЛИИЖТ МПС
УТВЕРЖДЕНА распоряжением Минтрансстроя и МПС от 8 октября 1976 года N А-1470/П-30621
ВЗАМЕН ВСН 144-68 и п.7.24 ВСН 136-67
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 93
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 94
МИНИСТЕРСТВО РЕГИОНАЛЬНОГО РАЗВИТИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ
СВОД ПР АВИЛ
СП 16.13330.2011
СТАЛЬНЫЕ КОНСТРУКЦИИ
Актуализированная редакция
СНиП II-23-81* Москва 2011
СП 16.13330.2011
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 95
14.3 Фрикционные соединения (на болтах с
контролируемым натяжением) СП 16.13330.2011
14.3.1 Фрикционные соединения, в которых усилия передаются через трение,
возникающее по соприкасающимся поверхностям соединяемых элементов вследствие
натяжения высокопрочных болтов, следует применять:
в конструкциях из стали с пределом текучести свыше 375 Н/мм2 и
непосредственно воспринимающих подвижные, вибрационные и другие
динамические
нагрузки;
в многоболтовых соединениях, к которым предъявляются повышенные
требования в отношении ограничения деформативности.
14.3.2 Во фрикционных соединениях следует применять болты, гайки и шайбы
согласно требованиям.
Болты следует размещать согласно требованиям таблицы 40.
14.3.3 Расчетное усилие, которое может быть воспринято каждой плоскостью
трения элементов, стянутых одним высокопрочным болтом, следует определять по
формуле
Qbh 
Rbh Abn 
h
(1)
,
где Rbh
– расчетное сопротивление растяжению высокопрочного болта,
определяемое
согласно требованиям;
Аbп – площадь сечения болта по резьбе, принимаемая согласно таблице Г.9
приложения Г;
μ – коэффициент трения, принимаемый по таблице 42;
γh – коэффициент, принимаемый по таблице 42.
14.3.4 При действии на фрикционное соединение силы N, вызывающей сдвиг
соединяемых элементов и проходящей через центр тяжести соединения,
распределение
этой силы между болтами следует принимать равномерным. В этом случае
количество
болтов в соединении следует определять по формуле
n
N
Qbh k  b  c
где Qbh
,
(2)
– расчетное усилие, определяемое по формуле Ошибка! Источник ссылки не
найден.;
k
– количество плоскостей трения соединяемых элементов;
γс
– коэффициент условий работы, принимаемый по таблице 1;
γb
– коэффициент условий работы фрикционного соединения,
зависящий от
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 96
количества п болтов, необходимых для восприятия расчетного усилия,
и принимаемый равным:
0,8 при п < 5;
0,9 при 5 ≤ п < 10;
1,0 при п ≥ 10.
14.3.5 При действии на фрикционное соединение момента или силы и момента,
вызывающих сдвиг соединяемых элементов, распределение усилий между болтами
следует принимать согласно указаниям СП 16.13330.2011
Т а б л и ц а 42
Коэффициент γh при контроле натяжения
болтов по моменту закручивания при разности
номинальных
Способ обработки
Коэффици
диаметров отверстий и болтов
(очистки)
ент
δ, мм, при нагрузке
соединяемых
трения μ
поверхностей
динамической δ = 3 –
динамической δ = 1;
6;
статической δ = 1 – 4
статической δ = 5 – 6
1 Дробемѐтный
0,58
1,35
1,12
или
дробеструйный
двух
поверхностей без
консервации
2 Газопламенный 0,42
1,35
1,12
двух
3 поверхностей
Стальными без 0,35
1,35
1,17
консервации
щетками
4 двух
Без обработки
0,25
1,70
1,30
поверхностей
без
Примечани
е – При контроле натяжения болтов по углу поворота гайки
консервации
значения γh
следует умножать на 0,9.
2) Несущую способность по местной устойчивости сжатых пластин на участках
между крепежными деталями следует определять в соответствии с ТКП EN 1993-1-1,
принимая расчетную длину равной 0,6р-|. Расчет на местную устойчивость не
требуется, если отношение p-i/f меньше 9в. Расстояние до края элемента поперек
усилия не должно превышать значений для свободных свесов сжатых элементов
согласно ТКП EN 1993-1-1. Эти требования не распространяются на расстояния до
края элемента вдоль усилия.
Крепежные изделия фрикционно-подвижных соединений и демпфирующих узлов
крепления в виде болтовых соединений с изолирующими трубами и
амортизирующими элементами широк используются в США , Канаде на Алскинском
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 97
нефтепроводе ( см Канадские изобретения ) для работы в сейсмоопасных
районах с сейсмичностью до 9 баллов по шкале MSK-64), серийный выпуск,
закрепленных на основании фундамента с помощью фрикционно-подвижных
соединений (ФПС) и демпфирующих узлов крепления (ДУК), выполненных
согласно ТКП 45-5.04-274-2012 (02250), п.10.3.2 и изобретениям №№
1143895,1174616, 1168755 SU, 4094111US, TW201400676
Наименование
Нормативная
Применение
изделия
документация
Шпилька
ГОСТ 9066-75
Фланцевое соединение по ГОСТ
12815-80
Шпилька
DIN 976-1
Для крепления транспортировочных
полнорезьбовая
брусков
Гайка
ГОСТ 9064-75
Фланцевое соединение по ГОСТ
12815-80
Шайба
ГОСТ 9065-75
Фланцевое соединение по ГОСТ
12815-80
Шайба
ГОСТ 6402-70
Фланцевое соединение по ГОСТ
12815-80
Болт
ГОСТ 7798-70
Фланцевое соединение по ГОСТ
12815-80
Заклѐпка
Установка доборного элемента
вытяжная
Саморезы
Закрепления
металоосайдинга/сэндвича и
дополнительного оборудования к
блок – боксу
Хомут
АТК-25.000.000
Фиксация трубопровода
БОЛТЫ
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 98
ПРИЛОЖЕНИЕ 1. Выдержки из методики расчета фрикционноподвижных соединений контролируемых натяжением и
растяжные соединения описаны в СП 16. 13330.2011 . Стальные
конструкции (СНиП II-23-81*) п.14.3 Фрикционные соединения (на
болтах с контролируемым натяжением) и ТКП 45-05. 04-274-2012
(02250). Стальные конструкции (правила расчета). Минск. 2013
г.,п.10.3.2. Соединения, работающие на соединения.
СП 16.13330.2011
14.3 Фрикционные соединения (на болтах
с контролируемым натяжением)
14.3.1 Фрикционные соединения, в которых усилия
передаются через трение,
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 99
возникающее по соприкасающимся поверхностям
соединяемых элементов вследствие
натяжения высокопрочных болтов, следует применять:
в конструкциях из стали с пределом текучести свыше 375
Н/мм2 и
непосредственно воспринимающих подвижные,
вибрационные и другие динамические
нагрузки;
в многоболтовых соединениях, к которым предъявляются
повышенные
требования в отношении ограничения деформативности.
14.3.2 Во фрикционных соединениях следует применять
болты, гайки и шайбы
согласно требованиям 5.6.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 100
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 101
Расчетную несущую способность фланцевого фрикционно -подвижного
соединения (ФФПС) или фланцевого демпфирующего узла крепления
(ФДУК) двух или четырех бандажных стальных колец на сдвиг
поверхностей трения, стянутых одним болтом с предварительным
натяжением классов прочности 8.8 и 10.9, следует определять по формуле
, (3.6)
где ks — принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний
поверхностей, приведенных в ссылочных стандартах группы 7 (см. 1.2.7),
или в таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным
стандартам группы 4 (см. 1.2.4) с контролируемым натяжением, в
соответствии со ссылочными стандартами группы 7
(см. 1.2.7), усилие предварительного натяжения Fp,C в формуле (3.6) следует
принимать равным
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 102
(3.7)
Таблица 3.6 — Значения ks
Описание
Болты, установленные в нормальные отверстия
Болты, установленные в отверстия с большим зазором или в короткие
овальные отверстия при передаче усилия перпендикулярно
продольной оси отверстия
Болты, установленные в длинные овальные отверстия при передаче
нагрузки перпендикулярно продольной оси отверстия
Болты, установленные в короткие овальные отверстия при передаче
нагрузки параллельно продольной оси отверстия
Болты, установленные в длинные овальных отверстиях при передаче
нагрузки параллельно продольной оси отверстия
ks
1,0
0,85
0,7
0,76
0,63
Таблица 3.7 — Значения коэффициента трения m для болтов с
предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты
группы 7 (см. 1.2.7))
A
B
C
D
Примечание 1 — Требования к испытаниям и контролю
приведены в ссылочных стандартах группы 7 (см. 1.2.7).
Примечание 2 — Классификация поверхностей трения при
любом другом способе обработки должна быть основана на
результатах испытаний образцов поверхностей по
процедуре, изложенной в ссылочных стандартах группы 7
(см. 1.2.7). Примечание 3 — Определения классов
поверхностей трения приведены в ссылочных стандартах
группы 7 (см. 1.2.7). Примечание 4 — При наличии
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Коэффициент
трения m
0,5
0,4
0,3
0,2
Всего листов 65
Лист 103
окрашенной поверхности с течением времени может
произойти потеря предварительного натяжения.
Вместо упруго пластичного материала для внутренней трубы
виброизолирующих материал гофрированные бы или Виброфлекс а болт
обматываетсмя медной мягкой лентой
См изобретение 2357146 F16L 25/02 Электроизолирующее фланцевое
соединение Епишев А П , Клепцов И.П
Можно использовать в демпфирующем болтовом соединении
используется с бронзовой гильзой (
втулкой ) или с демпфирующей обмоткой из бронзовой и свинцовой
проволоки
В заключение необходимо сказать о соединении работающим на
растяжение при контролируемом натяжении может обеспечить не
разрушаемость сухого или сварного стыка при импульсных
растягивающих нагрузках и многокаскадном демпфировании
магистрального трубопровода
На практике советские и отечественные изобретения утекают за границу
за бесценок , внедряются за рубежом на аляскинском нефтепроводе в
США, патентуются в Канаде, США
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 104
Узлы фрикционно -подвижных соединений работающих на растяжение по изобретению проф А.М.Уздина 1168755, 1174616, 1143895
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 105
При компьютерном моделировании в ПК SCAD использовалось изобретение СПОСОБ ЗАЩИТЫ
ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ , патент № 2010 136 746
(19)
RU
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(11)
2010 136 746
(13)
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 106
A
(51) МПК 2010 136 746
 E04C 2/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теплант"
Приоритет(ы):
(RU)
(22) Дата подачи заявки: 01.09.2010
(72) Автор(ы):
Подгорный Олег Александрович (RU),
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2 Акифьев Александр Анатольевич (RU),
Тихонов Вячеслав Юрьевич (RU),
Адрес для переписки:
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
443004, г.Самара, ул.Заводская, 5, ОАО
Коваленко Александр Иванович (RU)
"Теплант"
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения № 2010 136 746
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение
проема/проемов рассчитанной площади для снижения до допустимой величины взрывного давления,
возникающего во взрывоопасных помещениях при аварийных внутренних взрывах, отличающийся
тем, что в объеме каждого проема организуют зону, представленную в виде одной или нескольких
полостей, ограниченных эластичным огнестойким материалом и установленных на
легкосбрасываемых фрикционных соединениях при избыточном давлении воздухом и
землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем объеме проема, а
в момент взрыва и землетрясения под действием взрывного давления обеспечивают изгибающий
момент полости/полостей и осуществляют их выброс из проема и соскальзывают с болтового
соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на
высокоподатливых с высокой степенью подвижности фрикционных, скользящих соединениях с
сухим трением с включением в работу фрикционных гибких стальных затяжек диафрагм жесткости,
состоящих из стальных регулируемых натяжений затяжек сухим трением и повышенной
подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в горизонтали в
районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от вертикали 65 мм, т.е. до
7 см (подъем пятки на уровне фундамента), не подвергая разрушению и обрушению конструкции
при аварийных взрывах и сильных землетрясениях.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 107
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых
соединениях со свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое
напряжение на все четыре-восемь гаек и способствует одновременному поглощению сейсмической и
взрывной энергии, не позволяя разрушиться основным несущим конструкциям здания, уменьшая вес
здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого
соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут монтироваться как
самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения
сейсмической энергии может определить величину горизонтального и вертикального перемещения
«сэндвич»-панели и определить ее несущую способность при землетрясении или взрыве прямо на
строительной площадке, пригрузив «сэндвич»-панель и создавая расчетное перемещение по
вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и аварийного взрыва
прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются,
проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9,
MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL 3d,
SivilFem 10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне прямо на
строительной площадке испытываются фрагменты и узлы, и проверяются экспериментальным путем
допустимые расчетные перемещения строительных конструкций (стеновых «сэндвич»-панелей,
щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные при аварийном
взрыве и при землетрясении более 9 баллов перемещение по методике разработанной
испытательным центром ОО «Сейсмофонд» - «Защита и безопасность городов».
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
 G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
(71) Заявитель(и):
Рабер Лев Матвеевич
(UA),
Кондратов Валерий
Владимирович (RU),
Всего листов 65
Лист 108
(45) Опубликовано: 10.05.2000 Бюл. № 13
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(56) Список документов, цитированных в отчете о поиске: Чесноков
А.С., Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A,
(72) Автор(ы):
15.09.80. SU 993062 A, 30.01.83. EP 0170068 A'', 05.02.86.
Рабер Лев Матвеевич
Адрес для переписки:
(UA),
Кондратов В.В.(RU),
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Хусид Р.Г.(RU),
Миролюбов Ю.П.(RU)
(73) Патентообладатель(и):
Рабер Лев Матвеевич
(UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО
СОЕДИНЕНИЯ
(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации
металлоконструкций для определения параметров затяжки болтов. В эксплуатируемом соединении
производят затягивание гайки на заданную величину угла ее поворота от исходного положения.
Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента
закручивания гайки в области упругих деформаций. Определяют приращение момента закручивания.
Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент
закручивания резьбового соединения определяют как отношение приращения момента закручивания
гайки к произведению приращения усилия натяжения болта на его диаметр. Технический результат
заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений
для повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения,
преимущественно высокопрочных болтов, и может быть использовано в мостостроении и других
отраслях строительства и эксплуатации металлоконструкций для определения параметров затяжки
болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии
приемки выполненных работ (Инструкция по технологии устройства соединений на высокопрочных
болтах в стальных конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР,
Минтрансстрой СССР), так и в период обследования конструкций (строительные нормы и правила
СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М., Стройиздат, 1987, с. 25-
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 109
27), используют динамометрические ключи. Этими ключами измеряют момент закручивания Mз,
которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные
болты в конструкциях мостов. М.,Транспорт, 1971, с. 60-64):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при
известном коэффициенте закручивания усилие натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит
от того, в какой мере действительные коэффициенты закручивания k соответствуют расчетным
величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило,
лишь на стадии приемки выполненных работ, поскольку предусматриваемая технологией
постановки болтов стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких
пределах, что вносит существенную неточность в результаты измерений. По данным Чеснокова А.С.
и Княжева А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974,
табл. 17, с. 73) коэффициент закручивания зависит от качества смазки резьбы и может изменяться в
пределах 0,12-0,264. Таким образом измеренные усилия в болтах с помощью динамометрических
ключей могут отличаться от фактических значений более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина
коэффициента k не оказывает влияния на результаты измерений. Способ реализован с помощью
устройства (А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых
соединений (Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879),
опыт применения которого выявил его надежную работу в случае сравнительно непродолжительного
(до пяти лет) срока эксплуатации конструкций. При более длительном сроке эксплуатации
срабатывание предусмотренных конструкцией устройства пружин происходит недостаточно четко,
поскольку с течением времени неподвижный контакт резьбовой пары приводит к увеличению
коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина
момента сил трения в резьбе превосходит величину крутящего момента, создаваемого
преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над
гайкой резьбы болта не менее, чем на 20 мм. Наличие таких болтов в узлах и прикреплениях должно
специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их
натяжения необходимо назначить величину момента закручивания для подтяжки болтов. Для
назначения этого момента необходимы знания фактического значения коэффициента закручивания
k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ
измерения коэффициента закручивания болтов с учетом влияния времени, аналогичному влиянию
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 110
качества изготовления болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении
коэффициента ki в лабораторных условиях (см. тот же источник, с. 74-77) путем одновременного
обеспечения и контроля заданного усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для
статистической оценки необходимо произвести испытания нескольких десятков или даже сотен
болтов. Кроме того, при извлечении болта из конструкции резьбу гайки прогоняют по окрашенной
или загрязненной резьбе болта, а испытания в лабораторных условиях производят, как правило, не на
том участке резьбы, на котором болт быть сопряжен с гайкой в пакете. Все это ставит под сомнение
достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят
затягивание гайки на заданную величину угла ее поворота от исходного положения, произведя
предварительно для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла
ее поворота в области упругих деформаций производят с замером значения момента закручивания
гайки и определяют приращение момента закручивания. При этом приращение усилия натяжения
болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
i
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента
закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом
соединении и повысить точность определения величины коэффициента закручивания за счет
исключения необходимости прогона резьбы гайки по окрашенной или загрязненной резьбе болта.
Кроме того, в отличие от прототипа испытания проводят на том же участке резьбы, на котором болт
сопряжен с гайкой постоянно. Способ осуществляется следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и
измеряют фактическую величину этого момента (исходное положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между
метками соответствует заданному углу поворота гайки; как правило, этот угол составляет 60o.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 111
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по
достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN
по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных
экспериментов, состоящих в исследовании влияния толщины пакета и уточнении влияния толщины
и количества деталей, составляющих пакет эксплуатируемого соединения, на стабильность
приращения усилия натяжения болтов при повороте гайки на угол 60o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М.
Высокопрочные болты в конструкциях мостов - М., Транспорт, 1974, с. 65-68). В пределах этой
области, равному приращению угла поворота гайки, соответствует равное приращение усилий
натяжения болта. Величина этого приращения в плотно стянутом болтами пакете, при постоянном
диаметре болта зависит от толщины этого пакета. Следовательно, поворот гайки на определенный
угол в области упругих деформаций идентичен созданию в болте заданного натяжения. Этот эффект
явился основой предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на
одну грань. Погрешность системы определения коэффициента закручивания, характеризуемая как
погрешностью выполнения отдельных операций, так и погрешностью регистрации требуемых
параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых
соединений дает возможность проводить испытания в конкретных условиях эксплуатации
соединений, что повышает точность полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть
использованы как при определении усилий натяжения болтов в период обследования конструкций,
так при назначении величины момента для подтяжки болтов, в которых по результатам обследования
выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в
измерении параметров затяжки соединения, по которым вычисляют коэффициент закручивания,
отличающийся тем, что в эксплуатируемом соединении производят затягивание гайки на заданную
величину угла ее поворота от исходного положения, произведя предварительно для этого ослабление
ее затягивания, с замером значения момента закручивания гайки в области упругих деформаций и
определяют приращение момента закручивания, при этом приращение усилия натяжения болта
определяют по формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 112
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения
момента закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
 F16B 31/02 (2006.01)
 G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.08.2017)
Пошлина:
учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ
(56) Список документов, цитированных в отчете ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ
о поиске: SU 1753341 A1, 07.08.1992. SU
ФИРМА "ПАРТНЁР" (RU)
1735631 A1, 23.05.1992. JP 2008151330 A,
03.07.2008. WO 2006028177 A1, 16.03.2006.
(45) Опубликовано: 27.02.2011 Бюл. № 6
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5,
корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ
МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 113
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами. Способ обеспечения несущей способности фрикционного соединения
металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля,
содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности
которых, предварительно обработанные по проектной технологии, соединяют высокопрочным
болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку
на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной
величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение
усилия натяжения высокопрочного болта. Определение усилия сдвига на образце-свидетеле
осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел
сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с
неподвижной частью устройства, и имеющего отверстие под нагрузочный болт, а между выступом
рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из
закаленного материала. В результате повышается надежность соединения. 1 з.п. ф-лы, 1
ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами, но может быть использовано для определения фактического напряженнодеформированного состояния болтовых соединений в различных конструкциях, в частности
стальных мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных
узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с
помощью болтовых фрикционных соединений, в которых передача усилия обжатия соединяемых
элементов высокопрочными метизами осуществляется только силами трения по контактным
плоскостям усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего
сдвига по среднему ряду болтов. Сдвигающее усилие, отнесенное к одному высокопрочному болту и
одной плоскости трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также
коэффициент работы мостов m1=0,9; m2 - коэффициент условий работы соединения; Рн нормативное усилие натяжения болта; fн - нормативный коэффициент трения.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 114
В настоящее время основным нормативными показателями несущей способности фрикционных
соединений с высокопрочными болтами, которые отражаются в проектной документации, являются
усилие натяжения болта и нормативный коэффициент трения, с учетом условий работы
фрикционного соединения. Нормативное усилие натяжения болтов назначается с учетом
механических характеристик материала и его определяют по формуле:
, где Р усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на
заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть
в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее
выполненных соединений важными являются вопросы оценки коэффициентов трения по
соприкасающимся поверхностям соединяемых элементов. Этот вопрос приобретает особую
актуальность в случае сочетания металлических поверхностей, находящихся в эксплуатации с
новыми элементами, а также для оценки возможности повторного использования высокопрочных
болтов. В качестве нормативного коэффициента трения принимается среднестатистическое значение,
определенное по возможно большему объему экспериментального материала раздельно для
различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно
сдвигоустойчивость контактных соединений выполняется при коэффициенте трения поверхностей
f≥0,55. Это значение можно принять в качестве основного критерия сдвигоустойчивости, и оно
соответствует исходному значению Ктр. для монтируемых стальных контактных поверхностей,
обработанных непосредственно перед сборкой абразивно-струйным методом с чистотой очистки до
степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по
показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения болтов.
Отклонение усилия натяжения и возможные их изменения при эксплуатации могут приводить к тем
или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и
обеспечения требуемой величины f≥0,55 решена применением разработанного НПЦ Мостов
съемного покрытия «Контакт» (патент РФ №2344149 на изобретение «Антикоррозионное покрытие
и способ его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в
условиях завода колотой стальной дробью контактных поверхностей мостовых пролетных
конструкций на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных
работ на строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается
ножом и ручным способом легко снимается «чулком» с контактных поверхностей, после чего сборка
конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с
пролетными строениями осуществляется с помощью захватов, фиксируемых в отверстиях
контактных поверхностей, временное защитное покрытие «Контакт» в районе установки захватов
повреждается. На строительном объекте приходится производить повторную абразивно-струйную
обработку присоединительных поверхностей, т.к. они после длительной эксплуатации на открытом
воздухе обильно покрыты продуктами ржавления. Выполнение дополнительной очистки
значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях открытой
атмосферы и удаленности строительных площадок мостов от промышленных центров требуемые
показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение
фрикционных показателей, соответственно снижение усилий обжатия высокопрочных метизов, а
следовательно, приводят к снижению качества монтажных работ.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 115
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает
постоянное воздействие на контактные соединения климатических факторов, соответствующих в
пределах Российской Федерации умеренно-холодному климату (У1), а также циклических сдвиговых
нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов
металлоконструкции. Более того, в настоящее время обработка металлических поверхностей
металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения
об условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной
период, поэтому возникает необходимость проверки фактической надежности работы фрикционного
соединения с высокопрочными болтами перед монтажом, для обеспечения надежности при их
эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством
приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о
необходимости совершенствования диагностической и инструментальной базы, способствующей
повышению эффективности реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется
отсутствием сдвигов соединяемых элементов при восприятии внешней нагрузки как на срез, так и
растяжение. Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий
работы соединения, зависящий от количества (n) болтов, необходимых для восприятия расчетного
усилия; Abn - площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся
поверхностям соединенных элементов; Yh - коэффициент надежности, зависящий от способа
натяжения болтов, коэффициента трения f, разницы между диаметрами отверстий и болтов,
характера действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах,
Днепропетровск: Системные технологии, 2008 г., с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ
№2148805, G01L 5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого момента
закручивания гайки к произведению определяемого усилия натяжения болта на его диаметр.
Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на
контролируемую величину угла ее поворота от исходного положения с замером значения момента
закручивания в области упругих деформаций и определения приращения момента затяжки.
Приращение усилия натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта
диаметром 22 мм2; αi - угол поворота гайки от исходного положения; σ - толщина пакета деталей,
соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с
неизвестными коэффициентами трения контактных поверхностей и коэффициентом закручивания,
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 116
т.к. затягивание гайки на заданную величину поворота (α=60°) от исходного положения производят
после предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного),
что не позволяет определить фактические значения усилий в болтах как при затяжке, так и при
эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости
выбора болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига
(силы трения покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в момент
сдвига фиксируется с помощью электрического сигнала или заранее оттарированной шкалы
динамометрического ключа, но точность измерения и область возможного применения их
ограничена, т.к. не позволяет реализовать как при сборочном монтаже металлоконструкций, так и в
процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что
две пластины 1 и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3 болтами 4
и 5, расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и
определяют величину смещения между ними. О деформации судят по отношению между величиной
смещения между пластинами 1 и 2 и приращением усилия нагружения, при этом величину смещения
определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент
№1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например,
расположены несимметрично по отношению к направлению действия продольной силы N, в силу
чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может
произойти раньше, чем в менее напряженных. В итоге, это может привести к более раннему
разрушению всего соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения
несущей способности фрикционного соединения с высокопрочными болтами (Рабер Л.М.
Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36).
Сущность способа заключается в определении усилия сдвига посредством образцов-свидетелей,
который заключается в том, что образцы изготавливают из стали, применяемых и собираемых
конструкциях. Контактные поверхности обрабатывают по технологии, принятой в проекте
конструкций. Образец состоит из основного элемента и двух накладок, скрепленных высокопрочным
болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия испытательной машины
определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с
нормативным значением и в зависимости от величины отклонения осуществляют меры по
повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента
трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в
процессе нагружения образцов могут приводить к тем или иным неточностям в определении
коэффициента трения, т.к. коэффициент трения может меняться и по другим причинам как
климатического, так и эксплуатационного характера. Кроме того, неизвестно при каком
коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому фактическое усилие
сдвига нельзя с достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в
качестве сдвигающего устройства применяются специальные средства (пресса, испытательные
машины), которых на объекте монтажа или сборки металлоконструкции может не быть, поэтому
желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения
несущей способности фрикционного соединения с высокопрочными болтами, устраняющего
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 117
недостатки, присущие прототипу и позволяющие повысить надежность монтажа и эксплуатации
металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей
способности фрикционного соединения с высокопрочными болтами, включающий приготовление
образца-свидетеля, содержащего основной элемент металлоконструкции и накладку,
контактирующие поверхности которых предварительно обработаны по проектной технологии,
соединяют их высокопрочным болтом и гайкой при проектном значении усилия натяжения болта,
устанавливают устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной
величиной показателя сравнения, в зависимости от величины отклонения осуществляют
необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта,
полученное при заданном (проектном) значении величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство,
защищенное патентом РФ №88082 на полезную модель, обладающее рядом преимуществ и
обеспечивающее достоверность и точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения
высокопрочного болта от оптимального значения, для обеспечения надежности работы
фрикционного соединения металлоконструкции при монтаже ее изменяют натяжение болта и/или
проводят дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных
исследований установлено, что оптимальным отношением усилия сдвига к усилию натяжения болта
равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания
высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление сдвигу, если
отношение усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,500,54. Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного
болта необходимо проведение дополнительной обработки контактирующих поверхностей, т.к. при
значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают
коэффициент трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60,
это означает, что усилие натяжения превышает нормативную величину, и для надежности
металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно
является переносным и обладает рядом преимуществ перед известными устройствами. Оно содержит
неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага,
имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем
неподвижная деталь выполнена из двух стоек, торцевые поверхности которых скреплены фигурной
планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к
металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью
соединения его с фигурной планкой, а между выступом рычага и сдвигаемой деталью
металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного
материала. В качестве силоизмерительного устройства используется динамометрический ключ с
предварительно оттарированной шкалой для фиксации момента затяжки.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 118
Ниже приводится реализация предлагаемого способа обеспечения несущей способности
металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4,
снабженного шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и гайки 8,
плавающий сухарик 9, выполненный из закаленной стали, образец-свидетель состоит из
металлической накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между
собой высокопрочным болтовым соединением 12, а также болтовое соединение 13, предназначенное
для крепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем
соединения тестовой накладки 10 с пластиной металлоконструкции 11, если производится ремонт на
обследуемом объекте, причем контактирующая поверхность пластины обрабатывается
дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или,
если же осуществляется заводская поставка перед монтажом, то берут две тестовых накладки,
контактирующие поверхности которых уже обработаны в заводских условиях. Соединение пластин
10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения
высокопрочного болта должна соответствовать проектной величине. Расчетный момент
закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают
устройство для определения усилия сдвига путем закрепления корпуса 1, болтовым соединением 12
(болт, гайка, шайбы) таким образом, чтобы сухарик 9 соприкасался с накладкой 10 и рычагом 2,
размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5,
посредством сменной головки 6 надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта
через рычаг 5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10 (тестовая
пластина). Момент закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В
момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига
(силой трения покоя). Сравнивают полученную величину момента сдвига (Мсд) с расчетной
величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят
действия по обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению,
корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие
натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных
болтов при монтаже металлоконструкции дополнительно обработать контактирующие поверхности
поставленных заводом деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно
преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной
металлоконструкции.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 119
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций
заключается в его универсальности, т.к. его можно использовать для любых болтовых соединений на
высокопрочных болтах независимо от сложности конструкции, диаметров крепежных болтов и
методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на
обследуемой конструкции и образце производятся устройством при сопоставимых условиях, оценка
несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках
и выданы рекомендации к его применению в отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с
высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего элемент
металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно
обработаны по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном
значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство для
определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига,
фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения,
далее, в зависимости от величины отклонения, осуществляют коррекцию технологии монтажа,
отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия
натяжения высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига,
выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной
частью устройства и имеющего отверстие под нагрузочный болт, а между выступом рычага и
тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного
материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию
натяжения высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не
производят, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при
отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку
контактирующих поверхностей металлоконструкции.
2472981 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 472 981
(13)
C1
(51) МПК
 F16B 5/02 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 120
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.03.2017)
Пошлина:
учтена за 5 год с 18.06.2015 по 17.06.2016
(21)(22) Заявка: 2011125214/12, 17.06.2011
(72) Автор(ы):
Андрейченко Игорь
(24) Дата начала отсчета срока действия патента:
Леонардович (RU),
17.06.2011
Полатиди Людмила
Борисовна (RU),
Приоритет(ы):
Бурцева Ирина Валерьевна
(RU),
(22) Дата подачи заявки: 17.06.2011
Бугреева Светлана
Ильинична (RU),
(45) Опубликовано: 20.01.2013 Бюл. № 2
Красинский Леонид
Григорьевич (RU),
Миллер Олег Григорьевич
(56) Список документов, цитированных в отчете о поиске: SU
176199 A1, 15.09.1992. SU 1751463 A1, 30.07.1992. RU 2263828 C1, (RU),
10.11.2005. WO 2004/099632 A1, 18.11.2004. DE 202004012044 U1, Шумягин Николай
Николаевич (RU)
19.05.2005.
Адрес для переписки:
614990, г.Пермь, ГСП, Комсомольский пр-кт, 93, ОАО
"Авиадвигатель", отдел защиты интеллектуальной
собственности
(73) Патентообладатель(и):
Открытое акционерное
общество "Авиадвигатель"
(RU)
(54) БОЛТОВОЕ СОЕДИНЕНИЕ ВРАЩАЮЩИХСЯ ДЕТАЛЕЙ
(57) Реферат:
Изобретение относится к области машиностроения и авиадвигателестроения и может быть
использовано для соединения вращающихся деталей ротора газотурбинного двигателя авиационного
и наземного применения. Болтовое соединение вращающихся деталей, объединенных в пакет, с
расположенными по окружности отверстиями, внутри которых на высоту пакета деталей
установлены втулки с размещенными в их центральных отверстиях стяжными болтами. Каждое
отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным
сечением, вытянутым в окружном направлении. При этом b/a=1,36-1,5; с>(2,5-3)×b, где а - размер
сечения втулки в радиальном направлении; b - размер сечения втулки в окружном направлении; с длина окружности между центральными отверстиями соседних втулок. Обеспечивается повышение
циклического ресурса и надежности болтового соединения вращающихся деталей при высоких
параметрах работы путем разгрузки зон концентрации напряжений в указанных деталях. 1 з.п. ф-лы,
3 ил.
Изобретение относится к области машиностроения и авиадвигателестроения, может быть
использовано для соединения вращающихся деталей ротора газотурбинного двигателя авиационного
и наземного применения.
Известно болтовое соединение, включающее цилиндрическую разгрузочную втулку с круглым
сечением, которую используют для центровки и разгрузки болта, снижения напряжений среза в
самом болте и исключения сдвиговых деформаций в соединяемых деталях (Атлас. Детали машин.
В.Н.Быков, С.П.Фадеев, Издательство «Высшая школа», 1969 г., с.83, рис.3.4). При вращении
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 121
деталей в районе отверстий под болты возникают напряжения. Наличие концентратора напряжения,
повышающего уровень действующих напряжений в 3-4 раза, является основным недостатком такой
конструкции, снижающим циклическую долговечность и ресурс деталей.
В авиадвигателестроении широко применяется соединение деталей с помощью стяжных болтов.
Отверстия под болты, являющиеся концентраторами напряжений, могут быть расположены в
полотне дисков и на выносных фланцах деталей. Выносные фланцы применяют для удаления
концентратора в виде отверстия из полотна диска.
Наличие концентратора напряжений - круглого отверстия под болт, которое повышает уровень
действующих напряжений в 3-4 раза и снижает ресурс деталей, является основным недостатком
такой конструкции.
Практически эта проблема решается путем выполнения выкружек типа «короны» во фланцах, что
обеспечивает достаточную разгрузку отверстий. Эффективность подобной доработки деталей
подтверждена испытаниями и широко используется, например, во фланцах под балансировочные
грузики лабиринтов диска 13-ой ступени ротора компрессора высокого давления (КВД) двигателей
ПС-90А, ПС-90А2 (А.А.Иноземцев, М.А.Нихамкин, В.Л.Сандрацкий. Основы конструирования
авиационных двигателей и энергетических установок, том 4,стр.109).
Наиболее близким к заявляемой конструкции соединения является узел соединения, включающий
пакет деталей, цилиндрическую втулку и болт с гайкой. В деталях выполнены круглые отверстия
(Патент РФ №2263828, F16B 5/02, 2005 г.).
Недостатком известного узла является круглая форма отверстий под втулку, вызывающая
повышенные напряжения в болте и в соединяемых деталях, снижающие циклический ресурс и
надежность болтового соединения при вращении деталей.
Техническая задача, решаемая изобретением, заключается в повышении циклического ресурса и
надежности болтового соединения вращающихся деталей при высоких параметрах работы путем
разгрузки зон концентрации напряжений в указанных деталях.
Сущность изобретения заключается в том, что в болтовом соединении вращающихся деталей,
объединенных в пакет, с расположенными по окружности отверстиями, внутри которых на высоту
пакета деталей установлены втулки с размещенными в их центральных отверстиях стяжными
болтами, согласно п.1 формулы изобретения, каждое отверстие выполнено овальной формы и
вытянуто в окружном направлении, а втулка - с овальным сечением, вытянутым в окружном
направлении, при этом
b/а=1,36-1,5; c>(2,5-3)×b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
Кроме того по п.2 формулы для обеспечения изолированности полостей ступеней компрессора и
сохранения необходимой площади контакта между деталями и болтом необходимо соблюдать
следующее соотношение:
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 122
(a-d)/2>1,4 мм,
где d - диаметр отверстия втулки под болт.
Конфигурация втулки и размеры отверстия под нее выбраны на оснований анализа геометрии дисков
и расчетов напряженно-деформированного состояния.
Было обнаружено, что выполнение отверстий овальной формы, вытянутых в окружном направлении,
и выполнение втулки с соответствующим овальным при соотношениях:
b/a=1,36-1,5; c>(2,5-3)×b,
позволяет эффективно разгружать зоны концентрации напряжений и повышать расчетные значения
циклического ресурса деталей, оцененного по условной кривой малоцикловой усталости для
дисковых сплавов (Технический отчет №12045, М., ЦИАМ, 1993. Развитие методики управления
ресурсами авиационного ГТД с целью повышения прочностной надежности, увеличения ресурсов и
сокращения затрат при ресурсных испытаниях (применительно к двигателю ПС-90А и его
модификациям)).
