Загрузил gulzuhra62

tihomirov-pm-raschet-transformatorov-5-e-izdanie TVx6 (1)

Реклама
П. М. Тихомиров
РАСЧЕТ
ТРАНСФОРМАТОРОВ
Издание пятое,
переработанное и дополненное
Допущено Министерством высшего
и среднего специального образования
СССР в качестве учебного пособия
для студентов электротехнических
и электромеханических специальностей
вузов.
00
МОСКВА ЭНЕРГОАТОМИЗДАТ 1986
ББК 31.261.8
Т 46
УДК 621.314.21.001.63 (075.8)
Рецензент канд, техн. наук
:f 46
·н.
Н. Хубларов
Тихомиров П. М.
Расчет трансформаторов: Учеб. пособие для вузов. - 5-е изд., перераб. и доп. - М.: Энерrоатом­
издат, 1986. - 528 с.: ил.
l!з.,ожены основы теории расчета силовых трансформаторов с
ЛJ]Оски мн и пространственными магнитными системами из холоднока ­
таноii текстурованной электротехнической стали и обмотками из мед­
нсrо и алюминиевого провода с масляным и воздушным охлаждением.
Дэны практические примерь( расчета. Приведены необходимые для
р2счета сведения по конструкции магнитных систем, обмоток, систем:
охлаждения современных силовых трансформаторов и справочные ма •
териаль•. Четвертое издание выш,ю в 1976 г. Настоящее издание пе­
р еработано в соответствии с новыми достижениями в о бл асти транс•
ферматоростроения .
Для студентов вузов специальности с:Э�,ектрические машины" и
других электротехнических и энергетических специальностей.
т
2302030000-455
147-86
051 (01 )-86
ББК 31.261.8
© Энергоатомнздат, 1986
ПРЕДИСЛОВИЕ
Пятое издание книги «Расчет трансформаторов», пере­
работанное и дополненное, выходит в свет через 10 лет
после выхода четвертого издания.
При переработkе книги для пятого издания автор ста­
рался дать читателю материалы для рационального про­
ектирования силовых трансформаторов с учетом места
трансформатора в сети, современных конструктивных ре­
шений отдельных частей и всего трансформатора, совре­
менных материалов и технологии изготов.�ения некоторых
узлов трансформатора. Соответствующие, минима.'!ьно не­
обходимые для расчетчика сведения о современных конст­
рукциях магнитных систем и обмоток и отдельных техно­
логических операциях приведены в таксте некоторых глав
книги.
За прошедшее десятилетие изменились требования Го­
сударственных стандартов к основным материалам, при­
меняемым в трансформаторостроении, - электротехниче­
чески м сталям, медным и алюминиевым обмоточным про­
водам, изоляционным и другим материалам. Вследствие
этого в новом издании переработаны практически все
таблицы, содержащие справочные сведения об этих ма­
териалах, а также ряд других, косвенно с ними свя­
занных.
Вопросы расчета основных размеров трансформатора
выделены в особую главу (гл. 3). Изложенная в ней мето­
дика обобщенного расчета позволяет подойти к выбору ос­
нов ных размеров магнитной системы и обмоток трансфор­
матора с одновременным учетом конструкции магнитной
сис тем ы - плоской или пространственной и марки элек­
тротехнической стали; материала обмоток - медных или
алюминиевых; получения заданных параметров холостого
ход а и короткого замыкания и некоторых других величин.
для удобства пользования книгой все необходимые
практи ческие указания и справочные материалы располо3
жены в тексте по мере изложения теории и методики рас­
чета. Книга иллюстрируется примерами расчета.
Методика расчета трансформаторов, изложенная в гл. 3
и последующих главах, и справочные материалы, приве­
денные в книге, позволяют вести электрический, магнит­
ный и тепловой расчеты силовых масляных и сухих транс­
форматоров общего назначения двух- и трехобмоточных
различных мощностей от 4-1 О кВ -А до 63-80 тыс. кВ -А
классов напряжения до 110 кВ включительно.
Автор во всех расчетных формулах все линейные раз­
меры выразил в метрах. Поскольку в современных госу­
дарственных стандартах на материалы и некоторых дру­
гих линейные размеры выражены в миллиметрах, во всех
справочных таблицах все линейные размеры также вы­
ражены в миллиметрах, а в расчетные формулы введены
коэффициенты перевода.
В практике проектных организаций и промышленных
предприятий широко применяются современные ЭВМ, при
помощи которых рассчитывается ряд технических, эксплуа­
т:щионных и экономических параметров силовых транс­
форматоров. Использование ЭВМ позволяет рассчиты­
вать параметры трансформаторов с значительно боль­
шей точностью и скоростью, чем при ручном расчете,
но требует разработки сложных математических моде­
лей и программ и в объем и задачу данной книги не вхо­
дит.
Основное назначение книги - служить учебным посо­
бием студентам высших учебных заведений, обучающихся
по специальности «Электрические машины», при курсовом
и дипломном проектировании, а также при изучении курса
«Проектирование электрических машин». Автор надеется,
что книга может быть полезной и инженерам и техникам,
работающим ,в области проектирования, производства, эк­
сплуатации и ремонта трансформаторов.
Автор считает задачей книги дать читателю, и прежде
всего специализирующемуся в области трансформаторо­
строения, необходимые представления об основах проек­
тирования силовых трансформаторов. Читатель должен на
собственном опыте, на основе ручного расчета, понять
взаимосвязи размеров трансформатора, свойств активных
материалов и его технических и экономических парамет­
ров с учетом места трансформатора в сети и технологии
его производства. После усвоения этих основ будет воз­
можен переход к комплексному решению задач проекти4
рования с сознательным и полноц:нным использованием
современных средств вычислительнои те хники.
При написании книги автор использовал многолетний
оп ыт преподавания в Московском энергетическом институ­
те, а также опыт Всесоюзного электротехнического инсти­
тута им. В. И. Ленина, Всесоюзного института трансфор­
маторостроения и трансформаторных заводов. Автор
п ользуется случаем выразить признательность работникам
этих предприятий, оказавшим содействие в подборе мате­
риала для книги, канд. техн. наук Н. Н. Хубларову, вы­
полнившему большую работу по рецензированию рукопи­
си, а также инж. Н. А. Акимовой, выполнившей примеры
расчета для§ 10.1 _и 10.3.
Автор с благодарностью примет все замечания читате­
лей и просит направлят.ь их в адрес Энергоатомиздата:
113114, Москва, М-114, Шлюзовая наб., 10.
'Автор
Глава первая
ОбЩИЕ ВОПРОСЫ ПРОЕКТИРОВАНИЯ
ТРАНСФОРМАТОРОВ
1.1. СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В ПРОИЗВОДСТВЕ
ТРАНСФОРМАТОРОВ В СССР
Трансформатором называется статическое электромаг­
нитное устройство, имеющее две или более индуктивно
связанных обмоток и предназначенное для преобразования
посредством электромагнитной индукции одной или не­
скольких систем переменного тока в одну или несколько
других систем переменного тока.
В народном хозяйстве используются трансформаторы
различного назначения в диапазоне мощностей от долей
вольт-ампера до 1 млн. кВ• А и более. Принято различать
трансформаторы малой мощности с выходной мощностью
4 кВ• А и ниже для однофазных и 5 кВ• А и ниже для
трехфазных сетей и трансформаторы силовые мощностью
от 6,3 кВ• А и более для трехфазных и от 5 кВ• А и более
для однофазных сетей.
Трансформаторы малой мощности различного назначе­
ния используются в устройствах радиотехники, автомати­
ки, сигнализации, связи и т. п., а также для питания бы­
товых электроприборов. Назначение силовых трансформа­
торов - преобразование электрической энергии в электри­
ческих сетях и установках, предназначенных для приема
и использования электрической энергии. Силовые транс­
форматоры подразделяются на два вида. Трансформаторы
общего назначения предназначены для включения в сеть,
не отличающуюся особыми условиями работы, или для пи­
тания приемников электрической энергии, не отличающих­
ся особыми условиями работы, характером нагрузки или
режимом работы. Трансформаторы специаJJьного назначе­
ния предназначены для непосредственного питания потре­
бительской сети или приемников электрической энергии,
если эта сеть или приемники отличаются особыми усло­
виями работы, характером нагрузки или режимом работы.
К числу таких сетей или приемников электрической энер­
гии относятся подземные рудничные сети и установки, вы­
лрями'Гельные установки, электрические печи и т. п.
6
Uентрализованное производство электрической энергии
к
на рупных электростанциях с генераторами большой еди­
ничной мощности, размещаемых вблизи расположения топ­
ливных и гидравлических энергоресурсов, позволяет полу­
чать в этих районах большие количества электрической
энергии при относительно невысокой ее стоимости. Реальное
использование дешевой электрической энергии непосредст­
венно у потребителей, находящихся на значительном удале­
нии, иногда измеряемом сотнями и тысячами километров, и
рассредоточенных на территории страны, требует при" этом
создания сложных разветвленных электрических сетеи.
Силовой трансформатор является одним из важнейших
элементов каждой электрической сети. Передача электриче­
ской энергии на большие расстояния от места ее производст­
ва до места потребления требует в современных сетях не .ме­
нее чем пяти-шестикратной трансформации в повышающих
и понижающих трансформаторах. Так, при напряжении на
шинах электростанции 15, 75 кВ в современной сети при уда­
лении потребителей от электростанции, питающей сеть, око­
ло 1000 км часто применяется такая последовательность
шести трансформаций напряжения с учетом падения напря­
жения на линиях передачи: 15,75 на 525 кВ; 500 на 242 кВ;
230 на 121 кВ; 115 на 38,5 кВ; 35 на 11 кВ; 10 кВ на 0,4 или
0,69 кВ.
На рис. 1.1, а показана неско.1ько упрощенная схема та­
кой сети, содержащая только радиальные связи. При ис­
пользовании линии электропередачи постоянного тока изме­
нение схемы произойдет только на первом ее участке (рис.
1.1, б); в начале линии появится блок выпрямителей В и в
конце - блок инверторов И. Вся остальная сеть останется
без изменений.
Необходимость распределения энергии по разным ради­
альным направлениям между многими мелкими потребите­
лями приводит к значительному увеличению числа отдель­
ных трансформаторов по сравнению с числом генераторов.
При этом суммарная мощность трансформаторов в сети на
каждой следующей ступени с более низким напряжением в
целях более свободного маневрирования энергией выбира·
ется обычно большей, чем мощность предыдущей ступени
более высокого напряжения. Вследствие этих причин общая
мощность всех трансформаторов, установленных в сети, в
настоящее время превышает общую генераторную мощ­
ность в 7-8 раз. В связи с увеличением удаления потреби­
те лей (распределительной сети) от крупных электростан7
0-(])-0-------0-(])--о)
Рис. !.!. Схема расположения трансформаторов в современной электри­
ческой сети (напряжения в ки.1овольтах):
а - линии передачи переменного тока, б - линии передачи постоянного тока
ций, размещаемых в районах сосредоточения энерге;_
тических ресурсов, и повышением напряжения линии
электропередачи до 750, 1150 и далее до 1500 кВ указанное
соотношение имеет тенденцию к уве.1шчению.
Определяя место силового трансформатора в электриче­
ской сети, следует отметить, что по мере удаления от элек­
тростанции единичные мощности трансформаторов умень­
шаются, а удельный расход материалов на изготовление
трансформатора и потери, отнесенные к единице мощности,
а также цена 1 кВт потерь возрастают. Поэтому значитель­
ная часть материалов, расходуемых на все силовые транс­
форматоры, вкладывается в наиболее отдаленные части се­
ти, т. е. в трансформаторы с, высшим напряжением 35 и
1О кВ. В этих же трансформаторах возникает основная мас­
са потерь энергии, оплачиваемых по наиболее дорогой цене.
Потери холостого хода трансформатора являются посто­
янными, не зависят от тока нагрузки и возникают в его маг­
нитной системе в течение всего времени, когда он включен
в сеть. Потери короткого замыкания (нагрузочные) изменя­
ются с изменением тока нагрузки и зависят от графика на­
грузки трансформатора. Характер суточного или годового
графика нагрузки трансформатора зависит от его места в
сети и характера нагрузки - промышленная, бытовая, сель­
скохозяйственная и т. д. Для экономических расчетов транс8
фор маторЬI сети при1:ято раздел� ть на трансформаторы
электрических станции, основнои сети при напряжениях
110 кВ и выше и распределительной сети, непосредственно
питающие потребителей при напряжениях 10 и 35 кВ.
Силовой трансформатор является одним из важнейших
элементов современной электрической сети, и дальнейшее
развитие трансформаторостроения определяется в первую
очередь развитием электрических сетей, а следовательно,
энергетики страны.
Особо важными задачами являются повышение качества
трансформаторов, использование прогрессивной технологии
их производства, экономия материалов при их изготовлении
и возможно низкие потери энергии при их работе в сети.
Экономия материалов и снижение потерь особенно важны в
распределительных трансформаторах, в которых расходует­
ся значительная часть материалов и возникает существен­
ная часть потерь энергии всего трансформаторного парка.
Коэффициент полезного действия трансформаторов очень
велик и для большинства их составляет 98-99 % и более,
однако необходимость многократной трансформации энер­
гии и установки в сетях трансформаторов с общей мощно­
стью, в несколько раз превышающей мощность генераторов,
приводит к тому, что общие потери энергии во всем парке
трансформаторов достигают существенных значений. Так в
середине 50-х годов на потери в трансформаторах расходо­
валось до 6 % всей энергии, выработанной электростанция­
ми. В сериях трансформаторов, выпускавшихся в последую­
щие годы, потери холостого хода снижены до 50 % и потери
короткого замыкания на 20-25 % , однако вследствие уве­
личения числа ступеней трансформации в сетях, роста об­
щей мощности трансформаторного парка, общие потери в
парке трансформаторов уменьшились в меньшей степени.
Поэтому одной из важнейших задач в настоящее время яв­
ляется задача существенного уменьшения потерь энергии в
трансформаторах, т. е. потерь холостого хода и потерь ко­
роткого замыкания.
Уменьшение потерь холостого хода достигается главным
образом путем все более широкого применения холоднока­
таной рулонной электротехнической стали с улучшенными
магнитными свойствами - низкими и особо низкими удель­
ными потерями и низкой удельной намагничивающей мощ­
ностью. Применение этой стали, обладающей анизотропией
магнитных свойств и очень чувствительной к механическим
Воздействиям при обработке - продольной и поперечной
9
резке рулона на пластины, к толчкам и ударам при транс­
портировке пластин, к ударам, изгибам и сжатию пластин
при сборке магнитной системы и остова, сочетается с суще­
ственным изменением конструкций магнитных систем, а так­
же с новой прогрессивной технологией заготовки и обработ­
ки пластин и сборки магнитной системы и остова.
Новые конструкции магнитных систем характеризуются
применением косых стыков пластин в углах системы, стяж­
кой стержней и ярм кольцевыми бандажами вместо сквоз­
ных шпилек в старых конструкциях и многоступенчатой фор­
мой сечения ярма в плоских магнитных системах. Находят
применение стыковые пространственные магнитные системы
со стержнями, собранными из плоских пластин, и с ярмами,
навитыми из ленты холоднокатаной стали, а также магнит­
ные системы, собранные только из навитых элементов. Эти
конструкции позволяют уменьшить расход активной стали и
потери холостого хода.
Уменьшение расхода электротехнической стали при ста­
бильности допустимой индукции достигается в настоящее
время за счет изменения конструкции магнитной системы,
например путем перехода от плоских к пространственным
магнитным системам.
Уменьшение потерь короткого замыкания достигается
главным образом понижением плотности тока за счет уве­
личения массы металла в обмотках. В значительной мере
это стало возможным после замены медного провода алю­
миниевым в силовых трансформаторах общего назначения
мощностью до 16000 кВ-А.
Дальнейшее расширение применения алюминия в транс­
форматорах больших мощностей ограничивается требова­
ниями механической прочности обмоток при коротком замы­
кании. Возможность замены меди алюминием в обмотках
некоторых типов трансформаторов общего и специального
назначения еще не исчерпана.
Сокращение расхода изоляционных материалов, транс­
форматорного масла и металла, употребляемого на изготов­
ление баков и систем охлаждения трансформаторов, может
быть достигнуто путем снижения испытательных напряже­
ний и уменьшения изоляционных расстояний при улучшении
изоляционных конструкций на основе совершенствования
технологии обработки изоляции и применения новых средств
защиты трансформаторов от перенапряжений. Большой эф­
фект в деле экономии [{ОНстру1пивных материалов дает так­
же применение новых систем форсированного охлаждения
10
трансформаторов с направленной циркуляцией масла в ка­
налах обмоток и эффективных охладителях.
рост единичных мощностей и номинальных напряжений
трансформаторов, изготовляемых в СССР, по годам пока­
зан в табл. 1.1.
та б л и ц а 1.1. Рост единичных мощностей и номинальных напряжений
трансформаторов, изготовляемых в СССР, по годам
"'
<.)
>,
,::
":;;
""'
-е,
"'uо
�
о
"'<
3' .
и
:...
с
:т
=
::;:Ооо
"
1931
1933
1939
1955
1956
1959
1959
1
1
1
3
1
1
3
3 333
20 000
40 000
70 000
135 ООО
135 ООО
240 ООО
"{
.,"
"'"
.,"
и
>,
,::
"'"
"' .
.,
:а
:Еоо
.. :r:
,::
О(
:::оо
110
220
220
110
400
500
220
1
1
"'"'
..
-е,
о
u
:,:
i.
=3'о..:.
u
"=
.,
�"
,:: .
":с
:1: 00
�о
:т
::;:О :,:
:r:oo
1963
1967
1967
1969
1971
1972
1978
1980
3
3
1
3
3
1
1
3
400000
630 ООО
417 ООО
400 ООО
1 000 000
210 ООО
667 ООО
1 250 ООО
330
220
750
500
330
1150
1150
330
оо
На рис. 1.2 приведена фотография одного из современ­
ных мощных трансформаторов - однофазного автотранс-
Р11с. 1.2. Однофазный автотрансформатор мощностью 417 МВ• А класса
напряжения 750 кВ на подстанции
11
форматора мощностью 417 МВ-А (1250 МВ-А в трехфазной
группе) класса напряжения 750 кВ, установленного на под­
станции. Линейные напряжения обмоток (в группе) ВН
750 кВ, СН 500 кВ, НН l 0,6 кВ, мощности обмоток ВН и СН
417 МВ-А, НН 30 МВ-А*. Система охлаждения трансфор­
матора состоит из двух групп охладителей, установленных
на отдельных фундаментах. Циркуляция масла внутри баl{а
трансформатора и охладителей форсируется насосами, дви­
жение воздуха, обдувающего охладители, - вентиляторами.
От воздействия атмосферных разрядов трансформатор за­
щищен разрядниками, установленными вблизи трансформа­
тора.
В связи с повышением общих требований, предъявляе­
мых энергетикой к силовым трансформаторам, расширени­
ем шкалы мощностей и напряжений в последние годы про­
должалась работа по стандартизации силовых трансформа­
торов.
Постоянное повышение верхнего предела номинальных
мощностей и напряжений силовых трансформаторов сопро­
вождается увеличением типовых мощностей, нарастающих
по стандартизованной шкале с основным коэффициентом
нарастания 1,6 (в отдельных местах шкалы 1,25). Увеличи­
вается выпуск трансформаторов специального назначения для питания электрических печей, преобразовательных уст­
ройств, рудничных установок и др., -а также трансформато­
ров для комплектных трансформаторных подстанций. Вслед­
ствие этого постоянно увеличивается номенклатура изделий
трансформаторного производства и становится необходи­
мым более четкое разделение выпуска трансформаторов по
мощностям, назначению и KJiaccaм напряжения между от­
дельными заводами, а также сосредоточения на отдельных
заводах производства однотипных трансформаторов.
Наряду с масляными используются также и сухие транс­
форматоры с естественным воздушным охлаждением. Они
находят все более широкое применение в установках внутри
производственных помещений, жилых и служебных зданий,
т. е. там, где установка масляных трансформаторов вследст­
вие их взрыво- и пожароопасности недопустима. Мощность
в единице этих трансформаторов достигает в нормальных
сериях 1600 кВ -А при напряжении 10 кВ. В дальнейшем
вuзможно увеличение единичной мощности до 2500 кВ, А и
� 13Н, СН, НН - обозначение обмоток высшего, среднего и низ­
шего напряжений,
12
напря жения до 15 кВ. Кроме серий сухих трансформаторов
для работы в зоне умеренного климата выпускаются сухие
трансформаторы для работы в условиях сухих и влажных
троп иков.
Для обеспечения экономичной работы электрических се­
тей и надлежащего качества энергии, отпускаемой потреби­
тел ям, т. е. для поддержания постоянства напряжения, воз­
никает необходимость в расширении выпуска трансформа­
торов с регулированием напряжения под нагрузкой (РПН).
Современными стандартами предусмотрен выпуск всех по­
нижающих трансформаторов и автотрансформаторов клас­
сов напряжения 110, 150, 220, 330 и 500 кВ с РПН. При
этом у двух- и трехобмоточных трансформаторов, как пра­
вило, напряжение регулируется при помощи устройства для
переключения ответвлений в нейтрали обмотки высшего на­
пряжения. У автотрансформаторов напряжение регулирует­
ся у линейного конца обмотки среднего напряжения и в от­
дельных случаях вблизи нейтрали обмоток. Повышающие
трансформаторы этих классов напряжения выпускаются без
РПН.
Трансформаторы классов напряжения 10 и 35 кВ мощ­
ностью до 250 кВ· А выпускаются с переключением без воз­
буждения (ПБВ), а мощностью 400-630 кВ-А с ПБВ в
основной массе и с РПН - некоторая часть. Двухобмоточ­
ные трансформаторы общего назначения классов напряже­
ния 1 О и 35 кВ мощностью 1000-6300 кВ -А выпускаются
как с ПБВ, так и с РПН, а мощностью 10 000-80 ООО кВ-А
класса напряжения 35 кВ - только с ПБВ.
При разработке трансформаторов и особенно автотранс­
форматоров большой мощности (более 63 ООО кВ ,А) возни­
кает проблема ограничения добавочных потерь, возникаю­
щих от вихревых токов, наводимых магнитным полем рас­
сеяния в обмотках, и вихревых токов и гистерезиса,
возникающих в элементах конструкции трансформатора.
Эти потери в сумме могут достигать 25-30 % полных по­
терь короткого замыкания.
В качестве наиболее эффективных средств для уменьше­
ния добавочных потерь применяют: рациональное размеще­
ние витков обмоток для уменьшения поперечной (радиаль­
ной) составляющей поля рассеяния, искусственную локали­
зацию поля рассеяния при помощи установки магнитных
экранов из электротехнической стали и замену некоторых
стальных деталей деталями из немагнитных материалов. В
дальнейшем наиболее радикальное решение этой проблемы
13
может быть найдено путем замены стальных деталей, в ко­
торых возникают потери от гистерезиса и вихревых токов,
неметаллическими (прессующие кольца обмоток, ярмовые
прессующие балки и т. д.) или деталями из немагнитных
металлов.
Широкое развитие электрификации железных дорог
должно быть обеспечено выпуском достаточного количества
трансформаторов для питания выпрямителей, а также спе­
циальных трансформаторов для установки на электровозах,
работающих на участках, питаемых переменным током. Зна­
чительно должны быть расширены выпуск и диапазон мощ­
ностей трансформаторов для питания электрических печей,
трансформа'Горов, заполненных негорючей жидкостью, и
различных реакторов.
Разработка новых серий трансформаторов с пони�енны­
ми потерями холостого хода производится на базе приме­
нения электротехнической хо.1однокатаной анизотропной
тонколистовой рулонной стали марок 3404, 3405, 3406 по
ГОСТ 21427-83, допускающей магнитную индукцию до 1,61,65 Тл при использовании современной конструкции и технологии изготовления магнитных систем.
В качестве материала обмоток в значительной части си­
ловых трансформаторов общего назначения для мощностей
до 16 000-25 ООО кВ -А применяется алюминиевый обмоточ­
ный провод. В трансформаторах больших мощностей и
трансформаторах специального назначения обмотки выпол­
няются из медного обмоточного провода.
Перевод ряда серий трансформаторов на алюминиевые
обмотки позволил получить большую экономию меди, не­
обходимой для общего увеличения выпуска трансформато­
ров и увеличения массы меди в обмотках трансформаторов
большой мощности с целью уменьшения потерь короткого
замыкания.
Задача проектирования рациональной серии трансфор­
маторов с алюминиевыми обмотками заключается в выборе
такого соотношения основных размеров, отличающихся от
размеров трансформаторов с медными обмотками, при ко­
тором наиболее полно использовалось бы положительное
свойство алюминия - малая плотность и уменьшалось бы
значение отрицательных свойств - относительно большого
удеJrьного электрического сопротивления, увеличенного объ­
ема обмоток и пониженной механической прочности про•
вода.
14
Для получения в эксплуатации полной взаимозаменяе�
трансформаторов с медными и алюминиевыми обмот­
;<ами целесообразно проектировать те и другие с одинако­
выми параметрами - потерями и напряжением короткого
замыкания, потерями и током холостого хода. Практика
расчета серий «алюминиевых» трансформаторов показыва­
ет, что взаимозаменяемость их с «медными» трансформа­
торами может быть получена при одинаковых исходных дан­
ных расчета, т. е. одинаковых марке стали, магнитной ин­
дукции в стержне, коэффициенте заполнения сталью сечения
стержня и т. д. При этом «алюминиевые» трансформаторы
имеют одинаковую с «медными» трансформаторами массу
стали, меньшую массу, но больший объем металла обмоток,
большее сечение обмоток, большую высоту магнитной си­
стемы.
Увеличение сечения витка алюминиевых обмоток в до­
статочной мере увеличивает их механическую прочность при
1<оротком замыкании, компенсируя в трансформаторах мощ­
ностью до 16 000-25 ООО кВ -А пониженную механическую
прочность самого металла.
Большой опыт выпуска трансформаторов с а люминиевы­
ми обмотками, в частности в пределах номинальных мощно­
стей от 10 до 16000 кВ-А, показал, что эти трансформаторы
обеспечивают полноценную замену трансформаторов с мед­
ными обмотками, так как могут иметь те же параметры хо­
лостого хода и короткого замыкания при одинаковой стои­
мости всего трансформатора, т. е. являются равноценными
с «медными» трансформаторами в технологическом и эконо­
мическом отношении.
, 1 ости
В последние годы усиливается интерес к применению электрообо­
рудования, в том числе и трансформаторов, работающего в автоном­
ных электрических системах с повышенной частотой 100-400 Гц. С рос­
том частоты уменьшается масса электрооборудования (двигателей,
трансформаторов и др.) и появляется возможность применения высо­
коскоростного электропривода. Повышенная частота используется там,
где применяется ручной высокоскоростной электроинструмент с элек­
тро приводом: на лесоразработках и горных разработках, на морских и
речных судах, в прядильных цехах для электропривода веретен, для
электроплавки и электросварки металлов и т. д. Рост мощностей авто­
номных электрических систем повышенной частоты уже сейчас ставит
задачу создания силовых энергетических трансформаторов, рассчитан­
ных на частоты 100-400 Гц,
Исследования поля рассеяния трансформаторов боль­
ших мощностей необходимы для создания точных методов
15
рrсчета р�спределения поля рассеяния и вызываемых им
механич�ских сил, воздействующих на обмотки при корот­
ком замыкании. Точное знание сил, действующих на обмот­
ки и их отдельные части, позволит обеспечить электроди­
намическую стойкость и надежность трансформаторов
мощностью 250-1000 МВ-А и более. Исследования поля
рассеяния трансформаторов этих и меньших мощностей
имеют целью также определенную организацию и лока.'Iи­
зацию этого поля за счет рационального размещения обмо­
ток и применения магнитных экранов, позволяющих суще­
ственно уменьшить добавочные потери в обмотках и конст­
руктивных деталях трансформатора - стенках бака,
прессующих деталях обмоток и остова трансформатора.
Возможность этих исследований обеспечивается широ­
ким внедрением вычислительной техники и современных
методов экспериментального исследования магнитного
поля.
Важной задачей является совершенствование методов
расчета трансформаторов. В условиях проектных органи­
заций и трансформаторных заводов расчет силовых транс­
форматоров выполняется с использованием ЭВМ. Разрабо­
таны математические модели и комплекты стандартных
программ, при помощи которых ведется расчет отдельных
параметров - потерь и напряжения короткого замыкания,
потерь и тока холостого хода, оптима.11ьных размеров сече­
ння стержня, тепловой расчет отдельных частей системы
охлаждения трансформатора, его тепловой постоянной вре­
мени и др.
Особо важное значение имеют комплекты программ
для расчета поля рассеяния обмоток. Эти программы поз­
воляют выполнять расчет индукции поля рассеяния в об­
ласти внутри и вне обмоток с последующим определением
радиальных и осевых электродинамических сил, действую­
щих при коротком замыкании на отдельные части обмоток,
и суммарных сил для каждой обмотки, а также добавоч­
ных потерь в обмотках и деталях конструкции трансфор­
матора.
Использование этих программ позволяет с приемлемой
точностью выполнить подробный расчет поля рассеяния
обмоток, электродинамических сил и добавочных потерь
для каждого рассчитываемого трансформатора, что было
практически недоступно при ручном методе расчета. Вы­
являемое при этом распределение электродинамических
сил, действующих на отдельные части обмоток и мест со16
средоточения добавочных потерь в отдельных деталях кон­
стру!,ции, позволяет должным образом организовать поле
р ассеяния путем рационального взаимного расположения
частей обмоток и обеспечить необходимую механическую
прочность обмоток при коротком замыкании трансформа­
тора, а также добиться существенного уменьшения доба­
вочных потерь в обмотках и деталях конструкции транс­
форматора.
Программы для расчета электрического поля обмоток
позволяют рассчитать продольную изоляцию обмоток клас­
сов напряжения 35-1150 кВ с учетом воздействия импуль­
сных перенапряжений и заменой большой эксперименталь­
ной работы по исследованию натуральных моделей изоля­
ции чисто расчетной работой.
Важнейшим направлением научно-исследовательских работ являет­
ся разработка новых прогрессивных технологических процессов и -опе­
раций, обеспечивающих повышение качества трансформаторов, умень­
шение трудовых затрат и экономию материалов. Особое значение име­
ет совершенствование сушки активных частей трансформаторов классов
напряжения 220, 330, 500 и 750 кВ и разработка метода сушки для
трансформаторов класса напряжения 1150 кВ. Правильно организован­
ная и проведенная сушка является залогом длительной и надежной ра­
боты изоляции трансформатора в эксплуатации.
Повышение класса напряжения трансформаторов с 220 до 330,
500, 750 и 1150 кВ требует развития исследований новых изоляцион­
ных конструкций и применения изоляционных материа,,ов повышенного
ка чества. В области производства трансформаторов массовых вы­
пусков мощностью от 25 до 1000-6300 кВ• А rлав ной задачей остает­
ся совершенствование их конструкций для уменьшения расхода мате­
риа.чов, снижения потерь энергии в них, удешевления производства.
Примером современного подхода к проектированию но­
вых серий трансформаторов может служить серия двух- и
трехобмоточных трансформаторов общего назначения клас­
са напряжения 110 кВ с РПН в диапазоне мощностей от
2500 до 125 ООО кВ -А, разработанная отечественными про­
ектно-исследовательскими организациями и предприятиями
в начале 80-х годов и ныне выпускаемая заводами. При
р азработке этой серии были приняты новые расчетные и
конструктивные решения, позволившие улучшить изоляцию
тр ансформатора, существенно уменьшить потери хо.1остого
хода, повысить электродинамическую стойкость обмоток и
модернизировать системы охлажден�нс_qщрматоров.
В процессе �,и_ретоысп п�ва ноВо1i с�рии были
17
разработаны и внедрены новые комплексы технологических
процессов изготовления и установки обмоток, заготовки
пластин электротехнической стали и сборки магнитных си­
стем, сборки и установки активной части. Новая серия по
сравнению с предыдущей позволила получить существен­
ное уменьшение расхода электротехнической стали, изоля­
ционных материалов, трансформаторного масла и конст­
рукционных материалов, а также потерь в эксплуатации
трансформаторов.
Особое развитие должны получить работы по исследованию шума
трансформаторов - нормированию его уровня, разработке методов из­
мерения и понижения уровня шума.
Все более широко будет использоваться современная вычислитель­
ная техника как при выполнении различных; исследований, так и для
расчета новых типов и серий трансформаторqв в условиях заводов.
Совершенно обособленную часть области трансформаторостроения
представляют трансформаторы малой мощности, т. е. трансформаторы,
мощность которых измеряется в пределах от долей вольт-ампера до
3000--5000 В-А, используемые в радиотехнике, телевидении, радиоэлек­
тронике, автоматике, устройствах связи н т. д. Массовый выпуск этих
трансформаторов, измеряемый в СССР несколькими десятками миллио­
нов штук в год, при общем расходе активных материалов, доходящем
до 40-50 % расхода материалов на все силовые трансформаторы, ор­
ганизуется на специализированных заводах. Методика проектирования
этих трансформаторов существенно отличается от методики проектиро­
вания силовых трансформаторов. Выбор оптимального варианта в за­
висимости от назначения трансформатора может определяться не толь­
ко соображениями экономической эффективности, но также и ограни­
чением таких показателей, как падение напряжения в трансформаторе,
общая масса трансформатора, его габариты.
1.2. ОСНОВНЫЕ МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ
В ТРАНСФОРМдТОРОСТРОЕНИИ
Развитие производства трансформаторов, так же как и
любых других электрических машин и аппаратов, тесно
связано с прогрессом в производстве магнитных, проводни­
ковых и изоляционных материалов. В свою очередь задачи,
стоящие перед трансформаторостроением, требуют от со­
ответствующих отраслей промышленности разработки и
выпуска новых видов и марок различных материалов.
Поиски новых материалов чаще всего имеют целью
улучшение параметров трансформатора - уменьшение
потерь энергии в трансформаторе, уменьшение его массы
18
и размеров, повышение надежности работы. Возникает так­
же вопрос о замене дорогих материалов более дешевыми и
0 сокращении расхода некоторых материалов, в частности
цветных металлов. Так в последние десятилетия в ряде
стран в обмотках трансформаторов средней мощноС1'И мед­
ный провод заменяется более дешевым алюминиевым. Име­
ется тенденция к уменьшению расхода некоторых материа­
лов растительного происхождения - ценных пород дерева,
таких, как красный бук, материалов на основе хлопчато­
бумажных тканей.
Материалы, применяемые для изготовления трансфор·
матора, разделяются на активные, т. е. сталь магнитной
системы и металл обмоток и отводов; изоляционные, при­
меняемые для электрической изоляции обмоток и других
частей трансформатОРf.1, например электроизоляционный
картон, фарфор, дерево, трансформаторное масло и др.; кон­
струкционные, идущие на изготовление бака, различных
крепежных частей и т. д., и прочие материалы, употребля­
емые в сравнительно небольших количествах. Применение
того или иного материала может отразиться на технологии
изготовления трансформатора и его конструкции. Замена
одних активных или изоляционных материалов другими
иногда приводит к существенному изменению конструкции
и технологии изготовления трансформатора.
Одним из основных активных материалов трансформа­
тора является тонколистовая электротехническая сталь.
В течение многих лет для магнитных систем трансформа­
торов применялась листовая сталь горячей прокатки с тол­
щиной листов 0,5 или 0,35 мм. Качество этой стали посте­
пенно улучшалось, однако удельные потери в ней были вы­
соки.
Появление в конце 40-х годов холоднокатаной тексту­
рованной стали, т. е. стали с определенной ориентировкой
зерен (кристаллов), имеющей значительно меньшие удель·
ные потери и более высокую магнитную проницаемость,
позволило увеличить индукцию в магнитной системе до
1,6-1,65 Тл против 1,4-1,45 Тл для горячекатаной стали и
существенно уменьшщъ массу активных материалов при
одновременном уменьшении потерь энергии в трансформа­
т оре. Вместе с этим было получено уменьшение расхода
остальных материалов - изоляционных, конструкционных,
Масла и т. д.
Применение холоднокатаной стали позволило также
Уменьшить внешн"lе габариты и увеличить мощность тран19
сформатора в одной единице, что особенно важно для тран­
сформаторов большой мощности, внешние размеры кото­
рых ограничиваются условиями перевозки по железным до­
рогам.
Одной из существенных особенностей холоднокатаной
стали является анизотропия ее магнитных свойств, т. е. раз­
л 11чие этих свойств в различных направлениях внутри ли­
с ,·а или пластины стали. Наилучшие магнитные свойства
(наименьшие удельные потери и наибольшую магнитную
проницаемость) эта сталь имеет в направлении прокатки.
Магнитные свойства существенно ухудшаются, если вектор
индукции магнитного поля направлен под углом, отличаю11щмся от 0 °, к направлению прокатки, и становится наи­
худшим·при угле, равном 55°.
Конструкция магнитной системы 1-рансформатора с уче­
том анизотропии магнитных свойств холоднокатаной стали
должна быть выполнена так, чтобы во всех ее частях с1ержнях и ярмах вектор индукции магнитного поля имел
направление, совпадающее с направлением прокатки ста­
ли. Эта задача не может быть решена полностью при ис•
nо:1ьзовании стали с ограниченными размерами листов.
Только поставка основной массы холоднокатаной стали в
рулонах с развернутой длиной полосы от 1000 до 2000 м
позволяет вырезать пластины необходимой длины и созда­
вать магнитные системы, отвечающие этому требованию.
Замена листовой стали на рулонную позволила корен­
н;,1м образом изменить технологию заготовки пластин маг­
н1пной системы с значительным уменьшением затраты ру•1ного труда на эти операции. Отдельные части магнитной
системы могут изготовляться из рулонной стали путем на­
вивки из ленты. Применение рулонной стали позволило
1акже уменьшить отходы стали при резке пластин до 45 % по сравнению с отходами листовой стали, составляю­
щими 15-20 %.
Магнитные свойства холоднокатаной стали существен­
но ухудшаются при различных механических воздействиях:
при резке стали на пластины, снятии с них заусенцев, из­
гибах пластин, случайных ударах при транспортировке,
легких ударах при сборке магнитной системы и т. д. Осо­
бенно сильное ухудшение магнитных свойств происходит
при навивке частей магнитной системы из ленты. Ухудше­
ние магнитных свойств при этих воздействиях может быть
снято восстановительным отжигом при температуре 800 °С,
проводимым до начала сборки магнитной системы, а для
20
навитых частей - после навивки. Механические воздейсг•
вия, возникающие после начала сборки, должны быть ог­
раничены путем соответствующей организации транспор­
тировки пластин, осторожного обращения с ними при сбор•
ке магнитной системы и т. д.
Несмотря на указанные недостатки холоднокатаной
стали и ее относительно высокую цену, трансформаторы с
рационально спроектированной магнитной системой из
этой стали при надлежа щей технологии ее изготовления
имеют относительно малые потери и ток холостого хода,
дают экономию в расходе активных и других материалов п
являются экономичными в эксплуатации. Поэтому уже бо­
лее 30 лет все вновь проектируемые в СССР серии транс­
форматоров разрабатываются на основе применения хо­
лоднокатаной стали лучших марок с толщиной 0,35, 0,30 и
0,27 мм.
Другой активный материал трансформатора - металл
обмоток - в течение долгого времени не подвергался из­
менению. Низкое удельное электрическое сопротивление,
легкость обработки (намотки, пайки), удовлетворительная
стойкость по отношению к коррозии и достаточная меха11и­
ческая прочность электролитической меди сделали ее ед11н­
ственным материалом для обмоток трансформаторов в те­
чение ряда десятилетий. Несмотря на это, относительно
малое мировое распространение природных запасов медных
руд заставило искать пути замены меди другим металлоvr,
и в первую очередь алюминием, более широко распростра·
ненным в природе.
Замена медного обмоточного провода в обмотках сило­
вых трансформаторов алюминиевым проводом затрудня­
ется прежде всего тем, что удельное электрическе сопро­
тивление алюминия существенно (примерно в 1,6 раза)
больше удельного сопротивления меди.
Основные физические свойства меди и алюминия при­
ведены в табл. 1.2. Цена 1 кг прямоугольного обмоточног•)
а,1юминиевого провода марки АПБ на 10-15 % ниже цены
медного провода марки ПБ.
Рассмотрим случай наиболее простой замены медного
провода обмоток трансформатора алюминиевым, когда за­
меняется только металл провода, но сохраняются: все раз­
меры самого провода и обеих обмоток, число витков обмо­
то1<, материал и размеры изоляционных промежутков, а
также все данные и размеры магнитной системы и системы
охлаждения трансформатора.
21
Табл и и а 1.2. Ос11ов11ые физические своiiства обмоточных nроsодов из
меди и алюминия
Уд('льное :лсктрн�
Металл
ческое со�ротнмение. v.к(Jм,м
при 20 ·с 1 при 75 •с
Медь
эле ктроли- 0,01724
тнческаn
Алюминий
0,0280
Предел
Плотность. прочности
кr/м3
на разрыв.
МПа
0,02135
8900
240
0,0344
2700
80-90
Удельная
тепло-
емкость,
Дж/(кг,•С)
390
816
При такой замене трансформатор может быть включен
в ту же сеть и будет иметь то же номина.1ьное напряжение
и те же параметры холостого хода, что и до замены метал­
ла обмоток. Электрическое активное) сопротивление алю­
миниевых обмоток окажется выше сопротивления медных
в отношении удельных электрических сопротивлений этих
металлов, т. е. примерно в 1,6 раза, и во столько же раз воз­
растут потери короткого замыкания при прежнем номиналь­
ном токе. Для того чтобы сохранить прежние потери корот­
кого эамыкания и неизменные превышения температуры
частей трансформатора над температурой охлаждающей
среды, номинальный ток алюминиевого варианта обмоток
lвомА должен быть уменьшен по сравнению с током мед­
ного варианта l вомм
lномА
= fномМ V РмlРА = lномМ vo,01724/0,028 = О, 785 /номМ,
При прямой замене медного провода алюминиевым но­
минальные токи обмоток, а следовательно, и номинальная
мощность трансформатора должны быть снижены на
21,5 %. Прежняя сумма потерь холостого хода и короткого
замыкания будет отнесена к пониженной номинальной мощ­
ности, что приведет к снижению КПД. Реактивная состав­
ляющая сопротивления короткого замыкания не зависит
от мета.ТJла обмоток и останется неизменной. Его активная
составляющая возрастет примерно в 1,6 раза, но полное со­
про1 ив.1ение короткого замыкания, определяемое в основ­
ном реактивной составляющей, возрастет незначительно, и
ток короткого замыкания и механические силы при корот­
ком �амыкании останутся практически неизменными, что
вследствие малой механической прочности алюминия
поведет к снижению динамической стойкости трансфор ­
матора.
22
Обы�м металла алюминиевых обмоток будет равен объ•
ему меди, а масса алюминия составит от массы меди
Ул
27ИО
Gл = Gм У = Gм 8900 = 0,303 Gм •
м
Поскольку цена алюминиевого провода несколько нн­
:же цены медного, стоимость алюминиевого провода соста­
вит менее 1/3 стоимости медного провода, что, однако, не
компенсирует уменьшения номинальной мощности и сни­
жения КПД.
Для r.ыяснения условий рациональной замены меди в
обмотках силовых трансформаторов алюминием поставим
задачу получения полностью эквивалентных трансформа­
торов с одинаковыми номинальными мощностями, напря­
}Кенпямн и токами, �динаковыми параметрами холостого
ход1 (потери в ток) и короткого замыкания (потери и на­
прнжение), с одинаковой конструкцией, материалами и раз­
ыерамп изоляции, с магнитными системами одинаковой
конструкции, изготовленными из электротехнической ста­
ли одной ��арки и толщины, рассчитанными при одном зна­
чении индукции.
Из рассмотрения приведенного примера ясно, что ра­
венство потерь короткого замыкания при равенстве номи­
нальных токов потребует увеличения сечения каждого вит­
ка и всей обмотки в целом и, с.1едовательно, увеличения
площади окна магнитной системы, в котором расположены
обмотки. Равенство потерь и тока холостого хода при за­
данных условиях может быть достигнуто тоJJько при равен­
стве масс активной стали, что при увеличении площади ок­
на магнитной системы может быть достигнуто за счет умень­
шения сечений стержней и ярм и увеличения их длины.
Магнитная система алюминиевого варианта должна быть
уже и выше, чем система медного варианта.
Сохранение неизменности реактивной составляющей на­
пряжения короткого замыкания потребует относительного
увеличения радиального и осевого размеров алюминиевых
обмоток, т. е. также увеличения ширины и высоты окна
магнитной системы.
Рационально спроектированные трансформаторы с алю­
миниевыми обмотками существенно отличаются по соотно­
шению основных размеров от эквивалентных им по мощ­
ности и параметрам короткого замыкания и холостого хода
тра!iсформаторов с медными обмотками. Отличительными
особсыюстями магнитной системы трансформатора с алю23
миниевыми обмоп<ами являются при этом меньший диа­
метр, большие высоты стержня и площадь окна магнитной
системы. Алюминиевые обмотки имеют несколько большее
число витков.
Увеличение чисел витков и сечений витков алюминие­
вых обмоток по сравнению с эквивалентными медными об­
мотками приводит к увеличению стоимости работы по на­
мотке обмоток и значительному увеличению расхода неко­
торых изоляционных материалов - бумажно-бакелитовых
цилиндров (примерно на 30-25 % ) , электроизоляционного
I<артона и пропиточного лака (примерно 50-60 % ). При
большей высоте магнитной системы увеличиваются также
высота бака и масса масла. Увеличение стоимости работы
н материалов компенсируется уменьшением массы и стои­
мuсти провода обмоток так, что общая стоимость рацио­
нально спроектированного трансформатора с алюминиевы­
ми обмотками практически не отличается от стоимости эк­
В1:ва;1ентноrо трансформатора с медными обмотками.
При перЕоходе на алюминиевые обмотки был решен так­
же ряд зад2ч технологического характера, связанных с rex­
нoJiorиeй намотки алюминиевых обмоток, пайкой и свар­
кой алюминия. В настоящее время все новые серии транс­
фор'lаторов общего назначения мощностью до 16000 кВ•А
включительно проектируются с а;1юминиевыми обмотками.
В бо;1ьшинстве масляных трансформаторов применяет­
ся обмоточный провод марки ПБ (АПБ для алюминия)
с изоляцией из кабельной бумаги класса наrревостойкости
А (предельно допустимая температура l 05 °С) общей тол­
щи1юй 0,45-0,50 мм на две стороны. Применение провода
более высоких классов наrревостойкости (Е, В, F и т. д.),
допускающих более высокие предельные температуры, в
масJiяных трансформаторах смысла не имеет, потому что
допустимая температура обмоток определяется не только
илассо:,f изоляции обмоток, но также и допустимой темпе­
р3туµой масла, в котором находится обмотка.
Замена бумажной изоляции провода маслостойкой и достаточно
прочной в механическом и электрическом отношении эмалевой изоля­
цией с меньшей толщиной слоя позволила бы сделать обмотку более
компактной и уменьшить массу металла обмотки и стали магнитной
системы. Расчеты поt<азывают, что для трансформатора средней мощ­
ности с напряжением до 35 кВ при проводе, изолированном бума гой
толщиной 0,5 мм на две стороны, такая замена позволила бы умень­
шить массу металла обмотки примерно на 0,5 % и массу стали ма гнит­
ной системы примерно на 0,75 % па каждый 0,1 мм уменьшения тол-
24
щины изоляции провода (на две стороны). При изменении толщины иэо­
ляuии с 0,5 до 0,1 мм и сохранении сечения провода экономия металла
состав ила бы для обмоток около 2, для магнитной системы 3 % при
соответствующем снижении потерь короткого замыкания и холостого
хода. Для трансформаторов с напряжением 110 кВ, имеющих бумаж­
ную изоляцию провода толщиной около 1,4 мм на две стороны, сни­
жение масс металла обмоток и магнитной системы при переходе на
изоляцию О,1 мм составило бы соответственно 3,5-4 и 4,5-5 % . Вслед. ствие того что эмалевая изоляция провода значительно дороже бумаж­
ной, переход с бумажной на эмалевую изоляцию хотя и дал бы не­
которое уменьшение массы акfивных материалов, но привел бы к уве­
личению стоимости трансформатора.
Основным направлением прогресса в производстве изо­
ляционных материалов в настоящее время является полу­
чение новых материалов с повышенными нагревостойкостью
и механической прочностью. Существенных достижений в
повышении электрической прочности изоляционных мате­
риалов, применяемых в масляных трансформаторах, не на­
бюодается.
Применение проводов с изоляцией, имеющей поuыu:сн­
ную нагреностойкость, имеет смысл в сухих трансформато­
рах, в Еоторых за счет повышения температуры обмоток
возможно допустить более высокие плотности тока и полу­
чнть компактную конструкцию трансформатора. Если при
этом допускается существенное повышение эксплуатацион­
ной температуры обмоток, то потери короткого замыкания
трансформатора неизбежно возрастают вследствие как уве­
личения плотности тока, так и повышения удещ,ного сопро­
тивления провода обмотки. Так при температуре 225 °С
удельное сопротивление медного провода увеличивается
настолько, что становится равным удельному сопротивле­
нию алюминия при температуре 75 °С.
Главным изоляционным материалом в силовых транс­
форматорах является трансформаторное масло - жидкий
диэлектрик, сочетающий высокие изоляционные свойства
со свойствами активной охлаждающей среды и теплоноси­
теля. Только благодаря транGформаторному маслу удалось
создать трансформаторы с рабочим напряжением 500, 750
и 1150 кВ, а в перспективе и 1500 кВ. Ни один жидкий или
газообразный диэлектрик не может служить ему заменой
[ 16].
В отличие от других изоляционных материалов один и
тот же объем масла не может использоваться в течение
всего срока службы трансформатора, т. е. не менее 25 лет.
25
При эксплуатации трансформатора вследствие окисления
nри повышенной температуре (до 95 °С) и при каталитиче­
ском воздействии присутствующих в масле металлов и твер­
дых изоляционных материалов масло стареет, т. е. ухудша­
ет свои качества и требует систематического ухода - суш­
ки, фиJ1ьтрации, очистки и смены.
Существенное удлинение срока службы масла между
сменами достигается тем, что основная масса товарного
ыасла содержит антиокислительную присадку, повышаю­
щую с1 абJ1льность масла против окисления - один из ос­
новных пока�ателей качества масла. Дальнейшее повыше­
ние стабильности масла может быть достигнуто путем гер­
метизации бака трансформатора.
1.3. ЭКОНОМИЧЕСКАЯ ОЦЕНКА РАССЧИТАННОГО
ТРАНСФОРМАТОРА
При [Jроектировании отдельного трансформатора, вхо­
дящего в уже известную серию, или при проектировании
новой серии трансформаторов весьма существенной явля­
ется прав;ы1ьная оценка всех рассматриваемых вариантов
рассчптанного трансформатора и выбор оптимального ва­
рианта. Важнейшим критерием для определения оптималь­
ного варианта в настоящее время считается экономическая
эффективность вновь спроектированного трансформатора
по срдвнению с существующим или одного из вариантов
по сравнению с другими вариантами. При определении
экономической эффективности трансформатора должны
быть у 11тены как затраты, связанные с его изготовлением, заводская себестоимость или оптовая цена, так и затраты
1-1а эксплуатацию этого трансформатора в течение опреде­
ленного промежутка времени его работы в сети. Из затрат
на эксплуатацию наибольшее значение имеет стоимость по­
терь активной и реактивной мощности в трансформаторе,
потому что эти затраты обычно достаточно велики и раз­
J1ичны для разных вариантов трансформатора, в то время
как З<�траты на уход за маслом, содержание персонала
nодстан�.;_пи и ряд д ругих· являются одинаковыми для всех
uариантов каждого трансформатора.
При проЕ:ктировании отдельного трансформатора, отве­
чающего в отношении номинальной мощности и напряже­
ний обмото к, а также параметров холостого хода и корот­
кого замыкания требованиям ГОСТ или технических
условий на существующую серию, т. е. имеющего определен25
птери холостого хода и короткого замыкания, а так­
)1,е требующего определенной реактивной мощности, эконо­
ы ичес1(аЯ оценка может быть произведена путем простого
сr1 а�злсния себестоимости или цен рассчитанного и сущест­
ву·ющего трансформаторов. Более экономичным будет тран­
сформатор с меньшей себестоимостью или ценой.
Ec.rrи рассчитанный трансформатор отличается по пара­
метрам холостого хода и короткого замыкания от серийно­
го или ведется проектирование нескольких вариантов с раз­
личными параметрами, например при проектировании
серии, то приходится сравнивать трансформаторы, нерав­
ноценные в эксплуатационном отношении. В этом случае
добиваются получения не наиболее дешевого трансформа­
тора, а наиболее дешевой трансформации энергии, т. е,
трансформатора, у которого первоначальные капитальные
вложения в трансформаторную установку в сумме с теку­
щими затратами на эксплуатацию этой установки за опре­
деленный промежуток времени будут минимальными.
Немаловажное значение при выборе оптимального ва­
рианта имеет также обеспечение возможно большей надеж­
ности и ремонтоспособности трансформатора. Оценка этих
качеств может быть произведена после разработки конст­
рукции и технологии изготовления трансформатора.
Экономическая оценка вновь спроектированных транс­
форматоров может производиться на разных стадиях про­
еюирования - на предварительном проектировании новой
серии, когда рассматривается большое число различных
вариантов и выбирается один из них для детального рас­
чета, на стадии детального расчета одного трансформ а­
тора до разработки конструкции, после предварительной и
пoc.rie окснчательной разработки конструкции. На каждой
нз зтнх стадий проектирования может быть использована
та или иная наиболее подходящая для данного случая ме­
тодика оиределения экономической эффективности.
Однш-1 из элементов экономической оценки является
определение себестоимости или цены трансформатора. На­
иболее точным можно считать определение себестоимости
или цены, проводимое после окончательной разработки
конструкции и технологии изготовления трансформатора
на основе использования полной калькуляции с учетом всех
реалт,ных затрат на освоение и развитие его производства.
На более ранних стадиях проектирования приходится ис­
пользовать приближенные методики, позволяющие произве­
сти оценку себестоимости или цены трансформатора на
11 ые
27
основании учета расхода основных (или только активных)
материалов с ориентировочным определением других рас­
ходов. Рассмотрим некоторые приближенные методики,
применяемые на разных стадиях проектирования.
При проектировании отдельного трансформатора или
новой серии трансформаторов обычно возникает необход и­
мость в экономическом сравнении различных вариантов это­
го проекта hли сравнении одного или нескольких вариан­
тов этого проекта с существующим или ранее спроектиро­
ванным трансформатором. При таком сравнении следует
себестоимость или цену для всех сравниваемых вариантов
рассчитывать по одной и той же методике. Недопустимо,
например, для одного варианта или трансформатора опре­
делять цену приближенным методом, а для другого нахо­
дить ее по прейскуранту.
Одним из методов выбора варианта решения, оптималь­
ного в экономическом отношении, является метод срока оку­
паемости дополнительных капитальных вложений, который
заключается в сопоставлении разности капитальных вложе­
ний двух вариантов К2 и К 1 с экономией на ежегодных из­
держках И 1 -И2• Сроком окупаемости Т называется сле­
дующее выражение _(если К2 >К 1 и И2 <И 1 ):
(1.1)
Т = (К2 -К1)!(И1 -ИJ.
Вариант 2 с большими капитальными вложениями счи­
тается экономически выгодным, если дополнительные ка­
питальные вложения К2-/( 1 окупаются экономией на еже­
годных издержках И 1 -И 2 в течение срока меньшего, чем
нuрмативный срок окупаемости, принимаемый в настоящее
в1,емя д:1я силовых трансформаторов общего назначения
Т11 =6,7 года, т. е. если Т� Тн.