Втулки с овальным сечением выполняют в заявляемой конструкции следующие функции:
- обеспечивают фиксацию деталей относительно друг друга;
- сохраняют необходимую площадь контакта между фланцами и стандартным болтом круглой
формы;
- обеспечивают изолированность полостей секций (ступеней) компрессора.
Кроме того, применение втулок заявляемой конструкции упрощает процесс сборки деталей
компрессора, а при изготовлении втулок из легкого и прочного материала - позволяет снижать массу
фланцев дисков и всего ротора в целом.
Анализ результатов расчетов показывает, что заявляемое болтовое соединение имеет перспективу
использования в современных двигателях последнего поколения.
В случае если b/а<1,36, форма отверстия стремится к окружности, возрастает уровень окружных
напряжений в отверстиях соединяемых деталей, следовательно, снижается циклическая
долговечность.
В случае если b/а>1,5, отверстие больше вытянуто в окружном направлении, при этом уменьшается
площадь цилиндрического сечения сопрягаемых деталей, что повышает риск потери несущей
способности, возрастает уровень радиальных напряжений и снижается циклическая долговечность.
В случае если с≤2,5b, расстояние между центрами отверстий уменьшается, пропорционально
уменьшается и площадь цилиндрического сечения соединяемых деталей, что повышает риск потери
несущей способности.
Соотношение с>3b приводит к тому, что расстояние между центрами отверстий увеличено, линии
действий окружных напряжений при этом выравниваются, а эффект снижения концентраций
напряжений уменьшается.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 123
Кроме того, по п.2 формулы изобретения, для сохранения необходимой площади контакта между
деталями и болтом, а также из технологических соображений необходимо соблюдать следующее
соотношение: (a-d)/2>1,4 мм. В противном случае возникают технологические сложности с
изготовлением втулки, т.к. толщина стенки втулки слишком мала. Кроме того, в тонкой стенке
втулки возникают недопустимо высокие напряжения.
Таким образом, при высоких параметрах работы использование данной конструкции болтового
соединения дает возможность не только выравнивать напряжения по толщине пакета деталей и в
болтах, но и значительно снижать уровень действующих напряжений в соединяемых деталях,
повышая их ресурс.
На фиг.1 представлено сечение пакета соединяемых деталей с втулкой, имеющей овальное сечение,
на фиг.2 - разрез А-А на фиг.1. На фиг.3 показано болтовое соединение в сборке деталей ротора КВД
в аксонометрии.
Болтовое соединение включает пакет вращающихся деталей газотурбинного двигателя (ГТД),
например, фланца 1 диска первой ступени (КВД), фланца 2 вала КВД и диска 3 второй ступени КВД.
В деталях 1, 2, 3 выполнены овальные отверстия 4, вытянутые в окружном направлении под втулку 5
с таким же овальным сечением и размерами а и b в радиальном и окружном направлениях,
соответственно. В отверстии 4 втулка 5 размещена на всю толщину пакета деталей 1, 2, 3. Во втулке
5 имеется круглое центральное отверстие 6 диаметром d под стандартный стяжной болт 7 круглого
сечения. Диаметр головки болта 7 и наружный диаметр гайки 8 перекрывают при сборке радиальный
размер а втулки 5 при соблюдении условия
(a-d)/2>1,4 мм.
Втулка 5 обеспечивает изолированность полостей ступеней компрессора, сохраняет необходимую
площадь контакта между фланцами и стяжным болтом 7.
Отверстия 6 расположены равномерно по всей длине окружности соединяемых деталей 1, 2, 3, при
этом длина окружности С между ними зависит от размера сечения b втулки 5 в окружном
направлении.
Болтовое соединение собирают следующим образом.
В овальное отверстие 4 пакета вращающихся деталей 1, 2, 3 вставляют втулку 5, в которой
размещают стандартный болт 7 и закрепляют гайкой 8. В процессе работы КВД концентрация
напряжений в зоне отверстий 4 в полотне и во фланцах 1, дисков будут минимальной, что позволяет
работать при высоких заданных параметрах двигателя, повышая циклический ресурс и надежность
болтового соединения.
Формула изобретения
1. Болтовое соединение вращающихся деталей, объединенных в пакет, с расположенными по
окружности отверстиями, внутри которых на высоту пакета деталей установлены втулки с
размещенными в их центральных отверстиях стяжными болтами, отличающееся тем, что каждое
отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным
сечением, вытянутым в окружном направлении, при этом b/a=1,36-1,5; c>(2,5-3)·b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 124
2. Болтовое соединение вращающихся деталей по п.1, отличающееся тем, что (a-d)/2>1,4 мм, где d диаметр отверстия втулки под болт.
2249557 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 249 557
(13)
C2
(51) МПК
 B66C 7/00 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.03.2008)
(21)(22) Заявка: 2003107392/11, 17.03.2003
(24) Дата начала отсчета срока действия патента:
17.03.2003
(72) Автор(ы):
Нежданов К.К. (RU),
Туманов В.А. (RU),
Нежданов А.К. (RU),
Кузьмишкин А.А. (RU)
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 125
(43) Дата публикации заявки: 10.09.2004 Бюл. № 25
(45) Опубликовано: 10.04.2005 Бюл. № 10
(73) Патентообладатель(и):
Туманов Антон
Вячеславович (RU)
(56) Список документов, цитированных в отчете о поиске: RU 2192383
C1, 10.11.2002. SU 1735470 A1, 23.05.1992. ЕР 0194615 A1, 18.09.1986.
Адрес для переписки:
440047, г.Пенза 47, ул. Минская, 13, кв.56, А.В. Туманову
(54) УЗЕЛ УПРУГОГО СОЕДИНЕНИЯ ТРЕХГЛАВОГО РЕЛЬСА С ПОДКРАНОВОЙ
БАЛКОЙ
(57) Реферат:
Изобретение относится к подкрановым конструкциям с интенсивным тяжелым режимом работы
кранов. Согласно изобретению узел снабжен размещенной под рельсом и опирающейся на верхний
пояс подкрановой балки демпфирующей подрельсовой прокладкой. Эта подкладка выполнена из
пружинной стали с продольными, имеющими плавные закругления гофрами и непрерывной по всей
длине рельса. Ширина упомянутой прокладки на 5-10% меньше ширины верхнего пояса
подкрановой балки. Сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь
поддерживающие верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные
тарельчатыми пружинными шайбами. Изобретение обеспечивает повышение долговечности
рельсовой конструкции. 1 ил.
Изобретение относится к транспортным конструкциям, преимущественно к подкрановым
конструкциям с интенсивным тяжелым режимом работы кранов (8К, 7К).
Известны технические решения, разработанные В.Ф.Сабуровым [1]. Под рельс укладывается
резинометаллическая прокладка, являющаяся податливым слоем, уменьшающим максимумы
локальных напряжений σу, приводящих к появлению усталостных трещин в подрельсовой зоне
подкрановой балки. Резинометаллическая прокладка значительно снижает локальные напряжения σ у
и, соответственно, повышает долговечность подкрановой балки.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 126
Недостаток резинометаллической прокладки - ее долговечность ниже, чем долговечность кранового
рельса, и поэтому ее приходится менять чаще, чем рельс.
Для устранения этого недостатка должна быть разработана демпфирующая подрельсовая прокладка,
обладающая такой же податливостью, как резинометаллическая, но обладающая большей
долговечностью. Известен также трехглавый рельс, четко фиксирующийся на подкрановой балке [2].
За аналог примем патент России RU №2192383 С1 [3]. В этом аналоге применен трехглавый рельс.
Тормозная балка симметрична и помещена ниже боковых глав рельса для обеспечения свободного
прохода направляющих роликов крана. Симметрия тормозной балки исключает косой изгиб
подкрановой конструкции и позволяет достичь наибольшего снижения материалоемкости.
Технический результат изобретения - повышение долговечности подкрановых балок и рельсов и
удобство эксплуатации конструкции.
Технический результат реализован тем, что в узле упругого соединения трехглавого рельса с
подкрановой балкой и тормозной балкой между рельсом и подкрановой балкой размещена
демпфирующая подрельсовая прокладка.
Отличие в том, что узел снабжен размещенной под рельсом и опирающейся на верхний пояс
подкрановой балки демпфирующей подрельсовой прокладкой, выполненной из пружинной стали с
продольными, имеющими плавные закругления гофрами и непрерывной по всей длине рельса,
причем ширина упомянутой прокладки на 5...10% меньше ширины верхнего пояса подкрановой
балки.
При этом сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь
поддерживающие верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные
тарельчатыми пружинными шайбами.
На чертеже показан узел упругого соединения трехглавого рельса с подкрановой и симметричной
тормозной балкой. Тормозная балка находится ниже боковых глав рельсов на расстоянии,
обеспечивающем свободный проход направляющих роликов крана.
Узел содержит трехглавый крановый рельс 1 с центральной главой, по которой катятся основные
безребордные колеса 2 мостового крана и передают вертикальные силовые импульсы Р.
Направляющие ролики 3 крана фиксируют основные колеса 2 на трехглавом рельсе 1, катятся по
боковым главам рельса и передают на них горизонтальные силовые импульсы Т.
У направляющих роликов 3 имеются аварийные удерживающие гребни снизу.
Под рельсом 1 помещена демпфирующая подрельсовая прокладка 4 из пружинной стали, с
продольными гофрами (5...10 шт.) одинаковой высоты с плавными закруглениями.
Демпфирующая подрельсовая прокладка 4 опирается на верхний пояс 5 двутавровой прокатной
балки. Швеллеры 6 соединяют верхний пояс 5 с симметричной тормозной балкой 7. Тормозная балка
7 может быть и не симметричной. Швеллеры 6 и тормозная балка 7 также соединены друг с другом
посредством болтов 8, затянутых с гарантируемым натягом. Симметричные элементы тормозной
балки 7 также соединены друг с другом через стенку двутавровой прокатной подкрановой балки
посредством болтов 8 с гарантируемым натягом. Болты 9 проходят сквозь подошву трехглавого
рельса 1 и полку швеллера 6. Болты 9 снабжены пружинными тарельчатыми шайбами 10,
выполненными из пружинной стали. Кроме этого, в зазоре между боковой гранью верхнего пояса 5 и
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 127
гранью боковой главы рельса имеется шайба, передающая давление с боковой главы рельса на
верхний пояс 5, а между нижней гранью боковой главы рельса и швеллером 6 имеется зазор.
Работа упругого узла соединения трехглавого рельса с подкрановой балкой.
При действии вертикальных силовых импульсов Р от катящихся безребордных колес крана 2 рельс 1
упруго оседает под каждым из колес 2, сдавливая демпфирующую подрельсовую прокладку 4.
Высота каждого из гофров уменьшается, ширина ее увеличивается. В зоне контакта с поверхностью
подошвы рельса 2 и верхнего пояса 5 возникают распорные силы, гасящиеся за счет сил трения.
Напряжение в тарельчатых пружинах несколько ослабевает (на 10...15%). Локальное взаимодействие
между трехглавым рельсом 2 и верхним поясом 5 подкрановой балки распределяется на большую
длину и тем самым локальные суммарные напряжения Σσ у значительно снижаются и этим
выносливость повышается. При уходе колеса крана демпфирующая подрельсовая прокладка 4
упруго возвращается в исходное положение.
При действии же горизонтального силового импульса Т от одного из направляющих роликов 3
горизонтальные усилия передаются за счет сил трения. Если же силы трения будут превышены, то в
работу вступает внутренняя поверхность боковой главы рельса через шайбу с продольной торцевой
кромкой верхнего пояса 5. Далее в работу на изгиб включается симметричная тормозная балка 7,
опирающаяся в горизонтальной плоскости на колонны каркаса цеха.
Сопоставление с аналогами показывает следующие существенные отличия:
1. Между подошвой трехглавого рельса и верхним поясом подкрановой балки по всей длине рельса
размещена демпфирующая подрельсовая прокладка с продольными гофрами (5...10 штук)
одинаковой высоты.
2. Упругая податливость демпфирующей подрельсовой прокладки регулируется прочностью
пружинной стали, толщиной листа, высотой продольных гофров, числом гофров.
3. Под болтами, соединяющими рельс с подкрановой балкой, применены упругие тарельчатые
шайбы, выполненные пружинными стальными.
4. В отличие от рези неметаллической прокладки, свойства которой ухудшаются со временем, из-за
старения резины, свойства демпфирующей подрельсовой прокладки остаются неизменными во
времени, а долговечность их такая же, как у рельса.
Экономический эффект достигнут из-за повышения долговечности демпфирующей подрельсовой
прокладки, так как в ней отсутствует быстро изнашивающаяся и стареющая резина. Экономический
эффект достигнут также из-за удобства обслуживания узла при эксплуатации.
Литература
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки
долговечности подкрановых путей производственных зданий. Автореферат диссертации докт. техн.
наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 128
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1
(Заявка №2000 119289/28 (020257), Подкрановая транспортная конструкция. Опубликован
10.11.2002.
Формула изобретения
Узел упругого соединения трехглавого рельса с подкрановой и тормозной балками, отличающийся
тем, что узел снабжен размещенной под рельсом и опирающейся на верхний пояс подкрановой балки
демпфирующей подрельсовой прокладкой, выполненной из пружинной стали с продольными,
имеющими плавные закругления гофрами и непрерывной по всей длине рельса, причем ширина
упомянутой прокладки на 5-10% меньше ширины верхнего пояса подкрановой балки, при этом
сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь поддерживающие
верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные тарельчатыми
пружинными шайбами.
Адреса американских и немецких фирм, организация
занимающихся проектированием, изготовлением монтажом
гасителей динамических колебаний для применения легко сбрасываемость (ЛСК) из последних
двух этажей жилого дома, для обеспечения сейсмостойкости, за счет легко сбрасываемости
панелей с существующего здания , при импульсных растягивающих нагрузках с использованием
протяжных фрикционно-подвижных соединений с контролируемым натяжением из латунных
ослабленных болтов, в поперечном сечении резьбовой части с двух сторон с образованными
лысками, по всей длине резьбы латунного болта и их программная реализация расчета, в среде
вычислительного комплекса SCAD Office c использованием изобретений проф .дтн ПГУПС
А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» , №
2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых
панелей с применением фрикционно-подвижных, для сдвига болтовых соединений для
обеспечения сейсмостойкости конструкций здания: масса здания уменьшается, частота
собственных колебаний увеличивается, а сейсмическая нагрузка падает
в США ,
Германии, Китае и др странах
JCM Industries, Inc. P. O. Box 1220 Nash, TX 75569-1220
www.jcmindustries.com
For information, contact: Pacific Flow Control Ltd. P.O. Box
31039 RPO Thunderbird Langley V1M 0A9 Call Toll Free: 1-800585-TAPS (8277) Phone: 604-888-6363
www.pacificflowcontrol.ca
INDUSTRIES S 'IMSERTS St Fabricated Tapping Sleeves
Carbon Steel - Stainless Steel 21919 20th Avenue SE • Suite
100 • Bothell, WA 98021 425.951.6200 • 1.800.426.9341 • Fax:
425.951.6201 www.romac.com
CORPORATE HEADQUARTERS 21919 20th Avenue SE
Bothell, WA 98021 [map] Toll Free: 800.426.9341 Local:
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 129
425.951.6200
Fax: 425.951.620 Website address:
www.romac.com
NON-METALLIC EXPANSION JOINT DIVISION FLUID
SEALING ASSOCIATION 994 Old Eagle School Road, Suite
1019, Wayne, PA 19087 Telephone: (610) 971-4850
Facsimile: (610) 971-4859
Fluid Sealing Association 994 Old Eagle School Road #1019
Wayne, PA 19087-1866 610.971.4850 (USA)
WILLBRANDT KG Schnackenburgallee 180 22525 Hamburg
Germany Phone +49 40 540093-0 Fax +49 40 540093-47
info@willbrandt.de
Subsidiary Hanover Reinhold-SchleeseStr. 22 30179 Hannover
Germany Tel +49 511 99046-0 Fax +49 511 99046-30
hannover@willbrandt.de
Subsidiary Berlin Breitenbachstra?e
7 – 9 13509 Berlin
Germany Tel +49 30 435502-25 Fax +49 30 435502-20
berlin@willbrandt.de WILLBRANDT
Gummiteknik A/S
Finlandsgade 29 4690 Haslev Denmark www.willbrandt.dk
www.willbrandt.se
СТП 006 -97
СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ
БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ»
МОСКВА 1998 Предисловие
1 РАЗРАБОТАН Научно-исследовательским центром «Мосты» ОАО « ЦНИИС» (канд. техн. наук
А.С. П латонов, канд. техн. наук И.Б . Ройзм ан, инж . А.В. К ру чинки н, канд. техн. наук М.Л.
Лобков, инж . М .М. Мещеряков)
ВНЕСЕН Научно-техническим центром Корпорации «Трансстрой»
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Корпорацией «Трансстрой» распоряжением от 09 октября
1997 г. № МО-233
3 СОГЛАСОВАН специализированными фирмами « Мостострой», «Транспроект» Корпорации
«Трансстрой», Главным управлением пути Министерства путей сообщения РФ
4 С введением настоящего стандарта утрачивает силу ВСН 163 -69 «Инструкция по технологии
устройства соединений на высокопрочных болтах в стальных конструкциях мостов»
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 130
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг
при сжатии двух срезных одноболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии (выполнен согласно изобретениям: №№ 1143895, 1168755,
1174616, № 2010136746 E04 C2/00 " СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРО-ВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕР-ГИИ" опубликовано 20.01.2013 , № 165076 RU E 04H 9/02 «Опора сейсмостойкая»,
опубликовано 10.10.16, Бюл. № 28 , согласно заявки на изобретение № 20181229421/20 (47400) от 10.08.2018 "Опора
сейсмоизолирующая "гармошка", E04 Н 9 /02, заявки на изобретение № 2018105803/20 (008844) от 11.05.2018
"Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопро-водов" F 16L 23/02 , заявки на
изобретение № 2016119967/20( 031416) от 23.05.2016 "Опора сейсмоизолирующая маят-никовая" E04 H 9/02, заявки на
изобретение № 20190028 "Виброизолирующая опора E04 Н 9 /02 для лабораторного испытание на взрывостойкость и
взрывопожаростойкость сейсмостойкость фрагментов крепления на ФФПС).
- основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры
при использовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до
проектных размеров в плане. Отверстия образуются сверлением, заусенцы по кромкам и в
отверстиях удаляются.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте
сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных
соединениях конструкции. Натяжение болта осуществляется динамометрическими ключами,
применяемыми на строительстве при сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над
болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы
пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность
испытательной машины должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом
фиксируется нагрузка Т, характеризующая исчерпание несущей способности образца. Испытания
рекомендуется проводить с записью диаграммы сжатия образца. Для суждения о сдвиге необходимо
нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, где отмечается дата испытания, маркировка образца,
нагрузка, соответствующая сдвигу (прикладывается диаграмма сжатия), и фамилии лиц,
проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
:1
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 131
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое
в проекте сооружения, которое может быть воспринято каждой поверхностью трения соединяемых
элеме нтов, стянутых одним высокопрочным болтом (одним болтоконтактом), оценивается
соотношением Qbh ≤ Т/ 2 в каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием
заказчика, проектной и научно-исследовательской организаций.
Приложение М (информационное) Библиография
[1 ] . Правила по охране труда при сооружении мостов. ЦНИИС, 1991 г.
[2 ] . Правила устройства и безопасной эксплуатации сосудов, работающих под давлением.
Госгортехнадзор СССР, 1970 г.
[3 ] . Санитарные правила при работе с эпоксидными смолами. Госсанинспекция СССР, 1960 г.
[4 ] . Типовая инструкция по охране труда при хранении и перевозке горюч их, легко
воспламеняющихся и взрывоопасных грузов. Оргт рансст рой, 1978 г.
[ 5 ] . Правила пожарной безопасности при производстве строительно-монтажных работ. П ПБ1 -93
Российской Федерации.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 132
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 133
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 134
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 135
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 136
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 137
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 138
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 139
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 140
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 141
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 142
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 143
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 144
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 145
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 146
ОПОРА СЕЙСМОСТОЙКАЯ165 076
(19)
РОССИЙСКАЯ
ФЕДЕРАЦИЯ
RU
(11)
165 076
(13)
ФЕДЕРАЛЬНАЯ
U1
СЛУЖБА
(51) МПК
ПО

E04H
ИНТЕЛЛЕКТУАЛЬНОЙ
9/02 (2006.01)
СОБСТВЕННОСТИ
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее
Статус:
изменение статуса: 07.06.2017)
(21)(22) Заявка: 2016102130/03,
(72) Автор(ы):
Андреев Борис Александрович (RU),
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 147
22.01.2016
(24) Дата начала отсчета срока
действия патента:
22.01.2016
Коваленко Александр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
Приоритет(ы):
(22) Дата подачи заявки: 22.01.2016
(45) Опубликовано: 10.10.2016 Бюл.
№ 28
Адрес для переписки:
197371, Санкт-Петербург,
Коваленко Александр Иванович
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
165 076
Опора сейсмостойкая предназначена для защиты объектов от сейсмических
воздействий за счет использования фрикцион но податливых соединений. Опора
состоит из корпуса в котором выполнено вертикальное отверстие охватывающее
цилиндрическую поверхность щтока. В корпусе, перпендикулярно вертикальной
оси, выполнены отверстия в которых установлен запирающий калиброванный
болт. Вдоль оси корпуса выполнены два паза шириной <Z> и длиной <I> которая
превышает длину <Н> от торца корпуса до нижней точки паза, выполненного в
штоке. Ширина паза в штоке соответствует диаметру калиброванного болта. Для
сборки опоры шток сопрягают с отверстием корпуса при этом паз штока
совмещают с поперечными отверстиями корпуса и соединяют болтом, после чего
одевают гайку и затягивают до заданного усилия. Увеличение усилия затяжки
приводит к уменьшению зазора<Z>корпуса, увеличению сил трения в сопряжении
корпус-шток и к увеличению усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений,
объектов и оборудования от сейсмических воздействий за счет использования
фрикционно податливых соединений. Известны фрикционные соединения для
защиты объектов от динамических воздействий. Известно, например Болтовое
соединение плоских деталей встык по Патенту RU 1174616, F15B 5/02 с пр. от
11.11.1983. Соединение содержит металлические листы, накладки и прокладки. В
листах, накладках и прокладках выполнены овальные отверстия через которые
пропущены болты, объединяющие листы, прокладки и накладки в пакет. При малых
горизонтальных нагрузках силы трения между листами пакета и болтами не
преодолеваются. С увеличением нагрузки происходит взаимное проскальзывание
листов или прокладок относительно накладок контакта листов с меньшей
шероховатостью. Взаимное смещение листов происходит до упора болтов в края
овальных отверстий после чего соединения работают упруго. После того как все
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 148
болты соединения дойдут до упора в края овальных отверстий, соединение начинает
работать упруго, а затем происходит разрушение соединения за счет смятия листов
и среза болтов. Недостатками известного являются: ограничение демпфирования по
направлению воздействия только по горизонтали и вдоль овальных отверстий; а
также неопределенности при расчетах из-за разброса по трению. Известно также
Устройство для фрикционного демпфирования антиветровых и антисейсмических
воздействий по Патенту TW 201400676 (A)-2014-01-01. Restraint anti-wind and antiseismic friction damping device, E04B 1/98, F16F 15/10. Устройство содержит базовое
основание, поддерживающее защищаемый объект, нескольких сегментов (крыльев)
и несколько внешних пластин. В сегментах выполнены продольные пазы. Трение
демпфирования создается между пластинами и наружными поверхностями
сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы,
проходят запирающие элементы - болты, которые фиксируют сегменты и пластины
друг относительно друга. Кроме того, запирающие элементы проходят через блок
поддержки, две пластины, через паз сегмента и фиксируют конструкцию в заданном
положении. Таким образом получаем конструкцию опоры, которая выдерживает
ветровые нагрузки но, при возникновении сейсмических нагрузок, превышающих
расчетные силы трения в сопряжениях, смещается от своего начального положения,
при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и
сложность расчетов из-за наличия большого количества сопрягаемых трущихся
поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение
количества сопрягаемых трущихся поверхностей до одного сопряжения отверстие
корпуса - цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая
выполнена из двух частей: нижней - корпуса, закрепленного на фундаменте и
верхней - штока, установленного с возможностью перемещения вдоль общей оси и с
возможностью ограничения перемещения за счет деформации корпуса под
действием запорного элемента. В корпусе выполнено центральное отверстие,
сопрягаемое с цилиндрической поверхностью штока, и поперечные отверстия
(перпендикулярные к центральной оси) в которые устанавливают запирающий
элемент-болт. Кроме того в корпусе, параллельно центральной оси, выполнены два
открытых паза, которые обеспечивают корпусу возможность деформироваться в
радиальном направлении. В теле штока, вдоль центральной оси, выполнен паз
ширина которого соответствует диаметру запирающего элемента (болта), а длина
соответствует заданному перемещению штока. Запирающий элемент создает
нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы обеспечивают
возможность деформации корпуса и «переход» сопряжения из состояния
возможного перемещения в состояние «запирания» с возможностью перемещения
только под сейсмической нагрузкой. Длина пазов корпуса превышает расстояние от
торца корпуса до нижней точки паза в штоке. Сущность предлагаемой конструкции
поясняется чертежами, где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 149
изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3 изображен разрез В-В (фиг. 1);
на фиг. 4 изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное
отверстие диаметром «D», которое охватывает цилиндрическую поверхность штока
2 например по подвижной посадке H7/f7. В стенке корпуса перпендикулярно его
оси, выполнено два отверстия в которых установлен запирающий элемент калиброванный болт 3. Кроме того, вдоль оси отверстия корпуса, выполнены два
паза шириной «Z» и длиной «I». В теле штока вдоль оси выполнен продольный
глухой паз длиной «h» (допустмый ход штока) соответствующий по ширине
диаметру калиброванного болта, проходящего через этот паз. При этом длина пазов
«I» всегда больше расстояния от торца корпуса до нижней точки паза «Н». В нижней
части корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в
верхней части штока 2 выполнен фланец для сопряжения с защищаемым объектом.
Сборка опоры заключается в том, что шток 2 сопрягается с отверстием «D» корпуса
по подвижной посадке. Паз штока совмещают с поперечными отверстиями корпуса
и соединяют калиброванным болтом 3, с шайбами 4, с предварительным усилием
(вручную) навинчивают гайку 5, скрепляя шток и корпус в положении при котором
нижняя поверхность паза штока контактирует с поверхностью болта (высота опоры
максимальна). После этого гайку 5 затягивают тарировочным ключом до заданного
усилия. Увеличение усилия затяжки гайки (болта) приводит к деформации корпуса и
уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит к
увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие
корпуса - цилиндр штока. Величина усилия трения в сопряжении корпус-шток
зависит от величины усилия затяжки гайки (болта) и для каждой конкретной
конструкции (компоновки, габаритов, материалов, шероховатости поверхностей,
направления нагрузок и др.) определяется экспериментально. При воздействии
сейсмических нагрузок превышающих силы трения в сопряжении корпус-шток,
происходит сдвиг штока, в пределах длины паза выполненного в теле штока, без
разрушения конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел,
закрепленный запорным элементом, отличающаяся тем, что в корпусе выполнено
центральное вертикальное отверстие, сопряженное с цилиндрической поверхностью
штока, при этом шток зафиксирован запорным элементом, выполненным в виде
калиброванного болта, проходящего через поперечные отверстия корпуса и через
вертикальный паз, выполненный в теле штока и закрепленный гайкой с заданным
усилием, кроме того в корпусе, параллельно центральной оси, выполнено два
открытых паза, длина которых, от торца корпуса, больше расстояния до нижней
точки паза штока.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 150
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 151
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 152
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 153
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 154
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
 G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
(71) Заявитель(и):
Рабер Лев Матвеевич
(UA),
Кондратов Валерий
Владимирович (RU),
Всего листов 65
Лист 155
(45) Опубликовано: 10.05.2000 Бюл. № 13
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(56) Список документов, цитированных в отчете о поиске: Чесноков
А.С., Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A,
(72) Автор(ы):
15.09.80. SU 993062 A, 30.01.83. EP 0170068 A'', 05.02.86.
Рабер Лев Матвеевич
Адрес для переписки:
(UA),
Кондратов В.В.(RU),
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Хусид Р.Г.(RU),
Миролюбов Ю.П.(RU)
(73) Патентообладатель(и):
Рабер Лев Матвеевич
(UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО
СОЕДИНЕНИЯ
(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации
металлоконструкций для определения параметров затяжки болтов. В эксплуатируемом соединении
производят затягивание гайки на заданную величину угла ее поворота от исходного положения.
Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента
закручивания гайки в области упругих деформаций. Определяют приращение момента закручивания.
Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент
закручивания резьбового соединения определяют как отношение приращения момента закручивания
гайки к произведению приращения усилия натяжения болта на его диаметр. Технический результат
заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений
для повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения,
преимущественно высокопрочных болтов, и может быть использовано в мостостроении и других
отраслях строительства и эксплуатации металлоконструкций для определения параметров затяжки
болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии
приемки выполненных работ (Инструкция по технологии устройства соединений на высокопрочных
болтах в стальных конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР,
Минтрансстрой СССР), так и в период обследования конструкций (строительные нормы и правила
СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М., Стройиздат, 1987, с. 25-
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 156
27), используют динамометрические ключи. Этими ключами измеряют момент закручивания Mз,
которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные
болты в конструкциях мостов. М.,Транспорт, 1971, с. 60-64):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при
известном коэффициенте закручивания усилие натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит
от того, в какой мере действительные коэффициенты закручивания k соответствуют расчетным
величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило,
лишь на стадии приемки выполненных работ, поскольку предусматриваемая технологией
постановки болтов стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких
пределах, что вносит существенную неточность в результаты измерений. По данным Чеснокова А.С.
и Княжева А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974,
табл. 17, с. 73) коэффициент закручивания зависит от качества смазки резьбы и может изменяться в
пределах 0,12-0,264. Таким образом измеренные усилия в болтах с помощью динамометрических
ключей могут отличаться от фактических значений более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина
коэффициента k не оказывает влияния на результаты измерений. Способ реализован с помощью
устройства (А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых
соединений (Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879),
опыт применения которого выявил его надежную работу в случае сравнительно непродолжительного
(до пяти лет) срока эксплуатации конструкций. При более длительном сроке эксплуатации
срабатывание предусмотренных конструкцией устройства пружин происходит недостаточно четко,
поскольку с течением времени неподвижный контакт резьбовой пары приводит к увеличению
коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина
момента сил трения в резьбе превосходит величину крутящего момента, создаваемого
преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над
гайкой резьбы болта не менее, чем на 20 мм. Наличие таких болтов в узлах и прикреплениях должно
специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их
натяжения необходимо назначить величину момента закручивания для подтяжки болтов. Для
назначения этого момента необходимы знания фактического значения коэффициента закручивания
k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ
измерения коэффициента закручивания болтов с учетом влияния времени, аналогичному влиянию
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 157
качества изготовления болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении
коэффициента ki в лабораторных условиях (см. тот же источник, с. 74-77) путем одновременного
обеспечения и контроля заданного усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для
статистической оценки необходимо произвести испытания нескольких десятков или даже сотен
болтов. Кроме того, при извлечении болта из конструкции резьбу гайки прогоняют по окрашенной
или загрязненной резьбе болта, а испытания в лабораторных условиях производят, как правило, не на
том участке резьбы, на котором болт быть сопряжен с гайкой в пакете. Все это ставит под сомнение
достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят
затягивание гайки на заданную величину угла ее поворота от исходного положения, произведя
предварительно для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла
ее поворота в области упругих деформаций производят с замером значения момента закручивания
гайки и определяют приращение момента закручивания. При этом приращение усилия натяжения
болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента
закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом
соединении и повысить точность определения величины коэффициента закручивания за счет
исключения необходимости прогона резьбы гайки по окрашенной или загрязненной резьбе болта.
Кроме того, в отличие от прототипа испытания проводят на том же участке резьбы, на котором болт
сопряжен с гайкой постоянно. Способ осуществляется следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и
измеряют фактическую величину этого момента (исходное положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между
метками соответствует заданному углу поворота гайки; как правило, этот угол составляет 60 o.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 158
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по
достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN
по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных
экспериментов, состоящих в исследовании влияния толщины пакета и уточнении влияния толщины
и количества деталей, составляющих пакет эксплуатируемого соединения, на стабильность
приращения усилия натяжения болтов при повороте гайки на угол 60o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М.
Высокопрочные болты в конструкциях мостов - М., Транспорт, 1974, с. 65-68). В пределах этой
области, равному приращению угла поворота гайки, соответствует равное приращение усилий
натяжения болта. Величина этого приращения в плотно стянутом болтами пакете, при постоянном
диаметре болта зависит от толщины этого пакета. Следовательно, поворот гайки на определенный
угол в области упругих деформаций идентичен созданию в болте заданного натяжения. Этот эффект
явился основой предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на
одну грань. Погрешность системы определения коэффициента закручивания, характеризуемая как
погрешностью выполнения отдельных операций, так и погрешностью регистрации требуемых
параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых
соединений дает возможность проводить испытания в конкретных условиях эксплуатации
соединений, что повышает точность полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть
использованы как при определении усилий натяжения болтов в период обследования конструкций,
так при назначении величины момента для подтяжки болтов, в которых по результатам обследования
выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в
измерении параметров затяжки соединения, по которым вычисляют коэффициент закручивания,
отличающийся тем, что в эксплуатируемом соединении производят затягивание гайки на заданную
величину угла ее поворота от исходного положения, произведя предварительно для этого ослабление
ее затягивания, с замером значения момента закручивания гайки в области упругих деформаций и
определяют приращение момента закручивания, при этом приращение усилия натяжения болта
определяют по формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 159
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения
момента закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
 F16B 31/02 (2006.01)
 G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.08.2017)
Пошлина:
учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ
(56) Список документов, цитированных в отчете ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ
о поиске: SU 1753341 A1, 07.08.1992. SU
ФИРМА "ПАРТНЁР" (RU)
1735631 A1, 23.05.1992. JP 2008151330 A,
03.07.2008. WO 2006028177 A1, 16.03.2006.
(45) Опубликовано: 27.02.2011 Бюл. № 6
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5,
корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ
МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 160
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами. Способ обеспечения несущей способности фрикционного соединения
металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля,
содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности
которых, предварительно обработанные по проектной технологии, соединяют высокопрочным
болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку
на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной
величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение
усилия натяжения высокопрочного болта. Определение усилия сдвига на образце-свидетеле
осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел
сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с
неподвижной частью устройства, и имеющего отверстие под нагрузочный болт, а между выступом
рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из
закаленного материала. В результате повышается надежность соединения. 1 з.п. ф-лы, 1
ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами, но может быть использовано для определения фактического напряженнодеформированного состояния болтовых соединений в различных конструкциях, в частности
стальных мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных
узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с
помощью болтовых фрикционных соединений, в которых передача усилия обжатия соединяемых
элементов высокопрочными метизами осуществляется только силами трения по контактным
плоскостям усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего
сдвига по среднему ряду болтов. Сдвигающее усилие, отнесенное к одному высокопрочному болту и
одной плоскости трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также
коэффициент работы мостов m1=0,9; m2 - коэффициент условий работы соединения; Рн нормативное усилие натяжения болта; fн - нормативный коэффициент трения.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 161
В настоящее время основным нормативными показателями несущей способности фрикционных
соединений с высокопрочными болтами, которые отражаются в проектной документации, являются
усилие натяжения болта и нормативный коэффициент трения, с учетом условий работы
фрикционного соединения. Нормативное усилие натяжения болтов назначается с учетом
механических характеристик материала и его определяют по формуле:
, где Р усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на
заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть
в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее
выполненных соединений важными являются вопросы оценки коэффициентов трения по
соприкасающимся поверхностям соединяемых элементов. Этот вопрос приобретает особую
актуальность в случае сочетания металлических поверхностей, находящихся в эксплуатации с
новыми элементами, а также для оценки возможности повторного использования высокопрочных
болтов. В качестве нормативного коэффициента трения принимается среднестатистическое значение,
определенное по возможно большему объему экспериментального материала раздельно для
различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно
сдвигоустойчивость контактных соединений выполняется при коэффициенте трения поверхностей
f≥0,55. Это значение можно принять в качестве основного критерия сдвигоустойчивости, и оно
соответствует исходному значению Ктр. для монтируемых стальных контактных поверхностей,
обработанных непосредственно перед сборкой абразивно-струйным методом с чистотой очистки до
степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по
показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения болтов.