Более удобным для расчетов является определение и
сравнение не сроков окупаемости, а приведенных годовых
затрат 3.
Приведенными затратами З, отнесенными к одному го­
ду, на зываются выражения типа К 1 Ен +И 1; К2 Ен +И2 и т. д.,
рассчитанные для каждого варианта. При этом Ен = 1/Тн,
т. е. Ен =1/6,7=0,15, называется нормативным коэффици­
ентом эффективности дополнительных капитальных вло­
жений. Наиболее экономически выгодным будет вариант с
наименьшим значением З.
Приведенные годовые затраты на трансформаторную
усrановку могут быть подсчитаны по формуле
(1.2)
З = ЕнКтР +За + Зх Р х +З11Рн + ЗрQр;
28
зд:�сь Ктр - себестоимость или оптовая цена трансформато­
ра, руб.; За - затраты на амортизационные годовые отчис­
ления, руб/год; Зх и Зк - годовые затраты, руб/ (кВт-год),
связанные с покрытием не зависящих от нагрузки потерь
холостого хода (Рх, кВт) и изменяющихся с нагрузкой по­
терь короткого замыкания (Ри, кВт); Зр - годовые затра­
ты, руб/ (квар-год), на компенсацию реактивной мощности
(Qp) трансформатора; Зр - может быть принято по табл.
1.3; Q p - реактивная мощность, определяется как сумма
реактивных мощностей холостого хода и короткого замыка­
ния, квар:
Qp = _s_ (io p +Ир)�
100
_s100_ Uo + Ии),
(1.3)
где S - номинальная мощность трансформатора, кВ• А.
В ( 1.2) выражение ЕнКтр+За может быть заменено фор­
мулой
( 1.4)
здесь Ктр - себестоимость или оптовая цена трансформа­
тора, руб.; Ен =О,15- нормативный коэффициент эффектив­
ности капитальных вложений; U a =0,064- нормативные
амортизационные годовые отчисления.
Таким образом,
( 1. 5)
ЕнКтр +За= О,214КтР ·
Себестоимость или оптовая цена трансформатора К тр
может быть определена одним из методов, описанных да­
лее. Во избежание существенных ошибок необходимо при
сравнении двух и более различных вариантов пользовать­
ся для определения Ктр одним и тем же методом для всех
вариантов.
Метод приведенных годовых затрат является наиболее
удобным и приемлемо точным для оценки экономической
эффективности при предварительном расчете новых серий
трансформаторов, когда еще до детального расчета проек­
тируемых трансформаторов необходимо выбрать наиболее
экономич1ч,1й вариант на основе сравнения стоимостей ак­
тивflых материалов и потерь энергии в трансформаторе,
отнесенных к определенному промежутку времени, для раз­
JН11111ых вариантов расчета.
Пр·-1 сравнении различных вариантов могут не подсчи­
тываться и не включаться в расчет капитальные затраты
или годовые издержки, заведомо одинаковые или мало раз29
личающиеся для всех сравниваемых вариантов. Поэтому в
формуле для расчета затрат не учтены затраты на транс­
портировку трансформатора к месту установки, установку,
м<;>Нтаж и некоторые другие. Для сухих трансформаторов
можно ограничиться расчетом стоимости активной части остова с обмотками, не включая стоимости защитного ко­
жуха и других деталей, а для всех трансформаторов мас ­
ляных и сухих следует включать в годовые издержки только
стоимость потерь активной и реактивной мощности, не учи­
тывая других эксплуатационных расходов, остающихся оди­
наковыми для всех рассматриваемых вариантов.
Определение удельных годовых затрат на покрытие 1 кВт
годовых потерь холостого хода и короткого замыкания
Зх и Зк производится по себестоимости электрической энер­
гии в энергосистеме с учетом необходимых капиталовложе­
ний в электростанции и сети, добычу и транспорт топлива.
При определении Зх и Зк должны также учитываться: ме­
сто трансформатора в сети - число ступеней трансформа­
ции напряжения от станции до трансформатора и потери
на этих ступенях; число часов включения трансформатора
в сеть в течение года Тв; приведенное число часов потерь в
год Тп, зависящее от места установки трансформатора, его
назначения и характера графика нагрузки, и коэффициент,
учитывающий попадание переменных потерь в максимум
нагрузки системы, а также степень нарастания нагрузки
по годам.
При определении годовых затрат 3 по (1.2) можно поль­
зоваться табл. 1.3, в которой для трансформаторов разных
Та б л иц а 1.3. Удельные годовые затраты
Группы трансформаторов
Мощность, кВ, А
Понижающие распределительных се• До 630
тей
Понижающие распределительных се• 1000 и более
тей
Понижающие
Всех
МОЩНО·
стей
Понижающие и автотрансформаторы То же
связи на электростанциях
Повышающие и автотрансформаторы » »
электростанций
Собствеf!ных нужд электростанций
» »
30
Класс напряже.
ния, кВ
6-35
6-35
110-220
220 и выше
35 и выше
Все х
ний
напряже•
мощностей, классов напряжения и назначения приведены
нормативные значения Зх и Зк с учетом числа часов вклю­
чения Тв для постоянных потерь Рх и часов потерь Тп для
nере';!енных потерь Рк .
Потери холостого хода Рх , кВт, короткого замыкания
р"' 1<Вт, подставляются в формулу затрат из проекта тран­
сформатора.
После определения затрат для всех сравниваемых вари­
антов полученные значения затрат сравниваются. Наибо­
лее экономичным считается вариант с наименьшими годо­
выми затратами. При расчете отдельного трансформатора
и проектировании новой серии для каждого варианта рас­
чета необходимо определять себестоимость или оптовую
цену трансформатора. При этом в различных случаях при­
ходится пользоваться разными более точными или в той
или иной степени приближенными методиками расчета се­
бестоимости или цены.
В условиях завода себестоимость трансформатора определяется
после выполнения рабочих чертежей и разработки технологии его изго­
товления путем точной калькуляции всех прямых и косвенных затрат
(на материалы, заработную плату производственных рабочих, цехо­
вые, общезаводские и другие расходы). Такая калькуляция служит
обычно основанием для расчета и утверждения цены трансформатора.
Заводская калькуляция себестоимости трансформатора выполняет­
ся на основании рабочих чертежей, спецификации на материалы и по•
луфабрикаты, технологической документации и существующих норматn.
З,,
з. и Зр, руб/(к8т
0
rод), для расчета по (1.2)
Годовое врем я, ч
включения
8000
8200
8500
8700
8000
8000
1
макси•
мальных
1
НОf.ШНаль"
Зх , руб
Зк , руб.
(кВт год)
ных по"
терь
(КВТ• ГОД)
590
102
2700
96
33,0
41◊0
2000
26,7
4100
1800
96
ПОТСDЬ
1200
5500
5000
5000
4500
4000
25
91
23,0
85
49,5
85
55,6
Зр• руб
(квар- год)
2,9
2,9
1,6
1 ,О
-
31
вов на затраты материалов, топлива, энергии и труда на изготовление
данного вида проду1щии.
При определении стоимости материалов трансформатора учитыва­
ются все материалы и полуфабрикаты, затрачиваемые на изготовление
всех его узлов и деталей, а также готовые узлы или устройства (на ­
пример, переключатели, вводы, защитные реле и т. д.), если эти узлы
и устройства получаются в компJ1ектном виде с других предприятий.
Фактический расход какого-либо материала определяется как сумма
чистых масс всех деталей, изготовленных из этого материала, и массы
отходов, нормированной для каждого материала применительно к дей­
ствующей на заводе технологии. Если какая-либо часть отходов ма ­
териала реализуется затем на стороне, например сдается в виде лома,
то из общей стоимости материалов исключается сумма, полученная при
такой реализации.
Стоимость всех материалов рассчитывается на основе оптовых цен,
которые определяются по официально утвержденным прейскурантам с
у,1етом расходов на тару, упаковку и транспортировку материалов на
завод.
Расходы на заработную плату производственным рабочим опреде•
ляются для изготовления каждой детали и для каждой операции тех­
нолоrическоrо процесса сборки, сушки, пропитки, окраски и т. д. по
действующим на заводе нормам и расценкам и затем суммируются по
цехам и всему заводу.
.Косвенные затраты можно подразделить на расходы по содержа­
нию и :эксплуатации оборудования, на цеховые и общезаводские рас­
ходы. .К цеховым относятся расходы на содержание аппарата управле­
ния цеха, оплату освещения и отопления цеха, амортизацию зданий и
некоторые другие.
Общезаводские расходы включают оплату общезаводского аппара·
та управления, подготовки производства, содержания и отопления зда•
ний, связи, охраны и т. д. В заводской ка,1ькуляции цеховые и обще­
заводские расходы, а также расходы по содержанию и эксплуатации
оборудования обычно учитываются определенным процентом по отно­
шению к заработной плате производственных рабочих. Для получения
полной себестоимости трансформатора к перечисленным выше расходам
добавляются некоторые внепроизводственные расходы (обычно до 1 %
их общей суммы) и для перехода к оптовой цене - накопления для
силовых трансформаторов общего назначения 11 % .
При учебном проектировании рабочие чертежи узлов и
деталей трансформатора обычно не разрабатываются, ко­
личество и стоимость затрачиваемых материалов могут
быть рассчитаны с некоторым приближением, а затраты на
заработную плату производственных рабочих и другие рас­
ходы могут быть определены лишь по аналогии с соответ32
ствующими расходами одного из трансформаторных заво­
дов. В этом случае себестоимость или оптовая цена транс­
форматора может быть определена на основании упрощенной
калькуляции с учетом действительного расхода основ­
ной массы материалов и приближенного расчета производ­
ственной заработной платы и других расходов.
При учебном проектировании расчет ориентировочной
цены трансформатора производится по сумме стоимостей
основных материалов с приближенным определением рас­
хода прочих материалов, производственной заработной пла­
ты, цеховых и общезаводских расходов и других начисле­
ний. Расчет количества всех материалов ведется по расчет­
ной записке и чертежам проекта: чертежам остова и
установки обмоток, сборочному чертежу трансформатора.
К основным материалам масляного трансформатора, стоимость ко­
торых определяется при учебном проектировании, относятся следующие
материалы:
остов - сталь электротехническая с учетом стоимости лакировки и
отжига, металл ярмовых балок, прессующих колец, стяжных шпилек
ярма и остова и подъемных шпилек; дереnо или электроизоляционный
картон уравнительной изоляции;
обмотки - обмоточный провод; бакелитовые или картонные ци­
линдры; весь электрокартон - рейки, междувитковые и междукатушеч­
ные прокладки, шайбы, ярмовая изоляция, опорные кольца и др.; про­
питочный лак;
отводы - металл или провод отводов; дерево крепления отводов;
бак и расширитель - металл стенок, дна и крышки бака; металл
стенки и дна расширителя; охлаждающие трубы (без труб радиато­
ров); тележка (без катков); верхняя рама бака; ребра жесткости;
трансформаторное масло.
Кроме стоимости основных материалов при учебном про­
ектировании следует также подсчитать стоимость комплек­
тующих изделий и готовых узлов - радиаторов, кранов
радиаторных, кранов для заливки и слива масла, комплект­
ных вводов, переключателей ответвлений обмоток, приво­
дов к переключателям, термометров, термосигнализато­
ров, газовых реле, предохранителей от перенапряжения.
Для комплектующих изделий и готовых узлов следует
принимать цены, по которым их отпускают потребите­
лям трансформа1орные заводы в качестве запасных ча­
стей.
При расчете трансформаторов с естественным воздуш­
ным охлаждением номенклатура основных материалов ос3-510
33
тается принципиально той же, но металл бака и его частей
заменяется металлом кожуха, а также отпадает ряд ком­
ллектующих изделий, предназначенных для ухода за мас­
JIОм и защиты масляных трансформаторов ,(расширитель,
краны, газовые реле, термометры и др.).
При расчете стоимости основных материалов трансфор­
маторов, имеющих токоограничивающие или другие реак­
торы, учитывается также и стоимость основных материа­
.1юв остова и обмоток реактора.
В учебном проекте при мощности трансформатора до
2500-6300 кВ• А может не подсчитываться: стоимость про­
чих материалов, не отнесенных к основным, а именно кре­
пежных деталей - мелких болтов и шпилек, гаек, шайб;
различных мелких деталей - пробок, подъемных крюков
и колец, 1<атков и т. д.; некоторых изоляционных материа­
лов - кабельной и другой бумаги, лакоткани, киперной и
другой ленты, изоляционных трубок; уплотнений; эмали
для окраски бака и т. д. Стоимость этих материалов оце­
нивается примерно как 5 % стоимости основных.
Фактический расход или заготовительная масса основ­
ных материалов рассчитывается как чистая масса соответ­
ствующих деталей с последующим умножением на коэффи­
циент, учитывающий нормативные отходы данного мате­
риала Котх .(Котх> 1).
Стоимость каждого материала определяется как про­
изведение заготовительной массы на оптовую цену этого
материала, которая может быть найдена по официальным
прейскурантам. Поскольку оптовые цены на большинство
материалов установлены в прейскурантах «франко-вагон станция отправления» (местонахождение завода-изготови­
теля) и не включают стоимость перевозки от железнодорож­
ноii станции завода-изготовителя до завода-получателя, а
в ряде случаев и стоимость тары, то к общей стоимости
материалов прибавляются заготовительные расходы, кото­
рые могут быть оценены примерно в 4 % полной стоимо­
сти материалов.
Расход производственной заработной платы на изготов­
ление трансформатора зависит от степени сложности кон­
струкции, от того, выпускается ли данный тип трансформа­
тора большими партиями или отдельными единицами, яв­
ляется ли он новым типом или освоенным, и от других
причин. Анализ калькуляций показывает, что все силовые
трансформаторы могут быть подразделены на небольшое
.число групп, для которых расход производственной зара34
ботной платы может быть приближенно найден как опре­
деленная часть стоимости материалов.
Цеховые и общезаводские расходы и расходы на содер­
жание и эксплуатацию оборудования начисляются обычно
определенным процентом по отношению к заработной пла­
те производственных рабочих и являются различными для
разных заводов. Для трансформаторного производства эти
расходы в среднем для нескольких заводов могут быть при­
няты в сумме 250 % общей суммы заработной платы про­
изводственных рабочих Стр , Обозначив отношение суммы
заработной платы производственных рабочих Стр и суммы
цеховых и общезаводских расходов, а также расходов на
содержание оборудования Ср к общей стоимости основных
материалов Сосн через коэффициент К= ( Стр +Ср ) /Сосн,
можно при расчете стоимости трансформатора принимать
этот коэффициент для трансформаторов различных мощно­
стей и классов напряжения по табл. 1.4.
Таблиц а 1.4. Коэффициенты для приближенного расчета стоимости
трансформатора н активной части по формулам (1.6) и (1.7)
Мощность, кВ, А
25-630
100-630
1000-16000
1000-6300
6300-1600 0
25000-63 ООО
Класс
напр я•
жения,
кв
10
35
10 и 35
35
110
110
Кст
Металл
о6моток
Алюминий
же
То
)}
)}
)}
Медь
Вид
регу•
лиро•
nания
ПБВ
ПБВ
ПБВ
РПН
РПН
РПН
/(
о,13
о,1 8
ко
""
��
мо
д,1я стали
марок
""
н)о
0"1
<'io
1,46 1,23 1,20
1,55 1,2 3 1,20
0,24 2,00 1,27 1,26
0,24 2,00 1,27 1,26
0,2 4 2, 20 1,30 1,30
0,20 1,81 1,40 1,405
""
""
:g�
;;о
1,22
1,22
1,26
1,26
1,29
1,42
расс•итаны с учетом цен на
П р н м е ч а и и я: 1. Коэффициенты Кст
сталь указанных марок и различных чисел пластин в магннтной системе.
2. Цены на сталь марок 3404, 3405 и 3406 составляют соответственно 833, 902
и 939 руб. за 1 т.
Можно рекомендовать следующий порядок приближен­
ного определения расчетной цены трансформатора:
по расчетной записке и чертежам проекта подсчитыва­
ется стоимость основных материалов Сосн и учитывается
стоимость прочих материалов Спр� 0,05 Сосн;
учитываются заготовительные расходы (упаковка, тран­
спорт и др.} Сзаг�О,04 Сосн;
3*
35
подсчитывается стоимость всех комплектующих изде­
лий И ГОТОВЫХ узлов Сномпл ;
приближенно определяется сумма заработной ПJ1аты,
цеховых и общезаводских расходов и расходов на содер­
жание оборудования
Стр + Ср = КСо сн;
приближенно определяется заводская себестоимость
трансформатора
С = (1 + 0,09 + Ю Со сн+ Сном пл;
определяется условная оптовая цена трансформатора
(1.6)
Ц = 1,01 · 1,llC,
где 1,01; 1,11 -коэффициенты, учитывающие внепроизвод­
ственные расходы и нормативные накопления для силовых
трансформаторов общего назначения.
Стоимость реализуемых отходов при производстве сиJiо­
вых трансформаторов (стальной лом) обычно составляет
не более 0,25-0,3 % стоимости всех материалов и в при­
ближенном расчете может не учитываться.
При проектировании новой серии трансформаторов при­
ходится сравнивать большое число вариантов расчета каж­
дого типа трансформатора. Для ускорения этой работы
предварительный расчет всех вариантов обычно проводит­
ся по одному из существующих методов приближенного
расчета, дающему возможность определить параметры хо­
лостого хода и короткого замыкания, а также массы актив­
ных материалов трансформаторов. Именно на этом этапе
проектирования необходимо произвести экономическое
сравнение различных вариантов и выбрать для дальнейшей
более полной разработки те из них, которые являются наи­
более экономичными. Таким же образом может произво­
диться выбор оптимального варианта при расчете отдель­
ного трансформатора, если для него не заданы потери хо­
лостого хода и короткого замыкания.
Поскольку на стадии предварительного расчета опре де­
ляются массы только активных материалов и основные раз­
меры трансформатора, а массы других материалов (изоля­
ции, металла бака и крепления остова, масла, дерева и
т. д.) остаются еще неизвестными, в этом случае не может
быть применена даже упрощенная калькуляция себестои­
мости или цены трансформатора на основании учета реаль­
ных затрат материалов и заработной платы и должен быть
0
36
применен другой метод приближенного расчета этих вели­
чин.
При расчете стоимости трансформатора с целью эко�ю­
мического сравнения ряда рассчитанных вариантов по ме­
тоду приведенных затрат достаточно учесть стоимость л11шь
тех его частей и узлов, размеры, количество и стоимость
которых могут изменяться от одного варианта к другому.
В масляном и сухом трансформаторах, как правило, при
расчете различных вариантов изменяются размеры и мас­
са магнитной системы и обмоток вместе с массой изоляции
обмоток. Если в масляном трансформаторе при этом изме­
няются потери, то должна тю<же изменяться и стоимость
системы охлаждения. Ряд детаJ1ей и узлов масляного тран­
сформатора - отводы, вводы, переключатели, расширитель,
арматура, крепежные детали, кожух в сухом трансформа­
торе и т. д. остаются неизменными при переходе от одного
варианта к другому и могут не учитываться при расчете
стоимости.
Стоимость (цена) активной части трансформатора, т. е.
остова с обмотками для масляного и сухого трансформато­
ров, может быть рассчитана по формуле
(1. 7)
Са,ч � КосоGпр + КстКотхСстGст,
где Ко - коэффициент, учитывающий стоимость изоляци­
онных материалов .(электроизоляционный картон, бумаж­
но-бакелитовые цилиндры, пропиточный лак и т. д.), стои­
мость изготовления обмотки, цеховые и общезаводские
расходы, расходы на содержание и эксплуатацию оборудо­
вания, внепроизводственные расходы и плановые накопле­
ния. Значения этого коэффициента для трансформаторов
различных типов могут быть ориентировочно приняты
по табл. 1.4. Средняя цена обмоточного провода для обмоток
ВН, СН и НН Со может быть принята: для трансформато­
ров мощностью 25-630 кВ-А классов напряжения 10 и
35 кВ-для меди с м =1,35 руб/кг, для алюминия е д=
= 1,23 руб/кг; для трансформаторов мощностью 100063 ООО кВ-А-для меди см=l,34 руб/кг, для алюминия
ед = 1,1 руб/кг (провод марок ПБ и АПБ). Для сухих
трансформаторов мощностью 160-1600 кВ• А класса нап­
ряжения 10 кВ с обмотками из провода марок ПБ и АПБ
можно принять цену провода такую же, как и для масля­
ных трансформаторов соответствующих мощностей, а при
обмотках из провода марок ПСД и АПСД-для меди
см= 1,59+ 1,48 руб/кг и алюминия ел =1,95+ 1,60 руб/кг.
3,7
В тех случаях, когда известно не только количество, но
и размеры сечения провода, следует принимать с 0 по прей­
скуранту для данных марки и сечения провода; G пр - мас ­
са провода обмотки; Кст - коэффициент, учитывающий
стоимость изготовления остова трансформатора, включая
стоимость крепежных и других материалов, заработную пла­
ту, начисления и нормативные накопления. Значения этого
коэффициента для трансформаторов различных типов мо­
гут быть ориентировочно приняты по табл. 1.4 в зависимо­
сти от марки стали и ее цены.
Коэффициенты Кст и Ко , приведенные в табл. 1.4, опре­
делены для плоских магнитных систем и обмоток из мед­
ного и алюминиевого провода круглого (обмотки ВН тран­
сформаторов 25-630 кВ• А) и прямоугольного (все осталь­
ные обмотки) сечения. Для пространственных магнитных
систем и обмоток из алюминиевой ленты эти коэффициен­
ты требуют дополнительного уточнения; Котх - коэффици­
ент, учитывающий отходы стали при раскрое, может быть
принят равным 1,05-1,06 для рулонной стали; Сет- цена
стали, руб/кг, по прейскуранту или по табл. 1.4; G с т - мас­
са стали по расчету.
Стоимость (цена) системы охлаждения - бака с труба­
ми для трансформаторов мощностью до 1600 кВ-А или
бака с навесными трубчатыми радиаторами для трансфор­
маторов мощностью 2500-80 000 кВ-А (от 10 000 кВ-А и
выше - с дутьем) изменяется вместе с изменением суммы
потерь Рх +Рн. Удельная стоимость системы охлаждения,
отнесенная к 1 кВт потерь, Кохл, руб/кВт, может быть най­
дена из табл. 1.5. Тогда стоимость системы охлаждения
трансформатора, руб.,
(1.8)
Стоимость (цена) трансформатора Ктр в (1.5) для эко­
номического сравнения вариантов расчета может быть най­
дена из выражения
(1.9)
или
К тр = КосоGпр + Кст КотхСстG ст + Кохл (Рх + Рк)-
(1. 10)
Найденное значение Ктр может быть подставлено в (1.4)
или (1.5) для экономического сравнения вариантов, но оно
не равнозначно условной оптовой цене трансформатора,
определяемой по _( 1.6), поскольку не включает стоимость
38
та б л и ц а 1.5. Стоимость системы охлаждения, отнесенная к I кВт
11отерь, Кохл, руб/кВт, для превышения температуры верхних слоев
r,iacлa 55 и 50 °С
Мощность, кВ• А
100-1600
100-400
630-6300
2500-6300
1
1
Тип бака
С трубами
С радиаторами, имеющими 1
1 прямые трубы
То же
С радиаторами, имеющими
гнутые трубы
1О 000-80 ООО 1 С радиаторами и дутьем
55 °с
50 °с
16,2
18,7
28,7
38,6
25,О
29,4
121,8-17,5125,0-20,fi
ряда уз.'JОВ и некоторых материалов, стоимость которых не
изменяется при переходе от одного варианта к другому
.(проходные изоляторы, переключающие устройства, арма­
тура бака, крепежные материалы и др.). Условная опто­
вая цена трансформатора Ц из ( 1.6) также может быть
использована при расчете по _(1.5) и _(1.4), однако при эко­
номическом сравнении нескольких вариантов для всех ва­
риантов стоимости Ктр должны быть рассчитаны по одно­
му методу.
После окончательной разработки конструкции и техно­
логии изготовления спроектированного трансформатора мо­
жет быть определен народнохозяйственный экономический
эффект от внедрения этой разработки. При этом новый
трансформатор сравнивается с таким же по классу напря­
жения и равным или близким по мощности существующим
базисным трансформатором. При экономическом сравне­
нии учитывается себестоимость вновь спроектированного
трансформатора в соответствии с нормативами для второ­
го года освоения его производства. Должны быть также
учтены дополнительные затраты, связанные с разработкой
нового трансформатора и организацией его производства
_(исследовательские работы, разработка технологического
процесса, дополнительные затраты на оборудование и т.д.).
Окончательный экономический эффект оценивается путем
сопоставления дополнительных расходов на производство
нового трансформатора и экономии при его эксплуатации
с соответствующими данными базисного трансформатора.
39
1.4. СТАНДАРТИЗАЦИЯ В ТРАНСФОРМАТОРОСТРОЕНИИ
Одной из задач стандартизации в трансформаторостро­
ении является установление единых требований к транс­
форматорам, отражающих потребности эксплуатации и ус­
ловия работы силовых трансформаторов в сетях, с одной
стороны, и современное состояние и возможности транс­
форматоростроения - с другой. Фиксируя определенное со­
стояние трансформаторостроения, стандарт в то же время
ставит новые требования, стимулирующие дальнейший про­
гресс в производстве трансформаторов. Периодический
пересмотр стандартов и повышение заложенных в них требо­
ваний позволяют систематически совершенствовать суще­
ствующие серии трансформаторов -улучшать их энерге­
тические по1<азатели, повышать надежность, уменьшать
массу и габариты и создавать новые типы трансформато­
ров.
В настоящее время в области трансформаторостроения
действует ряд государственных стандартов, определяющих
основные требования, предъявляемые к силовым транс­
форматорам классов напряжения от 6 до 750 кВ для мощ­
ностей от 25 до 1 250 ООО кВ• А.
Эти стандарты можно подразделить на три группы.
1. Стандарты, содержащие требования, общие для всех
силовых трансформаторов:
ГОСТ 9680-77. Ряды номинальных мощностей.
ГОСТ 11677-85. Общие технические условия.
ГОСТ 3484-77. Методы испытаний.
ГОСТ 1516-76. Нормы и методы испытаний электричес­
кой прочности.
ГОСТ 20690-75. Нормы и методы испытаний электриче­
ской прочности для трансформаторов класса напряжения
750 кВ.
ГОСТ 14209-84. Нагрузочная способность трансформа­
торов.
ГОСТ 16110-82. Силовые трансформаторы. Термины и
�пределения.
2. Стандарты, содержащие основные параметры и тех­
нические требования для отдельных серий трансформато­
ров общего назначения (см. табл. 1.6).
3. Стандарты, содержащие основные параметры и тех­
нические требования для трансформаторов специального
назначения - рудничных, электропечных, преобразователь­
ных и др.
40
та б л иц а 1.6. Государственные стандарты, содер жа щие основные
параметры и технические требования для трансформаторов
(и автотрансформаторов) общего назначения
гост
гост 12022-76
гост 11920-85
гост 12965-85
гост 17544-85
гост 18619-80
гост 14074-76
Число
фаз
1 Вид охлаждения
Д11аnа зон
напрп1 Класс
жения, кВ 1 мощ1-1остей,
кВ-А
Масляное
»
3
3
25-630
До 35 BKJI.
До 35 вкл. 1000-80 000
»
3
110 и 150
»
1 и 3
220-750
3
3
0,66
До 15 вкл.
Воздушное
»
2500400 000
40 0001 250 000
10-160
160-1600
Номинальные мощности силовых трехфазных трансформаторов и
автотрансформаторов определяются ГОСТ 9680-77 и представлены в
табл. 1.7. Номинальные мощности однофазных трансформаторов и ав­
тотрансформаторов, предназначенных для работы в трехфазной группе,
должны составлять 1/3 номинальных мощностей, приведенных в
табл. 1.7.
Общие технические требования, предъявляемые к силовым транс­
форматорам и автотрансформаторам общего назначения, масляным и
сухим, трехфазным мощностью 6,3 кВ -А и более и однофазным более
Та б л иц а 1.7. Ряды номинальных мощностей силовых
трансформаторов (ГОСТ 9680-77), кВ-А
10
100
1000
10000
100 ООО
2
3
125 ООО
16
160
1600
16 000
16J ООО
4
5
200 ООО
25
250
2500
25 000
250 ООО
Продолжение табл. 1.7
6
7
32 000
32()000
40
400
4000
40 000
400 ООО
8
9
10
500 ООО
63
630
6300
63 ООО
630 ООО
80 ООО
800000
4i1
4 кВ/А 1<лассов напряжения до 750 кВ включительно, установлены
ГОСТ 11677-85. Этот стандарт устанавливает область применения и
о�реде.�яет: условия работы, классификацию видов охлаждения, нормы
н.:грева, номинальные параметры и нагрузочную способность, допусти­
ыые превышения напряжения, электрическую прочность изоляции, схе­
мы и группы соединения обмоток, виды переключения ответвлений об­
моток, допустимые уровни шума, стойкость при коротких замыканиях
и то,1чках нагрузки, допуски для величин, предусмотренных в стандар­
тах, общие конструктивные требования, требования к документации,
требования к надежности, правила приемки, методы испытаний, пра­
в,:ла маркировки, упаковки, транспортировки и хранения трансформа­
торов, гарантии изготовителя.
Общие конструктивные требования в ГОСТ 11677-85 относятся к
взодам, зажимам и трансформаторам тока; определяют необходимые
условия для защпты масла трансформатора от окисления и поверхно­
стей его частей н деталей от коррозии; устанавливают емкость расши­
рителя и комплектацию его необходимой арматурой, а также конст­
руктнвную форму и прочность баков масляных трансформаторов, при•
способления для подъема и перемещения трансформаторов, арматуру,
приборы контроля уровня и температуры масла, защитные устройства,
заземление и устройства контроля систем охлаждения.
Основные требозания ГОСТ 11677-85, относящиеся к расчету транс.
форматора или используемые в расчете, отражены в гл. 6-9. Схемы
и группы соединения обмоток, предусмотренные стандартом для трех­
фазных двухобмоточных трансформаторов, приведены в табл. 1.8. Для
трехфазных трехобмоточных трансформаторов предусмотрены два со­
чета1111я схем и групп соединения. Пользуясь условными обозначениями
табл. 1.8, эти схемы и группы обозначают так: Ун/Ун /д·О-11 и
У п /д/Д-11-11, принимая порядок следования обмоток ВН(СН)НН н
порядок обозначения групп ВН-СН и ВН-НН.
Кроме ГОСТ 11677-85, содержащего общие технические требова­
ния к силовым трансформаторам, разрабатываются стандарты на от­
дельные серии трансформаторов, в которых для каждого типа транс­
форматора устанавливаются требования к сочетанию напряжений ВН и
НН, к сочетанию схем соединения обмоток ВН и НН, параметрам хо­
лостого хода и короткого замыкания, размещению арматуры, габари­
там, переключению ответвлений, арматуре и т. д.
Требования к масляным трехфазным силовым трансформаторам об.
щего назначения на напряжения до 35 кВ включительно при мощностях
от 25 до 630 кВ-А регламентируются ГОСТ 12022-76 и при мощностях
от I ООО до 80 ООО кВ• А - ГОСТ 11920-85.
Эти стандарты охватывают двухобмоточные трансформаторы во
всем указанном диапазоне мощностей и трехобмоточные мощностью
6300-16 ООО кВ• А. Этими стандартами регламентируются сочетания
42
Та бли ц а 1.8. Схемы и группы соединения обмоток трансформаторов"
Диаграммы векторов ЭДС
ВН
нн
в чертежах
�
½-Q
А
А
С>
А
С>
У'
л
�
Условные обозначения
>-
ж-11
У:&:
-! /
�-11
в тексте
;{-о
н
;{-tf
>{-1r
;{
-tf
I{
¾-ft
· 'rf
¼-/{
lf
• ГОСТ 11677-85 предусмотрена также схема д/Д-0.
стандартных напряжений ВН и НН (СН), соответствующие сочетания
схем и группы соединения обмоток, параметры холостого хода и ко­
роткого замыкания, вид регулирования напряжения, габаритные разме­
ры, арматура, комплектность поставки и некоторые другие данные. Ос­
новные требования этих стандартов, относящиеся к двухобмоточным
трансформаторам, переключаемым без возбуждения (ПБВ) с нормаль­
ным (не повышенным) напряжением короткого замыкания, сrруппиро•
ваны в табл. 1.9 и 1.10.
В последние rоды были также переработаны и утверждены стан­
дарты на методы испытаний силовых трансформаторов ГОСТ 3484-77,
а также на испытание электрической прочности изоляции трансформа­
торов (ГОСТ 1516-76) и др.
ГОСТ 12965-85 устанавдивает основные параметры и технические
требования к масляным двух- и трехобмоточным трансформаторам об43
i а б л иц а 1.9. Параметры холостого хода и короткого замыкания
трехфазных масляных силовых трансформаторов общего назначения
классов напряжения 10 и 35 кВ мощностью 25-630 кВ-А
(ГОСТ 12022-76)
Потери, Вт
Ном11нзльная
мощность,
кВ-А
25
40
63
100
100
160
160
250
250
400
400
630
630
Класс
напряження, кв
10
10
10
10
35
10
35
10
35
10
35
10
35
ХОЛОСТО·
го хода
130
175
240
330
420
510
620
740
900
950
1200
1310
1600
.
..
короткого замыкания
600
880
1280
1970
1970
2650
2650
3700
3700
5500
5500
7600
7600
1
690
1000
1470
2270
2270
3100
3100
4200
4200
5900
5900
8500
8500
Напряжение
короткого замыкания, %
.
4,5
4,5
4,5
4,5
6,5
4,5
6,5
4,5
6,5
4,5
6,5
5;5
6,5
1
��
и"
о -
..
.,><
оо
t--<-
4,7
4,7
4,7
4,7
6,8
4,7
6,8
4,7
6,8
4;7
6,5
5,5
6,5
3,2
3,0
2,8
2,6
2,6
2,4
2,4
2,3
2,3
2, 1
2,1
2,0
2,0
3�
хо
Пр и м е ч а н и я: 1. Знаком «*» отмечены потери и напряжение короткого
замыкания для трансформаторов мощностью 25-250 кВ•А при схемах соединения
У/Ун·О, д/Ун·ll и для трансформа,оров 400 и &30 кВ·А ори схемах соединения
У/Ун-О и У/Д-11.
2. Знаком «"*» отмечены параметры короткого замыкания для трансформа­
торов 25-250 кВ•А при схеме соединения УГZн ·11 и для трансформаторов 400-•
630 кВ· А прн схеме Д/Ун •11.
3. Трансформаторы с РПН мощностью 400 и 630 кВ·А и напряжением НН 0,4
и 0,69 кВ изготовляются с потерями короткого замыкания иа 10 '!'о большими, чем
указано в таблице.
щего назначения классов напряжения 110 н 150 кВ. Предусматривает­
ся выпуск трехфазных двухобмоточных трансформаторов с РПН мощ­
ностью 2,5-125 МВ•А класса 110 кВ и 16,0-63 МВ-А класса 150 кВ;
трехобмоточных трансформаторов мощностью 6,3-80 МВ•А класса
110 кВ и 16,0-63 МВ•А класса 150 кВ с РПН на обмотке ВН и ПБВ
на обмотке СН; двухобмоточных трансформаторов класса 110 кВ мощ­
ностью 80 МВ•А с ПБВ, а также двухобмоточных трансформаторов
мощностью 125, 200 и 400 МВ,А класса 110 кВ, не имеющих ответ­
влений для регулирования.
Обмотки ВН, СН и НН трехобмоточных трансформаторов рассчи­
тываются на полную номинальную мощность. Предусматривается по­
рядок расположения обмоток от стержня наружу (НН-СН-ВН).
Основные параметры трехфазных трансформаторов класса напря­
жения 110 кВ приведены в табл. 1.11. Напряжение короткого замыка44
та б л иц а 1.10. Параметры холостого хода и короткого замыкания
трехфазных масляных силовых трансформаторов общего назначения
классов напряжения 10 и 35 кВ мощностью 1000-80 ООО кВ-А,
11 ереключаемых без возбуждения (ГОСТ 11920-85)
Потери. Вт
Номинальная
мощность,
кВ·А
Класс
напряженuя, кв
холостого хода
1000
10•
35
1600
Напр ·
короткого замыкания жение икоропюru
Ток холосто,·о
хода, ¾
нн
0,69 кВ 1
нн 10,5
2100
2000
12 200
12 200
11 600
11 600
5,5
6,5
1,4
1,4
10*
35
2800
2750
18 ООО
18 ООО
16 500
16 500
5,5
6,5
1,3
1,3
2500
10*
35
3900
3900
25 ООО
26 ООО
23 50J
23 500
5,5
6,5
1,0
1,0
4000
10
35
5200
5300
33 500
33 500
7,5
7,5
0,9
0,9
6300
10
35
7400
7600
46 500
46 5[)0
7,5
7,5
0,9
0,8
11 кВ
и
ЗЗМЫl{З-
ния. %
10 ООО
35*
12 300
65000
7,5
0,8
16 000
35•
17 800
90000
8,0
0,6
80000
15,75
58 000
280 uoo
10,0
0,45
П р нм е ч а н и я: 1. Для трансформаторов мощностью 1000-6300 кВ•А па­
раметры холостого хода и короткого замыкания nрн11имаются равными дпя нс­
полнениl\ ПБВ и РПН, за исключением потерь холостого хода, которые в транс­
форматор&х РПН могут быть на 5-5,5 % выше, чем в трансформаторах ис11олне­
ния ПБВ.
2. Для трансформаторов,
отмеченных знаком с••, параметры холост<>rо
хода и короткого замыкания по ГОСТ 11920·85 уста11авливаются 11ри 11рисмочных
ис11ыта11иях. В таблице зтн параметры приведены по ГОСТ 11920-73 (11отсри холо­
стого хода по уровню А).
3 Значения п оrерь и напряжения короткого замыка1111я указаны на осно11НОм
ответвлении.
ния для двухобмото!{ных трансформаторов установлено и"=10,5%
(125 МВ·А-11,0%).
Для
трехобмоточных
ВН-СН 10,5%
(80 МВ·А-11,Оо/о); ВН-НН: для 6,3 МВ-А-17, для 1040 МВ-А-17,5, для 63 1\1B-A-l8,0 и для 80 МВ,А-18,5%;
СН-НН: для 6,3 МВ· А - 6,0, для 10-40 МВ-А- 5,5 и для 6380 МВ•А- 7 о/о.
Государственные стандарты систематичес1(И пересматриваются и
совершенствуются. Нормальным сроком для очередного пересмотра
стандарта считается 5 лет.
45
Таблица 1.11. Параметр ы холостого хода и короткого замыкания
трехфазных масляных силов ых трансформаторов с напряжением
ВН 110 кВ, отвечающих требованиям ГОСТ 12965-85
Номннэл�ная
мощность,
МВ•А
2,5
6,3
10,0
16,0
25,0
40,0
63,0
80,0
125,0
80,0
125,0
200,0
250,0
400,0
Двухобмоточные
Потери, кВт
холосто-
коротк ого
го хода , замыкания
Ток хо-
лостого
хода, %
Трехобмоточные
Потери, кВт
коротко-
го хода 1 го замы-
ХОЛОСТО·
кания
Ток хо-
лостоrо
хода,%
Понижающие трансформато ры
5,5
10,0
14,0
18,0
25,0
34,0
50,0
58,0
105,0
22
44
58
85
120
170
245
310
400
1,50
1,00
0,90
0,1v
0,65
0,55
0,50
0,45
0,55
12,5
17,0
21,0
28,5
39,0
53,0
64,0
52
76
100
140
200
290
365
1,10
1,00
0,80
0,70
0,60
0,55
0,50
Повышающие трансфо р мато ры
85,0
120,0
170,0
200,0
320,0
310
400
550
640
900
0,60
0,55
0,50
0,50
0,45
Пр им е ча н и я: 1. Все понижающие трансформаторы с РПН.
2. Повышающие трансформаторы: 80 МВ·А- с ПБВ±2Х2,5 %; 125400 МВ·А без регулировочных ответвлений.
3. Значения nо1ерь короткого замыкания указаны для средней ступени на•
пряження.
Глава вторая
КОНСТРУКЦИИ ОСНОВНЫХ ЧАСТЕЙ
ТРдНСФОРМдТОРд
2.1, 06ЩASI КОНСТРУКТИВНАЯ СХЕМА ТРАНСФОРМАТОРА
В соответствии с ГОСТ 16110-82 трансформатором назы­
вается статическое электромагнитное устройство, имеющее
две или более индуктивно связанных обмоток и предназна­
ченное для преобразования посредством электромагнитной
индукции одной или нескольких систем переменного тока
в одну или несколько других систем переменного тока.
Трансформатор, предназначенный для преобразования элек46
трической энергии в сетях энергосистем и потребителей
электроэнергии, называется силовым. Если силовой транс­
форматор предназначен для включения в сеть, не отличаю­
щуюся особыми условиями работы, или для питания при­
емников электрической энергии, не отличающихся особы­
ми условиями работы, характером нагрузки или режимом
работы, то он называется силовым трансформатором об­
щего назначения. Силовые трансформаторы, предназначен­
ные для непосредственного питания потребительской сети
или приемников электрической энергии, если эта сеть или
приемники отличаются особыми условиями работы, харак­
тером нагрузки или режимом работы, называются транс­
форматорами специального назначения. К числу таких
сетей и приемников относятся подземные шахтные сети и
установки, выпрямительные установки, электрические ду­
говые печи и т. п.
В конструктивном отношении современныit силовой мас­
ляный трансформатор можно схематически представить со­
стоящим из трех основных систем - магнитной, системы
обмоток с их изоляцией и системы охлаждения и вспомога­
тельных систем -устройства регулирования напряжения,
измерительных и защитных устройств, арматуры и др.
В трансформаторах с воздушным охлаждением, как пра­
вило, отсутствуют измерительные и защитные устройства
и арматура, а система охлаждения не выделяется в виде от­
дельных конструктивных единиц.
Конструктивной и механической основой трансформато­
ра является его магнитная система (магнитопровод), кото­
рая служит для локализации в ней основного магнитного
поля трансформатора. Магнитная система представляет со­
бой комплект пластин или других элементов из электро­
технической стали или другого ферромагнитного материа­
ла, собранных в определенной геометрической форме.
Большинство типов магнитных систем можно четко под­
разделить на отдельные части. В соответствии с этим де­
лением в манитной системе различают стержни - те ее ча­
сти, на которых располагаются основные обмотки трансфор­
матора, служащие непосредственно для преобразования
электрической энергии, и ярма - части, не несущие основ­
ных обмоток и служащие для замыкания магнитной цепи,
а в некоторых типах трансформаторов также для располо­
жения обмоток, имеющих вспомогательное назначение.
Некоторые магнитные системы, например системы то­
роидальной формы, намотанные в виде кольца из ленты
4.7
1
2
л
1
\
_[��--
)
/ \
1\
'
!
v1
,
'1 -
11
-�
¼ь::::--..."
-(f--
.........::::�
.
--
--
V,
11.
,,,
--
"
'
RI
JI
✓
3
т
1
'А
Рис. 2 1. Плоская шихтованная магнитная система трехфазного транс­
форматора с обмотками:
1 - ярмо; 2 - стержень; 3 - сечение стержня; 4 - угол магнитной системы
или собранные из плоских круговых колец, отштампован­
ных из тонколистовой стали, не подразделяются на стерж­
ни и ярма.
В магнитных системах, разделяющихся на стержни и
ярма, при расчете параметров холостого хода трансформа­
тора особо выделяются части, находящиеся в зоне сопря­
жения стержня и ярма и называемые углами магнитной си­
стемы. Понятие «угол» определяется как часть ярма маг­
нитной системы, ограниченная объемом, образованным пе­
ресечением боковых поверхностей или их продолжени й од­
ного из ярм и одного из стержней. Магнитная система, изо­
браженная на рис. 2.1, имеет шесть углов.
48
Практикой трансформаторостроения в течение десятиле­
тий были выработаны различные схемы взаимного располо­
жения отдельных частей магнитной системы. По этому при­
знаку все магнитные системы разделяются на плоские такие, в которых продольные оси всех стержней и ярм
располагаются в одной плоскости (рис. 2.1), и пространст­
венные, в которых оси стержней и ярм располагаются не в
одной плоскости (см. рис. 2.6).
По взаимному расположению стержней и ярм плоские и
пространсгвенные магнитные системы могут также подраз­
деляться на стержневые, броневые и бронестержневые.
В течение ряда лет магнитные системы силовых трансфор­
маторов выполнялись и в значительной части выпол1-1яю1ся в настоящее время в виде плоских магнитных систем по
типу рис. 2.1 путем сборки из плоских пластин электротех­
нической стали. В изображенной на рис. 2.1 магнитной си­
стеме трехфазного силового трансформатора ярма соединя­
ют разные стержни и каждое ярмо располагается со сто­
роны торцов стержней. Такая магнитная система с
торцовыми ярмами называется стержневой.
На рис. 2.2, а и 6 изображены магнитные системы, у ко­
торых каждый стержень имеет боковые ярма, соединяю­
щие два разных конца этого стержня. У трансформаторов
с такими магнитными системами боковые поверхности об­
моток как бы закрыты броней, отчего магнитные системы
этого типа при наличии не менее двух боковых ярм на каж­
дом стержне получили название броневых.
На рис. 2.2, в показан промежуточный бронестержневой
тип магнитной системы, у которой не все стержни имеют
боковые ярма или каждый стержень имеет не более чем
одно боковое ярмо.
Наибольшее распространение в практике трансформато­
ростроения получили плоские магнитные системы стерж­
невого типа со ступенчатой формой поперечного сечения
стержня, вписанной в окружность, и с обмотками в виде
круговых цилиндров. Плоские бронестержневые системы и
броневые системы по рис. 2.2, 6, аналогичные по форме об­
моток и сечения стержня системам стержневым, требуют
несколько большего расхода электротехнической стали и
применяются в некоторых типах трансформаторов большой
мощности (более 100 ООО кВ• А) с целью уменьшения вы­
соты трансформатора, а также в трансформаторах малой
мощности Jl-3 кВ-А).
4-510
49
J
z
z.
J
а)
u
3
Рис. 2.2. Броневые (а, б) и бронестержневая (в) магнитные системы
тµехфазного (а) и однофазных трансформатоµов (б, в):
J - стержень; 2 - ярмо, З - обмотка
В последние годы в силовых трансформаторах мощно­
стью до 6300 кВ· А находят все более широкое применение
пространственные магнитные системы по рис. 2.6, а и 6 и
других типов. Броневые магнитные системы по рис. 2.2, а
при горизонтальном расположении стержней и ярм с об­
мотками прямоугольной формы применяются некоторыми
50
иностранными фирмами для трансформаторов, предназна­
ченных для питания электрических печей.
Магнитная система, в которой все стержни имеют оди­
наковые форму, конструкцию и размеры, а взаимное рас­
положение любого стержня по отношению ко всем ярмам
одинаково для всех стержней, называется симметричной
_(рис. 2.2, 6, в и 2.6). При отсутствии одного из этих призна­
ков магнитная система называется несимметричной. Так
трехфазная магнитная система, изображенная на рис. 2.1,
несимметрична потому, что взаимное расположение ее сред­
него и крайних стержней по отношению к ярмам различно.
По способу сборки различают: шихтованные магнитные
системы, ярма и стержни которых собираются впереш1ет
из плоских пластин как единая цельная конструкция, на­
витые магнитные системы, все части которых изготовляются
путем навивки из ленточной электротехнической стали, а
затем скрепляются в единую конструкцию, и стыковые маг­
нитные системы, ярма и стержни или отдельные части ко­
торых, собранные и скрепленные раздельно, при сборке
системы устанавливаются встык и скрепляются специаль­
ными стяжными конструкциями или другими способами.
В стыковь!х магнитных системах могут сочетаться части,
собранные только из плоских пластин или из плоских пла­
стин с навитыми частями.
Часто применяемый порядок сборки шихтованной стер­
жневой магнитной системы показан на рис. 2.3, а. Сборка
ведется на горизонтальном стенде путем чередования слоя
пластин .(обычно толщиной в две пластины, редко в три­
четыре), разложенных по положению 1, со слоем пластин,
разложенных по положению 2. В результате сборки после
стяжки ярм прессующими балками и стержней бандажами
получается остов трансформа­
Положение 1
тора, не требующий каких-ли­
бо добавочных креплений.
На рис. 2.3, а показана сбор­
ка магнитной системы из пла­
стин прямоугольной формы,
образующих в углах систеРис. 2.3. Сборка трехфазных магнит­
ных снстем:
а - шихтованноА нз пластин прямоуголь­
ноА формы; б - разрезноА стыковой, на­
витой из лент; в - стыковой. собираемой
из пластин прямоуrог.ьной формы
4*
[В]]Ш
ffim�
6)
51
Рнс. 2.4. Сборка магнитной системы тrехфазного 1рансформатора мощ•
ностью 10 ООО кВ• А класса напряженfJЯ 110 кВ на специальном стенде
мы так называемый прямой стык. Если концы пластин сре­
зать под углом 45 °, то они будут образовывать в углах ко­
сой стык. На рис. 2.4 изображена магнитная система тран­
сформатора мощностью 10 ООО кВ• А класса напряжения
11 О кВ в процессе сборки на специальном стенде. Для на­
садки обмоток на стержни верхнее ярмо шихтованной маг­
нитной системы разбирается по отдельным пластинам, а
после насадки обмоток снова собирается. Магнитные си-.
стемы трансформаторов мощностью до 630 кВ -А включи­
тельно, не требующие стяжки стержней бандажами, могут
собираться с укладкой пластин стержней внутрь обмоток,
у:юженных на специальном стенде. После завершения ших­
товки и стяжки ярм балками обмотки оказываются разме­
щенными на остове трансформатора.
На рис. 2.3, б показана навитая из ленты холодноката­
ной стали разрезная стыковая магнитная система, а на рис.
2.3, в - стыковая система, состоящая из стержней и ярм,
раздельно собираемых из плоских пластин.
Развитие производства холоднокатаной рулонной ста;1и
позволило найти новый способ изготовления магнитной си­
стемы, когда отдельные части системы навиваются из сталь­
пой ленты и затем скрепляются в единую конструкцию .
Навитые системы могут быть неразрезными (см. рис.
2 6, 6), когда обмотки из обмоточного провода или медной
52
или алюминиевой ленты (фольги) наматываются непосред­
ственно на стержни магнитной системы, или стыковыми,
когда для насадки обмоток стержни магнитной системы
разрезаются резом, перпендикулярным к продольной оси
стержня, и навитая магнитная система становится стыко­
вой (рис. 2.3, 6).
Плоские стыковые магнитные системы с раздельно со­
бираемыми стержнями и ярмами (рис. 2.3, в) требуют по
сравнению с шихтованными более массивного и прочного
крепления стержней и ярм и специальных конструкций для
стяжки стержней с ярмами в виде металлических башма­
ков, стяжных шпилек и т. д. Кроме того, в стыковых маг­
нитных системах в целях .уменьшения немагнитных зазо­
ров приходится собирать стержни и ярма на специальных
магнитных плитах, применять магнитные клеи, обрабаты­
вать стыковые поверхности стержней и ярм и при этом
считаться с существенным повышением тока холостого
хода по сравнению с током холостого хода для шихтован­
ных и особенно навитых неразрезных магнитных систем.
В отечественном трансформаторостроении плоские стыко­
вые магнитные системы применяются в реакторах.
Стыковые магнитные системы могут собираться также
из разрезанных навитых частей (рис. 2.3, 6) или из нави­
тых частей и частей, собранных из плоских пластин. При­
мером последнего варианта служит магнитная система по
рис. 2.6, а, у которой стержни собраны из плоских пла­
стин, а ярма навиты из холоднокатаной стальной ленты.
Выбор того или иного типа магнитной системы связан
с выбором схемы магнитной цепи трансформатора, наибо­
лее подходящей для заданных условий. Собранные впере­
плет плоские шихтованные магнитные системы благодаря
простой и дешевой конструкции крепления и стяжки, а так­
же относительной простоте сборки получили наиболее ши­
рокое распространение. В отечественном трансформаторо­
строении эти системы применяются для большинства
силовых трансформаторов до самых мощных включи"
тельно.
На рис. 2.5 показаны различные схемы взаимного рас­
положения стержней и ярм плоских шихтованных и плос­
кой навитой магнитных систем. Трехфазная магнитная си­
стема по рис. 2.5, д получила наибольшее распространение
для силовых трансформаторов мощностью от 6,3 до
100 000 кВ-А. При этой схеме магнитный поток ярма равен
потоку стержня Фл=Фс и площадь поперечного сечения
:;з
О8 ОВО
Ш][][]J
а)
2)
L____ .....J
8)
В)
Рис. 2.5. Различные схемы плоской магнитной системы трансформатора:
он11офазные: а - стержневой; 6 - броневой; в и г - бронестержневые с расщеп•
ленн�м мощности между стержнями; трехфазные: д - стержневой; е - броне•
стержнеооn; ж - броневой; з - навитой стержневои
54
ярма должна быть равна или больше площади поперечно­
го сечения стержня.
С дальнейшим ростом мощности и размеров трансформатора обы'!­
но переходят на бронестержневые магнитные системы с разветв.1енны­
ми ярмами: однофазные по рис. 2.5, б и трехфазные по рис. 2.5, е. Маг­
нитный поток ярма в однофазной магнитной системе при этом раве!-!
половине потока стержня Фя=Фс/2, в трехфазной Фя =Фс/VЗ. Это
обстоятельство позволяет уменьшить сечение, а следовательно, и вы­
соту ярма и общую высоту трансформатора, что важно для трансфор­
маторов большой мощности, размеры которых по высоте жестко огра­
ничиваются условиями транспортировки по же.,езной дороге.
При мощности однофазного трансформатора 133 ООО кВ-А и более,
когда одно только разветвление ярм недостаточно снижает высоту
трансформатора, прибегают к «расщеплению» мощности между двумя
или тремя отдельными стержнями, например по схеме рис. 2.5, г. Для
этих схем сечение ярма также может быть взято равным половине се­
чения стержня, так как магнитный поток ярма в однофазной магнит­
ной системе равен Фс/2. Применяя бронестержневые магнитные систе­
мы с разветвленными ярмами и «расщеnJ1ением» мощности между от­
дельными стержнями, добиваются существенного снижения высоты
трансформатора за счет увеличения длины и некоторого уве.1ичения
массы активных материалов - меди и стали.
В схеме плоской навитой магнитной системы по рис.
2.5, з магнитный поток каждого стержня является геомет­
рической суммой потоков двух навитых колец. Например,
пото1< фазы А можно представить в виде суммы Ф А =Ф а +,
.+.(-�с), Поско,1ьку три кольца этой магнитной системы
навиваются раздельно, а для удобства сборки между ними
должен соблюдаться 'небольшой технологический зазор, пе­
реход магнитного потока из одного кольца в другое затруд­
нен и фактическая индукция в каждом кольце должна быть
в 2/ VЗ=l,155 раза больше общей расчетной индукции в
стержне. Подобное сложение потоков стержней и ярм в схе­
ме по рис. 2.5, е не приводит к увеличению индукции пото­
му, что в каждом стержне оба частичных потока склады­
ваются в одних и тех же пластинах.
В последние годы в трансформаторах мощностью до
6300 кВ• А все более широкое применение находят прост­
ранственные магнитные системы различных конструкций.
На рис. 2.6 показаны методы образования таких систем.
:Комбинированная стыковая магнитная система по рис.
2.6, а составляется из стержней, собранных из плоских пла55
�
-
Рис. 2.6. Пространственные магнитные системы:
а - стыковая со стержнями, собранными из плоских пластин, и навитыми ярма­
ми; 6 - навитая неразрезная, состоящая из трех навитых колец
стин различной ширины, но одинаковой длины, и из ярм,
навитых из ленточной стали. Обмотки на эту систему уста­
навливаются при ее сборке из отдельных частей.