Отклонение усилия натяжения и возможные их изменения при эксплуатации могут приводить к тем
или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и
обеспечения требуемой величины f≥0,55 решена применением разработанного НПЦ Мостов
съемного покрытия «Контакт» (патент РФ №2344149 на изобретение «Антикоррозионное покрытие
и способ его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в
условиях завода колотой стальной дробью контактных поверхностей мостовых пролетных
конструкций на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных
работ на строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается
ножом и ручным способом легко снимается «чулком» с контактных поверхностей, после чего сборка
конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с
пролетными строениями осуществляется с помощью захватов, фиксируемых в отверстиях
контактных поверхностей, временное защитное покрытие «Контакт» в районе установки захватов
повреждается. На строительном объекте приходится производить повторную абразивно-струйную
обработку присоединительных поверхностей, т.к. они после длительной эксплуатации на открытом
воздухе обильно покрыты продуктами ржавления. Выполнение дополнительной очистки
значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях открытой
атмосферы и удаленности строительных площадок мостов от промышленных центров требуемые
показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение
фрикционных показателей, соответственно снижение усилий обжатия высокопрочных метизов, а
следовательно, приводят к снижению качества монтажных работ.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 162
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает
постоянное воздействие на контактные соединения климатических факторов, соответствующих в
пределах Российской Федерации умеренно-холодному климату (У1), а также циклических сдвиговых
нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов
металлоконструкции. Более того, в настоящее время обработка металлических поверхностей
металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения
об условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной
период, поэтому возникает необходимость проверки фактической надежности работы фрикционного
соединения с высокопрочными болтами перед монтажом, для обеспечения надежности при их
эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством
приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о
необходимости совершенствования диагностической и инструментальной базы, способствующей
повышению эффективности реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется
отсутствием сдвигов соединяемых элементов при восприятии внешней нагрузки как на срез, так и
растяжение. Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий
работы соединения, зависящий от количества (n) болтов, необходимых для восприятия расчетного
усилия; Abn - площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся
поверхностям соединенных элементов; Yh - коэффициент надежности, зависящий от способа
натяжения болтов, коэффициента трения f, разницы между диаметрами отверстий и болтов,
характера действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах,
Днепропетровск: Системные технологии, 2008 г., с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ
№2148805, G01L 5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого момента
закручивания гайки к произведению определяемого усилия натяжения болта на его диаметр.
Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на
контролируемую величину угла ее поворота от исходного положения с замером значения момента
закручивания в области упругих деформаций и определения приращения момента затяжки.
Приращение усилия натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта
диаметром 22 мм2; αi - угол поворота гайки от исходного положения; σ - толщина пакета деталей,
соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с
неизвестными коэффициентами трения контактных поверхностей и коэффициентом закручивания,
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 163
т.к. затягивание гайки на заданную величину поворота (α=60°) от исходного положения производят
после предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного),
что не позволяет определить фактические значения усилий в болтах как при затяжке, так и при
эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости
выбора болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига
(силы трения покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в момент
сдвига фиксируется с помощью электрического сигнала или заранее оттарированной шкалы
динамометрического ключа, но точность измерения и область возможного применения их
ограничена, т.к. не позволяет реализовать как при сборочном монтаже металлоконструкций, так и в
процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что
две пластины 1 и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3 болтами 4
и 5, расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и
определяют величину смещения между ними. О деформации судят по отношению между величиной
смещения между пластинами 1 и 2 и приращением усилия нагружения, при этом величину смещения
определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент
№1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например,
расположены несимметрично по отношению к направлению действия продольной силы N, в силу
чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может
произойти раньше, чем в менее напряженных. В итоге, это может привести к более раннему
разрушению всего соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения
несущей способности фрикционного соединения с высокопрочными болтами (Рабер Л.М.
Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36).
Сущность способа заключается в определении усилия сдвига посредством образцов-свидетелей,
который заключается в том, что образцы изготавливают из стали, применяемых и собираемых
конструкциях. Контактные поверхности обрабатывают по технологии, принятой в проекте
конструкций. Образец состоит из основного элемента и двух накладок, скрепленных высокопрочным
болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия испытательной машины
определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с
нормативным значением и в зависимости от величины отклонения осуществляют меры по
повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента
трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в
процессе нагружения образцов могут приводить к тем или иным неточностям в определении
коэффициента трения, т.к. коэффициент трения может меняться и по другим причинам как
климатического, так и эксплуатационного характера. Кроме того, неизвестно при каком
коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому фактическое усилие
сдвига нельзя с достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в
качестве сдвигающего устройства применяются специальные средства (пресса, испытательные
машины), которых на объекте монтажа или сборки металлоконструкции может не быть, поэтому
желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения
несущей способности фрикционного соединения с высокопрочными болтами, устраняющего
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 164
недостатки, присущие прототипу и позволяющие повысить надежность монтажа и эксплуатации
металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей
способности фрикционного соединения с высокопрочными болтами, включающий приготовление
образца-свидетеля, содержащего основной элемент металлоконструкции и накладку,
контактирующие поверхности которых предварительно обработаны по проектной технологии,
соединяют их высокопрочным болтом и гайкой при проектном значении усилия натяжения болта,
устанавливают устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной
величиной показателя сравнения, в зависимости от величины отклонения осуществляют
необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта,
полученное при заданном (проектном) значении величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство,
защищенное патентом РФ №88082 на полезную модель, обладающее рядом преимуществ и
обеспечивающее достоверность и точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения
высокопрочного болта от оптимального значения, для обеспечения надежности работы
фрикционного соединения металлоконструкции при монтаже ее изменяют натяжение болта и/или
проводят дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных
исследований установлено, что оптимальным отношением усилия сдвига к усилию натяжения болта
равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания
высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление сдвигу, если
отношение усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,500,54. Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного
болта необходимо проведение дополнительной обработки контактирующих поверхностей, т.к. при
значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают
коэффициент трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60,
это означает, что усилие натяжения превышает нормативную величину, и для надежности
металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно
является переносным и обладает рядом преимуществ перед известными устройствами. Оно содержит
неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага,
имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем
неподвижная деталь выполнена из двух стоек, торцевые поверхности которых скреплены фигурной
планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к
металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью
соединения его с фигурной планкой, а между выступом рычага и сдвигаемой деталью
металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного
материала. В качестве силоизмерительного устройства используется динамометрический ключ с
предварительно оттарированной шкалой для фиксации момента затяжки.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 165
Ниже приводится реализация предлагаемого способа обеспечения несущей способности
металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4,
снабженного шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и гайки 8,
плавающий сухарик 9, выполненный из закаленной стали, образец-свидетель состоит из
металлической накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между
собой высокопрочным болтовым соединением 12, а также болтовое соединение 13, предназначенное
для крепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем
соединения тестовой накладки 10 с пластиной металлоконструкции 11, если производится ремонт на
обследуемом объекте, причем контактирующая поверхность пластины обрабатывается
дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или,
если же осуществляется заводская поставка перед монтажом, то берут две тестовых накладки,
контактирующие поверхности которых уже обработаны в заводских условиях. Соединение пластин
10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения
высокопрочного болта должна соответствовать проектной величине. Расчетный момент
закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают
устройство для определения усилия сдвига путем закрепления корпуса 1, болтовым соединением 12
(болт, гайка, шайбы) таким образом, чтобы сухарик 9 соприкасался с накладкой 10 и рычагом 2,
размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5,
посредством сменной головки 6 надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта
через рычаг 5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10 (тестовая
пластина). Момент закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В
момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига
(силой трения покоя). Сравнивают полученную величину момента сдвига (Мсд) с расчетной
величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят
действия по обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению,
корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие
натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных
болтов при монтаже металлоконструкции дополнительно обработать контактирующие поверхности
поставленных заводом деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно
преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной
металлоконструкции.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 166
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций
заключается в его универсальности, т.к. его можно использовать для любых болтовых соединений на
высокопрочных болтах независимо от сложности конструкции, диаметров крепежных болтов и
методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на
обследуемой конструкции и образце производятся устройством при сопоставимых условиях, оценка
несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках
и выданы рекомендации к его применению в отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с
высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего элемент
металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно
обработаны по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном
значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство для
определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига,
фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения,
далее, в зависимости от величины отклонения, осуществляют коррекцию технологии монтажа,
отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия
натяжения высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига,
выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной
частью устройства и имеющего отверстие под нагрузочный болт, а между выступом рычага и
тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного
материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию
натяжения высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не
производят, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при
отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку
контактирующих поверхностей металлоконструкции.
СТП 006-97 Устройство соединений на высокопрочных болтах в стальных
конструкциях мостов
Определение коэффициента трения между контактными поверхностями
соединяемых элементов
Л. 1 Несущая способность соединений на высокопрочных болтах
оценивается испытанием на сдвиг при сжатии дву хсрезны х одн
оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции
возводимого сооружения (рис. Л.1).
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 167
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и
гайкой (в скобках размеры при исполь зовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а
затем фрезеруют до проектных размеров в плане. Отверстия образуются
сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или
выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по
технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и
натяжению в монтажных соединениях конструкции. Натяжени е болта
осуществляется динамометрическими ключами, применяемыми на
строительстве при сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был
гарантирован зазор «над болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть
параллельны, а торцы пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее
50 тс. Точность испытательной машины должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т
носительно пластин 2 и при этом фиксируется нагрузка Т,
характеризующая исчерпание несущей способности образца. Испытания
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 168
рекомендуется проводить с записью диаграммы сжатия образца. Для
суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата
испытания, маркировка образца, нагрузка, соответствующая сдвигу (прик
ладывается диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется
при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и
расчетное усилие Q bh , принятое в проекте сооружения, которое может
быть воспринято каждой п о верхностью трения соединяемых элеме нтов,
стянутых одним высокопрочным болтом (одним болт оконт акт ом),
оценивается соотношением Qbh ≤ Т/ 2 в каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается
комиссионно с участием заказчика, проектной и научно-исследоват е
льской организаций.
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных
трубопроводов и предназнечено для защиты шаровых кранов и
трубопровода от возможных вибрационных , сейсмических и взрывных
воздействий Конструкция фрикци -болт выполненный из латунной
шпильки с забитмы медным обожженным клином позволяет обеспечить
надежный и быстрый погашение сейсмической нагрузки при
землетрясении, вибрационных вождействий от железнодорожного и
автомобильно транспорта и взрыве .Конструкция фрикци -болт,
состоит их латунной шпильки , с забитым в пропиленный паз медного
клина, которая жестко крепится на фланцевом фрикционно- подвижном
соединении (ФФПС) . Кроме того между энергопоглощаюим клином
вставляютмс свинффцовые шайбы с двух сторо, а латунная шпилька
вставлдяетт фв ФФПС с медным ободдженным кгильзоц или втулкой (
на чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение
трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М.,
«Машиностроение», 1966, с. 491. (54) (57) 1.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 169
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых
кранов и трубопроводов от сейсмических воздействий за счет
использования фрикционное- податливых соединений. Известны
фрикционные соединения для защиты объектов от динамических
воздействий. Известно, например, болтовое фланцевое соединение ,
патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С
увеличением нагрузки происходит взаимное демпфирование колец тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно
подвижного соедиения (ФФПС), при импульсных растягивающих
нагрузках при многокаскадном демпфировании, корые работают упруго.
Недостатками известного решения являются: ограничение
демпфирования по направлению воздействия только по горизонтали и
вдоль овальных отверстий; а также неопределенности при расчетах изза разброса по трению. Известно также устройство для фрикционного
демпфирования и антисейсмических воздействий, патент SU 1145204, F
16 L 23/02 Антивибрационное фланцевое соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин
и несколько внешних пластин. В сегментах выполнены продольные пазы.
Сжатие пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на
пружинах, которые выдерживает сейсмические нагрузки но, при
возникновении динамических, импульсных растягивающих нагрузок,
взрывных, сейсмических нагрузок, превышающих расчетные силы трения
в сопряжениях, смещается от своего начального положения, при этом
сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции
и дороговизна, из-за наличия большого количества сопрягаемых трущихся
поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции,
уменьшение количества сопрягаемых трущихся поверхностей до одного
или нескольких сопряжений в виде фрикци -болта , а также повышение
точности расчета при использования фрикци- болтовых демпфирующих
податливых креплений для шаровых кранов и трубопровода.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 170
Сущность предлагаемого решения заключается в том, что с помощью
подвижного фрикци –болта с пропиленным пазом, в который забит
медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой
шайбой , установленный с возможностью перемещения вдоль оси и с
ограничением перемещения за счет деформации трубопровода под
действием запорного элемента в виде стопорного фрикци-болта с
пропиленным пазом в стальной шпильке и забитым в паз медным
обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого
трения с использованием латунной втулки или свинцовых шайб)
поглотителями сейсмической и взрывной энергии за счет сухого трения,
которые обеспечивают смещение опорных частей фрикционных
соединений на расчетную величину при превышении горизонтальных
сейсмических нагрузок от сейсмических воздействий или величин,
определяемых расчетом на основные сочетания расчетных нагрузок, сама
опора при этом начет раскачиваться за счет выхода обожженных
медных клиньев, которые предварительно забиты в пропиленный паз
стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с
помощью которого, поглощается взрывная, ветровая, сейсмическая,
вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные
растягивающие нагрузки при землетрясении и при взрывной, ударной
воздушной волне. Фрикци –болт повышает надежность работы
оборудования, сохраняет каркас здания, моста, ЛЭП, магистрального
трубопровода, за счет уменьшения пиковых ускорений, за счет
использования протяжных фрикционных соединений, работающих на
растяжение на фрикци- болтах, установленных в длинные овальные
отверстия с контролируемым натяжением в протяжных соединениях
согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013,
СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям
трубчатых элементов
Цель изобретения расширение области использования соединения в
сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4,
кольцевого уплотнителя 5.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 171
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом
куж забивается медный обожженный клин и снабжен
энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного фрикци
-болта с пропиленныым пазом , кужа забиваенься стопорный
обожженный медный, установленных на стержнях фрикци- болтов
Медный обожженный клин может быть также установлен с двух
сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца:
расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если
антисейсмическим или виброизолирующим является медный
обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в
продольном направлении, осуществляется смянанием с
энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми
шайбами , расположенными между цилиндрическими выступами . При
этом промежуток между выступами, должен быть больше амплитуды
колебаний вибрирующего трубчатого элемента, Для обеспечения более
надежной виброизоляции и сейсмозащиты шарового кран с
трубопроводом в поперечном направлении, можно установить медный
втулки или гильзы ( на чертеже не показаны), которые служат
амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность
соединения, может служить стальной трос ( на чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный
обожженный клин , который является амортизирующим элементом при
многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом
соединени , выполненные из латунной шпильки с забиты с одинаковым
усилием медный обожженный клин , например латунная шпилька , по
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 172
названием фрикци-болт . Одновременно с уплотнением соединения оно
выполняет роль упругого элемента, воспринимающего вибрационные и
сейсмические нагрузки. Между выступами устанавливаются также
дополнительные упругие свинцовые шайбы , повышающие надежность
виброизоляции и герметичность соединения в условиях повышенных
вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с
одинаковым усилием , после чего производится стягивание соединения
гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный
обожженный клин на строго определенную величину, обеспечивающую
рабочее состояние медного обожженного клина . свинцовые шайбы
применяются с одинаковой жесткостью с двух сторон .
Материалы медного обожженного клина и медных обожженных втулок
выбираются исходя из условия, чтобы их жесткость соответствовала
расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию
и герметичность фланцевого соединения трубопровода и шаровых
кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не
показаны) повышает герметичность соединения и надежность его
работы в тяжелых условиях вибронагрузок при моногкаскадном
демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци болта определяется исходя из, частоты вынужденных колебаний
вибрирующего трубчатого элемента с учетом частоты собственных
колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если
коэффициент динамичности фрикци -болта будет меньше единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ,
содержащее крепежные элементы, подпружиненные и
энергопоглощающие со стороны одного из фланцев, амортизирующие в
виде латунного фрикци -болта с пропиленным пазом и забитым медным
обожженным клином с медной обожженной втулкой или гильзой ,
охватывающие крепежные элементы и установленные в отверстиях
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 173
фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем,
что, с целью расширения области использования соединения, фланцы
выполнены с помощью энергопоглощающего фрикци -болта , с забитимы
с одинаковм усилеи м медым обожженм коллином расположенными во
фоанцемом фрикционно-подвижном соедиении (ФФПС) ,
уплотнительными элемент выполнен в виде свинцовых тонких шайб ,
установленного между цилиндрическими выступами фланцев, а крепежные
элементы подпружинены также на участке между фланцами, за счет
протяжности соединения по линии нагрузки .
2. Соединение по и. 1, отличающееся тем, что между медным
обожженным энергопоголощающим клином установлены тонкие
свинцовые или обожженные медные шайбы, а в латунную шпильку
устанавливает медная обожженная гильза или втулка .
Фиг 1
Фиг 2
Фиг 3
Фиг 4
Фиг 5
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 174
Фиг 6
Фиг 7
Фиг 8
Фиг 9
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 175
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 176
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 177
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 178
Рис На рисунке показан узел гасителе динамических колебаний для применения легко
сбрасываемость (ЛСК) из последних двух этажей жилого дома, для обеспечения
сейсмостойкости, за счет легко сбрасываемости панелей с существующего здания , при
импульсных растягивающих нагрузках с использованием протяжных фрикционно-подвижных
соединений с контролируемым натяжением из латунных ослабленных болтов, в поперечном сечении
резьбовой части с двух сторон с образованными лысками, по всей длине резьбы латунного болта и
их программная реализация расчета, в среде вычислительного комплекса SCAD Office c
использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная»,
№ 165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При сбрасывании
навесных легко сбрасываемых панелей с применением фрикционно-подвижных болтовых
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 179
соединений для обеспечения сейсмостойкости конструкций здания: масса здания
уменьшается, частота собственных колебаний увеличивается, а сейсмическая нагрузка падает
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 180
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 181
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 182
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 183
При компьютерном моделировании в ПК SCAD использовалось изобретение СПОСОБ ЗАЩИТЫ
ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ , патент № 2010 136 746
(19)
РОССИЙСКАЯ ФЕДЕРАЦИЯ
RU
(11)
2010 136 746
(13)
A
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
(51) МПК 2010 136 746
 E04C 2/00 (2006.01)
(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теплант"
Приоритет(ы):
(RU)
(22) Дата подачи заявки: 01.09.2010
(72) Автор(ы):
Подгорный Олег Александрович (RU),
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2 Акифьев Александр Анатольевич (RU),
Тихонов Вячеслав Юрьевич (RU),
Адрес для переписки:
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
443004, г.Самара, ул.Заводская, 5, ОАО
Коваленко Александр Иванович (RU)
"Теплант"
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 184
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения № 2010 136 746
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение
проема/проемов рассчитанной площади для снижения до допустимой величины взрывного давления,
возникающего во взрывоопасных помещениях при аварийных внутренних взрывах, отличающийся
тем, что в объеме каждого проема организуют зону, представленную в виде одной или нескольких
полостей, ограниченных эластичным огнестойким материалом и установленных на
легкосбрасываемых фрикционных соединениях при избыточном давлении воздухом и
землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем объеме проема, а
в момент взрыва и землетрясения под действием взрывного давления обеспечивают изгибающий
момент полости/полостей и осуществляют их выброс из проема и соскальзывают с болтового
соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на
высокоподатливых с высокой степенью подвижности фрикционных, скользящих соединениях с
сухим трением с включением в работу фрикционных гибких стальных затяжек диафрагм жесткости,
состоящих из стальных регулируемых натяжений затяжек сухим трением и повышенной
подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в горизонтали в
районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от вертикали 65 мм, т.е. до
7 см (подъем пятки на уровне фундамента), не подвергая разрушению и обрушению конструкции
при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых
соединениях со свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое
напряжение на все четыре-восемь гаек и способствует одновременному поглощению сейсмической и
взрывной энергии, не позволяя разрушиться основным несущим конструкциям здания, уменьшая вес
здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого
соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут монтироваться как
самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения
сейсмической энергии может определить величину горизонтального и вертикального перемещения
«сэндвич»-панели и определить ее несущую способность при землетрясении или взрыве прямо на
строительной площадке, пригрузив «сэндвич»-панель и создавая расчетное перемещение по
вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и аварийного взрыва
прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются,
проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9,
MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL 3d,
SivilFem 10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне прямо на
строительной площадке испытываются фрагменты и узлы, и проверяются экспериментальным путем
допустимые расчетные перемещения строительных конструкций (стеновых «сэндвич»-панелей,
щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные при аварийном
взрыве и при землетрясении более 9 баллов перемещение по методике разработанной
испытательным центром ОО «Сейсмофонд» - «Защита и безопасность городов».
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 185
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
 G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(71) Заявитель(и):
Рабер Лев Матвеевич
(UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(72) Автор(ы):
Рабер Лев Матвеевич
(UA),
(56) Список документов, цитированных в отчете о поиске: Чесноков
Кондратов В.В.(RU),
Хусид Р.Г.(RU),
А.С., Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A, Миролюбов Ю.П.(RU)
15.09.80. SU 993062 A, 30.01.83. EP 0170068 A'', 05.02.86.
(73) Патентообладатель(и):
Адрес для переписки:
Рабер Лев Матвеевич
(UA),
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(45) Опубликовано: 10.05.2000 Бюл. № 13
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО
СОЕДИНЕНИЯ
(57) Реферат:
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 186
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации
металлоконструкций для определения параметров затяжки болтов. В эксплуатируемом соединении
производят затягивание гайки на заданную величину угла ее поворота от исходного положения.
Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента
закручивания гайки в области упругих деформаций. Определяют приращение момента закручивания.
Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент
закручивания резьбового соединения определяют как отношение приращения момента закручивания
гайки к произведению приращения усилия натяжения болта на его диаметр. Технический результат
заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений
для повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения,
преимущественно высокопрочных болтов, и может быть использовано в мостостроении и других
отраслях строительства и эксплуатации металлоконструкций для определения параметров затяжки
болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии
приемки выполненных работ (Инструкция по технологии устройства соединений на высокопрочных
болтах в стальных конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР,
Минтрансстрой СССР), так и в период обследования конструкций (строительные нормы и правила
СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М., Стройиздат, 1987, с. 2527), используют динамометрические ключи. Этими ключами измеряют момент закручивания Mз,
которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные
болты в конструкциях мостов. М.,Транспорт, 1971, с. 60-64):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при
известном коэффициенте закручивания усилие натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит
от того, в какой мере действительные коэффициенты закручивания k соответствуют расчетным
величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило,
лишь на стадии приемки выполненных работ, поскольку предусматриваемая технологией
постановки болтов стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких
пределах, что вносит существенную неточность в результаты измерений. По данным Чеснокова А.С.
и Княжева А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974,
табл. 17, с. 73) коэффициент закручивания зависит от качества смазки резьбы и может изменяться в
пределах 0,12-0,264. Таким образом измеренные усилия в болтах с помощью динамометрических
ключей могут отличаться от фактических значений более чем в 2 раза.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 187
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина
коэффициента k не оказывает влияния на результаты измерений. Способ реализован с помощью
устройства (А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых
соединений (Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879),
опыт применения которого выявил его надежную работу в случае сравнительно непродолжительного
(до пяти лет) срока эксплуатации конструкций. При более длительном сроке эксплуатации
срабатывание предусмотренных конструкцией устройства пружин происходит недостаточно четко,
поскольку с течением времени неподвижный контакт резьбовой пары приводит к увеличению
коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина
момента сил трения в резьбе превосходит величину крутящего момента, создаваемого
преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над
гайкой резьбы болта не менее, чем на 20 мм. Наличие таких болтов в узлах и прикреплениях должно
специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их
натяжения необходимо назначить величину момента закручивания для подтяжки болтов. Для
назначения этого момента необходимы знания фактического значения коэффициента закручивания
k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ
измерения коэффициента закручивания болтов с учетом влияния времени, аналогичному влиянию
качества изготовления болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении
коэффициента ki в лабораторных условиях (см. тот же источник, с. 74-77) путем одновременного
обеспечения и контроля заданного усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для
статистической оценки необходимо произвести испытания нескольких десятков или даже сотен
болтов. Кроме того, при извлечении болта из конструкции резьбу гайки прогоняют по окрашенной
или загрязненной резьбе болта, а испытания в лабораторных условиях производят, как правило, не на
том участке резьбы, на котором болт быть сопряжен с гайкой в пакете. Все это ставит под сомнение
достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят
затягивание гайки на заданную величину угла ее поворота от исходного положения, произведя
предварительно для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла
ее поворота в области упругих деформаций производят с замером значения момента закручивания
гайки и определяют приращение момента закручивания. При этом приращение усилия натяжения
болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
i
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 188
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента
закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом
соединении и повысить точность определения величины коэффициента закручивания за счет
исключения необходимости прогона резьбы гайки по окрашенной или загрязненной резьбе болта.
Кроме того, в отличие от прототипа испытания проводят на том же участке резьбы, на котором болт
сопряжен с гайкой постоянно. Способ осуществляется следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и
измеряют фактическую величину этого момента (исходное положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между
метками соответствует заданному углу поворота гайки; как правило, этот угол составляет 60o.
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по
достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN
по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных
экспериментов, состоящих в исследовании влияния толщины пакета и уточнении влияния толщины
и количества деталей, составляющих пакет эксплуатируемого соединения, на стабильность
приращения усилия натяжения болтов при повороте гайки на угол 60o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М.
Высокопрочные болты в конструкциях мостов - М., Транспорт, 1974, с. 65-68). В пределах этой
области, равному приращению угла поворота гайки, соответствует равное приращение усилий
натяжения болта. Величина этого приращения в плотно стянутом болтами пакете, при постоянном
диаметре болта зависит от толщины этого пакета. Следовательно, поворот гайки на определенный
угол в области упругих деформаций идентичен созданию в болте заданного натяжения. Этот эффект
явился основой предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на
одну грань. Погрешность системы определения коэффициента закручивания, характеризуемая как
погрешностью выполнения отдельных операций, так и погрешностью регистрации требуемых
параметров, составляет около ± 8% (см. Акт испытаний).
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 189
Таким образом, предложенный способ определения коэффициента закручивания резьбовых
соединений дает возможность проводить испытания в конкретных условиях эксплуатации
соединений, что повышает точность полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть
использованы как при определении усилий натяжения болтов в период обследования конструкций,
так при назначении величины момента для подтяжки болтов, в которых по результатам обследования
выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в
измерении параметров затяжки соединения, по которым вычисляют коэффициент закручивания,
отличающийся тем, что в эксплуатируемом соединении производят затягивание гайки на заданную
величину угла ее поворота от исходного положения, произведя предварительно для этого ослабление
ее затягивания, с замером значения момента закручивания гайки в области упругих деформаций и
определяют приращение момента закручивания, при этом приращение усилия натяжения болта
определяют по формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения
момента закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
 F16B 31/02 (2006.01)
 G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса:
Пошлина:07.08.2017)
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 190
учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(45) Опубликовано: 27.02.2011 Бюл. № 6
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ
(56) Список документов, цитированных в отчете ОТВЕТСТВЕННОСТЬЮ
о поиске: SU 1753341 A1, 07.08.1992. SU
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ
ФИРМА "ПАРТНЁР" (RU)
1735631 A1, 23.05.1992. JP 2008151330 A,
03.07.2008. WO 2006028177 A1, 16.03.2006.
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5,
корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ
МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами. Способ обеспечения несущей способности фрикционного соединения
металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля,
содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности
которых, предварительно обработанные по проектной технологии, соединяют высокопрочным
болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку
на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной
величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение
усилия натяжения высокопрочного болта. Определение усилия сдвига на образце-свидетеле
осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел
сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с
неподвижной частью устройства, и имеющего отверстие под нагрузочный болт, а между выступом
рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 191
закаленного материала. В результате повышается надежность соединения. 1 з.п. ф-лы, 1
ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами, но может быть использовано для определения фактического напряженнодеформированного состояния болтовых соединений в различных конструкциях, в частности
стальных мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных
узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с
помощью болтовых фрикционных соединений, в которых передача усилия обжатия соединяемых
элементов высокопрочными метизами осуществляется только силами трения по контактным
плоскостям усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего
сдвига по среднему ряду болтов. Сдвигающее усилие, отнесенное к одному высокопрочному болту и
одной плоскости трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также
коэффициент работы мостов m1=0,9; m2 - коэффициент условий работы соединения; Рн нормативное усилие натяжения болта; fн - нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных
соединений с высокопрочными болтами, которые отражаются в проектной документации, являются
усилие натяжения болта и нормативный коэффициент трения, с учетом условий работы
фрикционного соединения. Нормативное усилие натяжения болтов назначается с учетом
механических характеристик материала и его определяют по формуле:
, где Р усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на
заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть
в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее
выполненных соединений важными являются вопросы оценки коэффициентов трения по
соприкасающимся поверхностям соединяемых элементов. Этот вопрос приобретает особую
актуальность в случае сочетания металлических поверхностей, находящихся в эксплуатации с
новыми элементами, а также для оценки возможности повторного использования высокопрочных
болтов. В качестве нормативного коэффициента трения принимается среднестатистическое значение,
определенное по возможно большему объему экспериментального материала раздельно для
различных методов подготовки контактных поверхностей.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 192
Практикой выполнения монтажных работ установлено, что наиболее эффективно
сдвигоустойчивость контактных соединений выполняется при коэффициенте трения поверхностей
f≥0,55. Это значение можно принять в качестве основного критерия сдвигоустойчивости, и оно
соответствует исходному значению Ктр. для монтируемых стальных контактных поверхностей,
обработанных непосредственно перед сборкой абразивно-струйным методом с чистотой очистки до
степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по
показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения болтов.
Отклонение усилия натяжения и возможные их изменения при эксплуатации могут приводить к тем
или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и
обеспечения требуемой величины f≥0,55 решена применением разработанного НПЦ Мостов
съемного покрытия «Контакт» (патент РФ №2344149 на изобретение «Антикоррозионное покрытие
и способ его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в
условиях завода колотой стальной дробью контактных поверхностей мостовых пролетных
конструкций на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных
работ на строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается
ножом и ручным способом легко снимается «чулком» с контактных поверхностей, после чего сборка
конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с
пролетными строениями осуществляется с помощью захватов, фиксируемых в отверстиях
контактных поверхностей, временное защитное покрытие «Контакт» в районе установки захватов
повреждается. На строительном объекте приходится производить повторную абразивно-струйную
обработку присоединительных поверхностей, т.к. они после длительной эксплуатации на открытом
воздухе обильно покрыты продуктами ржавления. Выполнение дополнительной очистки
значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях открытой
атмосферы и удаленности строительных площадок мостов от промышленных центров требуемые
показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение
фрикционных показателей, соответственно снижение усилий обжатия высокопрочных метизов, а
следовательно, приводят к снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает
постоянное воздействие на контактные соединения климатических факторов, соответствующих в
пределах Российской Федерации умеренно-холодному климату (У1), а также циклических сдвиговых
нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов
металлоконструкции. Более того, в настоящее время обработка металлических поверхностей
металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения
об условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной
период, поэтому возникает необходимость проверки фактической надежности работы фрикционного
соединения с высокопрочными болтами перед монтажом, для обеспечения надежности при их
эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством
приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о
необходимости совершенствования диагностической и инструментальной базы, способствующей
повышению эффективности реновационных и ремонтных работ конструкций различного назначения.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 193
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется
отсутствием сдвигов соединяемых элементов при восприятии внешней нагрузки как на срез, так и
растяжение. Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий
работы соединения, зависящий от количества (n) болтов, необходимых для восприятия расчетного
усилия; Abn - площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся
поверхностям соединенных элементов; Yh - коэффициент надежности, зависящий от способа
натяжения болтов, коэффициента трения f, разницы между диаметрами отверстий и болтов,
характера действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах,
Днепропетровск: Системные технологии, 2008 г., с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ
№2148805, G01L 5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого момента
закручивания гайки к произведению определяемого усилия натяжения болта на его диаметр.
Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на
контролируемую величину угла ее поворота от исходного положения с замером значения момента
закручивания в области упругих деформаций и определения приращения момента затяжки.
Приращение усилия натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта
диаметром 22 мм2; αi - угол поворота гайки от исходного положения; σ - толщина пакета деталей,
соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с
неизвестными коэффициентами трения контактных поверхностей и коэффициентом закручивания,
т.к. затягивание гайки на заданную величину поворота (α=60°) от исходного положения производят
после предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного),
что не позволяет определить фактические значения усилий в болтах как при затяжке, так и при
эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости
выбора болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига
(силы трения покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в момент
сдвига фиксируется с помощью электрического сигнала или заранее оттарированной шкалы
динамометрического ключа, но точность измерения и область возможного применения их
ограничена, т.к. не позволяет реализовать как при сборочном монтаже металлоконструкций, так и в
процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что
две пластины 1 и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3 болтами 4
и 5, расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и
определяют величину смещения между ними. О деформации судят по отношению между величиной
смещения между пластинами 1 и 2 и приращением усилия нагружения, при этом величину смещения
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 194
определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент
№1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например,
расположены несимметрично по отношению к направлению действия продольной силы N, в силу
чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может
произойти раньше, чем в менее напряженных. В итоге, это может привести к более раннему
разрушению всего соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения
несущей способности фрикционного соединения с высокопрочными болтами (Рабер Л.М.
Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36).