Магнитный поток в ярме такой системы Фя=Фс/VЗ,
площадь
поперечного сечения ярма может быть в
и
раз меньше площади поперечного сечения стержня. С уче­
том уменьшения площади сечения, а также увеличения об­
щей длины ярма эта система, как показали исследования,
дает возможность уменьш11ть массу активной стали и поте­
ри холостого хода примерно на 9--10 % при увеличении
тока холостого хода на 50-90 % для трансформаторов
мощностью 630-160 кВ-А и на 90-140 % для трансфор­
миторов мощностью 100-25 кВ •А по сравнению с плоской
шихтованной системой.
Навитая неразрезвая трехфазная магнитная система по
рис. 2.6, 6 состоит из трех навитых ко.1ец. Сечение каждо­
го кольца вписано в полуокружность. Современное специ­
альное оборудованпе позволяет наматывать кольца такой
ф;Jрмы из ленты холоднокатаной стали переменной шири-
уз
56
ны при безотходном раскрое стали и высоком коэффициен­
те заполнения сечения стержня активной сталью. После
намотки кольца отжигаются в течение 20-24 ч при тем­
пературе 800 °С, а затем скрепляются в единую систему при
помощи бандажей из стеклоленты. Эта система дает воз­
можность некоторой экономии стали (5-7 % ) и уменьше­
ния потерь холостого хода при существенном (в 2-3 раза)
уменьшении тока холостого хода. Обмотки наматываются
после сборки системы непосредственно на ее стержни на
специальном станке. В последнее время применение этой
системы ограничивалось трансформаторами мощностью до
630 кВ·.А.
В магнитной системе по рис. 2.6, 6 с раздельно намо­
танными кольцами индукция в каждом кольце, как и в системе по рис. 2.5, з, в 2/
раза больше общей расчетной
индукции в стержне. Геометрическое сложение магнитных
·потоков стержней и ярм в системе по рис. 2.6, а с пласти­
нами, расположенными, как показано на этом рисунке, не
приводит к увеличению индукции, так же как и в системе
по рис. 2.5, е.
После завершения сборки магнитной системы ее стерж­
ни, как правило, опрессовываются и стягиваются бандажа­
ми из стеклоленты. В трансформаторах мощностью не бо­
лее 630 кВ• А при диаметре стержня не более 0,22 м в пло­
ских шихтованных системах возможна опрессовка стержня
после насадки обмоток путем расклинивания с внут­
ренней обмоткой. Ярма плоских систем обычно спрессо­
вываются ярмовыми балками, а ярма пространственных
систем - специальными стяжными конструкциями.
Магнитная система со всеми узлами и деталями, кото­
рые служат для соединения ее отдельных частей в единую
конструкцию, называется остовом трансформатора. На ос­
тове в процессе дальнейшей сборки устанавливаются об­
мотки и крепятся отводы, т. е. проводники, предназначенные
для соединения обмоток трансформатора с переключате­
лями, вводами и другими токоведущими частями.
Конструкция остова должна обеспечивать надежное
скрепление и механическую жесткость магнитной системы,
собранной из тонких пластин стали толщиной 0,35-0,27 мм,
масса которой достигает десятков тонн. При этом в про­
цессе эксплуатации остов трансформатора должен выдер­
живать механичес[(ие силы, возникающие между обмотка­
ми при коротком замыкании, достиrающ11е, даже в транс-
Vз
57
Рис. 2.7. Остов трехфазного трансформатора мощностью 25 ООО кВ· А
класса напряжения 110 кВ
форматорах мощностью 1000-6300 кВ• А, миллионов
ньютонов и существенно возрастающие с возрастанием но­
минальной мощности трансформатора.
На рис. 2.7 изображен остов трехфазного трансформа­
тора мощностью 25 ООО кВ• А класса напряжения 110 кВ.
Стержни плоской шихтованной магнитной системы стяну­
ты бандажами из стеклоленты. Многоступенчатые ярма
запрессованы между стальными ярмовыми балками, стя­
нутыми стальными полубандажами. Концы шпилек полу­
бандажей с гайками выведены на наружные стороны ярмо­
вых балок и изолированы от них, чтобы избежать образо­
вания короткозамкнутых витков вокруг ярма. Верхние и
нижние ярмовые балки соединены вертикальными шпиль­
ками.
Основным элементом обмотки трансформатора являет­
ся виток- электрический проводник или несколько парал­
лельно соединяемых проводников, однократно охватываю58
щих часть магнитной системы. Ток витка совместно с то­
ками других витков и других частей трансформатора, в
которых возникает электрический ток, создает магнитное nо­
ле трансформатора. Под воздействием этого поля в каж­
дом витке наводится ЭДС.
Обмоткой называется совокуnность витков, образую­
щих электрическую цеnь, в которой суммируются ЭДС, на­
веденные в витках, с целью получения высшего, среднего
или низшего напряжения трансформатора или с другой
целью.
Обмотки высшего, среднего и низшего напряжения nред­
назначаются для преобразования электрической энергии
и являются основными обмотками. Кроме них, в силовом
трансформаторе могут быть и вспомогательные обмотки,
предназначенные для комnенсации отдельных частей маг­
нитного поля, доnолнительного подмагничивания отдельных
частей магнитной системы и других целей.
В течение нескольких десятилетий обмотки трансфор­
маторов изготовлялись из медного nровода. В последние
25 лет в обмотках трансформаторов общего назначения
мощностью до 16 000-25 ООО кВ• А все большее примене­
ние находит алюминиевый провод. Обмотки трансформа­
торов мощностью до 630-1 ООО кВ• А и более могут изго­
товляться также из. медной или алюминиевой ленты или
фольги.
Обмотки трансформаторов различают по назначению,
способу взаимного расположения и форме.
В двухобмоточном трансформаторе, имеющем две элек­
трически не связанные между собой обмотки, различают
обмотку высшего напряжения (ВН), присоединяемую к се­
ти более высокого напряжения, и обмотку низшего напря­
жения (НН), присоединяемую к сети более низкого напря­
жения. В трехобмоточном трансформаторе, имеющем три
электрически не связанные между собой обмотки, разли­
чают обмотку высшего напряжения (ВН), обмотку сред­
него напряжения _(СН) и обмотку низшего напряжения
.(НН).
В трехфазном и многофазном трансформаторе под об­
моткой подразумевают совокуnность соединяемых между
собой обмоток одного напряжения всех фаз, а в однофаз­
ном - обмоток всех его стержней. Иногда, если это не вы­
зывает неправильного понимания, под словом «обмотка»
подразумевают обмотку одной фазы или одного стержня
трансформатора,
59
По способу расположения их на стержне обмотки тран­
сформаторов подразделяются на концентрические и чере­
дующиеся. Концентрическими обмотки называются в том
случае, когда обмотки НН и ВН (а в трехобмоточных
трансформаторах и обмотки СН) выполняются каждая в
виде цилиндра и располагают­
ся на стержне концентрически
одна относительно другой
(рис. 2.8, а). Высоты (осевые
размеры) обеих обмоток, как
правило, делаются одинаковы­
ми. При выполнении обмоток
ВН и НН с различными высо­
тами приходится считаться со
значительным
возрастанием
осевых механических сил, воз­
никающих в обмотках при ко­
ротком замыкании трансфор­
матора, тем больших, чем
больше разность высот обмо­
ток. При концентрическом рас­
положении обмотка НН обыч­
а)
6)
но располагается внутри, а об­
Рис. 2.8. Концентрические (а)
ВН - снаружи. При ра­
мотка
и чередующиеся (6) обмотки
сположении обмотки ВН сна­
двухобмоточноrо трансформа­
ружи упрощается вывод от нее
тора
атветвлений для регулирования напряжения, а также
уменьшаются размеры внутренних изоляционных каналов
между внутренней обмоткой и стержнем.
Обмотки называются чередующимися, если обмотки ВН и НН вы­
полняются в виде невысоких цилиндров с одинаковыми или почти оди­
наковыми средними диаметрами и располагаются на стержне одна над
друго й в осевом направлении стержня (рис. 2.8, 6). При этом стара­
ются для уменьшения возникающих при коротком замыкании осевых
механических сил разделить обе обмотки не в ущерб конструктивным
соображениям на возможно большее число чередующихся групп. Из­
менение числа групп позволяет также в широких пределах изменять
реактивную составляющую напряжения короткого замыкания - увели­
чивающуюся с уменьшением числа групп и уменьшающуюся с его уве­
личением. Для уменьшения радиальных механических сил стараются
выдержать для обеих обмоток одинаковые внутренние диаметры и ра­
диальные размеры.
В чередующейся обмотке приходится рассчитывать по испытатель60
110му напряжению обмотки ВН несколько промежутков - горизонталь.
ных каналов между обмотками ВН и НН. Число этих промежутков
раст ет с ростом числа групп, на которые разбита обмотка. Поэто'dу
чередующиеся обмотки обладают меньшей компактностью, чем конце11трические. К. недостаткам чередующихся обмоток следует отнести так­
же значительное число паек соединений каждой из обмоток в процес­
се сборки трансформатора, тогда как большинство конструкuий кон­
центрических обмоток допускает изготовление всей обмотки ВН или
НН на один стержень непосредственно на обмоточном станке, одним
проводом или группой проводов без применения пайки.
В настоящее время подавляющее большинство всех силовых транс­
форматоров общего назначения и специальных выполняется с концен­
трическими обмотками. Чередующиеся обмотки иногда находят приме­
нение в специальных типах трансформаторов, предназначенных для пи­
тания электропечей. В таких трансформаторах с весьма значительными
токами на стороне НН решающим обстоятельством является удобство
параллельного соединения ряда групп обмотки НН снаружи обмотки,
а изоляционные промежутки при относительно малом напряжении ВН
обычно невелики. Чередующиеся обмотки иногда применяются также
для сухих трансформаторов как обеспечивающие лучший доступ охлаж­
дающего воздуха к обмоткам как высшего, так и низшего напряжения.
В трехобмоточных трансформаторах обмотка C\-f обычно распола­
гается между обмотками НН и ВН (рис. 2.9, а). Для некоторых тиА ,,,
А
а
Хт
Х
.z
а.
.z
а)
х
А
х
а
8}
А
Х А
ж
Рис. 2.9. Расположение обмоток на стержне:
а - трехобмоточный трансформатор; б - трехобмоточныn автотрансформатор; в­
двоАиая концентри•Jеская обмотка ВН; г - трансфоµ>�атор с расщел,1енными об­
мотками
пов трансформаторов предусмотрена также возможность размещения
обмотки СН непосредственно на стержне со следуюшим расположением
обмоток, считая изнутри наружу: СН-НН-ВН. Как правило, все три
обмотки трехобмоточноrо трансформатора рассчитываются на одина •
61
ковую номинальную мощность. При различии номинальных мощностей
трех обмоток номинальной мощностью трехобмоточного трансформато­
ра считается большая из них.
Силовые автотрансформаторы, как правило, выпускаются трехоб­
ы:>точными. Обмотки ВН и СН соединены по автотрансформаторной
схеме в звезду, имеют общую часть ХАт (рис. 2.9, 6) и последовательно
соединенную с ней часть А т А. Обмотка СН стержня образуется частью
ХАт , обмотка ВН - соединением частей ХА т и А т А, Напряжение ВН'
может быть получено на выводах АХ, напряжение СН - на выводах
АтХ. С обмоткой НН, соединяемой обычно в треугольник, эти две об­
мотки связаны индуктивно.
В двухобмоточных трансформаторах большой мощности иногда на­
ходит применение двойная концентрическая обмотка ВН, при которой
уменьшаются индукция поля рассеяния и добавочные потери в обмот­
ках. Обмотка ВН при этом разделяется на две цилиндрические части,
располагаемые внутри и снаружи обмотки НН (рис. 2.9, в).
В двухобмоточных трансформаторах
мощностью
25 ООО кВ• А и выше широкое применение находят расщеп­
ленные обмотки. При этом обмотка НН разделяется на две
гальванически не связанные части равной мощности -с оди­
наковыми или различными напряжениями. Обмотка ВН
также разделяется на две параллельно соединенные части
так, чтобы напряжения короткого замыкания двух частей
обмотки НН по отношению к обмотке ВН были практичес­
ки равны .(рис. 2.9, г). Расщепление обмоток имеет целью
уменьшение токов короткого замыкания.
По форме выполнения обмотки трансформаторов раз­
деляются на круглые и прямоугольные. Обмотки круглой
формы выполняются в виде круговых цилиндров, сплош­
ных или собранных из отдельных катушек, и в поперечном
сечении имеют форму кольца. Обмотки прямоугольной
формы в поперечном сечении имеют форму прямоугольной
рамки с закругленными углами. Преимуществом такого
типа обмотки является возможность наилучшего заполне­
ния пространства внутри обмотки активной сталью стерж­
ня. Основными недостатками являются: пониженная элек­
трическая прочность изоляции провода в углах катушки,
легко повреждающейся при перегибе провода на окружно­
сти малого радиуса; усложнение прессовки стержня маг­
нитной системы; малая механическая прочность обмотки
такого типа при коротком замыкании. При коротком замы­
кании прямоугольная обмотка под воздействием возника­
ющих в ней механических сил стремится принять круглую
62
форму, что ведет к повреждению изоляции и разрушению
обмотки.
В настоящее время большинство трансформаторов вы­
пускается с обмотками круглой формы, более простыми в
конструктивном и более прочными в механическом и элек­
трическом отношениях. Прямоугольные обмотки применя­
ются в редких случаях для специальных трансформато­
ров, выполняемых с магнитными системами броневого
типа.
Обмотки трансформатора должны быть надежно изоли­
рованы одна от другой и от всех заземленных частей кон­
струкции трансформатора - магнитной системы и деталей
крепления остова, стенок бака, в котором установлен тран­
сформатор, или защитного кожуха и др. Эта изоляция соз­
дается путем сочетания изоляционных деталей, изготовлен­
ных из твердых диэлектриков - электроизоляционного кар­
тона, бумажно-бакелитовых изделий, дерева и т. д. с
промежутками, заполненными основной изолирующей сре­
дой - жидким или газообразным диэлектриком или твер­
дым диэлектрическим компаундом.
После установки или намотки непосредственно на стер­
жни остова трансформатора его обмоток на остове уста­
навливается конструкция для размещения и укрепления
отводов, т. е. проводников, соединяющих обмотки трансфор­
матора с вводами, переключателями и другими ,токоведу­
щими частями, монтируются отводы и устройств◊' регули­
рования напряжения. Полученная в результате этого мон­
тажа единая конструкция, включающая в собранном виде
остов трансформатора, обмотки с их изоляцией, отводы,
ч�сти устройства регулирования, а также все детали, слу­
жащие для их механического соединения, называется ак­
тивной частью трансформатора _(рис. 2.10).
Во время работы трансформатора в его обмотках, маг­
нитной системе и некоторых других частях происходят по­
тери энергии, выделяющиеся в виде тепла. При продолжи­
тельном режиме работы все выделяющееся тепло должно
полностью отводиться в окружающую среду. В большин­
стве современных силовых трансформаторов отвод тепла
от обмоток и магнитной системы осуществляется через теп­
Jюноситель - жидкий или газообразный диэлектрик, запол­
няющий бак, в котором установлен трансформатор .(при
газообразном диэлектрике бак должен быть герметичным).
Воз�ушные сухие трансформаторы могут иметь защитный
1<ожух, но не имеют бака. Основной изолирующей и охлаж_63
Рис. 2.1 О. Активная часть трехфазного масляного трансформатора мощ­
ностью 1000 кВ-А класса напряжения 35 кВ с регулированием напряже­
ния под нагрузкой
дающей средой в них служит свободно проникающий к ак­
тивной части атмосферный воздух.
Жидкий или газообразный теп.1оноситель, чаще всего
трансформаторное масло, омывающее обмотки и магнит-­
ную систему трансформатора, нагреваясь у их поверхно­
стей, интенсивно отводит путем конвекции все выделяю­
щиеся в них тепло и передает его стенкам бака. Внешняя
поверхность стенок бака, омываемая воздухом, отдает теп­
ло путем конвекции и излучения. Такая система отвода тепла
позволяет допустить высокие электромагнитные нагруз­
ки активных материалов - металла обмоток и стали маг­
нитной системы и получить трансформатор с малой
массой этих материалов.
Масляный бак с гладкими стенками имеет относитель­
но малую омываемую воздухом внешнюю поверхность, ко­
торой оказывается достаточно для отвода тепла потерь при
до пустимых превышениях температуры обмоток, магнитной
64
системы и масла в верхней части бака над температурой
охлаждающей среды лишь в трансформаторах мощностью
до 25-40 кВ, А. С ростом мощности и потерь трансформа­
тора для обеспечения его нормального охлаждения прихо­
дится искусственно развивать внешнюю поверхность бака
путем установки ребер,
труб, навесных радиа­
торов (рис. 2.11) и дру­
гих элементов, отдаю­
щих тепло при естест­
венной конвекции воз­
духа. У трансформато­
ров мощностью 1 О 00016 ООО кВ-А и более по­
верхность бака оказы­
вается недостаточной
для размещения навес­
ных радиаторов, рабо­
тающих при естествен­
ной циркуляции масла
и воздуха. Поэтому
начиная с этих мощно­
стей обычно усилива­
ют охлаждение, при­
меняя искусственное
Рис. 2.11. Трехфазный масляный транс­
форсирование движе­ форматор
мощностью 1600 I<B · A I<ласса
ния воздуха у внешних напряжения 35 кВ, переключаемый без
поверхностей радиато­ возбуждения
ров при помощи венти­
ляторов или масла у
внутренних их поверхностей при помощи насосов либо же
совмещают эти два метода.
Форсированное движение масла особенно эффективно увеличива­
ет теплоотдачу, если поступающее из охладителя масло специальными
устройствами направляется непосредственно к обмоткам и магнитной
системе. При мощностях 80 000-100 ООО кВ• А и более используются
компактные охладители, собираемые из оребрениых труб, рассчитанные
на теплоотдачу от 50 до 200 кВт с каждого охладителя и продувае­
мые в горизонтальном
направлении
мощными
вентиляторами
(см. рис. 1.2). Применяется также охлаждение масла в водяных охла­
дителях.
Для заполнения бака трансформатора маслом до самой
крышки при всех возможных в эксплуатации колебаниях
температуры и объема масла над крышкой устанавлива-
5-510
65
ется. расширитель - стальной бачок, сообщающийся с ос­
новным баком трубопроводом. Объем расширителя (обыч­
но 8-10 % объема масла в баке) выбирается таким, что­
бы при любых колебаниях температуры и объема масла его
верхний уровень оставался в пределах рас�iшрителя. Ус­
тановка расширителя, ранее называвшегося консервато­
ром, способствует также сохранению .(консервации) масла,
так ка�< позволяет свести к минимуму поверхность сопри­
косновения (зеркало) масла с воздухом.
Если внутренний объем расширителя сообщается с ок­
ружающим воздухом, то на пути движения воздуха уста­
навливается фильтр, заполненный сорбентом - веществом,
поглощающим влагу из воздуха, поступающего в расши­
ритель. Для более надежного предохранения масла от окис­
ления его поверхность в расширителе часто изолируют от
окружающего трансформатор воздуха подушкой из инерт­
ного газа (азота) и расширитель герметизируют наглухо
или при помощи гибкой растягивающейся мембраны
,(пленки).
На крышке бака устанавливаются вводы, служащие
для присоединения внешней сети к обмоткам трансформа­
тора; на крышке и частично на стенках бака устанавлива­
ются также различные устройства и приспособления, слу­
жащие для защиты трансформатора и измерения темпера­
туры масла, для наблюдения и ухода за маслом и подъема
трансформатора.
Трансформаторное масло одновременно является хоро­
шим изоляционным материалом, позволяющим получить вы­
сокую электрическую прочность трансформатора при малых
изоляционных промежутках, компактной конструкции об­
моток и магнитной системы.
Основной недостаток масляных трансформаторов за­
ключается в том, что масло является горючим материалом
и установка таких трансформаторов во многих случаях тре­
бует специальных мер пожарной безопасности. Помимо
масляных находят также применение воздушные сухие си­
ловые трансформаторы, т. е. трансформаторы с естествен­
ным воздушным охлаждением. У этих трансформаторов
масляный бак заменяется легким защитным кожухом. От­
сутствие масла в значительной мере повышает пожарную
безопасность, а применение в качестве твердой изоляции
обмоток стекловолокна или асбеста и кремнийорганичес­
ких материалов позволяет получить практически пожаро•
безопасную установку ,(рис. 2.12).
66
Это свойство сухих трансформаторов позволяет приме­
нять их с большим успехом для установки внутри сухих
помещений в тех случаях, когда обеспечение пожарной без­
опасности установки является решающим обстоятельством,
как, например, в установках высотных зданий, некоторых
производственных цехов, лабораторий и т. д.
Рис. 2.12. Трехфазный сухой трансформатор мощностью 1000 кВ-А
класса напряжения 10 кВ с открытыми дверцами кожуха
Воздух является менее совершенной изолирующей и ох­
лаждающей средой, чем трансформаторное масло. Поэто­
му в сухих трансформаторах приходится все изоляционные
промежутки и охлаждающие каналы делать большими, а
электромагнитные нагрузки активных материалов допус­
кать меньшими, чем в масляных трансформаторах. Вслед­
ствие этого масса и стоимость активных материалов в су­
хих трансформаторах оказываются существенно выше, чем
в масляных.
5*
67
Понижение плотности тока в обмотках воздушных сухих
трансформаторов позволяет уменьшить потери короткого
замыкания в трансформаторах класса напряжения 10 кВ
мощностью 400-1600 кВ-А на 3-4 до 6-8 % по сравне­
нию с масляными. Потери и ток холостого хода в этих тран­
сформаторах выше, чем в масляных. Воздушные сухие
трансформаторы с изоляцией классов нагревостойкости В,
Н вследствие высокой стоимости изоляционных материалов
.( стекловолокно, стеклотекстолит, кремнийорганические
лаки и т. д.) существенно дороже масляных. Благодаря от­
сутствию масла и замене тяжелого бака легким кожухом
общая масса сухого трансформатора при мощностях до
400 кВ-А составляет не более 125-130 %, а при мощно­
стях 630-1600 кВ-А - от 1 1 О до 90 % массы идентичного
·масляного трансформатора. Практически напряжения об­
моток ВН воздушных сухих трансформаторов ограничива­
ются верхним пределом 10-15 кВ, а мощность-значения­
ми 1600-2500 кВ• А. Такие трансформаторы большей мощ­
ности с более высокими напряжениями выпускаются
сравнительно редко.
К сухим относятся также и герметичные трансформато­
ры, баки которых заполнены газом, являющимся изолиру­
ющей средой и теплоносителем. Такие трансформаторы, на­
пример заполненные газообразной шестифтористой серой
(элегазом), при форсированном движении теплоносителя в
баке могут иметь по сравнению с масляными меньшую об­
щую массу и, будучи пожаробезопасными, могут быть ис­
пользованы для установки на электрическом или тепло­
электрическом подвижном составе.
Сухие трансформаторы выпускаются также с литой изо­
ляцией. У этих трансформаторов, предназначенных глав­
ным образом для работы на наружных установках в сель­
ских сетях, магнитная система и обмотки заливаются элек­
троизоляционным компаундом, который после отвердения
служит изолирующей средой и теплоносителем.
Методика и последовательность расчета сухих и мас­
ляных трансформаторов принципиально одинаковы. Неко­
торые особенности расчета сухих трансформаторов-до­
пустимые нагрузки активных материалов, допустимые изо­
ляционные расстояния, нагрев обмоток и т. д. -отражены
в следующих главах.
Иногда в целях обеспечения пожарной безопасности трансформато­
ры заполняют негорючей и не окисляющейся жидкостью - совтолом,
пре дставляющим смесь совала (полихлордифенил) с трихлорбензолом.
68
Добавка трихлорбензола позволяет получить понижение вязкости и
температуры застывания смеси. Для стран с умеренным климатом наи­
лучш им соотношением считается 65 % совола и 35 % трихлорбензола;
для условий тропического климата - соответственно 90 и 10 %.
В практике зарубежных фирм аналогичные жидкости называются
клофен, пиранол, пирохлор и т. п.
Электрическая прочность совтола близка к прочности трансформа­
торного масла. Условия теплоотдачи в трансформаторах, залитых со в-.
толом, практически не отличаются от условий теплопередачи в масля­
ных трансформаторах. Применение совтола ограничивается более вы­
сокой по сравнению с маслом стоимостью, большим расходом этой
жидкости вследствие высокой плотности (около 1500 кг/м3 ), токси•1ностью паров совтола, действующих раздражающим образом на с ли­
зистые оболочки и кожу человека, и способностью совтола выделять
токсичные газообразные вещества при воздействии электрической дутн.
В некоторых странах применение подобных жидких диэлектриков за­
прещено.
2.2. ВЫБОР МАРКИ СТАЛИ И ВИДА ИЗОЛЯЦИИ ПЛАСТИН
Материалом для магнитной системы силового трансфор­
матора служит электротехническая холоднокатаная анизо­
тропная тонколистовая сталь, главным образом марок
3404, 3405, 3406, 3407 и 3408 по ГОСТ 21427.1-83, постав­
ляемая в рулонах. Применение холоднокатаной стали ма­
рок 3411, 3412 и 3413 по ГОСТ 21427.1-83 для основных
серий трансформаторов не практикуется, но не исключено
использование этой и горячекатаной стали марок 1511,
1512, 1513 для электрических реакторов, выпускаемых
трансформаторными заводами.
Современная холоднокатаная электротехническая сталь,
используемая в силовых трансформаторах, поставляется в
рулонах с шириной 650, 750, 800, 860 и 1000 мм и толщиной
0,35, 0,30 и 0,27 мм при массе рулона не более 5000 кг или
в листах тех же толщин с размерами 650-750-800-860Х
Х1500 и 1000Х2000 мм. Применение листовой стали не ре­
комендуется, поскольку существенно усложняет технологию
заготовки пластин и увеличивает количество отходов стали.
Сталь обычно поставляется с нагревостойким электроизо­
ляционным покрытием с толщиной на одной стороне не бо­
лее 5 мкм, нейтральным по отношению к трансформатор­
ному маслу при 105 °С и маслостойким при 150 °С, сохра­
няющим электроизоляционные свойства после нагрева до
800 ° С в течение 3 ч в нейтральной атмосфере или после
69
выдержки при температуре 820± 10 °С в течение 3 мин на
воздухе. Плотность холоднокатаной стали 7650 кг/м3 ,
удельное электрическое сопротивление 0,50 мкОм • м. (Плот­
ность горячекатаной стали марок 1511, 1512, 1513, 15147550 кг/м З, удельное электрическое сопротивление
0,60 мкОм•м).
Обозначения марок холоднокатаной стали расшифровываются сле­
дующим образом: первая цифра 3 - класс по структурному состоянию
и виду прокатки - холоднокатаная анизотропная с ребровой структу­
рой; вторая цифра 4 - класс по содержанию кремния - свыше 2,8 до
3,8 % включительно; третья цифра - 1 или О - группа по основной
нормируемой характеристике согласно примечанию к табл. 2.1; четвер­
тая цифра от 1 до 8 - порядковый номер марки стали с улучшением
магнитных свойств по мере возрастания этого номера.
Ста,1ь различают также по точности прокатки по толщине-Н-нор­
мальной точности и П - повышенной точности, по ширине - нормаль­
ной н повышенной точности - Ш, а также и по виду покрытия с электроизоляционным нагревостойким покрытием - ЭТ, с покрытием,
не ухудшающим штампуемость, - М (мягкое) и без электроизоляцион­
ного покрытия - БП.
В качестве примера обозначения можно привести следующее: Ру­
лон О,35Х1000-П-ЭТ-3404, ГОСТ 21427.1-83, что обозначает: рулонная
сталь толщиной 0,35, шириной 1 ООО мм, повышенной точ1;1ости прокат­
ки, с электроизоляционным нагревостойким покрытием, марки 3404 по
гост 21427.1-83.
Магнитные свойства современной холоднокатаной элек­
тротехнической стали по ГОСТ 21427.1-83 приведены в
табл. 2.1.
Холоднокатаная электротехническая сталь прокатыва­
ется в горячем состоянии до толщины 3,0-2,5 мм и затем
в холодном состоянии до нормированной толщины 0,500,27 мм. Благодаря прокатке в холодном состоянии сталь
получает определенное упорядоченное взаимное располо­
жение и ориентировку микрокристаллов - текстуру, вслед­
ствие чего создается анизотропия магнитных свойств стали,
т. е. различие магнитных свойств в разных направлениях
в листе.
В несколько идеализированном виде микроструктура
холоднокатаной стали может быть представлена в виде со­
вокупности элементарных кристаллов кубической формы,
расположенных так, что их диагональные сечения распола­
гаются в плоскости листа, а ребра куба в этих сечениях
параллельны направлению прокатки стали, как это пока70
табл ица
2.1. Магнитные свойства холоднокатаной
злектротехиичсской стали по ГОСТ 21427.1-83, применяемой в силовых
трансформаторах
Толщина,
мм
Марка
Удельные потери р, Вт/кг,
при f = 50 Гц и В, Т л,
не более
1,5/5!!
1
1. 7 /50
Магнитная индукция В,
Тл. при напряженности
магнитного поля, А/м,
не менее
100
-
0,35
3411
3412
3413
3404
3405
3406
3407
3408
1,75
1,50
1,30
( 1, 10)
( 1,03)
(2, 50)
(2,20)
(1,90)
1,60
1,50
1,43
1,36
1,30
1,60
1,61
1,62
1, 72*
1, 74*
0,30
3404
3405
3406
3407
3408
(1,03)
(О,97)
1,50
1,40
1,33
1,26
1,20
1,60
1, 61
1,62
1,72*
1,74*
0,27
3405
3406
3407
3408
(О,95)
(0,89)
1,38
1,27
1,20
1,14
1,61
1,62
1,72*
1,74*
-
-
-
-
1
2500
1, 75
1,80
1,85
--
-
-
Пр и м е чан и я: 1. Для стали марок 3411, 3412 и 3413 (группа 1)-основ­
ным:н нормируемыми показателями являются удельные потери при магнитной ин
4
дукции 1,5 Тл и частоте 50 Гц и магнитная индукция при напряженности магнит­
ного поля 2500 А/м. для стали марок 3404, 3405, 3406, 3407 и 3408 (группа О)удельные потери при магнитной индукции 1,7 Тл и частоте 50 Гц и магнитная
индукция при напряженности магнитного поля 100 А/м.
2. В скобках приведены справочные данные,
ненормируемые ГОСТ
21427.1-83.
3. Знаком • помечены показатели, подлежащие уточнению.
зано прямоугольником ABCD на рис. 2.13. Наименьшие
удельные потери и наибольшую магнитную проницаемость
при заданной магнитной индукции холоднокатаная сталь
имеет в направлении, параллельном ребрам куба АВ или
CD, т. е. в направлении прокатки. Это направление на­
зывается осью легкого намагничивания - ось 1 на
рис. 2.13 [7].
Существенно худшие магнитные свойства сталь имеет
в направлении диагонали грани куба AD, т. е. в направле­
нии, перпендикулярном направлению прокатки. Это на71
правление называется осью среднего намагничивания - ось
2. Наихудшие магнитные свойства холоднокатаная сталь
имеет в направлении диаrонади диагонального сечения ку­
ба АС-оси трудного намагничивания -3, направленной
под углом 55 ° к направлению прокатки. При разработке
0
о
8
�
А
�
])
v-
о
в
8)
Рис. 2.13. Микроструктура холоднокатаной электротехнической стали:
а - расположение элементарного кристалла в плоскости листа; б - направления
основных осеА намаrннчнвания; в - угол между направлением прокатки стали
и вектором маrнитноА индукции
конструкции магнитной системы и ее расчете следует иметь
в виду, что отклонение вектора магнитной индукции от на­
правления прокатки стали даже на относительно небольшой
угол а (рис. 2.13, в) приводит к существенному увеличению
удельных потерь и уменьшению магнитной проницаемости
стали.
На рис. 2.14, а показан характер изменения удельных
потерь для одной из марок холоднокатаной стали при изме­
нении индукции от 0,5 до 1,5 Тл и угла а от О до 90°, а на
рис. 2.14, 6- влияние угла а на магнитную индукцию при
изменении Н от 80 до 8000 А/м. Наибольшее влияние ани­
зотропии магнитных свойств на удельные потери сказыва­
ется в диапазоне индукций от 1 до 1,7 Тл, а на магнитную
72
проницаемость от 1,5 до 1,6 Тл. Это влияние, сохраняя ха­
рактер по рис. 2.14, будет различным для различных марок
стали, в большей мере будет сказываться на стали с луч­
шими магнитными свойствами и в большей мере на удель­
ной намагничивающей мощности, чем на удельных потерях.
Для того чтобы исключить влияние анизотропии магнит­
ных свойств холоднокатаной стали в основной массе стер·
жней и ярм, пластины для шихтованной магнитной системы
1/
ч
3
з
Р0 ,Вт/кг
2
1
D
20 °
чо0
а)
60
°
В, Т.л
1,6
1,2
2
0,8
1
D,Ч
0
во 9о"сt
о
20
°
чо 05
)
60°
0
во 9о°сt
Рис. 2.14. Влияние угла а на магнитные свойства холоднокатаной элеrс­
тротехнической стали:
а -удельные потери в стали при f-50 Гц н различных индукциях (/ - 0.5 Тл;
2- 1,0 Тл; 3 - 1,3 Тл; 4 - 1,5 Тл); 6 - индукция в стали при различных Н (/ 80 А{м; 2- 400 А/м; 3 - 2000 А/м; 4 - 4000 А/м; 5 -8000 А/м)
следует вырезать так, чтобы а=О, т. е. чтобы направление
длинных сторон пластин совпадало с направJiением про­
катки. Это требование легко выполняется при использова­
нии рулонной стали и нарезании пластин из рулона на со­
временных линиях продольной и поперечной резки. Хотя
горячекатаная сталь не имеет резко выраженной анизотро­
пии магнитных свойств, пластины из листов этой стали так­
же вырезаются только вдоль длинной стороны листа. В на­
витых частях магнитных систем практически всегда а=О.
В углах плоских шихтованных магнитных систем проис­
ходит неизбежное изменение направления линий магнитной
индукции. При прямом стыке пластин по рис. 2.15, а во
всем объеме угла (область, заштрихованная на этом рисун­
ке) а:;6:0 и происходит увеличение удельных потерь и
удельной намагничивающей мощности, что может сущест­
венно отразиться на потерях и намагничивающей мощно73
сти всей магнитной системы. Замена прямого стыка в yr­
J1ax косым стыком по рис. 2.15, 6 позволяет уменьшить объ­
ем, в котором cx=;i::0, и, следовательно, уменьшить потери и
намагничивающую мощность для углов и всей магнитной
системы. В пространственной маrнитной системе по рис.
2.6, а углы в навитых ярмах рассматриваются как углы
с прямым стыком, а навитую магнитную систему по рис.
2.6, 6 можно рассматривать как вообще не имеющую углов.
�
'
"
�
1
направление npoкamкtL
=--
1�
Рис. 2.15. Шихтовка пластин в
уrду магнитной системы:
а - прямоА стык; 6 - косой стык
Рис. 2.16. Линии маг­
нитной индукции в пла­
стинах стержня при на­
личии отверстий
При использовании листовой стали с длиной листа 1500
или 2000 мм длина пластин ограничивается этими размера­
ми и при мощностях трансформаторов, превышающих
6300 кВ• А, в которых требуются пластины большей длины,
возникает необходимость их стыкования внутри стержней и
ярм и стяжки магнитной системы шпильками, проходящи­
ми сквозь стержни и ярма (рис. 2.16). При этом в сечении
пластины на уровне отверстия увеличивается индукция, ли­
нии магнитной индукции в пластинах должны огибать от­
верстия и угол сх становится не равным нулю. В основной
массе стали стержней и ярм возникают добавочные потери
и для создания основного магнитного поля требуется су­
щественно повышенная намагничивающая мощность.
В целях лучшего использования материала магнитные
системы современных силовых трансформаторов проекти­
руются и изготовляются из рулонной холоднокатаной элек­
тротехнической стали без дополнительных стыков в стерж­
нях и ярмах и без каких-либо отверстий в пластинах. При
этом стержни после сборки магнитной системы прессуются
74
и стягиваются бандажами из стеклоленты, а ярма прессу­
ются ярмовыми балками.
Поперечное сечение стержня шихтованной магнитной
системы, рассчитанного на размещение обмоток, имеющих
форму круговых цилиндров, обычно имеет форму ступенча­
той симметричной фигуры, вписанной в окружность. Попе­
речное сечение ярма, на котором обмотки не располагаются,
может иметь такую же или более простую, например пря­
моугольную, форму. Если магнитные потоки отдельных па­
кетов стержня в этом случае будут равны магнитным пото­
кам стыкующихся с ними пакетов ярма, то магнитная
индукция вследствие неравенства активных сечений будет
в них существенно различаться. Это будет вызывать пере­
распределение магнитного поля между отдельными пакета­
ми стержня и ярма, что в холоднокатаной стали вследст­
вие анизотропии ее магнитных свойств поведет к увеличе­
нию удельных и общих магнитных потерь и понижению
магнитной проницаемости.
При использовании холоднокатаной стали рекоменду­
ется форму и размеры поперечного сечения ярма принимать
равными или близкими к форме и размерам поперечного
сечения стержня. При горячекатаной стали была возможна
и прямоугольная форма сечения ярма с прямыми стыками
пластин в углах, несколько упрощающая технологию изго­
товления пластин и сборки магнитной системы.
Холоднокатаная сталь в значительно большей степени,
чем горячекатаная, чувствительна к механическим воздей­
ствиям. В результате механической обработки при заготов­
ке пластин магнитной системы - продольной и поперечной
резки, закатки или срезания заусенцев, штамповки отвер­
стий (в конструкциях реакторов) - увеличиваются удель­
ные потери и удельная намагничивающая мощность стали.
Это ухудшение магнитных свойств стали может быть пол­
ностью или в значительной мере снято путем восстанови­
тельного отжига заготовленных пластин при 800-820 °С.
На современных заводах такой отжиг обязательно включа­
ется в технологический процесс изготовления пластин пос­
ле их механической обработки. При отсутствии отжига
следует считаться с возможным повышением потерь холо­
стого хода на 8-1 О % и тока холостого хода на 25-30 % .
Особенно сильно магнитные свойства стали ухудшаются
при изготовлении частей магнитной системы путем навивки
из холоднокатаной ленты. Такие части долж!"!ы отжигаться
после навивки.
75
При дальнейшей транспортировке после отжига на сбор­
ку, в процессе сборки остова и стяжки стержней и ярм
пластины могут подвергаться различным механическим
воздействиям. При этом также возникает ухудшение маг­
нитных свойств стали, которое в готовом остове снято от­
жигом быть не может. Во избежание ухудшения магнитных
свойств стали и параметров холостого хода трансформато­
ра при выполнении этих операций пластины не должны
подвергаться толчкам, изгибам, ударам и давлениям.
Пластины электротехнической стали, заготовленные для
сборки магнитной системы, во избежание возникновения
между ними вихревых токов должны быть надежно изоли­
рованы одна от другой. Современное нагревостойкое элек­
троизоляционное покрытие обеспечивает достаточно проч­
ную и надежную изоляцию пластин при высоком коэффи­
циенте заполнения сечения пакета пластин сечением чистой
стали. При мощностях трансформаторов, превышающих
100 ООО кВ• А, иногда усиливают изоляцию пластин путем
нанесения поверх нагревостойкого покрытия одного слоя
лаковой пленки.
Лаковая изоляция наносится в виде пленки на обе стороны плас­
тины (лак КФ-965, ГОСТ 15030-78, быстрой горячей огневой сушки) с
последующим испарением и выгоранием растворителя и запеканием
пленки в огне газовых горелок при 450-550 °С. Толщина пленки около
0,01 мм. Она дает хорошую изоляцию пластин, высокий коэффициент
заполнения сечения стержня, имеет высокую теплопроводность, доста­
точно прочна в механическом отношении и не повреждается при сбор­
ке. При отсутствии на стали нагревостойкоrо покрытия наносятся два
или три слоя пленки.
Коэффициент заполнения сечения стержня (или ярма)
сталью kэ, равный отношению чистой площади стали в се­
чении - активного сечения П с (или Пя ) к площади ступен­
чатой фигуры П Ф.с т. е. kз= Пс/ПФ ,с, желательно иметь на­
иболее высоким, потому что понижение этого коэффициен­
та ведет к увеличению массы стали магнитной системы и
металла обмоток.
Коэффициент заполнения k з зависит от толщины плас­
тин стали - 0,35, 0,30 или 0,27 мм, вида изоляции пластин,
силы сжатия пластин и наличия у них такого дефекта, как
неплоскостность, т. е. отклонение от плоской формы.
ГОСТ 21427.1-83 для холоднокатаной рулонной стали тол­
щиной 0,35, 0,30 и 0,27 мм допускает высоту отклонения
пластины от плоскости не более 2 мм и не более 1 % длины
пластины. Коэффициенты заполнения kз для стали, удов76
Та 6 лиц а 2.2. Коэффициент заполнения kз для рулонной
холоднокатаной стали, отвечающей требованиям ГОСТ 21427.1-83, nрн
давлении 0,5 МПа
Ви д изоляционно ro
Марка стали
покрытия
3405, 3406, 3407, 3408
0,30
1
3404, 3405, 3406, 3407,
3408
3405, 3406, 3407, 3408
0,97
0,35
3104, 3405, 3406, 3407,
3408
0,96
0,27
0,95
0,35
0,965
0,30
1
Наrревостойкое
0,27
Наrревостойкое плюс однократная лакировка
0,955
0,945
П р нм е ч а н и я: 1. При прессовке стержней путем расклинивания с вн ут­
реннеА обмоткой (до 630 кВ·А), а также в навитых элементах пространственных
магнитных систем k3, полу ченное из таблицы, уменьшить на 0,01.
2. По этой таб;,нце можно определить также значения k 3 для стали тех же
толщин, выпускаемой иностранными фирмами.
3. При использованин листовой холоднокатаной стали толщиной 0,35 мм
уменьшить k3 , полученное из таблицы, на 0,01 дополнительно к прим. 1,
4. Д ля стали толщиной 0,35 мм без электроизоляционного покрьtтия при д ву.
кратной лакировке k 3 =О,92+0,93.
летворяющей требованиям ГОСТ 21427.1-83, при современ­
ной технологиии сборки остова приведены в табл. 2.2.
При выборе марки и толщины стали для магнитной сис­
темы силового трансформатора следует учитывать, что
сталь с более высокими магнитными свойствами имеет су­
щественно более высокую цену, а сталь меньшей толщины
при более высоких магнитных свойствах имеет меньший
коэ
циент заполнения kз. Эта сталь для получения па­
кетЁ
заданных размеров требует изготовления, отжига и
укл дки при сборке магнитной системы большего числа
пла тин по сравнению со сталью большей толщины. В табл.
2.3 показано сравнение современных марок стали по этим
показателям.
В основной массе силовых трансформаторов с учетом
трудоемкости отдельных технологических операций, маг­
нитных свойств и цены стали используются стали марок
3404 и 3405 толщиной 0,35 и 0,30 мм. В тех случаях, когда
низкие. потери являются решающим фактором, может ис­
пользоваться сталь толщиной 0,27 мм.
Весьма важное значение при расчете трансформатора
77
Та блиц а 2.3. Сравнение стали толщиной 0,35, 0,30 и 0,27 мм по
гост 21427.1-83
Толщина,
мм
Марка
стали
0,35
3404
34()5
0,30
3404
3405
0,27
3405
3406
Относительные Относительна я
Удельные
цена, %
потери, %
Относительное
число пластин в
пакетах равной
толщины, %
kэ
100
104,1
100
0,97
94
87,5
104,1
108,2
115
0,96
86,5
81,3
109,6
112,7
127
0,95
100
94
имеет правильный выбор индукции в стержне магнитной
системы. В целях уменьшения количества стали магнитной
системы, массы металла обмоток и стоимости активной ча­
сти следует выбирать возможно большее значение расчет­
ной индукции, что, однако, связано с относительно малым
увеличением потерь и существенным увеличением тока хо­
лостого хода трансформатора. Уменьшение расчетной ин­
дукции приводит к получению лучших параметров холосто­
го хода (главным образом тока) за счет увеличения массы
материалов и стоимости активной части. Верхний предел
Та б л и ц а 2.4. Рекомендуемая индукция в стержнях трансформаторов
В, Тл
Марка стали
Мощность трансформатора S, кВ, А
до 16
25-100
НЮ II более
3411, 3412, 3413
Масляные трансформаторы
1,45-1,50
1,50-1,55
1,55-1 ,60
3404, 3405, 3406,
3407, 3408
1,50-1,55
3411, 3412, 3413
1,55-1,60
1,55-1,65
·Сухие трансформаторы
1 , 35-1,40
1 ,40-1 ,46
1,45-1, 55
3404, 3405, 3406,
3407, 3408
1,40-1,45
1,50-1,55
1,50-1,60
Пр и м е ча н и я: 1. В магнитных системах трансформаторов мощностью
от 100 ООО кВ·А и более допускается индукция до 1,7 Тл.
2. При rорячекатаной стали в магнитных системах масляных трансформато­
ров индукция �о 1,4-1,45, су хих - до 1,2-1,З Тл.
78
индукции обычно определяется допустимым значением тока
холостого хода (см. § 11.1).
Рекомендуемые значения расчетной индукции в стерж­
нях современных масляных и сухих трансформаторов при
использовании современных марок холоднокатаной стали
приведены в табл. 2.4.
Холоднокатаная электротехническая текстурованная сталь для
трансформаторного производства выпускается также в ряде зарубеж­
ных стран -Англии, США, Франции, ФРГ, Швеции, Японии. Марки
этой стали можно отнести к трем основным типам: марка Мб- сталь
толщиной 0,35 мм с удельными потерями при В= 1,5 Тл и /=50 Гц
около 1,10-1,12 Вт/кг; марка М5-сталь толщиной 0,35-0,30 мм и
удельными потерями 1,07-0,97 Вт/кг и марка М4- сталь толщиной
0,30-0,28 мм с удельными потерями 0,95-0,89 Вт/кг. Коэффициенты
заполнения для этих марок стали могут быть приняты по табл. 2.2.
2.3. КОНСТРУКЦИИ МАrнитных СИСТЕМ
СИЛОВЫХ ТРАНСФОРМАТОРОВ
Первой задачей, решаемой при проектировании магнит­
ной системы силового трансформатора, является выбор ее
конструктивной схемы. Плоская магнитная система (см. рис.
2.1) может быть принята для производства на любом со­
временном трансформаторном заводе. Пространственные
магнитные системы по рис. 2.6, позволяющие получить эко­
номию электротехнической стали и уменьшение потерь хо­
лостого хода до 9-10 %, применяются в трансформато­
рах мощностью до 630 кВ• А. Не исключено их применение
и при мощностях 1000-6300 кВ• А. Для изготовления про­
странственных магнитных систем по рис. 2.6 необходимо
иметь специальное оборудование для навивки и длительно­
го отжига навитых частей, а для конструкции по рис.
2.6, 6 - также и для нарезки ленты переменной ширины и
намотки обмоток непосредственно на магнитную систему.
При расчете плоской магнитной системы из рулонной
холоднокатаной стали должен быть выбран план шихтовки
пластин. Наименьшие потери и ток холостого хода могут
быть получены при шихтовке с косыми стыками пластин в
шести углах (рис. 2.17, а). Существенно проще технология
заготовки пластин и сборки магнитной системы по рис.
2.17, 6 с косыми стыками в четырех и прямыми в двух углах
при несколько более высоких потерях и токе холостого хо­
да. Средней по технологической сложности и параметрам
холостого хода является схема по рис. 2.17, в с косыми сты79
ками в четырех и комбинированными «полукосыми» в двух
углах. Наибольшее распространение получила схема по
рис. 2.17, б и меньшее- схемы по рис. 2.17, а и в.
При расчете и конструировании магнитной системы
трансформатора в первую очередь должны быть предусмот­
рены: получение возможно меньших потерь и тока холосто­
го хода, минимальный расход электротехнической стали и
возможно больший коэффициент заполнения сталью прост-
Рис. 2.17. Варианты плана шихтовки магнитной системы:
а - косые стыки в шести углах; б - косые стыки в четырех и прямые - в двух
углах; в - сочетание косых стыков с комбинированными
ранства внутри обмоток. Магнитная система (остов) слу­
жит также и механической основой трансформатора. На
остове располагаются и укрепляются обмотки и отводы от
обмоток, и в некоторых конструкциях на остове в процес­
се сборки трансформатора укрепляется крышка бака с вво­
дами и различной арматурой.
Для того чтобы магнитная система, собранная из массы
пластин тонколистовой стали, обладала достаточной устой­
чивостью, могла выдерживать механические силы, возника­
ющие между обмотками при коротком замыкании, и не
разваливалась при подъеме остова или активной части, ее
верхнее и нижнее ярма должны быть надежно соединены
механически.
Таким соединением верхних и нижних ярмовых балок в
остове с плоской магнитной системой могут служить верти­
кальные шпильки, расположенные вне обмоток ВН (см.
рис. 2.7) и достаточно от них удаленные или надежно изо­
лированные. В масляных трансформаторах такие шпильки
применяют при напряжениях обмоток ВН- 10, 35 и 110 кВ,
а в сухих до 10 кВ. Вертикальные шпильки также могут
быть использованы для осевой прессовки обмоток за счет
небольшого сдвига вниз верхних ярмовых балок.
В масляных трансформаторах при напряжениях обмо­
ток ВН от 150 кВ и выше и в сухих при напряжениях 10 кВ
80
и выше предпочтительнее соединять верхние и нижние яр­
мовые балки прессующими пластинами стержня, положен­
ными под бандаж по оси крайнего пакета стержня и сцеп­
ленными механически с ярмовыми балками. Чтобы избе­
жать возникновения замкнутого магнитного контура, обра­
зованного верхними и нижними ярмовыми балками и связы­
вающими их пластинами, эти полосы изготовляют из немаг­
нитной стали и тщательно изолируют от ярмовых балок
прокладками из электроизоляционного картона.
При наличии прессующих пластин верхние ярмовые
балки не могут сдвигаться вниз и в остове с плоской маг­
нитной системой осевая прессовка обмоток должна осуще­
ствляться прессующими кольцами - разрезными и зазем­
ленными металлическими или неразрезными из твердого
диэлектрика, расположенными между обмоткой и верхним
ярмом. При соединении ярмовых балок шпильками прессу­
ющие кольца обычно устанавливаются при мощностях, пре­
вышающих 1600 кВ -А. При наличии прессующих колец
изоляционное расстояние от обмотки ВН до верхнего ярма
увеличивается согласно примечанию 2 к табл. 4.5.
В остове с пространственной магнитной системой по рис.
2.6, а шпильки, соединяющие верхнее и нижнее ярма, про­
пускаются внутри стержня сквозь отверстия в его централь­
ном пакете. В навитой конструкции по рис. 2.6, б механиче­
ское соединение ярм не требуется.
Поперечное сечение стержня в стержневых магнитных
системах обычно имеет вид симметричной ступенчатой фи­
гуры, вписанной в окружность (рис. 2.18). Диаметр этой
окружности d называется диаметром стержня трансформа­
тора и является одним из основных его размеров. Ступен­
чатое сечение стержня (и ярма) образуется сечениями па­
кетов пластин. При этом пакетом называется стопа пластин
одного размера. Чистое сечение стали в поперечном сечении
стержня или ярма называется активным сечением стержня
или ярма.
Число ступеней, определяемое по числу пакетов стержня
в одной половине круга, может быть различным. Увеличе­
ние числа ступеней увеличивает коэффициент заполнения
площади круга kкр площадью ступенчатой фигуры, но одно­
временно увеличивает число типов пластин, имеющих раз­
личные размеры, чем усложняет заготовку пластин и сбор­
ку магнитной системы.
Для ориентировки в этом вопросе могут служить табл.
2.5 и 2.6, в которых приведены значения чисел ступеней в
6-510
81
Табл ица
2 .5.
Число ступенеА в сечении стержня современнЬI){
Показатель
Мощность трансформатора S, кВ-А
Ориентировочный
d, м
Без прессующей
пластины
диаметр стержня
Число ступеней
Коэффициент kкр
Число ступеней
С прессующей
пластиной
Коэффициент k•p
Прессовка стержня расклнниванием
1
1
1
1
1
Показатель
Ориентировочный
Без прессующей
пластины
С прессующей
пластиной
82
1
0,636
-
До 0,08
1
1
1
1
2
0,786
-
-
3
1
1
1
1
0;851
-
-
Прессовка стержня бандажами,
Мощность трансформатора S, кВ-А
d,м
До 1 6
1
1000-1600
2500-
0,32диаметр стержня 1 0,24-0,26 0,281 -0,30 1 -0,34
Число ступеней
Коэффициент k•p
Число ступеней
Коэффициент k.p
1
1
1
1
8
0,92 5
7
0,900
1
1
1
8
1
9
0,928 1 0,92 9
7
0,9-
1
1 -0,91 1
8
0,912
П р им е ч а н и я: 1. В коэффициенте k нр учтено наличие охлаждающих
2. При использовании таблицы для однофазного или трехобмоточного транс3. Для пространственной магнитной системы по рис. 2.6, а значение k н •
р
4. Для пространственной навитой магнитной системы по рис. 2.6, 6 принимать
трехфазных масляных трансформаторов
с обмоткой, сечение стержня без каналов
16
0,0 8
4
0,861
-
-
1
1
1
1
1
25
0,0 9
5
0,89 0
-
-
40 - 10 0
10,10 -0, 141 0, 16- 0 , 18
1
1
1
6
0,9 1- 0, 92
-
1
-
1
1
1
1
6
0, 91 3
-
-
1
1
160 -630
0,20
1
7
1
0,9 18
1
6
r
1
0 ,884
1
1
1
1
1
0,22
8
0,928
7
0 ,9 0 1
Продолжение табл. 2.5
аечение стержня д иаметром от 0,36 м и выше имеет продольные каналы
6.300
0,36- 0,38
9
0,913
8
0,8 9- 0,90
1
1
1
1
1
1
1 0 ООО
0 , 40 - 0,42
11
0,922
10
0,907
1
1
1600 0
0,45- 0 ,50
14
1
0,927
1
0,912
1
1
13
1
1
1
1
1
1
25 000
0,53-0, 56
15
0,9 27
14
0,914
1
1
1
1
0,
32 ООО
60-0,67
16
0,92 9
15
0,918
80 000
0,71-0,75
16
1
0 ; 931
1
0, 920
1
1
15
каналов в сечении стержня.
форматора его мощность умножить на 1,5.
rrол ученное нз таблицы, уменьшить на 0,02.
k lф -О,905.
6*
83
Та б л и ц а 2.6. Число ступеней в сечении стержня современных
трехфазных сухих трансформаторов
Ориентировочный
диаметр стержня
0,09-0, 14
Число ступеней
5
d, м
Коэффициент kкр
1
0,8
0,8
51 1
77
Наличие продоль•
0,9
15
1
0,16-0,2'2
0,24- 0,28 1 0,26 , 0, 32
8
1
0 , 920
1 0, 930 1 0,935 , 0,800 1 0,820
Без каналов
ных каналов
Пр и м е ча н и я:
1
1600
160-400
16-100
Мощность транс­
форматора S, кВ• А
1
Одни
канал
I
Два
канала
1. В коэффициенте k I<
учтено наличие охлаждающих
P
ка на лов в сечении стержня.
2. До диаметра стержня d-0,22 м стержень прессуется расклиниванием с
обмоткой, при d>0,22 м прессовка осуществляется бандажами.
З. При использовании таблицы дли од нофазного трансформатора его мощ­
ность умножить на 1,5.
стержнях современных трехфазных масляных и сухих
трансформаторов различной мощности.
Ширина пластин, определяющая ширину и толщину па­
кетов, образующих сечение стержня, выбирается так, чт{)бЫ
8)
Рис. 2.18. Различные способы сборки и прессовки стержня:
а - путем расклинивания с жестким цилиндром обмотки НН; б - бандажи из
стеклоленты; в - сквозными стяжными шпильками; сборка стержн я: г - из ра"
диально расположенных пластин; д - нз пластин эвольвентной формы
м
при заданном диаметре было обеспечено получение наи­
большего сечения стержня при максимальном использова­
нии и минимальных отходах листовой или рулонной стали.
Для ширины пластин существует нормализованная шкала
,(см.§ 8.1).
Стержни и ярма шихтованной магнитной системы долж­
ны быть стянуты и скреплены так, чтобы остов представ­
лял собой достаточно жесткую конструкцию как механиче­
ская основа трансформатора. Стяжка и крепление остова
должны обеспечивать его достаточную прочность после
расшихтовки верхнего ярма при насадке обмоток, подъеме
активной части трансформатора и коротком замыкании на
его обмотках, а также отсутствие свободной вибрации пла­
стин и минимальный уровень шума при работе трансфор­
матора в сети. Эти требования достаточно хорошо удовлет­
вvряются при равномерно распределенном напряжении
сжатия между пластинами стержня и ярма при сборке
0,4-0,6 МПа (40-60 Н/см 2 ), считая по среднему, т. е. на­
иболее широкому пакету.
Прессовка стержней может осуществляться различными
способами. При мощности трехфазного трансформатора до
630 кВ• А и диаметре стержня до 0,22 м включительно
хорошие результаты дает прессовка его без применения спе­
циальных конструкций путем забивания деревянных стерж­
ней и планок между стержнем и обмоткой НН или ее жест­
ким изоляционным бумажно-бакелитовым цилиндром (рис.
2.18, а). Стержни трансформаторов большей мощности от 1ООО кВ• А и выше - при диаметре d> 0,22 м нуждаются
в более надежной прессовке. В этом случае хороший ре­
зультат может быть достигнут при стяжке- стержня банда­
жами из стеклоленты, расположенными по высоте стержня
на расстояниях 0,12-0,15 м один от другого (рис. 2.18,6).
Перед наложением бандажей при сборке на специаль­
ном стенде стержни поочередно опрессовывают прессующей
балкой с общим усилием от 0,4 до 1-2 МН, создающей не­
обходимое напряжение сжатия между пластинами, или при
помощи временных технологических бандажей, затягивае­
мых вручную. Намотка бандажей из стеклоленты произво­
дится на опрессованные стержни. Этот способ стяжки обе­
спечивает равномерное сжатие всего стержня и достаточ­
ную механическую прочность остова трансформатора. Воз­
можна также стяжка стержней бандажами из стальной
ленты, размещаемыми на расстоянии 0,12-0,24 м один от
другого. Эти бандажи должны замыкаться на пряжках из
85
диэлектрика во избежание появления короткозамкнутого
витка и должны заземляться во избежание накопления на
них электрических зарядов.
I(онструкция прессовки стержня шпильками, проходя­
щими сквозь пластины всех его пакетов (рис. 2.18, в), вы­
нужденно применявшаяся в течение ряда лет в магнитных
системах из листовой стали, не обеспечивает равномерного
распределения силы прессовки между пакетами, способст­
вует появлению «веера», т. е. расхождения пластин на кра­
ях пакетов и требует наличия на заводе большого прессо­
вого и инструментального хозяйства. При такой конструк­
ции прессовки стержней и ярм увеличиваются удельные
потери в стали и уменьшается ее магнитная проницаемость.
Поэтому в магнитных системах трансформаторов, изготов­
ляемых из рулонной холоднокатаной стали, она не приме­
няется, но используется в конструкциях реакторов.
В навитой магнитной системе по рис. 2.5, з при навивке
из лент различной ширщш сечение стержня (и ярма) бу­
дет ступенчатым, а в системе по рис. 2.6, 6 при навивке из
ленты переменной ширины - составленным из. двух полу­
круглых сечений. Эти магнитные системы после навивки и
отжига их частей скрепляются бандажами из стеклоленты.
Стержни стыковой пространственной магнитной системы по
рис. 2.6, а собираются из пластин разной ширины и одина­
ковой длины и после опрессовки стягиваются бандажами.
В центральном пакете стержня такой магнитной системы
во время его сборки оставляется квадратное отверстие для
прохода осевой шпильки, соединяющей верхнее и нижнее
ярма.
Сечение стержня может быть образовано не только набором па­
кетов плоских пластин (рис. 2.18, a-i,), но также и радиальной ших­
товкой плоских пластин (рис. 2.18, г) или набором пластин, изогнутых
по форме цилиндрической эвольвентной поверхности (рис. 2.18, д). Оба
эти способа сборки магнитной системы предусматривают стыковую
конструкцию остова с отдельно собираемыми стержнями и ярмами.
Ярма наматываются из рулонной стали или выполняются в виде набора
плоских пакетов. Конструкция с пластинами эвольвентной формы удоб­
на тем, что каждый стержень собирается из пластин одного размера,
Ширина пластины (длина эвольвентной линии) зависит только от дна•
)!етров стержня - внутреннего d 1 и внешнего d.
Надлежащая прессовка стержня для этих двух конструкций может
быть достигнута путем стяжки бандажами из стальной ленты или стек­
лоленты.
Коэффициент заполнения площадки круга kнр при радиальном рас•
86
положении пластин может быть найден по рис. 2.18, г. Площадь �руга
может быть представлена в виде ряда элементарных секторов с уг•
лом �. Площадь сектора Псект=dnб/(2-2); площадь, не заполненная
пластинами (п треугольников), П0 =пdб/(2п,2) =dб/4, тогда
kнр = (Псеит - По)/Псеит = (п - 1)/п.
I(оэффициент заполнения не зависит от диаметра стержня и тол•
щипы пластин. Для n=4, 5, 6, 7 и 8 kкр =О,75; 0,8; 0,833; 0,857 и 0,875.
При эвольвентной форме пластин (рис. 2.18, д) и общей площади
круга Пкр =nd2/4 незаполненными оказываются площадь в центре круга Пoi=ndI/4 и площади элементарных треугольников по внешней ок·
ружности стержня. Приближенно эти площади для п пластин можно
найти так:
П02 = nndб/ (2n) = ndб/2,
коэффициент заполнения
_
k11р-
П кр - П 01 - П02
П11р
d2 - df - 2dб
df
26
------=!----·
d
�
d�
Ширина пластины (развертка эвольвенты)
d
Ь = 4k (k� - 1 - 2kб),
где k=dfd1•
Стержни диаметром до 0,36 м обычно достаточно хорошо
охлаждаются маслом, омывающим их наружную поверх­
ность. При диаметре от 0,36 м и выше для обеспечения на­
дежного охлаждения внутренних частей стержня между его
пакетами делаются охлаждающие каналы. Эти каналы мо­
гут быть продольными по отношению к пластинам стержня
или поперечными. Продольные каналы стержня продолжа­
ются и в ярмах. Вертикальный поперечный канал стержня
обычно переходит в горизонтальный поперечный канал яр­
ма, разделяя магнитную систему на отдельные «рамы» так,
как это показано , например, для однофазного трансформа•
тора на рис. 2.19. В стержнях обычно делают не более одно­
го поперечного канала.
Размеры и число каналов в современных трансформато­
рах при различных диаметрах стержня приведены в
табл. 2.7.
Для диаметров стержней силовых трансформаторов при•
нят стандарт, который содержит следующие нормализован­
ные диаметры, м: 0,08; 0,085; 0,09; 0,092; 0,095; О,10; О, 105;
0,11; 0,115; 0,12; 0,125; 0,13; 0,14; 0,15; 0,16; 0,17; 0,18; 0,19;
87
ч,/
3
'r--
□
z
oJ
а)
Рис. 2.19. Схема двухрамной магнитной системы однофазного трансфор­
матора:
а - расnоложенне каналов в системе; 6 - сечение стержня; 1 и 2 - продоJ1ьиые
каналы стержня и ярма; З и 4 - поперечные каналы
Таблиц а2.7. Ориентировочное число продольных по отношению к
листам и поперечных охлаждающих каналов. Трехфазные
трансформаторы
а) Масляные трансформаторы
Мощность трансформа- До 6300-16 ООО 25 ООО40 0001 32 000
1 80 000
1 4000 1
тора S, кВ•А
Ориентировочный
метр стержня d, м
дна- д о 0,36--0,48 0,50-0,60 0,63-0,75
1
, 0,341
1
';;;�ло продольных кана- / - 1
1
2
6) Сухие трансформаторы
Мощность
трансформаДо 400
1
тора S, 1<В·А
Ориентировочный
метр стержня d, м
дна-
,
До0,22
Число продольных кана- !
лов
630-1000
0,24-0,25
1
3
1600
0,28-0,32
2
ПР им е ча н и я: 1. В масляных трансформаторах ширина продольного ка­
нала б, поперечного - 10 мм.
2. В сухих трансформаторах ширина продольного канала 20 мм.
0,20; 0,21; 0,22; 0,225; 0,23; 0,24;
0,29; 0,30; 0,31; 0,32; 0,33; 0,34;
0,40; 0,42; 0,45; 0,48; 0,50; 0,53;
0,75 - для магнитных систем
88
0,245; 0,25; 0,26; 0,27; 0,28;
0,35; 0,36; 0,37; 0,38; 0,39;r
0,56; 0,60; 0,63; 0,67; 0,71;
без поперечных каналов и
0,80; 0,85; 0,875; 0,90; 0,925; 0,95; 0,975; 1,00; 1,03; 1,06; 1,12;
1,15; 1,18; 1,22; l,25; 1,28; l,32; 1,36; 1,40; 1,45; 1,50 - для
магнитных систем, имеющих поперечные охлаждающие ка­
налы.
При определении активного сечения стержня, т. е. чисто­
го сечения стали в площади круга с диаметром стержня d,
в предварительном расчете, когда размеры пакетов пластин
стержня еще не установлены, обычно пользуются коэффи­
циентом заполнения сталью kc, равным отношению активно­
го сечения Пс к площади круга диаметром d. Этот коэффи­
циент равен произведению двух коэффициентов - коэффи­
циента заполнения площади круга площадью ПФ, с
ступенчатой фигуры сечения стержня kкр и коэффициента
заполнения площади ступенчатой фигуры ПФ, с чистой ста­
лью k э
kнр = 4П ф,с/(зт.d2); Пф,с = kнрзт.d2/4;
k3 = 4П сl(kнрзт.d2); Пс = kирk3зт.d2/4;
Пс = kс зт.d2/4; kc = kнpk3 •
Ориентировочные практические значения коэффициента
для различных диаметров стержня при оптимальных
размерах пластин и пакетов за вычетом сечений охлаж­
дающих канал9в и с учетом места, занимаемого прессующи­
ми пластинами стержня, приведены в табл. 2.5 и 2.6, данны­
ми которых можно пользоваться в предварительном расчете.
При окончательном расчете магнитной системы сечение
стержня определяется по табл. 8.1-8.5 или по реальным
размерам пакетов стержня.
Для магнитной системы по рис. 2.6 а kкр принимается
по табл. 2.5 с прим. 3, для магнитной системы по рис. 2.6, 6по этой таблице с прим. 4.
Коэффициент k, выбирается по табл. 2.2 в соответствии
с видом стали - рулонная или листовая, с типом изоляци­
онного покрытия и принятой технологией сборки магнитной
системы.
Выбор правильной формы и размеров поперечного сече­
ния ярма, особенно в магнитных системах, собираемых из
холоднокатаной текстурованной стали, играет существен­
ную роль. Наиболее рациональной является многоступенча­
тая форма сечения ярма с числом ступеней, равным числу
ступеней в сечении стержня, и активным сечением, равным
или несколько большим активного сечения стержня. Для
обеспечения более равномерного сжатия ярма между ярkкр
89
мовыми балками обычно два-три крайних пакета объединя­
ют, несколько увеличивая их общее сечение (рис. 2.20, а).
При такой форме ярма магнитный поток (индукция) прак­
тически равномерно распределяется по сечению стержня и
ярма, а активное сечение ярма оказывается несколько боль­
ше активного сечения стержня, что учитывается коэффици­
ентом усиления ярма, равным отношению Пя/Пс,
kя = Пя!Пс .
Для нормализованных размеров пакетов пластин по
табл. 8.2-8.5 можно принять k11 = 1,02+ 1,03. Возможна
также форма ярма по рис. 2.20, 6, дающая некоторую эко-
-
1
1
1
;
б)
Рис. 2.20. Формы поперечного сечения ярма
номию стали в местах прилегания стержней и ярм - до
1,5-2 % массы стали магнитной системы.
В целях упрощения сборки остова и уь:еньшения числа
пластин с различными размерами, а также упрощения опор­
ных конструкций обмоток в магнитных системах трансфор­
маторов в течение ряда лет применялась упрощенная фор­
ма сечения ярма - с одной-двумя ступенями или прямо­
угольная ,(рис: 2.20, в). При такой форме сечения ярма
возникает неравномерное распределение магнитных потоков
и индукции в стыкующихся пакетах стержня и ярма, что ве­
дет к повышению потерь и тока холостого хода, особенно в
магнитных системах, собираемых из анизотропной стали.
В современных конструкциях плоских магнитных систем
трансформаторов мощностью до 6300 кВ -А, собираемых из
холоднокатаной стали, прессовка ярм осуществляется при
помощи стальных ярмовых балок, стягиваемых шпильками,
вынесенными за пределы ярма (рис. 2.21, а). Стальная
шпилька над средним стержнем иногда заменяется стальной
скобой с нажимным болтом. В трансформатора х большей
мощности - от 1 О ООО кВ• А и выше -- ярмо прессуется при
помощи стальных полубандажей, стягивающих две ярмовые
90
а}
fim+I
В)
Рис. 2.21. Различные способы прессовки ярма ярмовыми балками:
а - внешними шпильками; 6 - стальными полубандажами и внешними шпиль­
ками; в - сквозными шпильками
балки и изолированных от балок (рис. 2.21, 6). Прессовка
ярма шпильками, проходящими сквозь ярмо и изолирован­
ными от ярма и балок, применяется только в конструкциях
реакторов (рис. 2.21, в).
В соответствии с высказанными соображениями при вы­
боре способов прессовки стержней и ярм, формы сечения и
коэффициента усиления ярма для современных трансформа­
торов с магнитными системами, собираемыми из холоднока­
таной стали, можно воспользоваться рекомендациями табл.
2.8. При отступлении от этих рекомендаций следует счи­
таться с возможным увеличением потерь и тока холостого
хода соответственно на 9-25 и 50-200 % при стяжке стер­
жней и ярм сквозными шпильками при шаге отверстий от
0,24 до 0,12 м и на 5-8 % при упрощении формы сечения
ярма,
g\
Т а б л и ц а 2.8. Выбор способа прессовки стержней н ярм, формы
сечения и коэффициента усиления ярма для современных масляных и
сухих трансформаторов
Мощность
тран
с
маторф(>
а �кВ-А
25-100
160-630
10006300
Прессовка стержней
Прессовка ярм
Форма сечения
ярма
Коэффициент усн•
ления
ярма
1,025
Расклинивани- Балками, стянуты- 3-5 ступеней
шпильками,
ем с обмоткой ми
1
расположенными
(рис. 2.18, а)
(рис. С числом ступе- 1,015вне ярма
2.21, а)
ней на одну- 1,025
меньше
две
числа ступеней
Бандажами из Балками, стянуты- стержня
ми стальными постеклоленты
лубандажами
(рис. 2.18, 6)
(рис, 2.21, б)
Глава третья
РАСЧЕТ ОСНОВНЫХ РАЗМЕРОВ ТРАНСФОРМАТОРА
3,1, ЗАДАНИЕ НА ПРОЕКТ И СХЕМА РАСЧЕТА
ТРАНСФОРМАТОРА
В задании на проект двухобмоточного трансформатора
должны быть указаны следующие данные:
1) полная мощность трансформатора S, кВ· А;
2) число фаз т;
3) частота f, Гц;
4) номинальные линейные напряжения обмоток высшего
и низшего напряжений И2 и И 1, В; способ регулирования на­
пряжения - переключение без возбуждения _(ПБВ) или ре­
гулирование под нагрузкой (РПН), число ступеней, напря­
жение ступени и пределы регулирования напряжения;
5) схема и группа соединения обмоток;
6) способ охлаждения трансформатора;
7) режим нагрузки - продолжительный, кратковремен­
ный или другой. При кратковременном или другом режиме
должны быть указаны его параметры - продолжительность
работы и интервалов и отдаваемая трансформатором мощ­
ность (или ток);
92
8) характер установки - внутренняя или наружная, т. е.
внутри помещения или на открытом пространстве.
Кроме этих данных в задании обычно указываются некоторые параметры трансформатора:
1) напряжение короткого замыкания ик, % ;
2) потери короткого замыкания Рк, Вт;
3) потери холостого хода Рх, Вт;
4) ток холостого хода io, % .
В задании, как правило, должно быть обусловлено соот­
ветствие трансформатора требованиям определенного
ГОСТ. Могут быть поставлены также некоторые дополни­
тельные условия, например определенная марка стали, вы­
полнение обмоток из медного или алюминиевого провода
и др.
Если в двухобмоточном трансформаторе предусматрива­
ется расщепление обмоток на две части, то должны быть
указаны напряжения двух частей обмотки НН. Номиналь­
ная мощность каждой из этих частей обычно принима­
ется равной половине номинальной мощности трансфор­
матора.
Для трехобмоточноrо трансформатора указывают мощ­
ности каждой из трех обмоток, если они различны (номи­
нальной считается наибольшая из мощностей трех обмоток),
номинальные напряжения трех обмоток, соответственно схе­
мы и группы соединения обмоток, три значения напряжения
короткого замыкания, отнесенного к номинальной мощности
трансформатора, и три значения потерь короткого замыка­
ния для трех пар обмоток ВН и СН, ВН и НН, СН и НН.
В задании на расчет силового автотрансформатора обыч­
но указывается его «проходная» мощность Sп рох, равная
произведению линейного напряжения И на линейный ток,
Sпрох=И/•lО-3 у однофазного и Sп pox=VЗU/.J0-3 у трех­
фазного автотрансформатора. В задании указываются так­
же первичное И и вторичное И' номинальные линейные на­
пряжения и сетевое напряжение короткого замыкания Uк, с,
т. е. отнесенное к большему из двух номинальных напряже­
ний - И или И'.
При проектировании трансформатора в соответствии с
заданием должно быть также обеспечено его соответствие
современным требованиям к электрической и механической
прочности и нагревостойкости обмоток и других частей и к
экономичности его работы в эксплуатации. Экономичность
трансформатора в эксплуатации определяется путем сопо93
ставления стоимости трансформатора, отнесенной к опреде­
ленному промежутку времени, с эксплуатационными затра­
тами за этот промежуток и зависит в значительной мере от
правильного выбора таких его параметров, как потери холо­
стого хода и короткого замыкания. Для силового трансфор­
матора уровни потерь холостого хода и короткого замыка­
ния обычно устанавливаются таким путем при проектирова­
нии новых серий и разработке новых стандартов. При
индивидуальном проектировании силового трансформатора
общего или специального назначения параметры холостого
хода и короткого замыкания, как правило, задаются соот­
ветствующим ГОСТ. Получение определенных параметров
достигается рациональным выбором основных размеров
трансформатора, а также подбором соответствующих удель­
ных нагрузок активных материалов - индукции в магнит­
ной системе и плотности тока в обмотках.
Соблюдение упомянутых выше основных требований
должно сочетаться с возможностью удешевления производ•
ства и уменьшения себестоимости трансформатора. Следует,
однако, заметить, что увеличение себестоимости трансфор·
матора при использовании материалов лучшего качества,
хотя и более дорогих, при усложнении некоторых технологи­
ческих операций или введении в технологический процесс
новых операций, существенно улучшающих параметры
трансформатора или повышающих его надежность, в боль­
шинстве случаев оправдывается при экономической оценке
трансформатора.
Задача построения трансформатора, отвечающего совре­
менным требованиям эксплуатации, а также наиболее про­
стого и дешевого в производстве, решается определением
тех воздействий, которым он подвергается в эксплуатации,
рациональным выбором его конструкции, правильным выбо­
ром размеров и материала отдельных его частей и конструк­
тивных деталей и правильно организованным технологиче­
ским процессом его изготовления, учитывающим свойства
применяемых материалов и назначение трансформатора.
Ряд рекомендаций по этим вопросам дается в главах, по­
священных расчету магнитных систем, обмоток и других
частей трансформатора.
Расчет трансформатора тесно связан со вторым этапом
проектирования - конструированием. На самых первых
стадиях расчета необходимо произвести выбор основной
конструктивной схемы трансформатора, а также в ходе рас­
чета выбирать конструкции его отдельных частей - магнит•
94
ной системы, обмоток, изоляционных деталей, отводов и т. д.
Поэтому, приступая к работе, расчетчик должен иметь ясное
представление о современных конструкциях частей транс­
форматора, практически возможных пределах их примене­
ния, достоинствах и недостатках,
Для облегчения работы расчетчика в тексте некоторых
глав приводятся краткие сведения по конструкции частей
трансформатора - остова, обмоток, бака и т. д. - в объеме,
минимально необходимом для расчета, и даются рекоменда­
ции по выбору этих конструкций.
До начала проектирования следует также установить не­
которые технологически� операции, как, например, способ
изготовления и обработки (удаление заусенцев, отжиг) пла­
стин или других элементов магнитной системы, способ за­
ливки трансформатора маслом и т. д., оказывающие суще­
ственное влияние на некоторые параметры трансформатора.
Рекомендации по технологическим вопросам даются в тек­
сте соответствующих глав.
Отдельные стадии расчета могут чередоваться в той или
иной последовательности в зависимости от удобства выпол­
нения этой работы, однако всегда желательно придержи­
ваться такого порядка, который обеспечивает наименьшую
затрату времени и требует наименьшего количества повтор­
ных пересчетов. Необходимость получения трансформатора
с определенными параметрами заставляет производить не­
которые исправления на проделанном этапе расчета, если
заданные параметры не получаются сразу. Во избежание
больших переделок выполненной части расчета рекоменду­
ется всю схему расчета строить так, чтобы заданные пара­
метры Рк, Рх и Uк учитывались уже при выборе исходных
данных и определении основных размеров трансформатора
и подгонялись к норме на возможно более ранних стадиях
расчета. Этим условиям отвечает схема расчета трансфор­
матора, приведенная ниже. Применительно к этой схеме по­
строены все изложение материала и примеры расчетов
трансформаторов.
Схема расчета трансформатора
1. Определение основных электрических величин (г,1. 3 и 4):
а) динейных н фазных токов и напряжений обмоток ВН и НН;
б) испытательных напряжений обмоток;
в) активной и реактивной составляющих напряжения короткого за­
мыкания.
95
2. Расчет основных размеров трансформатора (гл. 2, 3 и 4):
а) выбор схемы, конструкции и технологии изготовления магнитной
системы;
б) выбор марки н толщины листов стали и типа изоляции пластин, индукции в магнитной системе;
в) выбор материала обмоток;
r) предварительный выбор конструкции обмоток (гл. 5);
д) выбор конструкции и определение размеров основных изоляци­
онных промежутков главной изоляции обмоток;
е) предварительный расчет трансформатора и выбор сQотношения
основных размеров � с учетом заданных значений Uк, Рк и Рх по § 3.4-3.7 или только по § 3.7;
ж) определение диаметра стержня и высоты обмотки, предварительный расчет магнитной системы.
3. Расчет обмоток НН и ВН (гл. 5 и 6):
а) выбор типа обмоток НН и ВН;
б) расчет обмотки НН;
в) расчет обмотки ВН.
4. Определение параметров короткого замыкания (гл. 7):
а) потерь короткого замыкания - основных и добавочных в обмотках, добавочных в элементах конструкции;
б) напряжения короткого замыкания;
в) механических сил в обмотках.
5. Окончательный расчет магнитной системы. Определение пара•
метров холостого хода (гл. 8):
а) размеров пакетов и активных сечений стержня и ярма;
б) массы стержней и ярм и массы стали;
в) потерь холостого хода;
r) тока холостого хода.
6. Тепловой расчет и расчет системы охлаждения (гл. 9):
а) поверочный тепловой расчет обмоток;
б) расчет системы охлаждения (бака, радиаторов, охладителей),
Определение габаритных размеров трансформатора:
в) превышений температуры обмоток и масла над воздухом;
r) массы масда и основных размеров расширителя.
7. Экономический расчет (гл. 1 и 3):
а) расчет расхода активных и конструктивных материалов;
б) ориентировочный расчет себестоимости и цены трансформа­
тора;
в) определение приведенных годовых затрат и оценка экономично­
сти рассчитанного трансформатора.
3.1. РАСЧЕТ ОСНОВНЫХ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН
ТРдНСФОРМдТОРОВ И дВТОТРдНСФОРМдТОРОВ
ния ос­
Расчет трансформатора начинается с определе
фазу и
одну
на
и
ност
новных электрических величин - мощ
ых
фазн
НН,
и
ВН
оне
стор
на
в
стержень, номинальных токо
токов и напряжений.
,
Мощность одной фазы трансформатора, кВ-А
(3.1)
SФ = S!m.
Мощность на одном стержне
(3.2)
S' = S!c,
) стержней транс­
где с - число активных (несущих обмотки
трансформатора,
ь
ност
мощ
форматора; S - номинальная
кВ-А.
S
Для трехобмоточного трансформатора под мощностью
аль­
номин
ний
значе
трех
следует понимать наибольшее из
ной мощности для обмоток ВН, СН и НН.
Номинальный (линейный) ток обмотки ВН, СН и НН
трехфазного трансформатора, А,
(3.3)
I = S · 10 3/(VЗ и),
ч­
где S - мощность трансформатора, кВ -А; для трехобмото
об­
й
ующе
етств
ного трансформатора S - мощность соотв
­
мотки ВН, СН или НН; И - номинальное линейное напря
В.
ки,
обмот
ющей
жение соответству
Для расщепленных обмоток S - мощность соответст­
вующей части обмотки. В трансформаторах классов напря­
жения 35-500 кВ, отвечающих требованиям современных
стандартов, расщепление обмотки производится на две ча­
сти, равные по мощности.
Номинальный ток однофазного трансформатора, А,
(3.4)
I = S, 103/И.
Фазный ток обмотки одного стержня трехфазного транс­
форматора, А:
при соединении обмоток в звезду или зигзаг
!ф
= /,
при соединении обмоток в треугольник
tФ = llV3,
где номинальный ток I определяется по (3.3).
7-510
(3.5)
(3.6)
97
Фазное напряжение трехфазного трансформатора, В:
при соединении в звезду или зигзаг
иф = U!VЗ,
(3.7)
при соединении в треугольник
VФ =V;
(3.8)
здесь U - номинальное линейное напряжение соответствую­
щей обмотки, В.
При соединении в зигзаг результирующее фазное напряжение об­
разуется геометри'lеским сложением напряжений двух частей обмот­
ки, находящихся на разных стержнях (рис. 3.1). В силовых трансфор­
маторах общего назнаtJения обе части обмотки на каждом стержне
имеют равное число витков. В этом случае фазное напряжение обра­
зуется суммой равных напряжений двух частей обмотки, сдвинутых на
60°. Напряжение одной части обмотки фазы при этом может быть по­
лучено из формулы
U1 = Uф/(2 cos 30°) = Uф!Vэ.
Общее число витков такой обмотки на одном стержне будет опре­
деляться не VФ, как при соеди11ении в звезду, а 2VФIY3, т, е. увели­
чится в 1,155 раза.
а)
6)
Рис. 3.1. Схема соединения в зигзаг:
о - общая схема: б - диаграмма фазных и линейных напряжений при разделе­
нии фазных обмоток на две равные части: в - то же, когда обмотки делятс11
на неравные части
98
При соединении в зигзаг обмотка фазы может разделяться на две
неравные части. В этом случае может быть получен поворот системы
фазных и линейных напряжений схемы на любой угол в зависимости от
того, в каком отношении находятся числа витков двух частей обмотки
фазы (рис. 3.1, в). При заданном угле ji обмотка каждой фазы должна
быть разделена в отношении
Если
W1
=
w 1 /(w1 + wz) = 2tg�/(tg� + Уз).
°
W2 и W1/(w1+w2)=1/2, то /i=30 .
Фазный ток и напряжение однофазного трансформатора
равны его номинальным току и напряжению. Ток и напря­
жение обмотки одного стержня в однофазном трансформа­
торе зависят от соединения обмоток стержней - последо­
вательного или параллельного. При последовательном
соединении обмоток двух стержней ток обмотки одного стер­
жня равен номинальному току, а напряжение - половине
номинального напряжения. При параллельном соединении
обмоток двух стержней ток обмотки одного стержня равен
половине номинального тока, а напряжение - номинально­
му напряжению. В обоих случаях предполагается, что числа
витков обмоток обоих стержней равны.
Для определения изоляционных промежутков между об­
мотками и другими токоведущими частями и заземленными
деталями трансформатора существенное значение имеют
испытательные напряжения, при которых проверяется
электрическая прочность* изоляции трансформатора. Эти
испытательные напряжения определяются по табл. 4.1 для
каждой обмотки трансформатора по ее классу напряжения.
Потери короткого замыкания, указанные в задании, да­
ют возможность определить активную составляющую на­
пряжения короткого замыкания, .% :
Ua= lфТк lOOmlф•IO-�= Рк 1
IOS
mlф·IO-�
ИФ
(3.9)
где Ри -В Вт; S-в кВ ,А.
Реактивная составляющая при заданном Ик определя­
ется по формуле
(3. 1 О)
* Здесь и далее электрическая прочность понимается как способ­
ность изоляции трансформатора и его частей выдерживать без повреж­
дений те воздействия электрического напряжения, которые возникают
при проведении испытаний, установленных нормативными документами
(ГОСТ, технические условия), и в эксплуатации,
1•
99
Расчет основных электрических величин для автотранс­
форматора имееr некоторые особенности. Типовая или рас­
четная мощность однофазного автотрансформатора
(3.11)
может быть определена по заданным проходной мощности
Sпpo :i: и номинальным напряжениям И и И':
-I
I'
А --
Рис. 3.3. Схема соединения об•
моток однофазного двухобмо•
точного понижающего авто•
трансформатора
Рис. 3.2. Схема соединения об•
моток однофазного двухобмо­
точного повышающего авто­
трансформатора
для повышающего автотрансформатора (рис. 3.2)
(3.12)
для понижающего автотрансформатора (рис. 3.3)
И-И'
Sт11 п = Supo:i: ---- = kвSnPox•
и
Коэффициент kв = (U'-U)/U' для повышающего или kв
,(U-U')/U для понижающего автотрансформатора, пока­
зывающий, какую долю составляют типовая (расчетная)
мощность Sтиа от проходной мощности Snpox, иногда назы­
вают коэффициентом выгодности автотрансформатора
.(kв< 1).
Для трехфазного автотрансформатора (рис. 3.4) с об­
мотками, соединенными в звезду, под И и V' в (3.12) сле­
дует понимать линейные напряжения. Соединение обмо­
ток в треугольник для силовых автотрансформаторов обыч­
но не применяется.
Коэффициент k в всегда меньше единицы и S тип <S прох ,
т. е. автотрансформаторная схема требует меньшей расчет)00'
Рис. 3.4. Схема соединения обмоток трех•
фазного двухобмоточного
повышающего
трансформатора
(1
А
ной мощности и, следовательно, ь
меньшего расхода материалов, а
также обладает более высоким
КПД, чем трансформаторная. При­
менение автотрансформаторов в
1'
этом отношении тем выгоднее, чем
ближе отношение U'/U к единице,
т. е. чем меньше изменяется напряжение сети при помощи
автотрансформатора.
Номинальные линейные токи для трехфазных и одно­
фазных автотрансформаторов рассчитываются, так же как
и для трансформаторов, по (3.3) и (3.4). Расчет токов от­
дельных обмоток со схемами по рис. 3.2 и 3.3 производится
по формулам:
для повышающего однофазного автотрансформатора
(рис. 3.2)
12 =1'; 11 =1-12 =1-l',
для понижающего однофазного автотрансформатора
(рис. 3.3)
12 =1; 11 =1-12 =1'-!.
Для трехфазного автотрансформатора с соединением
обмоток в звезду токи обмоток находятся также по эти!'.1
формулам. В том и другом случае / и /'-номинальные ли­
нейные токи автотрансформаторов, найденные по (3.3) 11
(3.4).
Напряжения отдельных обмоток И� и U2, В, для одно­
фазного автотрансформатора:
повышающего (рис. 3.2)
т
--
и1 = и; и2 = V' - и,
понижающего (рис. 3.3)
V1 =V'; V2 =И-U'.
Для трехфазного автотрансформатора с соединением
обмоток в звезду под U и U' в этих формулах следует по­
нимать фазные напряжения автотрансформатора:
и= u1i1Vз и и'= и�1Vз.
101
где U л и V�- номинальные линейные напряжения авто­
трансформатора по заданию.
Напряжение короткого замыкания Uк для автотранс­
форматора обычно задается как сетевое Uк,с, т. е. относи­
тельно большего из двух сетевых напряжений И и И'. При
расчете основных размеров автотрансформатора необхо­
димо знать расчетное напряжение ик,р, т. е. отнесенное к
напряжению одной из обмоток U 1 или U2. Для понижаю­
щего и повышающего автотрансформатора Uк,р может быть
найдено по формуле
Uк,р
=U
к,с
/k 8•
После определения расчетной мощности, токов и напря­
жений обмоток и расчетного напряжения короткого замы­
кания между обмотками ВН и СН расчет автотрансформа­
тора производится по этим данным так же, как и обычного
трансформатора.
Пример. Рассчитать основные электрические величины для пони­
жающего трехфазного трехобмоточного автотрансформатора с авто­
трансформаторной связью обмоток ВН и СН и трансформаторной свя•
зью обмоток ВН и НН, СН и НН по рис. 2.9, 6.
Проходная мощность Sopox=l00 000 кВ-А, мощности обмоток ВН
и СН при автотрансформаторной связи Sopox; мощность обмотки НН
О,5Sпрох, Номинальное напряжение: ВН 231 кВ; СН 121 кВ±8· 1,5 %;
НН 38,5 кВ. Схемы соединения обмоток: ВН и СН - У, НН - Д. На­
пряжения короткого замыкания Uк,с, приведенные к проходной мощ­
ности и отнесенные к сетевым напряжениям: ВН-СН 11 % ; ВН-НН
31 %; СН-НН 19 %.
Коэффициент выгодности
k8=( Uл - u;)!Uл =(231 - 121)/231= 0,476.
Типовая мощность Sтип=kвSпрох=О,476• 100 000=47 600 кВ,А;
мощность обмотки НН S нн = 50 ООО кВ• А. Расчетная мощность об•
мотки одного стержня для обмотки ВН и СН
S' =Sтипlс = 47 600/3 =15 867 кВ•А;
д.пя обмотки НН
S=0,5 Snpox/c=0,5·100 000/3=16 667 кВ•А.
Линейные токи
/ = Snpox·103/(Vз U) =100 ООО· 103/(Vз,231 ООО)= 250 А;
I' =Snpox' 108/(Vз U') = 100 ООО, 103/(Vз, 121 ООО)=480 А;
/лз =Sнн•IОЗ/ (Vзинн),,.. 50 000·1031(-VЗ·З8500)= 750 А.
102
Ток11 обмоток
/2
=1=250 А;
1 1=1'-!=480-250=230 А;
[z= l пз!Уз=750/Vз = 432 А.
Фазовые напряжения
И= U11 !Уз=231 ООО/Уз= 133 000 В;
и' =U�!Vз = 121 ооо!Vз = 69 700 в.
Напряжения обмоток
U1 = И'=69 700 В; U 2=И - U'=133 ООО - 69 700=63 300 В;
U3 =Инн=38 500 В.
и
Расчетное напряжение короткого замыкания между обмотками ВН
сн
и1<,р = U и,clk 8 = 11/0,476 = 23,1%.
Напряжения короткого замыкания между обмотками ВН и НН, СН
и НН, имеющими трансформаторную связь, не пересчитываются, но при
реально возможной нагрузке на обмотках ВН-НН или СН-НН, рав•
НОЙ 0,5, S прох будут равны: для ВН - НН 0,5-31 = 15,5 % и для
СН-НН 0,5-19=9,5 %.
3.3. ОСНОВНЫЕ РАЗМЕРЫ ТРАНСФОРМАТОРА
Магнитная система трансформатора является основой:
его конструкции. Выбор основных размеров магнитной си­
стемы вместе с основными размерами обмоток определяет
главные размеры активной части и всего трансформатора.
Рассмотрим двухобмоточный трансформатор с плоской маг­
нитной системой стержневого типа со стержнями, имеющи­
ми сечение в форме симметричной ступенчатой фигуры,
вписанной: в окружность, и с концентрическим расположе­
нием обмоток. Магнитная система такого трехфазного
трансформатора с обмотками схематически изображена на
рис. 3.5.
Диаметр d окружности, в которую вписано ступенчатое
сечение стержня, является одним из его основных разме­
ров. Вторым основным размером трансформатора явля­
ется осевой размер l (высота) его обмоток. Обычно обе
обмотки трансформатора имеют одинаковую высоту. Треть­
им основным размером трансформатора является средний
диаметр витка двух обмоток, или диаметр осевого канала
между обмотками d, 2, связывающий диаметр стержня с
103
радиальными размерами обмоток а1 и а 2 и осевого канала
между ними а 12.
Если эти три размера выбраны или известны, то осталь­
ные размеры, определяющие форму и объем магнитной си­
стемы и обмоток, например высота стержня lc, расстояние
Рис. 3.5. Основные размеры трансформатора
между осями соседних стержней С и т. д., могут быть най­
дены, если известны допустимые изоляционные расстояни>I
от обмоток ВН до заземленных частей и до других обмо­
ток (а1 2, а22, lo)
Два основных размера, относящихся к обмоткам d 12 и
lc, могут быть связаны отношением средней длины окруж­
ности канала между обмотками nd 12 к высоте обмотки l:
� = nd1/l.
(3. 13)
Приближенно произведение nd 12 можно приравнять к
средней длине витка двух обмоток nd 1 2�lв или lв /l=�­
Величина � определяет соотношение между диаметром
и высотой обмотки. Значение � может варьироваться в ши-
*.
* Основными размерами
104
MO)ll:HO
считать также d, lc, С.
роких пределах и практичес1ш изменяется в масляных и
сухих трансформаторах существующих серий в пределах
от I до 3,5. При этом меньшим значениям � соответствуют
трансформаторы относительно узкие и высокие, б6льшим­
широкие и низкие. Это наглядно показано на рис. 3.6, на
котором представлены два тран­
сформатора одинаковой мощно­
сти, одного класса напряжения,
рассчитанных при одинаковых
исходных данных (Вс, kc), с оди­
наковыми параметрами коротко­
го замыкания (Рк и Uк ) для зна­
чений �= 1,2 и 3,5.
Различным значениям � соот­ Рис. 3.6. Соотношение раз­
ветствуют и разные соотношения меров двух трансформато­
между массами активных мате­ ров с разными значениями�
риалов - стали магнитной систе­
мы и металла обмоток. Меньшим
значениям � соответствует меньшая масса стали и большая
масса металла обмоток. С увеличением � масса стали уве­
личивается, масса металла обмоток уменьшается. Таким об­
разом, выбор � существенно влияет не только на соотноше­
ние размеров трансформатора, но и на соотношение масс
активных и других материалов, а следовательно, и на стои­
мость трансформатора.
Вместе с этим изменение � сказывается и на техни­
ческих параметрах трансформатора: потерях и токе холо­
стого хода, механической прочности и нагревостойкости
обмоток, габаритных размерах.
Для вывода формулы, связывающей диаметр стержня
трансформатора с его мощностью, воспользуемся следую­
щими соотношениями, известными из теории трансформа­
торов.
Мощность трансформатора на один стержень, кВ• А,
S' = И/- 10-3 •
(3.14)
Реактивная составляющая напряжения короткого за­
мыкания, % ,
Up = 7 ,9fJwnd12apkp 10_4'
нли
ивl
_ ----7,9f!w�apkp 10_4
Up•
Uв
(3. 15)
105
где �=nd12/l; ар =а12+ (а�+а2)/З; kp - коэффициент при­
ведения идеального поля рассеяния к реальному {коэффи­
циент Роговского ); линейные размеры выражены в метрах.
Одновременно заметим, что напряжение витка транс­
форматора, В, может быть записано в виде
(3.16)
U8 = 4 ,4 4 fBrPc ,
где Е е -максимальная индукция в стержне, Тл; Пс =
=kс:n:d2/4-активное сечение стержня, м 2; kс-коэффициент
заполнения площади круга сталью согласно § 2.3.
Заменив в (3.14) напряжение обмотки И произведени­
ем U8 W и подставив значение тока обмотки /, определен­
ное из (3.15), и значение Uв по (3.16), получим
(4,44fBcnd 2kc)�up•IO
'= UвWUpUв·104·10-3
S
=
.
7 ,9 f�apkp·4;
7 ,9/wfюpkp
Проведя сокращения и решив это уравнение относитель­
но d, имеем окончательно
4 1 S'fюpkp
(3.17)
d = О' 507
v fирB2сkс2'
где
0,507
= -V 7,9/(n2• l,ll2 • 10).
Формула (3.17) позволяет определить главный размер
трансформатора .:..... диаметр стержня его магнитной сис­
темы.
Величины, входящие в подкоренное выражение форму­
лы (3.17), впервые предложенной Г. Н. Петровым, можно
подразделить на три категории: 1) величины, заданные при
расчете, - мощность обмоток на одном стержне трансфор­
матора S', кВ. А, частота сети f, Гц, и реактивная состав­
ляющая напряжения короткого замыкания Up, % ; 2) вели•
чины, выбираемые при расчете, - отношение длины окруж­
ности канала между обмотками (средней длины витка двух
обмоток) к высоте обмотки �. мак<;имальная индукция в
стержне В с, Тл, и коэффициент заполнения активной сталью
площади круга, описанного около сеч�ния стержня kc ; 3)
величины, определяемые в ходе последующего расчета, nриведенная ширина канала рассеяния ар, м, и коэффици­
ент приведения идеализированного поля рассеяния к ре­
альному kp (коэффициент Роговского).
Таким образом, определение диаметра стержня по
(3.17) связано с выбором некоторых исходных данных (�,
Вс, kc ) и предварительным определением данных обмоток
106
трансформатора, получаемых обычно после завершения
расчета обмоток ар и kp. Выбор исходных данных (�, В с ,
kc) может быть сделан на основании исследования ряда
вариантов (см. § 3.5-3.7) или путем использования зара­
нее разработанных рекомендаций (см. § 3. 7). Для опреде­
ления ар и k p должны применяться приближенные мето.s.ы.
3.4. МЕТОДЫ РАСЧЕТА ТРАНСФОРМАТОРОВ.
ОСНОВЫ OliOliЩEHHOГO МЕТОДА
Теория и практика проектирования силовых трансфор­
маторов позволили установить, что выбор исходных дан­
ных расчета оказывает существенное влияние на результа­
ты расчета масс основных материалов трансформатора,
параметров холостого хода и короткого замыкания и стои­
мости. Поэтому выбор ис-ходных данных должен произво­
диться с учетом тех параметров, которые необходимо полу­
чить или которые являются оптимальными для рассчиты­
ваемого трансформатора.
Помимо тех данных, которые обычно включаются в за­
дание на расчет трансформатора (см. § 3.1), необходимо
выбрать и ряд других, относящихся к магнитной системе,
обмоткам и изоляции трансформатора.
Для расчета магнитной системы необходимо выбрать
ее принципиальную конструкцию - плоскую или простран­
ственную, шихтованную из пластин или навитую из ленты.
Следует также установить форму сечения ярма, число сту­
пеней в стержне и ярме, форму стыков в углах магнитной
системы, способ прессовки стержней и ярм. Должны быть
выбраны марка стали, способ изоляции пластин (ленты).
Для обмоток должны быть выбраны их принципиал·ь­
ные конструкции - непрерывные катушечные, многослой­
ные цилиндрические, винтовые и т. п., а также металл про­
вода - медь или алюминий и его изоляция.
Существенное значение имеет выбор главной изоляции
обмоток, т. е. их изоляции от других обмоток и от зазем­
ленных частей. Необходимо выбрать форму конструктив­
ных деталей изоляции, их материал и размеры, а также и
размеры изоляционных промежутков, масляных или воз­
душных. Эти данные главной изоляции обмоток должны
быть разработаны и надежно проверены экспериментально
до начала расчета трансформатора.
При выборе исходных данных должна быть учтена тех­
нология изготовления и обработки магнитной системы об107
моток, изоляции, существующая в данное время или та, ко­
�орая должна быть вновь создана.
После выбора исходных данных может быть произведен
полный расчет трансформатора с подробным расчетом маг­
нитной системы и обмоток, с точным определением пара­
метров холостого хода и короткого замыкания. Поскольку
для выбора оптимального варианта надо рассмотреть их
большое число, эта работа является чрезвычайно трудоем­
кой даже при условии использования ЭВМ. Поэтому возни­
кает мысль, в целях экономии расчетной работы и уско­
рения проектирования, разделить расчет на два этапа предварительного и окончательного расчета, что облегчило
бы решение этой задачи.
Для этапа предварительного проектирования желатель­
но иметь такой метод, который позволил бы вести предвари­
тельный расчет в обобщенном виде без углубления в мел­
кие детали, был достаточно простым и быстрым, обладал
приемлемой точностью и позволял оценивать результаты с
разных точек зрения, в том числе и с экономической. Та­
кой метод должен давать не одно решение, а полную кар­
тину изменения масс активных материалов, эксплуатацион­
ных и экономических параметров трансформатора при из­
менении любых исходных данных и допускать выбор
оптимального решения путем экономической оценки рас­
считанных вариантов с учетом таких факторов, как прин­
ципиальная конструкция магнитной системы и обмото к,
марка электротехнической стали, материал обмоток (мед­
ные или алюминиевые), требования стандартов и др.
Обобщенный метод расчета мыслится как метод опре­
деления основных данных трансформатора - основных
размеров магнитной системы и обмоток, масс активны х
материалов, стоимости трансформатора, параметров холо­
стого хода и короткого замыкания и некоторых других по­
казателей на предварительной стадии расчета. В резуль­
тате применения этого метода должна быть получена воз­
можность выбора оптимального варианта, иногда несколь­
ких вариа.нтов, для дальнейшей детальной расчетной и
конструктивной разработки. Для того чтобы обобщенный
метод расчета силовых трансформаторов давал достаточ­
но точные результаты, он должен быть основан на положе­
ния х общей теории трансформаторов и теории проектиро­
вания трансформаторов .
В качестве независимых переменных могут быть выбра­
ны различные величины, например отно шение основных раз108
меров �. диаметр стержня мапштной системы d, плотность
тока в обмотках !, радиальные размеры обмоток и др. Для
лучшей сходимости результатов расчета желательно выб­
рать такие независимые переменные, изменение которых
оказывает наибольшее влияние на другие данные трансфор�
матора и которые дают возможность более ясного и на­
глядного представления о всем облике трансформатора.
В наибольшей степени этим требованиям отвечают диаметр
стержня магнитной системы d и отношение основных раз­
меров обмоток �В любом таком методе неизбежно использование некото­
рых допущений и некоторых величин, определяемых или
оцениваемых приближенно. Число таких величин должно
быть минимальным, а сами эти величины должны быть
такими, чтобы при существенных изменениях в исходных
данных расчета они изменялись незначительно и чтобы
реально возможная ошибка в их приближенном опреде­
лении в минимальной степени влияла на результат расчета.
Обобщенный метод расчета трансформатора должен
дать возможность найти достаточно простые и точные ма­
тематические связи между заданными величинами (мощ­
ность трансформатора, частота, класс напряжения, изо­
ляционные расстояния в главной изоляции), величинами,
выбираемыми в начале расчета (индукция в магнитной
системе, коэффициент заполнения сталью, соотношение ос­
новных размеров), основными размерами и стоимостью
трансформатора, а также его эксплуатационными пара­
метрами, т. е. параметрами холостого хода и короткого за­
мьшания. Желательно, чтобы обобщенный метод, отвечая
всем вышеизложенным требованиям, давал возможность
наглядного графического представления изменения разме­
ров, масс активных материалов и основных параметров
трансформатора в зависимости от избранных независимых
переменных.
Метод должен быть достаточно универсальным для
обобщенного расчета силовых трансформаторов в широком
диапазоне мощностей - масляных и сухих, трехфазных и
однофазных, двухобмоточных и трехобмоточных, с плоски­
ми и пространственными магнитными системами из холод­
нокатаной и горячекатаной электротехнической стали лю­
бой марки, с обмотками из медного или алюминиевого про­
вода.
Следует иметь в виду, что любой обобщенный метод
расчета является приближенным и что при полном pactteтe
109
магнитной системы и обмоток неизбежны некоторые откло­
нения от первоначально намеченных данных, связанные с
необходимостью выбирать диаметр стержня из нормализо­
ванного ряда, округлять число витков до ближайшего цело­
го числа, считаться с существующим сортаментом обмоточ­
ных проводов, наличием стандартных деталей и т. д. При­
менение обобщенного метода всегда позволяет найти
оптимальное решение задачи при минимальном числе рас­
сматриваемых вариантов и времени, необходимом на их
исследование.
При практическом использовании метод должен допус­
кать возможность учета требуемых параметров трансфор­
матора путем включения их в прямом или скрытом виде в
исходные данные или в основные расчетные формулы так,
чтобы в результате расчета был получен трансформатор с
теми именно свойствами или параметрами, которые требу­
ются по заданию. Метод должен давать возможность ис­
следования влияния тех или иных исходных данных или
параметров на массы активных материалов, параметры хо­
лостого хода и короткого замыкания, размеры трансфор­
матора и другие его данные.
После выбора оптимального варианта по обобщенному
методу для этого варианта, а иногда и двух-трех ближай­
ших проводится полный расчет с установлением всех раз­
меров магнитной системы, обмоток и основных данных си­
стемы охлаждения, полным расчетом параметров коротко­
го замыкания и холостого хода и разработкой конструк­
ции.
При расчете новых серий силовых трансформаторов па­
раметры короткого замыкания и холостого хода обычно не
задаются заранее и в процессе предварительного расчета
решаются совместно две задачи - для каждого типа тран­
сформаторов серии устанавливаются оптимальные разме­
ры при оптима,1ьных эксплуатационных параметрах, а
именно потерях короткого замыкания и холостого хода,
которые должны обеспечивать наименьшую стоимость
трансформации энергии, т. е. наиболее экономичную рабо­
ту трансформатора в эксплуатации с учетом стоимости
трансформатора, его установки и всех эксплуатационных
затрат, включая потери энергии за определенный проме­
жуток времени.
В большинстве случаев при проектировании новых се­
рий выбор активных материалов и конструктивных форм
магнитной системы, обмоток и изоляции производится по
flO
соображениям, независимым от расчетных данных транс­
форматоров серии, чем существенно упрощается задача
расчета. В некоторых случаях при расчете серии произво­
дится сравнение двух и более различных решений, напри­
мер плоской и пространственной магнитных систем, мед­
ных и алюминиевых обмоток и т. д. Существенно упроща­
ется задача при расчете отдельного трансформатора изве­
стной серии с заданными параметрами холостого хода и
короткого замыкания (см.§ 3.5).
Основным законом, на котором базируется проектиро­
вание трансформаторов, является общеизвестный закон,
связывающий мощность трансформатора с его линейными
размерами*. Рассмотрим ряд типов трансформаторов оп­
ределенн�rо назначения и конструкции, с одинаковыми чис­
лом фаз, частотой, числом обмоток, одного класса напря­
жения, с одним видом регулирования напряжения и одним
видом охлаждения, различных мощностей, нарастающих по
определенной шкале в ограниченном диапазоне. Сделаем
два допущения. Предположим, что в пределах всего ряда
соотношения между отдельными размерами трансформа­
торов сохраняются постоянными, т. е. что магнитные си­
стемы и обмотки всех трансформаторов данного ряда пред­
ставляют собой геометрически подобные фигуры. Далее
предположим, что электромагнитные нагрузки активных
материалов - индукция в магнитной системе и плотность
тока в обмотках трансформатора - в пределах всего ряда
также остаются неизменными. Для ряда трансформаторов,
целенаправленно спроектированных и отвечающих выше­
упомянутым условиям, эти допущения являются вполне
правомерными, хотя отдельные типы трансформаторов ря­
да могут несколько отклоняться от этих соотношений.
Обращаясь к общей теории трансформаторов, можно
записать:
мощность обмоток одного стержня трансформатора
S'
= Ul,
где И-напряжение обмотки стержня; /-ток обмотки стер­
Жliя.
Заменяя И=ив w и l=IП, где ив - напряжение одного
витка; w - число витков обмотки стержня; J - плотность
* Некоторые положения этого закона установлены М. О. Доливо­
Добровольским; полная формулировка закона принадлежит М. Видма­
ру.
] 11
тока в обмотках и П-сечение одного витка обмотки, полу­
чаем S'=u 0 wJП.
Далее, используя ( 3.16) и выражение для активного
сечения стержня Пс =nd 2 k c /4, находим
S' = (l,llnfkc )(BcJ)(d2wП).
(3.18)
Первая и вторая скобки правой части этого выражения
для данной серии могут быть заменены постоянным коэф•
фициентом.
Тогда мощность трансформатора, имеющего с активных,
т. е. несущих, обмотки стержней,
S = cS' = k (d2wП).
(3.19)
Произведение w П представляет собой площадь сечения
витков обмотки, т. е. величину, пропорциональную квадра­
ту линейного размера трансформатора. Таким образом, все
выражение, стоящее в скобках, d2 wП, поскольку соотно­
шение линейных размеров остается в пределах ряда неиз­
менным, оказывается пропорциональным любому линейно­
му размеру в четвертой степени, или
S ~ 14,
(3.20)
откуда следует, что линейные размеры трансформатора
возрастают пропорционально корню четвертой степени из
мощности,
(3.21)
Электродвижущая сила одного витка обмотки ив про•
порциональна d 2 ~ 1 2 , или
U8 ~ S1 12,
(3.22)
т. е. возрастает с ростом мощности трансформатора.
Масса активных материалов трансформатора (стали
G ст и металла обмоток Go ) возрастает пропорционально
кубу его линейных размеров, или
3
G � Р ~ S314•
(3.23)
Расход активных материалов на единицу мощности
трансформатора изменяется пропорционально
(3.24)
g = 01s � sз141s � 11s1 14,
т. е. падает с ростом мощности. Потери в активных мате­
риалах стали магнитной системы и металле обмоток "l.P
при сохранении неизменных электромагнитных нагрузок
112
пропорциональны их массам или объемам, и, следователь­
но, полные потери
"2.Р ~ SЗ/4,
(3.25)
потери на единицу мощности
Р = J:.PJs ~ sз14;s � 11s114,
(3.26)
т. е. потери на единицу мощности ( 1 кВ• А) падают вместе
с ростом мощности трансформатора, а КПД трансформа­
тора соответственно возрастает.
Внешняя, охлаждаемая воздухом поверхность транс­
форматора естественно растет пропорционально квадрату
линейных размеров ПO ~ l 2 ~ s 112, а потери q, отнесенные к
единице поверхности, также возрастают
q = "2.Р!По ~ �3/4/Sl/2� SI/\
(3.27)
Выведенные
выше пропорциональные зависимости
показывают, что увеличение мощности
трансформатора в одной единице является экономически
выгодным потому, что приводит к уменьшению удельного
расхода материала на 1 кВ• А мощности и повышению
КПД. В то же время из (3.27) следует, что естественный
рост охлаждаемой поверхности трансформатора отстает от
роста его потерь, и, следовательно, с ростом мощности
трансформатора усложняется решение проблемы его ох­
лаждения. При этом с ростом номинальной мощности тран­
сформатора необходимо искусственно увР.личивать охлаж­
даемую поверхность бака путем установки охлаждающих
труб или подвески· радиаторов, а затем усиливать циркуля­
-цию охлаждающего воздуха при помощи вентиляторов и
масла при помощи насосов (см. § 9.2).