Сущность способа заключается в определении усилия сдвига посредством образцов-свидетелей,
который заключается в том, что образцы изготавливают из стали, применяемых и собираемых
конструкциях. Контактные поверхности обрабатывают по технологии, принятой в проекте
конструкций. Образец состоит из основного элемента и двух накладок, скрепленных высокопрочным
болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия испытательной машины
определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с
нормативным значением и в зависимости от величины отклонения осуществляют меры по
повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента
трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в
процессе нагружения образцов могут приводить к тем или иным неточностям в определении
коэффициента трения, т.к. коэффициент трения может меняться и по другим причинам как
климатического, так и эксплуатационного характера. Кроме того, неизвестно при каком
коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому фактическое усилие
сдвига нельзя с достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в
качестве сдвигающего устройства применяются специальные средства (пресса, испытательные
машины), которых на объекте монтажа или сборки металлоконструкции может не быть, поэтому
желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения
несущей способности фрикционного соединения с высокопрочными болтами, устраняющего
недостатки, присущие прототипу и позволяющие повысить надежность монтажа и эксплуатации
металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей
способности фрикционного соединения с высокопрочными болтами, включающий приготовление
образца-свидетеля, содержащего основной элемент металлоконструкции и накладку,
контактирующие поверхности которых предварительно обработаны по проектной технологии,
соединяют их высокопрочным болтом и гайкой при проектном значении усилия натяжения болта,
устанавливают устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной
величиной показателя сравнения, в зависимости от величины отклонения осуществляют
необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта,
полученное при заданном (проектном) значении величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство,
защищенное патентом РФ №88082 на полезную модель, обладающее рядом преимуществ и
обеспечивающее достоверность и точность измерения усилия сдвига.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 195
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения
высокопрочного болта от оптимального значения, для обеспечения надежности работы
фрикционного соединения металлоконструкции при монтаже ее изменяют натяжение болта и/или
проводят дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных
исследований установлено, что оптимальным отношением усилия сдвига к усилию натяжения болта
равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания
высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление сдвигу, если
отношение усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,500,54. Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного
болта необходимо проведение дополнительной обработки контактирующих поверхностей, т.к. при
значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают
коэффициент трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60,
это означает, что усилие натяжения превышает нормативную величину, и для надежности
металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно
является переносным и обладает рядом преимуществ перед известными устройствами. Оно содержит
неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага,
имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем
неподвижная деталь выполнена из двух стоек, торцевые поверхности которых скреплены фигурной
планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к
металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью
соединения его с фигурной планкой, а между выступом рычага и сдвигаемой деталью
металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного
материала. В качестве силоизмерительного устройства используется динамометрический ключ с
предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности
металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4,
снабженного шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и гайки 8,
плавающий сухарик 9, выполненный из закаленной стали, образец-свидетель состоит из
металлической накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между
собой высокопрочным болтовым соединением 12, а также болтовое соединение 13, предназначенное
для крепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем
соединения тестовой накладки 10 с пластиной металлоконструкции 11, если производится ремонт на
обследуемом объекте, причем контактирующая поверхность пластины обрабатывается
дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или,
если же осуществляется заводская поставка перед монтажом, то берут две тестовых накладки,
контактирующие поверхности которых уже обработаны в заводских условиях. Соединение пластин
10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения
высокопрочного болта должна соответствовать проектной величине. Расчетный момент
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 196
закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают
устройство для определения усилия сдвига путем закрепления корпуса 1, болтовым соединением 12
(болт, гайка, шайбы) таким образом, чтобы сухарик 9 соприкасался с накладкой 10 и рычагом 2,
размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5,
посредством сменной головки 6 надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта
через рычаг 5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10 (тестовая
пластина). Момент закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В
момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига
(силой трения покоя). Сравнивают полученную величину момента сдвига (Мсд) с расчетной
величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят
действия по обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению,
корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие
натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных
болтов при монтаже металлоконструкции дополнительно обработать контактирующие поверхности
поставленных заводом деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно
преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной
металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций
заключается в его универсальности, т.к. его можно использовать для любых болтовых соединений на
высокопрочных болтах независимо от сложности конструкции, диаметров крепежных болтов и
методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на
обследуемой конструкции и образце производятся устройством при сопоставимых условиях, оценка
несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках
и выданы рекомендации к его применению в отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с
высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего элемент
металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно
обработаны по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном
значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство для
определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига,
фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения,
далее, в зависимости от величины отклонения, осуществляют коррекцию технологии монтажа,
отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 197
натяжения высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига,
выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной
частью устройства и имеющего отверстие под нагрузочный болт, а между выступом рычага и
тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного
материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию
натяжения высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не
производят, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при
отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку
контактирующих поверхностей металлоконструкции.
2472981 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 472 981
(13)
C1
(51) МПК
 F16B 5/02 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.03.2017)
Пошлина:
учтена за 5 год с 18.06.2015 по 17.06.2016
(21)(22) Заявка: 2011125214/12, 17.06.2011
(72) Автор(ы):
Андрейченко Игорь
(24) Дата начала отсчета срока действия патента:
Леонардович (RU),
17.06.2011
Полатиди Людмила
Борисовна (RU),
Приоритет(ы):
Бурцева Ирина Валерьевна
(RU),
(22) Дата подачи заявки: 17.06.2011
Бугреева Светлана
Ильинична (RU),
(45) Опубликовано: 20.01.2013 Бюл. № 2
Красинский Леонид
Григорьевич (RU),
Миллер Олег Григорьевич
(56) Список документов, цитированных в отчете о поиске: SU
176199 A1, 15.09.1992. SU 1751463 A1, 30.07.1992. RU 2263828 C1, (RU),
10.11.2005. WO 2004/099632 A1, 18.11.2004. DE 202004012044 U1, Шумягин Николай
Николаевич (RU)
19.05.2005.
Адрес для переписки:
(73) Патентообладатель(и):
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 198
614990, г.Пермь, ГСП, Комсомольский пр-кт, 93, ОАО
"Авиадвигатель", отдел защиты интеллектуальной
собственности
Открытое акционерное
общество "Авиадвигатель"
(RU)
(54) БОЛТОВОЕ СОЕДИНЕНИЕ ВРАЩАЮЩИХСЯ ДЕТАЛЕЙ
(57) Реферат:
Изобретение относится к области машиностроения и авиадвигателестроения и может быть
использовано для соединения вращающихся деталей ротора газотурбинного двигателя авиационного
и наземного применения. Болтовое соединение вращающихся деталей, объединенных в пакет, с
расположенными по окружности отверстиями, внутри которых на высоту пакета деталей
установлены втулки с размещенными в их центральных отверстиях стяжными болтами. Каждое
отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным
сечением, вытянутым в окружном направлении. При этом b/a=1,36-1,5; с>(2,5-3)×b, где а - размер
сечения втулки в радиальном направлении; b - размер сечения втулки в окружном направлении; с длина окружности между центральными отверстиями соседних втулок. Обеспечивается повышение
циклического ресурса и надежности болтового соединения вращающихся деталей при высоких
параметрах работы путем разгрузки зон концентрации напряжений в указанных деталях. 1 з.п. ф-лы,
3 ил.
Изобретение относится к области машиностроения и авиадвигателестроения, может быть
использовано для соединения вращающихся деталей ротора газотурбинного двигателя авиационного
и наземного применения.
Известно болтовое соединение, включающее цилиндрическую разгрузочную втулку с круглым
сечением, которую используют для центровки и разгрузки болта, снижения напряжений среза в
самом болте и исключения сдвиговых деформаций в соединяемых деталях (Атлас. Детали машин.
В.Н.Быков, С.П.Фадеев, Издательство «Высшая школа», 1969 г., с.83, рис.3.4). При вращении
деталей в районе отверстий под болты возникают напряжения. Наличие концентратора напряжения,
повышающего уровень действующих напряжений в 3-4 раза, является основным недостатком такой
конструкции, снижающим циклическую долговечность и ресурс деталей.
В авиадвигателестроении широко применяется соединение деталей с помощью стяжных болтов.
Отверстия под болты, являющиеся концентраторами напряжений, могут быть расположены в
полотне дисков и на выносных фланцах деталей. Выносные фланцы применяют для удаления
концентратора в виде отверстия из полотна диска.
Наличие концентратора напряжений - круглого отверстия под болт, которое повышает уровень
действующих напряжений в 3-4 раза и снижает ресурс деталей, является основным недостатком
такой конструкции.
Практически эта проблема решается путем выполнения выкружек типа «короны» во фланцах, что
обеспечивает достаточную разгрузку отверстий. Эффективность подобной доработки деталей
подтверждена испытаниями и широко используется, например, во фланцах под балансировочные
грузики лабиринтов диска 13-ой ступени ротора компрессора высокого давления (КВД) двигателей
ПС-90А, ПС-90А2 (А.А.Иноземцев, М.А.Нихамкин, В.Л.Сандрацкий. Основы конструирования
авиационных двигателей и энергетических установок, том 4,стр.109).
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 199
Наиболее близким к заявляемой конструкции соединения является узел соединения, включающий
пакет деталей, цилиндрическую втулку и болт с гайкой. В деталях выполнены круглые отверстия
(Патент РФ №2263828, F16B 5/02, 2005 г.).
Недостатком известного узла является круглая форма отверстий под втулку, вызывающая
повышенные напряжения в болте и в соединяемых деталях, снижающие циклический ресурс и
надежность болтового соединения при вращении деталей.
Техническая задача, решаемая изобретением, заключается в повышении циклического ресурса и
надежности болтового соединения вращающихся деталей при высоких параметрах работы путем
разгрузки зон концентрации напряжений в указанных деталях.
Сущность изобретения заключается в том, что в болтовом соединении вращающихся деталей,
объединенных в пакет, с расположенными по окружности отверстиями, внутри которых на высоту
пакета деталей установлены втулки с размещенными в их центральных отверстиях стяжными
болтами, согласно п.1 формулы изобретения, каждое отверстие выполнено овальной формы и
вытянуто в окружном направлении, а втулка - с овальным сечением, вытянутым в окружном
направлении, при этом
b/а=1,36-1,5; c>(2,5-3)×b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
Кроме того по п.2 формулы для обеспечения изолированности полостей ступеней компрессора и
сохранения необходимой площади контакта между деталями и болтом необходимо соблюдать
следующее соотношение:
(a-d)/2>1,4 мм,
где d - диаметр отверстия втулки под болт.
Конфигурация втулки и размеры отверстия под нее выбраны на оснований анализа геометрии дисков
и расчетов напряженно-деформированного состояния.
Было обнаружено, что выполнение отверстий овальной формы, вытянутых в окружном направлении,
и выполнение втулки с соответствующим овальным при соотношениях:
b/a=1,36-1,5; c>(2,5-3)×b,
позволяет эффективно разгружать зоны концентрации напряжений и повышать расчетные значения
циклического ресурса деталей, оцененного по условной кривой малоцикловой усталости для
дисковых сплавов (Технический отчет №12045, М., ЦИАМ, 1993. Развитие методики управления
ресурсами авиационного ГТД с целью повышения прочностной надежности, увеличения ресурсов и
сокращения затрат при ресурсных испытаниях (применительно к двигателю ПС-90А и его
модификациям)).
Втулки с овальным сечением выполняют в заявляемой конструкции следующие функции:
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 200
- обеспечивают фиксацию деталей относительно друг друга;
- сохраняют необходимую площадь контакта между фланцами и стандартным болтом круглой
формы;
- обеспечивают изолированность полостей секций (ступеней) компрессора.
Кроме того, применение втулок заявляемой конструкции упрощает процесс сборки деталей
компрессора, а при изготовлении втулок из легкого и прочного материала - позволяет снижать массу
фланцев дисков и всего ротора в целом.
Анализ результатов расчетов показывает, что заявляемое болтовое соединение имеет перспективу
использования в современных двигателях последнего поколения.
В случае если b/а<1,36, форма отверстия стремится к окружности, возрастает уровень окружных
напряжений в отверстиях соединяемых деталей, следовательно, снижается циклическая
долговечность.
В случае если b/а>1,5, отверстие больше вытянуто в окружном направлении, при этом уменьшается
площадь цилиндрического сечения сопрягаемых деталей, что повышает риск потери несущей
способности, возрастает уровень радиальных напряжений и снижается циклическая долговечность.
В случае если с≤2,5b, расстояние между центрами отверстий уменьшается, пропорционально
уменьшается и площадь цилиндрического сечения соединяемых деталей, что повышает риск потери
несущей способности.
Соотношение с>3b приводит к тому, что расстояние между центрами отверстий увеличено, линии
действий окружных напряжений при этом выравниваются, а эффект снижения концентраций
напряжений уменьшается.
Кроме того, по п.2 формулы изобретения, для сохранения необходимой площади контакта между
деталями и болтом, а также из технологических соображений необходимо соблюдать следующее
соотношение: (a-d)/2>1,4 мм. В противном случае возникают технологические сложности с
изготовлением втулки, т.к. толщина стенки втулки слишком мала. Кроме того, в тонкой стенке
втулки возникают недопустимо высокие напряжения.
Таким образом, при высоких параметрах работы использование данной конструкции болтового
соединения дает возможность не только выравнивать напряжения по толщине пакета деталей и в
болтах, но и значительно снижать уровень действующих напряжений в соединяемых деталях,
повышая их ресурс.
На фиг.1 представлено сечение пакета соединяемых деталей с втулкой, имеющей овальное сечение,
на фиг.2 - разрез А-А на фиг.1. На фиг.3 показано болтовое соединение в сборке деталей ротора КВД
в аксонометрии.
Болтовое соединение включает пакет вращающихся деталей газотурбинного двигателя (ГТД),
например, фланца 1 диска первой ступени (КВД), фланца 2 вала КВД и диска 3 второй ступени КВД.
В деталях 1, 2, 3 выполнены овальные отверстия 4, вытянутые в окружном направлении под втулку 5
с таким же овальным сечением и размерами а и b в радиальном и окружном направлениях,
соответственно. В отверстии 4 втулка 5 размещена на всю толщину пакета деталей 1, 2, 3. Во втулке
5 имеется круглое центральное отверстие 6 диаметром d под стандартный стяжной болт 7 круглого
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 201
сечения. Диаметр головки болта 7 и наружный диаметр гайки 8 перекрывают при сборке радиальный
размер а втулки 5 при соблюдении условия
(a-d)/2>1,4 мм.
Втулка 5 обеспечивает изолированность полостей ступеней компрессора, сохраняет необходимую
площадь контакта между фланцами и стяжным болтом 7.
Отверстия 6 расположены равномерно по всей длине окружности соединяемых деталей 1, 2, 3, при
этом длина окружности С между ними зависит от размера сечения b втулки 5 в окружном
направлении.
Болтовое соединение собирают следующим образом.
В овальное отверстие 4 пакета вращающихся деталей 1, 2, 3 вставляют втулку 5, в которой
размещают стандартный болт 7 и закрепляют гайкой 8. В процессе работы КВД концентрация
напряжений в зоне отверстий 4 в полотне и во фланцах 1, дисков будут минимальной, что позволяет
работать при высоких заданных параметрах двигателя, повышая циклический ресурс и надежность
болтового соединения.
Формула изобретения
1. Болтовое соединение вращающихся деталей, объединенных в пакет, с расположенными по
окружности отверстиями, внутри которых на высоту пакета деталей установлены втулки с
размещенными в их центральных отверстиях стяжными болтами, отличающееся тем, что каждое
отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным
сечением, вытянутым в окружном направлении, при этом b/a=1,36-1,5; c>(2,5-3)·b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
2. Болтовое соединение вращающихся деталей по п.1, отличающееся тем, что (a-d)/2>1,4 мм, где d диаметр отверстия втулки под болт.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 202
2249557 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 249 557
(13)
C2
(51) МПК
 B66C 7/00 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.03.2008)
(21)(22) Заявка: 2003107392/11, 17.03.2003
(24) Дата начала отсчета срока действия патента:
17.03.2003
(72) Автор(ы):
Нежданов К.К. (RU),
Туманов В.А. (RU),
Нежданов А.К. (RU),
Кузьмишкин А.А. (RU)
(43) Дата публикации заявки: 10.09.2004 Бюл. № 25
(45) Опубликовано: 10.04.2005 Бюл. № 10
(73) Патентообладатель(и):
Туманов Антон
Вячеславович (RU)
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 203
(56) Список документов, цитированных в отчете о поиске: RU 2192383
C1, 10.11.2002. SU 1735470 A1, 23.05.1992. ЕР 0194615 A1, 18.09.1986.
Адрес для переписки:
440047, г.Пенза 47, ул. Минская, 13, кв.56, А.В. Туманову
(54) УЗЕЛ УПРУГОГО СОЕДИНЕНИЯ ТРЕХГЛАВОГО РЕЛЬСА С ПОДКРАНОВОЙ
БАЛКОЙ
(57) Реферат:
Изобретение относится к подкрановым конструкциям с интенсивным тяжелым режимом работы
кранов. Согласно изобретению узел снабжен размещенной под рельсом и опирающейся на верхний
пояс подкрановой балки демпфирующей подрельсовой прокладкой. Эта подкладка выполнена из
пружинной стали с продольными, имеющими плавные закругления гофрами и непрерывной по всей
длине рельса. Ширина упомянутой прокладки на 5-10% меньше ширины верхнего пояса
подкрановой балки. Сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь
поддерживающие верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные
тарельчатыми пружинными шайбами. Изобретение обеспечивает повышение долговечности
рельсовой конструкции. 1 ил.
Изобретение относится к транспортным конструкциям, преимущественно к подкрановым
конструкциям с интенсивным тяжелым режимом работы кранов (8К, 7К).
Известны технические решения, разработанные В.Ф.Сабуровым [1]. Под рельс укладывается
резинометаллическая прокладка, являющаяся податливым слоем, уменьшающим максимумы
локальных напряжений σу, приводящих к появлению усталостных трещин в подрельсовой зоне
подкрановой балки. Резинометаллическая прокладка значительно снижает локальные напряжения σ у
и, соответственно, повышает долговечность подкрановой балки.
Недостаток резинометаллической прокладки - ее долговечность ниже, чем долговечность кранового
рельса, и поэтому ее приходится менять чаще, чем рельс.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 204
Для устранения этого недостатка должна быть разработана демпфирующая подрельсовая прокладка,
обладающая такой же податливостью, как резинометаллическая, но обладающая большей
долговечностью. Известен также трехглавый рельс, четко фиксирующийся на подкрановой балке [2].
За аналог примем патент России RU №2192383 С1 [3]. В этом аналоге применен трехглавый рельс.
Тормозная балка симметрична и помещена ниже боковых глав рельса для обеспечения свободного
прохода направляющих роликов крана. Симметрия тормозной балки исключает косой изгиб
подкрановой конструкции и позволяет достичь наибольшего снижения материалоемкости.
Технический результат изобретения - повышение долговечности подкрановых балок и рельсов и
удобство эксплуатации конструкции.
Технический результат реализован тем, что в узле упругого соединения трехглавого рельса с
подкрановой балкой и тормозной балкой между рельсом и подкрановой балкой размещена
демпфирующая подрельсовая прокладка.
Отличие в том, что узел снабжен размещенной под рельсом и опирающейся на верхний пояс
подкрановой балки демпфирующей подрельсовой прокладкой, выполненной из пружинной стали с
продольными, имеющими плавные закругления гофрами и непрерывной по всей длине рельса,
причем ширина упомянутой прокладки на 5...10% меньше ширины верхнего пояса подкрановой
балки.
При этом сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь
поддерживающие верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные
тарельчатыми пружинными шайбами.
На чертеже показан узел упругого соединения трехглавого рельса с подкрановой и симметричной
тормозной балкой. Тормозная балка находится ниже боковых глав рельсов на расстоянии,
обеспечивающем свободный проход направляющих роликов крана.
Узел содержит трехглавый крановый рельс 1 с центральной главой, по которой катятся основные
безребордные колеса 2 мостового крана и передают вертикальные силовые импульсы Р.
Направляющие ролики 3 крана фиксируют основные колеса 2 на трехглавом рельсе 1, катятся по
боковым главам рельса и передают на них горизонтальные силовые импульсы Т.
У направляющих роликов 3 имеются аварийные удерживающие гребни снизу.
Под рельсом 1 помещена демпфирующая подрельсовая прокладка 4 из пружинной стали, с
продольными гофрами (5...10 шт.) одинаковой высоты с плавными закруглениями.
Демпфирующая подрельсовая прокладка 4 опирается на верхний пояс 5 двутавровой прокатной
балки. Швеллеры 6 соединяют верхний пояс 5 с симметричной тормозной балкой 7. Тормозная балка
7 может быть и не симметричной. Швеллеры 6 и тормозная балка 7 также соединены друг с другом
посредством болтов 8, затянутых с гарантируемым натягом. Симметричные элементы тормозной
балки 7 также соединены друг с другом через стенку двутавровой прокатной подкрановой балки
посредством болтов 8 с гарантируемым натягом. Болты 9 проходят сквозь подошву трехглавого
рельса 1 и полку швеллера 6. Болты 9 снабжены пружинными тарельчатыми шайбами 10,
выполненными из пружинной стали. Кроме этого, в зазоре между боковой гранью верхнего пояса 5 и
гранью боковой главы рельса имеется шайба, передающая давление с боковой главы рельса на
верхний пояс 5, а между нижней гранью боковой главы рельса и швеллером 6 имеется зазор.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 205
Работа упругого узла соединения трехглавого рельса с подкрановой балкой.
При действии вертикальных силовых импульсов Р от катящихся безребордных колес крана 2 рельс 1
упруго оседает под каждым из колес 2, сдавливая демпфирующую подрельсовую прокладку 4.
Высота каждого из гофров уменьшается, ширина ее увеличивается. В зоне контакта с поверхностью
подошвы рельса 2 и верхнего пояса 5 возникают распорные силы, гасящиеся за счет сил трения.
Напряжение в тарельчатых пружинах несколько ослабевает (на 10...15%). Локальное взаимодействие
между трехглавым рельсом 2 и верхним поясом 5 подкрановой балки распределяется на большую
длину и тем самым локальные суммарные напряжения Σσ у значительно снижаются и этим
выносливость повышается. При уходе колеса крана демпфирующая подрельсовая прокладка 4
упруго возвращается в исходное положение.
При действии же горизонтального силового импульса Т от одного из направляющих роликов 3
горизонтальные усилия передаются за счет сил трения. Если же силы трения будут превышены, то в
работу вступает внутренняя поверхность боковой главы рельса через шайбу с продольной торцевой
кромкой верхнего пояса 5. Далее в работу на изгиб включается симметричная тормозная балка 7,
опирающаяся в горизонтальной плоскости на колонны каркаса цеха.
Сопоставление с аналогами показывает следующие существенные отличия:
1. Между подошвой трехглавого рельса и верхним поясом подкрановой балки по всей длине рельса
размещена демпфирующая подрельсовая прокладка с продольными гофрами (5...10 штук)
одинаковой высоты.
2. Упругая податливость демпфирующей подрельсовой прокладки регулируется прочностью
пружинной стали, толщиной листа, высотой продольных гофров, числом гофров.
3. Под болтами, соединяющими рельс с подкрановой балкой, применены упругие тарельчатые
шайбы, выполненные пружинными стальными.
4. В отличие от рези неметаллической прокладки, свойства которой ухудшаются со временем, из-за
старения резины, свойства демпфирующей подрельсовой прокладки остаются неизменными во
времени, а долговечность их такая же, как у рельса.
Экономический эффект достигнут из-за повышения долговечности демпфирующей подрельсовой
прокладки, так как в ней отсутствует быстро изнашивающаяся и стареющая резина. Экономический
эффект достигнут также из-за удобства обслуживания узла при эксплуатации.
Литература
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки
долговечности подкрановых путей производственных зданий. Автореферат диссертации докт. техн.
наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1
(Заявка №2000 119289/28 (020257), Подкрановая транспортная конструкция. Опубликован
10.11.2002.
Формула изобретения
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 206
Узел упругого соединения трехглавого рельса с подкрановой и тормозной балками, отличающийся
тем, что узел снабжен размещенной под рельсом и опирающейся на верхний пояс подкрановой балки
демпфирующей подрельсовой прокладкой, выполненной из пружинной стали с продольными,
имеющими плавные закругления гофрами и непрерывной по всей длине рельса, причем ширина
упомянутой прокладки на 5-10% меньше ширины верхнего пояса подкрановой балки, при этом
сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь поддерживающие
верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные тарельчатыми
пружинными шайбами.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 207
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 208
Материалы хранятся на Кафедре металлических и деревянных конструкций 190005, СанктПетербург, 2-я , Красноармейская ул., д. 4, СПб ГАСУ у заведующий кафедрой металлических и
деревянных конструкций , дтн проф ЧЕРНЫХ Александр Григорьевич строительный факультет
Альбом Специальные технические условия (СТУ) по изготовлению и монтажу
энергопоглощающего демпфирующего компенсатора для трубопроводов, демпфирующей
сейсмоизолирующей опоры, демпфирующие соединения , альбом ШИФР 1.010.1-1-2с.94 ,
выпуск 0-2 , 0-3 можно заказать по seismofond@list.ru 9967982654@mai.ru
t9111758465@outlook.com (911) 175-84-65, (921) 962-67-78, (966) 798-26-54 т/ф (812) 694-78-10
Карта Сбербанка № 2202 2006 4085 5233
Более подробно об использовании Специальные технические условия по применения
огнестойкого компенсатора -гасителя температурных напряжений , для обеспечения сдвиговой
прочности и сейсмостойкости строительных конструкций в сейсмоопасных районах ,
сейсмичностью более 9 баллов . Серия ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ , с
использованием изобретения Андреева Борис Александровича № 165076 «Опора сейсмостойкая» и
патента № 2010136746 «Способ защиты зданий и сооружений с использованием сдвигоустойчивых
и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и
сейсмоизоляцию для поглощения сейсмической энергии» и патент № 154506 «Панель
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 209
противовзрывная» для разработки и испытания на сейсмостойкость по применению
изобретения; "Огнестойкого компенсатора -гасителя температурных напряжений" ( отправлено в
ФИПС, Москва, от 14.02.2022 , для получения патента на применение огнестойкого
компенсатора -гасителя температурных напряжений , для обеспечения сейсмостойкости
строительных конструкций в сейсмоопасных районах , сейсмичностью более 9 баллов . Серия
ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ
Более подробно о применения огнестойкого компенсатора -гасителя температурных напряжений
,смотрите внедренные изобретения организации "Сейсмофонд" при СПб ГАСУ ЯпоноАмериканской фирмой RUBBER BEARING FRICTION DAMPER (RBFD)
HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
https://www.damptech.com/for-buildings-cover https://www.youtube.com/watch?v=r7q5D6516qg
https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и запроектирован
амортизирующий демпфер, который совмещает преимущества вращательного трения амортизируя
с вертикальной поддержкой эластомерного подшипника в виде вставной резины, которая не
долговечно и теряет свои свойства при контрастной температуре , а сам резина крошится.
Амортизирующий демпфер испытан фирмы RBFD Damptech , где резиновый сердечник, является
пластическим шарниром, трубчатого в вида Seismic resistance GD Damper
https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s https://www.youtube.com/watch?v=CIZCbPInf5k
https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s https://www.youtube.com/watch?v=bFjGdgQz1iA Seismic
Friction Damper - Small Model QuakeTek https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s https://www.youtube.com/watch?v=oT4Ybharsxo Earthquake
Protection Damper https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s Ingeniería Sísmica Básica explicada con
marco didáctico QuakeTek QuakeTek https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ
https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s Friction damper for impact absorption DamptechDK
https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s https://www.youtube.com/watch?v=EFdjTDlStGQ
https://www.youtube.com/watch?v=NRmHBla1m8A
РЕКОМЕНДАЦИИ
по расчету, проектированию, изготовлению и монтажу фланцевых соединений стальных
строительных конструкций
УТВЕРЖДАЮ:
Главный инженер ЦНИИПроектстальконструкции им.Мельникова В.В.Ларионов 14 сентября
1988 г.
Директор ВНИПИ Промстальконструкция В.Г.Сергеев 13 сентября 1988 г.
Настоящие рекомендации составлены в дополнение к главам СНиП II-23-81*, СНиП III-18-75
и СНиП 3.03.01-87. С изданием настоящих рекомендаций отменяется "Руководство по
проектированию, изготовлению и сборке монтажных фланцевых соединений стропильных ферм с
поясами из широкополочных двутавров" (ЦНИИПроектстальконструкция, 1982).
_______________
На территории Российской Федерации действует ГОСТ 23118-99. - Примечание изготовителя
базы данных.
Фланцевые соединения стальных строительных конструкций - наиболее эффективный вид
болтовых монтажных соединений, их применение в конструкциях одно- и многоэтажных зданий и
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 210
сооружений позволяет существенно повысить производительность труда и сократить сроки монтажа
конструкций.
В рекомендациях изложены требования к качеству материала фланцев и высокопрочных
болтов, основные положения по конструированию и расчету фланцевых соединений, особенности
технологии изготовления и монтажа конструкций с фланцевыми соединениями.
При составлении рекомендаций использованы результаты экспериментально-теоретических
исследований, выполненных во ВНИПИ Промстальконструкция, ЦНИИПроектстальконструкции им.
Мельникова, а также другие отечественные и зарубежные материалы по исследованиям фланцевых
соединений.
Рекомендации разработаны ВНИПИ Промстальконструкция (кандидаты техн. наук
В.В.Каленов, В.Б.Глауберман, инж. В.Д.Мартынчук, А.Г.Соскин; ЦНИИПроектстальконструкцией
им. Мельникова (канд. техн. наук И.В.Левитанский, доктор техн. наук И.Д.Грудев, канд. техн. наук
Л.И.Гладштейн, инж. О.И.Ганиза) и ВНИКТИСтальконструкцией (инж. Г.В.Тесленко).
1. ОБЩИЕ УКАЗАНИЯ
1.1. Настоящие рекомендации разработаны в развитие глав СНиП II-23-81*, СНиП III-18-75 в
части изготовления и СНиП 3.03.01-87 в части монтажа конструкций, а также в дополнение к ОСТ
36-72-82 "Конструкции строительные стальные. Монтажные соединения на высокопрочных болтах.
Типовой технологический процесс".
Рекомендации следует соблюдать при проектировании, изготовлении и монтажной сборке
фланцевых соединений (ФС) несущих стальных строительных конструкций производственных
зданий и сооружений, возводимых в районах с расчетной температурой минус 40 °С и выше.
Рекомендации не распространяются на ФС стальных строительных конструкций:
эксплуатируемых в сильноагрессивной среде;
воспринимающих знакопеременные нагрузки, а также многократно действующие
подвижные, вибрационные или другого вида нагрузки с количеством циклов 10 и более при
коэффициенте асимметрии напряжений в соединяемых элементах
.
1.2. ФС элементов стальных конструкций, подверженных растяжению, изгибу или их
совместному действию, следует выполнять только с предварительно напряженными
высокопрочными болтами. Такие соединения могут воспринимать местные поперечные усилия за
счет сопротивления сил трения между контактирующими поверхностями фланцев от
предварительного натяжения болтов и наличия "рычажных усилий".
1.3. ФС элементов стальных конструкций, подверженных сжатию или совместному действию
сжатия с изгибом при однозначной эпюре сжимающих напряжений в соединяемых элементах (в
дальнейшем ФС сжатых элементов), следует выполнять на высокопрочных болтах без
предварительного их натяжения, затяжкой болтов стандартным ручным ключом. Такие соединения
могут воспринимать сдвигающие усилия за счет сопротивления сил трения между контактирующими
поверхностями фланцев, возникающих от действия усилий сжатия соединяемых элементов.
1.4. В рекомендациях приведены сортаменты ФС растянутых элементов открытого профиля -
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 211
широкополочные двутавры и тавры, парные уголки, замкнутого профиля - круглые трубы,
изгибаемых элементов из широкополочных двутавров, которые следует, как правило, применять при
проектировании, изготовлении и монтаже стальных строительных конструкций.
1.5. ФС следует изготавливать в заводских условиях, обеспечивающих требуемое качество, в
соответствии с требованиями, изложенными в разделе 6 настоящих рекомендаций, а также с учетом
положительного опыта освоенной технологии изготовления ФС Белгородским, Кулебакским,
Череповецким заводами металлоконструкций Минмонтажспецстроя СССР и Восточно-Сибирским
заводом металлоконструкций (г.Назарово) Минэнерго СССР.
1.6. Материалы рекомендаций составлены на основе экспериментально-теоретических
исследований,
выполненных
в
1981-1987
гг.
во
ВНИПИ
Промстальконструкция,
ЦНИИПроектстальконструкции им. Мельникова и ВНИИКТИСтальконструкции. В рекомендациях
отражен опыт внедрения ФС, выполненных в соответствии с "Руководством по проектированию,
изготовлению и сборке монтажных фланцевых соединений стропильных ферм с поясами из
широкополочных двутавров" (ЦНИИПроектстальконструкция, 1982).
2. МАТЕРИАЛЫ
2.1. Металлопрокат для элементов конструкций с ФС следует применять в соответствии с
требованиями главы СНиП II-23-81*, постановления Государственного строительного комитета
СССР от 21 ноября 1986 г. N 28 о сокращенном сортаменте металлопроката в строительных
стальных конструкциях и приказа Министерства монтажных и специальных строительных работ
СССР от 28 января 1987 г. N 34 "О мерах, связанных с утверждением сокращенного сортамента
металлопроката для применения в строительных стальных конструкциях".
Основные профили для элементов конструкций с ФС: сталь уголковая равнополочная по ГОСТ
8509-72, балки двутавровые по ГОСТ 8239-72* , балки с параллельными гранями полок по ГОСТ
26020-83, швеллер горячекатаный по ГОСТ 8240-72* , сталь листовая по ГОСТ 19903-74*, профили
гнутые замкнутые сварные, квадратные и прямоугольные по ТУ 36-2287-80, электросварные
прямошовные трубы по ГОСТ 10704-76 и горячедеформированные трубы по ГОСТ 8732-78* (для
сооружений объектов связи).
______________
На территории Российской Федерации действуют ГОСТ 8239-89, ГОСТ 8240-97 и ГОСТ
10704-91, соответственно. - Примечание изготовителя базы данных.
2.2. Для фланцев элементов стальных конструкций, подверженных растяжению, изгибу или
их совместному действию, следует применять листовую сталь по ГОСТ 19903-74* марок 09Г2С-15
по ГОСТ 19282-73
и 14Г2АФ-15 по ТУ 14-105-465-82 с гарантированными механическими
свойствами в направлении толщины проката.
______________
Редакция пункта 2.2 с учетом дополнений и изменений.
На территории Российской Федерации действует ГОСТ 19281-89., здесь и далее по тексту. Примечание изготовителя базы данных.
2.3. Фланцы могут быть выполнены из других марок низколегированных сталей,
предназначенных для строительных стальных конструкций по ГОСТ 19282-73, при этом сталь
должна удовлетворять следующим требованиям:
______________
Редакция пункта 2.3 с учетом дополнений и изменений.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 212
категория качества стали - 12;
относительное сужение стали в направлении толщины проката
для одного из трех образцов
%.
%, минимальное
Проверку механических свойств стали в направлении толщины проката осуществляет завод
строительных стальных конструкций по методике, изложенной в приложении 8.
2.4. Фланцы сжатых элементов стальных конструкций следует изготавливать из листовой стали
по ГОСТ 19903-74*.
2.5. Качество стали для фланцев (внутренние расслои, грубые шлаковые включения и т.п.)
должно удовлетворять требованиям, указанным в табл.1.
______________
Редакция пункта 2.5 с учетом дополнений и изменений.
Таблица 1
Зона дефектоскопии
Характеристика дефектов
Площадь дефекта, см
минимального
учитываемого
Допустимая
частота
дефекта
Максимальная
допустимая
длина дефекта
Минимальное
допустимое
расстояние между
дефектами
максимального
допустимого
см
Площадь листов фланцев
0,5
1,0
10 м
4
10
Прикромочная зона
0,5
1,0
3м
4
10
Примечания: 1. Дефекты, расстояния между краями которых меньше протяженности
минимального из них, оцениваются как один дефект.
2. По
усмотрению
завода
строительных
стальных
конструкций
разрешается
дефектоскопический контроль материала фланцев производить только после приварки их к
элементам конструкций.
Контроль качества стали методами ультразвуковой дефектоскопии осуществляет завод
строительных стальных конструкций.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 213
2.6. Для ФС следует применять высокопрочные болты М20, М24 и М27 из стали 40Х "Селект"
климатического исполнения ХЛ с временным сопротивлением не менее 1100 МПа (110 кгс/мм ), а
также высокопрочные гайки и шайбы к ним по ГОСТ 22353-77* - ГОСТ 22356-77**.
________________
* На территории Российской Федерации действует ГОСТ Р 52644-2006, здесь и далее по тексту;
** На территории Российской Федерации действует ГОСТ Р 52643-2006, здесь и далее по
тексту. - Примечание изготовителя базы данных.
Допускается применение высокопрочных болтов, гаек и шайб к ним из стали других марок.
Геометрические и механические характеристики таких болтов должны отвечать требованиям ГОСТ
22353-77, ГОСТ 22356-77 - для болтов исполнения ХЛ; гаек и шайб - ГОСТ 22354-77* - ГОСТ 2235677. Применение таких болтов в ФС каждого конкретного объекта должно быть согласовано с
проектной организацией-автором.
________________
* На территории Российской Федерации действует ГОСТ Р 52645-2006. - Примечание
изготовителя базы данных.
2.7. Для механизированной сварки ФС следует применять сплошную сварочную проволоку по
ГОСТ 2246-70 или порошковую проволоку ПП-АН8 по ТУ 14-4-1059-80.
2.8. Фасонки, ужесточающие фланцы (ребра жесткости), следует выполнять из стали тех же
марок, что и основные соединяемые профили.
3. РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ И УСИЛИЯ
3.1. Расчетные сопротивления стали соединяемых элементов, фланцев, сварных швов и
коэффициенты условий работы следует принимать в соответствии с указаниями главы СНиП II-2381*.
3.2. Расчетное усилие растяжения
болтов ФС следует принимать равным:
,
где
- расчетное сопротивление растяжению высокопрочных болтов;
- нормативное сопротивление стали болтов;
- площадь сечения болта нетто.
3.3. Расчетное усилие предварительного натяжения
болтов ФС следует принимать равным:
.
4. КОНСТРУИРОВАНИЕ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
4.1. ФС в зависимости от характера внешних воздействий могут состоять из участков,
подверженных воздействию растяжения или сжатия. Растянутые участки фланцев передают внешние
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 214
усилия через предварительно натянутые пакеты "фланец-болт", сжатые - через плотное касание
фланцев.