Поверхность охлаждения обмоток с ростом мощности
трансформатора, естественно, возрастает медленнее, чем
их потери. Для обеспечения надлежащего охлаждения об­
моток искусственно развивается их поверхность охлажде­
ния введением осевых и радиальных масляных каналов и
охлаждение форсируется путем принудительного движения
масла в контуре обмотки - бак охладителя.
С. ростом мощности трансформатора возрастают его
масса и внешние размеры (габариты), что при мощностях
современных трансформаторов, достигающих сотен тысяч
киловольт-ампер, приводит к затруднениям при перевозке
трансформаторов по железным дорогам. Для упрощения
решения этого вопроса часто прибегают к расщеплению
,(3.24) и (3.26)
8-510
113
мощной трехфазной трансформаторной установки на от­
дельные однофазные трансформаторы, а в некоторых слу­
чаях и к дальнейшему расщеплению обмотки однофазных
трансформаторов между несколькими стержнями (см.
§ 2.1). Такое расщепление является невыгодным с точки
зрения удельного расхода материалов и КПД.
Допустим, что трехфазный трансформатор мощностью
S нужно заменить тремя однофазными той же общей мощ­
ностью. В трехфазном трансформаторе с магнитной систе­
мой по схеме рис. 2.5, д мощность на один стержень s; =
=S/3. В однофазном двухстержневом трансформаторе с
магнитной системой по схеме рис. 2.5, а s;=S/(2-3) =S/6.
Отношение удельного расхода активных материалов для
двух рассматриваемых случаев составит по (3.24)
')1/4
'
g1 /g3 = ( SJ!S1
= (2) 1/4 = 1,19,
т. е. удельный расход активных материалов при замене
трехфазного трансформатора тремя однофазными двух­
стержневыми возрастает на 19 % . В таком же отношении
возрастают и полные потери. Расщепление мощности одно­
фазного трансформатора между тремя стержнями, напри­
мер по схеме рис. 2.5, г, приводит принципиально к тем же
результатам. Замена трех стержней трехфазной магнитной
системы девятью стержнями трех однофазных систем при­
водит к увеличению удельного расхода материалов в от­
ношении (9/3) 1 1 4 = 1,32.
Относительная невыгодность расщепления мощности
заставляет трансформаторостроителей в СССР и за гра­
ницей искать новые. пути создания трехфазных трансфор­
маторов большой мощности, допускающих по массе и габа­
ритам перевозку по железным дорогам, взамен выпускав­
шихся ранее однофазных трансформаторов. В последнем
десятилетии о·rечественными заводами выпущены трехфаз­
ные трансформаторы с мощностью в одной конструктивной
единице 630 ООО, 1 ООО ООО и 1 250 ООО кВ -А класса напря­
жения 330 кВ.
Следует отметить, что соотношения (3.20)-(3.27) вы­
ведены независимо от реальных значений мощностей тран­
сформаторов исследуемого ряда, и поэтому эти соотноше­
ния являются справедливыми для всех силовых трансфор­
маторов.
В реальных современных сериях силовых трансформа­
торов предположение геометрического подобия фигур маr114
нитных систем и обмоток практически подтверждается в
пределах отдельных серий и несколько нарушается при
рассмотрении различных серий, взятых в другом диапазоне
шкалы мощностей и отличающихся классом напряжения
или системой охлаждения. Выведенные выше соотношения
тем не менее оказываются достаточно точными как для по­
лучения некоторых обобщенных выводов о законах изме­
нения размеров, масс активных материалов, потерь н
некоторых удельных соотношений в трансформаторах, так
и для некоторых приближенных пересчетов. Это наглядно
показано в табл. 3.1, в которой приведены некоторые дан­
ные отдельных типов трансформаторов различных мощно­
стей.
Та б л и ц а 3.1. Изменение размеров стержня и обмоток, удельной
массы стали и металла обмоток и удельных потерь, отнесенных к
номинальной мощности, для современных трехфазных двухобмоточных
масляных трансформаторов с алюминиевыми обмотками
Параметры
Класс напряжения, кВ
Регулирование напряжения
Диаметр стержня, м
Высота обмотки, мм
Расход стали, кг/ (кВ, А)
Расход
металла
обмоток,
кг/(кВ ,А)
Потерн короткого за мыкания,
Вт/(кВ• А)
хода,
холостого
Потерн
Вт/(кВ -А)
�
Мощность, кВ. А
63
10
ПБВ
о, 11
0,395
2,64
0,67
1000
35
РПН
35
ПБВ
0,22
0,765
1,28
0 } 325
0,48
1,53
0,795
о, 132
2,06
1,24
21 ,3
11,67
1,26
1,40
4,57
16 ООО
5,61
1,46
Выпуск силовых трансформаторов заводами и общее
число трансформаторов, установленных в сетях, принято
оценивать по их общей суммарной мощности. При необхо­
димости оценить общий расход материалов на изготовле­
ние этих трансформаторов следует учесть не только их
суммарную мощность, но также и удельный расход мате­
риалов. Представление о реальном расходе материалов на
производство энергетических трансформаторов общего на­
значения дает табл. 3.2, где учтены как общий ориентиро­
вочный выпуск силовых трансформаторов общего назначе­
ния различных мощностей, так и удельный расход мате­
риалов, изменяющийся с изменением мощности.
8*
115
Т а б л и ц а 3.2. Распределение выпуска трансформаторов и расхода
активных материалов в процентах от общего объема для силовых
Ррансформаторов общего назначения
Расход активных материалов
М1>щность, кВ. А
ВН, кВ
Объем выпуска
rю суммарной
мощности, %
До 100
100-630
1000-6300
6300-80 ООО
40 000-1 ООО ООО
Всего...•
10
23,0
40,0
43,0
5,6
22,0
49,4
100
8,0
20,0
32,0
100
7,0
20,0
30,0
100
35
110
110-750
-
сталь, %
1
Металл обмо•
ток. %
Из данных табл. 3.2 следует, что около 50 % активных
материалов вкладывается в силовые трансформаторы об­
щего назначения распределительной сети мощностью от 25
до 6300 кВ . А, суммарная мощность которых составляет
28,6 % общего выпуска. В тех же трансформаторах воз­
никает около 50 % всех потерь в трансформаторах энерrс•
системы.
Если учесть также трансформаторы специального на3начения - для электропечных, выпрямительных и других
установок, то общий расход материалов и общая сумма
аотерь в трансформаторах мощностью до 6300 кВ• А воз­
растает до 50 %. При этом общая стоимость этих потерь
составит более 50 % стоимости потерь всех трансформато­
ров сети, потому что цена 1 кВт потерь возрастает по мере
удаления трансформатора от электростанции, питающей
сеть. Вследствие этого проектирование массовых серий
трансформаторов мощностью до 6300 кВ-А и экономное
расходование в них активных и других материалов заслу­
живают особого внимания проектировщиков.
Э.S. ПРОЕКТИРОВАНИЕ ОТДЕЛЬНОГО ТРАНСФОРМАТОРА
ПО О&О&ЩЕННОМУ МЕТОДУ
Задача проектирования трансформатора может быть
поставлена различным образом. Если необходимо рассчи­
тать трансформатор применительно к требованиям стан­
дарта или трансформатор, являющийся промежуточным
типом в уже известной серии, то для такого трансформа­
тора можно считать заданными не только мощность, час116
тоту , число фаз и напряжения обмоток, но также и пара­
метры холостого хода и короткого замыкания. Это налага­
ет определенные ограничения на проект трансформатора,
что, впрочем, не затрудняет, а облегчает задачу проекти­
ровщика, потому что сокращает число необходимых рас­
четных вариантов.
Так, может быть поставлена задача при необходимости
перепроектировать один из трансформаторов серии, чтобы
привести его в соответствие с требованиями нового стан­
дарта или при замене одного из активных материалов дру­
гим, например одной марки стали другой или медных об­
моток алюминиевыми.
При проектировании новой серии трансформаторов за­
дача осложняется тем, что при расчете каждого трансфор­
матора необходимо установить не только его оптимальные
размеры, но также и параметры холостого хода и корот­
кого замыкания. Решение этой задачи, достаточно слож­
ной и требующей выполнения большого числа расчетных
вариантов, может быть получено путем проведения ряда
расчетов каждого трансформатора серии с определенными
ограничениями его параметров и варьированием этих огра­
ничений. Методика проектирования новых серий подробно
рассмотрена в гл. 12. При этом проектирование отдельного
трансформатора становится одним из элементов проекти­
рования трансформатора новой серии.
При проектировании отдельного трансформатора долж­
ны быть заданы значения ряда параметров и некоторые
условия. К ним относятся: мощность трансформатора, ча­
стота, число фаз, напряжения обмоток, режим нагрузки,
место установки, система охлаждения, некоторые требова­
ния стандарта, а также параметры холостого хода и корот­
кого замыкания. Некоторые данные должны быть выбраны
до начала расчета, а именно: принципиальная конструк­
ция магнитной системы, материал магнитной системы (мар­
ка электротехнической стали), способ изоляции пластин и
индукция в стержнях и ярмах, принципиальная конструк­
ция обмоток, материал обмоток (медный или алюминиевый
провод), конструкция изоляции и размеры изоляционных
промежутков изоляции обмоток.
Все выбираемые величины и данные могут быть опре­
делены на основании опыта проектирования и выпуска
трансформаторов существующих серий с учетом примене­
ния новых улучшенных материалов, использования резуль­
татов новых исследований в области трансформаторо117
строения, применения новых конструкций магнитных си­
стем, новых и улучшенных конструкций обмоток и их
изоляции, новых систем охлаждения и новых прогрессив­
ных технологических процессов в производстве трансфор­
маторов. Все выбираемые и заданные величины составля­
ют при этом исходные данные расчета трансформатора.
При проектировании отдельного трансформатора при­
менение обобщенного метода представляет интерес преж­
де всего для расчета трансформатора наиболее распрост­
раненной конструкции, т. е. для трехфазного силового двух­
обмоточного трансформатора с плоской несимметричной
магнитной системой, собираемой из пластин холодноката­
ной или горячекатаной электротехнической стали по рис. 3.5,
с катушечными или многослойными обмотками из медного
или алюминиевого обмоточного провода и с главной изо­
ляцией в виде масляных или воздушных каналов с барье­
рами из твердого диэлектрика. Полагая задачей, решаемой
этим методом, получение трансформатора с определенным
напряжением короткого замыкания и определенными уров­
нями потерь и тока холостого хода и потерь короткого за­
мыкания, т. е. трансформатора, входящего в известную се­
рию или отвечающего требованиям ГОСТ, в основу метода
положим выражение (3.17), связывающее основной размер
трансформатора d с основными исходными данными рас­
чета. При этом мощность трансформатора на один стер­
жень S', кВ• А, частота сети f, Гц, и реактивная составляю­
щая напряжения короткого замыкания Up, %, считаются
заданными.
Индукция в стержне В с обычно выбирается примени­
тельно к выбранной марке стали и установившейся техно­
логии производства (технология заготовки пластин, удале­
ния заусенцев, наличие или отсутствие отжига пластин,
технология сборки магнитной системы). В пределах дан­
ной серии магнитная индукция В с обычно остается практи­
чески неизменной. Таким образом, на первом этапе иссле­
дования можно считать Вс = const ( см. § 2.2).
В дальнейшем ( см. § 11.1) вопрос о влиянии выбора В с
на массы активных материалов и параметры трансформа­
тора будет исследован особо.
Коэффициент заполнения сечения стержня сталью k c
представляет произведение двух коэффициентов
kc = k"pk.�,
где k кр - отношение площади ступенчатой фигуры попереч118
ноrо сечения стержня к площади круга с диаметром d, а
kз - отношение площади активного сечения стержня (чи­
сто й стали) к площади ступенчатой фигуры сечения стерж­
н я. Коэффициент kкр зависит от числа и размеров ступеней
в сечении стержня (см. табл. 2.5, 2.6 и 8.1-8.5), а kз от толщины пластин стали и способа их изоляции (см.
табл. 2.2). Для трансформатора каждого типа конструк­
ция, материал и технология изготовления магнитной систе­
мы, а следовательно, и k c обычно выбираются до начала
расчета на основании имеющегося опыта и задачи, по­
ставленной при проектировании трансформатора. При этом
всегда стремятся получить наибольшее возможное значе­
ние k c , Поэтому при исследовании влияния основных ис­
ходных данных на параметры трансформатора k c для этого
трансформатора можно считать величиной постоянной. При
расчете серии k c будет несколько изменяться от одного
типа трансформаторов к другому, сохраняясь постоянным
во всех вариантах для каждого типа. В дальнейшем (см.
§ 11.2) вопрос о влиянии выбранного k c на массы актив­
ных материалов и параметры трансформатора будет ис­
следован более подробно.
В отличие от Вс и kc соотношение основных размеров �
при расчете трансформатора может варьироваться в очень
широких пределах. Оптимальное значение � зависит при
этом как от других исходных данных расчета, так и от по­
ставленной задачи - получения определенных параметров,
минимальной стоимости трансформатора, наиболее эконо­
мичной его работы в эксплуатации и т. д.
При расчете основных размеров трансформатора, вхо­
дящего в известную серию, будем предполагать, что такие
его параметры, как потери и напряжение короткого замы­
кания, потери и ток холостого хода, заданы. В этом случае
экономичность работы трансформатора в эксплуатации
определяется заданными параметрами и может не рассмат­
риваться. Оптимальным значением � при его варьировании
в достаточно широких пределах будет то, при котором
стоимость трансформатора окажется минимальной.
В расчетную формулу (3.17) кроме заданных и выби­
раемых при начале расчета величин входят также величи­
ны, определяемые в ходе последующего расчета, а р и k p .
Из этих двух величин коэффициент приведения идеального
поля рассеяния к реальному (коэффициент Роговского k p )
для широкого диапазона мощностей и напряжений транс­
форматоров с концентрическими обмотками изменяется в
119
очень узких пределах - от 0,93 до 0,97 и может быть при­
нят постоянным и равным 0,95. Ширина приведенного ка­
нала рассеяния может быть приближенно, но с достаточ­
ной точностью определена по обобщенным данным суще­
ствующих серий. Этот канал состоит из двух частей:
ар = а12 + (а1 + а,)/3.
Первое из этих слагаемых- изоляционный промежу­
-rок между обмотками ВН и НН - а12 определяется по ис­
пытательному напряжению обмотки ВН и для данного
класса изоляции обмоток является неизменным. Этот про­
межуток, выраженный в метрах, может быть принят рав­
ным
,
-3
а12 = а12 • 10 ,
где а 1;-- промежуток, мм, найденный по табл. 4.5 для мас­
ляных трансформаторов или по табл. 4.15 для трансформа­
то1юв с естественным воздушным охлаждением.
Второе слагаемое- приведенная ширина двух обмоток
(а 1 +_а 2 ) /3- может быть найдено лишь после окончания
расчета обмоток по их радиальным размерам и в обобщен­
ном методе предварительного расчета может определяться
только приближенно. Это слагаемое является одним из ли­
нейных размеров трансформатора и зависит, как и все ли­
нейные размеры, от мощности трансформатора. Предпола­
гая для данной серии изменение линейных размеров с из­
менением мощности согласно (3.21), делаем первое допу­
щение о возможности приближенного, но с достаточной
точностью, определения приведенной ширины двух обмо­
ток по формуле
(а1 + а,)/3 � k VS' · 10-2,
(3.28)
где k в зависимости от мощности трансформатора, металла
обмоток, напряжения обмотки ВН и потерь короткого за­
мыкания Рк может быть найдено по табл. 3.3.
Это первое допущение, позволяющее приближенно оп­
ределить сумму радиальных размеров обмоток на стадии
предварительного расчета на основе принципиального вы­
ражения (3.21).
Формула (3.28) позволяет определить (а 1 +а2)/3 при ­
ближенно на стадии предварительного расчета, предпола­
гая эту величину постоянной при изменении �- В действи­
тельности с ростом � радиальные размеры обмоток также
несколько возрастают. С учетом того, что (а 1 .±а2)/3 входит
120
Таблиц а 3.3. Значения коэффициента k в формуле (3.28) для
масляных трехфазных двухобмоточных трансформаторов ПБВ с
медными обмотками и потерями короткого замыкания по ГОСТ
Мощность трансформатора, кВ-А
До 250
400-630
1000-6300
1 О 000-80 ООО
Класс напряжения, кВ
10
35
0,63
0,53
0,51-0,43
0,65-0,58
0,52-0,48
0,48-0,46
110
0,68-0,58
Пр и м е ч а и н я: 1. Для обмоток из алюминиевого провода значение k,
найденное из таблицы или по прим. 3, умножить на 1,25.
2. Для обмоток НН из алюминиевой ленты трансформаторов мощностью
100-1000 кВ•А значения k определять, как для обмоток из алюминиевого про­
вода.
3. Для сухих трансформаторов с медными обмотками мощностью 10-160 кВ·А
принимать k=0,8-;-0,74; мощностью 160-1600 кВ•А класса напряжения 10 кВ - k­
=0,58-;-0,48.
4. Для трехобмоточных тра!IСформаторов класса напряжения 110 кВ лрини•
мать k для напряжения обмоток 35 кВ (для обмоток СН-НН).
5. Для трансформаторов с РПН значения k, полученные нз таблицы, умно­
жить на 1,1.
6. При отклонении заданных потерь короткого замыкания от потерь, уста.
новленных соответствующим ГОСТ, на ± 10 % значение k, полученное из табли­
цы, умножить соответственно на 0,96 или на 1,04.
7. Для трансформаторов класса напряжения 110 кВ с РПН по схеме рис.
6.9, в, рассчитанных при значениях �. пониженных против данных табл. 3.12 , при
расчете по§ 10.3 значения k, полученные из таблицы, умножить на 0,7.
слагаемым в ар, где первое слагаемое а 12 постоянно, а так­
же что в (3.17) ар умножается на коэффициент kp, кото­
рый с ростом � несколько уменьшается, предполагаемое
постоянство (а1 +а2)/3 по существу является постоянст­
вом произведения a pkp.
Для более точного определения (а 1 + а2)/3, например
при проектировании новой серии трансформаторов, значи­
тельно отличающихся от существующих параметрами, сле­
дует пользоваться материалами§ 12.2.
В результате сделанных замечаний первой задачей яв­
ляется исследование связей между величиной � и парамет­
рами трансформатора. Для решения этой задачи обратим­
ся к выражению _(3.17), которое может быть представлена
в виде
d=AX,
(3.29)
где А можно считать величиной постоянной,
4 /
А= 0,507 V
(3.30)
(3.31)
121
Определим массу активной стали трансформатора, раз­
делив магнитную систему на две части - стержни и ярма
и подсчитав массу каждой части отдельно.
Масса стали в стержнях .( см. рис. 3.5)
Ос = cflc 'Ycт (l + 2lo) =С�� kс 'Уст ( п: 12
+ 2l0),
(3.32)
где с - число активных (несущих обмотки ) стержней; для
трехфазного стержневого трансформатора с=3, для одно­
фазного с=2; Пс - активное сечение стали стержня, м 2;
'\'ст - плотность стали: для холоднокатаной стали '\'ст=
= 7650 кг/м 3 ; для горячекатаной стали '\'ст = 7550 кг/м3 •
Изоляционное расстояние от обмотки ВН до ярма l0,
.выраженное в метрах, может быть принято равным lo =
=l�-10-з, где l�, мм,-расстояние, найденное по испыта­
тельному напряжению обмотки ВН по табл. 4.5 для мас­
.1Jяных трансформаторов или по табл. 4.15 для трансфор­
маторов с естественным воздушным ол:лаждением.
Если изоляционные расстояния от обмотки ВН до ниж­
него ярма l�н • мм, и до верхнего l�в• мм, неодинаковы _(при
размещении над обмоткой прессующего кольца), то
l0 = ( lон
, + lов, ) · 10-3/2.
Исследование данных большого числа трансформато­
ров различных серий, в том числе старых, рассчитанных на
применение горячекатаной стали, и современных с приме­
нением холоднокатаной стали, показало, что отношение
среднего диаметра витка двух обмоток d 12 к диаметру
стержня трансформатора d изменяется в очень узких пре­
делах и для любой заданной серии трансформаторов, и тем
более для отдельного трансформатора, может быть при­
нято равным постоянной величине а
d12 = ad.
(3. 33)
Значения а для трансформаторов мощностью от 25 до
63 ООО кВ· А, с применением горячекатаной стали, с медны­
ми обмотками составляют от 1,3 до 1,38 и для трансформа­
торов из холоднокатаной стали в том же диапазоне мощ­
ностей - от 1,3 до 1,42. Величина а зависит от мощности и
класса напряжения, а также от принятого уровня потерь
короткого замыкания трансформатора и металла обмоток.
С уменьшением Рк растут масса металла и радиальные
размеры обмоток, что приводит к некоторому увеличению
а Для алюминиевых обмоток а больше, чем для медных.
122
таблиц а 3.4. Ориентировочные значения a=d,2/d для медных
обмоток
Мощность тр ансформатора, кВ • А
Уровень потерь короткого
замыкания
Значения а П].,И классе напряже•
ния обмотки ВН, кВ
!О
1
35
1
110
-
-
До 630
1,2 Рк по ГОСТ
Рк по ГОСТ
0,8 Рк по ГОСТ
1,33
1 ,36
1,40
1,37
1,40
1,44
От 1000
ДО 6300.
1,2 Рк по ГОСТ
Рк по ГОСТ
0,8 Рк по ГОСТ
1,35
1,38
1,42
1,37
1,40
1,44
-
-
1,38
1 , 40
1,40
1,45
1,48
Свыше 10 000
1,2 Рк по ГОСТ
Рк по ГОСТ
0,8 Рк по ГОСТ
-
1,44
11 р и м е ч а н и е. Для обмоток из алюминия значения а, полученные из
таблицы, умножить на 1,06.
Ориентировочные значения а для приближенного расчета
основных размеров масляного трансформатора могут быть
выбраны по табл. 3.4 в зависимости от мощности трансфор­
матора, номинального напряжения обмотки ВН и приня­
тых потерь короткого замыкания в долях нормы Рк по
гост.
Для трансформаторов с естественным воздушным ох­
лаждением мощностью от 10 до 160 кВ-А класса напря­
жения 0,5 кВ при медных обмотках можно принять соот­
ветственно а� 1,7 + 1,6, при алюминиевых а� l,8+ 1,7. Для
трансформаторов мощностью 160-1600 кВ-А класса на­
пряжения 10 кВ при медных обмотках а� 1,7+ 1,6, при
алюминиевых а� l,8+ 1,7.
Принятое выше [см. (3.33)] положение о постоянстве
отношения двух диаметров является вторым допущением,
вводящим в расчет приближенно определяемую величину
(а).
Замечая теперь, что d=Ax; d 12 =ad=aAx и �=х 4, и
подстав"1яя эти значения в (3.32), получаем массу стали в
стержнях, кг, для трехфазного трансформатора с конст­
руктивной схемой по рис. 3.5 и магнитной системой из
холоднокатаной стали
Ос =
�
n2
4
•
7650 kcA3 ..E...
х
+�
2:n: • 7650 kcA2 laXi ,
4
123
или
где
(3.34)
А1 = 5,663 · 104 kcA3a;
А2
= 3,605 · 104kcA2l0 •
(3.35)
(3.36)
Для однофазного трансформатора с двумя активными
стержнями коэффициенты в (3.35) и (3.36) соответственно
равны 3,78-104 и 2,4-104 •
Для горячекатаной стали коэффициенты А 1 , А 2, В 1 , В2
для трехфазного и однофазного трансформаторов, полу­
ченllые здесь и дальше, следует умножить на отношение
плотностей 7,55/7,65.
При расчете объема и массы стали ярм рассматриваем
каждое ярмо как состоящее из двух частей. Часть, заклю­
ченная между осями двух крайних стержней, имеет в каж­
дом ярме постоянное активное сечение Пя, длину (c-l)C
и массу стали в двух ярмах а:. Часть, включающая две
половины угла магнитной системы слева н справа от осей
крайних стержней, имеет массу стали в двух ярмах а:.
Общая масса стали двух ярм
(3.37)
Gя =а:+ о;,
где масса двух ярм первой части
о: = 2Пя (с- 1) Сует·
(3.38)
Активное сечение ярма П я обычно несколько больше
активного сечения стержня и может быть представлено в
виде
(3.39)
Коэффициент kя может быть выбран согласно указани­
ям § 2.3 по табл. 2.8.
Расстояние между осями соседних стрежней
С = d12 + а12 + 2а2 + а22 ,
=
aAx.
d
2
где 1
Удвоенный радиальный размер внешней обмотки 2а2
изменяется с изменением мощности и класса напряжения
трансформатора, зависит от материала обмотки - меди
124
или алюминия, но может быть точно рассчитан только пр и
полном расчете обмотки. На предварительном этапе рас­
чета этот размер может быть найден приблизительно на
основании принципа геометрического подобия размеров
трансформатора .(см. § 3.4) через диаметр стрежня
2а2 = bd = ЬАх.
Ориентировочные значения Ь для приближенного рас­
чета массы стали силовых трансформаторов могут быть
выбраны по табл. 3.5.
Таблиц а 3.5. Ориентировочные значе11ия b=2a 2/d для масляных
двухобмоточных трансформаторов ПБВ с медными обмотками и
потерями короткого замыкания по ГОСТ
Мощность трансrрматора, кВ,
До 100
100-630
1000-6300
6300-63 000
]<ласе напряжения, кВ
10
0,55
0,46-0,40
0,26-0,24
35
110
0,32-0,28
0,26
0,35
Пр н м е ч а н и я: 1. Для обмоток из алюминиевого провода значения Ь,
полученные из таблицы, умножить на 1,25.
2. Для трансформаторов с РПН значения Ь, полученные из таблицы, умно­
жить на 1,2 для класса напряжения 35 кВ н на 1,75 для КJJacca напряжения
110 кВ.
3. Для трансформаторов класса напряжения 110 кВ с РПН по схеме рис.
б.9, в, рассчитанных при значениях �. пониженных против данных табл. 3.12, при
расчете по § 10.3 значения Ь, полученные из таблицы, умножить на 0,7.
Для трансформаторов с естественным воздушным ох­
лаждением от 10 до 160 кВ• А класса напряжения 0,5 кВ
при медных обмотках можно принять Ь � 0,26, при алюми­
ниевых ь�о,33. Для трансформаторов мощностью от 160
до 400 кВ-А класса напряжения 10 кВ при медных обмот­
ках ь�о,22, при алюминиевых ь�о,28. Для трансформато­
ров мощностью от 630 до 1600 кВ -А того же класса напря­
жения при медных обмотках ь�о,18, при алюминиевых
ь�о,23.
Ориентировочное определение радиального размера
внешней обмотки - это третье допущение, вводящее в рас­
чет приближенно определяемую величину, при помощи ко­
торой определяется сравнительно небольшая масса стали
тех частей ярм, длина которых ограничивается радиаль­
ным размером внешней обмотки на общей длине, равной
8�.
125
Изоляционное расстояние между наружными обмотка­
r,tи ВН соседних стержней а22 =а;2 · 10-а, где а;2, мм, на­
kодится по табл. 4.5 для масляных и табл. 4'.15 для сухих
трансформаторов.
Таким образом, расстояние между осями соседних
стержней магнитной системы
(3.40)
С = аАх + а12 + ЬАх + а22•
Часть массы стали ярм а: представляет собой массу
стали одного угла в каждом ярме. Для современных маг­
нитных систем с ярмом многоступенчатой формы .(см.
§ 8.1) объем и масса одного угла магнитной системы свя­
заны с диаметром стержня стабильным соотношением.
'
d/z
t--1
1
'·_□-+-'□
с
1
с
1
'
Рис. 3.7. К определению массы стали в ярмах
Для определения объема и массы половины угла магнит­
ной системы .(G�/4 по рис. 3.7) этот объем можно заменить
равновеликим объемом с площадью поперечного сечения
Пл и длиной, равной ed, где е- потоянный коэффициент,
Для магнитных систем с числом и размерами пакетов
�тержня и ярма по табл. 8.1-8.5 этот коэффициент может
быть принят: е=О,405 для трехфазных трансформаторов с
номинальной мощностью до 630 кВ• А включительно и
е=О, 41 при номинальной мощности 1000 кВ-А и выше.
При ярме прямоугольного сечения е=О,4.
Масса стали второй части двух ярм
а:= 4ПнеdУсr = 4ПлеАхуст •
(3.41)
Полная масса стали двух ярм для трехфазного двухоб­
моточного трансформатора с конструктивной схемой по
рис. 3.5 при с-1 =2 на основании (3.3 8)-(3.41)
G11 = 2:. kяkcA2x2 [2 (3 - 1) (аАх + а12 + ЬАх + а�
4
При
У ст
G11 =
и да.11ее
где
+ 4еАх] Уст•
7650 кг/м
2,40, 104 k11kc [А 3х 3 (а+ Ь + е)
3
=
+
+ А 2х2 (а12 + а�]
(3 .42)
В1 = 2,40, 104 kck11A3 (а + Ь + е);
В2
=
(3.43)
(3.44 )
2,40, l04kck11A2 (а12 + а�;
здесь В 1 и В 2 в килограммах.
Для однофазного трансформатора (с=2)
В 1 = 1,20- 104kckя A3 (а + Ь + 2е) ;
В2 = 1,20 • 104kck11A2 (а12 + а�.
(3.43а)
(3.44а)
Для трехфазного трехобмоточного трансформатора
_(рис. 3.8)
С = d12 + а12 + 2а2 + 2а23 + 2а3 + а33;
(3,43 6)
В 1 = 2,40 · 104 kckяA3 (а+ ь2 + Ьз + е);
4
2
(3.446)
а
2а
+
(
В 2 = 2,40 • 10 kck11A а12 + 23
33),
где b 2 =2a2 /d и Ьз =2 аз/d определяется по табл. 3.5 для
соответствующих мощностей, уровней потерь и классов на•
пряжения обмоток трехобмоточного трансформатора.
с
�
ао,
а,
f
"1
о
12
zqz
J
Рис. 3.8. Расположение обмоток в окне трехобмоточноrо трансформатора
127
Для однофазного трехобмоточноrо трансформатора ко­
эффициенты в (3.436) и .(3.446) следует принять 1,2 н
заменить е на 2е.
Масса стали угла плоской магнитной системы по рис.
3.5 может быть найдена по (3.42) и .(3.43) для е/2 (при од­
нофазной магнитной системе для е) при а=О, Ь =О и В2=
=0
Gу-- � 2, 40 -104 kс kя А3 х3•
2
Для ярма с многоступенчатой формой поперечного се­
чения при мощности до 630 кВ• А
(3.45)
Gy = 0,486, 104 kc k я A3 x3 ;
1000 кВ-А и выше
(3.45а)
Gy = 0,492 · 104 k c k я А3 х8 •
Для ярма с прямоугольной формой поперечного сечения
(3.45б)
Gy -= 0,480, 104 kc kя А3 х3 ,
В пространственной магнитной системе по рис. 2.6, а
стержни имеют такую же конструкцию, как и в рассмот­
ренной системе по рис. 3.5, и масса стали в них может быть
р.ассчитана по (3.34)-(3.36). Расчет массы стали в нави­
тых ярмах можно выполнить в соответствии с рис. 8.6 и
выражениями (8.19) и (8.20). Учитывая, что для трансфор­
маторов мощностью от 25 до 6300 кВ• А и соответственно
для диаметров стержня от 0,08 до 0,40 м можно принять
2r=0,125d, а размер сегмента б=О,035 d, величины, входя­
щие в (8.20), можно принять
Ь1 = d/2 - r - б = 0,402fid; Ь2 = d/2- r = 0,4375d;
11 = С- dcos 30° = С- 0,866d;
l2 = С -(d - 8r) cos 30° = С - 0,433d;
R1 = d/2 -r = 0,4375d; R2 = d- 4r = 0,75d;
Rз = d/2- 3, = 0,3125d; Ья = Ь1 + Ь2 = 0,84d.
Подставляя эти значения в (8.20) для определения пло­
щади ярма в плане
0
,
Пя
'Z
'2
= 3Ь1 /1 +ЗЬ2 12 + лR'Z1 + лR2лRз,
используя (8.17) и (8.19), принимая C=d,2+a,2+2a2 +a22
и считая k я = 1!VЗ,уст = 7650 кr/м 3 , получаем массу стали
двух ярм
128
Оя = l,43lkc kя • 104 d2 [2,52 (d12 + а1 2 + 2а2 + а22) + 0,448 d],
и окончательно при d=Ax; d12 = aAx и а2= ЬАх
Gя = В1 х3 + В2 х2,
гд е
(3.43в)
В 1 = 3,605,104 kc kя А3 ( а + Ь + 0,178);
2(
4
(3.44в)
В2 = 3 ,605- 10 kc kя А а12 + a 2J.
Масса стали угла пространственной комбинированной
магнитной системы по рис. 2.6, а согласно (8.22) и _(8.17)
для r=0,0625d и k я = 11V3 может быть найдена по формуле
(3.45в)
Масса стали навитой пространственной магнитной си­
стемы по рис. 2.6, 6 и 8.7 момет быть найдена как сумма
массы стали стержней по (3.34)-(3.36) и массы стали
шести полукольцевых ярм в трех навитых кольцах. При
определении длины стержня и массы стали стержней для
такой системы необходимо учесть, что расстояние l o в
(3.36) в данном случае устанавливается не по условиям
изоляции обмотки от ярма, а по условиям удобства вмотки
обмоток непосредственно в магнитную систему. Для тран­
сформаторов с номинальной мощностью от 25 до
1000 кВ •А это расстояние можно принять /�=30 мм. При
использовании выражения _(3.36) принимаем l o = l� • 1О-3•
Активное сечение ярма
Пя = Пс/2 = лd2 kJ(2·4) при kя = 1,0.
Развернутая длина каждого полукольцевоrо ярма в пред­
варительном расчете может быть принята
lя
= О' 74л �
2 '
где С-по (3.40).
Масса стали шести полукольцевых ярм
с
Gя = 6-О,74л-лd2 kc Уст/8,
2
2
2
4
или G я= 2,l • l0 kcA x (aAx+a 12+ЬAx+a22 ).
Окончательно
Gя = В 1 х3 + В2 х2 ;
В1 =---= 2,1-104 kc А3 (а+ Ь);
2
4
В2 = 2,1 · 10 k c А (а12 + а 22).
9-510
(3.43г)
(3.44г)
129
Понятие угла в навитой магнитной системе смысла не
имеет, и углы в ней не выделяются.
В _(3.35), (3.36), _(3.43) и (3.44) входят величины, опре­
деляемые или выбираемые в начале расчета А, kc , kя, изо­
ляционные расстояния l o, а12, а22, определяемые уровнем
развития изоляционной техники и требованиями к электри­
ческой прочности трансформатора и известные на началь­
ной стадии расчета, а также величины, принимаемые по­
стоянными для данной серии, ее части или данного транс­
форматора, а, Ь. Отсюда следует, что масса стали транс­
форматора может быть найдена по исходным данным
расчета в самом его начале, еще до установления основных
размеров магнитной системы. Общая масса стали магнит­
ной системы
(3.46)
Масса стали в стержнях, ярмах и общая масса стали
О ст может быть, таким образом, рассчитана для стержне­
вых трансформаторов однофазных и трехфазных, с плос­
кой или пространственной магнитной системой, двухобмо­
точных и трехобмоточных, с медными или алюминиевыми
обмотками, с естественным воздушным или масляным ох­
лаждением. Металл обмоток учитывается при определении
ар и А. Выбор той или иной изолирующей и теплоотводя­
щей среды - воздуха или масла, а также марки стали
определяет допустимую индукцию в магнитной системе и
размеры изоляционных расстояний.
Масса металла обмоток G o , кг, связана с потерями ко­
роткого замыкания Рн, Вт, приведенными к температуре
75 °С, следующим выражением (см. § 7.l):
(3.47)
KJ2 Go = Рос н = kд Рн,
где К - постоянный коэффициент, зависящий от удельно­
го электрического сопротивления и плотности металла об­
моток; для меди Км =2,4· 10- 12, для алюминия К д =
= 12,75-10- 12 ; / - средняя плотность тока в обмотках,
А/м2 ; Росн - основные потери в обмотках, Вт; kд - коэф­
фициент, учитывающий добавочные потери в обмотках,
потери в отводах, стенках бака и других металлических
конструкциях от гистерезиса и вихревых токов, от воздей­
ствия поля рассеяния (kд < 1).
Этот коэффициент связан в первую очередь с добавоч­
ными потерями, возникающими в обмотках и ферромаг­
нитных деталях конструкции - ярмовых балках, прессу130
ющих кольцах обмоток, стенках бака, находящихся в зо­
не распространения поля рассеяния обмоток. Теоретические
и экспериментальные исследования поля рассеяния,
проведенные отечественными заводами и научно-исследова­
тельскими организациями за последние 15-20 лет, позво­
лили существенно уменьшить добавочные потери как пу­
тем более рационального распределения витков в обмот­
ках, что дало возможность уменьшить индукцию
поперечной составляющей поля, так и путем замены не­
которых ферромагнитных деталей неферромагнитными и
установки магнитных экранов из электротехнической ста­
JIИ на ферромагнитных деталях.
На этапе предварительного расчета коэффициент k д
может быть взят из табл. 3.6, составленной на основании
исследования ряда серий современных трансформаторов.
Таблиц а 3.6. Значения k д в формуле (3.47) для трехфазных
трансформаторов
Мощность
:rрансформа- 1
тора, кВ -А
kд
До 100
0, 97
160 630 1
1
000 � 1
0, 960,93
1
О, 930,85
1
10 ООО16 ООО
2500063 ООО
80000-
0,840,82
0,820,81
0,810,80
100 ООО
Пр им е чан и я: \. Для сухих трансформаторов мощностью 10-160 кВ·А
принимать kд=О,99-,.0,96 н мощностью 250-1600 кВ·А kд -0,92-;-О,86.
2. Для однофазных трансформаторов определять k ц по мощности 1,5$.
Масса металла обмоток
00
= kц Pиf(KJ2).
(3.48)
При расчете отдельного трансформатора из серии пре­
дельное значение потерь короткого замыкания, как прави­
ло, бывает задано. При расчете новой серии обычно зада­
ются несколькими значениями Ри и затем просчитывают
эти варианты. В том и другом случаях расчет начинается
при определенном известном значении Рк, Это обстоятель­
ство налагает ограничение на выбор среднего значения
плотности тока в обмотках и требует увязки выбираемого
значения / с заданной мощностью Рк и основными разме­
рами магнитной системы. Связь между этими величинами
.(см. § 7.1) определяется для медного провода выражением
(3.49)
9•
131
а для алюминиевого провода
JА
Рк Uв 104,
= О,463kд
Sd12
(3.49а)
где S- мощность трансформатора, кВ-А; Uв - напряже­
ние одного вит({а, В; kд - коэффициент из _(3.47).
В сухих трансформаторах вследствие худших условий
охлаждения плотность тока во внутренней обмотке обыч­
но принимают меньшей, чем в наружной. Плотности то­
ков обмоток могут существенно отличаться от их средне­
арифметического, что приводит к общему увеличению по­
терь короткого. замыкания по сравнению со значением Рк,
подставленным в (3.49). Во избежание такого увеличения
потерь рекомендуется для сухих трансформаторов плот­
ность тока, полученную из (3.49) и (3.49а ), умножить на
0,95.
Заменяя в (3.49) d12=aAx, И в=4,44fВ сПс , раскрывая
1td2
Пс= -4- kc и подставляя вычисленное J в _(3.48), получаем
(3.50)
где
С1
·
Sa
­
= Ko ----2B2f2u А2
2
kд kс с
а
здесь для медных обмоток
,
JОЗ
Ко ,М = 2,4·0 746Ч 11�л 2
,
,
дли алюминиевых обмоток
,
(3.51)
= 61•6;
Кол = 12,75•0, 46 3�-1,11 � n� = 30,1.
При частоте 50 Гц
sa;
cl = Ко ------,
I QЗ
2
2
k д kc Вс и. А
'l
(3.52)
где К о - 1<оэффициент, равный: для меди К ом =2,46 Х
Х 10-2, для алюминия К оА =1,20· 10- 2• Для сухого транс­
форматора следует принимать Ком =2,60-10- 2 и Кол =
= 1,27. 10-2; и. - активная составляющая напряжения ко­
роткого замыкания, i% ,
Ua = P,J(lOS).
132
По _(3.50) можно подсчитать массу чистого металла об­
моток на средней .(номинальной) ступени напряжения об­
м отки ВН. Ввиду того что обмотки изготовляются из изо­
лированного провода, действительная масса провода для
обмотки Gap находится умножением G 0 на коэффициент,
учитывающий массу изоляции, который в предваритель­
ном расчете можно принять равным 1,03 для медного и
1,1О для алюминиевого провода. Кроме того, обмотка ВН
при обычном регулировании напряжения на ±2 · 2,5 %
и меет на ступени 5 % массу металла, повышенную на 5 %
по отношению к номинальной ступени. Для двух обмоток
,(ВН и НН) это повышение составит около 3 %.
Для того чтобы учесть эти два фактора - изоляцию
провода и регулирование напряжения, массу металла об­
моток следует умножить на коэффициент kи ,р, равный
1,03-1,03= 1,06 для медного провода и 1,10-1,03= 1,13 для
алюминиевого.
Общая стоимость активных материалов, руб., может
быть представлена в виде
(3.53)
Саит = Сет ( Gc + Gя) + С0 kи,р G0 ,
где Сет и Со - цена 1 кг трансформаторной стали и кг об­
моточного провода.
Если Сет и Со определяются не по прейскурантам на эти
материалы, а с учетом всех дополнительных затрат, свя­
занных с изготовлением остова и обмоток, то по (3.53)
можно рассчитывать стоимость не только активных мате­
риалов, но также и активной части трансформатора - ос­
това вместе с обмотками Са,чИногда для сравнения различных вариантов расчета
бывает удобно выразить стоимость активной части транс­
форматора в условных единицах. Так, если за единицу
принять I кг стали, то
•
Са,ч
где
.
2
= В1 Х3 + (В 2 + AJ х +
A
х + ko.ekи,p
t'
С1
-2
х.
'
(3.54)
ko ,e = со7,сст·
Коэффициент k o,e зависит от цен на материалы обмо­
ток и магнитной системы и изменяется с изменением марки
стали и металла обмоток. Для алюминиевых обмоток, име­
ющих при прочих равных условиях относительно больший
объем, требующих большего количества изоляционных ма133
Таблиц а 3.7, Ориентировочные значения Со, Сет и ko,c в форму.11ах
(3.53) и (3.54)
о:
Мощность,
кВ•А
f�
:с
""'
""'
":,;
t;OI
:,:;,1:
25-630
10
.,
�
'8
.....
.,
Jj 8.
,;
>,
,;
,;
"
!;:;,:
�g
,:
"- :,;
О("
[;!
-.
"',.,
"'
"о
ест• руб/кг, для
стал и марок
ko ,c для стали
марок
3404 1 3405 1 3400
3404 1 3405 13400
Алю- ПБВ 1 ;85 1,02 1,08 1, 15 1,81 1, 71 1,61
миний
100-630
»
35
1000-16 ООО 10 и
»
35
'))
1000-6300
35
»
6300-16 000 110
2500-63000 110 Медь
ПБВ 1,95 1,02 1,08 1,15 1,84 1,81 1, 70
ПБВ 2,50 1,06 1,14 1, 19 2,36 2,19 2,10
РПН 2,50 1,06 1,14 1 1 19 2,36 2, 19 2,10
РПН 2,75 1,08 1,17 1, 21 2,55 2,35 2,27
РПН 2,50 1, 17 1,27 1,32 2,14 1,97 1,90
Пр им е чаи и е. Значения с ст и k о, с рассчитаны для стали марок
3404 - 0,35 мм; 3405 - 0,30 мм и 3406 - 0,27 мм с учетом цен на сталь этих марок
■ различного числа пластин в магнитной системе.
териалов и большей затраты труда на намотку, ko ,o обыч­
но имеет большее значение, чем для медных обмоток.
Ориентировочные значения ko,c для приближенного
расчета трансформатора приведены в табл. 3.7. Эти значения
рассчитаны с учетом реального расхода активных изоля­
ционных, конструктивных и других материалов для остова
и обмоток, зарплаты производственных рабочих, цеховых,
общезаводских расходов, расходов на содержание обору­
дования и нормативных накоплений. Поэтому (3.54) позво­
ляет определить в условных единицах расчетную цену ак­
тивной части трансформатора.
Для того чтобы от условных единиц перейти к денежно­
му выражению, следует с:,ч, выраженную в условных еди­
rшцах, умножить на цену стали по прейскуранту, коэфф и­
циент Кст из табл. 1.4.
Для определения значения х, соответствующего мини­
муму стоимости активных материалов, следует взять
Проведя эту операцию, получим уравнение
х5
134
+ Вх4 - Сх - D = О,
(3.55)
rде
В=_!_ В2+А2.
3
В1
'
С
=
�·
3В1 '
D=21kо, с kи,р·
3
В1
При расчете отдельного трансформатора и заданном
значении Рк уравнение (3.55) дает оптимальное значение
{) (х), соответствующее минимальной стоимости активных
материалов или активной части. Это решение может быть
найдено номографическим или графическим методом путем
расчета С�.ч для нескольких вариантов � и построения
кривой с: .. =f (В). Второй путь является более предпоч•
тительным потому, что дает возможность не только опре­
делить �. соответствующее минимальной стоимости актив­
ной части, но также и диапазон значений �. в пределах
которого с:.ч отклоняется· от минимума на практически
допустимое значение.
При расчете серии трансформаторов обычно стараются
найти вариант расчета, соответствующий минимальной сум­
ме стоимости трансформатора, отнесенной к определенно­
му промежутку времени, с затратами в эксплуатации за
этот же промежуток времени. В этом случае оптимальный
вариант трансформатора может и не совпадать с вариан­
том минимальной стоимости активной части.
Выбор того или иного значения � определяет также па­
раметры холостого хода трансформатора. Если известны
массы стали стержней и ярм и соответствующие индукции,
а следовательно, и удельные потери в стали, то потери хо­
лостого хода для плоской магнитной системы из горячека­
таной стали
(3.5 6)
где k� может быть найден в соответствии с замечаниями к
(8.30).
Для расчета потерь в плоской трехфазной шихтованной
магнитной системе, собранной из пластин холоднокатаной
стали с прессовкой стержней бандажами или расклинива­
нием с обмоткой, а ярм-ярмовыми балками, и не имеющей
сквозных шпилек в стержнях и ярмах, следует воспользо­
ваться формулой (8.32), а для расчета потерь в однофазной
системе с теми же конструктивными данными - формулой
,(8.32а). Коэффициент Кп,у в этих формулах в зависимости
135
от числа косых и прямых стыков находится по табл. 8.13.
Расчет потерь холостого хода в пространственной маг­
нитной системе по рис. 2.6, а следует производить по (8.38).
с определением коэффициентов для этой формулы по табл.
8.15 для соответствующих индукций в стержне. Индукцию
в ярме для этой системы до установления ее основных раз­
меров следует принимать равной индукции в стержне.
Потери холостого хода в навитой пространственной
магнитной системе по рис. 2.6, 6 могут быть рассчитаны по
(8.39).
Полный ток холостого хода трансформатора может быть
wайден по его полной намагничивающей мощности холосто­
го хода Qx , В• А, которая в трансформаторах мало отли­
чается от реактивной составляющей мощности холостого
хода,
(3.57)
Для плоской магнитной системы из горячекатаной ста­
ли намагничиваюшая мощность холостого хода, В-А, мо­
жет быть найдена по упрошенной по сравнению с _(8.42)
формуле
(3.58)
где k; - коэффициент, учитывающий намагничивающую
мощность для зазоров в стыках ярм и стержней.
Для листовой горячекатаной стали он может быть при­
юп от 1,6 до 1,2 для трансформаторов мощностью от 25
до 1000 кВ-А, приблизительно 1,15 для трансформатора
мощностью от 1600 до 6300 кВ-А и l,2-l,25 для трансфор­
маторов мощностью соответственно от 10 ООО до 80 ООО кВ• А.
Полная намагничивающая мощность холостого хода на
предварительном этапе расчета для плоской трехфазноi'�
шихтованной магнитной системы, собранной из пластин
холоднокатаной стали с прессовкой стержней бандажами
или расклиниванием с обмоткой, а ярм - ярмовыми бал­
ками, и не имеющей сквозных шпилек в стержнях и ярмах,
может быть рассчитана по формуле (8.44). Коэффициент
Кт ,у в (8.44) в зависимости от числа косых и прямых сты­
ков для стали марок 3404 и 3405 может быть найден по
табл. 8.20. Площадь зазора для прямого стыка равна ак­
тивному сечению стержня
fl 3 =Пс= 0,785kc А2 х2
(3.59)
136
и для косого стыка
П3
=
Пс У2 = l,llkc A2 x2•
(3.59а)
Для пространственной магнитной системы по рис. 2.6, а
намагничивающая мощность рассчитывается по (8.46) с
учетом замечаний к этой формуле и для навитой прост•
ранственной системы по рис. 2.6, 6 по (8.47).
В других случаях при определении в предварительном
расчете потерь и тока холостого хода следует пользоваться
указаниями·§ 8.2 и 8.3.
Плотность тока в обмотках может быть найдена из
(3.48)
(3.60)
Повышение плотности тока ведет к увеличению нагре­
ва обмотки. Поэтому обычно в медных обмотках масля•
ных трансформаторов стараются выдержать J м�4,5 Х
Xl0 6 А/м 2 , а в алюминиевых f д �2,7,10 6 А/м 2 • В сухих
трансформаторах- соответственно 3,10 6 и 2-10 6 А/м 2 •
Замечая, что G0 =C1 /x2 , находим предельное значение
х, при котором J не превышает нормального предела:
для меди
(3.61)
Хм< 4,5, \06 V 2,4, J0-12 C1/(kцP 11);
для алюминия
xд<:2,7•10 6 YI2,75,J0-12 C1/(kц PJ.
(3.61 а)
Обмотки трансформатора должны выдерживать весьма
значительные механические силы, которые могут возник­
нуть при коротком замыкании. Рассмотрим радиальные
силы, возникающие между концентрическими обмотками.
Суммарная радиальная сила, действующая на каждую из
двух концентрических обмоток, может быть записана так
(см.§ 7 .3):
FP = 0,628 ( iк,м w)2 �k р . 1 О-б,
где iк .. - мгновенное максимальное значение тока корот­
кого �амыкания для любой из двух обмоток; w - полное
число витков той же обмотки.
, = kк,эl,. kк,з-1,41
_
�
Заменяя tк,-..
11
(l+e -ли а/и Р),.
U
n
W=
=И/ив ; Uв =4,44fBc 4 d 2 kc И замечая, что
d4 = А4 � = (0, 507)4
137
S' =S/3 для трехфазного и S' =S/2 для однофазного тран­
сформатора, приходим к выражениям:
для трехфазного трансформатора
(3.62)
и для однофазного
(3.62а)
Из (3.62) следует, что суммарная радиальная сила не
зависит от � и металла обмотки.
Механическое растягивающее напряжение в проводе
обмотки может быть определено по известной формуле
(3.63)
<Ур = Fр/(2лwП),
где II - сечение одного витка обмотки, м2•
Подставляя Fp из (3.62) и замечая, что w=V/ив ; П=
=l/J;
д.'!Я медных обмоток,
и
JА = О '463,104 kд Рк в
Sd12
для алюминиевых обмоток, получаем
З
(3.64)
ар = Мх ,
где для медных обмоток в трехфазном трансформаторе
Мм = 0,244 • I0-6 k2 k k Рк
(3.65)
к,з д Р аА
и для алюминиевых обмоток
M = 0,I52,}0-6k�.зk k
(3.65а)
A
д P
=�,
Для однофазного трансформатора коэффициенты в
(3.65) и (3.65а) соответственно равны 0,366· I0-6 и О,223Х
Х }Q-б .
Расчет по (3.64), (3.65) и (3.65а) дает механические
напряжения в проводе внешней обмотки, выраженные в
мегапаскалях (МПа).
Из (3.64) следует, что растягивающие напряжения в
проводе обмотки возрастают с увеличением �- Обычно для
138
медного провода допускают среднее значение О' р, опреде­
ляемое по (3.63), не более 60 МПа (см.§ 7.3), считая, что
при этом в отдельных точках поперечного сечения обмотки
эти напряжения могут достигать двойного значения, т. е.
120 МПа. Для алюминия можно допустить среднее значе­
ние О'р =25 МПа.
Из (3.64) находим
(3.66)
x = �,r-­
v О' р/М;
3
для медного провода хм <убU/Мм
провода хд-<�,r-v 25/Мд
и для алюминиевого
3.6. АНАЛИЗ НЗМЕНЕННЯ НЕКОТОРЫХ ПАРАМЕТРОВ
ТРАНСФОРМАТОРА С НЗМЕНЕННЕМ � (ПРИМЕР РАСЧЕ'ТА)
Выяснение влияния � на расход активных материалов и некоторые
другие параметры трансформатора удобнее всего провести на реаль­
ном примере. Для этого по методике, разработанной в § 3.5, проведем
предварительный расчет трехфазного масляного трансформатора типа
ТМ-1600/35 мощностью 1600 кВ-А с номинальным напряжением обмот­
ки ВН 35 кВ. Расчет проводится для двух вариантов трансформатора:
вариант I - трансформатор с плоской шихтованной магнитной систе­
мой по рис. 2.5, д с медными обмотками и вариант II - трансформатор
той же мощности и конструкции с обмотками из алюминиевого про­
вода.
Задание. Тип трансформатора ТМ-1600/35 с концентрическими об­
мотками. Мощность rрансформатора S= 1600 кВ-А; число фаз m=З;
частота f=50 Гц. Номинальные напряжения обмоток: ВН 35 ООО±
± (2Х2,5 %) В; НН 690 В; схема н группа соединения У/У0-О. Пере­
ключение ответвлений ПБВ. Режим работы продолжительный; уста­
новка - наружная.
Вариант /. Трансформатор должен соответствовать требованиям
ГОСТ 11677-85. Параметры трансформатора: напряжение короткого за­
мыкания и.=6,5 %; потери короткого замыкания Рк = 18 ООО Вт; потери
холостого хода Р,=3100 Вт; ток холостого хода io=1,3 %.
Вариант 11. Трансформатор также должен соответствовать требо­
вь:1!:я·,! ГОСТ 11677-85 при тех же параметрах холостого хода и корот­
к-:.,.-u замыкания.
Расчет основных элеr.трических величин и изоляционных расстоя•
ний. Расчет проводим для трехфазного трансформатора стерж­
неноrо типа с конце/lтрическимн обмотками.
Мощность одной фазы и одного стержня
SФ = S'
= S/3 = 1600/3 = 533 ,3
кВ·А.
139
Номинальные (линейные) токи на сторонах:
ВН / 2 = 1600· 10 3 /(.,13-35 ООО) = 26,4 А;
НН / 1 = 1600-103 (.,f3-690) = 1339A.
Фазные токи обмоток (схема соединения - звезда) равны линейным
токам. Фазные напряжения обмоток ВН и НН при этом соединении
35 ООО
690
Иф2 =
20 207 В;
Иф1
399 в.
V3 =
= vз=
Испытательные напряжения обмоток (по табл. 4.1): для обмотки
ВН Ии сп=85 кВ; для обмотки НН Иисп = 5 кВ.
По табл. 5.8 выбираем тип обмоток.