4.2. Сварные швы фланца с присоединяемым профилем следует выполнять угловыми без
разделки кромок.
В обоснованных случаях может быть допущена сварка с разделкой кромок.
4.3. Для ФС элементов стальных конструкций следует применять высокопрочные болты
диаметром 24 мм (М24); использование болтов М20 и М27 следует допускать в тех случаях, когда
постановка болтов М24 невозможна или нерациональна.
4.4. При конструировании ФС, как правило, следует применять следующие сочетания диаметра
болтов и толщин фланцев:
Диаметр болта
Толщина фланца, мм
М20
20
М24
25
М27
30
Толщина фланцев проверяется расчетом в соответствии с указаниями раздела 5.
4.5. Болты растянутых участков фланцев разделяют на болты внутренних зон, ограниченных
стенками (полками профиля, ребрами жесткости) с двух и более сторон, и болты наружных зон,
ограниченных с одной стороны (рис.1); характер работы и расчет ФС в этих зонах различны.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 215
Рис.1. Схемы фланцевых соединений растянутых элементов открытого профиля:
а - ФС элементов из широкополочных тавров; б - ФС элементов из парных уголков
4.6. Болты растянутых участков фланцев следует располагать по возможности равномерно по
контуру и как можно ближе к элементам присоединяемого профиля, при этом (см. рис.1):
,
,
,
где - наружный диаметр шайбы;
- номинальный диаметр резьбы болта;
- ширина фланца, приходящаяся на
-ый болт наружной зоны;
- катет углового шва.
Если по конструктивным особенностям ФС
(раздел 5) величину
принимают равной
, то в расчетах на прочность ФС
.
4.7. При конструировании ФС элементов, подверженных воздействию центрального
растяжения, болты следует располагать безмоментно относительно центра тяжести присоединяемого
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 216
профиля с учетом неравномерности распределения внешних усилий между болтами наружной и
внутренней зон (раздел 5, табл.2).
Если такое расположение болтов невозможно, то несущую способность ФС определяют с
учетом действия местного изгибающего момента.
4.8. Конструктивная схема соединяемых элементов (полуфермы, рамные конструкции и др.)
должна обеспечивать возможность свободной установки и натяжения болтов, в том числе
выполнения контроля усилий натяжения болтов согласно п.7.13.
4.9. Если несущая способность сварных швов присоединения профиля к фланцу недостаточна
для передачи внешних силовых воздействий или необходимо повысить несущую способность
растянутых участков ФС без увеличения числа болтов или толщины фланцев, последние следует
усиливать ребрами жесткости (рис.1 и 2).
Рис.2. Схемы фланцевых соединений растянутых элементов замкнутого профиля:
а - ФС элементов из круглых труб; б - ФС элементов из гнутосварных профилей
Толщина ребер жесткости не должна превышать 1,2 толщины элементов основного профиля,
длина должна быть не менее 200 мм. Ребра жесткости следует располагать так, чтобы концентрация
напряжений в сечении основных профилей была минимальной.
Ребра жесткости могут быть использованы для крепления связей, путей подвесного транспорта
и т.п.
4.10. В поясах ферм, где к узлу ФС примыкают раскосы решетки фермы, несущая способность
ФС должна удовлетворять суммарному усилию в узле, а не усилию в смежной панели пояса.
4.11. Для обеспечения требуемой жесткости ФС, подверженных изгибу (рамные ФС), следует
строго соблюдать требования точности изготовления и монтажа ФС, изложенные в разделах 6 и 7
настоящих рекомендаций.
При выполнении таких соединений следует, как правило, предусматривать следующие меры:
на растянутых участках ФС применять фланцы увеличенной толщины;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 217
на сжатых участках устанавливать дополнительное количество болтов с предварительным их
натяжением в соответствии с указаниями п.1.2.
Если такие или подобные им меры по обеспечению требуемой жесткости ФС не
предусмотрены, расчетные рамные моменты следует снижать до 15%.
4.12. ФС элементов двутаврового сечения, подверженных воздействию центрального
растяжения, следует выполнять, кроме случаев, отмеченных в п.4.9, без ребер жесткости.
Рекомендуемый сортамент ФС этого типа (приложение 1) с фланцами толщиной 25-40 мм включает
в себя профили от 20Ш1 до 30Ш2 и от 20К1 до 30К2, расчетные продольные усилия 1593-3554 кН
(163-363 тс).
С целью унификации при расчете каждого ФС использованы максимальные расчетные
сопротивления стали данного типоразмера профиля.
4.13. ФС элементов парного уголкового сечения, подверженных воздействию центрального
растяжения, следует выполнять с фасонками для обеспечения необходимой несущей способности
сварных швов. Рекомендуемый сортамент ФС этого типа (приложение 2) с фланцами толщиной 2040 мм включает профили от 100х7 до 180х12, расчетные продольные усилия 957-2613 кН (98-266 тс).
При расчете каждого ФС использованы максимальные расчетные сопротивления стали данного
типоразмера профиля.
Для ФС элементов из парных уголков 180х11 и 180х12 применены высокопрочные болты М27.
4.14. ФС элементов таврового сечения, подверженных воздействию центрального растяжения,
следует выполнять, кроме случаев, отмеченных в п.4.9, без ребер жесткости. Рекомендуемый
сортамент ФС этого типа (приложение 3, табл.1 и 2) включает в себя профили от 10Шт1 до 20Шт3,
расчетные продольные усилия 800-2681 кН (81-273 тс).
При расчете каждого ФС использованы максимальные расчетные сопротивления стали тавров
данных типоразмеров.
Для ФС элементов из тавра 20Шт применены высокопрочные болты М27.
4.15. ФС элементов из круглых труб, подверженных воздействию центрального растяжения,
следует выполнять, как правило, со сплошными фланцами и ребрами жесткости в количестве не
менее 3 шт. Ширина ребер определяется разностью радиусов фланцев и труб, длина - не менее 1,5
диаметра трубы (см. рис.2).
Рекомендуемый сортамент ФС этого типа (приложение 4) включает в себя электросварные
прямошовные и горячедеформированные трубы размерами от 114х2,5 до 377х10, расчетные
продольные усилия 630-3532 кН (64-360 тс).
Материал труб - малоуглеродистая и низколегированная сталь с расчетными
сопротивлениями
МПа, болты высокопрочные М20, М24 и М27.
Для ФС элементов из круглых труб, выполненных из малоуглеродистой стали, допустимо
применение сплошных фланцев без ребер жесткости при условии выполнения сварных швов
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 218
равнопрочными этим элементам и экспериментальной проверки натурных ФС данного типа.
4.16. ФС элементов из гнутосварных профилей прямоугольного или квадратного сечений,
подверженных воздействию центрального растяжения, следует выполнять со сплошными фланцами
и ребрами жесткости, расположенными, как правило, вдоль углов профиля (см. рис.2). Ширина ребер
определяется размерами фланца и профиля, длина - не менее 1,5 высоты меньшей стороны профиля.
Если между ребрами жесткости будет размещено более двух болтов или ребра жесткости будут
установлены не только вдоль углов профиля, то ФС элементов из гнутосварных профилей данного
типа могут быть применены только после экспериментальной проверки натурных соединений
данного типа.
4.17. ФС элементов из прокатных широкополочных или сварных двутавров, подверженных
воздействию изгиба, следует выполнять, как правило, со сплошными фланцами с постановкой ребра
жесткости на растянутом поясе в плоскости стенки двутавра. При необходимости увеличения
количества болтов и ширины фланцев соответствующее уширение поясов двутавров следует
осуществлять за счет приварки дополнительных фасонок (рис.3, а).
Рис.3. Схемы фланцевых соединений изгибаемых элементов из прокатных или сварных
двутавров
Рекомендуемый сортамент ФС этого типа (приложение 5) включает в себя профили от 26Б1 до
100Б2 и от 23Ш1 до 70Ш2 с несущей способностью 127-2538 кН·м (13-259 тс·м). Несущая
способность ФС на изгиб для данного типа соединения и данного типоразмера двутавра определена
из условия прочности фланца, болтов и сварных швов соединения, воспринимающих данный
изгибающий момент.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 219
Для этого типа соединений предусмотрено применение высокопрочных болтов М24 и М27.
4.18. ФС элементов из прокатных широкополочных или сварных двутавров, подверженных
воздействию изгиба, возможно выполнять со сплошными фланцами, высота которых не превышает
высоты двутавра (см. рис.3, б). Такие соединения следует применять, если расчетный момент в
рамных соединениях ниже несущей способности двутавров на изгиб.
При необходимости уменьшения количества болтов или увеличения жесткости растянутых
участков ФС допустимо применять составные фланцы, увеличивая их толщину на растянутом
участке до 36-40 мм (см. рис.3, в).
Если изгибающий момент в рамных соединениях превышает несущую способность двутавра на
изгиб, следует предусматривать устройство вутов (см. рис.3, г).
ФС указанных типов следует проектировать в соответствии с указаниями настоящих
рекомендаций.
4.19. Для ФС элементов, подверженных воздействию сжатия, когда непредусмотренные
проектом (КМ) эксцентриситеты передачи продольных усилий недопустимы, необходимо строго
выполнять требования по точности изготовления и монтажа ФС, изложенные в разделах 6 и 7
настоящих рекомендаций. В таких соединениях следует предусматривать также установку болтов с
суммарным предварительным натяжением, равным расчетному усилию сжатия в соединяемых
элементах.
4.20. ФС элементов, подверженных центральному растяжению, следует, как правило,
применять для передачи усилий (кН), не превышающих для элементов из:
парных уголков - 3000;
одиночных уголков - 1900;
широкополочных двутавров и круглых труб - 3500;
широкополочных тавров и прямоугольных труб - 2500.
ФС сварных или прокатных двутавров, подверженных изгибу или совместному действию
изгиба и растяжения, следует, как правило, применять, если суммарное растягивающее усилие,
воспринимаемое ФС от растянутой зоны присоединяемого элемента, не превышает 3000 кН.
5. РАСЧЕТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
5.1. ФС элементов стальных конструкций следует проверять расчетами на:
прочность болтов;
прочность фланцев на изгиб;
прочность соединений на сдвиг;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 220
прочность сварных швов соединения фланца с элементом конструкции.
5.2. Методы расчета следует применять только для ФС, конструктивная форма которых
отвечает требованиям раздела 4.
5.3. Предельное состояние ФС определяют следующие yсловия:
усилие в наиболее нагруженном болте, определенное с учетом совместной работы болтов
соединения, не должно превышать расчетного усилия растяжения болта;
изгибные напряжения во фланце не должны превышать расчетных сопротивлений стали
фланца по пределу текучести.
5.4. Расчет прочности ФС элементов открытого профиля, подверженных центральному
растяжению.
Количество болтов внутренней зоны
определяет конструктивная форма соединения.
Количество болтов наружной зоны предварительно назначают из условия:
,
где
(1)
- внешняя нагрузка на соединение;
- предельное внешнее усилие на один болт внутренней зоны, равное 0,9
- предельное внешнее усилие на один болт наружной зоны, равное
;
;
- коэффициент, учитывающий неравномерное распределение внешней нагрузки между
болтами внутренней и наружной зон, определяемый по табл.2.
Таблица 2
Диаметр болта
Толщина фланца, мм
Соотношение внешних усилий на один болт внутренней и
наружной зон
М20
16
2,5
20
1,7
25
1,4
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 221
М24
М27
30
1,2
20
2,6
25
1,8
30
1,5
40
1,1
25
2,1
30
1,7
40
1,2
Прочность фланца и болтов, относящихся к внутренней зоне, следует считать
обеспеченной, если: болты расположены в соответствии с указаниями п.4.6, толщина
фланца составляет 20 мм и выше, а усилие на болт от действия внешней нагрузки не
превышает величины
.
5.5. При расчете на прочность болтов и фланца, относящихся к наружной зоне,
выделяют отдельные участки фланцев, которые рассматривают как Т-образные (см. рис.1)
шириной .
Прочность ФС следует считать обеспеченной, если
,
где
- расчетное усилие растяжения, воспринимаемое ФС, определяемое по формулам
если
если
где
(2)
,
(3)
,
(4)
;
;
,
,
- расчетное усилие на болт, определяемое из условия прочности соединения по болтам;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 222
- расчетное усилие на болт, определяемое из условия прочности фланца на изгиб.
,
(5)
где
- коэффициент, зависящий от безразмерного параметра жесткости болта
определяемый по табл.3 или по формуле:
,
;
(6)
;
(7)
,
где
,
(8)
,
- параметр, определяемый по табл.4 или из уравнения
,
(9)
где - толщина фланца;
- ширина фланца, приходящаяся на один болт наружной зоны
участка фланца;
- расстояние от оси болта до края сварного шва
-го Т-образного
-го Т-образного участка фланца.
Таблица 3
0,02
0,04
0,06 0,08
0,1
0,2
0,4
0,6
0,8
1,0
1,5
2,0
2,5
3,0
4,0
5,0
6,0
8,0
10
15
0,907 0,836 0,79 0,767 0,744 0,67 0,602 0,561 0,53 0,509 0,467 0,438 0,41 0,396 0,367 0,34 0,325 0,296 0,27 0,232
6
3
2
5
4
3
Таблица 4
Параметр
при
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 223
1,4
1,6
1,8
2,0
2,2
2,4
2,7
3,0
4,0
5,0
0,02
3,252
2,593
2,221
1,986
1,826
1,710
1,586
1,499
1,333
1,250
0,06
2,960
2,481
2,171
1,962
1,812
1,702
1,582
1,497
1,333
1,250
0,1
2,782
2,398
2,130
1,939
1,799
1,694
1,578
1,494
1,332
1,249
0,5
2,186
2,036
1,908
1,776
1,711
1,636
1,545
1,475
1,327
1,248
1,0
1,949
1,860
1,780
1,707
1,643
1,586
1,514
1,454
1,321
1,246
2,0
1,757
1,704
1,653
1,607
1,564
1,524
1,470
1,424
1,312
1,242
3,0
1,660
1,621
1,584
1,548
1,515
1,483
1,440
1,402
1,303
1,238
4,0
1,599
1,568
1,537
1,508
1,480
1,454
1,417
1,384
1,296
1,235
5,0
1,555
1,529
1,503
1,478
1,454
1,431
1,399
1,370
1,289
1,232
6,0
1,522
1,498
1,476
1,454
1,433
1,413
1,384
1,357
1,283
1,230
8,0
1,473
1,454
1,436
1,418
1,401
1,384
1,360
1,337
1,273
1,224
10
1,438
1,422
1,406
1,391
1,377
1,362
1,341
1,322
1,264
1,219
15
1,381
1,369
1,358
1,346
1,335
1,324
1,308
1,293
1,247
1,210
Примеры расчета и проектирования соединений элементов, подверженных растяжению,
приведены в приложении 6.
5.6. Расчет ФС элементов открытого профиля, подверженных изгибу и совместному действию
изгиба и растяжения.
Максимальные и минимальные значения нормальных напряжений в присоединяемом
профиле
от действия изгиба и продольных сил определяют в плоскости его соединения с
фланцем по формуле*:
,
где
и
(10)
- изгибающий момент и продольное усилие, воспринимаемые ФС;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 224
- момент сопротивления сечения присоединяемого профиля;
- площадь поперечного сечения присоединяемого профиля.
_______________
* При расчете
можно пренебречь.
с целью упрощения наличием ребер, ужесточающих фланец,
Усилия в поясах присоединяемого профиля
определяют по формуле
,
где
- площадь поперечного сечения пояса
или
(11)
(рис.4);
- площадь поперечного сечения участка стенки в зоне болтов растянутого
пояса;
;
;
- толщина стенки, полок и высота присоединяемого профиля; остальные обозначения
приведены на рис.4.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 225
Рис.4. Схема к расчету фланцевых соединений изгибаемых элементов из двутавров
Усилия в растянутой части стенки присоединяемого профиля определяют по формуле
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 226
при
,
при
где
,
;
(12)
,
,
.
Прочность ФС считается обеспеченной, если:
при
,
(13)
;
при
,
(14)
,
где
- расчетное усилие, воспринимаемое болтами растянутого пояса
при наличии ребра жесткости (см. рис.4)
, равное:
;
(15)
при симметричном расположении болтов относительно пояса
;
(16)
;
(17)
при отсутствии ребра жесткости
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 227
при отсутствии болтов ряда
;
(18)
- расчетное усилие, воспринимаемое болтами растянутой части стенки, равное:
;
(19)
- расчетное усилие, воспринимаемое болтами растянутого пояса
, равное:
при наличии ребра жесткости
;
(20)
;
(21)
при отсутствии ребра жесткости
при отсутствии болтов ряда
;
(22)
- расчетное усилие на болт наружной зоны
-го Т-образного участка фланца
растянутого пояса или стенки, определяемое по формулам (2)-(9) в соответствии с указаниями п.5.5;
- число болтов наружной зоны растянутого пояса
;
- число болтов наружной зоны растянутого пояса
;
- число рядов болтов растянутой части стенки;
;
;
;
;
;
- коэффициент, равный 0,8 для
400 мм, 0,9 для
мм, в остальных случаях
1,0.
Пример расчета фланцевого соединения изгибаемых элементов приведен в приложении 7.
5.7. Расчет прочности ФС элементов замкнутого профиля, подверженных центральному
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 228
растяжению.
Прочность соединения, конструктивная форма которого отвечает требованиям раздела 4,
следует считать обеспеченной, если
мм,
,
где
(23)
- количество болтов в соединении;
- коэффициент, значение которого следует принимать по табл.5.
Таблица 5
Диаметр болта, мм
Толщина фланца, мм
М20
0,85
М24
0,8
0,85
М27
0,8
0,85
5.8. Прочность ФС растянутых элементов открытого и замкнутого профилей на
действие местной поперечной силы
следует проверять по формуле
,
(24)
где - количество болтов наружной зоны для ФС элементов открытого профиля и количество
болтов для ФС элементов замкнутого профиля;
- контактные усилия, принимаемые равными 0,1
для ФС элементов замкнутого
профиля, а для элементов открытого профиля определяемые по формуле
;
(25)
- расчетное усилие на болт, определяемое по формуле (5) в соответствии с указаниями
п.5.5;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 229
- коэффициент трения соединяемых поверхностей фланцев, принимаемый в соответствии с
указаниями п.11.13* главы СНиП II-23-81*.
При отсутствии местной поперечной силы в расчет вводится условное значение
.
5.9. Прочность ФС сжатых элементов открытого и замкнутого профилей, а также ФС
изгибаемых элементов открытого профиля на действие сдвигающих сил следует проверять
по формуле
,
(26)
где
- усилие сжатия в ФС от действия внешней нагрузки, для ФС изгибаемых элементов
определяемое по формуле
,
(27)
где
- усилие растяжения или сжатия в присоединяемом элементе от действия внешней
нагрузки.
5.10. Расчет прочности сварных швов соединения фланца с элементом конструкции следует
выполнять в соответствии с требованиями главы СНиП II-23-81* с учетом глубины проплавления
корня шва на 2 мм по трем сечениям (рис.5):
Рис.5. Схемы расчетных сечений сварного соединения (сварка механизированная):
1 - сечение по металлу шва; 2 - сечение по металлу границы сплавления с профилем; 3 сечение по металлу границы сплавления с фланцем
по металлу шва (сечение 1)
;
(28)
по металлу границы сплавления с профилем (сечение 2)
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 230
;
(29)
по металлу границы сплавления с фланцем в направлении толщины проката (сечение 3)
,
где
(30)
- расчетная длина шва, принимаемая меньше его полной длины на 10 мм;
- коэффициенты:
=0,7;
принимается по табл.34* главы СНиП II-23-81*;
- коэффициенты условий работы шва;
- коэффициент условий работы сварного соединения,
=1,0;
- расчетные сопротивления угловых швов срезу (условному) по металлу шва и
металлу границы сплавления с профилем соответственно, принимаются по табл.3 главы СНиП II-2381*;
- расчетное сопротивление растяжению стали в направлении толщины фланца, принимается
по табл.1* главы СНиП II-23-81*.
6. ИЗГОТОВЛЕНИЕ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
Материал и обработка деталей ФС
6.1. Качество проката, применяемого для изготовления фланцев в соответствии с требованиями
п.2.2, должно быть гарантировано сертификатом завода - поставщика проката.
Завод строительных стальных конструкций (в дальнейшем завод-изготовитель) обязан
маркировать каждый фланец с указанием марки стали, номера сертификата завода - поставщика
проката, номера плавки, номера приемного акта завода - изготовителя конструкций.
Маркировку следует выполнять металлическими клеймами на поверхности фланца в месте,
доступном для осмотра после монтажа конструкций. Глубина клеймения не должна превышать 0,5
мм. Место для клейма должно быть указано в чертежах КМ.
6.2. При входном контроле проката, применяемого для изготовления фланцев, следует
проверить соответствие данных сертификата требованиям, предъявляемым к качеству этого проката.
При отсутствии сертификата завод-изготовитель должен проводить испытания проката с целью
определения требуемых механических свойств и химического состава, определяющих качество
проката. При этом проверку механических свойств стали в направлении толщины проката следует
проводить по методике, приведенной в приложении 8. Контроль качества стали фланцев методами
ультразвуковой дефектоскопии следует выполнять в соответствии с указаниями п.2.4.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 231
6.3. Заготовку фланцев следует выполнять машинной термической резкой.
6.4. Заготовку элементов, присоединяемых к фланцам, следует выполнять машинной
термической резкой или механическим способом (пилы, отрезные станки). При применении ручной
термической резки торцы элементов должны быть затем обработаны механическим способом
(например, фрезеровкой).
6.5. Отклонения размеров фланцев, отверстий под болты и элементов, соединяемых с фланцем,
должны удовлетворять требованиям, изложенным в табл.6.
Таблица 6
Контролируемый параметр
Предельное отклонение
1. Отклонения торца присоединяемого к
фланцу элемента
0,002 , где - высота и ширина сечения элемента. Максимальный зазор между
фланцем и торцом присоединяемого элемента не должен превышать 2 мм
2. Шероховатость торцевой поверхности
элемента, присоединяемой к фланцу
320, допускаются отдельные "выхваты" глубиной не более 1 мм в количестве 1
шт. на длине 100 мм
3. Отклонение габаритных размеров фланца
±2,0 мм
4. Разность диагоналей фланца
±3,0 мм
5. Отклонение центров отверстий в пределах
группы
±1,5 мм
6. Отклонение диаметра отверстия
+0,5 мм
6.6. Отверстия во фланцах следует выполнять сверлением. Заусенцы после сверления должны
быть удалены.
Сборка и сварка ФС
6.7. Сборку элементов конструкций с фланцевыми соединениями следует производить только
в кондукторах.
6.8. В кондукторе фланец следует фиксировать и крепить к базовой поверхности не менее чем
двумя пробками и двумя сборочными болтами.
6.9. Базовые поверхности кондукторов должны быть фрезерованы. Отклонение тангенса угла
их наклона не должно превышать 0,0007 в каждой из двух плоскостей.
6.10. ФС следует сваривать только после проверки правильности их сборки. Сварные швы
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 232
следует выполнять механизированным способом с применением материалов, указанных в п.2.7, и
проплавлением корня шва не менее 2 мм.
6.11. Технология сварки должна обеспечивать минимальные сварочные деформации фланцев.
6.12. После выполнения сварных швов ФС сварщик должен поставить свое клеймо, место
расположения которого должно быть указано в чертежах КМ.
6.13. После выполнения сварки внешние поверхности фланцев должны быть отфрезерованы.
Толщина фланцев после фрезеровки должна быть не менее указанной в чертежах КМД.
Запрещается осуществлять наклон соединяемых элементов за счет изменения толщины фланца
(клиновидности).
6.14. Точность изготовления отправочных
соответствовать требованиям, изложенным в табл.7.
элементов
конструкций
с
ФС
должна
Таблица 7
Контролируемый параметр
1. Тангенс угла отклонения фрезерованной поверхности фланцев
Предельное отклонение
Не более 0,0007
2. Зазор между внешней плоскостью фланца и ребром стальной
линейки
0,3 мм
3. Отклонение толщины фланца (при механической обработке
торцевых поверхностей)
±0,02
4. Смещение фланца от проектного положения относительно осей
сечения присоединяемого элемента
±1,5 мм
5. Отклонение длины элемента с ФС
6. Совпадение отверстий в соединяемых фланцах при контрольной
сборке
0; -5,0 мм
Калибр диаметром, равным номинальному диаметру болта,
должен пройти в 100% отверстий
Грунтование и окраска
6.15. При отсутствии специальных указаний в чертежах КМ фланцы должны быть
огрунтованы и окрашены теми же материалами и способами, что и конструкция в целом.
Контроль качества ФС
6.16. Контрольную сборку элементов конструкций с ФС следует проводить в объеме не менее
10% общего количества, но не менее 4 шт. взаимно соединяемых элементов.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 233
Обязательной контрольной сборке подлежат первые и последние номера элементов в
соответствии с порядковым номером изготовления.
6.17. В процессе выполнения работ по сварке ФС следует контролировать:
квалификацию сварщиков в соответствии с правилами предприятия, изготавливающего
конструкции;
качество сварочных материалов в соответствии с действующими стандартами и паспортами
изделий;
качество подготовки и сборки деталей под сварку в соответствии с главой СНиП III-18-75,
раздел 1 и настоящими рекомендациями;
качество сварных швов в соответствии со СНиП III-18-75: в соединениях сжатых элементов по
поз.1.2 табл.3 раздела 1, в соединениях растянутых и изгибаемых элементов категории швов сварных
соединений 1 по поз.3 табл.41 и поз.1, 2, 3 табл.42 разд.9; а также в соответствии с ГОСТ 14771-76 и
требованиями пп.6.10 и 6.11 настоящих рекомендаций.
6.18. 100-процентному контролю следует подвергать параметры, указанные в пп.1, 2 табл.6 и
пп.1-6 табл.7 настоящих рекомендаций, а также наличие и правильность маркировки и клейма
сварщиков на фланце.
6.19. Фланцы после их приварки к соединяемым элементам следует подвергать 100процентному контролю ультразвуковой дефектоскопией. Результаты контроля должны
удовлетворять требованиям п.2.5 настоящих рекомендаций.
6.20. При отправке конструкций с ФС завод-изготовитель кроме документации,
предусмотренной п.1.22 главы СНиП 3.03.01-87, должен представить копию сертификата,
удостоверяющего качество стали фланцев, а также документы о контроле качества сварных
соединений. Если фланцы изготовлены из марок стали, отличных от указанных в п.2.2, заводизготовитель должен представить документы о качестве проката, применяемого для фланцев в
соответствии с указаниями пп.2.3 и 2.4 настоящих рекомендаций.
7. МОНТАЖНАЯ СБОРКА ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
7.1. Проекты производства работ (ППР) по монтажу конструкций должны содержать
технологические карты, предусматривающие выполнение ФС в конкретных условиях монтируемого
объекта в соответствии с указаниями "Рекомендаций по сборке фланцевых монтажных соединений
стальных
строительных
конструкций"
(ВНИПИ
Промстальконструкция,
ЦНИИПроектстальконструкция. - М.: ЦБНТИ Минмонтажспецстроя СССР, 1986).
7.2. Подготовку и сборку ФС следует проводить под руководством лица (мастера, прораба),
назначенного приказом по монтажной организации ответственным за выполнение этого вида
соединений на объекте.
7.3. Технологический процесс выполнения ФС включает:
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 234
подготовительные работы;
сборку соединений;
контроль натяжения высокопрочных болтов;
огрунтование и окраску соединений.
7.4. Высокопрочные болты, гайки и шайбы к ним должны быть подготовлены в соответствии с
п.4.25 главы СНиП 3.03.01-87, пп.3.1.2-3.1.8 ОСТ 36-72-82.
7.5. Подготовку контактных поверхностей фланцев следует осуществлять в соответствии с
указаниями чертежей КМ и КМД по ОСТ 36-72-82. При отсутствии таких указаний контактные
поверхности очищают стальными или механическими щетками от грязи, наплывов грунтовки и
краски, рыхлой ржавчины, снега и льда.
7.6. Применение временных болтов в качестве сборочных запрещается.
7.7. Под головки и гайки высокопрочных болтов необходимо ставить только по одной шайбе.
Выступающая за пределы гайки часть стержня болта должна иметь не менее одной нитки
резьбы.
7.8. Натяжение высокопрочных болтов ФС необходимо выполнять от наиболее жесткой зоны
(жестких зон) к его краям.
7.9. Натяжение высокопрочных болтов ФС следует осуществлять только по моменту
закручивания.
7.10. Натяжение высокопрочных болтов на заданное усилие следует производить
закручиванием гаек до величины момента закручивания
, который определяют по формуле
,
(31)
где - коэффициент, принимаемый равным: 1,06 - при натяжении высокопрочных болтов; 1,0 при контроле усилия натяжения болтов;
- среднее значение коэффициента закручивания для каждой партии болтов по сертификату
или принимаемое равным 0,18 при отсутствии таких значений в сертификате;
- усилие натяжения болта, Н;
- номинальный диаметр резьбы болта, м.
Отклонение фактического момента закручивания от момента, определяемого по формуле (31),
не должно превышать 0; +10%.
7.11. После натяжения болтов гайки ничем дополнительно не закрепляются.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 235
7.12. После выполнения ФС монтажник обязан поставить на соединение личное клеймо (набор
цифр) в месте, предусмотренном в чертежах конструкций КМ или КМД, и предъявить собранное
соединение ответственному лицу.
7.13. Качество выполнения ФС на высокопрочных болтах ответственное лицо проверяет путем
пооперационного контроля. Контролю подлежат: качество обработки (расконсервации) болтов;
качество подготовки контактных поверхностей фланцев; соответствие устанавливаемых болтов, гаек
и шайб требованиям ГОСТ 22353-77 - ГОСТ 22356-77, а также требованиям, указанным в чертежах
КМ и КМД; наличие шайб под головками болтов и гайками; длина части болта, выступающей над
гайкой; наличие клейма монтажника, осуществляющего сборку соединения; выполнение требований
табл.8.
Таблица 8
Наименование отклонения
Допускаемое
отклонение, мм
Просвет между фланцами или фланцем и полкой колонны после преднапряжения высокопрочных болтов по
линии стенок и полок профиля
0,2
Просвет между фланцами или фланцем и полкой колонны после преднапряжения высокопрочных болтов по
краям фланцев:
для фланцев толщиной не более 25 мм
0,6
для фланцев толщиной более 32 мм
1,0
Примечание. Щуп толщиной 0,1 мм не должен проникать в зону радиусом 40 мм от оси болта
7.14. Контроль усилия натяжения следует осуществлять во всех установленных высокопрочных
болтах тарированными динамометрическими ключами. Контроль усилия натяжения следует
производить не ранее чем через 8 ч после выполнения натяжения всех болтов в соединении, при этом
усилия в болтах соединения должны соответствовать значениям, указанным в п.3.3 или табл.9.
Таблица 9
Усилие натяжения болтов (контролируемое), кН (тс)
М20
М24
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
М27
Всего листов 65
Лист 236
167(17)
239(24,4)
312(31,8)
7.15. Отклонение фактического момента закручивания от расчетного не должно превышать 0;
+10%. Если при контроле обнаружатся болты, не отвечающие этому условию, то усилие натяжения
этих болтов должно быть доведено до требуемого значения.
7.16. Документация, предъявляемая при приемке готового объекта, кроме предусмотренной
п.1.22 главы СНиП 3.03.01-87, должна содержать сертификаты или документы завода-изготовителя,
удостоверяющие качество стали фланцев, болтов, гаек и шайб, документы завода-изготовителя о
контроле качества сварных соединений фланцев с присоединяемыми элементами, журнал контроля
за выполнением монтажных фланцевых соединений на высокопрочных болтах.
Приложение 1
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ
ШИРОКОПОЛОЧНЫХ ДВУТАВРОВ
N
Схема фланцевого соединения
Марка профиля
,
кН
(тс)
2
3
4
5
6
7
20Ш1
1593
(163)
25
8
6
20К1
1626
(166)
25
9
6
20К2
1879
40
10
6
п
/
п
1
1
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
, мм
, мм
Всего листов 65
Лист 237
, мм
(192)
2
23Ш1
1608
(164)
25
9
6
3
23К1
2237
(228)
30
9
6
23K2
2274
(232)
30
10
6
26Ш1
1913
(195)
30
10
7
26Ш2
1937
(197)
30
11
6
4
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 238
5
6
7
26К1
2815
(287)
30
10
6
26K2
2933
(299)
30
12
8
30К1
3306
(337)
30
12
8
30К2
4032
(411)
40
12
8
30Ш1
2197
(224)
30
10
7
30Ш2
2668
(272)
40
12
7
Примечания: 1. Типоразмеры и марки стали двутавров по ГОСТ 26020-83 соответствуют
сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Болты М24 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77.
Диаметр отверстий 27 мм. Усилие предварительного натяжения 239 кН (24,4 тс).
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 239
4. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
5. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
сечения двутавра;
пределу текучести);
, где
- площадь
- максимальное расчетное сопротивление стали двутавра растяжению по
- толщина фланцев;
- катеты угловых сварных швов стенки и полки двутавра соответственно.
Приложение 2
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ ПАРНЫХ
РАВНОПОЛОЧНЫХ УГОЛКОВ
N
Схема фланцевого соединения
Сечение элемента,
мм мм
2
3
, кН (тс)
, мм
п
/
п
1
4
5
1
100 7
957
(97,6)
20
2
100 8
1224 (124,8)
25
110 8
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 240
3
1579*
(161,0)
30
1928** (196,5)
40
2156 (219,8)
30
2613 (266,4)
30
125 8
125 9
4
140 9
140 10
5
160 10
160 11
6
180 11
180 12
_______________
* Марка сварочной проволоки - Св-10HMA; Св-10Г2 по ГОСТ 2246-70*.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 241
** Марка сварочной проволоки - Св-10ХГ2СМА, Св-08ХН2ГМЮ по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали равнополочных уголков по ГОСТ 8509-72
соответствуют сокращенному сортаменту металлопроката для применения в стальных строительных
конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Марку стали фасонок назначают в соответствии с указаниями п.2.8 настоящих
рекомендаций. Длина фасонок определяется конструктивными особенностями соединений, но не
менее 200 мм.
4. Все болты (за исключением болтов по схеме 6) М24 высокопрочные из стали 40Х "Селект"
по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 27. Усилие предварительного натяжения 239
кН (24,4 тс).
5. Болты по схеме 6 - М27 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ
22356-77. Диаметр отверстий 30 мм. Усилие предварительного натяжения 312 кН (31,8 тс).
6. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
7. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
, где
- площадь
сечения уголка с максимальными типоразмерами из указанных в графе 3 для каждого фланцевого
соединения;
текучести);
- максимальное расчетное сопротивление стали уголка растяжению по пределу
- толщина фланцев;
- катет угловых сварных швов.
Приложение 3
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ
ШИРОКОПОЛОЧНЫХ ТАВРОВ
Таблица 1
N п/п
Схема фланцевого соединения
Марка профиля
1
2
3
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
, кН (тс)
4
Всего листов 65
Лист 242
, мм
5
1
10Шт1
800**
(81,5)
30
881**
(89,8)
25
1439* (146,7)
30
1919**
(195,6)
30
11,5Шт1
2
13Шт1
13Шт2 (см. п.6 примечаний)
3
15Шт1
15Шт2
15Шт3
4
17,5Шт1
17,5Шт2
17,5Шт3
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 243
20Шт1
5
2537*
(258,6)
40
20Шт2
20Шт3
Таблица 2
N п/п
Схема фланцевого сечения
Марка профиля
1
2
3
4
5
10Шт1
958
(97,6)
20
1227*
(125,1)
25
1
, кН (тс)
, мм
11,5Шт1
2
13Шт1
13Шт2
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 244
3
15Шт1
1494**
(152,3)
25
1919**
(195,6)
30
2681**
(273,3)
40
15Шт2
4
17,5Шт1
17,5Шт2
17,5Шт3
5
20Шт1
20Шт2
20Шт3
_______________
* Марка сварочной проволоки - Св-10НМА; Св-10Г2 по ГОСТ 2246-70*.
** Марка сварочной проволоки - Св-10ХГ2СМА, Cв-08XH2ГMЮ по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали тавров по ГОСТ 26020-83 соответствуют
сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14105-465-82 и 09Г20-15 по ГОСТ 19282-73.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 245
3. Марку стали фасонок назначают в соответствии с указаниями п.2.8 настоящих
рекомендаций. Длина фасонок определяется конструктивными особенностями соединений, но не
менее 200 мм.
4. Все болты, за исключением болтов по схеме 5 (табл.1 и табл.2), М24 высокопрочные из стали
40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 27 мм. Усилие
предварительного натяжения 239 кН (24,4 тс).
5. Болты по схеме 5 (табл.1 и табл.2) М27 высокопрочные из стали 40Х "Селект" по ГОСТ
22353-77 - ГОСТ 22356-77. Диаметр отверстий 30 мм. Усилие предварительного натяжения 312 кН
(31,8 тс).
6. На схеме (табл.1) представлено фланцевое соединение тавров с расчетным сопротивлением
не выше 315 и 270 МПа для 13Шт1 и 13Шт2 соответственно.
7. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
8. Обозначения, принятые в таблицах:
- расчетная продольная сила фланцевых соединений (
, где
- площадь
сечения тавра с максимальными типоразмерами из указанных в графе 3 для каждой схемы
фланцевых соединений;
пределу текучести);
- максимальное расчетное сопротивление стали тавра растяжению по
- толщина фланцев;
- катеты угловых сварных швов стенки и полки тавра соответственно.
Приложение 4
COPTAМEHT ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ КРУГЛЫХ ТРУБ
N
п/п
Схема фланцевого соединения
1
2
Сечение трубы, мм
мм
, кН (тс)
, мм
, мм
,
, мм
мм
3
4
5
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
6
7
Всего листов 65
Лист 246
8
1
114 2,5 5,0
(64,2)
630
20
245
175
20
121 5,0; 6,0*
255
185
127 3,0 4,0
255
185
140 3,5; 4,5
275
205
20
140 4,0 8,0*
(92,2)
903
25
310
220
24
159 3,5; 5,5
630
20
300
220
20
168 4,0 6,0
903
25
350
250
24
(138,2) 1356
25
350
250
24
400
300
400
300
430
330
168 6,0*
2
168 8,0 10,0*
219 6,0; 8,0*
3
219 10,0*
(184,3) 1808
25
219 4,0 6,0
245 8,0*
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 247
24
4
219 7,0; 8,0
(230,4) 2260
25
400
300
245 10,0 12,0*
430
330
273 4,5.....**6,0
460
360
325 5,0; 5,5
535
425
377 5,0 8,0
560
460
460
360
273 12,0*
460
360
377 9,0; 10,0
560
460
520
410
24
273 8,0; 10,0*
5
273 7,0; 8,0
(276,5) 2712
325 6,0 8,0
(360)
3532
25
30
24
27
_______________
* Горячедеформированные трубы по ГОСТ 8732-78*
** Брак оригинала. - Примечание изготовителя базы данных.
Примечания: 1. Типоразмеры и марки стали электросварных прямошовных труб по ГОСТ
10704-76 и горячедеформированных труб по ГОСТ 8732-78* соответствуют сокращенному
сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Марку стали ребер жесткости назначают в соответствии с указаниями п.2.8 настоящих
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 248
рекомендаций. Толщина ребер принимается равной толщине стенки трубы с округлением в большую
сторону. Длина ребер определяется конструктивными особенностями соединения, но не менее 1,5
диаметра трубы для четных и 1,7 диаметра трубы для нечетных ребер.
4. Болты М20, М24 и М27 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ
22356-77. Диаметр отверстий 23, 28 и 31 мм. Усилие предварительного натяжения 167, 239 и 312 кН
соответственно.
5. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
6. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
, где
- площадь
сечения трубы с типоразмерами из указанных в графе 3 для каждого фланцевого соединения;
расчетное сопротивление стали трубы растяжению по пределу текучести);
-
- толщина фланцев;
- диаметр фланцев;
- диаметр болтовой риски;
- диаметр болтов.
Приложение 5
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 249
Геометрические параметры соединений
Диаметр
болта
Параметры,
мм
Номер профиля ригеля
26Б1
30Б1
35Б1
35Б2
40Б1
М24
М27
45Б1
50Б1
55Б1
60Б1
45Б2
50Б2
55Б2
60Б2
70Б1
70Б2
80Б1
90Б1
100Б1
100Б2
23Ш1
26Ш1
26Ш2
30Ш1
35Ш1
40Ш1
50Ш1
30Ш2
35Ш2
40Ш2
60Ш1
70Ш1
70Ш2
90
90
100
100
90
90
100
100
60
60
60
60
60
60
60
60
40
45
45
50
40
45
45
50
100
100
110
110
100
100
110
110
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 250
70
70
70
70
70
70
70
70
45
50
50
55
45
50
50
55
Примечание. Параметр
может быть изменен в зависимости от типа колонны при
выполнении условий, изложенных в разделе 4 (п.4) настоящих рекомендаций.
НЕСУЩАЯ СПОСОБНОСТЬ СОЕДИНЕНИЯ (тс·м)
Тип
фла
н- ца
1
2
3
4
Диаметр
болт
а
Номер профиля ригеля
26
Б1
30Б1
35
Б1
35
Б2
40Б1
40Б2
45
Б1
45
Б2
50Б1
50Б2
55
Б1
55
Б2
60Б1 70Б1 80Б1
60Б2 70Б2
90
Б1
100Б
1
23Ш
1
26Ш
1
26Ш
2
30
1
30
2
М24
15,
5
18,5
22,
2
25,9
31,
7
35,6
41,
9
46,7
-
-
-
-
13,0
15,2
17
М27
-
-
-
36,3
40,
7
-
-
-
-
-
-
-
-
19,4
22
М24
-
-
-
28,8
35,
3
40,2
48,
1
53,5
63,9
74,4
-
-
-
-
-
М27
-
-
-
-
-
50,5
58,
6
-
-
-
-
-
-
-
-
М24
-
-
-
-
-
63,5
73,
8
81,9
97,4
112,
9
12
9,5
145,
4
-
-
31
М27
-
-
-
-
-
-
-
100,
7
119,
8
139,
0
-
-
-
-
-
М24
-
-
-
-
-
-
-
-
136,
159,
18
206,
-
-
-
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 251
М27
-
-
-
-
-
-
-
-
7
4
3,7
8
-
-
22
2,0
258,
6
-
-
-
СВАРНЫЕ ШВЫ
Номер
профиля
ригеля
26
Б
30Б
35Б
40Б
45
Б
50
Б
55
Б
60
Б
70
Б
8
0
Б
90
Б
100Б
23
Ш
26
Ш
30
Ш
40
Ш
50
Ш
60
Ш
70Ш
35
Ш
8
8
8
8
8
10
12
12
*
14
*
1
4
*
14
*
14*
8
10
10
12
*
12*
10
10
10
10
14
14
16
16
*
16
*
1
6
*
16
*
20*
10
14
16
16
*
18*
_______________
* Марка сварочной проволоки Св-10 НМА, Св-10Г2 по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали двутавров по ГОСТ 26020-83 соответствуют
сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ГОСТ
19282-73, 09Г2С-15 по ГОСТ 19282-73.
3. Болты высокопрочные М24 и М27 из стали 40Х ’’Селект" климатического исполнения
ХЛ с временным сопротивлением не менее 1100 МПа (110 кгс/мм ), а также гайки
высокопрочные и шайбы к ним по ГОСТ 22353-77 - ГОСТ 22356-77.
Усилие предварительного натяжения болтов: М24 - 239 кН; М27 - 312 кН.
4. Диаметр отверстий 28 и 31 мм под высокопрочные болты М24 и М27 соответственно.
5. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
Приложение 6
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 252
ПРИМЕРЫ ПРОЕКТИРОВАНИЯ И РАСЧЕТА ПРОЧНОСТИ ФЛАНЦЕВЫХ
СОЕДИНЕНИЙ ЭЛЕМЕНТОВ, ПОДВЕРЖЕННЫХ РАСТЯЖЕНИЮ
1. Фланцевое соединение растянутых элементов из парных равнополочных уголков
Спроектировать и рассчитать ФС по следующим исходным данным:
профиль присоединяемых элементов - парные равнополочные уголки
по
ГОСТ 8509-72 из стали марки 09Г2С-6 по ГОСТ 19282-73 с расчетным сопротивлением стали
растяжению по пределу текучести
=360 МПа (3650 кгс/см ) и временным сопротивлением стали
разрыву с
=520 МПа (5300 кгс/см ), площадь сечения профиля =2х22=44 см ;
усилие растяжения, действующее на соединение,
материал фланца
-
сталь
марки
09Г2С-15
=1557 кН (159 тс);
по
ГОСТ
19282-73
с
расчетным
сопротивлением растяжению по пределу текучести
=290 МПа (2950 кгс/см ) и
нормативным сопротивлением по пределу текучести
=305 МПа (3100 кгс/см ), расчетное
сопротивление стали фланца растяжению в направлении толщины проката (в соответствии с
указаниями главы СНиП II-23-81*)
МПа (1480 кгс/см ).
Толщина фланца =30 мм;
болты высокопрочные М24, расчетное усилие болта
усилие предварительного натяжения болтов
=266 кН (27,1 тс), расчетное
=239 кН (24,4 тс);
катеты сварных швов принять равными
=10 мм, сварка механизированная проволокой
марки Св-08Г2С по ГОСТ 2246-70* с обеспечением проплавления корня шва не менее 2 мм,
расчетное сопротивление угловых швов срезу по металлу шва и по металлу границы сплавления
соответственно
=215 МПа (2200 кгс/см ),
МПа (2390 кгс/см );
материал фасонки - сталь марки 09Г2С-12-2 по ТУ 14-1-3023-80, толщина фасонки
=14 мм.
Проверка прочности сварных швов
Определяем длину сварных швов (рис.1):
см, а также необходимые для расчета
параметры в соответствии с требованиями главы СНиП II-23-81*:
=0,7,
=1,0,
=1,0,
=1,0, =1,0. Проверку прочности сварных швов в соответствии с указаниями п.5.10 выполняем
по трем сечениям:
по металлу шва по формуле (28):
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 253
;
МПа (2200 кгс/см );
по металлу границы сплавления с профилем по формуле (29):
;
МПа (2390 кгс/см );
по металлу границы сплавления с фланцем в направлении толщины проката по формуле (30):
;
МПа (1480 кгс/см ).
Рис.1. Схема к примеру расчета фланцевого соединения парных равнополочных уголков 125х9
Таким образом, прочность сварных швов обеспечена.
Для предотвращения внецентренного приложения внешнего усилия на соединение
центр тяжести сварных швов должен совпадать с центром тяжести соединяемого профиля.
Поэтому необходимо выполнение условия:
=0, где
- статический момент сварных швов
относительно оси
, или
= , где
и
- статические моменты сварных швов выше и ниже
оси
соответственно.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 254
Разница между
и
составляет
.
Конструирование и расчет прочности ФС
Конструктивная форма соединения принята, как показано на рис.1. В таком соединении
количество болтов внутренней зоны =4. Количество болтов наружной зоны
предварительно
назначаем из условия (1) [см. раздел 5]:
,
где
- предельное внешнее усилие на болт внутренней зоны от действия внешней
нагрузки;
- предельное внешнее усилие на один болт наружной зоны, определяемое по табл.2
(раздел 5). По конструктивным особенностям соединения предварительно назначаем количество
болтов наружной зоны
=4.
Расстановку болтов производим в соответствии с указаниями п.4.6. В соответствии с
указаниями п.4.7 болты должны быть расположены безмоментно относительно оси
(см.
рис.1), поэтому
. С учетом, что
=1,5 имеем:
,
таким образом это условие выполнено.
Прочность ФС следует считать обеспеченной, если выполняется условие (2):
,
где
- расчетное усилие растяжения, воспринимаемое ФС и определяемое по формулам (3)
или (4). Для определения необходимо найти величину
- расчетное усилие на болт наружной
зоны -го участка фланца, представляемого условно как элементарное Т-образное ФС. Заметим, что
в силу конструктивных особенностей в этом соединении можно выделить два участка наружной
зоны I и II (на рис.1 эти участки заштрихованы). Поэтому для нахождения величины необходимо
определить значения
и
и выбрать наименьшее из них.
Определение
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к участку I
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 255
наружной зоны, определяем из условия:
.
Значение
определяем по формуле (5)
, где
находим по формуле (6)
,a
- по формуле (7)
,
здесь
=24 мм - номинальный диаметр резьбы болта,
- ширина фланца, приходящаяся на один болт
участка I наружной зоны,
мм - усредненное расстояние между осью болта и
краями сварных швов полки уголка и фасонки.
Тогда:
кН (17,7 тс).
Значение
определяем по формуле (8)
,
для чего находим значения
и
:
,
а значение
Тогда:
определяем по табл.4 (
).
кН (28,4 тс).
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 256
Поскольку
, принимаем
кН (17,7 тс).
Определение
находим так же, как и
, с той лишь разницей, что для участка II
Значение
мм, а
С учетом этого
тогда
кН (17,6 тс).
Определим усилие на болт из условия прочности фланца на изгиб:
значение
тогда:
определяем по табл.4 (
=1,5),
кН (20,7 тс).
Поскольку
, принимаем
кН.
Так как
, принимаем
.
Поскольку
,
расчетное
усилие
растяжения,
воспринимаемое ФС, определяем по формуле (3)
(162 тс).
Проверяем выполнение условия (2):
.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 257
Условие (2) выполнено, таким образом, прочность ФС следует считать обеспеченной.
2. Фланцевое соединение растянутых элементов из круглых труб
Спроектировать и рассчитать ФС по следующим исходным данным:
профиль присоединяемых элементов - электросварная прямошовная труба 273х8 мм
по ГОСТ 10704-76 из стали марки 09Г2С по ТУ 14-3-500-76 с расчетным сопротивлением
стали растяжению по пределу текучести
сопротивлением стали разрыву
=250 МПа (2550 кгс/см ) и временным
=470 МПа (4800 кгс/см ), площадь сечения трубы
усилие растяжения, действующее на соединение,
материал фланца
-
сталь
марки
09Г2С-15
=66,62 см ;
=1666 кН (170 тс);
по
ГОСТ
сопротивлением растяжению по пределу текучести
19282-73
с
расчетным
=290 МПа (2950 кгс/см ) и
нормативным сопротивлением по пределу текучести
=305 МПа (3100 кгс/см ), расчетное
сопротивление стали фланца растяжению в направлении толщины проката (в соответствии с
указаниями главы СНиП II-23-81*)
Толщина фланца =25 мм;
МПа (1480 кгс/см ).
болты высокопрочные М24, расчетное усилие болта
усилие предварительного натяжения болтов =239 кН (24,4 тс);
=266 кН (27,1 тс), расчетное
катеты сварных швов принять равными
=8 мм, сварка механизированная проволокой
марки Св-08Г2С по ГОСТ 2246-70* с обеспечением проплавления корня шва не менее 2 мм,
расчетное сопротивление угловых швов срезу по металлу шва и по металлу границы сплавления
соответственно
=215 МПа (2200 кгс/см ),
МПа (2160 кгс/см );
материал ребер жесткости - сталь марки 09Г2С по ТУ 14-1-3023-80, толщина ребер
жесткости
=10 мм.
Расчет прочности и проектирование ФС
В соответствии с указаниями п.5.7 прочность ФС элементов замкнутого профиля считается
обеспеченной, если:
при
мм.
Из этого условия определим необходимое количество болтов
в соединении:
шт.
Количество болтов в соединении принимаем
=8 шт.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 258
Конструирование ФС осуществляем в соответствии с указаниями раздела 4.
При принятом количестве болтов в соединении минимальное количество ребер
жесткости
=4. Длина нечетных ребер:
мм,
длина четных ребер:
мм, принимаем
где
=470 мм.
- диаметр трубы.
В соответствии с указаниями п.4.6 болты располагаем как можно ближе к элементам
присоединяемого профиля, при этом:
мм,*
_________________
* Формула соответствует оригиналу. - Примечание изготовителя базы данных.
мм, с округлением принимаем =50 мм.
Определяем диаметр риски болтов:
мм, принимаем
=355 мм, а диаметр фланца:
мм.
Угол между радиальными осями ребра и болтов, расположенными у ребра:
, с округлением принимаем
=20°.
Проверка прочности сварных швов
Определяем длину сварных швов (рис.2):
мм, а также необходимые для
расчета параметры в соответствии с требованиями главы СНиП II-23-81*:
=1,0,
=0,7,
=1,0,
=1,0,
=1,0.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 259
Рис.2. Схема к примеру расчета фланцевого соединения элементов из круглых труб 273х8
Проверку прочности сварных швов в соответствии с указаниями п.5.10 выполняем по трем
сечениям:
по металлу шва по формуле (28):
;
МПа (2200 кгс/см );
по металлу границы сплавления с профилем по формуле (29):
;
МПа (2160 кгс/см );
по металлу границы сплавления с фланцем в направлении толщины проката по формуле (30):
;
МПа (1480 кгс/см ).
Таким образом, прочность сварных швов обеспечена.
Приложение 7
ПРИМЕР РАСЧЕТА ФЛАНЦЕВОГО СОЕДИНЕНИЯ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 260
Провести проверочный расчет фланцевого соединения (см. рисунок).
Схема к примеру расчета фланцевого соединения широкополочного двутавра 160Б1,
подверженного
воздействию изгиба и растяжения
Данные, необходимые для расчета:
профиль присоединяемого элемента - 160Б1 по ГОСТ 26020-83 из стали марки 09Г2С,
площадь сечения профиля
=131 см , площадь сечения пояса
сопротивления профиля =2610 см ;
изгибающий момент и продольное усилие, действующие
соответственно
=686 кН·м (70 тс·м) и =490,5 кH (50 тс);
=35,4 см , момент
на
соединение,
материал фланца - сталь марки 14Г2АФ-15 по ТУ 14-105-465-82 с расчетным
сопротивлением изгибу по пределу текучести
принята равной =25 мм;
=368 МПа (3750 кгс/см ), толщина фланца
болты высокопрочные М24, расчетное усилие растяжения болта
расчетное усилие предварительного натяжения болтов =239 кН (24,4 тс);
катеты сварных швов по поясам профиля
=12 мм, по стенке
=266 кН (27,1 тс),
=8 мм.
Максимальное и минимальное значения нормальных напряжений в присоединяемом профиле
от действия изгиба и продольных усилий определяем по формуле (10) [см. раздел 5]:
;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 261
.
Усилие в растянутом поясе присоединяемого элемента определяем по формуле (11):
,
где
- площадь сечения участка стенки в зоне болтов растянутого пояса (см. рис.4 и
рисунок в настоящем приложении);
;
=10 мм - толщина стенки профиля;
=70 мм - ширина фланца, приходящаяся на один болт, расположенный вдоль стенки
профиля;
=15,5 мм - толщина пояса профиля.
мм,
=80·10=800 мм, тогда
=(3540+800)·300=1302 кН (132,5 тс).
Усилие в растянутой части стенки определяем по формуле (12):
,
где
,
;
мм,
тогда
кН (30,5 тс).
Прочность ФС считаем обеспеченной, если при
условие (13):
и
выполняется
;
.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 262
При принятом конструктивном решении ФС (наличие ребра жесткости растянутого
пояса и симметричное расположение болтов относительно пояса
, см.
рисунок) расчетное усилие растяжения, воспринимаемое болтом и фланцем, относящимися к
растянутому поясу,
определяем по формуле (16):
,
то же, к растянутой части стенки,
- по формуле (19):
.
Определение
Поскольку
мм, то
,
,
,
мм - расстояние от оси болтов ряда
до пояса профиля.
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к наружной
зоне пояса, определяем из условия:
.
Значение
определяем по формуле (5):
, где
находим по формуле (6):
,a
- по формуле (7):
,
здесь
=24 мм - номинальный диаметр резьбы болта,
=70 мм - ширина фланца, приходящаяся на один болт наружной зоны растянутого пояса
профиля;
=33 мм - расстояние от оси болтов ряда
профиля (
до края сварного шва растянутого пояса
мм).
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 263
Тогда:
,
и
кН (15,7 тс).
Значение
определяем по формуле (8):
,
для чего находим значения
и
:
Н·см;
.
Значение
определяем по табл.4 (
=1,48).
Тогда:
кН (20,1 тс).
Поскольку
, принимаем
кН (15,7 тс) и
.
Определение
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к растянутой
части стенки профиля, определяем из условия:
.
Значения
и
определяем по формулам (5) и (8). Расчет всех параметров,
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 264
необходимых для определения
и
, выполняем так же, как и при определении
лишь разницей, что для болтов и фланца, относящихся к стенке профиля, параметр
(
мм). Тогда:
, с той
=37 мм
;
,
кН (14,7 тс).
Определим усилие на болт из условия прочности фланца на изгиб:
Н·см;
;
значение
определяем по табл.4 (
=1,42);
кН (18,2 тс).
Поскольку
, то принимаем
кН (14,7 тс).
Находим значение
:
кН (31,8 тс).
Определив значения
кН (132,5 тс)
кН (30,5 тс)
и
, проверяем условие (13):
кН (138,4 тс);
кН (31,8 тс).
Условие (13) выполнено. Проверка прочности сварных швов выполнена в соответствии с п.5.10
настоящих рекомендаций. Прочность сварных швов обеспечена.
Таким образом, прочность фланцевого соединения обеспечена.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 265
Приложение 8
МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ ИСПЫТАНИЙ ТОЛСТОЛИСТОВОГО
ПРОКАТА ДЛЯ ФЛАНЦЕВ
1. Общие положения
1.1. Настоящие указания распространяются на толстолистовой прокат строительных
сталей толщиной от 12 до 50 мм включительно, предназначенный для изготовления
фланцев соединений растянутых и изгибаемых элементов, и устанавливают методику
испытаний на статическое растяжение с целью определения следующих характеристик
механических свойств металлопроката в направлении толщины при температуре
°С:
предела текучести (физического или условного); временного сопротивления разрыву;
относительного удлинения после разрыва; относительного сужения после разрыва.
1.2. Определяемые в соответствии с настоящими методическими указаниями механические
свойства могут быть использованы для контроля качества проката для металлоконструкций; анализа
причин разрушения конструкций; сопоставления материалов при обосновании их выбора для
конструкций; расчета прочности несущих элементов с учетом их работы по толщине листов;
сравнения сталей в зависимости от химического состава, способа выплавки и раскисления, сварки,
вида термообработки, толщины и т.д.
1.3. При испытании на статическое растяжение принимаются следующие обозначения и
определения:
рабочая длина *, мм - часть образца с постоянной площадью поперечного сечения между его
головками или участками для захвата;
_______________
* Буквенные обозначения приняты по ГОСТ 1497-73**.
** На территории Российской Федерации действует ГОСТ 1497-84. Здесь и далее. Примечание изготовителя базы данных.
начальная расчетная длина образца
которой определяется удлинение;
, мм - участок рабочей длины образца до разрыва, на
конечная расчетная длина образца после его разрыва
, мм;
начальный диаметр paбочей части цилиндрического образца до разрыва
минимальный диаметр цилиндрического образца после его разрыва
, мм;
, мм;
начальная площадь поперечного сечения рабочей части образца до разрыва
площадь поперечного сечения образца после его разрыва
осевая растягивающая нагрузка
,
, мм ;
, мм ;
- нагрузка, действующая на образец в данный момент
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 266
испытания;
предел текучести (физический)
, МПа - наименьшее напряжение, при котором образец
деформируется без заметного увеличения нагрузки;
предел текучести условный
, МПа - напряжение, при котором остаточное удлинение
достигает 0,2% длины участка образца, удлинение которого принимается в расчет при определении
указанной характеристики;
временное сопротивление
, МПа - напряжение, соответствующее наибольшей нагрузке
, предшествующей разрушению образца;
относительное удлинение после разрыва - отношение приращения расчетной длины
образца (
) после разрыва к ее первоначальной длине ;
относительное сужение после разрыва
площади поперечного сечения после разрыва
образца
.
, % - отношение разности начальной площади и
к начальной площади поперечного сечения
2. Форма, размеры образцов и их изготовление
2.1. Для испытания на растяжение в направлении толщины проката применяют укороченные
цилиндрические образцы (см. рисунок, а) диаметром 5 мм, начальной расчетной длиной
мм по п.2.1 ГОСТ 1497-73. При этом металл, испытываемый в направлении
толщины, условно рассматривается как хрупкий. Рабочая длина образца в соответствии с п.2.3 ГОСТ
1497-73 составляет
мм.
Образцы для испытаний на растяжение в направлении толщины проката
2.2. Образец вырезают из испытываемого листа так, чтобы ось образца была перпендикулярна
к поверхности листа.
2.3. На торцах образцов, выполненных из металлопроката толщиной 30 мм, сохраняется
прокатная корка. При толщине испытываемого проката более 30 мм такая корка сохраняется на
одном торце образца.
2.4. Для испытания металлопроката толщиной 12-29 мм применяются сварные образцы. С этой
целью к листовой заготовке испытываемого металла приваривают в тавр две пластины из стали той
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 267
же прочности, чтобы получить крестовое соединение со сплошным проваром. Цилиндрические
образцы вырезают из сварного соединения так, чтобы испытываемый металл попадал в рабочую
часть образца. При этом продольная ось образца должна совпадать с направлением толщины
испытываемого листа. Этапы изготовления сварных образцов указаны на рисунке, б.
2.5. Для испытания металлопроката толщиной 24-29 мм допускается применять несварные
образцы с укороченной рабочей длиной по сравнению с указанной в п.2.1 и на рисунке, а. При этом
высота головок образцов не изменяется.
2.6. Образцы рекомендуется обрабатывать на металлорежущих станках. Глубина резания при
последнем проходе не должна превышать 0,3 мм. Чистота обработки поверхности образцов и
точность изготовления должны соответствовать требованиям ГОСТ 1497-73.
2.7. При определении относительного удлинения нужно обходиться без нанесения кернов на
рабочей части образца; за начальную расчетную длину следует принимать общую длину образца
вместе с головками.
2.8. Начальную и конечную длину образца измеряют штангенциркулем с точностью до
0,1 мм, и полученные значения округляют в большую сторону. Диаметр рабочей части
образца до испытания измеряют микрометром в трех местах (посередине и с двух краев) с
точностью до 0,01 мм; в каждом сечении диаметр измеряют дважды (второе измерение
производят при повороте образца на 90°), и за начальный диаметр принимают среднее
значение из двух измерений; причем фиксируют все три значения начальных диаметров (в
середине и с двух краев рабочей части образца). После испытания определяют, вблизи
какого измеренного сечения произошел разрыв образца, и в дальнейшем при определении
относительного сужения после разрыва
диаметр этого сечения принимают за начальный
диаметр. Диаметр образцов после испытания следует измерять штангенциркулем с точностью до 0,1
мм.
2.9. Для испытания изготавливают по три образца от каждого листа, пробы отбирают из
средней трети листа (по ширине).
3. Испытание образцов
3.1. Для определения механических свойств в направлении толщины проката при статическом
растяжении используют универсальные испытательные машины с механическим, гидравлическим
или электрогидравлическим приводом с усилием не выше 100 кН (10 тс) при условии соответствия
их требованиям ГОСТ 1497-73 и ГОСТ 7855-74.
3.2. При проведении испытаний должны соблюдаться следующие основные условия:
надежное центрирование образца в захватах испытательной машины;
плавность нагружения;
скорость перемещения подвижного захвата при испытании до предела текучести - не более 0,1,
за пределом текучести - не более 0,4 длины расчетной части образца, выраженная в мм/мин.
3.3. Рекомендуется оснащать машины регистрирующей аппаратурой для записи диаграмм
"усилие-перемещение" в масштабе не менее 25:1.
3.4. Испытания на растяжение образцов для определения механических свойств в направлении
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 268
толщины проката и подсчет результатов испытаний проводят в полном соответствии с § 3 и 4 ГОСТ
1497-73.
3.5. При разрушении сварных образцов вне основного металла испытываемого листа из-за
возможных дефектов соединения (поры непроваров, шлаковые включения, трещины и др.)
результаты их испытания не принимают во внимание и испытание повторяют на новых образцах.
3.6. Результаты испытаний каждого образца в виде значений
вносят в
журнал испытаний и фиксируют в протоколе, прикладываемом к сертификату на
металлоконструкции. Величины
и
нормируются и служат критериями при выборе и
назначении толстолистового проката для изготовления фланцев. Значения других характеристик
и
факультативны и используются для накопления данных.
В журнал испытаний вносят также данные из сертификата металлургического заводаизготовителя металлоизделий: марку стали, номер партии, номер плавки, номер листа, химический
состав и механические свойства при обычных испытаниях.
ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ
"РЕКОМЕНДАЦИЙ ПО РАСЧЕТУ, ПРОЕКТИРОВАНИЮ, ИЗГОТОВЛЕНИЮ И МОНТАЖУ
ФЛАНЦЕВЫХ СОЕДИНЕНИЙ СТАЛЬНЫХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ"
Содержание пункта 2.2 раздела ’’Материалы’’ заменяется на следующее.
2.2. Для фланцев элементов стальных конструкций, подверженных растяжению, изгибу или их
совместному действию, следует принять листовую сталь по ГОСТ 19903-74* с гарантированными
механическими свойствами в направлении толщины проката по ТУ 14-1-4431-88 классов 3-5 марок
09Г2С-15 и 14Г2АФ-15 (по ГОСТ 19282-73) или по ТУ 14-105-465-89 марки 14Г2АФ-15.
Допускается применение листовой стали электрошлакового переплава марки 16Г2АФШ по ТУ 14-11779-76 и 10 ГНБШ по ТУ 14-1-4603-89.
______________
Механические характеристики листовой стали марки 10ГНБШ толщиной 10-40 мм:
временное
сопротивление
=40
кгс/мм ,
относительное удлинение
%, относительное сужение в направлении толщины ударная вязкость при температуре - 60 °С KCV не менее 8,0 кгс/см .
%,
=52-70
кгс/мм ,
предел
текучести
Содержание пункта 2.3 раздела ’’Материалы’’ заменяется на следующее.
2.3. Фланцы могут быть выполнены из листовой низколегированной стали марок С345, С375 по
ГОСТ 27772-88, при этом сталь должна удовлетворять следующим требованиям:
- категория качества стали (только для С345 и С375) - 3 или 4 в зависимости от требований к
материалу конструкции по СНиП II-23-81*;
- относительное сужение стали в направлении толщины проката
для одного из трех образцов
%.
%, минимальное
Проверку механических свойств стали в направлении толщины проката осуществляет завод
строительных стальных конструкций по методике, изложенной в приложении 8.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 269
Содержание пункта 2.5 раздела "Материалы" заменяется на следующее.
2.5. Качество стали для фланцев по характеристикам сплошности в зонах шириной 80 мм
симметрично вдоль оси симметрии каждого из элементов профиля, присоединяемого к фланцу,
должно удовлетворять требованиям в таблице 1.
Контроль качества стали методами ультразвуковой дефектоскопии осуществляет завод
строительных конструкций. На рисунке в качестве примера показаны зоны контроля стали фланцев
для соединений элементов открытого и замкнутого профилей.
Таблица 1
Зона
дефектоскопии
Характеристика сплошности
Площадь несплошности,
см
Контролируема
я зона фланцев
Минимальная
учитываемая
Максимальна
я
учитываемая
0,5
1,0
Допустимая
частота
несплошностей
Максимальная
допустимая
протяженность
несплошности
Минимальное
допустимое
расстояние
несплошностями*
4 см
10 см
10 м
_________________
* Текст соответствует оригиналу. - Примечание изготовителя базы данных.
Оценку качества стали фланцев марки 10ГНБШ по характеристикам сплошности можно
осуществлять по дефектограммам, прилагаемым заводом-поставщиком стали к каждому листу. При
удовлетворении требований, указанных в таблице 1, ультразвуковую дефектоскопию завод
строительных конструкций не выполняет.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 270
Электронный текст документа
подготовлен ЗАО "Кодекс" и сверен по:
/ Министерство монтажных и специальных
строительных работ СССР. М.: ЦБНТИ Минмонтажспецстроя СССР, 1989
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю.,
КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 271
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 272
СОДЕРЖАНИЕ
1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка контактных поверхностей элементов и методы контроля
45
6.4
Приготовление и нанесение протекторной грунтовки ВЖС 83-02-87.
Требования к загрунтованной поверхности. Методы контроля
6.4.1
46
Основные требования по технике безопасности при работе с грунтовкой
ВЖС 83-02-87
6.4.2
Транспортировка и хранение элементов и деталей, законсервированных
грунтовкой ВЖС 83-02-87
6.5
47
49
Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
7
Сборка ФПС
49
Список литературы
51
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 273
1. ВВЕДЕНИЕ
Современный подход к проектированию сооружений, подверженных экстремальным, в
частности, сейсмическим нагрузкам исходит из целенаправленного проектирования предельных
состояний конструкций. В литературе [1, 2, 11, 18] такой подход получил название проектирования
сооружений с заданными параметрами предельных состояний. Возможны различные технические
реализации отмеченного подхода. Во всех случаях в конструкции создаются узлы, в которых от
экстремальных нагрузок могут возникать неупругие смещения элементов. Вследствие этих
смещений нормальная эксплуатация сооружения, как правило, нарушается, однако исключается его
обрушение. Эксплуатационные качества сооружения должны легко восстанавливаться после
экстремальных воздействий. Для обеспечения указанного принципа проектирования и были
предложены фрикционно-подвижные болтовые соединения.
Под
фрикционно-подвижными
соединениями
(ФПС)
понимаются
соединения
металлоконструкций высокопрочными болтами, отличающиеся тем, что отверстия под болты в
соединяемых деталях выполнены овальными вдоль направления действия экстремальных нагрузок.
При экстремальных нагрузках происходит взаимная сдвижка соединяемых деталей на величину до 34 диаметров используемых высокопрочных болтов. Работа таких соединений имеет целый ряд
особенностей и существенно влияет на поведение конструкции в целом. При этом во многих случаях
оказывается возможным снизить затраты на усиление сооружения, подверженного сейсмическим и
другим интенсивным нагрузкам.
ФПС были предложены в НИИ мостов ЛИИЖТа в 1980 г. для реализации принципа
проектирования мостовых конструкций с заданными параметрами предельных состояний. В 1985-86
г.г. эти соединения были защищены авторскими свидетельствами [16-19]. Простейшее стыковое и
нахлесточное соединения приведены на рис.1.1. Как видно из рисунка, от обычных соединений на
высокопрочных болтах предложенные в упомянутых работах отличаются тем, что болты пропущены
через овальные отверстия. По замыслу авторов при экстремальных нагрузках должна происходить
взаимная подвижка соединяемых деталей вдоль овала, и за счет этого уменьшаться пиковое значение
усилий, передаваемое соединением. Соединение с овальными отверстиями применялись в
строительных конструкциях и ранее, например, можно указать предложения [8, 10 и др]. Однако в
упомянутых работах овальные отверстия устраивались с целью упрощения монтажных работ. Для
реализации принципа проектирования конструкций с заданными параметрами предельных состояний
необходимо фиксировать предельную силу трения (несущую способность) соединения.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 274
При использовании обычных болтов их натяжение N не превосходит 80-100 кН, а разброс
натяжения N=20-50 кН, что не позволяет прогнозировать несущую способность такого соединения
по трению. При использовании же высокопрочных болтов при том же N натяжение N= 200 - 400
кН, что в принципе может позволить задание и регулирование несущей способности соединения.
Именно эту цель преследовали предложения [3,14-17].
Однако проектирование и расчет таких соединений вызвал серьезные трудности. Первые испытания
ФПС показали, что рассматриваемый класс соединений не обеспечивает в общем случае стабильной
работы конструкции. В процессе подвижки возможна заклинка соединения, оплавление контактных
поверхностей соединяемых деталей и т.п. В ряде случаев имели место обрывы головки болта.
Отмеченные
исследования
позволили
выявить
способы
обработки
соединяемых
листов,
обеспечивающих стабильную работу ФПС. В частности, установлена недопустимость использования
для ФПС пескоструйной обработки листов пакета, рекомендованы использование обжига листов,
нанесение на них специальных мастик или напыление мягких металлов. Эти исследования показали,
что расчету и проектированию сооружений должны предшествовать детальные исследования самих
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 275
соединений. Однако, до настоящего времени в литературе нет еще систематического изложения
общей теории ФПС даже для одноболтового соединения, отсутствует теория работы многоболтовых
ФПС. Сложившаяся ситуация сдерживает внедрение прогрессивных соединений в практику
строительства.
В силу изложенного можно заключить, что ФПС весьма перспективны для использования в
сейсмостойком строительстве, однако, для этого необходимо детально изложить, а в отдельных
случаях и развить теорию работы таких соединений, методику инженерного расчета самих ФПС и
сооружений с такими соединениями. Целью, предлагаемого пособия является систематическое
изложение теории работы ФПС и практических методов их расчета. В пособии приводится также и
технология монтажа ФПС.