Вариант /. Обмотка ВН при напряжении 35 кВ и токе 26,4 А кату•
шечная непрерывная; обмотка НН при напряжении 0,69 кВ и токе
1339 А винтовая
Вариант II. При тех же фазных токах и напряжениях обмотка НН
цилиндрическая многослойная из алюминиевой ленты, обмотка ВН
многослойная цилиидрическа я из прямоугольного алюминиевого про•
вода.
Для испытательного напряження обмотки ВН Иисп = 85 кВ по табл.
4.5 находим изоляционные расстояния (см. рис. 3.5): а ;2 =27 мм; l�=
= 75 мм; а� = 30 мм; для Иисп = 5 кВ по табл. 4.4 находим а�,= 15 мм.
2
Вариант lм. Плоская шихтованная магнитная система, обмотки из
медного провода.
Определение исходных данных расчета
4r_
4,--
(a1 +a 2)/3=kV S'·IO-�= 0,51V 533,3-10-�=0,0245 м;
k = 0,51 по табл. 3.3;
ар= а;2 + (а1 + a,JJ3 = 0,027 + 0,0245 = 0,0515 м.
Активная составляющая напряжения короткого замыкания
Ua = Рк/(1(,S) = 18 000/10· 1600 = 1,125 %;
реактивная составляющая
и
р
= Vи� -и;= V6,52 - l ,1252= 6,4%.
Согласно указаниям § 2.3 выбираем трехфазную стержневую ших­
тованную магнитную систему по рис. 2.5, д с косыми стыками на край­
них стержнях и прямыми стыками на среднем стержне по рис. 2.17, 6.
Прессовка стержней бандажами из стеклоленты по рис. 2.18, 6 и ярм стальными балками по рис. 2.21, а. Материал магнитной системы - хо­
лоднокатаная текстуровання рулонная сталь марки 3404 толщиной
0,35 мм.
Цена за I кг 0,833 руб. Индукция в стержне Вс = 1,62 Тл (по табл.
2.4). В сечении стержня восемь ступеней, коэффициент заполнения круга
140
k кр = 0,928 (см. табл. 2.5); изоляция пластин - нагревостойкое изоляци­
онное покрытие, kз= О,97 (см. табл. 2.2). Коэффициент заполнен11я
сталью kc = kкр kз=0 ,928-0,97=0,900. .Ярмо многоступенчатое, чис,10 сту­
пеней шесть, коэффициент усиления ярма k.= 1,03 (табл. 8. 7). Индукция
в ярме 8.= 1,62/1,03= 1,573 Тл. Число зазоров в магнитной системе 11а
1<0сом стыке четыре, на прямом три. Индукция в зазоре на прямом
стыке 8:=8c=l,62 Тл, на косом стыке 8 := 8c/V2 = l ,62/V2 =
Тл.
Удельные потери в стали Ре= 1,353 Вт/кг; Ря = 1,242 Вт/кг. Удельная намагничивающая мощность Qc = l,956 В·А/кг; Qя= l,66 В-А/кг;
для зазоров на прямых стыках q: =25 100 В ·А/м2; для зазоров на ко­
сых стыках q:= 32 00 В·А/м 2 ·(см. табл. 8.10, 8.17) .
По табл. 3.6 находим коэффициент, учитывающий отношение основ­
ных потерь в обмотках к потерям короткого замыкания, k д =О,91 и по
табл. 3.4 и 3.5 - постоянные коэффициенты для медных обмоток а= 1,40
и Ь = О,31. Принимаем k p =0,95. Диапазон изменения � от 1,2 до 3,6
(см. табл. 12.1).
Расчет основных коэффициентов. По _(3.3 0), (3. 36), _(3.43 ), (3.44),
(3.52) и (3.6 5) находим коэффициенты
= 1 , 146
А= 0, 507
V
1
S'a pk p
/5 3.3,3,0 ,0515 ·0,95
0 ,507
=
V
50·6,4· 1 ,62;,о,9�
fu B2k'l
р с с
= 0,2243;
= 5 ,633·104•0,9·0 ,2243 • 1,4 = 800,9 кr;
= 3 ,605· 104 ,0,9,О ,2243� ·О, 075 = 122 ,4 кг;
А2 =
81 = 2 ,4• 104k,k11A3 (а+ Ь +е) = 2 ,4•104 ,О ,9•1,03 · О,2243� (1,4 +
А1 = 5 ,633· 104k0A3a
3
3,605, 104kcA210
+о,31 +О,41) = 529,7 кг;
82 = 2 ,4·104�ck 11A2 (а 12 +а�= 2 ,4• 10•·0,9,1,03 ·0 ,2243 � (0,027 +
+О,03)
= 61,1
2 • 46· 1°-а
кr;
1600• l ,4�
2
2
0,91·0 , 9�-1,62 .·1,1
25 · о, 2243 .
= 722,4
=
кr;
р
2
; = О,2 44·10-6• 34,2 • 0,91°0,95Х
а
18 ООО
Х
14,14 МПа;
1,4• 0,2243
100
100
n. J, 125/6,4
) = 34 , 2 .
- ( 1 + еkк'8 = 1 ,41 - ( 1 + е- :rш а/ иР ) = 1,41 Uк
6,5
Минимальная стоимость активной части трансформатора имеет мес-
М = 0 , 244• 10-бk�.зkдkР
----=
141
'10 при условиях, определяемых (3.55). Для рассчитываемого транс,
форматора
122_ _,4+
82"" = _2__
_61_ ,1 = О' 232 ;
_ _
__2 _ А-=-2-'+----'
8= 3
3
529, 7
81
k 0,c = 2,36 (см.табл . 3.7);
С= А 1/(381 ) = 800,9/(3.·529,7) = 0,504;
kи ,р= 1,06;
2 ci
D = ko' сkи 'р- -= 2 .722,4 ·2,36·1,06 = 2,27;
3 81
3.529,7
х� + О,232 х4 - О,504 х - 2, 27 = О.
Решение этого уравнения дает �=2,14, соответствующее минимально•
му с:.ч·
По (3.61) и (3.66) находим предельные значенnя � по допустимым
значениям плотности тока и растягивающим механическим напряжениям
XJ < 4,5 V2,4·722,4/(0,91·18 ООО)= 1,46;
�J= Xj = 1,464 = 4,56;
Ха < у60/14, 14 = 1,619; �а= 1,6194 = 6,87,
3
Оба полученных значения � лежат за пределами обычно применяе­
мых. Масса одного угла магнитной системы по .(3.45а)
6у= 0,492· l04kckяA 3x3= О,492· 104·0,9· 1,03·0,22433х3 = 51,47 х 3•
Активное сечение стержня по (3.59)
Пс= 0,785 k cA�x� = О,785,0,9·2243�х� = 0,0355 х�.
Площадь зазора на прямом стыке п: =Пс =0,0355х 2; на косом сты­
ке П� =Пс °V2=0,05026x2•
Для магнитной системы рис. 2.17,б по (8.33) потери холостого хо­
да с учетом табл. 8.10, 8.13 и 8.14
Рх = kп,дРс (Gc + 0,5 kп, yGy) +k п,дРя (Gя - 6G y + О,5 kп,y G у) =
= 1, 15• l,,353 ( Gc+ О,5· 10,18 Gy)+ 1,15· 1,242 (Gя- 6Gy+0,5• I0,18Gy ) =­
= 1,556 Gc+1 ,428 G 11 + 6,621 G;·•
Намагничивающая мощность по (8.44) с учетом табл. 8.17 и 8.20
Qx = kг,дk�.дqс (Gc+0,5 kт,уkт,плGу) + k;,i; ,дqя (Gя - 6Gy +
+О,5 k т,у kт,ппGу) + k�.д � q3n3П3 ;
Qx = l ,20• l ,956 (Gc + О,5·42,45• 1,25 Gy) + 1,20· 1,07• 1,66 (Gя- 6Gy + О,5 ,42 ,45 ·1,25 Gy)+ 1,07-3200•4 •0,05026 х2+ l ,07 •25 ОООХ
Х3·0,0355 х� = 2,512 G0 + 2,131 Gя+116,42 Gy +3537 х�.
142
Далее определяются основные размеры трансформатора
d=Ах; d1 2=аАх; 1=nd12 !�; 2а2 = bd;
С=d12 а12 2а2 а22•
Весь дальнейший расчет, начиная с определения массы стали маг•
нитной системы, для пяти различных значений � _(от 1,2 до 3,6) про•
водится в форме табл. 3.8.
Вариант IIA, Магнитная система плоская шихтованная по рис. 2.5, д.
Обмотка ВН многослойная цилиндрическая из прямоугольного алюми­
ниевого провода с электростатическим экраном. Обмотка НН из алюми•
ниевой ленты.
+
+
+
Определение исходных данных рас•1ета
-
--
41
41 533,3-10- 2 = 0,0306 м (см.
( а1+а2)/3= 1,25у
S',I0- 2 = 1,25·0,51 _v
табл. 3.3, прим. 1);
ар=а 12 + (а 1 + а2)/ 3 = О ,03 + О ,0306 = 0 , 0606 м
( см. табл. 4.5, прим. 1).
Активная составляющая напряжения короткого замыкания
lla = Pк/(I0S) =18 000/(10, 1600) = 1, 1:.15 %;
реактивная составляющая
ир=
V�-и;= V6 , 5 -l,125 =6 , 4 %.
2
2
Согласно указаниям § 2.3 выбираем трехфазную стержневую ших­
тованную магнитную систему по рис. 2.5, д с косыми стыками на край­
них стержнях и прямыми стыками на среднем стержне по рис. 2.17, б.
Прессовка стержней бандажами из стеклоленты по рис. 2.18, б и ярм­
стальными балками по рис. 2.21, а. Материал магнитной системы холод•
нокатаная текстурованная рулонная сталь марки 3404 толщиной 0,35 мм.
Цена 0,833 руб/кг. Индукция в стержне Bc=l,62 Тл (см. табл. 2.4).
В сечении стержня восемь ступеней, коэффициент заполнения круга
kкр=О,928 (см. табл. 2.5); изоляция пластин - нагревостойкое изоляци­
онное покрытие, k3=0,97 (см. табл. 2.3). Коэффициент заполнения
сталью kc = kкpkэ = 0,928,0,97= 0,9. Ярмо многоступенчатое, число ступе­
ней шесть, коэффициент усиления ярма k.=1,03 (см. табл. 8.7). Индук­
ция в ярме В. = 1,62/1,03 = 1,573 Тл. Число зазоров в магнитной системе
на косом стыке четыре, на прямом три. Индукция в зазоре на прямом
стыке в: =Bc = l,62 Тл, на косом стыке B�=Bc !J/2= 1,62!V2 =
=1 ,146 Тл .
Удельные потери в стали Ре= 1,353 Вт/кг; р.= 1,242 Вт/кг. Удель•
ная намагничивающая мощность Qc=l,956 В-А/кг, q. = l,66 В-А/кг; для
зазоров на прямых стыках q: =25 ООО В ·А/м2 ; для зазоров на косых
стыках q; =3200 В-А/м2 (см. табл. 8.10, 8.17).
По табл. 3.6 находим коэффициент, учитывающий отношение основ•
ных потерь в обмотках к потерям короткого замыкания kд=О,91 и по
143
Т а б л и ц а 3.8. Предварительный расчет трансформатора типа
ТМ-1600/35 с плоской шихтованной магнитной системой и медными
обмотками
1,2
fl
;;--
Х= �
�2
х2 =У4�
;;-�з
800,
х э=
А1
9
-=-х
х
А 2х2=122,4 х2
А1
Gc=-+A2X2
х
В1хз =52 9,7 х3
В2х2=61,1 х2
Gя =В1х3+В2х2
Gcт =Gc+Gя
Gy=51,47 х3
1,556 Gc
1,428 G я
6,621 Gy
Px=l ,556 Gc +I ,428
Пс=О,0355 х�
2,512 Gc
2,131 Gл
116,42 Gy
3537 х2
Qx
Qx
=
io
lOS '
%
1,048
1,096
1,148
764,2
134,2
898,4
608,1
67,0
675,1
1573,5
5 9, 1
1397,9
964,0
391,3
2753,2
0,03891
2256,8
1438,6
6880,4
3876,5
14452,3
0,903
1,8
2,4
1,16
1,344
1,56
690,4
164,5
854,9
826,3
82,1
908,4
1763,3
80,3
1330,2
1297,2
531,7
3159,1
0,04771
2147,5
1935,8
9348,5
4753,7
18185,5
1,137
3,0
3,6
1,245
1,32
1,38
1,55
1,734
1,90
2,29
2,62
606,7
580,4
1,93
643,3
189,7
833,0
1022,3
94,7
1117,0
1950,0
99,3
12 96,1
1595, 1
657,5
3548, 7
0,05503
2092,5
2380,3
11 560
5482,4
21515,2
1,345
ci --122,4
-537,5
Gо659, 1
466,1
х2 - х�
1,03 G0
553,6
678,9
480,1
699,3
Gпp=l,03-1,03 G0
570,2
494,5
k0 ,c G = 2,36 Gпр 1650,О 1345,6
1167 ,о
Са,ч = ёJ',ст+kо,с Gпр 3223,5
3108,9 3117 ,о
_ уО. 91·18 000 3,218-106 3,56· 108 3,826·106
J2 ' 4 Gо Х
х 10 8
а =Мх3=14, 14 х3
16,23
22,06
27,29
0,2351
0 ,2620
]=Ах=О,2243 х
0,2793
0,3291 0,3668
0,3910
d12 =ad=l,40 d
0,6402
0,8616
0,5118
l=:td12/�
C=d12+a12+ а2 +а22 0,4590 0,5050
0,5346
144
212,2
232,6
818,9
1213,О
105,9
1318,9
2137,8
117,9
1274,2
1883,4
780,6
3938,2
0,06156
2057, 1
2810,6
13 726
6133,2
24726, 9
1,545
813,0
1387,8
116,1
1503,9
2316,9
134,9
1265,0
2147,6
893,2
4305,8
0,06745
2085,0
3204,8
15 705
6720,3
27715,1
1,732
416,6
380,2
429,1
442,0
1043,0
3187,8
391,6
403,3
951,8
3268,7
4,048-10 6 4,326, 10
32,38
0,2961
0,4145
0,4341
0,5633
37,05
0,3095
0,4333
0,3781
0,5862
табл. 3.4 и 3 . .3 rJостоянные коэффициенты для алюминиевых обмоток
а= 1,06-1,40= 1,484 и Ь= 1,25, 0,31 = 0,388 Принимаем kp =0,95. Диапа­
зон измеl'ения � от 1,2 до 3,6.
Расчет основных коэффициантов. По (3.3 0), (3.36), (3.43), (3.44),
(3.52) и (3.65) находим коэфф1щненты
,
4 ,Г S'a r, kp
. · /533,3-0,0606,0 ,95 _ о,2337.
fu i l = 0,507 j
,
50·6,4• 1,62�-0 ,92 пk
р с с
А1 = 5,633-10 4 kcA3a = 5,633, 10 4,0 ,9,0,2337�•1,484 = 960,26 кг;
А2 = 3,605-104 k0 A2l0 = 3,605• 104-О ,9· 0,233П-О,075 = 132,9 кг;
В1 = 2 ,4· 10 4kck11 A3 (а+ Ь+е) = 2,4, 104,0,9, 1,0 3,0 ,23373 Х
А= ,) , 507 V
В2
С1
=
Х (1,484 + 0 ,388+О ,4 1) = 648 кг;
= 2 ,4 · 104k0 k11A2 (а1 2 + а22) =2,4- 10 4 ·О,9· 1,03,0,2337 2 Х
Х (О,0 3+0,0 3)
= 72,9
кг;
1,2.10-;. 1500 .1 ,484�
1,20-10- 2
·z. .2
2 = 0,91- 0 ,92 ·1,622· 1,125· 0 ,23372
kдkc Bcua A
Sa 2
=
= 355 ,75 кг;
Рн
М = О,156, I0-6 k2113
=0, 156· 10-G,34,22-0,9l •0,95X
· kцk p -аА
1 8 000
х----- 8,19 МПа;
1 ,484-0,2337
00
1 ,41 1
kнз=
'
Uь
(!+е-лиа/ир)
=
1,41
100
6,5
(1+е-!,125:л/6, 4 )=34,2.
Минимальная стоимость активной части трансформатора имеет мес•
то при условиях, определяемых уравнением (3.55). Для рассчитывае­
�юго трансформатора
В= 2 (А2+В2)/(3В1) = 2(132 ,9 +72,90)/(3· 648 ,О)= О,211;
k0,c = 2,36 (cr.<. табл. 3.7) ;
960,26
А1
= 0,494; kи р = 1,13;
С = 381 = 3_648,О
,
2
355,75 · 2, 56 ·1, 1 3
С 1 k0,ckи,p = 2
= 1,0 59;
D=
648 • О
1
хь + О,211х' -0,494 х- 1,059 = О .
3В
З·
Решение этого уравнения дает значение �= 1,36, соответствующее
минимальной стоимости активной части.
По (3,61) и (3.66) находим предельные значения � по допустимым
значениям плотности тока и растягивающим механическим напряже•
ниям:
XJ = 2 ,7 v12, 75,355, 75/(0 ,91 • 18 000) = 1,4208;
10-510
145
р., = 1,4208◄ = -1,076 [по
(3,бlа)];
� а = 1,4514 = 4,43 [но (3.66)].
Оба получешшх значения � лежат за пределами обычно применяе­
мых. J\lac.::J одного yrJJa магнитной системы по (3.45)
G y = (1, 492-l0•krkяA 3x3 = 0,492·10•·0,9· 1,03·0,2337 3х 3 = 58,:.!lx 3•
Лк1нвнос сечение стержня по (3.59)
Пс = 0,785 kcAZx� = О,785-0,9·0 ,2337�х 2 = 0,0386 х2 •
Площадь зазора на прямом стыке
зора на косом стыке
п: =Пс =0,0386х ,
2
площадь за­
п: = пс v2 = 0,0386 V2 = О ,0546 х •
2
Для магнитной системы рис. 2.17, б по (8.33) потери холостого хо­
да с учетом табл. 8.10, 8.12 и 8.14
Рх = kп ,дРс (Gc+ О,5 Kn,y Gy) +kп,дРн (Gя -6G y +О,5 Кп,уG у ) =
= 1,15, 1,353 (Gc+0,5-10,18 Gy) +1, 15-1,242 (Gя-бG у -16,621 Gy.
+ 0,5, 10, 18 Gy) = 1,556Gc + 1,428 Gя
+
Намагничивающая мощность по (8.44) с учетом табл. 8.17 и 8.20
Q x = k�.дk� .д qc ( Gc +О, 5 Кт,уkт,плGу) +k;,дk;_дq я ( G11 - 6Gy +
+О• 5 Кт, уkт,плGу) + k�.д � qз,,,,з Пз;
x
=
1,2,
1,956
+о,5 42,45-1,25 Gy) +1,2-1,07-1,66 (Gя - 6Gy+
(Gc
Q
+ О,5 ,42,45• 1,25 Gy) + 1,07 ,3200-4-О,0546х2 + 1,07-25 !100·3·0,0386х2 =
= 2,512 Gc+2,131 Gя+ 116,42 Gy+3845,5 х2 •
Дадее определяются основные размеры трансформатора:
d = Ах; d12 = аАх; l = nd12!�;
2а2 = bd и С= d1 2 а12 2а2 а22•
+
+
+
Весь дальнейший расчет, начиная с определения массы стали маг•
нитной системы, для пяти различных значений � (от 1,2 до 3,6) прово­
Аится в форме табл. 3.9.
Результаты расчетов, приведенные в табл. 3.8 и 3.9, по­
казаны в виде графиков на рис. 3.9-3.14.
Графики на рис. 3.9 для вариантов / м и 1/ А позволяют
заметить, что с ростом � масса металла обмоток G0 и мас­
са стали в стержнях Се уменьшаются, а масса стали в яр­
мах Gя и общая масса стали Gст трансформатора возрас­
тают. Общая стоимость активной части Са ,ч (рис. 3.10) с
ростом � сначала падает, а затем, пройдя через минн­
маJ1ьное значение, снова возрастает. Поскольку с уве.11иче!46
108
С'а.,ч,¼
2801i
Gc,,Cia ,кr
zчоо
1011
2000
100
98
1600
9Ч
1200
Cic
800
1/00
о
Ga
1,Z
1,8
з,о
г,ч
3,6 jJ
Рис. 3.9. Изменение массы стали
стержней Gc , ярм о., магнитно й
системы Gст и ме�·алла обмоток
Go с из>.1енен;�ем � для трансфор­
матора типа ТМ-1600/35 с медны­
ми (I м) и алюминиевыми обмот­
ками (Ilл)
вроо
Рх,Вт
5000
io,%
4000
3000
2
2000
1
1000
о
_v
...
vv
....
1,2
90
ВБ
5
'!О
ч
за
з
ПА
20
2
lи
10
�
о
3,0
'
З,6/J
3,0
Рис. 3.1 О. Изменение относите.%•
ной стоимости активной части с
изменением � для трансформатора
типа ТМ-1600/35 с медными ( I м )
и алюминиевыми (П л) обмотками
50
i/"
�
2,Ч
nц
G'p,'AПQ J шG А/
м2
,
lf,�
[.....,,-""" lм
1,8
.,
1,8
1,2
З,615
Рис. 3.11. Изменение потерь и то­
ка холостого хода с изменением �
для трансформатора типа ТМ1600/35 с медными (Iм) и алюми­
ниевыми (II А) обмотками
1,2
J
1,8
}r н
2,ч з,о 3,6/3
Рис. 3.12. Изменение механических
напряжений и плотности тока с
изменением � для трансформато­
ра типа ТМ-1600/35 с медными
(lм) и алюминиевыми (Ilл) об•
мотками
нием � при сохранении индукции Вс общая масса стали
возрастает, должны возрастать также потери и ток холо­
стого хода, что подтверждается графиками Р х и i0 на
рис. 3.11.
10•
147
11
1,2
1
1,8
1
1
2,4
з.о
1
1
3,6
4 ,r x=J, �
1,048
1,16
1,245
1,32
1,38
1 �2
х2=4;-
1,096
1,344
1,55
1,734
1,9(.,
хз=J,, �з
1,148
1,56
1,93
2,29
2,62
А1 /::=960,26/х
А2-< =132, 9 х2
Gc=A 1 !x+A 2x2
В 1 х�=648 х8
В2х 2 = 72, 9 х2
Gи =В 1 х3 +В2х2
Gcт =Gc +Gя
Gy=58,21 х3
i ,556 Gc
1,428 Gя
6,621 Gy
Px=l,556 Gc +l,428G,,+6,621Gy
Пс=О,0386 Х2
916,3
145,6
1061,9
743,9
79,9
823,8
1885,7
66,83
1652,3
1176,4
442,5
3271,2
0,04231
771,3
206,0
977,3
1250,6
113,0
1363,3
2340-,5
112,3
1520,6
19-Н',8
743,5
4210,9
0,05983
727,5
230,5
958,()
1483,9
126,4
1610,3
2568,3
133,3
1490,6
2300,0
882,6
4673,2
0,06693
695,8
252,5
948,3
1697,8
138,5
1836,3
2784,6
152,5
i475,6
2622,2
1008,4
5106,2
0,07334
4 1-
2
827,8
178,6
1006,4
1010,9
98,0
1108,9
2115,3
90,8
1566,0
1583,5
601,8
3751,3
0,05788
2528, 1
2363. 1
1 0571,0
5168,4
20820,6
1,30 1
353,75
Go=-х2-
324,6
264,7
229,5
205,2
1,03 G0
Gпp=l,10·1,03 G0
ko,c Gпр= 2,56 Gпр
Са,ч = kо,с Gпр+Gст
334,3
367,7
941 ,3
2827
272,6
329,8
€44,3
2959,6
236,4
260,0
665,6
3006,1
211,4
232,5
595,2
3163,5
Qx
i,1=Qx/(l0S), %
J-�
2406,5
343 1 ,5
15518,8
6668,1
28024,9
1 ,752
2455,0
2905,2
13074,0
5960,5
24394,7
1,525
2667,5
1755,5
7780,3
4214,7
16418,0
1,026
2.5 1 2 О с
2,131 Gя
1 16,42 Gy
3845 ,5 х2
V
о. 91 - 1 8 000
· 106
1 2,75 00
а р =Мх3=8, 1 9 х3
1,989· 1 06
9,400
2,202·
J06
1 2,78
0,2711
d=Ax=0,2337:c
0,2449
d12=ad=l ,484 d
i=.,d1 2/fl
0,3634
0,4023
0,95 1 3
C=d 1 2+a1 2+bd+a22
0,5184
0,5675
0,7021
2,366· 1 06
l!'i,80
0,2910
0,4318
0,5652
0,6047
1
2,502- 1 06
2382,l
391::5,2
17754,0
7306,5
31355,8
1 ,959
1
187,2
1 92,9
212,2
543,2
3327,8
1
2,620 · 1 06
18,76
21 ,46
0,3085
0,3225
0,4578
0,4786
0,4794
0,6375
0,4177
0,6637
Уменьшение массы металJiа обмоток с ростом � при
сохранении потерь короткого замыкания приводит к умень­
шению сечения как всей обмотки, так и каждого ее витка,
а следовательно, к увеличению плотности тока и механи­
ческих напряжений от растяжения в обмотках при корот­
ком замыкании трансформатора. Рост плотности тока / н
напряжений от растяжения в проводе обмотки <Jp для рас­
считанного трансформатора виден из графиков, показан­
ных на рис. 3.12.
Принципиальные выводы в отношении характера изме­
нения масс активных материалов, стоимости активной ча­
сти, потерь и тока холостого хода, плотности тока и меха­
нических напряжений от растяжения с изменением соотно­
шения размеров �. сделанные на основании графиков рис.
3.9-3.12, являются общими для обоих вариантов расчета
трансформатора с медными и алюминиевыми обмот1<ами, с
плоской магнитной системой.
Различие в результатах расчета трансформатора с мед­
ными и алюминиевыми обмотками можно определить путем
сравнения графиков для вариантов Iм и Il д , рассчитан­
ных для одинаковых параметров холостого хода и корот­
кого замыкания при одинаковых конструкциях магнитноi1
системы и обмоток. При переходе от меди к алюминию и
при сохранении потерь короткого замыкания вследствие
более высокого, чем у меди, удельного сопротивления алю­
миния радиальные размеры обмоток (а1 , а2) и соответст­
вующие коэффициенты (а, Ь) увеличиваются. Это ведет к
увеличению коэффициентов А 1, А 2, В 1, В2 и к увеличению
при равных значениях � массы стали по сравнению с эти­
ми величинами для трансформаторов, имеющих медные
обмотки. Поэтому графики GстА =f(�); Р х л=f(�) и iол =
=f (� ) располагаются выше соответствующих графиков
для трансформатора с медными обмотками. Поскольку
общий объем и поперечное сечение алюминиевых обмоток
больше, чем у медных, графики Jл = f ( �) и <Jp=f (�) рас­
полагаются ниже, чем у трансформатора с медными обмот­
ками. При этом общий характер всех графиков G с,А, Gол,
Рх л, iол, JА, <Jрл остается таким же, как у соответст­
вующих графиков трансформатора с медными обмот­
ками.
Ранее было найдено � =2,14, соответствующее мини­
мальной стоимости активной части трансформатора вари­
анта Iм с медными обмотками. График Са,ч на рис. 3.10
позволяет установить, что при изменении � в широких пре150
де,1их -от 1,74 до 2,6 стоимость активной части отличаеr­
ся от мин и мума не более чем на 1 %.
Широкий диапазон значений р, практически обеспечи­
вающий получение минимальной стоимости активной части
трансформатора с отклонением от минимума не более чем
на 1 %, еще не определяет оптимального значения р. Для
выбора оптимального р необходимо обратиться к другим
критериям. Графики на рис. 3.11 позволяют определить
предельные значения р�!,71 для заданных потерь холо­
стого хода Рх =ЗIОО Вт. Предельное значение для задан­
ного значения тока холостого хода io = 1,3 % составляет р�
�2,25. Ранее были установлены предельные значения, ог­
раниченные плотностью тока, р�4,56, и механической
прочностью обмоток при коротком замыкании, р�б,87.
Полученные по этим критериям предельные значения р
сведены для обоих вариантов в табл. 3.10 и графически
представлены на рис. 3.13.
На этом рисунке заштрихованы те зоны, в которых дан­
ный параметр выходит за пределы, установленные для
него ГОСТ или заданными условиями. Выбор значений р
./3=1
3
2
lf
5
5
с�.ч
Са.,ч >1,01Cmin
Рх
Рх>ГОСТ
io
i 0 >ГОСТ
J
J>'l,5·10 6A/м 2
G'p
Gр>БОМПа
1
1 1
d=O,Z'f 0,26 0,28
}3=1
! с�.ч
2
1
0,30
1
0,З2м
з
lf
а)
5
6
Са,,ч":>1,()1 Cmin
1
Рх
Рх>ГОСТ
io
i0 >ГОСТ
J
бр
1
1
1
1 1
1
d=0,2'f 0,26 0,28 0,30 О,З2м
J>2,7·10 6А/м2
<5'р>25МПа,
о)
Рис. 3.13 Определение оптимального значения � и диаметра стержня d
для трансформатора тина ТМ-1600/35 с медными (а) и алюминиевыми
(6) обмuткамн
151
Таблиц а 3.10. Предельные значею1я /}, полученные при
11редваритель ном расчете
Рх
;о
2,14 (1,74-2,6)
1,71
2,25
4,56
6,87
1,22 (1,00-1,80)
1,10
1,80
4,08
4,43
Вариант
са,ч min
Iм
IIA
J
О'р
и диаметра стержня возможен только в предеJ1ах всех не­
заштрихованных зон.
График на рис. 3.13, а позволяет дJIЯ трансформатора
с медными обмотками определить оптимальное значение �
с учетом всех исследованных критериев. Из этого графика
следует, что верхнее предельное значение �= 1,71 для дан­
ного трансформатора определяется по заданным потерям
холостого хода. На этом же графике нанесены линии, соот­
ветствующие четным значениям шкалы нормализованных
диаметров стержня от 0,24 до 0,32 м (нормализованная
шкала диаметров содержит также и нечетные значения
LJ,25; 0,27 м и т. д.). С учетом заданных критериев выбира­
ем значение d=0,26 м при �= 1,804. В этом случае стои­
мость активной части отличается от минимального значе­
ния не более чем на l % , потери холостого хода несколько
превышают заданное значение и ток холостого хода оказы­
вается ниже заданного значения.
Минимальная стоимость активной части трансформато­
ра того же типа с алюминиевыми обмотками - вариант
1Iл - по графику рис. 3.10 составляет 87,5 % минималь­
ной стоимости активной части трансформатора с медными
обмотками (Iм) и точка минимума сдвинута к значению
(1= 1,22. По графику рис. 3.13, 6 возможен выбор норма­
лизованного диаметра стержня d=0,25 м при �= 1,31.
Потери холостого хода при этом будут несколько выше за­
данного значения 3100 Вт, ток холостого хода ниже задан­
ного значения 1,3 % и стоимость активной части близка к
минимальной.
Обобщенный метод позволяет рассчитать ряд парамет­
ров трансформатора без определения его основных разме­
ров l, d и С, которые также могут быть рассчитаны по
(3.13}, (3.29) и (3.40). На рис. 3.14 показано изменение
этих размеров для двух исследованных вариантов расчета
трансформатора.
152
Рнс. 3.14. Изменение основ11ых разме­
ров - диаметра стержня d, высоты
обмотки l и расстояния между ося­
;,111 стержней С с изменением � для
трансформаторов т1111а ТМ-1600/35 с
медными Ом ) и а,1юминиевыми (II А)
обмотками
о,ч
о .___..,___.....___.__�
1,2
1 ,8
2,Ч
З,О
3,6ft .
Для выбранных значений d и В рассчитываем и нахо­
дим по графикам приведенные ниже данные трансформато­
ров для примеров расчета § 3.6.
Вар11ант I м - медные обмотки. �= 1,804; х= 1,161; х2 = 1,346; х3 =
= 1,562. Диаметр стержня
d =Ах= 0,2243· 1,161 = 0,26 м.
Активное се 11еипе стержня
Пс= 0,0355-1,346
Средний диаметр обмоток
= 0,4778
м�.
d 1 2 =аАх = 1,40-0,2243- 1,161 = 0,3645 м.
Высота обмоток
1 = лd 12 /� = л·О,3615/1,804 = 0,6348 м.
Высота стержня
l c = 1+210 =0,6348+2·0,075=0,7848 м.
Расстояние между осями стержней
С= d 12+а 1 2+ bd+ а 22 = 0, 3645 + 0,027 +
+о,ЗI-О,26+0,03=0,5021 м.
Электродвижущая c1IJIa одного витка
U8=4,44· fПс Вс = 4,44•50 1 ,62•0,04778 = 17, 18 В.
Масса стали Gст= 1765 кг; масса металла обмоток Go = 537 кг; мае•
са провода Gп 0 = 537• l,03=553,1 кг; плотность тока 1 =3,58-10 6 Д/\1 ,
Механические напряжения в обмотках ар =14,14· 1,562=22,1 МПа.
Стоимость активной части С�. ч = 3224 условных единиц, в денежном
выражении с •.., =С�,ч _С ст= З224• 1,06= 3417,4 руб. (см. табл. 3.7).
Потери и ток холостого хода Рх= 3162 Вт и io=1,145 %.
2
153
Вариант IIА - алюм11н11свые
= 1,145; х3 = 1,225.
Диаметр стержня
сб"'о; ю1.
f:.I = 1,31;
х = 1,070;
х2,,,,
d = 0,2337, l ,07 = 0,250 м.
Актнвное сечение стержня
Пс=О,0386·1,145=0,0442 м2•
Средний диаметр обмоток
Высота обмоток
d1 2 = 1 ,484 ·О,250=О ,371 0 м.
l= n•0,3710/1 ,31=0,8897 м.
Высота стержня
lc=0,8897+2·0,075= 1,0397 м.
Расстояние между осями стержней
С= 0 , 37IO --j- 0,0300
+ 0,388-0,250+О,0300 =О,5217
м.
Напряжение одного витка
U8
= 4,44,50, J,62•0,0442 = 15,89 В.
Масса стали Gст=\927,6 кг; масса металла обмоток Go =3l4,0 кг; мас­
са провода G up =l,10,345,4 кг; плотность тока /=2,029,10 6 А/м2 • Меха­
нические напряжения в обмотках О'р =8,\9, \,225=1 0,03 МПа. Стоимость
активной части С : .•=2851 условных едииниц. В денежном выражении
Са,ч =С:,чсст=2851 • 1,06=3022 руб. (см. табл. 3.7). Потери и ток хо­
лосто го хода P:r =3359' Вт; io = 1,076 %.
Результаты проведенного в этой главе предварительного
расчета двух вариантов трансформатора типа ТМ-1600/35
и полного расчета, проведенного в гл. 6-8, приведены в
табл. 3.11. Основные размеры этих трансформаторов пока­
заны на рис. 3.15. Результаты полного расчета достаточно
хорошо сходятся с результатами предварительного расчета.
Необходимо отметить, что в процессе проведения пред­
варительного расчета по обобщенному методу была полу­
чена возможность выбора оптимального варианта размеров
трансформатора, определения и оценки ряда его парамет­
ров - масс активных материалов, стоимости активной ча­
сти, параметров холостого хода и др. при предельно воз­
можном диапазоне изменения соотношения основных
размеров � и без детального расчета. При этом все исследо­
ванные варианты имели одинаковые заранее фиксированные
параметры короткого замыкания.
154
Та 6 л и u а 3.11. Сравнение данных предварнтею,ного и пол11ого
расчета трансформатора типа ТМ-1600/35
Траnсформато р с мед- Трансформатор с апюнымн обмотками, lм
Показатми
Задано
Предва- / Попныn
ри·rепьныll rасчет
расчет 1
MИIIHCBЫMII ОбМОТl{Зt.111�
llд
Предвари• Попныn
тепь11ы11 \ рас чет
расчfт
П а р аые т ры
Полные потери, В т
Потери короткого замыкання, В т
Потери холостого хода, Вт
Напряжение короткого замыкания, %
Ток холостого хода,
%
Механические наnряжения, МПа
21 100
18 000
21 160
18 ООО
21 667
18 265
21 360
18 ООО
21 459
18 186
3100
3160
3402
3360
3273
6,fi
6,5
6,92
6,5
6,57
1,3
1; 145
0,971
1,076
0,92
22,1
16,78
10,03
8,43
Эле к т р о м агн и т ные н агрузк и
Индукция В с, Тл
Плотность тока
А/м2
/,
1,62
1,62
1,588
1,62
1,563
3,58-106 3,42•106 2,029·106 1,945•106
Ос н овны е р азм е ры
диаметр
1,804
0,260
0,3645
1,7945
0,260
0,3770
1 ,31
0,250
0,3710
1,374
0,250
0,3760
Высота обмотки l, м
Высота стержня lст,
0,6348
0,7848
0,660
0,810
0,8897
1,0397
0,860
1,010
Расстояние
осями С, м
0,5021
0,520
0,5217
0,530
fJ
d, м
Средний
d12, м
м
между
Да н ные м а се
Масса стали Gст, кг
Масса м еталла обмоток 1,03 G o, кг
1765
552,0
1862,2
619,4
1927,6
324
1926,4
358,6
155
�
1; :
:о
• soo , г;оо
'•
--+--·+--+
--;=-��=::::�
Рис. 3.15. Основные размеры двух трансформаторов типа ТМ-1600/35
с медными (а) и алюминиевыми (б) обмотками
Подобное исследование, проведенное для ряда трансфор­
маторов современны х серий, показало, что общий характер
изменения экономических и технических параметров с из­
менением � отличается теми же закономерностями, что и в
разобранном примере с трансформатором типа ТМ-1600/35.
Однако для трансформатора каждого типа при этом полу­
чаются свои пределы оптимального значения �- Так для
трансформаторов с воздушным охлаждением с изоляцией
обмоток повышенных классов нагревостойкости от В до Н
вследствие относительно высоких цен изоляционных мате­
риалов минимум стоимости активной части сдвигается в зо­
ну более высоких значений �. где уменьшается масса ме­
талла обмоток и изоляции при относительном увеличении
массы стали.
Обобщенный метод расчета силового трансформатора
может быть также применен для исследования влияния не­
которых исходных данных расчета на технические и эконо­
мические параметры трансформатора (см. гл. 11) и для
расчета трансформаторов новой серии с определением не
только оптимальных размеров трансформатора, но также и
рациональных значений его параметров холостого хода и ко­
р откого замыкания (см. гл. 12).
Обобщенный метод расчета, разработанный в настоящей
главе, позволяет на предварительной стадии вести расчет
силовых трансформаторов с различными конструкциями
магнитных систем - плоскими и пространственными, с об­
мотками из медного и алюминиевого провода, с масляным
и воздушным охлаждением, в широком диапазоне мощно1.56
стей при разных классах напряжения. Для всех этих вари­
антов получены принципиально одинаковые математические
.выражения, различающиеся лишь коэффициентами, учв­
тывающими особенности той или иной конструкции, мате­
риала или способа охлаждения, чем определяется универ­
сальность разработанного метода.
Применение обобщенного метода позволяет на стадии
предварительного расчета с достаточной точностью и при
ограниченном объеме вычислительной работы определить
ряд важных технико-экономических параметров трансфор­
матора и выбрать оптимальный вариант с учетом экономи­
ческих и других требований.
Одним из главных требований, предъявляемых к вновь
проектируемым сериям трансформаторов, является умень­
шение металло- и материалоемкости, а также общих масс
и габаритов конструкций. Одним из путей достижения этой
цели в рассматриваемой системе обобщенного метода явля­
ется переход на меньшие диаметры стержней магнитных
систе;1 трансформаторов за счет выбора меньших значений
�- При этом существенно уменьшаются масса стали магнит­
ной ситемы, потери и ток холостого хода, но увеличивается
масса провода обмоток и стоимость активной части транс­
форматора при сохранении значения потерь короткого за­
мыкания. Увеличение массы провода обмоток компенсиру­
ется существенно большим уменьшением массы стали маг­
нитной системы (см. пример расчета в§ 10.3).
В рассмотренном примере расчета трансформатора типа
ТМ-1600/35 (вариант Ilд с алюминиевыми обмотками) при
переходе от выбранного диаметра 0,25 м и значения �=1,31
11а диаметр 0,24 м н значение �=1,124 масса стали магнит­
ной системы уменьшается на 64,6 кг, потери холостого хода
на 100 Вт при увеличении массы провода обмоток на 25 кг
и при пракп1чески неизменной стоимости активной части.
Анализ серий трансформаторов с �1едными и алюминие­
ными обмотками показал, что для трансформаторов равной
мощности, рассчитанных для стали одной марки при одина­
ковой индукции, имеющих одинаковые параметры холосто­
го хода и короткого замыкания, могут быть установлены
следующие приближенные отношения параметров:
Диаметр стержня мап:нтной с11с:­
темы . . . .
11.\ ;:,_; (Q, 9-;..О, 95)
d,11
. . . .
lc,\ �( 1 ,4..,-1,5) l�м
Расстояtше между оснмн cтcpi!,ilcii
Сл � (1-ё--1,03) См
Длина стер;:,11,:
.
.
.
157
П"1сота магнитной систеиы (стер­
жень и два ярма)
Нсл�(I, 15...;..1,3) Нем
Чис,10 витков в обмотке
wл�(l,25...;..l, 1) \\7м
Масса металла обмоток
G0 A�(0,63-:--0,G5) Gо.'Л
Масса ста.1и мзгннтной системы
Плотность тока в о�мотках .
Ра<:тяrивающие нап;тження в об­
мотках nрн короп:ом замыкании
Пло1 ность тenJIOEOГO ПОТО.(а 1:а по­
верхности обмотаr: . . . . . .
Gстл�Gстм
J л�(U,55...;..О,6) Jм
О'µА�(О,36...;..О,40)о-rм
qA�(0,6-:--0,7) q,'v\
При соблюдении этих соотношений обеспечивается пол­
ная взаимозаменяемость трансформаторов с медными и
алюминиевыми обмотками по всем техническим и экономи­
ческим параметрам.
Для трансформаторов с алюминиевыми обмотками стои­
мость активной части обычно получается несколько мень­
шей, чем для трансформаторов с одинаковыми выходнымн
данными, имеющих медные обмотки. При этом стоимость
ба1<а и масла у трансформатора с алюминиевыми обмотками
вследствие большей высоты бака превышает стоимость бака
и масла трансформатора с медными обмотками. Общая
стоимость трансформатора для эквивалентных по мощно­
сти, классу напряжения и параметрам холостого хода и ко­
роткого замыкания современных трансфорr.iаторов с алю­
миниевыми и медными обмотками обычно оказывается
практически равной.
Примеры приближенного расчета двух вариантов транс­
форматора ТМ-1600/35 показывают, что выбор оптимально­
го значения � для l{аждого трансформатора определяется
рядом условий, а именно заданными параметрами холосто­
го хода и короткого замыкания, т. е. принятым уровнем по­
терь Рх и Р11 и напряжением короткого замыкания Uк, мар­
кой стали магнитной системы и материалом обмоток, вы­
бранными электромагнитными нагрузками активных
материалов В с, J и изоляционными расстояниями главной
изоляции обмоток. Для того чтобы при расчете трансформа­
тора найти правильное решение при минимальном объеме
работы, рекомендуется в каждом случае для выбора � вы­
полнить приближенный расчет по методике, показанной в
примерах расчета трансформатора ТМ-1600/35 с медными
и алюминиевыми обмотками.
При выполнении этапа приближс:1ноrо расчета следует
158
с,тчетл11во предс1 ао"1ять, что будут получены основные дан11ые и размеры , J{Оторыс, возможно, потребуют некоторой,
обычно небольшой, корре1пировки при окончательном уста­
новлении параметров рассчитываемого трансформатора, со­
ответствующих заданным значениям. Эта корректировка
может быть необходима вследствие как приближенного оп­
ределения значений а(а1 +а2 )/3 и др., так и необходимости
считаться при реальном расчете с наличным сортаментом
провода, особенностями выбранных конструкций обмоток и
магнитной системы, нормализованным рядом диаметров
стержней и т. д.
В ряде случаев при определенном уровне потерь для наи­
более часто употребляемых материалов магнитной системы
и обмоток для определения оптимального значения � мож­
но воспользоваться рекомендациями табл. 3.12. В этой таб-
та бл ица
Мошность,
кВ-А
3.12. Рекомендуемые значения �
а) Масляные трансформс.торы
АлюминиА
бн!Оквl
Zo кВ
Медь
1
110 кВ
-
€ и 10 кВ
1
35 кВ
1
110 кВ
25-100 1,2-1,6
1,8-2.4
-160-630 1,2-1,6 1,2--1,5
1,8-2,4 1,8-2,4
- 2,0-2,б 1,8-2,4
1000-6300 1,3-i,7 1,2-1,6
6300-16 000
1,7-2,0 1,6-2,0
1,1-1,З 1,1-1,3
25 0001,3-1,б 1,5-1,8
80000
-
-
6) Сухае трапсфор.чаторы
Мощность,
КВ•А
Алюмини,1
ДО
1
КВ
1
би\ОкВ
10-iбО 1,1-1,5
160-631)
1,2-1,6
- 1,1-1,3
1000-1600
1
-
Медь
до I кв
1,6-2,2
-
-
1
6 н \(J кВ
-
1,8-2,4
1,6-2,0
1
-
Пр II мс ч а II и я: 1. В таблице приведены значения f;. рек,.,мендуемые д11я
тре�фазных меrляных трансформаторов классои напряжения 6, 10, 35 н 110 кВ,
отвечающих требованиям ГОСТ 12022-76, 11920-85 н 12965-85 (см. § 1 4), и для соn­
рсмеиных трехфазных сухнх трансформаторов
2. Рекомендации даны для стали марок 3404 11 3405 по ГОСТ 21427-83 при
т011щине сталн 0,35 н 0,30 мм и при индукциях В с �1,6-1,65 Тл для мас.,яных 11
Вс -1,4+ 1,6 Тл для сухих трансформаторов.
3. Для трансфориатороil класс3 напрчже11ия 110 кВ с Р!Н\ "о схеме рнс.
6 9, а, рассчитанных пµи пониженных значениях массы стали маr·нн rно11 �·нстемы
no § 10.З, прю,имать значение II нз 10 % ниже ни»«:с1·0 предела, ука 1ин11оrо в
1иблнцс, т. с. nринина,ь 0,9 от 1,6 и;ш 0,9 от 1,5.
159
щще приведены оптимальные значения �. полученные в ре­
зультате исследования масляных трансформаторов совре­
менных серий с классами напряжения ВН 6, 10, 35 и 110 кВ,
отвечающих требованиям ГОСТ 12022-76, 11920-85 и 1296585 (см. § 1.4), а также рекомендуемые значения � для со­
временпых сухих трансформаторов.
Рекомендуемые значения � предусматривают получение
трансформаторов с заданным уровнем потерь, заданным на­
пряжением короткого замыкання, со стоимостью активных
материалов, близкой к минимальной, достаточно прочных
при коротком замыкании, при условии применения материа­
лов магнитной системы и обмоток, у1<азанных в табл. 3.12.
Для однофазных двухобмоточных трансформаторов мо­
жет быть использована та же таблица. При этом � опреде­
;1яется по табличному значению мощности, равному или
близкому к утроенной мощности на одном стержне одно­
фазного трансформатора.
При выборе В следует учитывать, что уменьшение � при
сохранении параметров короткого замыкания ведет к умень­
шению массы стали магнитно,1 системы, потерь и тока хо­
лостого хода, а также к увеличению массы металла обмо­
ток. Увеличение вызывает увеличение массы стали, потерь
и тока холостого хода, но ведет к уменьшению массы метал.
ла обмоток.
Изменение � влияет на массу не только активных, но и
остальных материалов трансформаторов. Вместе с увеличе­
нием � растут потери холостого хода и стоимость системы
охлаждения, вQзрастают масса и стоимость конструктивных
деталей остова, металла бака, трансформаторного масла,
общая масса трансформатора. Общая стоимость материалов
трансформатора имеет свою точку минимального значения,
обычно близкую по шкале значений � к точке минимальной
стоимости активных материалов. С увеличением � от этой
точки общая стоимость материалов резко возрастает. По­
этому в целях экономии всех материалов трансформатора
рекомендуется при прочих равных условиях выбирать мень­
шие из рекомендуемых значений �3.7, ОПРЕДЕЛЕНИЕ ОСНОВНЫХ РАЗМЕРОВ ТРАНСФОРМАТОРА
Расчет основных размеров трансформатора начинается
с определения по (3.17) диаметра стержня
4
r
d=0,507
v
, 100
S' apM JJ
fup в:
ki
Расчет и выбор величин, входящих в (3. 17), рекоменду­
ется производить в следующем порядке:
1. Мощность обмоток одного стержня трансформатора,
1,В-А, определяеется по (3.2)
S' = S!c,
где S - мощность т11ансформатора по заданию; с - число
активных (несущих обмотки) стержней трансформатора.
Для трехобмоточного трансформатора S - наибо,1ьшая
из трех мощностей пар обмото1< ВН-СН, ВН-НН и СН­
НН, для автотрансформатора - расчетная (типовая мощ­
ность).
2. Ширина приведенного канала рассеяния трансформа­
тора аµ =а 12 + (а 1 +а2)/3 при определении диаметра стерж­
ня еще не известна. Размер а 12 капала между обмотками
ВН и НН определяется как изоляционный промежуток и мо­
жет быть выбран на основании указаний, данных в § 4.5 о
выборе главной изоляции трансформатора по испытательно­
му напряжению обмотки ВН (см. табл. 4.5). Для сухих
трансформаторов следует пользоваться данными, приведен­
ными в § 4.6 и табл. 4.15. Этот промежуток, выраженный в
метрах может быть принят равным а 12 =а;2 • I0-3, где а;2,
мм, - промежуток, найденный по табл. 4.5 для масляных
или по табл. 4.15 для трансформаторов с естественным
воздушным охлаждением.
Суммарный приведенный радиальный размер обмоток
ВН и НН (а 1 +а2)/3 при определении диаметра стержня
может быть приближенно найден по (3.28) и табл. 3.3 (см.
§ 3.5).
При расчете трехобмоточных трансформаторов по (3.28)
в таком же порядке ориентировочно определяется приведен­
ный размер двух внутренних обмоток НН и СН .
Значением (а 1 +а2)/З, найденным по (3.28), можно поль­
зоваться только при определении основных размеров транс­
форматора. Во всех последующих расчетах следует пользо­
ваться реальными радиальными размерами обмоток рассчи­
тываемого трансформатора.
3. Значение 13 приближенно равно отношению средней
длины витка двух обмоток lв трансформатора к их высоте l
11 определяет соотношение между шириной и высотой транс­
форматора. В том случае, когда заданные параметры транс­
форматора и принятые исходные данные расчета совпадают
с условиями, для которых составлена табл. 3.12, выбор 13
11-510
161
может быть сделан по этой таблице с учетом замечаний,
приведенных u § 3.6. Если такого совпадения нет, то реко­
мендуется выбор оптимального значения � делать на осно­
вании предварительного обобщенного расчета по методике,
описанной в § 3.5 и 3.6.
При расчете трансформатора с магныной системой из
горячекатаной стаJш марок 1511-1514 пр:r индукции В с =
= l,4..,..-1,45 Тл получить трансформатор с потерями и током
холостого хода, отвечающим требованиям современного
ГОСТ, невозможно. В случае необходимости применения
стали этих марок при расчете нестандартного трансформа­
тора рекомендуется провести предварительный расчет по
методике, описанной в § 3.5 и 3.6, и выбрать приемлемый
вариант или воспользоваться данными, приведенными в
табл. 3.12.
4. Коэффициент приведения идеального поля рассеяния
к реальному полю (коэффициент Роrовского) при определе­
нии основных размеров можно приближенно принять
kp � 0,95.
5. Частота f подставляется из задания на расчет транс­
форматора.
6. Реактивная составляющая напряжения короткого за­
мыкания, % , определяется по формуле
В свою очередь напряжение короткого замыкания, % ,
определяется из задания, а его аrпивная составляющая,
.%, - по формуле
где Рх - потери короткого замыкания, Вт; S - полная мощ­
ность трансформатора по заданию, кВ• А.
Для трансформаторов мощностью I О ООО кВ, А и более,
поскольку для них активная составляющая Ua относительно
мала, можно принять Up =Ux, Для трехобмоточных транс­
форматоров в (3.17) следует подставлять значение Ир� u11
для двух внутренних обмоток (НН и СН).
Для автотрансформаторов в (3. 17) следует подставлят1,
расчетное напряжение короткого замыкания Uи,р, опреде­
ленное в соответствии с указаниями § 3.2.
7. Индукция в стержне Вс выбирэется по табл. 2.4 в со162
ответствии с замечаниями, сделанными в § 2.2 и 11.1. В
трансформаторах относительно небольшой мощности (S <
<25 кВ-А) выбирают обычно пониженную индукцию во
избежание получения повышенных значений тока холостого
хода. Из этих же соображений не рекомендуется выбирать
индукцию выше значений, данных в табл. 2.4. Уменьшение
индукции хотя и дает заметное снижение тока и некоторое
снижение потерь холостого хода, од;-rако приводит к увели­
чению массы и стоимости активных материалов - стали и
металла обмоток
8. Коэффициент заполнения активным сечением стали
площади круга, описанного около сечения стержня, k c зави­
сит от выбора числа ступеней в сечении стержня, способа
прессовки стержня и размеров охлаждающих каналов, тол­
щины листов стали и вида междулистовой изоляции. Общий
коэффициент заполнения flc равен произведению двух ко­
эффициентов
(3.67)
В свою очередь коэффициенты kир и k з могут быть опре­
делены по табл. 2.2 , 2.5, 2.6 согласно указаниям, данным в
§ 2.2, 2.3 и 11.2.
После определения и выбора всех значений, входящих в
.(3.17), по этой формуле рассчитывается диаметр стержня.
Если полученный диаметр d не соответствует нормали­
зованной шкале диаметров (см. § 2.3), то следует принять
ближайший диаметр по нормализованной шкале dn и опре­
делить значение �н. соответствующее нормализованному
диаметру. Если значение� выбрано по методике, описанной
в§ 3.5 и 3.6, то оно пересчитывается по формуле
(3.68)
При выборе� по табл. 3.12 определение производится по
формуле
(3.69)
Второй основной размер трансформатора - средний диаметр канала межд у обмотками d 12 - может быть предва­
рительно приближеЕпо определен (см. рис. 3.5) по формуле
d 12 = d + 2а01
или d 12 �atl ( § 3.5 ).
11*
+ 2 а1 + а 12
(3. 70)
163
При ра�чете d 12 по _(3.70) радиальные размер!>! осевых
1«:1Налов ио1 между стержнем и обмоткой НН и а12 между
uбм6тками НН и ВН определяются из условий электриче­
ской прочности главной изоляцни трансформатора пu испы­
тательным напряжениям обмоток НН и ВН соответственно
по табл. 4.4 и 4.5.
В (3.70) подставляются а12=а ;2 • 10- 2 и ао1 =а�1 • 10- 2.
Радиальный размер обмотки НН а 1 может быть прибли­
женно подсчитан по формуле
а..L1-а..L
а 1 � k -1
'
1
3
(3. 71)
где (а 1 +а2 ) /3 определяется приближенно по (3.28); коэф­
фициент k 1 может быть прннят равным 1,1 для трансформа­
торов мощностью 25-630 ((В. А с плоской или 1,2 с прост­
ранственной навитой магнитной системой; 1,4 для трансфор­
маторов мощностью 1000-6300 кВ-А класса напряжения
10 кВ и мощностью 1000-80 ООО кВ-А класса напряжения
35 кВ; 1,1 для трансформаторов класса напряжения 110 кВ.