2.ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ И ИЗНОСА
Развитие науки и техники в последние десятилетия показало, что
надежные и долговечные машины, оборудование и приборы могут быть
созданы только при удачном решении теоретических и прикладных задач
сухого и вязкого трения, смазки и износа, т.е. задач трибологии и
триботехники.
Трибология – наука о трении и процессах, сопровождающих трение
(трибос – трение, логос – наука). Трибология охватывает экспериментальнотеоретические
результаты
исследований
физических
(механических,
электрических, магнитных, тепловых), химических, биологических и других
явлений, связанных с трением.
Триботехника
трибологии
при
–
это
система
знаний
проектировании,
о
практическом
изготовлении
и
применении
эксплуатации
трибологических систем.
С
трением
связан
износ
соприкасающихся
тел
–
разрушение
поверхностных слоев деталей подвижных соединений, в т.ч. при резьбовых
соединениях. Качество соединения определяется внешним трением в витках
резьбы и в торце гайки и головки болта (винта) с соприкасающейся деталью
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 276
или шайбой. Основная характеристика крепежного резьбового соединения –
усилие затяжки болта (гайки), - зависит от значения и стабильности моментов
сил
трения
сцепления,
возникающих
при
завинчивании.
Момент
сил
сопротивления затяжке содержит две составляющих: одна обусловлена
молекулярным воздействием в зоне фактического касания тел, вторая –
деформированием
тончайших
поверхностей
слоев
контактирующими
микронеровностями взаимодействующих деталей.
Расчет этих составляющих осуществляется по формулам, содержащим ряд
коэффициентов,
установленных
в
результате
экспериментальных
исследований. Сведения об этих формулах содержатся в Справочниках
«Трение, изнашивание и смазка» [22](в двух томах) и «Полимеры в узлах
трения машин и приборах» [13], изданных в 1978-1980 г.г. издательством
«Машиностроение». Эти Справочники не потеряли своей актуальности и
научной обоснованности и в настоящее время. Полезный для практического
использования материал содержится также в монографии Геккера Ф.Р. [5].
Сухое трение. Законы сухого трения
1. Основные понятия: сухое и вязкое трение; внешнее и внутреннее
трение, пограничное трение; виды сухого трения.
Трение – физическое явление, возникающее при относительном движении
соприкасающихся газообразных, жидких и твердых тел и вызывающее
сопротивление движению тел или переходу из состояния покоя в движение
относительно конкретной системы отсчета.
Существует два вида трения: сухое и вязкое.
Сухое трение возникает при соприкосновении твердых тел.
Вязкое трение возникает при движении в жидкой или газообразной среде,
а также при наличии смазки в области механического контакта твердых тел.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 277
При учете трения (сухого или вязкого) различают внешнее трение и
внутренне трение.
Внешнее трение возникает при относительном перемещении двух тел,
находящихся в соприкосновении, при этом сила сопротивления движению
зависит от взаимодействия внешних поверхностей тел и не зависит от
состояния внутренних частей каждого тела. При внешнем трении переход
части механической энергии во внутреннюю энергию тел происходит только
вдоль поверхности раздела взаимодействующих тел.
Внутреннее трение возникает при относительном перемещении частиц
одного и того же тела (твердого, жидкого или газообразного). Например,
внутреннее трение возникает при изгибе металлической пластины или
проволоки, при движении жидкости в трубе (слой жидкости, соприкасающийся
со стенкой трубы, неподвижен, другие слои движутся с разными скоростями и
между ними возникает трение). При внутреннем трении часть механической
энергии переходит во внутреннюю энергию тела.
Внешнее
трение
соприкосновения
в
твердых
чистом
тел
без
виде
возникает
смазочной
только
прослойки
в
между
случае
ними
(идеальный случай). Если толщина смазки 0,1 мм и более, механизм трения не
отличается от механизма внутреннего трения в жидкости. Если толщина
смазки менее 0,1 мм, то трение называют пограничным (или граничным). В
этом случае учет трения ведется либо с позиций сухого трения, либо с точки
зрения вязкого трения (это зависит от требуемой точности результата).
В истории развития понятий о трении первоначально было получено
представление о внешнем трении. Понятие о внутреннем трении введено в
науку в 1867 г. английским физиком, механиком и математиком Уильямом
Томсоном (лордом Кельвиным).1)
1)
[Томсон (1824-1907) в 10-летнем возрасте был принят в университет в Глазго, после обучения
в котором перешел в Кембриджский университет и закончил его в 21 год; в 22 года он стал
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 278
Законы сухого трения
Сухое трение впервые наиболее полно изучал Леонардо да Винчи (14521519). В 1519 г. он сформулировал закон трения: сила трения, возникающая
при контакте тела с поверхностью другого тела, пропорциональна нагрузке
(силе прижатия тел), при этом коэффициент пропорциональности – величина
постоянная и равна 0,25:
.
Через 180 лет модель Леонарда да Винчи была переоткрыта французским
механиком и физиком Гийомом Амонтоном2), который ввел в науку понятие
коэффициента трения как французской константы и предложил формулу силы
трения скольжения:
.
Кроме того, Амонтон (он изучал равномерное движение тела по наклонной
плоскости) впервые предложил формулу:
,
где f – коэффициент трения;  - угол наклона плоскости к горизонту;
В 1750 г. Леонард Эйлер (1707-1783), придерживаясь закона трения
Леонарда да Винчи – Амонтона:
,
впервые получил формулу для случая прямолинейного равноускоренного
движения тела по наклонной плоскости:
профессором математики. В 1896 г. Томсон был избран почетным членом Петербургской академии
наук, а в 1851 г. (в 27 лет) он стал членом Лондонского королевского общества и 5 лет был его
президентом].
2)
Г.Амонтон (1663-1705) – член Французской академии наук с 1699 г.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 279
,
где t – промежуток времени движения тела по плоскости на участке
длиной S;
g – ускорение свободно падающего тела.
Окончательную формулировку законов сухого трения дал в 1781 г. Шарль
Кулон3)
Эти законы используются до сих пор, хотя и были дополнены результатами
работ ученых XIX и XX веков, которые более полно раскрыли понятия силы
трения покоя (силы сцепления) и силы трения скольжения, а также понятия о
трении качения и трении верчения.
Многие десятилетия XX века ученые пытались модернизировать законы
Кулона,
учитывая
все
новые
и
новые
результаты
физико-химических
исследований явления трения. Из этих исследований наиболее важными
являются исследования природы трения.
Кратко о природе сухого трения можно сказать следующее. Поверхность
любого
твердого
тела
обладает
[шероховатость
поверхности
классов)
характеристикой
–
микронеровностями,
оценивается
«классом
качества
шероховатостью
шероховатости»
обработки
(14
поверхности:
среднеарифметическим отклонением профиля микронеровностей от средней
линии и высотой неровностей].
Сопротивление сдвигу вершин микронеровностей в зоне контакта тел –
источник трения. К этому добавляются силы молекулярного сцепления между
частицами,
принадлежащими
разным
телам,
вызывающим
прилипание
поверхностей (адгезию) тел.
Работа
внешней
силы,
приложенной
к
телу,
преодолевающей
молекулярное сцепление и деформирующей микронеровности, определяет
3) Ш.Кулон (1736-1806) – французский инженер, физик и механик, член Французской академии наук
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 280
механическую энергию тела, которая затрачивается частично на деформацию
(или даже разрушение) микронеровностей, частично на нагревание трущихся
тел (превращается в тепловую энергию), частично на звуковые эффекты –
скрип, шум, потрескивание и т.п. (превращается в акустическую энергию).
В последние годы обнаружено влияние трения на электрическое и
электромагнитное поля молекул и атомов соприкасающихся тел.
Для решения большинства задач классической механики, в которых надо
учесть сухое трение, достаточно использовать те законы сухого трения,
которые открыты Кулоном.
В современной формулировке законы сухого трения (законы Кулона)
даются в следующем виде:
В случае изотропного трения сила трения скольжения тела А по
поверхности тела В всегда направлена в сторону, противоположную скорости
тела А относительно тела В, а сила сцепления (трения покоя) направлена в
сторону, противоположную возможной скорости (рис.2.1, а и б).
Примечание. В случае анизотропного трения линия действия силы трения
скольжения не совпадает с линией действия вектора скорости. ( Изотропным
называется сухое трение, характеризующееся одинаковым сопротивлением
движению тела по поверхности другого тела в любом направлении, в
противном случае сухое трение считается анизотропным).
Сила трения скольжения пропорциональна силе давления на опорную
поверхность
(или
нормальной
реакции
этой
поверхности),
при
этом
коэффициент трения скольжения принимается постоянным и определяется
опытным путем для каждой пары соприкасающихся тел. Коэффициент трения
скольжения зависит от рода материала и его физических свойств, а также от
степени обработки поверхностей соприкасающихся тел:
(рис. 2.1 в).
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 281
Рис.2.1
Сила сцепления (сила трения покоя) пропорциональна силе давления на
опорную поверхность (или нормальной реакции этой поверхности) и не может
быть
больше
максимального
значения,
определяемого
произведением
коэффициента сцепления на силу давления (или на нормальную реакцию
опорной поверхности):
.
Коэффициент сцепления (трения покоя), определяемый опытным путем в
момент перехода тела из состояния покоя в движение, всегда больше
коэффициента трения скольжения для одной и той же пары соприкасающихся
тел:
.
Отсюда следует, что:
,
поэтому график изменения силы трения скольжения от времени движения
тела, к которому приложена эта сила, имеет вид (рис.2.2).
При переходе тела из состояния покоя в движение сила трения
скольжения за очень короткий промежуток времени  изменяется от
(рис.2.2). Этим промежутком времени  часто пренебрегают.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 282
до
В последние десятилетия экспериментально показано, что коэффициент
трения скольжения зависит от скорости (законы Кулона установлены при
равномерном движении тел в диапазоне невысоких скоростей – до 10 м/с).
Эту зависимость качественно можно проиллюстрировать графиком
(рис.2.3).
- значение скорости, соответствующее тому моменту времени, когда
сила
достигнет своего нормального значения
,
- критическое значение скорости, после которого происходит
незначительный рост (на 5-7 %) коэффициента трения скольжения.
Впервые этот эффект установил в 1902 г. немецкий ученый Штрибек (этот
эффект впоследствии был подтвержден исследованиями других ученых).
Российский ученый Б.В.Дерягин, доказывая, что законы Кулона, в
основном, справедливы, на основе адгезионной теории трения предложил
новую формулу для определения силы трения скольжения (модернизировав
предложенную Кулоном формулу):
.
[У Кулона:
, где величина А не раскрыта].
В формуле Дерягина: S – истинная площадь соприкосновения тел
(контактная площадь),
- удельная (на единицу площади) сила прилипания
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 283
или сцепления, которое надо преодолеть для отрыва одной поверхности от
другой.
Дерягин также показал, что коэффициент трения скольжения зависит от
нагрузки N (при соизмеримости сил
и
) -
, причем при
увеличении N он уменьшается (бугорки микронеровностей деформируются и
сглаживаются, поверхности тел становятся менее шероховатыми). Однако, эта
зависимость учитывается только в очень тонких экспериментах при решении
задач особого рода.
Во многих случаях
, поэтому в задачах классической механики, в
которых следует учесть силу сухого трения, пользуются, в основном, законом
Кулона, а значения коэффициента трения скольжения и коэффициента
сцепления определяют по таблице из справочников физики (эта таблица
содержит значения коэффициентов, установленных еще в 1830-х годах
французским ученым А.Мореном (для наиболее распространенных материалов)
и дополненных более поздними экспериментальными данными. [Артур Морен
(1795-1880) – французский математик и механик, член Парижской академии
наук, автор курса прикладной механики в 3-х частях (1850 г.)].
В случае анизотропного сухого трения линия действия силы трения
скольжения
составляет
с
прямой,
по
которой
направлена
скорость
материальной точки угол:
,
где
и
- проекции силы трения скольжения
на главную нормаль и
касательную к траектории материальной точки, при этом модуль вектора
определяется формулой:
. (Значения
и
определяются по
методике Минкина-Доронина).
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 284
Трение качения
При качении одного тела по другому участки поверхности одного тела
кратковременно соприкасаются с различными участками поверхности другого
тела, в результате такого контакта тел возникает сопротивление качению.
В конце XIX и в первой половине XX века в разных странах мира были
проведены эксперименты по определению сопротивления качению колеса
вагона или локомотива по рельсу, а также сопротивления качению роликов
или шариков в подшипниках.
В результате экспериментального изучения этого явления установлено,
что сопротивление качению (на примере колеса и рельса) является следствием
трех факторов:
1) вдавливание колеса в рельс вызывает деформацию наружного слоя
соприкасающихся тел (деформация требует затрат энергии);
2)
зацепление
бугорков
неровностей
и
молекулярное
сцепление
(являющиеся в то же время причиной возникновения качения колеса по
рельсу);
3)
трение
скольжения
при
неравномерном
движении
колеса
(при
ускоренном или замедленном движении).
(Чистое качение без скольжения – идеализированная модель движения).
Суммарное
влияние
всех
трех
факторов
учитывается
общим
коэффициентом трения качения.
Изучая трение качения, как это впервые сделал Кулон, гипотезу
абсолютно твердого тела надо отбросить и рассматривать деформацию
соприкасающихся тел в области контактной площадки.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 285
Так как равнодействующая
реакций опорной поверхности в точках зоны
контакта смещена в сторону скорости центра колеса, непрерывно набегающего
на впереди лежащее микропрепятствие (распределение реакций в точках
контакта несимметричное – рис.2.4), то возникающая при этом пара сил
(
и
- сила тяжести) оказывает сопротивление качению (возникновение
качения обязано силе сцепления
, которая образует вторую составляющую
полной реакции опорной поверхности).
Момент пары сил
называется моментом сопротивления качению.
Плечо
пары
сил
« к»
называется
коэффициентом трения качения. Он имеет
размерность длины.
Момент
сопротивления
качению
определяется формулой:
,
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 286
где N - реакция поверхности рельса, равная вертикальной нагрузке на
колесо с учетом его веса.
Колесо, катящееся по рельсу, испытывает сопротивление движению,
которое можно отразить силой сопротивления
, приложенной к центру
, где R – радиус колеса,
колеса (рис.2.5), при этом:
откуда
,
где h – коэффициент сопротивления, безразмерная величина.
Эту формулу предложил Кулон. Так как множитель
во много раз
меньше коэффициента трения скольжения для тех же соприкасающихся тел, то
сила
на один-два порядка меньше силы трения скольжения. (Это было
известно еще в древности).
Впервые в технике машин это использовал Леонардо да Винчи. Он изобрел
роликовый и шариковый подшипники.
Если на рисунке дается картина сил с обозначением силы
показывают
без
смещения
в
сторону
скорости
(колесо
, то силу
и
рельс
рассматриваются условно как абсолютно твердые тела).
Повышение угловой скорости качения вызывает рост сопротивления
качению. Для колеса железнодорожного экипажа и рельса рост сопротивления
качению заметен после скорости колесной пары 100 км/час и происходит по
параболическому
закону.
Это
объясняется
деформациями
колес
гистерезисными потерями, что влияет на коэффициент трения качения.
Трение верчения
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 287
и
Трение верчения возникает при вращении тела,
опирающегося на некоторую поверхность. В этом
случае следует рассматривать зону контакта тел, в
точках которой возникают силы трения скольжения
(если контакт происходит в одной точке, то
трение верчения отсутствует – идеальный случай)
(рис.2.6).
А – зона контакта вращающегося тела, ось
вращения которого перпендикулярна к плоскости
этой зоны. Силы трения скольжения, если их привести к центру круга (при
изотропном трении), приводятся к паре сил сопротивления верчению, момент
которой:
,
где r – средний радиус точек контакта тел;
- коэффициент трения скольжения (принятый одинаковым для всех
точек и во всех направлениях);
N – реакция опорной поверхности, равная силе давления на эту
поверхность.
Трение верчения наблюдается при вращении оси гироскопа (волчка) или
оси стрелки компаса острием и опорной плоскостью. Момент сопротивления
верчению стремятся уменьшить, используя для острия и опоры агат, рубин,
алмаз и другие хорошо отполированные очень прочные материалы, для
которых коэффициент трения скольжения менее 0,05, при этом радиус круга
опорной площадки достигает долей мм. (В наручных часах, например,
менее
мм).
Таблица коэффициентов трения скольжения и качения.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 288
к (мм)
Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Процессы износа контактных поверхностей при трении
Молекулярное
сцепление
приводит
к
образованию
связей
между
трущимися парами. При сдвиге они разрушаются. Из-за шероховатости
поверхностей трения контактирование пар происходит площадками. На
площадках с небольшим давлением имеет место упругая, а с большим
давлением - пластическая деформация. Фактическая площадь соприкасания
пар представляется суммой малых площадок. Размеры площадок контакта
достигают 30-50 мкм. При повышении нагрузки они растут и объединяются. В
процессе разрушения контактных площадок выделяется тепло, и могут
происходить химические реакции.
Различают три группы износа: механический - в форме абразивного
износа, молекулярно-механический - в форме пластической деформации или
хрупкого разрушения и коррозийно-механический - в форме коррозийного и
окислительного износа. Активным фактором износа служит газовая среда,
порождающая
окислительный
износ.
Образование
окисной
пленки
предохраняет пары трения от прямого контакта и схватывания.
Важным фактором является температурный режим пары трения. Теплота
обусловливает физико-химические процессы в слое трения, переводящие
связующие в жидкие фракции, действующие как смазка. Металлокерамические
материалы на железной основе способствуют повышению коэффициента
трения и износостойкости.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 289
Важна быстрая приработка трущихся пар. Это приводит к быстрому
локальному износу и увеличению контурной площади соприкосновения тел.
При
медленной
приработке
локальные
температуры
приводят
к
нежелательным местным изменениям фрикционного материала. Попадание
пыли, песка и других инородных частиц из окружающей среды приводит к
абразивному разрушению не только контактируемого слоя, но и более
глубоких слоев. Чрезмерное давление, превышающее порог схватывания,
приводит к разрушению окисной пленки, местным вырывам материала с
последующим, абразивным разрушением поверхности трения.
Под нагруженностью фрикционной пары понимается совокупность условий
эксплуатации:
давление
поверхностей
трения,
скорость
относительного
скольжения пар, длительность одного цикла нагружения, среднечасовое число
нагружений, температура контактного слоя трения.
Главные требования, предъявляемые к трущимся парам, включают
стабильность коэффициента трения, высокую износостойкость пары трения,
малые модуль упругости и твердость материала, низкий коэффициент
теплового расширения, стабильность физико-химического состава и свойств
поверхностного слоя, хорошая прирабатываемость фрикционного материала,
достаточная механическая прочность, антикоррозийность, несхватываемость,
теплостойкость и другие фрикционные свойства.
Основные факторы нестабильности трения - нарушение технологии
изготовления
деталей,
фрикционных
даже
в
элементов;
пределах
отклонения
установленных
размеров
допусков;
отдельных
несовершенство
конструктивного исполнения с большой чувствительностью к изменению
коэффициента трения.
Абразивный
износ
фрикционных
пар
подчиняется
следующим
закономерностям. Износ  пропорционален пути трения s,
=kss,
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
(2.1)
Всего листов 65
Лист 290
а интенсивность износа— скорости трения
(2.2)
Износ не зависит от скорости трения, а интенсивность износа на единицу
пути трения пропорциональна удельной нагрузке р,
(2.3)
Мера
интенсивности
рv
износа
не
должна
превосходить
нормы,
определенной на практике (pv<С).
Энергетическая концепция износа состоит в следующем.
Для имеющихся закономерностей износа его величина представляется
интегральной функцией времени или пути трения
.
(2.4)
В условиях кулонова трения, и в случае kр = const, износ пропорционален
работе сил трения W
.
(2.5)
Здесь сила трения F=fN = fp; где f – коэффициент трения, N – сила
нормального давления;  - контурная площадь касания пар.
Работа сил трения W переходит в тепловую энергию трущихся пар E и
окружающей среды Q
W=Q+E.
Работа сил кулонова трения при гармонических колебаниях s == а sint за
период колебаний Т == 2л/ определяется силой трения F и амплитудой
колебаний а
W= 4F а.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
(2.6)
Всего листов 65
Лист 291
3. МЕТОДИКА РАСЧЕТА ОДНОБОЛТОВЫХ ФПС
3.1. Исходные посылки для разработки методики
расчета ФПС
Исходными посылками для разработки методики расчета ФПС
являются
экспериментальные
исследования
одноболтовых
нахлесточных соединений [13], позволяющие вскрыть основные
особенности работы ФПС.
Для выявления этих особенностей в НИИ мостов в 1990-1991 гг.
были выполнены экспериментальные исследования деформирования
нахлесточных соединений такого типа. Анализ полученных диаграмм
деформирования позволил выделить для них 3 характерных стадии
работы, показанных на рис. 3.1.
На первой стадии нагрузка Т не превышает несущей способности
соединения [Т], рассчитанной как для обычного соединения на
фрикционных высокопрочных болтах.
На второй стадии Т > [Т] и происходит преодоление сил трения по
контактным плоскостям соединяемых элементов при сохраняющих
неподвижность шайбах высокопрочных болтов. При этом за счет
деформации болтов в них растет сила натяжения, и как следствие
растут силы трения по всем плоскостям контактов.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 292
На третьей стадии происходит
срыв с места одной из шайб и
дальнейшее взаимное смещение
соединяемых
элементов.
процессе
В
подвижки
наблюдается интенсивный износ
во
всех
контактных
сопровождающийся
парах,
падением
натяжения
болтов
и,
следствие,
снижение
как
несущей
способности соединения.
В
процессе
испытаний
наблюдались следующие случаи
выхода из строя ФПС:
∙ значительные взаимные перемещения соединяемых деталей, в
результате которых болт упирается в край овального отверстия и в
конечном итоге срезается;
∙ отрыв головки болта вследствие малоцикловой усталости;
∙ значительные пластические деформации болта, приводящие к
его
необратимому
удлинению
и
исключению
из
работы
при
“обратном ходе" элементов соединения;
∙ значительный износ контактных поверхностей, приводящий к
ослаблению болта и падению несущей способности ФПС.
Отмеченные
результаты
экспериментальных
исследований
представляют двоякий интерес для описания работы ФПС. С одной
стороны для расчета усилий и перемещений в элементах сооружений
с ФПС важно задать диаграмму деформирования соединения. С
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 293
другой стороны необходимо определить возможность перехода ФПС в
предельное состояние.
Для
описания
диаграммы
деформирования
наиболее
существенным представляется факт интенсивного износа трущихся
элементов соединения, приводящий к падению сил натяжения болта
и несущей способности соединения. Этот эффект должен определять
работу как стыковых, так и нахлесточных ФПС. Для нахлесточных
ФПС важным является и дополнительный рост сил натяжения
вследствие деформации болта.
Для оценки возможности перехода соединения в предельное
состояние необходимы следующие проверки:
а) по предельному износу контактных поверхностей;
б) по прочности болта и соединяемых листов на смятие в случае
исчерпания зазора ФПС u0;
в) по несущей способности конструкции в случае удара в момент
закрытия зазора ФПС;
г) по прочности тела болта на разрыв в момент подвижки.
Если учесть известные результаты [11,20,21,26], показывающие,
что закрытие зазора приводит к недопустимому росту ускорений в
конструкции,
то
проверки
(б)
и
ограничивающей перемещения ФПС
(в)
заменяются
проверкой,
и величиной фактического
зазора в соединении u0.
Решение вопроса об износе контактных поверхностей ФПС и
подвижке в соединении должно базироваться на задании диаграммы
деформирования
соединения,
представляющей
зависимость
его
несущей способности Т от подвижки в соединении s. Поэтому
получение зависимости Т(s) является основным для разработки
методов
расчета
ФПС
и
сооружений
с
такими
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
соединениями.
Всего листов 65
Лист 294
Отмеченные особенности учитываются далее при изложении теории
работы ФПС.
3.2. Общее уравнение для определения несущей
способности ФПС
Для
построения
общего
уравнения
деформирования
ФПС
обратимся к более сложному случаю нахлесточного соединения,
характеризующегося трехстадийной диаграммой деформирования. В
случае стыкового соединения второй участок на диаграмме Т(s) будет
отсутствовать.
Первая стадия работы ФПС не отличается от работы обычных
фрикционных соединений. На второй и третьей стадиях работы
несущая способность соединения поменяется вследствие изменения
натяжения болта. В свою очередь натяжение болта определяется его
деформацией (на второй стадии деформирования нахлесточных
соединений) и износом трущихся поверхностей листов пакета при их
взаимном
смещении.
При
этом
для
теоретического
описания
диаграммы деформирования воспользуемся классической теорией
износа
[5,
14,
23],
согласно
которой
скорость
износа
V
пропорциональна силе нормального давления (натяжения болта) N:
(3.1)
где К— коэффициент износа.
В свою очередь силу натяжения болта N можно представить в
виде:
(3.2)
здесь
- начальное -натяжение болта, а - жесткость болта;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 295
, где l - длина болта, ЕF - его погонная жесткость,
-
увеличение
натяжения
болта
вследствие
его
деформации;
- падение натяжения болта вследствие его пластических
деформаций;
s - величина подвижки в соединении,  - износ в соединении.
Для стыковых соединений обе добавки
.
Если пренебречь изменением скорости подвижки, то скорость V
можно представить в виде:
,
где
(3.3)
— средняя скорость подвижки.
После подстановки (3.2) в (3.1) с учетом (3.3) получим уравнение:
(3.4)
где
.
Решение уравнения (3.4) можно представить в виде:
или
(3.5)
3.3. Решение общего уравнения для стыковых ФПС
Для стыковых соединений общий интеграл (3.5) существенно
упрощается, так как в этом случае
функции
и
,
входящие
в
, и обращаются в 0
(3.5).
С
учетом
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
сказанного
Всего листов 65
Лист 296
использование интеграла. (3.5) позволяет получить следующую
формулу для определения величины износа
:
(3.6)
Падение натяжения
при этом составит:
(3.7)
а
несущая
соединений
способность
определяется
по
формуле:
(3.8)
Как
видно
из
полученной
формулы относительная несущая
способность соединения КТ =Т/Т0
определяется
всего
двумя
параметрами - коэффициентом износа k и жесткостью болта на
растяжение а. Эти параметры могут быть заданы с достаточной
точностью и необходимые для этого данные имеются в справочной
литературе.
На рис. 3.2 приведены зависимости КТ(s) для болта диаметром 24
мм и коэффициента износа k~5×10-8 H-1 при различных значениях
толщины пакета l, определяющей жесткость болта а. При этом для
наглядности несущая способность соединения Т отнесена к своему
начальному значению T0, т.е. графические зависимости представлены
в безразмерной форме. Как видно из рисунка, с ростом толщины
пакета падает влияние износа листов на несущую способность
соединений. В целом падение несущей способности соединений
весьма существенно и при реальных величинах подвижки s  23см
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 297
составляет для стыковых соединений 80-94%. Весьма существенно
на характер падений несущей способности соединения сказывается
коэффициент износа k. На рис.3.3 приведены зависимости несущей
способности соединения от величины подвижки s при k~3×10-8 H-1.
Исследования показывают, что при k > 210-7 Н-1 падение несущей
способности соединения превосходит 50%. Такое падение натяжения
должно приводить к существенному росту взаимных смещений
соединяемых деталей и это обстоятельство должно учитываться в
инженерных расчетах. Вместе с тем рассматриваемый эффект будет
приводить к снижению нагрузки, передаваемой соединением. Это
позволяет при использовании ФПС в качестве сейсмоизолирующего
элемента конструкции рассчитывать усилия в ней, моделируя ФПС
демпфером сухого трения.
3.4. Решение общего уравнения для нахлесточных ФПС
Для нахлесточных ФПС общее решение (3.5) определяется видом
функций f(s) и >(s).Функция f(s) зависит от удлинения болта
вследствие искривления его оси. Если принять для искривленной оси
аппроксимацию в виде:
(3.9)
где x — расстояние от середины болта до рассматриваемой точки
(рис. 3.3), то длина искривленной оси стержня составит:
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 298
Удлинение болта при этом определится по формуле:
(3.10)
Учитывая,
что
приближенность
представления
(3.9)
компенсируется коэффициентом k, который может быть определен из
экспериментальных данных, получим следующее представление для
f(s):
Для дальнейшего необходимо учесть, что деформирование тела
болта будет иметь место лишь до момента срыва его головки, т.е. при
s < s0. Для записи этого факта воспользуемся единичной функцией
Хевисайда :
(3.11)
Перейдем теперь к заданию функции (s). При этом необходимо
учесть следующие ее свойства:
1. пластика проявляется лишь при превышении подвижкой s
некоторой величины Sпл, т.е. при Sпл<s<S0.
2. предельное натяжение стержня не превосходит усилия Nт, при
котором напряжения в стержне достигнут предела текучести,
т.е.:
.
(3.12)
Указанным условиям удовлетворяет функция (s) следующего
вида:
(3.13)
Подстановка выражений (3.11, 3.12) в интеграл (3.5) приводит к
следующим зависимостям износа листов пакета  от перемещения s:
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 299
при s<Sпл
(3.14)
при Sпл< s<S0
(3.15)
при s<S0
(3.16)
Несущая
способность
соединения
определяется
при
этом
выражением:
(3.17)
Здесь fv— коэффициент трения, зависящий в общем случае от
скорости
подвижки
v.
Ниже
мы
используем
наиболее
распространенную зависимость коэффициента трения от скорости,
записываемую в виде:
,
(3.18)
где kv — постоянный коэффициент.
Предложенная
зависимость
содержит
9
неопределенных
параметров:
k1, k2, kv, S0, Sпл, q, f0, N0, и k0. Эти параметры должны
определяться из данных эксперимента.
В отличие от стыковых соединений в формуле (3.17) введено два
коэффициента
износа
-
на
втором
участке
диаграммы
деформирования износ определяется трением между листами пакета
и характеризуется коэффициентом износа k1, на третьем участке
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 300
износ определяется трением между шайбой болта и наружным
листом пакета; для его описания введен коэффициент износа k2.
На
рис.
3.4
приведен
пример
теоретической
диаграммы
деформирования при реальных значениях параметров k1 = 0.00001;
k2 =0.000016; kv = 0.15; S0 = 10 мм; Sпл = 4 мм; f0 = 0.3; N0 = 300 кН.
Как видно из рисунка, теоретическая диаграмма деформирования
соответствует описанным выше экспериментальным диаграммам.
Рис. 3.4
Теоретическая диаграмма деформирования ФПС
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 301
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
4.
Лист 302
АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ
ИССЛЕДОВАНИЙ РАБОТЫ ФПС
Для анализа работы ФПС и сооружений с такими соединениями
необходимы
соединений.
фактические
данные
Экспериментальные
о
параметрах
исследования
исследуемых
работы
ФПС
достаточно трудоемки, однако в 1980-85 гг. такие исследования были
начаты в НИИ мостов А.Ю.Симкиным [3,11]. В частности, были
получены
записи
Т(s)
для
нескольких
одноболтовых
и
четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с
болтами диаметром 22, 24, 27 и 48 мм. Принятые размеры образцов
обусловлены тем, что диаметры 22, 24 и 27 мм являются наиболее
Рис. 4.1 Общий вид образцов ПС с болтами  48
ммпри этом в соединении необходимо
распространенными. Однако
размещение слишком большого количества болтов, и соединение
становится громоздким. Для уменьшения числа болтов необходимо
увеличение их диаметра. Поэтому было рассмотрено ФПС с болтами
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 303
наибольшего диаметра 48 мм. Общий вид образцов показан на рис.
4.1.
Пластины ФПС были выполнены из толстолистовой стали марки
10ХСНД.
Высокопрочные
тензометрическими
требованиями
из
[6].
стали
болты
40Х
Контактные
были
"селект"
в
поверхности
изготовлены
соответствии
пластин
с
были
обработаны протекторной цинкосодержащей грунтовкой ВЖС-41
после
дробеструйной
очистки.
Болты
были
предварительно
протарированы с помощью электронного пульта АИ-1 и при сборке
соединений натягивались по этому же пульту в соответствии с
тарировочными зависимостями ручным ключом на заданное усилие
натяжения N0.
Испытания проводились на пульсаторах в НИИ мостов и на
универсальном динамическом стенде УДС-100 экспериментальной
базы ЛВВИСКУ. В испытаниях на стенде импульсная нагрузка на ФПС
обеспечивалась путем удара движущейся массы М через резиновую
прокладку в рабочую тележку, связанную с ФПС жесткой тягой.
Масса и скорость тележки, а также жесткость прокладки подбирались
таким образом, чтобы при неподвижной рабочей тележке получился
импульс силы с участком, на котором сила сохраняет постоянное
значение, длительностью около 150 мс. Амплитудное значение
импульса силы подбиралось из условия некоторого превышения
несущей способности ФПС. Каждый образец доводился до реализации
полного смещения по овальному отверстию.
Во
время
испытаний
на
стенде
и
пресс-пульсаторах
контролировались следующие параметры:
∙ величина динамической продольной силы в пакете ФПС;
∙ взаимное смещение пластин ФПС;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 304
∙ абсолютные скорости сдвига пластин ФПС;
∙ ускорение движения пластин ФПС и ударные массы (для
испытаний на стенде).
После
каждого
нагружения
проводился
замер
напряжения
высокопрочного болта.
Из полученных в результате замеров данных наибольший интерес
представляют для нас зависимости продольной силы, передаваемой
на соединение (несущей способности ФПС), от величины подвижки S.
Эти зависимости могут быть получены теоретически по формулам,
приведенным выше в разделе 3. На рисунках 4.2 - 4.3 приведено
графическое
Рис. 4.2, 4.3 Экспериментальные диаграммы деформирования
ФПС для болтов  22 мм и  24 мм.
представление полученных диаграмм деформирования ФПС. Из
рисунков видно, что характер зависимостей Т(s) соответствует в
целом принятым гипотезам и результатам теоретических построений
предыдущего раздела. В частности, четко проявляются три участка
деформирования
соединения,
соединения:
после
до
проскальзывания
проскальзывания
листов
пакета
элементов
и
после
проскальзывания шайбы относительно наружного листа пакета.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 305
Вместе
с
тем,
необходимо
отметить
существенный
разброс
полученных диаграмм. Это связано, по-видимому, с тем, что в
проведенных испытаниях принят наиболее простой приемлемый
способ обработки листов пакета. Несмотря на наличие существенного
разброса,
полученные
диаграммы
оказались
пригодными
для
дальнейшей обработки.
В результате предварительной обработки экспериментальных
данных построены диаграммы деформирования нахлесточных ФПС. В
соответствии с ранее изложенными теоретическими разработками
эти диаграммы должны описываться уравнениями вида (3.14). В
указанные уравнения входят 9 параметров:
N0— начальное натяжение; f0 — коэффициент трения покоя;
k0
—
коэффициент,
определяющий
влияние
скорости
на
коэффициент трения скольжения;
k1— коэффициент износа по контакту трущихся листов пакета;
k2— коэффициент износа по контакту листа и шайбы;
Sпл
—
предельное
смещение,
при
котором
возникают
пластические деформации в теле болта;
S0— предельное смещение, при котором возникает срыв шайбы
болта относительно листа пакета;
к — коэффициент, характеризующий увеличение натяжения
болта вследствие геометрической нелинейности его работы;
q — коэффициент, характеризующий уменьшение натяжения
болта вследствие его пластической работы.
Обработка
экспериментальных
данных
заключалась
в
определении этих 9 параметров. При этом параметры варьировались
на сетке их возможных значений. Для каждой девятки значений
параметров по методу наименьших квадратов вычислялась величина
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 306
невязки
между
деформирования,
расчетной
причем
и
экспериментальной
невязка
диаграммами
суммировалась
по
точкам
цифровки экспериментальной диаграммы.
Для поиска искомых значений параметров для болтов диаметром
24 мм последние варьировались в следующих пределах:
k1, k2— от 0.000001 до 0.00001 с шагом 0.000001 Н; kv— от 0 до 1 с
шагом 0.1 с/мм;
S0 — от величины Sпл до 25 с шагом 1 мм; Sпл — от 1 до 10 с шагом
1 мм;
q— от 0.1 до 1 с шагом 0.1 мм~1; f0— от 0.1 до 0.5 с шагом 0.05;
N0— от 30 до 60 с шагом 5 кН; к — от 0.1 до 1 с шагом 0.1;
Н
а рис.
4.4 и
4.5
приве
дены
харак
терн
Рис. 4.5
Рис.4.4
ые
диаграммы деформирования ФПС, полученные экспериментально и
соответствующие
им
теоретические
диаграммы.