Третий основной размер трансформаторов - высота об­
мотки, см, определяется по формуле
(3. 72)
В (3.72) подставляется величина �"' опредеJiенная ДJIЯ
нормализованного диаметра по (3.68) или (3.69).
После расчета основных размероn трансформатора под­
считывается активное сечение стержня, т. е. чистое сечение
стаJIИ, см2 :
(3. 73)
Электродвижущая сила одного витка, В,
(3 ,74)
Оnре,1ет·ние размероз стержня и обмоток, проводимое
в начале расчета, является предваритеJ1ьным. Задача пред­
uарительноrо расчет:� заключается в приближенном опреде­
лении основных размероn магнитной систе:v�ы и обмоток d,
d 12, l и в расчете аюивноrо сечения стержня Пс н ЭДС од­
ного витка обмотки и., что необходимо в дальнейше м для
полного расчета обмоток. Сечение стержня Пс в предвари!f4
тельном рас 1 1ете определяется по коэффициенту заполн е­
ния k c без расчета размеров пакетов и при око1Jчаrельном
расчете магнитной системы может быть скорректировано
на 0,5-1 % . Полное сечение стержня Пс может быть также
найдено по табл. 8.6 и 8.7, а размеры пакетов стержня 11
ярма по табл. 8.2-8.5.
В окончательном расчете магнитной системы, проводи•
мом после полного расчета обмотоI<, проверки и подгонки к
заданной норме параметров короткого замыкания, опреде­
ляют размеры ступеней в сечении стержня и ярма и все ос­
тальные размеры магнитной системы, уточняют активные се­
чения стержня и ярма, а также индукцию, рассчитывают
массу стали, потери и ток холостого хода.
В процессе полного расчета обмоток и окончательного
расчета магнитной системы размеры и параметры, прибли­
женно найденные в предварительном расчете, могут быть
несколько изменены. Поэто�у при раt..чете параметров корот1юго замыкания и хоJiостого хода и других подсчетах, кото­
рые проводятся в конце расче1·а, после окончательной рас­
кладки обмоток и опрtдеJ1ения реальных размеров магнит­
ной системы следует пользоваться не предварительно полу­
ченными здесь значениями d, d:2, l, (а 1 +а2)/З , а 1, Пс и Вс,
а размерами и параметрами, найденными д;1я реальных об·
моток и магнитной r.истемы.
Глава четвертая
ИЗОЛЯЦИЯ В ТРАНСФОРМАТОРАХ
4.f. КЛАССИФИКАЦИЯ ИЗОЛЯЦИИ В ТРАНСФОРМАТОРАХ
Каждый силовой трансформатор при оценке его электри­
ческой прочности может быть нредставлен состоящим из
трех систем - системы частей, находящихся во включенном
трансформаторе под напряжением; системы заземленных
частей и системы изоляции, разделяющей как первые две
системы, так и отдельные части, находящиеся под напряже­
нием.
К системе частей, находящихся под напряжением, отно­
сятся все металлические части и детали, служащие для про­
ведения рабочего тока ( обмотки, контакты переключателей
ступеней напряжения, отводы, проходные шины и шпилькн
вводов и др.), а также все гальванически соединенные с шr165
ми детали (защитные экраны, емкостные 1<0льца, металли­
ческие колпаки проходных изоляторов и т. д.).
К системе заземленных частеli с.1едует отнести: магнит­
ную систему со всеми металлическими деталями, служащ11ми для ее крепления, бак и систему охлаждения, та((же со
всеми деталями и металлической арматурой в масляных
трансформаторах или защитный кожух в сухих трансфор­
маторах.
Изоляция, разделяющая части, находящиеся под напря­
жением, между собой и отделяющая их от заземленных ча­
стей, в силовых трансформаторах выполняется в виде конст­
рукций и деталей из твердых диэлектриков - электроизо­
ляционного картона, кабельной бумаги, лакотканей, дерева,-·
текстолита, бумажно-бакелитовых изделий, фарфора и дру­
гих материалов. Части изоляционных промежутков, не за­
полненные твердым диэлектриком, заполняются жидким или
газообразным диэлектриком - трансформаторным маслом
в масляных трансформаторах, атмосферным воздухом в су­
хих трансформаторах. В качестве такого диэлектрика ино­
гда применяются и другие жидкости и газы, а также прак­
тикуется заливка всего трансформатора компаундом или за­
полнение кварцевым песком.
Изоляция обмоток может быть подразделена на главную
изоляцию, т. е. изоляцию каждой из обмоток от за3ем.1ен­
ных частей и от д ругих обмоток, и продольную изоляцию между различными точками данной обмотки, т. е. между
витками, слоями, катушками и элементами емкостной защи­
ты. Аналогично можно подразделить также и изоляцию от­
водов и переключателей. Разделение изоляции на главную и
продольную может быть отнесено к масляным и сухим
трансформаторам.
Классом напряжения обмотки называют ее длительно
допустимое рабочее напряжение. Класс напряжения обмот­
ки трансформатора совпадает с номинальным напряжением
электрической сети, в которую обмотка включается. Клас­
сом напряжения трансформатора считают класс напряжения
обмотки ВН. Каждому классу напряжения трансформатора
соответствуют номинальное рабочее напряжение и опреде­
.ТJенные испытательные переменные напряжения при 50 Гц
и импульсное. Так для класса напряжения 35 кВ номиналь­
ными напряжениями являются 31,5, 35 и 38,5 кВ; наиболь­
шее рабочее напряжение равно 40,5 кВ; испытательное пе­
ременное напряжение 50 Гц равно 85 кВ, а импульсное для
полной волны 200 кВ.
166
4.2. ОБЩИЕ 1РЕ608АНИЯ. ПРЕДЪЯВЛЯЕМЫЕ К ИЗОЛЯЦИИ
ТОРА
ТР АНСФСРМА
Изо.1яция трансформатора должна выдерживать без по­
вреждений электрические, тепловые, механические и физи­
ко-химические воздействия, которым она подвергается при
эксплуатации трансформатора.
Стоимость изоляции составляет существенную долю стои­
мости трансформатора. Для трансформаторов классов на­
пряжения 220-500 кВ стоимость изоляции, включая масло,
достигает 15-20 % стоимости всего трансформатора.
Главными задачами при проектировании изоляции транс­
форматора являются: определение тех воздействий, прежде
всего электрических, которым изоляция подвергается в про­
цессе эксплуатации; выбор принципиальной конструкции
изоляции и форм изоляционных деталей; выбор изоляцион­
ных материалов, заполняющих изоляционные промежутки,
и размеров изоляционных промежутков.
В эксплуатации силовой трансформатор постоянно нахо­
дится во включенном состоянии, а его изоляция - под дли­
тельным воздействием рабочего напряжения, которое она
должна выдерживать без каких-либо повреждений неогра­
ниченно долгое время. Допустимые продолжительные пре­
вышения напряжения должны быть указаны в стандартах
на конкретные типы и группы трансформаторов. Согласно
требованию ГОСТ 11677-85 силовые трансформаторы долж­
ны быть также рассчитаны на работу в определенных усло­
виях при кратковременном напряжении, превышающем но­
минальное до 15 и 30 %. В электрической системе, в которой
работает трансформатор, вследствие нормальных коммута­
ционных процессов (включение и выключение больших мощ­
ностей и т. д.) или процессов аварийного характера (корот­
кие замыкания, обрыв линий и т. д.) возникают кратковре­
менные перенапряжения, достигающие в отдельных редких
случаях значений, близких к четырехкратному фазному на­
пряжению. Длительность этих перенапряжений измеряется
сотыми долями секунды и, как правило, не превышает О, 1 с.
Нормальное рабочее напряжение и перенапряжение комму­
тационного характера воздействуют в основном на главную
изоляцию обмотки.
В воздушной сети могут возникать также импульсные
волны перенапряжений, вызванных грозовыми атмосферны­
ми разрядами. Эти импульсы, достигая трансформатора,
воздействуют на его изоляцию. Атмосферные перенапряже167
н11я в отдельных 11еблаrоприятных cJiyчasix достигают 10кратноrо фазного напряжения при длительности, измеряе­
мой микросекундами. Воздействие атмосферных грозовых
перенапряжений сказывается главным образом на продоль­
ной изоляции обмоток трансформатора, в частности на изо­
ляции между витками, между слоями витков и между ОТ•
дельными катушками обмотки.
При возникновении перенапряжений того или иного типа
в случае недостаточной электрической прочности изоляции
может произойти электрический разряд или даже пробой,
т. е. местное разрушение изоляции.
Для упрощения расчета и стандартизации требований,
предъявляемых к электрической прочности изоляции гото­
вого трансформатора, электрический расчет изоляции произ­
водится так, чтобы она могла выдержать приемосдаточные
и типовые испытания, предусмотренные соответствующими
нормами. Нормы испытаний составлены с учетом возмож­
ных в практике значений, длительности и характера элек­
трических воздействий, содержат необходимые запасы проч­
ности и закреплены в ГОСТ. Нормы периодически пересмат­
риваются в соответствии с уточнением технических
требований, предъявляемых к трансформаторам, развитием
их производства и улучшением условий эксплуатации. Эти
нормы являются строго обязательными для всех предприя­
тий, выпускающих трансформаторы.
Для проверки электрической прочности изоляции масляных транс­
форматоров обычной конструкции, т. е. не нмеющпх ступенчатой изо­
ляции по отношению к земле, установле11ы следующие приемосдаточиые
11t:пытання каждого выпускаемого из производства трансформатора
классов напряжения до 35 кВ включительно (ГОСТ 1516.1-76).
1. Испытанию подвергается изоляция каждой из обмоток, электри­
чески не связанной с другими обмотками. Испытательное напряжение
(50 Гц) от постороннего источника прикладывается между испытывае­
мой обмоткой, замкнутой накоротко, и заземленным баком, с которым
соединяется магнитная снстема и зам!(иутые накоротко все прочие об­
мотки испытываемого трансформатора. Длительность приложения испы­
тательного напряжения I мин. Значения испытательных напряжений при
нормальных атмосферных условиях [температура 20 °С, барометрическое
давление О,1 МПа (760 мм рт. ст.), влажность 11 r/м 3 ] должны быть
равны значениям, указанным в табл. 4.1 (для сухих трансформаторов
табл. 4.2).
При этом испытании все части обмотки имеют один и тот же по­
тенциал II проверяется главная изоляция испытьшаемой обмотки, ее от•
БОДОВ, В!JОДОВ II пере!(ЛЮчателей.
]68
т а б JI и ц а
4.1. Испытательные нащ,яжеRи11 ··�.
( 50 Г1() для масляных силовых трансформаторов ( ГОt- 1
'
Нан большее рабо- 3,6 7,2 12,0 17,5 24 40,5 126 172 252 363 525
напряжею1е,
чее
кВ
18
Испытательное
напряжение Иисп t
25
35
45
55
85 200 230 325 460 63
)(8
П р и м е ч а н и е. Обмот�<и масляных и сухих
напряжением до I кВ имеют И IICП =5 кВ.
трансформаторов с рабочим
Т а б л иц а 4.2.Испытательные напряжения промышленной частоты
(50 Гц) д.�я сухих силовых трансформаторов (ГОСТ 1516.1-76)
!(ласе нанrяжения. кВ
До l,U
3
6
10
15
Испытательное нанряженне, кВ
3
10
16
24
37
2. После испытания напряжением, приложенным от другого источ­
ника, изоляция обмоток испытывается н11пряжением, наведенным в са­
мом испытываемом трансформаторе в резул1,тате приложения к одной
нз обмото1< (между ее вводамн) двойного номинального напряжения по­
вышенной частоты. Длительность приложения этого испытательного на­
пряжения для силовых трансформаторов I мин.
При этом испытании в каждом витке, каждой катушке и обмотке
наводится двойная ЭДС и проверяется r;родольная изоляция всех об­
моток, отводов, вводов и переключателей.
Трансформаторы классов напряжения 110, 150 и 220 кВ, нейтраль
обмотки которых при работе в сети нормально заземлена, испытывают­
ся напряжением, приложенным от постороннего источника, между испы­
тываемой обмоткой и заземленными частями в течение I мин в размере
испытательного напряжения нейтрали, т. е. 100 кВ при классе напря­
жения обмотки 110 кВ; 130 кВ при классе напряжения 150 кВ и 200 кВ
при классе напряжения 220 кВ. Эти трансформаторы испытываются
также напряжением, индуктированным в самом трансформаторе, в раз­
мере испытательного напряжения по табл. 4.1 при частоте 100-400 Гц.
д.�ителыюсть испытания при частоте 100 Гц I мин, При бо.1ее высокой
частоте длите.%ность сокращается.
169
_ ...,.,. _,,I,уJIьсные исnытателы1ые наnряже1Iия внутренней
_,,,.,h \В масле) силовых трансформаторов (ГОСТ 1516.1-76)
Класс
11апряже•
ння об•
мотки. кВ
3
6
10
15
21)
35
Амплитуды импульсных ис11ытательных напряжений, кВ
класс
напряже-
резанная
Полная волна 1 С волна
44
68
80
108
130
200
50
70
90
120
150
225
мотки. кВ
ния об-
1
110
150
22;)
330
500
АмПJштуды импульсвых 11сnыт�тельных 11апряженнй. 1<.[3
Пот,ая волн а 1
Срезанная
480
550
750
1050
1550
550
600
835
1150
1650
BOJ1118
Трансформаторы классов напряжения 220, 330 и 500 к!3 исnытыва­
ютсл путем длительного - при приемосдаточвых испытаниях в течение
30 мин - приложения напряжения от постороннего источника м1::жду
частями, находящимися под напряжением и заземленныю1. Значения
испытательных напряжений: 220 кВ при классе напряжения 220 1< В,
295 кВ при классе 330 кВ и 425 при t<лассе нз11ряже11ия 500 кВ. Эти
трансформаторы испытываются таюке индуктированным напряжеf1ием
частотой 100-400 Гц в размере испытательного напряжения по
табл. 4.1.
Кроме приемосдаточных испытаний эле1<трической изоляции, кото­
рым подвергается каждый трансформатор, выпускаемый заводом, 1<аж­
дый новый тип трансформатора подвергается типовым испытаниям по
более широкой программе, вклю11аюшей испытания rро:ювыми, а при
классах напряжения 330 кВ и выше также и коммутационными им­
пульсами (табл. 4.3).
Электрическая прочность изоляции трансформатора
обеспечивается прежде всего правнльным учетом тех элеr<­
трических воздействий, которые эта изоляция испытывает в
эксплуатации, и правильным выбором норм, т. е. испыта­
тельных напряжений и методов воздействия на изоляц11ю
при приемосдаточных и типовых испытаниях трансформато­
ров. Именно условиями электрической прочности опреде­
ляется выбор принципиальной конструкции изоляции н
форм ее деталей. Основные типы изоляционных конструк­
ций приведены в § 4.4, а в § 4.5 даны рекомендации по их
выбору для трансформаторов различных классов напря­
жения.
Обмотки и все токоведущие части трансформатора прн
его работе нагреваются от возникающих в них потерь, Как
170
д лительное, так и кратковременное (аварийное) во:шействие
13 ысоких температур на изоляцию обмоток вызывает старе­
ние изоляции, которая постепенно теряет свою эластичность,
становится хрупкой, снижает электрическую прочность и
разрушается. В правильно рассчитанном и прав11льно экс­
плуатируемом трансформаторе изоляция обмоток должна
служить 25 лет и более.
Необходимая нагревостойкость изоляции, гарантирую­
щая длительную безаварийную работу трансформатора, до­
сrигается ограничением допустимой температуры его обмо­
ток и масла, применением изоляционных материалов соот­
ветствующего
длительное
класса,
выдерживающнх
воздействие допустимой температуры, и рациональной кон­
струкцией обмоток и изоляционных деталей, обеспечиваю­
щей их нормальное охлаждение.
При прохождении электрического тока по обмоткам и
другим токоведущим частям между ними возникают меха­
нические силы. В аварийном случае короткого замыкания
трансформатора механические силы, достигая значений тем
больших, чем больше мощность трансформатора, могут вы­
звать разрушающие напряжения в междукатушечной или
опорной изоляции обмоток.
Выбор изоляционных материалов производится с учетом
их изоляционных свойств, механической прочности и хими­
ческой стойкости по отношению к трансформаторному мас­
лу, если речь идет о масляном трансформаторе. Материал не
должен входить в химические реакции с мас,1ом при тем­
пературе до 105-11О 0 С и не должен содействовать хими­
ческим и физическим изменениям масла в качестве катали­
затора. В трансформаторостроении накоплен достаточный
опыт для выбора изоляционных материалов для масляных
и сухих трансформаторов, имеющих необходимые изоляци­
онные свойства, стойких в химическом отношении и обла­
дающих достаточной механической прочностью, позволяю­
щей им выдерживать механические воздействия при аварий­
ных процессах в трансформаторе (см. § 4.3}. Материалы,
применяемые в масляных трансформаторах, например элек­
троизоJ1яционный картон, бумага разных сортов, фарфор,
хлопчатобумажная лента, не вступают в химическое воз­
действие с маслом, не разрушаются сами и не способствуют
химическому разложению и загрязнению масла.
Изоляционные материалы, имеющие в том или ином внде
смолы, лаки и эмали, например эмалевая изоляция провода,
бумажно-бакелитовые изделия, лакоткани, текстолит, ДОJIЖ·
171
ны содерж ать смолы, лаки и эмали, нерастворимые в транс­
форматорном масле.
В обычно применяемых конструкциях трансформаторов
изоляция подвергается воздействию, как правило, только
сжимающих усилий, а наиболее употребительные изоля­
ционные материалы, например электроизоляционный кар­
тон, кабельная бумага, бумажно-бакелитовые изделия, тек­
столит, допускают сжимающие напряжения до 20-40 МПа,
что практически оказывается совершенно достаточным.
При выборе изоляционных материалов для той или иной
конструкции изоляции масляного или сухого трансформато­
ра и установлении размеров изоляционных промежутков
можно пользоваться рекомендациями§ 4.5. При этом в мас­
ляном трансформаторе можно использовать материалы
класса нагревостойкости А, допускающего температуру до
105 °С, и в сухом - классов от А до Н, допускающих тем­
пературу от 105 до 155 °С. Неправильный выбор изоляцион­
ных промежутков, материалов и размеров изоляционных
конструкций может привести к разрушению трансформато­
ра, если эти промежутки малы, или к чрезмерному расходу
изоляционных и других материалов и увеличению стоимости
трансформатора, если промежутки велики.
Выбор изоляционных промежутков определяет в извест­
ной мере не только расход активных, изоляционных и кон­
структивных материалов, но также массу, габариты, а сле­
довательно, и предельную мощность трансформатора, кото­
рый можно изготовить на заводе и доставить по железной
дороге к месту установки. Уменьшение изоляционных про­
межупюв, обеспечивающее экономию материалов и увели­
чение предельной мощности выпускаемых заводами транс­
форматоров, при достаточной электрической прочности изо­
ляции достигается различными мерами. К этим мерам
относятся прежде всего: применение рациональных конст­
рукций обмоток и их изоляции; улучшение защиты транс­
форматоров в сетях от атмосферных и коммутационных пе­
ренапряжений путем установки. разрядников с лучшими
разрядными характеристиками; улучшение качества изоля­
ционных материалов, а также технологии обработки изоля­
ции и повышение общей культуры производства.
Решающее значение в обеспечении электрической проч­
ности изоляции имеет технология ее обработки. Одной из
важнейших технологических операций обработки изоляции
является вакуумная сушка активной части трансформатора
11осле ее сборки и перед установкой в баке и заливкой мас172
лом. Эта операция проводится для удаления влаги и газов
из изоляции трансформатора для увеличения ее электриче­
ск· ой прочности и уменьшения диэлектрических потерь, ста­
билизации размеров изоляционных деталей и увеличения
электродинамической стойкости трансформатора при корот­
ком замыкании, повышения надежности и увеличения срока
службы трансформатора.
Основная работа в совершенствовании процесса сушки
ведется в направлении некоторого уменьшения температуры
сушки и существенного снижения остаточного давления в
сушильных камерах. Считается, что остаточное давление в
камере во время сушки трансформатора не должно быть вы­
ше 650 Па (5 мм рт. ст.) при классе напряжения 10 кВ;
130 Па (l мм рт. ст.) при 35-150 кВ; 13 Па (0,1 мм рт. ст.)
при 220-500 кВ и l Па (0,01 мм рт. ст.) при 750-1150 кВ.
Немаловажное значение для электрической прочности
трансформатора имеет заливка его после сушки хорошо про­
сушенным и дегазированным маслом.
Трансформаторы классов напряжения до 35 кВ включи­
тельно заливаются маслом при окончательной сборке без
вакуумирования бака. Трансформаторы классов напряже­
ния 110 кВ и выше при окончательной сборке заливаются
просушенным, дегазированным и подогретым маслом надле­
жащей марки под вакуумом. Распространение этого способа
заливки на трансформаторы класса напряжения 35 кВ мо­
жет позволить перейти на облегченную изоляцию по
рис. 4.5, 6.
Примером технологической операции, увеличивающей
механическую прочность изоляционного материала, может
служить предварительная, до изготовления деталей, опрес­
совка и уплотнение электроизоляционного картона.
Достаточная электрическая прочность изоляции транс­
форматора зависит также от уровня культуры производст­
ва - соблюдения технологической дисциплины, надлежа­
щей чистоты в цехах и т. д. Заготовку и хранение изоляции,
а также сборку активной части трансформаторов классов
напряжения 500 кВ и выше рекомендуется производить в
помещениях с регулируемым микроклиматом при поддер­
жании определенного уровня температуры, влажности, при
ограниченной запыленности воздуха и т. д.
Трансформаторное масло, соприкасаясь в горячем со­
стоянии с воздухом, в большей степени подвергается хими­
чес1шм воздействиям и увлажнениям, чем твердая изоляция
трансформатора. Поэтому при эксплуатации трансформато173
ров практш:уются ситематнчес:<ая очисп<а, суuша и смена
масла, а также прннимают1:я меры, направленные на умень­
шение поверхности соприкосновения масла с воздухом, осу­
ществляется осушение поступающего в расширитель воздуха
в специа.ТJьных химических осушителях, производятся герме­
тизация расширителей, защита открытой поверхности мас­
.т1а слоем инертного газа или синтетическими пленками и
т. д. Определенная технология подготовки и заливки масла
должна соблюдаться не только в производстве трансформа­
тора, но также и в эксплуатации при периодических сменах
и очистках масла.
Изоляция сухих трансформаторов должна предохранять­
ся от увлажнения, а при установке трансформаторов в по­
мещениях, воздух которых содержит пары rшслот или дру­
гих разъедающих жидкостей, - от воздействия этих паров.
Этим целям служит пропитка обмоток различными лаками.
Изоляция трансформатора должна быть не только прочной
во всех отношениях, но также и дешевой. При ус.11овии со­
блюдения равной прочности всегда следует добиваться по­
лучения более простой в производстве конструкции, приме­
нения более дешевых материалов, экономного их расходова­
ш1я, а· также применения материалов, допускающих более
простую и дешевую технологическую обрабошу.
4.3. ЭЛЕКТРОИЗОЛЯЦИОННЫЕ Мд ТЕРИдЛЫ, ПРИМЕНЯЕМЫЕ
В ТРдНСФОРМд ТОРОСТРОЕНИИ
В соответствии с воздействиями, которые испытывает изоляция
трансформатора в эксцлуатации, и требованиями к электрической и ме­
ханической прочности изоляции, ее наrревостойкости и химической стой1;ости в трансформаторостроении нашло применение сравнительно не­
бо.1ьшое число различных изоляционных материалов. Эти материалы,
:хорошо отвечая всем требованиям, одновременно являются дешевыми,
в также требуют сравнительно несложной техиологичес1:ой обработки.
Ниже приводятся краткие харктеристики этих материалов и область их
применения в трансформаторостроении. В масляных трансформаторах
для внутренней изоляции применяются главным образом изоляционные
•�атериалы класса наrревостойкости А.
1. Кабельная бумага (ГОСТ 23436-83). Обычная кабельная бумага
юрок К-080, К-120 и К-170 толщиной 80, 120 и 170 мкм; многослойная
"арок КМ-120 и КМ-170 и многослойная упроченная марки ЕМП-120
толщиной 120 и 170 мкм соответственно. Бумага изготовляется из суль­
фатной небеленой целлюлозы и выпускается в рулонах шириной 500,
650, 670, 700, 750 и 1000 мм _( ±3 мм) при диаметре рулопа от 450 до
f,00 мм. 13 тра;1сформаторах прюr.еняетси бумага г;1а1111ым обр&зо,1 :-.rapюt
!(-1 20 то,нциной 120 мкм для изоляции обмоточного провода (на ю1бе.1ь1юм заводе); в виде полос разной ширины д.чя междуслойной изоляц1111
11 ll мног11слойных цилиндричесI<их обмотках к.чассов напряжения 6, 10,
:го 11 35 кВ; в виде полосок шириной 20-40 мм, на�1атываемых вручную,
;(J!Я ИЗОЛЯЦИИ 01ВОДОВ И Т. Д.
В обмотках классов 11апряжения 110 кВ II выше для изо,,яции про­
вt•да II других целей нрименястсн кабе.1ьная бумага по ГОСТ 645-79
в�1соковольтная многос,1ойная марок КВМ-80, КВМ-120 и КВ,\1.-170,
11 ·,·акже высоковольтная многослойная стабилизированная ун:ютненная
марок КВМСУ-80 и КВМСУ-120, Ширина рулонс,в 500,650,670 н 750 :-.ш
(±3 мм), диаметр рулона 450-800 мм. Плотность бумаги 11арок К,
КМ, КМП и КВМ (720+770±50) кг/м3, плотность марки КВ.½СУ i 100:t50 кг/м3, При этих классах напряжения кабельнаи бу),1ага ис­
пользуется также для изошшии отводов II эле1,1ентов емкостной защиты.
Кабельная бумага является одним из основны.< изоляционных чатериа­
лоп в мас,1яных трансформаторах.
2. Телефонная бумага (ГОСТ 3553-73). Телефонная бумага :-.�арки
КТ-50 изготовляется нз сульфатной небеленой целлюлозы, выпускаеrся
в рулонах шириной 500, 700 и 750 мм ( ±3 мм) и диаметром 500650 мм при толщине 50 м:<м; п.,отность 820 кг/м 3• В трансформаторах
применяется в качестве междуслойной изоляции и изоляrщн отводов 11
ответвлений некоторых сбмоток, наматываемых нз провода круглого
сечения.
3. Лакоткань электроизоляционная (ГОСТ 2214-78). Вырабатыва­
ется из хлопчатобумажной ткани, прошедшей трехкратную пропитку
масляным лаком, Выпускается в рулонах шириной от 800 до 920 мм.
Класс нагревостойкости А (105 °С). В масляных трансформаторах при­
меняется главным образом лакоткань марки ЛХММ (лакоткань хлопча­
тобумаж11:н1 на ос1юсе мас.�яного ,1ака, маслостойкая) толщиной 170,
200 и 240 мкм (допуск ±20 мкм). В виде .чент шириной 2-3 01, нама­
тываемых вручную, лакоткань находит применение для изоляции от­
водов, главным образсм в местах, где требуются эластичность и меха­
ническая прочr,ость, например на местах пайки, изгиба и т. д.
В других ме::rах изuляции отводов лакоткань вытеснена менее эластичной, но столь же электрически прочной и значительно более
дешевой l(абельной и элеr<троизоляциониой крепированной бумаrой.
За. Сте"ло.чакоткаиь .,,,ектроизоляционная (ГОСТ 10156-78). В су­
хих трансформаторах, работающих прн повышенной температуре и тре­
бующих изо.1яцип повышенного класса нагревостойкости, может приме­
няться электроизоляционная стеклолакоткань, изготовляемая из стекло­
ткани на основе кремнийорганического лака марки ЛСК-155/180 r<лассов
иагревостойкости F и Н и на основе битумно-маслs;ноrо а.�кид110го лаhа
175
��арки ЛСБ-120/130 классов наrревостойкости IZ и В. Ширина рулона
сгеклолакоткани 690, 790, 890, 940, 990, 1060 и 1140 мм (±20 мм); тол­
щина стеклолакоткани марки ЛСБ 120, 150, 170, 200 и 240 мкм; марки
ЛСК-- Те же ТОJIЩННЫ И 50, 60, 80 И 100 МКМ.
4. Бумага электроизоляционная крепированная (ГОСТ 12796-76).
Изготовляется из сульфатной небеленой целлюлозы, толщина крепиро•
ванной бума, н (440±90) мкм. Поставляется в рулонах шириной 1000
и диаметром 700-800 мм, удлинение 70 %, масса 1 м2 - (130± 10) r.
В трансформаторах успешно применяется вместо лакоткани в виде лент
шириной 20-40 мм для изоляции отводов.
5. Хлопчатобумажные ленты (ГОСТ 4514-78). Киперная лента тол­
щиной (0,45+0,02) мм при ширине 8, 10, 12, 15, 25, 30, 35, 40 и 50 мм,
марки лент К-8-1 до К-50-17. Тафтяная лента толщиной (0,16±
±0,02) мм и (О,25+0,02) мм при ширине от 10 до 50 мм марок от
Т-10-18 до Т-50-39. В трансформаторах применяются только для
механического крепления витков обмотки, изоляции отводов и т. д.
При электрическом расчете изоляции во внимание не прини­
маются.
6. Картон электроизоляционный для трансформаторов и аппаратов
с масляным заполнением (ГОСТ 4194-83). Он изrотовr,яется из сульфат­
ной небеленой целлюлозы. Выпускается следующих марок: АМ- картон
эластичный гибкий с высокой стойкостью к действию поверхностных раз­
рядов, применяется для изготовления деталей главной изоляции высоко­
вольтных трансформаторов напряжением от 750 кВ и выше; А- кар·1011
эластичный гибкий с повышенной стойкостью к действию поверхностных
разрядов, применяется для изготовления деталей rлавной изоляции
трансформаторов напряжением до 750 кВ включительно; Б - картон
средней плотности с повышенными электрическими характернсти1<11ми,
нрнменяется для изготовления деталей главной изоляции трансформа­
торов до 220 кВ вк11ючительно II д11я деталей уравнительной и ярмовой
изоляции трансформаторов всех классов напряжения; В - картон повы­
шенной плотности с малой сжимаемостью под давлением и высокой
электрической прочностью, применяется для изrотовленчя продольной и
rдавиой нзол�цни трансформаторов; Г-картон средней п,1отности с
повышенным сопротивлением расслаиванию, применяется для получения
склеенного картона н из1·отовлен11я изоляционных деталей.
Толщина листов картона марок АМ, А н В- (2,00±0,15); (2,50:::
±0,20) и (3,00±0,20) мм; картона марки Б-1,00; 1,50; 2,0; 2,50; 3,00;
4,00; 5,00 и 6,00 мм при допуске от ±0,10 до ±0,40 мм по мере возрас­
тания толщины листоn картона и марки Г-0,50; 1,00; 1,50; 2,00; 2,50 fl
8,00 мм при допуске от ±0,05 до ±0,20 мм.
Размеры листов картона марок АМ, А, Б и В- 3000Х4000, 3000Х
Х2000, 1500Х 1020 н IOOOX 1020 мм; картона марки Г-850Х1100 мм.
Картон марки Г толщиной 0,50 мм должен выпускаться также в руло,
176
нах шириной (1000±5) мм.Плотность картона марки АМ-880-1000,
��арок А, Б и Г - 900-1000 и марки В- 1250 кг/м 3•
Электроизоляционный картон применяется как материал для намот•
н
илиндров между обмотками, изготовления перегородок, щитов,
ц
к
шайб, ярмовой изоляции (главная изоляция}, междукатушечных прокла­
док, реек (продольна11 изоляция).
В сухих трансформаторах рекомендуется применять картон марки
ЭВ (ГОСТ 2824-75) толщиной 1,0; 1,25; 1,50; 1,75; 2,0; 2,5 и 3,0 мм,
выпускаемый в листах размерами по соглашению заказчика с постав•
щнком. Плотность картона при толщине 1,0-1,5 мм - 1000 кг/мЗ , при
толщине 1,75-3,0 мм - 950 кг/м3•
7. Трубки электротехнические бумажно-бакелитовые (ГОСТ 872680). Изготовляются путем намотки из э-1ектроизоляционной пропиточной
или намоточной бумаги, предварительно покрытой пленкой бакелитового
лака с последующей лакировкой и полимеризацией лака. Выпускаются
трубки марки ТБ. Длительно допустимые рабочие температуры от -60
до + 105 °С. Трубки обдадают высокой электрической и механической
прочностью. В трансформаторах для изоляции отводов применяются
трубки внутренним диаметром от 6 до 30 мм, толщиной стенки от 1,5
ДО 10 ММ И ДдИНОЙ ОТ 200 ДО 950 ММ,
Для изоляции цилиндрических обмоток между собой и внутренней
обмотки от стержня магнитной системы применяются цилиндры. Выпу­
скаются цилиндры при внутреннем диаметре от 85 до 500 мм (значения
диаметра I{ратны 5 мм) и при диаметре от 510 до 1200 мм (значения
диаметра кратны 10 мм). Длина цилиндроl! 200-1500 мм при диаметре
от 85 до 400 мм и 505-2200 мм при диаметре от 405 до 1200 мм. Тол­
щина стенок при внутреннем диаметре от 85 до 350 мм кратна I мм
и при диаметрах от 355 до 1200 мм кратна 2 мм. Трубки бумажно­
бакелитовые применяются также в качестве изоляционных деталей в
переr{Лючающих устройствах ПБВ и РПН.
8. Гетинакс (ГОСТ ·2718-74). Изготовляется из пропитанной баl(е•
литовым лаком бумаги, спрессованной при повышенной температуре,
выпускается в виде досок µазличной то-1щины, обладает высокой эле1{•
трической и механической прочностью. Плотность 1280-1400 кг/м 1.
В масляных трансформаторах применяются марки V, V-1 и V-11 с тол­
щиной листов от 5 до 50 мм, главным образом для досок зажимов, дис­
ков переключателей и крепления на крышке трансформатора проход•
ных шин.
9. Дерево. В масляных и сухих трансформаторах применяется для
реек, прокладываемых между обмотками и изоляционными цилиндрами
пли между слоями обмоток при рабочем напряжении не свыше 10 кВ,
а также для стержней и реек, забиваемых между стержнем магнптной
системы и внутренней обмоткой, и для изготовления несущей конструк­
ции крепления отводов. Деrево в виде многослойных плит, склеенных
12-510
177
из шпона, применяется для изготовления прессующпх колец оtiмотuк
11 ярмовых балок. Могут быть использованы 1олько породы дерева, не
содержащие смол и кислот, такие, как белый и красный бук, береза, но
не сосна, ель, дуб и др.
10. Фарфор. Применяется в масляных трансформаторах в вице про­
ходных изоляторов (вводов). Фарфор может примениться также в ка­
честве деталей крепления отводов трансформаторов напряжением
110 кВ и более и в качестве деталей опорной изоляции обмоток и изо•
ляц1ш отводов сухих трансформаторов.
11. Масло трансформаторное ГОСТ 982-80. Является основным изо­
ляционным материалом, обесnе•швает электрическую nро•1ность всей
изоляции трансформатора при классах напряжения от 10-35 до 7501150 кВ, применяется в качестве жидкого диэлектрика для за,1ивки мас­
ляных трансформаторов. Будучи прекрасным изолятором, обеспечивает
интенсивное отведение тепла от обмоток и маr нитной системы трансфор•
матора путем конвекции. Требует пос1ояиноrо ухода - очпстки, ф11.1ыра•
цю1, сушl(И, смены.
По ГОСТ 982-80 масло выпускается грех мароrс ТК без присадки,
поставляется по спецзаказам; Т-750 и Т-1500 с антиокислительной ври•
сад:кой и гарантированным пределuм кинематической вязкости при -30
н +50 °С.
12. Синтетические жидкие диэлектрики (совтол и др.). Негорючие
жидкости имеют преимущество перед трансформаторным маслом, обес­
печивая пожарную безопасность трансформаторных установок. Их не•
достатками являются высокая цена при высокой плотности (до 1450l·BOO кr/м 3) и токсичность их паров и особенно продуктов разложения,
получающихся при возникновении электрической дуги, чем резко огра­
ничивается область их применения.
13. Материалы с повышенной наrревостойкостью. Они применяются
в сухих трансформаторах для повышения допустимой те.-,шературы об­
моток и других частей и уменьшения массы и размеров трансформа­
тора. К этим материалам относятся делыа-асбЕ>стовая (марка провода
ПДА) и стекловолокнистая (марка провода ПСД) изоляция обмоточ•
ного провода класса наrревостойкости В; стеклолакоткан11 на кремниii­
орrанических и других лаках классов Н и В; с1еклотекст0Jшт класса !З
(марка СТ) и др.
4.4. ОСНОВНЫЕ ТИПЫ ИЗОЛЯЦИОННЫХ КОНСТ�УКЦИй
В электрическом отношении изоля11ия трансформатора должна на­
дежно предохранить части, находящиеся под напряжением, - обмотки,
отводы, переключатели и вводы - от разряда между собой и на за­
земленные части как при рабочем напр11же11ии, так и при возможных
П€'ре11апряжениях. Расчет изоJ1яции для каждой части, находящейся
178
110д напряжением, обычно заключается: 1) в выявлении основных изо•
ляцнонных промежутков между этой частью и другими такими частями
и заземденными деталями; 2) в опредмении по нормам испытательных
напряжений для этих промежутков; 3) в выборе размеров этих проме•
жутков и подборе изоляционных констру,щий и материалов, обеспечи­
вающих эдектрическую прочность при найденных испытатедьных на•
пряжениях.
Расположение основных изоляционных промежутков определяется
1<онструкцией трансформатора, взаимным расположением его обмоток,
магнитной системы, ба1<а и других частей. Так в стержневом транс•
форматоре современной конструкции с концентрическими обмотками
основными промежутками главной изоляции являются: осевые каналы
между обмоткой НН и стержнем, между обмотками ВН и НН; про•
странство между торцами обмоток НН и ВН и ярмом; пространство
между обмоткой ВН и стенкой бака и -Др. (рис. 4.1). Этим промежут­
кам соответствуют вnодне определенные электрические воздействия при
испытаниях трансформатора испытательным напряжением. В транс­
форматоре с чередуюшимися оuмотками в связи с другим расположе•
11исм обмоток изменится как расположение основных изоляционных
промежутков, так и воздействие на них испытательных напряжений
(рис. 4.2).
При расчете главной изо.1яцнн очень важно выявить все нзолящюн­
ные промежутки, подверженные опасности пробоя, и правильно опре­
делнть те испытательные напряжения, под воздействиеы которых эти
промежуткн будут находиться.
Определение минимально допустимых размеров изоляционных про­
межутl\ОВ тесно связано с теми изоляционными 1<онструкциями, кото­
рыми будут заполняться эти промежутки. Каждая изоляционная кон­
струкция, кш< бы сложна она ни была, всегда может быть представле­
на в виде комбинаuии из нескольких простых элементов (рис. 4.3):
1) с;�лошноi1 изоляциl{ из твердого изолирующего матернала;
..,"'
...
�
�
о::,
"<',
�
�
t
Рпс. 4.1. Основные изоляционные
1,ро�1ежутки rлаоной изоляц1111 в
концентри11еских обмотках
12•
"'
>:
<,
�
�/
�,
"'
�!
о::,
�
<.;
Рис 4.2. Основные изоляul{онные
промежутки главной и·юляции в
чередующихся обмотках
179
.l,
г�
�-"
,
а.)
о
9
d)
�_,
��J
9
6)
\[�
у
2)
Q
9
о)
Р11с. 4 3. э.�ементы ИЗОЛЯЦИОhНЫХ !{ОНСТрукций:
а·- сплошнзя нзо.1яция из твердо1·0 диэлектрика; 6 - чисто масляный (воздуш­
ный) промежуток, в - барьер; г - покрыrие одного из электродов; д - нзо.,иро­
гзнне одноI0 из электродов
Рис. 4.4. Простейшие 1130.1яцио1шые конструкци11:
а - твердая нзоля,1ия между даумя отводами; б - масляный промежуток между
шиной оrвода и ярмовоn балкой; в - барьер - междуфазная перегородка между
обмотками BHJ г - nокрь,тие - изоляция витка в промежутке между обмоткой
ВН и стяжной шпилькой остова; д - изолированный· отвод вблизи стенки бака
2) чисто масляного или воздушного промежутка;
3) барьера, т. е. перегородки из твердого изо.1ирующего материала
в масляном или воздушном промежутке;
4) покрытия одного или обоих электродов тонким слоем твердого
изолирующего материала, плотно облегающего электрод и принимаю­
щего его форму;
5) изолирования, аналогичного покрытию, но отличающегося боль­
шей толщиной твердого диэлектрика, обеспечивающей снижение напря­
женности в масляной части промежутка.
Примеры простейших изоляционных конструкций примените,1ыю к
масляному трансформатору показаны на рис. 4.4. В главной изоляции
масляных и сухих трансформаторов обычно применяются конструкции,
состоящие из комбинации нескольких элеw.ентов. Размеры изоляционных
промежутков и сложность конструкций обычно возрастают с ростом
класса напряжения и испытательных напряжений трансформаторов.
В практике отечественного и зарубежного тра11сформаrорострое11ия
наибольшее распрос1ранение поJJучи,1а маслобарьер11ая главная 11зо,1я­
ция обмоток, сqстоящая и:� раз,111ч11ых комбинаций масляных кана:юв
или проме,кутков с барьерами в виде 111111и11дров бумаж110-бакелитовuх,
180
✓
�
90
'l7
-------!;:?
F-
а)
135
в)
130
д)
Рис. 4.5. Изоляционные расстояния и структура концевой изоляции об­
мотки масляного трансформатора при классах напряжения от 35 до
500 кВ:
а - кпасс напряжения 35/85 кВ; б - 35/85 кВ, об,1егченная изопяцня; в - 110/200
кВ; г - 500/630 кВ; d - 330/460 кВ. Размеры в мнппнметрах. Структура изопяции
и размеры даны ориентировочно
из электроизоляционного картона и кабельной бумаги, плоских и угло­
вых шайб.
Размеры изоляционных промежутков главной изоляции обмоток су­
щественно возрастают с ростом класса напряжения трансформатора,
,,то приводит к увели11ению расхода изоляционных материалов, а та1<же
181
к уве,шчению массы и габаритов магнитной системы, обмоток и всего
трансформатора. Относительное изменение размеров изоляционных про­
межутков в концевой изоляции обмоток классов напряжения от 35 до
500 кВ, а также усложнение схем маслобарьерных конструкций изолп­
ции по1<азано на рис. 4.5.
При всем многообразии внешних форм частей, находящихся под
напряжением и заземленных, и их взаимного расположения, а также
при т_ом, что напряжение частоты 50 Гц и импульсные перенапряжения
оказывают на изоJJяцию разJJичные воздействия, глубокое теорстическ:>с
11 экспериме11таJ1ьное изучение электрического поля обмоток и других
частей позволило создать общиi1 метод разработки изоляции трансфор­
матора при классах напряжения до 750 и 1150 кВ, требующий для про­
nерки на реальных конструкцинх относитеJ1ьно малого объема экспери­
ментальных работ. Рекомендации 110 выбору структуры изоляции, ма­
териалов деталей и размеров изоляционных промежутков для классов
напрях:ения обмоток от 10 до 110 кВ приведены в § 4.5.
4.5. ОПРЕДЕЛЕНИЕ МИНИМАЛЬНО ДОПУС'!'ИМЫХ
ИЗОЛЯЦИОННЫХ РАССТОЯНИЙ ДЛЯ НЕКОТОР.ЫХ
ЧАСТНЫХ СЛУЧАЕВ fМАСЛЯНЫЕ ТРАНСФОРМАТОРЫ)
Практические рекомендации этого и следующего пара­
графов по выбору изоляционных конструкций и минимально
допустимых изоляционных расстояний даются для некото­
рых простейших общих и ряда частных случаев и охваты­
вают элементы главной и продольной изоляции, необходи­
мые для расчетов масляного и сухого силовых трансформа­
торов. В этих рекомендациях учтен необходимый запас
прочности изоляции, представляющий собой отношение про­
бивного напряжения к испытательному и являющийся пока­
зателем большего или меньшего доверия к прочности и ста­
бильности той или иной конструкции.
Для расчета изоляционных расстояний во всех таблицах
даны значения для твердой изоляции из электротехническо­
го картона или кабельной бумаги. При определении реаль­
ных допустимых расстояний необходимо учитывать помимо
!lшнимального промежутка, требуемого условиями электри­
ческой прочности изоляции, возможные допуски в откJюне­
нии действиrельных размеров токоведущих и заземленных
частей от проектных. Эта поправка в явном или скрытом ви­
де введена во все таблицы§ 4.5 и 4.6. В§ 4.5, 4.6 содержатся
практические реl(омендации, пользоваться которыми слел.ует
после ознакомления с конструкциями обмоток, приведенны­
ми в гл. 5.
182
Некоторые изоляционные расстояния, в частности верти1<альные и горизонтальные масляные и воздушные каналы в
обмотках, после выбора их по условиям электрической
прочности изоляции должны быть проверены и по условиям
охлаждения. Размеры этих кана.лов - соотношение ширины
и длины канала - должны быть выбраны такими, чтобы они
обеспечивали свободный доступ охлаждающего масла или
воздуха ко всем частям (виткам или катушкам) обмотки
,(см.§ 9.5).
Минимально допустимые изоляционные расстояния в
главной и продольной изоляции обмоток и отводов масля­
ных трансформаторов обычно выбираются применительно
к определенным конструкциям изоляции, для которых они
проверены опытным путем. При распространении этих рас­
стояний на какие-либо другие конструкции необходима но­
вая опытная проверка. Так,
изоляционные рас­
стояния главной изоляции обмоток, у1<азанные в табл. 4.4
и 4.5, можно принимать только при конструкции, изобра­
женной на рис. 4.6, и применении изоляционных материалов,
указанных в пояснениях к этому рисунку. При этом предпо­
лагается, что хранение изоляционных материалов, заготов­
ка, обработка, сушка и пропитка маслом изоляционных де­
талей выполняются в строгом соответствии с установленным
технологическим процессом.
Та б л и ц а 4.4. Главная изоляция. Минимальные изоляционные
расстояния обмоток Н Н с учетом констру ктивных требований
U l!CП
М-.,щность
трансформатора.
кВ А
25-250
400-630*
1000-2500
630-1600
2500-6300
630 н выше
630 и выше
Все мощности
ДJIЯ НН,'
1
кв
НН от стержня. мм
НН от ярма 1 01 , I
мм
I
5
15
5*
5
18; 25
и 35
18; 25
н 35
45
55
85
Принимается
найравным
денному по испытательному
напряжению
обмо тки
вн
601
1
ац
i
1
а.,
1
/ц
1
-
4
-
4
6
6
5
15
15
18
25
4
8
5
5
6
10
13
19
Картон
2ХО,5
То же
4
-
-
17,5 25
20
23
30
30
45
70
• Для винтовой обмотки с испытателышм наnряжеш1е�1 Иасп -5 кВ разме­
ры озять из следующеА строки для мощ11остсА 1000-2500 кВ·А.
183
Табл и ц а 4 5. Главная изоляция. Минl!мальные 11золяционные
расстояния обмоток ВН (СН) с у1 1етом конструктивных требований
ВН от ярма,
Мощнссть
иисп для
1 ра11сформа
И1,а S, кВ-А ВН (СН), кВ
18; 25 н 35
25-100
18; 25 н 35
160-630
; 000--6300 18; 25 и 35
G.IO и выше
45
630 и выше
55
160-630 85 (прим. 1)
1000-6300 85 (прим. 1)
10 ООО и
85
выше
мм
1 ••
20
30
50
50
50
75
75
80
6ш
1
2
2
2
2
3
Между ВН
(СН) н НН, мм
а"
9
9
20
20
20
27
27
30
1
6"
2,5
3
4
4
5
5
5
6
х,,,_,,,�
,: "'
�<)"(""
21;!
�t;
Между ВН
(СН) и НН,
мм
:,i
:,i
10
15
20
20
30
50
50
50
а"
8
1()
18
18
20
20
30
30
1
6"
-
2
3
3
3
3
Пр н м е ч а н и я: 1. Для цилиндрических обмоток минимальное нзоляциои­
"ое расстояние а12 =27 мм. Электростатический экран с изоляцией 3 мм. При рас­
че1е по (3.17) н (7.32) принимать а12=ЗО мм.
2. !;�РИ наличии прессующих колец (см. § 7.3 и 8.1) расстояние от верхнего
sрма lo принимать увеличенным против данных табл. 4.5 для трансформаторов
IU00-6300 кВ·А на 45 мм; для двухобмоточных трансформаторов 10 000GЗ ООО кВ·А на 60 мм и для трехобмоточных трансформаторов этих мощностей на
100 мм. Расстояние от нижнего ярма 1 � и 8 этих случаях принимать по табл. 4.5.
3. В трехобмоточных трансформаторах при U исп -85 кВ канал между о(').
,..о,камн СН и НН увеличивается от 27 до 36-40 мм для вывода ответвлений от
гередины обмотки СН (нз расчета изолированный 011рессованныА отвод 20, ци­
"""др 6, кана.1 10-14 мм).
Ярмо
Рис. 4 6. Глав на я изоляция обмоток ВН и НН для испытатедьных ва­
г.ряжений от 5 до 85 кВ:
_ - - - возможные r1утн разряда, определяющие выступ цилиндра
В соответствии с принятой выше классификацией изоля­
ции трансформатора в дальнейшем будут рассмотрены изо­
JJяционные конструкции и допустимые расстояния для:
184
1) главной изоляции обмоток (изоляции от заземленных
частей и других обмоток);
2) продольной изоляции обмоток (изоляции между внт­
�<ами, слоями и катушками);
3) главной и продольной изоляции отводов.
!.Главная изоляция обмоток. Главная изоляция обмоток
определяется в основном электрической прочностью прн
50 Гц и соответствующими испытательными напряжениями,
определяемыми по табл. 4.1. На рис. 4.6 показана конструк­
ция главной изоляции обмоток масляных трансформаторов
классов напряжения от 1 до 35 кВ _(испытательные напря­
жения от 5 до 85 кВ).
Изоляция между обмотками ВН и НН осуществляется
жесткими бумажно-бакелитовыми цилиндрами или мягки­
ми цилиндрами, намотанными при сборке трансформатора
из электроизоляционного картона. Размер выступа цилинд­
ра за высоту обмотки (/ц 1 и lц2) обеспечивает отсутств11е
разряда по поверхности цилиндра между обмотками или с
обмотки на стержень. Изоляция обмоток от ярма при испы­
тательном напряжении 85 кВ усиливается шайбами и под­
I<ладками из электроизоляционного картона. Между об­
мотками ВН соседних стержней устанавливается междуфаз­
ная перегородка из электроизоляционного картона.
Минимально допустимые изоляционные расстояния от
обмотки до стержня и ярма, между обмотками, а также
главные размеры изоляционных деталей с учетом конструк­
тивных требований и производственных допусков в зависи­
мости от мощности трансформатора для испытательных на­
пряжений 5_-85 кВ приведены в табл. 4.4 и 4.5. Данными
табл. 4.5 можно пользоваться также при определении изо­
ляционных расстояний между обмотками СН и НН или ВН
и СН в трехобмоточном трансформаторе.
При классе напряжения 35 кВ и испытательном напряже­
нии 85 кВ в трансформаторах мощностью 1000-6300 кВ• А
не1<оторые изоляционные расстояния могут быть уменьшены,
если эти трансформаторы при окончательной сборке на за­
воде заполняются под вакуумом предварительно просушен­
ным, дегазированным и подогретым до 80-85 °С маслом. I3
этом случае изоляционные расстояния могут быть приняты:
а 12 =20 мм; l02 =60 мм и а22 =20 мм по рис. 4.5, 6.
В трансформаторах класса напряжения 110 кВ структура
и размеры главной изоляции существенно зависят от пр11ня­
той схемы регулирования напряжения обwотки ВН. БoJiee
компактной обмотка ВН с РПН получается при регуJiирова185
нии по схеме рис. 6.9, в, где rлавная часть обмотки рассчи­
тывается на номинальную мощность, а регулировочная
часть - на напряжение, равное половине диапазона регули­
рования, и включается ступенями, согласно или встречно�
последовательно с основной частью обмотки ВН. Некоторыи
выигрыш в размерах изоляции дает также разделение об­
мотки ВН на две параллельные части с вводом линейного
конца в середину высоты обмотки и обращением нейтрали
обмотки к верхнему н нижнему ярмам (рис. 2.10, г).
При указанной схеме обмотки ВН структура и размеры
главной изоляции могут быть приняты по рис. 4.7 с учетом
размещения между верхним торцом обмотки и верхним яр­
мом остова металлического заземленного или неметалличе­
ского прессующего кольца обмотки.
Размеры прессующих колец по рис. 4.7, склеенных из
древесно-слоистого материала, Нк=60 и 80 мм при мощно­
стях до 25 ООО и 40 000-80 ООО кВ-А соответственно. Сталь­
ные кольца имеют Нк =35 и 55 мм при тех же мощностях.
При стальных кольцах расстояние от торца обмотки до коль­
ца составляет 90 мм.
Изоляция главной части обмотки ВН от обмотки НН и
от регулировочной части обмотки ВН определяется испыта­
тельным напряжением 200 кВ. Изоляция нейтрали - верх­
него и нижнего концов обмотки ВН, так же как и включае­
мой в нейтраль регулировочной части обмотки ВН, рассчи­
тывается по испытательному напряжению 100 кВ.
Изоляция между обмотками ВН и НН, а также ВН и ре­
гулировочной частью обмотки ВН осуществляется масляным
каналом с размером 50 мм и двумя цилиндрами из электро­
изоляционного картона толщиной 4 мм каждый. Один из
цилиндров между главной частью обмотки ВН и ее реrуJiи­
ровочной частью из соображений механическ@й прочности
бумажно-бакелитовый толщиной 6 мм.
Изоляция обмотки НН от стержня выбирается по ее ис­
пытательному напряжению по табл. 4.4. В трансформато­
рах класса напряжения 110 кВ с обмотками по схеме рис.
2.9, г по соображениям электродинамической стойкости ре­
комендуется наматывать эту обмотку на жестком бумажно­
бакелитовом цилиндре толщиной 6-1 О мм при мощностях
6300-80 ООО кВ-А. При вводе линейного конца обмотки ВН
в середину ее высоты обмотка НН также разделяется на две
параллельные части или расщепляется на две самостоятель­
ные обмотки. Для вывода концов от середины ее высоты 11е­
обходимо между цилиндром и обмоткой оставить канаJiы
186
w/,
,
�
1
/
,
,
-:lf
/
2,
_,,, �
г--
"'
::t:
�
.,.,
=
- <r,
□вн=
:пmНН 1UU1
чз
1.--
50
,
-
ч
10\
/
10
,
\Q
,
..
1}
�
�
., .,
1.--З
р0 v2
�
1-
50
�
с--
!И
!ИJ
-
1
_щ_
t==
1
1
,
Рис. 4.7. Главная нзоляция обмотки ВН класса напряжения 110 кВ с
вводом линейного конца в середнну высоты обмотки:
1 - лµессующее кольцо склеенное дреuесно-слоистое; 2 - цилиндр бумажно-ба­
ке.,итовый; 3 - цилиндр из э,1ектронэодяц1юнного картона. Структура изоляции
и изоляционные расстояния даны 01,.1нентиrовочно
шириной 25-30 мм. Изоляция между регулировочными об­
мотками соседних фаз осуществляется масляным каналом
пе менее 35 мм с перегородкой из электроизоляционного
картона толщиной 3 мм.