Сопоставление
расчетных и натурных данных указывают на то, что подбором
параметров ФПС удается добиться хорошего совпадения натурных и
расчетных диаграмм деформирования ФПС. Расхождение диаграмм
на конечном их участке обусловлено резким падением скорости
подвижки
перед
остановкой,
не
учитываемым
в
рамках
предложенной теории расчета ФПС. Для болтов диаметром 24 мм
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 307
было обработано 8 экспериментальных диаграмм деформирования.
Результаты определения параметров соединения для каждой из
подвижек приведены в таблице 4.1.
Таблица 4.1
Результаты определения параметров ФПС
k,
параметры k1106, k2
S0, SПЛ
q,
f 0 N0 , к
1
6
-1
N подвижки кН10 , с/мм мм мм
мм
кН
1
кН1
11
32
0.25 11
9 0.00001 0.34 105 260
2
8
15
0,24 8
7 0.00044 0.36 152 90
3
12
27
0.44 13.5 11.2 0.00012 0.39 125 230
4
7
14
0.42 14.6 12 0.00011 0.29 193 130
5
14
35
0.1
8 4.2 0.0006 0.3 370 310
6
6
11
0.2 12
9 0.00002 0.3 120 100
7
8
20
0.2 19 16 0.00001 0.3 106 130
8
8
15
0.3
9 2.5 0.00028 0.35 154 75
Приведенные в таблице 4.1 результаты вычислений параметров
соединения
были
статистически
обработаны
и
получены
математические ожидания и среднеквадратичные отклонения для
каждого из параметров. Их значения приведены в таблице 4.2. Как
видно
из
приведенной
таблицы,
значения
параметров
характеризуются значительным разбросом. Этот факт затрудняет
применение
одноболтовых
ФПС
с
поверхности (обжиг листов пакета).
одноболтовых
к
многоболтовым
рассмотренной
обработкой
Вместе с тем, переход от
соединениям
должен
снижать
разброс в параметрах диаграммы деформирования.
Таблица. 4.2.
Результаты статистической обработки значений параметров ФПС
Значения параметров
Параметры
математическое среднеквадратичное
соединения
ожидание
отклонение
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 308
k1 106, КН-1
k2 106, кН-1
kv с/мм
S0, мм
Sпл , мм
q, мм-1
f0
Nо,кН

9.25
21.13
0.269
11.89
8.86
0.00019
0.329
165.6
165.6
2.76
9.06
0.115
3.78
4.32
0.00022
0.036
87.7
88.38
5. ОЦЕНКА ПАРАМЕТРОВ ДИАГРАММЫ
ДЕФОРМИРОВАНИЯ МНОГОБОЛТОВЫХ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ (ФПС)
5.1. Общие положения методики расчета
многоболтовых ФПС
Имеющиеся теоретические и экспериментальные исследования
одноболтовых ФПС позволяют перейти к анализу многоболтовых
соединений. Для упрощения задачи примем широко используемое в
исследованиях фрикционных болтовых соединений предположение о
том, что болты в соединении работают независимо. В этом случае
математическое ожидание несущей способности
(или среднеквадратическое отклонение
и дисперсию DT
) можно записать в виде:
(5.1)
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 309
(5.2)
(5.3)
В приведенных формулах:
- найденная выше зависимость несущей способности T
от подвижки s и параметров соединения i; в нашем случае в
качестве параметров  выступают коэффициент износа k, смещение
при срыве соединения S0 и др.
pi(ai) — функция плотности распределения i-го параметра; по
имеющимся данным нам известны лишь среднее значение i и их
стандарт (дисперсия).
Для дальнейших исследований приняты два возможных закона
распределения
возможном
параметров
диапазоне
ФПС:
равномерное
изменения
в
некотором
параметров
и
нормальное. Если учесть, что в предыдущих исследованиях получены
величины
математических
ожиданий
и
стандарта
,
то
соответствующие функции плотности распределения записываются в
виде:
а) для равномерного распределения
при
(5.4)
и pi = 0 в остальных случаях;
б) для нормального распределения
(5.5)
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 310
Результаты расчетного определения зависимостей T(s) и (s) при
двух законах распределения сопоставляются между собой, а также с
данными натурных испытаний двух, четырех, и восьми болтовых
ФПС.
5.2. Построение уравнений деформирования стыковых
многоболтовых ФПС
Для
вычисления
несущей
способности
соединения
сначала
рассматривается более простое соединение встык. Такое соединение
характеризуется всего двумя параметрами - начальной несущей
способностью Т0 и коэффициентом износа k. При этом несущая
способность одноболтового соединения описывается уравнением:
T=Toe-kas .
(5.6)
В случае равномерного распределения математическое ожидание
несущей способности соединения из п болтов составит:
(5.7)
При
нормальном
законе
распределения
математическое
ожидание несущей способности соединения из п болтов определится
следующим образом:
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 311
Если
учесть,
математическим
что
для
ожиданием
любой
случайной
функцией
величины
распределения
с
р(х}
выполняется соотношение:
то первая скобка. в описанном выражении для вычисления
несущей
способности
соединения
Т
равна
математическому
ожиданию начальной несущей способности Т0. При этом:
Выделяя в показателе степени полученного выражения полный
квадрат, получим:
Подынтегральный член в полученном выражении с учетом
множителя
представляет не что иное, как функцию плотности
нормального распределения с математическим ожиданием
среднеквадратичным отклонением
и
. По этой причине интеграл в
полученном выражении тождественно равен 1 и выражение для
несущей способности соединения принимает окончательный вид:
(5.8)
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 312
Соответствующие принятым законам распределения дисперсии
составляют:
для равномерного закона распределения
(5.9)
где
для нормального закона распределения
(5.10)
где
Представляет интерес сопоставить полученные зависимости с
аналогичными
зависимостями,
выведенными
выше
для
одноболтовых соединений.
Рассмотрим,
прежде
всего,
характер
изменения
несущей
способности ФПС по мере увеличения подвижки s и коэффициента
износа
k
для
случая
использования
равномерного
закона
распределения в соответствии с формулой (5.4). Для этого введем по
аналогии с (5.4) безразмерные характеристики изменения несущей
способности:
относительное падение несущей способности
(5.11)
коэффициент перехода от одноболтового к многоболтовому
соединению
(5.12)
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 313
Наконец
отклонения
для
относительной
величины
среднеквадратичного
с использованием формулы (5.9) нетрудно получить
(5.13)
Аналогичные зависимости получаются и для случая нормального
распределения:
,
(5.14)
,
(5.15)
(5.16)
где
,
,
.
На рис. 5.1 - 5.2 приведены зависимости
и
от величины
подвижки s. Кривые построены при тех же значениях переменных,
что использовались нами ранее при построении зависимости T/T0 для
одноболтового соединения. Как видно из рисунков, зависимости
аналогичны
зависимостям,
полученным
для
одноболтовых
соединений, но характеризуются большей плавностью, что должно
благоприятно сказываться на работе соединения и конструкции в
целом.
Особый интерес представляет с нашей точки зрения зависимость коэффициента перехода
. По своему смыслу математическое ожидание несущей способности многоболтового
соединения
получается из несущей способности одноболтового соединения Т1 умножением на ,
т.е.:
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 314
(5.17)
Согласно (5.12)
. В частности,
математического ожидания коэффициента износа
при неограниченном увеличении
или смещения s. Более того, при выполнении
условия
(5.18)
будет иметь место неограниченный рост несущей способности ФПС с увеличением подвижки s,
что противоречит смыслу задачи.
Полученный результат ограничивает возможность применения равномерного распределения
условием (5.18).
Что касается нормального распределения, то возможность его применения определяется
пределом:
Для анализа этого предела учтем известное в теории вероятности соотношение:
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 315
Рис.5.1. Графики зависимости расчетного снижения несущей способности ФПС от величины
подвижки в соединении при различной толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
● - l=20мм; ▼ - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм;  - l=80мм;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 316
Рис.5.2. Графики зависимости коэффициента перехода от одноболтового к многоболтовому ФПС
от величины подвижки в соединении при различной толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 317
● - l=20мм;  - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм;  - l=80мм
С учетом сказанного получим:
(5.19)
Предел (5.19) указывает на возможность применения нормального закона распределения при
любых соотношениях
и k.
Результаты обработки экспериментальных исследований, выполненные ранее, показывают, что
разброс значений несущей способности ФПС для случая обработки поверхностей соединяемых
листов путем нанесения грунтовки ВЖС достаточно велик и достигает 50%. Однако даже в этом
случае применение ФПС вполне приемлемо, если перейти от одноболтовых к многоболтовым
соединениям. Как следует из полученных формул (5.13, 5.16), для среднеквадратичного отклонения
1 последнее убывает пропорционально корню из числа болтов. На рисунке 5.3 приведена
зависимость относительной величины среднеквадратичного отклонения 1 от безразмерного
параметра х для безразмерной подвижки 2-х, 4-х, 9-ти и 16-ти болтового соединений. Значения T и
приняты в соответствии с данными выполненных экспериментальных исследований. Как видно из
графика, уже для 9-ти болтового соединения разброс значений несущей способности Т не
превосходит 25%, что следует считать вполне приемлемым.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 318
5.3. Построение уравнений деформирования
нахлесточных многоболтовых соединений
Распространение использованного выше подхода на расчет нахлесточных соединений
достаточно громоздко из-за большого количества случайных параметров, определяющих работу
соединения. Однако с практической точки зрения представляется важным учесть лишь
максимальную силу трения Тmax, смещение при срыве соединения S0 и коэффициент износа k. При
этом диаграмма деформирования соединения между точками (0,Т0) и (S0, Tmax) аппроксимируется
линейной зависимостью. Для учета излома графика T(S) в точке S0 введена функция  :
(5.20)
При этом диаграмма нагружения ФПС описывается уравнением:
(5.21)
где
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 319
Математическое ожидание несущей способности нахлесточного соединения из n болтов
определяется следующим интегралом:
(5.22)
Обратимся сначала к вычислению первого интеграла. После подстановки в (5.22)
представления для Т1 согласно (5.20) интеграл I1 может быть представлен в виде суммы трех
интегралов:
(5.23)
где
Если учесть, что для любой случайной величины x выполняются соотношения:
и
то получим
Аналогично
Если ввести функции
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 320
(5.24)
и
(5.25)
то интеграл I1 можно представить в виде:
(5.26)
Если учесть, что на первом участке s < S0, то с учетом (5.20) формулы (5.24) и (5.25) упростятся
и примут вид:
(5.27)
(5.28)
Для нормального распределения p(S0) функция
, а
функция  записывается в виде:
(5.29)
Для равномерного распределения функции 1 и 2 могут быть
представлены аналитически:
(5.30)
(5.31)
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 321
Аналитическое
представление
для
интеграла
(5.23)
весьма
сложно. Для большинства видов распределений его целесообразно
табулировать; для равномерного распределения интегралы I1 и I2
представляются в замкнутой форме:
(5.32)
(5.33)
причем
. В формулах (5.32, 5.33)
Ei - интегральная показательная функция.
Полученные
экспериментальных
формулы
исследований
подтверждены
многоболтовых
результатами
соединений
и
рекомендуются к использованию при проектировании сейсмостойких
конструкций с ФПС.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 322
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
6.
Всего листов 65
Лист 323
РЕКОМЕНДАЦИИ ПО ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ФПС И
СООРУЖЕНИЙ С ТАКИМИ СОЕДИНЕНИЯМИ
Технология
элементов
изготовления
соединения,
транспортировку
и
ФПС
включает
подготовку
хранение
выбор
контактных
деталей,
сборку
материала
поверхностей,
соединений.
Эти
вопросы освещены ниже.
6.1.
Материалы болтов, гаек, шайб и покрытий
контактных поверхностей стальных деталей ФПС и
опорных поверхностей шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 55377, гайки по ГОСТ 22354-74, шайбы по ГОСТ 22355-75 с обработкой
опорной поверхности по указаниям раздела 6.4 настоящего пособия.
Основные размеры в мм болтов, гаек и шайб и расчетные площади
поперечных сечений в мм2 приведены в табл.6.1.
Таблица 6.1.
Номинальны
й диаметр
болта
Расчетна Высота Высот Разме Диаметр Размеры шайб
Толщин
Диаметр
я
головк
а
р под опис.окр а
внутр нар.
площадь
и
гайки ключ . гайки
.
сечения
по
по телу по
16
201 резьбе
157
12
15
27
29,9
4
18
37
18
255 192
13
16
30
33,3
4
20
39
20
314 245
14
18
32
35,0
4
22
44
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 324
22
380 303
15
19
36
39,6
6
24
50
24
453 352
17
22
41
45,2
6
26
56
27
573 459
19
24
46
50,9
6
30
66
30
707 560
19
24
46
50,9
6
30
66
36
1018 816
23
29
55
60,8
6
39
78
42
1386 1120
26
34
65
72,1
8
45
90
48
1810 1472
30
38
75
83,4
8
52
100
Полная длина болтов в случае использования шайб по ГОС 2235575 назначается в соответствии с данными табл.6.2.
Таблица 6.2.
Длина резьбы 10
16 18 20 22
длина стержня резьбы d
40
*
45
38 *
50
38 42 *
55
38 42 46 *
60
38 42 46 50
65
38 42 46 50
70
38 42 46 50
75
38 42 46 50
80
38 42 46 50
85
38 42 46 50
90
38 42 46 50
95
38 42 46 50
100
38 42 46 50
105
38 42 46 50
110
38 42 46 50
115
38 42 46 50
120
38 42 46 50
125
38 42 46 50
130
38 42 46 50
140
38 42 46 50
150
38 42 46 50
160, 170, 180
190, 200, 220
44 48 52 56
240,260,280,300
Номинальная
при номинальном диаметре
24 27 30 36 42 48
*
54
54
54
54
54
54
54
54
54
54
54
54
54
54
54
54
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
66
66
66
66
66
66
66
66
66
66
66
66
66
66
78
78
78
78
78
78
78
78
78
78
78
90
90
90
90
90
90
90
90
102
102
102
102
102
102
102
60
66
72
84
96
108
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 325
Примечание: знаком * отмечены болты с резьбой по всей длине стержня.
Для консервации контактных поверхностей стальных деталей
следует применять фрикционный грунт ВЖС 83-02-87 по ТУ. Для
нанесения на опорные поверхности шайб методом плазменного
напыления
антифрикционного
покрытия
следует
применять
в
качестве материала подложки интерметаллид ПН851015 по ТУ-14-13282-81, для несущей структуры - оловянистую бронзу БРОФ10-8 по
ГОСТ, для рабочего тела - припой ПОС-60 по ГОСТ.
Примечание: Приведенные данные действительны при сроке
хранения несобранных конструкций до 1 года.
6.2. Конструктивные требования к соединениям
В
конструкциях
соединений
должна
быть
обеспечена
возможность свободной постановки болтов, закручивания гаек и
плотного стягивания пакета болтами во всех местах их постановки с
применением динамометрических ключей и гайковертов.
Номинальные диаметры круглых и ширина овальных отверстий в
элементах для пропуска высокопрочных болтов принимаются по
табл.6.3.
Таблица 6.3.
Группа
Номинальный диаметр болта в мм.
16 18 20 22 24 27 30 36
соединений
Определяющих 17 19 21 23 25 28 32 37
42
44
48
50
геометрию
Не
45
52
20
23
25
28
30
33
36
40
определяющих
Длины
геометрию
овальных
высокопрочных
болтов
отверстий
назначают
в
элементах
по
для
результатам
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
пропуска
вычисления
Всего листов 65
Лист 326
максимальных абсолютных смещений соединяемых деталей для
каждого
ФПС
по
результатам
предварительных
расчетов
при
обеспечении несоприкосновения болтов о края овальных отверстий,
и назначают на 5 мм больше для каждого возможного направления
смещения.
ФПС следует проектировать возможно более компактными.
Овальные отверстия одной детали пакета ФПС могут быть не
сонаправлены.
Размещение болтов в овальных отверстиях при сборке ФПС
устанавливают с учетом назначения ФПС и направления смещений
соединяемых элементов.
При необходимости в пределах одного овального отверстия
может быть размещено более одного болта.
Все
контактные
поверхности
деталей
ФПС,
являющиеся
внутренними для ФПС, должны быть обработаны грунтовкой ВЖС 8302-87 после дробеструйной (пескоструйной) очистки.
Не
допускается
осуществлять
подготовку
тех
поверхностей
деталей ФПС, которые являются внешними поверхностями ФПС.
Диаметр болтов ФПС следует принимать не менее 0,4 от толщины
соединяемых пакета соединяемых деталей.
Во всех случаях несущая способность основных элементов
конструкции, включающей ФПС, должна быть не менее чем на 25%
больше несущей способности ФПС на фрикционно-неподвижной
стадии работы ФПС.
Минимально допустимое расстояние от края овального отверстия
до края детали должно составлять:
- вдоль направления смещения >= 50 мм.
- поперек направления смещения >= 100 мм.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 327
В
соединениях
прокатных
профилей
с
непараллельными
поверхностями полок или при наличии непараллельности наружных
плоскостей
ФПС
должны
применяться
клиновидные
шайбы,
предотвращающие перекос гаек и деформацию резьбы.
Конструкции ФПС и конструкции, обеспечивающие соединение
ФПС
с
основными
элементами
сооружения,
должны допускать
возможность ведения последовательного не нарушающего связности
сооружения ремонта ФПС.
6.3. Подготовка контактных поверхностей элементов и
методы контроля.
Рабочие контактные поверхности элементов и деталей ФПС
должны
быть
очистки
в
подготовлены
соответствии
с
посредством
либо
пескоструйной
указаниями
ВСН
163-76,
либо
дробеструйной очистки в соответствии с указаниями.
Перед обработкой с контактных поверхностей должны быть
удалены
заусенцы,
а
также
другие
дефекты,
препятствующие
плотному прилеганию элементов и деталей ФПС.
Очистка должна производиться в очистных камерах или под
навесом, или на открытой площадке при отсутствии атмосферных
осадков.
Шероховатость
поверхности
очищенного
металла
должна
находиться в пределах 25-50 мкм.
На очищенной поверхности не должно быть пятен масел, воды и
других загрязнений.
Очищенные контактные поверхности должны соответствовать
первой степени удаления окислов и обезжиривания по ГОСТ 9022-74.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 328
Оценка шероховатости контактных поверхностей производится
визуально сравнением с эталоном или другими апробированными
способами оценки шероховатости.
Контроль
степени
очистки
может
осуществляться
внешним
осмотром поверхности при помощи лупы с увеличением не менее 6-ти
кратного. Окалина, ржавчина и другие загрязнения на очищенной
поверхности при этом не должны быть обнаружены.
Контроль степени обезжиривания осуществляется следующим
образом: на очищенную поверхность наносят 2-3 капли бензина и
выдерживают не менее 15 секунд. К этому участку поверхности
прижимают кусок чистой фильтровальной бумаги и держат до
полного впитывания бензина. На другой кусок фильтровальной
бумаги наносят 2-3 капли бензина. Оба куска выдерживают до
полного испарения бензина. При дневном освещении сравнивают
внешний вид обоих кусков фильтровальной бумаги. Оценку степени
обезжиривания определяют по наличию или отсутствию масляного
пятна на фильтровальной бумаге.
Длительность
перерыва
между
пескоструйной
очисткой
поверхности и ее консервацией не должна превышать 3 часов.
Загрязнения, обнаруженные на очищенных поверхностях, перед
нанесением консервирующей грунтовки ВЖС 83-02-87 должны быть
удалены
жидким
калиевым
стеклом
или
повторной
очисткой.
Результаты проверки качества очистки заносят в журнал.
6.4. Приготовление и нанесение протекторной
грунтовки ВЖС 83-02-87. Требования к загрунтованной
поверхности. Методы контроля
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 329
Протекторная
грунтовка
двуупаковочный
ВЖС
лакокрасочный
алюмоцинкового
сплава
в
виде
83-02-87
представляет
материал,
пигментной
собой
состоящий
пасты,
взятой
из
в
количестве 66,7% по весу, и связующего в виде жидкого калиевого
стекла плотностью 1,25, взятого в количестве 33,3% по весу.
Каждая
партия
документации
на
материалов
соответствие
должна
ТУ.
быть
проверена
Применять
по
материалы,
поступившие без документации завода-изготовителя, запрещается.
Перед
смешиванием
ингредиентов
следует
составляющих
довести
протекторную
жидкое
калиевое
грунтовку
стекло
до
необходимой плотности 1,25 добавлением воды.
Для приготовления грунтовки ВЖС 83-02-87 пигментная часть и
связующее тщательно перемешиваются и доводятся до рабочей
вязкости 17-19 сек. при 18-20°С добавлением воды.
Рабочая вязкость грунтовки определяется вискозиметром ВЗ-4
(ГОСТ 9070-59) по методике ГОСТ 17537-72.
Перед
и
во
время
нанесения
следует
перемешивать
приготовленную грунтовку до полного поднятия осадка.
Грунтовка
ВЖС
83-02-87
сохраняет
малярные
свойства
(жизнеспособность) в течение 48 часов.
Грунтовка
помещении.
ВЖС
При
83-02-87
отсутствии
наносится
под
атмосферных
навесом
осадков
или
в
нанесение
грунтовки можно производить на открытых площадках.
Температура воздуха при произведении работ по нанесению
грунтовки ВЖС 83-02-87 должна быть не ниже +5°С.
Грунтовка
ВЖС
83-02-87
может
наноситься
методами
пневматического распыления, окраски кистью, окраски терками.
Предпочтение следует отдавать пневматическому распылению.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 330
Грунтовка ВЖС 83-02-87 наносится за два раза по взаимно
перпендикулярным направлениям с промежуточной сушкой между
слоями не менее 2 часов при температуре +18-20°С.
Наносить грунтовку следует равномерным сплошным слоем,
добиваясь окончательной толщины нанесенного покрытия 90-110
мкм. Время нанесения покрытия при естественной сушке при
температуре
воздуха
18-20
С
составляет
24
часа
с
момента
нанесения последнего слоя.
Сушка
загрунтованных элементов
попадания
атмосферных
осадков
и
и
деталей во избежание
других
загрязнений
на
невысохшую поверхность должна проводится под навесом.
Потеки, пузыри, морщины, сорность, не прокрашенные места и
другие дефекты не допускаются. Высохшая грунтовка должна иметь
серый матовый цвет, хорошее сцепление (адгезию) с металлом и не
должна давать отлипа.
Контроль
толщины
покрытия
осуществляется
магнитным
толщиномером ИТП-1.
Адгезия определяется методом решетки в соответствии с ГОСТ
15140-69
на
контрольных
образцах,
окрашенных
по
принятой
технологии одновременно с элементами и деталями конструкций.
Результаты проверки качества защитного покрытия заносятся в
Журнал контроля качества подготовки контактных поверхностей
ФПС.
6.4.1 Основные требования по технике безопасности
при работе
с грунтовкой ВЖС 83-02-87
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 331
Для обеспечения условий труда необходимо соблюдать:
 "Санитарные правила при окрасочных работах с применением
ручных распылителей" (Министерство здравоохранения СССР, № 99172)
 "Инструкцию
оборудования
по
санитарному
содержанию
производственных
помещений
предприятий"
и
(Министерство
здравоохранения СССР, 1967 г.).
При
пневматическом
методе
распыления,
во
избежание
увеличения туманообразования и расхода лакокрасочного материала,
должен
строго
соблюдаться
режим
окраски.
Окраску
следует
производить в респираторе и защитных очках. Во время окрашивания
в закрытых помещениях маляр должен располагаться таким образом,
чтобы
струя
лакокрасочного
материала
имела
направление
преимущественно в сторону воздухозаборного отверстия вытяжного
зонта.
При
работе
на
открытых
площадках
маляр
должен
расположить окрашиваемые изделия так, чтобы ветер не относил
распыляемый материал в его сторону и в сторону работающих вблизи
людей.
Воздушная магистраль и окрасочная аппаратура должны быть
оборудованы редукторами давления и манометрами. Перед началом
работы
маляр
исправность
надежность
должен
окрасочной
проверить
аппаратуры
присоединения
герметичность
и
инструмента,
воздушных
шлангов,
а
также
шлангов
к
краскораспределителю и воздушной сети. Краскораспределители,
кисти и терки в конце рабочей смены необходимо тщательно очищать
и промывать от остатков грунтовки.
На каждом бидоне, банке и другой таре с пигментной частью и
связующим должна быть наклейка или бирка с точным названием и
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 332
обозначением этих материалов. Тара должна быть исправной с
плотно закрывающейся крышкой.
При приготовлении и нанесении грунтовки ВЖС 83-02-87 нужно
соблюдать осторожность и не допускать ее попадания на слизистые
оболочки глаз и дыхательных путей.
Рабочие и ИТР, работающие на участке консервации, допускаются
к работе только после ознакомления с настоящими рекомендациями,
проведения инструктажа и проверки знаний по технике безопасности.
На участке консервации и в краскозаготовительном помещении не
разрешается работать без спецодежды.
Категорически запрещается прием пищи во время работы. При
попадании составных частей грунтовки или самой грунтовки на
слизистые
оболочки
глаз
или
дыхательных
путей
необходимо
обильно промыть загрязненные места.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 333
6.4.2 Транспортировка и хранение элементов и
деталей, законсервированных грунтовкой
ВЖС 83-02-87
Укладывать, хранить и транспортировать законсервированные
элементы и детали нужно так, чтобы исключить возможность
механического повреждения и загрязнения законсервированных
поверхностей.
Собирать можно только те элементы и детали, у которых
защитное покрытие контактных поверхностей полностью высохло.
Высохшее защитное покрытие контактных поверхностей не должно
иметь загрязнений, масляных пятен и механических повреждений.
При
наличии
загрязнений
и
масляных
пятен
контактные
поверхности должны быть обезжирены. Обезжиривание контактных
поверхностей,
производить
законсервированных
водным
последующей
раствором
промывкой
ВЖС
жидкого
водой
и
83-02-87,
калиевого
можно
стекла
просушиванием.
с
Места
механических повреждений после обезжиривания должны быть
подконсервированы.
6.5. Подготовка и нанесение антифрикционного
покрытия на опорные поверхности шайб
Производится очистка только одной опорной поверхности шайб в
дробеструйной камере каленой дробью крупностью не более 0,1 мм.
На
отдробеструенную
напыления
наносится
поверхность
подложка
из
шайб
методом
плазменного
интерметаллида
ПН851015
толщиной . …..м. На подложку из интерметаллида ПН851015 методом
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 334
плазменного
напыления
наносится
несущий
слой
оловянистой
бронзы БРОФ10-8. На несущий слой оловянистой бронзы БРОФ10-8
наносится способом лужения припой ПОС-60 до полного покрытия
несущего слоя бронзы.
6.6. Сборка ФПС
Сборка ФПС проводится с использованием шайб с фрикционным
покрытием одной из поверхностей, при постановке болтов следует
располагать шайбы обработанными поверхностями внутрь ФПС.
Запрещается очищать внешние поверхности внешних деталей
ФПС.
Рекомендуется
использование
неочищенных
внешних
поверхностей внешних деталей ФПС.
Каждый болт должен иметь две шайбы (одну под головкой,
другую под гайкой). Болты и гайки должны быть очищены от
консервирующей смазки, грязи и ржавчины, например, промыты
керосином и высушены.
Резьба болтов должна быть прогнана путем провертывания гайки
от руки на всю длину резьбы. Перед навинчиванием гайки ее резьба
должна быть покрыта легким слоем консистентной смазки.
Рекомендуется следующий порядок сборки:
 совмещают отверстия в деталях и фиксируют их взаимное
положение;
 устанавливают
гайковертами
на
болты
90%
от
и
осуществляют
проектного
их
усилия.
натяжение
При
сборке
многоболтового ФПС установку болтов рекомендуется начать с болта
находящегося в центре тяжести поля установки болтов, и продолжать
установку от центра к границам поля установки болтов;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 335
 после
проверки
плотности
стягивания
ФПС
производят
усилий
натяжения
герметизацию ФПС;
 болты
затягиваются
до
нормативных
динамометрическим ключом.
У
Общество с ограниченной ответственностью «С К С Т Р О Й К О
М П Л Е К С - 5» СПб, ул. Бабушкина, д. 36 тел./факс 812-705-0065 E-mail: stanislav@stroycomplex-5. ru http://www. stroycomplex-5.
ru
РЕГЛАМЕНТ
МОНТАЖА АМОРТИЗАТОРОВ СТЕРЖНЕВЫХ ДЛЯ СЕЙСМОЗАЩИТЫ
МОСТОВЫХ СООРУЖЕНИЙ
1.
Подготовительные работы
1.1 Очистка верхних поверхностей бетона оголовка опоры и пролетного строения от загрязнений;
1.2. Контрольная съемка положения закладных деталей (фундаментных болтов) в
оголовке опоры и диафрагме железобетонного пролетного строения или отверстий в металле
металлического или сталежелезобетонного пролетного строения с составлением схемы
(шаблона).
1.3. Проверка соответствия положения отверстий для крепления амортизатора к опоре и
к пролетному строению в элементах амортизатора по шаблонам и, при необходимости,
райберовка или рассверловка новых отверстий.
1.4. Проверка высотных и горизонтальных параметров поступившего на монтаж аморти-
затора и пространства для его установки на опоре (под диафрагмой). При необходимости, срубка
выступающих частей бетона или устройство подливки на оголовке опоры.
1.5. Устройство подмостей в уровне площадки, на которую устанавливается амортизатор.
2. Установка
и закрепление амортизатора
2.1. Установка амортизаторов с нижним расположением ФПС (под железобетонные пролетные строения).
2.1.1. Расположение фундаментных болтов для крепления на опоре может быть двух видов:
6. болты
расположены
внутри
основания
и
при
полностью
смонтированном
амортизаторе не видны, т.к. закрыты корпусом упора, при этом концы фундаментных болтов
выступают над поверхностью площадки, на которой монтируется амортизатор;
7. болты расположены внутри основания и оканчиваются резьбовыми втулками, верхние
торцы которых расположены заподлицо с бетонной поверхностью;
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 336
8. болты расположены у края основания, которое совмещено с корпусом упора, и после
монтажа амортизатора доступ к болтам возможен, при этом концы фундаментных болтов выступают
над
поверхностью
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
площадки;
Всего листов 65
Лист 337
4) болты расположены у края основания и оканчиваются резьбовыми втулками, как и во
втором случае
2.1.2. Последовательность операций по монтажу амортизатора в первом случае приведена
ниже.
а) Затяжка болтов ФПС на усилие, предусмотренное проектом.
б) Разборка соединения основания с корпусом упора, собранного на время транспортировки.
в) Подъем основания амортизатора на подмости в уровне, превышающем уровень площадки, на которой монтируется амортизатор, на высоту выступающего конца фундаментного болта.
г) Надвижка основания в проектное положение до совпадения отверстий для крепления
амортизатора с фундаментными болтами, опускание основания на площадку, затяжка фундаментных болтов, при необходимости срезка выступающих над гайками концов фундаментных болтов.
д) Подъем сборочной единицы, включающей остальные части амортизатора, на подмости в
уровне установленного основания.
е) Снятие транспортных креплений.
ж) Надвижка упомянутой сборочной единицы на основание до совпадения отверстий под
штифты и резьбовые отверстия под болты в основании с соответствующими отверстиями в упоре,
забивка штифтов в отверстия, затяжка и законтривание болтов.
з) Завинчивание болтов крепления верхней плиты стержневой пружины в резьбовые отверстия втулок анкерных болтов на диафрагме пролетного строения. Если зазор между верхней
плитой и нижней плоскостью диафрагмы менее 5мм, производится затяжка болтов. Если зазор
более 5 мм, устанавливается опалубка по контуру верхней плиты, бетонируется или инъектируется зазор, после набора прочности бетоном или раствором производится затяжка болтов.
и) Восстановление антикоррозийного покрытия.
2.1.3. Операции по монтажу амортизатора во втором случае отличаются от операций
первого случая только тем, что основание амортизатора поднимается на подмости в уровне площадки, на которой монтируется амортизатор и надвигается до совпадения резьбовых отверстий во
втулках фундаментных болтов с отверстиями под болты в основании.
2.1.4. Последовательность операций по монтажу амортизатора в третьем случае приведена
ниже.
а) Затяжка болтов ФПС на усилие, предусмотренное проектом.
б) Подъем амортизатора на подмости в уровень, превышающий уровень площадки, на которой монтируется амортизатор, на высоту выступающего конца фундаментного болта.
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 338
в) Снятие транспортных креплений.
г) Надвижка амортизатора в проектное положение до совпадения отверстий для его крепления с фундаментными болтами, опускание амортизатора на площадку, затяжка фундаментных
болтов.
Далее выполняются операции, указанные в подпунктах 2.1.2.д...2.1.2.и.
2.1.5. Операции по монтажу амортизаторов в четвертом случае отличаются от операций
для третьего случая только тем, что амортизатор поднимается на подмости в уровень площадки,
на которой он монтируется и надвигается до совпадения отверстий в амортизаторе с резьбовыми
отверстиями во втулках.
2.2. Установка амортизаторов с верхним расположением ФПС (под металлические про-
летные строения)
2.2.1. Последовательность и содержание операций по установке на опоры амортизаторов
как с верхним, так и с нижним расположением ФПС одинаковы.
2.2.2. К металлическому пролетному строению амортизатор прикрепляется посредством
горизонтального упора. После прикрепления амортизатора к опоре выполняются следующие операции:
1) замеряются зазоры между поверхностями примыкания горизонтального упора к конст-
рукциям металлического пролетного строения;
2) в отверстия вставляются высокопрочные болты и на них нанизываются гайки;
3) при наличии зазоров более 2 мм в местах расположения болтов вставляются вильчатые
прокладки (вилкообразные шайбы) требуемой толщины;
4) высокопрочные болты затягиваются до проектного усилия.
2.3. Подъемка амортизатора на подмости в уровне площадки, на которой он будет смон-
тирован.
2.4. Демонтаж транспортных креплений.
Заместитель генерального директора
Л.А. Ушакова
Согласовано:
Главный инженер проекта
ОАО «Трансмост»
Главный инженер проекта ОАО «Трансмост»
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
И.В. Совершаев
И.А. Мурох
Всего листов 65
Лист 339
Главный инженер проекта
В.Л. Бобровский
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 340
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 341
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 342
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 343
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 344
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 345
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 346
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 347
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 348
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 349
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 350
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 351
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 352
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 353
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 354
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 355
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 356
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 357
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 358
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 359
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 360
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 361
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 362
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 363
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 364
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 365
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 366
Материалы специальных технических условий (СТУ) по испытанию огнестойкого компенсатор - гасителя
температурных напряжений в ПК SCAD (ОКГТН -СПб ГАСУ) согласно заявки на изобретение от
14.02.2022 : "Огнестойкого компенсатора -гасителя температурных напряжений" , для обеспечения
сейсмостойкости строительных конструкций в сейсмоопасных районах , сейсмичностью более 9 баллов .
Серия ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ: Cпециальные технические условия (СТУ),
альбомы , чертежи, лабораторные испытания : о применения огнестойкого компенсатора -гасителя
температурных напряжений , для обеспечения сдвиговой прочности !!! и сейсмостойкости строительных
конструкций в сейсмоопасных районах , сейсмичностью более 9 баллов . Серия ШИФР ТУ 20.30.12-00135635096-2021 СПб ГАСУ, новых огнестойких компенсаторов -гасителей температурных напряжений,
которые используются в США, Канаде фирмой STAR SEIMIC , на основе изобретений проф дтн ПГУП
А.М.Уздина №№ 1143895, 1168755, 1174616, 165076 «Опора сейсмостойкая», 154505 «Панель
противовзрывная», № 2010136746 «Способ защиты зданий и сооружений при взрыве с использованием
сдвигоустойчивых и легко сбрасываемых соединений , использующие систему демпфирования
фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической энергии» , хранятся на Кафедре
технологии строительных материалов и метрологии КТСМиМ 190005, Санкт-Петербург, 2-я ,
Красноармейская ул., д. 4, СПб ГАСУ, у проф. дтн Юрий Михайловича Тихонова в ауд 305 С. Тема
докторской диссертации дтн проф Тихонова Ю.М " Аэрированные легкие и тепло-огнезащитные бетоны и
растворы с применением вспученного вермикулита и перлита и изделия на их основе" seismofond@list.ru
9967982654@mail.ru t9111758465@outlook.com (921) 962-67-78, ( 996) 535-47-29, (911) 175-84-65
https://disk.yandex.ru/d/_ssJ0XTztfc_kg https://ppt-online.org/1100738 https://ppt-online.org/1068549 https://pptonline.org/1064840
Кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Всего листов 65
Лист 367
Download