Продольная изоляция обмотки ВН обеспечивается собст11енной изоляцией провода толщиной б=l,35 мм (на две сто­
роны), установкой вблизи линейного конца двух емкостных
колец с дополнительной изоляцией кабельной бумагой 2 мм
(на одну сторону) и увеличением высоты части радиальных
масляных каналов между катушками непрерывной катушеч187
J..-6.---А
Каналы,
ЕК
.мм
....___..,
7,5 ______
Рнс. 4.8. Продольная изоляция обмотки ВН класса напряжения 110 кВ
у входа линейного конца:
ЕК - емкостное кольцо. С-1руктура II раз­
меры изоляции даны ориентировочно
10
ной обмотки, при размере их в
основной части обмотки 4 мм,
5---......:::
до 6-8 мм (рис. 4.8).
2. Продольная изоляция об­
ЕК
5--------.::
моток. Под прододьной изо­
ляцией обмоток понимаетсн
5
изоляция между витками, ме­
жду слоями витков и между
катушками. Эта изоляция мо­
жет определяться как элек­
трической прочностью при
7,5
50 Гц, так и прочностью при
импульсах. Воздействие на об­
мотку импульса существенно
отличается от воздействия напряжения при 50 Гц, однако те и другие испытательные
напряжения связаны с рабочим напряжением обмотки.
В дальнейшем для отдельных конкретных случаев все ре­
комендации даны с учетом импульсной прочности, но исхо­
дят из рабочего напряжения обмотки или испытательного
при 50 Гц.
Изоляция между витками обычно обеспечивается собст­
венной изоляцией обмоточного провода. Дополнительная
изоляция между витками применяется обычно только на
входных катушках обмоток фаз. Данные обмоточных про­
водов и их изоляции представлены в § 5.2.
Выбор изоляции провода может быть сделан по табл.
4.6. В этой таблице дана изоляция провода _(витковая) для
большей части катушек трансформатора с нормальной изо­
ляцией. Рекомендации по выбору изо:шции витков входных
(крайних) катушек обмотки даны ниже.
Междуслойная изоляция в обмотках из круглого провода
определяется главным образом из условий импульсной проч­
ности. Рекомендации по междуслойной изоляции для вход­
ных катушек обмотки даны особо. В табл. 4.7 даны реко­
мендации по выбору междуслойной изоляции в многослой­
ных цилиндрических обмотках из круглого и прямоугольного
провода. Материалом ЯвJ1яется кабельная бумага марки
К-120 тоJJщиной 0,12 мм. Число сJюев 1,абельной бумаги
188
та б л и ц а 4.6. Выбор нормальной витковой изоляции
нспuтател1J•
но� вапря•
iJ<i"н11e обмот •
Марки
про вода
1{11, кВ
-
пед, АПСиД,
псдк
!.i-24
fi-85
АПСДК
1
На:шачснне
Круr,1ый провод 0,29- Для сухих пожа0,38 (0,30 и 0,40), nрн- ро6сзопасных
провод трансформаторов
моуrольный
0,27-0,48 (О,30 и 0,50)
Круглый провод 0,17- Для масляных и
0,21 (0,27-0,31)
сухих трансформаПБ и АП5 0,30 (0,40)
1оров
ПЭЛБО
ПБ и АПБ
.
То лщrша изоляции на две
сторонс.1, мм
Прямо:1 rольный
0,45
(0,50)
провод
Для
МЗСJIЯНЫХ
трансформаторов
200
ПБ и АПБ
325
116
11,35(1,50)
1
325
ПБУ
i 2,00 (2,20)
1 Для
переплеrенных обмоток
1,20(1,35)
Для обычных об­
моток
Л р нм е ч а 11 и я: 1. В скобках указаны расчетные размеры с учетом до­
пусков.
2. Провод мзрои ПБ, АПБ, ПБУ может име,ь изо.,"цию большей 10.1щи111,1
согласно таб,1. 5.1 и 5 2.
между двумя слоями виткоn определяется по суммаµному
рабочему напряжению двух слоеn обмотки. Высота между­
слойной изоляции для увеличения пути разрнда по поверх1юсти между слоями делается большей, чем высота слоя вит­
ков.
В многосJюйной цилиндрической катушечной обмотке нз
l(руглоrо провода междуслойная изоляция имеет высоту
слоя и может быть выбрана по суммарному рабочему напря­
жению двух слоев катушки по табл. 4.8.
В двухслойной цилиндрической обмоше из прямоуголь­
ного провода в масляных трансформаторах при суммарном
рабочем напряжении двух слоев не более 1 кВ достаточной
междуслойной изоляцией служит осеБой масдяный канал
189
Т а блиц а 4.7. Норма.�ьная междус.,ойная изоляция в мноrослойиых
цилиндрических обмотках
Суммарное рабочее напряже­
ш1с дnух слоев обмотки, В
До
От
От
От
От
От
От
От
1000
1001
2001
3001
3501
4001
4501
5001
до
до
до
до
до
до
до
2000
3000
3500
4000
4500
5000
5500
Число слоеn кабельной бумаги
на толщину л"стоu, мм
2ХО12
ЗХО,12
4ХО,12
5ХО,12
6ХО, 12
7ХО,12
8ХО,12
9ХО, 12
Выступ междуслоАноR
нзоляцин на торцах
обмотки ( на одну
<.ТО{.ОНу), ММ
10
16
16
16
22
22
22
22
П р н м е ч а н и е. Данные таб.анцы приведены для трансфор�,аторов мощно­
стью до 630 кВ-А включители10. При мощн ости от 1000 кВ·А и вь:ше междуслой•
ную изоляцию следует пр11нима1ь 110 таблице, но нс менее 4ХО, 12 мм; выступ
изоляции не менее 20 мм.
Та блиц а 4.8. Нормал�.иая междуслоiiная изоляция в мио,·осло;;!иых
цилиндрических катушках обмотки
Рабочее напряжение двух
слоев обмоткн . В
До 150
От 151 до 200
От 201 до 300
Толщина изоляцУ.и.
мм
2ХО,05
1 ХО,2
2ХО,2 или
1 ХО,5
Материал изо,1яци11
Те.�сфоиная бумага
Кабельная бумага HJIИ
,:1е1<Троизоляциоаный
картон
не менее 4 мм шириной или прокладка из двух слоев элек­
троизоJ1яционного картона по 0,5 мм. При рабочем напря­
жении двух слоев более 1 кВ и до 6 кВ - масляный кан1:1.1
6-8 мм и два слоя картона по 1 мм.
В сухих трансформаторах двухслойная цилиндрическая
обмотка применяется для напряжений не более 1 кВ. Осе­
вой междуслойный канал шириной 15-20 мм, необходи­
мый при этом по условиям охлаждения, оказывается до­
статочным и как изоляционный промежуток.
В обмотках из прямоугольного провода - винтовой 11
непрерывной - междуслойная изоляция не применяется.
Междукатушечная изоляция обычно осуществляется ра­
диальными масляными канаJJами (рис. 4.9, б, в), а также
простыми (рис. 4.9, в) или уrловыми шайбами (рис. 4.9, а).
190
Осевой размер масляного канала li к, м, по рис. 4.9, 6
нли в может быть определен по формуле
,'1,!,. = 3 2Ии2т 10-з '
(4.1)
1000
рабочее напряжение одной катушки, В.
Найденный размер канала округляют до 0,5 мм и про­
веряют по условиям отвода тепла от обмотки ( см. § 9.5).
Из соображений нормального охлаждения обмотки в мас­
ляных трансформаторах размер h к следует брать не менее
где
Икат -
а)
Рис. 4.9. Междукатушечная изоляция
4 мм. При широких катушках минимальное значение h к по
условиям отвода тепла может быть значительно больше
4 мм.
Ме ждувитковая изоляция в винтовых и междукатушеч­
ная в непрерывных катушечных обмотках (высота радиаль­
ных каналов h к) сухих трансформаторов выбирается из ус­
Jювий нормального охлаждения обмотки по § 9.5 и обычно
оказывается достаточной для обеспечения прочности изо­
ляции.
Пр и применении для междукатушечной изоляции шайб
из электроизоляционного картона, простых (рис. 4.9, в)
или угловых (рис. 4.9, а), между каждыми двумя соседни­
ми катушками укладываются две шайбы. Толщина шайб
0,5 мм, выступ шайбы а принимается обычно не менее 6 мм.
Этот способ изоляции применяется для класса напряжения
не выше 35 кВ ( Иисп �85 кВ) в тех случаях, когда по усло­
виям охлаждения обмотки можно закрыть шайбами все ох­
.паждающие каналы (рис. 4.9, а) или половину каналов
(рис. 4.9, в). В трехфазных трансформаторах классов на­
пряжения 10 и 35 кВ с потерями короткого замыкания по
ГОСТ и во всех трансформаторах с алюминиевыми обмот­
ками в ряде случаев половина каналов может быть закры­
та при мощности трансформатора до 6300 кВ• А.
191
Угловые шайбы (рис. 4,9, а) применяются только в ма­
лоупотребительной многослойной цилиндрической катушеч­
ной обмотке из круглого провода. В обмотках из прямо­
угольного провода междукатушечная изоляция осущест­
вляется по рис. 4.9, 6 или в.
В месте расположения регулировочных витков обмотки
ВН в трансформаторе ПБВ в обмотке обычно выполняется
разрыв и увеличенный против нормального канал между
катушками. Размер этого канала и его заполнение (шай­
бы) должны обеспечивать обмотку ВН от разряда по по­
верхности между двумя половинами обмотки. Выбор раз­
меров канала должен производиться исходя из гарантиро­
ванной импульсной прочности трансформатора с учетом
схемы регулирования напряжения обмотки ВН и принятой
конструкции изоляции в канале. Допустимые размеры ка­
нала с учетом этих условий приведены в табл. 4.9 для схем
регулирования, изображенных на рис. 4.10, и конструкции
изоляции по рис. 4.11, а-г. По рис. 4.10, 6 и г выполняются
обмотки с выводом нулевой точки на крышку трансформа­
тора.
Та б л и ц а 4.9. Минимальные размеры канала h,,p в месте
расположения регулировочных витков обыотки ВН
класс
напряже­
ния вн.
кВ
Схема
регулнро­
в:н,ня по
рнс 4.11)
6
35
110
в
б
и
а
а
а
г
Способ нзол я ции
Масляный кDнал
То же
а
б
а
б
а
10
Изо11яц,ия в месте р�зрыва
»
г
»
» »
�'г.1овые и простые шаi1бы
То же
Масляный канал
То же
Угловые и простые шай­
бы
То же
Масляный кана11 с барь­
ером из шайб
1
По pv.c
4.11
Р>1змер
КЗНАЛd, ММ
а
а
а
а
6
8
12
10
18
6
в
а
а
б
18
12
25
20
в
г
25
30
(в 1 0;11 чнсле
шайба 5 мм)
Пр им е чан и я: 1. В м11оrослойной цилиндриче ской обмотк� с регул11рова1шем по схеме рис. 4.10, д разрыв не выполняе1ся
2 . Минимальный
.
высту11 шайбы за габарит обмurкн а=6 мм.
3. Ширина бортика шайбы Ь-6-8 мм.
4. Толщина угловой шайбы 0,5-1 мм •
. 192
Наиболее употребительны схемы регулирования, пока­
занные на рис. 4.1 О, а, в и г, при конструкции изоляции по
рис. 4.11, а и схема на рис. 4.1 О, д без разрыва.
В обмотке ВН класса напряжения 35 кВ с ПБВ может
применяться схема регулирования по рис. 4.10, г.
лi
s
F
�
f
А
л
о
F
u
�
d)
а)
8)
d)
г)
Рис. 4.10. Принципиальные схемы регу.1ирова11ия напряжения обмот­
ки вн
�ь
((
J,
1
�
111
;�ш,ш
шшющц
1
aj
{/,1
6)
г)
½
..,.
с:::,
IS
Рис. 4.11. Конструкция изоляции в месте разрыва обмопш ВН
Защита обмоток трансформатора от импульсных пере­
напряжений осуществляется различными путями. Сущест­
венную роль в повышении импульс-ной прочности обмоток
играет правильный выбор схемы расположения витков,
слоев и катушек в сочетании с электрическими экранами,
обеспечивающей наиболее благоприятное начальное рас­
пределение импульсного напряжения по обмотке и огра1ш13-510
193
чивающей собственные колебания напряжения в обмотке.
К числу таких схем относится схема многослойной, цилин­
дрической обмотки, наматываемой из провода круглого ит1
прямоугольного сечения и широко применяемой дли транс­
форма горов классов напряжения 6, 10 и 35 кВ мощностью
до 80 ООО кВ-А (рис. 4.12, а). При классе напряжения
ifJ:
=
11
119
1 :=j\l,�,
ff.lKOC�A
А"Q//ь/(0
�
�
�
">
.....-
:,�
� '>
">
а/
tJ
у
�
С}
Рис. 4.12. Схемы емкостной защиты обмоток:
а - обмо,ки 35 кВ; б - обыотк11 110-500 кВ (иностранные фирмы); в - обмотки
110 кВ
35 кВ дополнительная защита многослойной ци.1индричес­
кой обмотки осуществляется путем применения jжрана в
виде незамкнутого металлического цилиндра, вложенного
под внутренний слой обмотки и соединенного электрически
с линейным концом, подведенным к внутреннему слою об­
мотки. Экран из листа немагнитного металла толщиной
0,5 мм изолируется от внутреннего слоя обмотки обычной
междуслойной изоляцией. В обмотках �:лассов напряжеliии
6 и 10 кВ экранирование внутреннего слоя не применяется.
Многими иностранными фирмами многослойная цилинд­
рическая обмотка из провода прямоугольного сечения при­
меняется для трансформаторов мощностью десятки и сот­
ни тысяч киловоJiы-ампер класс,>в напряжения 110-500 кВ
(рис. 4,12, б). Обмотка этого типа в сочетании с одним или
двумя электростатическими экранами, присоединенными к
линейному концу обмотки или к линейному и нейтрально­
му концам, дает равномерное начальное распределение на­
пряжения и обеспечивает хорошую грозозащиту трансфор­
матора. От схемы на рис. 4.12, а эта схема отличается на­
по.1овину меньшим . напряжением между соседними
сJюями. Применение многос,1ойных обмоток для мощных
194
трансформаторов затрудняется сложностью технологии их
изготовления - большой затратой ручного труда на отбор­
товку междуслойной изоляции, состоящей из многих слоев
кабельной бумаги.
В обмотках катушечных, непрерывных или собираемых
из отдельно намотанных катушек, прибегают к экранирова­
нию начальных (у :шнейного конца) и иногда конечных (у
нейтрали) витков и катушек обмотки фазы емкостными
кольцами или _(редко) экранирующими витками (рис.
4·.12, в). Например, при классе напряжения 110 кВ и не­
прерывной обмотке в схему защиты входит кольцо с не­
замкнутой металлической обкладкой, изолированное сна­
ружи кабельной бумагой и соединенное гальванически с
J1инейным концом обмотки. Экранирующие витки - это
незамкнутые витки из медного или алюминиевого провода,
имеющие дополнительную изоляп.ию, располагаемые у на­
чальных или конечных витков обмотки и соединенные галь­
ваничес!{И с ее ближайшим концом.
В настоящее время защита обмоток от импульсных пе­
ренапряжений при классах напряжения от 220 кВ и выше
выполняется путем сочетания емкостных колец с примене­
нием переплетенных катушечных обмоток, т. е. обмоток, в
которых порядок последовательного соединения вит1<ов от­
личается от последовательности их расположения о ка­
тушках. Одна из схем переплетенной обмотки показана на
рис. 4.13, а. Каждая катушка 11аматывается двумя парал­
лельными проводами, а затем производится соединение
этих проводов по схеме рис. 4.13, 6. Возможны и другие
способы переплетения витков обмотки.
Намотка переплетенной обмотки любого типа является
более сложной и трудоемкой, чем намотка обычной непре­
рывной катушечной обмотки, эта обмотка требует увеличе-
li
11
Рис. 4.13. Двойная катуш!(а переплетенной обмотt<И с петлевой схемой
соединения внтков·
и - расположение виrков; б - схема соединеuия витков
1 3*
195
ния э,11ектрической про11tюсти изоляции нитков и новыше­
ния шютности ее на.,юже11ия, однако это усложнение тсх­
но,11огии II уве,11ичение стоимости обмотки 01,упается по•�ги
.1инейным начальным распределением импульсного напря­
жения и хорошей грозозащитной обмотки. В переплетен­
ной обмотке отпадает необходимость в экранирующих вит­
ках, но используются емкостные l(Ольца. Применение
переплетенных обмоток в настоящее время является, поТаблиц а 4.10 . Изоляция входных витков и катушек, мм
( непрерывная катуше'lная обмотка)
.;;
с..
с:"1
"' "
О,
с."
u(.)
:,:
"':,:
о;.,
:.:iE
20
��
.,
,
"iE
���
"'с�
t:: w a.i
�о�
;.:,..
:,:
55
:,:
85
35
Первая катушка
3торая катушк;
,-. С>.
ВИТJ<ОВ
v,96
(1,06)
1, 35
(1,50)
1
Всей
катушк и
J:jиткоn
-
1,35
(1,50)
1
-
Всей
ка1ушкн
Третья II четвертая
1<атушни
Биткоn
-
-
-
Ввод линейного конца в верхний конец обмотки
110
1,20
(1,35) 1
4,0
1 20
(1,' з5) 1
3,5
1, 20
( 1,35) 1
1, 0
1,20
(1,35)
3,0
,.
Всей
к,тушки
-
-
1,20
( 1,35)
2,0
1,20
(1,35)
1,5
Ввод линейного ко:ща н середину высоты об�откн
110
1
Пр им е ч а 11 11 я: 1. �•силенная изоляция nри И иен =55 кВ ,r,.сластся из
первой (линейный к-111ец) и последней (нсйтр•л1,) катуш1<J1 обмотки фазы, при
U иен -85 кВ - на двух первых и даух nос.1едню t<атушках, при U11 сп =
=200 кВ - толькu на двух лервuх.
2. В обмотках классов напряжения 20 н 35 кВ два кр<1.iiннх ка11ала между
к�1ушкамн вверху и внизу не менее 7 мм каждыН.
3. В мноrослойпоn цилиндрической обмотке класса напряжения 35 кВ с ;к­
раном пят�) последних витко в у ней трали на каждоn. стуш:ни
изоляцию - один слой лакоткани ЛХММ ваолуперскрышку.
нмс ют уснле нную
4. Изоляция вИП{ОВ дана на дnе стороны, 11.,_оляц1н1 I<а rушск на од.ну
5. Вне скобок указана номи нальная ·1ол щ11ш, 1110.,nц,ни oнтrton. Разt�.1еры rta•
Т)шки рассчитываются по толщине изолнцви, указанной u �коU;,..:1х.
196
ви димому, наилучшим методом защиты от импульсных пе­
ренапряжений для обмоток классов напряжения от 220 до
750 кВ.
При воздействии на обмотку волны перенапряжения с
IСрутым фронтом первые катушки обмоrки в начале про­
цесса испытывают наибольшие перенапряжения. В отдель­
ных случаях наблюдается скачок напряжения на витках,
близких к нейтрали. Для того чтобы обезопасить эти ка­
тушки и витки от пробоя, их изоляция усиливается по срав­
нению с изоля��ией всех остальных катушек _(витков)
обмотки.
В качестве усиленной изоляции применяется увеличен­
ная изоляция между слоями, изоляция целых катушек ла­
котканью или кабельной бумагой.
В обмотках классов напряжения 6, 10 и 15 (Иисл <55
кВ) усиленная изоляция, как правило, не применяется. Для
обмоток классов напряжения 20 кВ и более ( И исл �55 кВ)
усиленная изоляция может быть выбрана по табл. 4.10.
Усиленная изоляцин несколько увеличивает внутренний
перепад температуры во входных катушках. Во избежание
этого рекомендуется в· катушках с усиленной изоляцией
уменьшать плотность тока, увеличивая сечение провода по
сравнению с остальными катушками обмотки на 10-15 % .
В обмотках из прямоугольного провода с общей толщиной
изоляции провода и катушки до 1,5 мм на сторону сечение
провода входных катушек может оставаться таким же, как
11 в других катушках обмотки.
В некоторых новых сериях трансформаторов класса на­
пряжения 35 кВ с непрерывными катушечными обмотка­
ми ВН усиленная изоляция катушек у линейного и ней­
трального концов обмотки не применяется.
3, Изоляция отводов трансформатора. Отводы, т. е. про­
водники, соединяющие обмотки трансформатора между со­
бой, с проходными изоляторами на крышке (вводами) и с
переключателями, а также переключатели обычно распо­
лагаются в масле, в пространстве между обмоткой и стен1<0й бака или между ярмом и крышкой бака. Отводы и пе­
реключатели каждой обмотки должны быть надежно
изолированы от бака, заземленных частей, крепящих остов
(прессующие балки ярма, заземленные болты и т. д.), а
также от всех частей, находящихся нод напряжением, т. е.
обмото1< и других ОТl:!Одов. Типичный случай расположепин
отвода показан на рис. 4.14. При расчете изоJiяции следует
197
проверять как размеры чистых масляных промежутков (s 1
н s 2 на рис. 4.14), так и возможные пути разряда по по­
верхности изоляционных деталей, например деревянных
деталей крепления отводов. Определение допустимых изо­
ляционных расстояний и дополнительной
твердой изоляции отводов обмотки ВН
производится по испытательному напря­
жению отвода (обмотки, от которой идет
отвод) при 50 Гц по табл. 4.11 для изо­
ляции отвода от бака и других заземлен­
ных деталей и от собственной (наруж­
ной) обмотки. Изоляция отводов внут­
ренних обмоток НН и СН от стенки ба­
ка и заземленных деталей выбирается по
табл. 4.11, а от наружной обмотки ВН
по табл. 4.12.
В этих таблицах приведены ориенти­
ровочные основные размеры изоляцион­
Рис. 4.14. Отвод
ных промежутков, которые могут быть
между обмоткой и
стенкой бака
приняты в расчете при предварительном
определении внутренних размеров бака
трансформатора.
В табл. 4.11 и 4.12 минимально допустимый масляный
промежуток определяется как сумма минимального изоля­
ционного промежутка и суммарного допуска на изготовле­
ние соответствующих деталей трансформатора. Найденный
по таблицам допустимый промежуток s следует принимать
как чисто масляный промежуток в свету между изоляцией
отвода и соответствующей деталью или ее изоляцией. В том
случае, если часть изоляционного промежутка заполнена
изоляционными деталями, по поверхности которых может
пройти путь разряда, эквивалентный чисто масляный про­
межуток, мм, определяется по формуле
(4.2)
где Sм - действительный чисто масляный промежуток,
мм; Sд - длина пути разряда по поверхности дерева, мм;
s т,и - длина пути разряда по поверхности твердой изоля­
ции: электроизоляционного картона, кабельной бумаги, бу­
мажно-бакелитовых изделий, гетинакса, мм.
Найденное по ( 4.2) s должно быть не меньше, чем опре­
деленное по табл. 4.11 или 4.12.
Для отводов с Иисп �35 кВ может применяться медный
198
или алюминиевый провод, изолированный кабельной бума­
гой или бумажно-бакелитовыми трубками. При рабочем
напряжении отвода до 1 кВ (испытательное напряжение
5 кВ) провод _(шина) отвода собственной изоляции не
имеет.
В трансформаторах класса напряжения 110 кВ при рас­
положении отводов между наружной обмоткой и стенкой
бака могут быть два случая. В трансформаторах с ПБВ,
если регулировочные витки не выведены в отдельный конТаблиц а 4.11. Минимально допустимые изоляционные расстояния
от отводов до заземленных частей
Испыта-
Толщина
напря е•
кВ
на одну
мм
тельное
изоляции:
ж
ние отвода,
сторону.
Расстояние от гладко
й
а
Ди мет с тенки бака и ли собствен·
ной обмотки, мм
р
с те
рж
ммня
,
s
sи
SK
1
1
Расстояние от за зем�
ленной части остро :\
ф ;:мы. м
о
м
SJ
J
1
•н
1
s
о
о
<6
>6
-
15
12
10
10
10
10
25
22
20
15
12
10
5
5
5
о
о
2
<6
>6
-
23
18
10
10
10
10
33
28
20
20
17
12
5
5
5
25
22
17
о
о
2
<6
>6
-
32
27
15
10
1О
10
42
37
25
28
25
18
5
5
5
33
30
23
о
о
2
<6
>6
-
40
35
22
10
10
10
50
4:'i
32
33
32
25
5
5
5
38
37
30
85
2
4
6
-
40
30
25
10
10
10
50
40
35
45
37
35
5
5
5
50
42
40
100
5
40
10
50
45
10
55
200
20
20
75
75
20
20
95
95
160
105
10
10
170*
115**
До 25
35
45
55
2
-
12
12
20
17
15
• Заземленная qасть нс изо-1нрована.
�' -�а !N,1ленная часть изолнрована щитом из электронзоляцнонноrо каrпона
толщиноn 3 мм.
199
Та б ли ц а 4.12. Минимально допустимые изоляционные расстояния
от отвода до обмотки
Испытательное
наnряженне, кв
' >,
���
"'"' .
:с :с >,
(JбМОТКИ
До 25
35
55
85
200
200
1
отвода
До 25
До 35
До 35
До 35
До 100
200
�аБ
3��
... с; u
Нет
2
Нет
2
Нет
2
Нет
2
3
6
8
20
Изоляционное расстояние отвода sи,
мм
ДО ВХОД•
НЫХ Ка•
тушек
--
-
-
-
205
150
80
Ш,
1 ных катуДО ОСНОВ·
шек
15
10
23
40
20
80
10
230
170
140
90
40
:>а
:>а
е расчет"":21 .:i: Минимально
ное расстоянее, s, мм
"'"'
��
:,; >,
:,; с::
u»о,(
10
10
10
10
10
10
10
20
20
20
15
10
до nход- до основ.
ней ка- 1 ных ка т ушки
тушек
-
-
225
170
145
95
25
20
33
20
50
30
90
50
250
190
160
105
центр, внешняя обмотка ВН имеет испытательное напря­
жение 200 кВ и расстояния отводов ВН от стенки бака или
собственной обмотки выбираются по этому напряжению по
табл. 4.11, а расстояния отводов, идущих от обмоток СН и
НН до обмотки ВН, выбираются по табл. 4.12. В транс­
форматорах с РПН наружной частью обмотки ВН являет­
ся обмотка тонкого регулирования, испытательное напря­
жение которой равно 100 кВ. Расстояние линейного отвода
обмотки ВН при этом выбирается, как для отвода с испы­
тательным напряжением 200 кВ, вблизи обмотки с испыта­
тельным напряжением 200 кВ по табл. 4. 12. Расстояния
отводов СН и НН от регулировочной части обмотки ВН
выбираются, как для отводов с испытательным напряже­
нием 100 кВ по табл. 4.11.
При переходе через деревянные детали отводы с
Иисп =25 и 35 кВ, не имеющие собственной изоляции, дол­
жны быть изолированы картоном толщиной 2 мм на сто­
рону; отводы обмоток с Иисп= 200 кВ получают в этом слу­
чае дополнительную изоляцию на сторону 6 мм.
Отвод от внутренней обмотки трансформатора (обычно
обмотка НН- и СН) в некоторых случаях может рас­
полагаться в осевом канале между обмотками или между
обмоткой и стержнем. При выходе в пространство между
а1пивной частью трансформатора и баком такой или лю­
бой другой отвод от внутренней обмотки должен пройти
200
между наружной обмоткой и прессующей балкой ярма (рис.
4.15). Изоляция отвода в этом с.,учае определяется испы­
тательным напряжением при частоте 50 Гц. Отвод изоли­
руется кабельной бумагой или
.,акотканью и дополнительно
Jl:) �
защищается коробкой из элек- @V#л&
троизоляционного
картона.
,
Размеры изоляции и минималь,
но допустимые расстояния оп- �
�
�
ределяются по испытательному напряжению той обмотки, � � / В
н
от которой идет отвод, если ее
напряжение выше напряжения
4.\5. Вывод концов от обдругой обмотки или если опре- Рис.
мотки нн
деляется изоляция отвода от
заземленной детали. При определении изоляции отвода, лежащего в осевом канале, от
другой обмотки толщина покрытия отвода определяется по
испытательному напряжению обмотки, от которой идет от­
вод, а расстояние до другой обмотки - по наибольшему из
двух испытательных напряжений обмоток.
Для определения размеров изоляции и минимальных
расстояний отводов, расположенных в осевых каналах,
можно пользоваться табл. 4.13, 4.14 и рис. 4.16.
Л
oom m I
Таблиц а 4.13. Минимальное расстояние от внутренних отводов до
других обмоток и заземленных деталей
Испытательное
напряжение на
промежутке, кВ
До 25
Расстояние а от
металла ДО соседней обмотки или
стержня, мм
9
35
45
55
85
200
т!
12
15
19
27
5Б
60
Та блиц а 4.14. Толщина изоляцш1 на внутренних отводах
Испытательное наnряженне
оtмотки, от которой идет
отвод. кВ
то, щнна изоляции на
одну сторо11у, /\ и, мм
Толщина коробки из
картона /\к, мм
До 25
25
45
85
1,5
3
4
8
2,5
2,5
2,5
2Х2,5
201
o'u
"и
"'"'
'1::1
�� �
�� �
�
�� <::,
�
""1:,
t;;
"'
�<::,
�
'->
Рис. 4.16. Изоляция отводов в осевых каналах обмоток
Изоляция в месте выхода отвода между обмоткой ВН и
прессующей балкой ярма (рис. 4.15} может быть опреде­
лена по табл. 4.13 и 4.14 при условии, что коробка из элек­
троизоляционного картона укладывается с двух сторон со стороны обмотки ВН и со стороны балки толщиной бк­
на каждой стороне.
4.6. ОПРЕДЕЛЕНИЕ МИНИМАЛЬНО ДОПУСТИМЫХ
ИЗОЛЯЦИОННЫХ РАССТОЯНИЙ В СУХИХ
ТРАНСФОРМАТОРАХ
Главная изоляция в сухих трансформаторах осущест­
вляется обычно при помощи таких же изоляционных конст­
руктивных деталей, как и в масляных трансформаторах:
изоляционных цилиндров, угловых шайб, междуфазных
перегородок и т. д. При конструировании сухих трансфор­
маторов наряду с обеспечением электрической прочности
Таблица 4.15. Изоляция обмоток ВН сухих трансформаторов, мм
UIJCП
ДJJЯ
ВН, кВ
3
10
16
24
вн от
ярма 1 0 ,
15
20
45
80
Между ВН и ВН
Между ВН и НН
йt ,
1�
15
22
40
о"
1 11
2
Картон 2ХО,5 мм
10
2,5
4
25
40
5
а"
10
10
25
45
6"
2
3
3
Пр и м е ч а п и е. Размеры каналов а.:н и a1t являются миннмальны�и с тоq"
кн зрения изоляции обмоток Эти размерь, должны быть также проверены по ус,
повиям отвода 1епла 110 табл. 9.2.
202
следует обращать особое внимание на получение доста точ­
ных воздушных охладительных каналов между обмотками
и такое расположение изоляционных деталей (угловых
шайб и т. д.), при котором обеспечивается наилучший до•
ступ воздуха к обмоткам. Основные изоляционные расстоя­
ния главной изоляции (рис.
4.17) могут быть выбраны по /.�......_�......_<.J../........,,,""'""+-'-�.,
табл. 4.15 и 4.16.
Междувитковая изоляция
...
сухих трансформаторов обыч­
....,::r
но достаточно надежно обес­
печивается нормальной изоля­
цией провода. В качестве меж­
дукатушечной изоляции могут
служить горизонтальные воз­
душные каналы, размеры которых определя ются по уело001
o,z
012
виям отвода тепла по табл. 9.2.
Междуслойная
изоляци,я в
"
Рис. 4.17. Главная изоляцияобцилиндричес- мо
МНОГОСЛОИНЫХ
ток сухих трансформато ров
ких обмотках сухих трансфор•
маторов может выполняться
из стеклолакоткани марки ЛСБ-120/130 на основе битумно­
масляного алкидного лака с тол щиной поло т на О, 15 мм
(ГОСТ 10156-78). При рабочем напряжении двух слоев
обмотки 1000-2000 В следует проложить три слоя по О, 15
мм; при напряжении 2001-3000 В - четыре слоя по О, 15
мм и при напряжении 3001-3500 В - пять слоев по
0,15 мм. Выступ междуслойной изоляции за торцы обмот­
ки 20 мм. Структура изоляции на торцах выполнена по
рис. 5.21.
Та б л и ц а 4.16. Изоляция обмоток Н Н сухих трансформаторов, мм
U исп для НН, кВ 1
3
10
16
24
НН от я рма 101 1
15
30
55
90
ао ,
10
14
27
40
НН
тержня
от с
60,
'щ
Картон 2 ХО, 5
2,5
15
5
30
6
40
Пр им е чан н я: 1. См. примечание к табл. 4.15.
2. Для винтовой обмотки при И ,�сп для liH 3 кВ ст авить цилиндр бо�=2,5+
-.5 мм: и принимать ао1 не менее 20 мм.
203
Сухие трансформаторы устанавливаются внутри поме­
щений, подводка линии высшего напряжения к ним осуще­
ствляется кабелем. Поэтому изоляция сухих трансформа­
торов испытывает коммутационные перенапряжения, но
практически свободна от воздействия атмосферных пе_rена­
nряжений.
Минимальные расстояния между токоведущими и зазем­
ленными частями в сухом трансформаторе (отвод ВН отвод НН; отвод ВН - заземленная шпилька; отвод ВН­
обмотка ВН; отвод ВН - стенка кожуха и т. д.) можно
принять следующими: при чисто воздушном промежутке
при рабочем напряжении 6 кВ 50 мм, при 10 кВ 80 мм; при
наличии барьера 2 мм или покрытия той же толщины на
одном из электродов - соответственно 40 и 60 мм. Допу­
стимое расстояние по поверхности твердого диэлектрика
(электроизоляционный картон, гетинакс и др., но не дере­
во) при рабочем напряжении 6 и 10 кВ - около 100 мм.
Глава пятая
ВЫБОР КОНСТРУКЦИИ ОБМОТОК ТРАНСФОРМАТОРОВ
S.1. ОБЩИЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ
К ОБМОТКАМ ТРАНСФОРМАТОРА
Общие требования, предъявляемые к обмоткам транс­
форматора, можно подразделить на эксплуатационные и
производственные.
Основными эксплуатационными требованиями являют­
ся надежность, электрическая и механическая прочность и
нагревостойкость как обмоток, так и других частей и всего
трансформатора в целом. Изоляция обмоток и других ча­
стей трансформатора должна выдерживать без поврежде­
ний коммутационные и атмосферные перенапряжения, ко­
торые могут возникнуть в сети, где трансформатор будет
работать. Механическая прочность обмоток должна допус­
кать упругие деформации, но гарантировать их от остаточ­
ных деформаций и повреждений при токах короткого за­
мыкания, многократно превышающих номинаJ1ьный рабо­
чий ток трансформатора.
Нагрев обмоток и других частей от потерь, возникаю­
щих в трансформаторе при номинальном режиме работы,
допустимых перегрузках и коротких замыканиях огранп204
ченной длительности, не должен приводить изоляцию
обмоток и других частей, а также масло трансфор­
матора к тепловому износу или разрушению в сроки
более короткие, чем обычный срок службы трансфор­
матора - 25 лет.
Общие эксплуатационные требования, предъявляемые к
трансформаторам и их обмоткам, регламентированы соот­
ветствующими общесоюзными стандартами на силовые
трансформаторы общего назначения, различные трансфор­
маторы специального назначения, электрические испытания
изоляции трансформаторов и т. д. Практически электриче­
ская прочность изоляции обмоток достигается рациональ­
ной ее конструкцией, правильным выбором изоляционных
промежутков и изоляционных материалов и прогрессивной
технологией обработки изоляции при высокой общей куль­
туре производства. Требование механической прочности об­
мотки удовлетворяется путем рациональной организации
поля рассеяния, а также правильного выбора типа конст­
рукции обмотки и расположения ее витков и катушек с та­
ким расчетом, чтобы возникающие в этой обмотке механи­
ческие силы были по возможности меньшими, а механиче­
ская стойкость возможно большей.
Для достижения необходимой нагревостойкости следует
обеспечить свободную теплоотдачу в окружающую среду
всего тепла, выделяющегося в обмотках при допустимых
для данного класса нагревостойкости изоляции превышени­
ях температуры обмоток над температурой окружающей
среды, т. е. обеспечить достаточно большую поверхность
соприкосновения обмотки с охлаждающей средой - мас­
лом или воздухом.
Основные производственные требования к трансформа­
тору заключаются прежде всего в технологичности его кон­
струкции, позволяющей изготовить трансформатор с ми­
нимальными затратами труда и материалов.
Требования, предъявляемые к трансформатору в це­
.�юм, в полной мере относятся к обмоткам. Задачей проек­
тировщика является разумное сочетание интересов эксплу­
атации и производства. Эта задача решает� в значитель­
ной мере при выборе того или иного типа обмотки. Поэто­
му на выбор типа обмотки, наиболее полно отвечающей
требованиям эксплуатации и в то же время простой и де­
шевой в производстве, следует обращать особое внимание.
Практические указания по этому вопросу даются в харак­
теристиках раз.1Jичных типов обмоток.
205
В процессе расчета обмотки после выбора ее типа сле­
дует добиваться наибольшей компактности в ее размеще­
нии, распределении витков и катушек, для того
чтобы получить наилучшее заполнение окна трансфор­
матора.
Одновременно следует стремиться к получению доста­
точно развитой поверхности охлаждения обмотки и доста­
точного числа и размеров масляных _(воздушных у сухого
трансформатора) охлаждающих каналов в обмотках при
обеспечении наименьшего гидро- и аэродинамического со­
противления для движения в них охлаждающей среды, что
дает возможность уменьшить внутренний перепад темпера­
туры в обмотках и как следствие этого несколько
уменьшить охлаждаемую поверхность бака трансфор­
матора.
Потери энергии, выделяющейся в обмотках в виде теп­
ла, должны быть полностью отведены в среду, охлаждаю­
щую трансформатор. На пути движею1я тепла в масляном
трансформаторе существенное значение имеют два пере­
пада температуры - между поверхностью обмотки и ох­
лаждающим ее маслом 0о,м и между поверхностью стенки
бака и охлаждающим ее воздухом 0б,в• Перепад 0о ,м пря­
мо зависит от плотности теплового потока на поверхности,
т. е. от потерь в обмотке Р, отнесенных к единице ее по­
верхности П охл , q=Р/Пох.,, Вт/м2 •
Перепад температуры 0о,м обычно ограничивают значе­
нием 23-25 °С путем ограничения плотности теплового по­
тока q, что при верхнем пределе превышения средней тем•
пературы обмотки над воздухом, ограниченном по ГОСТ
значением ± 65 °С, позволяет получить среднее превышение
температуры стенки бака над воздухом не менее 0б ,в�35+
+38 °С. Увеличение перепада 80 ,м сверх 25 °С приведет 1<
необходимости рассчитывать охлаждаемую поверхность
бака на меньший перепад температуры 0б,в, т. е. к суще­
ственному увеличению размеров и массы материалов си­
стемы охлаждения трансформатора.
В сухих трансформаторах с естественным воздушным
охJiаждением имеются два перепада температуры - внутри
обмотки 0о и на ее поверхности, охлаждаемой воздухом
8 0,в- В сумме эти два перепада не должны быть больше
значения, установленного ГОСТ 11677-85 для каждого
класса нагревостойкости изоляции обмоток от 60 °С при
классе А до 125 °С при классе Н.
206
5.1 КОНСТРУКТИВНЫЕ ДЕТАЛН 06МОТОК
•1 �х изоляция
Основным элементом всех обмото[{ трансформаторов
является виток (см. § 2.1). В зависимости от тока нагруз­
ки виток может быть выполнен одним проводом круглого
сечения, или проводом прямоугольного сечения, или, при
достаточно больших токах, группой параллельных прово­
дов круглого или, чаще, прямоугольного сечения. На рис.
5.1, а-е представлены различные варианты r:оперсчных
Рис. 5.1. Формы сечения витка обмотки при различ1юи чнс.r.е пара.1ле.1ы1ых просодов
сечений одного витка обмотки при различных токах на­
грузки. Эти варианты не являются исчерпывающими.
Ряд витков, намотанных на цилиндрической поверхно­
сти, называется слоем. В некоторых типах обмоток слой
может состоять из нескольких десятков или сотен витков,
в других - из нескольких витковх или даже из одного
витка.
Отдельные витки обмотки группируются в катушки. Ка­
тушкой называется группа последовательно соединенных
витков обмотки, конструктивно объединенная и отделенная
от других таких же групп Иj[И от других обмоток трансфор­
матора. Обмотка стержня может состоять из одной, двух
или многих катушек. Катушка может состоять из ряда сло­
ев или только из одного слоя витков. Число витков в ка­
тушке может быть различным - ка�< целым, так и дроn­
ным, однако должно быть больше единицы. На рис. 5.2
представлены поперечные сечения нескольких раз.личных
типов катушек.
Для обеспечения надлежащей элсюрической прочности
обмотки между ее витками, катушками, а также между
обмоткой и другими частями трансформатора должны быть
выдержаны определенные изоляционные расстояния, зави­
сящие от рабочего напряжения и гарантирующие обмотку
207
от пробоя изоляции как при рабочем напряжении, так и
при возможных перенапряжениях. В этих промежутках
могут быть установлены изоляционные конструкции или
детали из твердого диэлектрика либо промежутки могут
быть заполнены только твердым диэлектриком - кабель­
ной бумагой, электроизоляционным картоном и т. д. или
только изолирующей средой - маслом, воздухом и т. д.
а)
6)
�
г)
Рис. 5.2. Различные типы катушек:
а - катушка из шестнадцати витков; 6 - катушка из шести витков; в - катушка
из семи витков; г - катушка из шести витков (четыре параллел1,ных провода)
Для нормального охлаждения между обмоткой и другими
частями трансформатора, между катушками, в некоторых
конструкциях и между витками делают масляные нли воз­
душные охлаждающие каналы. В одних случаях охлаж­
дающие каналы обеспечивают одновременно и над�жную
нзоляцию обмотки, в других - для усиления изоляции
применяются специальные изоляционные детали - прос­
тые и угловые шайбы, изоляционные цилиндры, перегород1<и и т. д.
Во всех типах обмоток принято различать осевое и ра­
диальное направления. Осевым считается направление, па­
раллельное оси стержня трансформатора, на котором ус­
танавливается данная обмотка. Радиальным считается на­
правление любого радиуса окружности обмотки. В силовых
тран<:форматорах с вертикальным расположением стерж­
ней осевое направление совпадает с вертикальным, а ради­
альное - с горизонтальным. В этом смысле принято гово­
рить также об осевых и радиальных - вертикальных и
горизонтальных - каналах обмоток.
208
По направлению намотки подобно резьбе винта разли­
чают обмотки правые и левые (рис. 5.3). Однослойные об­
мотки, имеющие в одном слое более одного витка (рис.
5.3, а), остаются левыми или правыми в зависимости от
того, как они намотаны, но независимо от того, какой ко­
нец - верхний или нижний - считается входным. В об­
мотках. состоящих из нескольких таких слоев, с перехода-
"'
ФQФФ
.Ле8011
.ЛеВап
а}
Лри8оп
Лра8од-
б)
В)
Лро8011
.Jle!aя
Рис. 5.3. Об мотки левой и правой иамоток:
а - цилиндрическая одн ослойная; б - цнлиидрнческая многослойная; в - одинар­
ные катушки к атушечн ой обмотки; г - двойные катушки катушечной обмо ки
т
ми из слоя в слой (рис. 5.3, 6) направление намотки слоев
будет чередоваться. Если первый (внутренний) слой левый,
то все другие нечетные слои также будут левыми, а все
четные - правыми. Для таких обмоток за начало при опре­
делении направления намотки обычно принимается начало
первого (внутреннего) слоя и направление намотки всей
обмотки считается по направлению намотки этого слоя.
14-510
209
Отдельные катушки, имеющие форму плоской спирали,
будут условно считаться правыми или левыми в зависимо­
сти от того, какой конец - внутренний или наружный считать входным, а также от того, с какой стороны на них
смотреть. Нетрудно убедмться, что такая катушка «левой»
намотки, изображенная на рис. 5.3, в, станет «правой», ес­
ли ее повернуть к наблюдателю другой стороной. Если по
технологическим соображениям обмотка составляется из
таких отдельно наматываемых одинаковых катушек, то
одного указания «правая» или «левая» обмотка недоста­
точно. В этом случае во избежание ошибок указания по
направлению обмотки лучше всего давать в виде эскиза.
Обычно такие катушки применяются парами (двойная ка­
тушка). При этом входными и ВЫХОДНЫМИ являются наруж­
ные концы, а переход из катушки в катушку производится
внутри катушек (рис. 5.3, г) и направление намотки явля­
ется определенным и независимым от точки наблюдения.
Обмотка, составленная из любого числа последовательно
соединенных двойных катушек одинаковой намотки, будет
иметь то же направление намотки, что и отдельные двой­
ные катушки. Это положение остается справедливым для
непрерывных катушечных обмоток, где каждые две сосед­
ние катушки могут рассматриваться как одна двойная ка­
тушка, а также для многослойных цилиндрических кату­
шечных обмоток, где входным обычно считают наружный
слой катушки.
Правильный выбор направления намотки имеет сущест­
венное значение для получения заданной группы соедине­
ния обмоток, а в однофазных трансформаторах - также
для правильного соединения частей обмоток, расположен­
ных на разных стержнях. Большинство обмоток трансфор­
маторов обычно выполняется левой намоткой, более удоб­
ной для обмотчика, работающего в основном правой рукой.
Обмотки масляных и сухих трансформаторов изготов­
ляются из медных и алюминиевых обмоточных проводов, а
также из медной и алюминиевой ленты или фольги. Мед­
ные и алюминиевые провода могут иметь эмалевую, хлоп­
чатобумажную или бумажную изоляцию класса наrрево­
стойкости А, а провода, предназначенные для обмоток су­
хих трансформаторов, могут также иметь изоляцию более
высоких классов наrревостойкости из стекловолокна, крем­
нийорганического лака и т. д. Собственная изоляция про­
вода обычно обеспечивает достаточную электрическую
прочность изоляции между соседними витками.
210
:;;: Табл II ц а 5.1. Номинальные размеры сечения и изоляция круглогn медного 11 алюминиевого
"обмоточного провода марок ПБ и АПБ с толщиной изоляции на две стороны 2 б=О,30 (0,40) мм
Диаметр, мм
1
Се ение, мм
ч
• 1
Увеличение
массы, %
Марка ПБ-медь
1, 18
1,25
1
1,094
1,23
1
1
6,0
5,5
Марка ПБ-медь
Марка АПБ-алюминий
1,32
1,40
1,50
1,60
1,70
1,80
1,90
1,37
1 ,51
1,77
2,015
2,27
2,545
2,805
Диаметр,
мм
5,0
5,0
4,5
4,0
4,0
3,5
3,5
2,00
2,12
2,24
2,36
2,50
2,65
2,80
3,00
3,15
3,35
3,55
3,75
\
Сечение, мм•
3, 14
3,53
3,94
4,375
4,91
5,515
6, 16
7,07
7,795
8,81
9,895
1 l ,OS
1
Увеличение
массы, % 11 Диаметр, мм
3,0
3,0
3,0
2,5
2,5
2,5
2,5
2,5
2,0
2,0
2,0
1,5
4,00
4, 10
4,25
4,50
4,75
5,00
5,20
1
Сечение, мм•
УоРличенне
массы. %
12,55
13,2
14,2
15,9
17,7
19,63
21,22
1,5
1,5
1,5
1,5
1,5
1,5
1,5
Марка АПБ-алюмвний
5,30
6,00
8,00
22,06
28,26
50,24
1,5
1,5
1,0
П р и м е ча н и я: J. Провод марок ПБ и АПБ ncex диаметров выпускается с изоляциеА на две стороны толщиной 26=О,30 (0.40); 0,72 (0,82); 0,96 (J,06) и 1,20 (1,35) мм; проиод диаметром от 2.24 мм и выше - также с изоляцисn 1,68 (1,83) и
1,92 (2,07), а провод диаметром от 3,75 мм и выше - также с изоляцией 2,88 (3,08); 4,08 (4,33) и 5,76 (б,11) мм.
2. Без скобок указана ном и11альная толщина изоляции. Размеры катушек считать по 1'олщине изоляции, указанной в скобкзх.
3. Увеличение массы провода за счет н;оляuни д�но для медного провода. Для алюминиевого лровода марки ЛПБ данflые
таблицы по увеличению массы умножить на 3,3.
4. Увелиqею,е массы провода марок ПБ � АПБ с усиленной изо.1яцией принимать по табл. 5 4 с учетом прим. 3 к табл. 5 1.
5. Провод марок ПСД и ПСДК выпускается в nредел,�х диаметров от 1,18 до 5,0 мм и провод марок АПСД и ЛПСДК - от
1,32 до 5.0 мм.
6. Толщина изоляции провода марок ПСЛ, ПСдК. АЛСД н АПСдК при диаметрах до 2,12 мм 26-0,29 мм (в расчете прини-.иrь
0,30 мм\, при диаметрах от 2,24 до 5,0 мм 26~0,35�0,38 мм (о расче1с принимать 0,40 мм).
"'
7. Для пр<>вода марок ПСД и ПСдК данные таблицы по увеличению массы умножить на 1,75 для диаметµон от 1,18 до
2,12 мм и на 2,1 для диаметров от 2,24 мм н выше. Для алюминиевого про�ода марок АПСД и АПСДК учитывать 11рим. 3.
Та б л н ц а 5.2. Номинальные размеры и сечения медного и
Ь - в мм, сечения - в мм2 )
Медный провод марки ПБ - все размеры таблицы, за исключением
Алюминиевый провод марки АПБ- все размеры таблицы вправо и
1,40
1
�
3,75
5,04
4,00
5,39
4,25
5,74
6,09
4.�J
6,44
4,76
6,79
5,00
5,30
7,21
7,63
5,60
6,()()
8,19
6,30
8,61
6,7U
9,17
7, 10
9,7J
7,50 10,3
8,00 11,0
8,50 11,7
9,00 12,4
9.50 13, 1
J0,00 1;;,8
10,60
14,6
11,20
11,80
12,50
13.�О
14,00
15,00
16,00
17,00
18,00
15,5
1
.!
1,50 1 1,60 / 1. 10 1 1,80 11,90 12,00 , 2,1212,24 , 2,36 12,501 ,65
2
-
5,79
6,54
7,29
-
8,19
-
9,24
-
10,4
11,8
-
13,3
14,8
-
16,6
-
18,5
5,79
6,19
6,44
6,59
6,99 7,29
7,39
7,79 1',14
8,27
8, 75 9,16
9,39
9,87 10,4
10,5
11,2
11, 7
11,8
12,6 13, 2
13,4
14,9
14,2
15,0
15,8
16,6
16,8
-
-
-
17,7
18,7
19,8
-- --
-
- - -
18,7
-
20,9
--
-
6,39
6,84
7,'29
7,74
8,19
8,64
9,18
9,72
10,4
11,0
11,7
12,4
13,1
14,0
14,9
15,8
16,7
17,6
18,7
19,8
20,9
22,1
23,4
24,8
-
-
-
7,24
-
8,19
9,14
10,3
11,6
13,1
-
14,8
16,7
-
18,6
-
20,9
-
23,4
-
26,2
-
7,14
7,64
8,14
8,64
9,14
9,64
10,'2
10,8
11,6
!'1, 2
13,0
13,8
14,6
15,6
16,6
17,6
18,6
19,6
20,8
2'2,0
'23,:l
24,6
26,0
27,б
29,6
- 31,б
- - -
-
8,12
-
9,18
10,2
-
11,5
13,0
14,7
16,6
18,7
20,8
-
23,4
-
26,1
8,04
8,60
9, 16
9.72
10,3
1 0,8
11,5
12,2
13,1
13,8
14,7
15,5
16,4
17,6
18,7
19,8
20,9
22,0
23,4
24,7
26,1
27,6
10, 1
11,3
12, 7
8,89
14,3
-
16,2
-
18,3
20,7
-
2:J,1
-
8,83
9,45
10,1
10, 7
11,3
12,0
12,7
13,5
14,5
15,2
16,2
17,2
18,2
19,5
20,7
22,0
23,2
24,5
26,0
-
'!9, 2
32,5
31,0 j3i5 34,5
33,б
35,5
-
-
33,2
-
10,1
12,7
14,3
16,2
11,4
18,3
-
20,7
-
23,3
-
26,0
-
23,9 27,5 29,1
29,0
29,0 30,7 32,б
29,3
-
-
1
--
37,0
--
37,2 39,5
-
-,б
36
-
41,9
--
- - -
П р и м е ч а 11 11 я: 1. Провод марок ПБ и АПБ выпускается с толщиной изо
1,35 ( 1,50), 1,68 (1,83) и 1,92 (2,07) мм.
2. Вне скобок у1<аза1-tа 11омнна.11.ь.ная толщина изоляции. Размеры катушек
3. Медный провод марки ПБУ выпускается с размерами проволоки по
и
2,00 (2,20),
2,49 (2,63),
2,96 (3,16),
3,6 0 (3,80), 4,08 (4,28)
26-1,35 (1,45),
г
Медный и алюминиевый обмоточный провод марок ПБ
и АПБ, изолированный лентами кабельной бумаги класса
нагревостойкости А (105 °С), выпускается в соответствии с
ГОСТ 16512-80. Медный провод круглого сечения марки
ПБ имеет диаметры проволоки от 1,18 до 5,20 мм с номи­
нальной толщиной изоляции на две стороны от 0,30 до 5,76
мм при площади поперечного сечения от 1,094 до 21,22 мм2 •
Сортамент медного круглого провода приведен в табл. 5.1.
212
алюминиевого обмоточного провода марок ПБ н АПБ (размеры а и
г.роводов с размером Ь 11 и 18 мм
оверх от жирноil черты
-- - - - -13,6
- - -14,4
15,2
11,5
16,2 17,2
- 18,3 16,2
16,3 17,1
18,2
20,1
- 18,4 - 19,3
20,8
18,4
19,3
20,6
21,8
- 20,6 - 23,12 22,8
23,2
20,8 21,8
24, 7 25,8
23,1
26,1
23,5 24,7
27,9
29,1
- 26,2 26,3
29,6
29,6
26,5
27,8
31,4
- 29,4 - 3J,2 32,9
33,0
31,0
29,.5
35,0
36,6
-13,0
-
-
10,7
11,4
12,1
l'l,8
13,5
14,3
15,1
16,3
17,1
18,2
19,3
20,5
21,9
23,3
24,7
26,1
27,5
29,1
-
-
33,1
-
32,8
:Ю,8
32,5
34,5
37.О
34.7
36,6
38,8
Зб ,4
38,7
41,5
41,0
43,6
41,5
-
43,7
44,3
47,5
49,9
-
47.2
-
1
-
37,0
-
41,3
-
-
46,4
53,1
- - - - - - - - - --- - - - - - - - - - - -21,5
- -- - 23,1 24,3 25,9 27,5
- 25,9 - 29,3 27,5 29,3 31,1 32,9 34,6 29,1 - :n,9 - 36,6 31,1 33,1 35,1 37,1 39,2 41,5
33,1 - 37,4 - 41,6 35,1 37,4 39,6 41,9 44,1 46,8
37,1 - 41,9 - 46,6 1 41,6 44.1 46,6 49,1 52.1
- 39,
41,5
46,8 - 62,1 -
- -
-----
43,9
46,7
49,5
52,1
55,1
58 ,б
3,75
4,00
4,25
50
4,.
4,75
5,00
5,3)"
5,6о
6, 00
6,30
6,7о
7,1о
7,5)·
8,.00
8,50
9,0G
9,5 0
10,00
10,6!J
39,2
41,3
43,8
41,4 43,9 46,7 49,5 52,3 55,1 58,5 61,9
46,3
52,2
58,1
65,2
46,0 49,1 52,3 55,4 58,5 61,6 65,4 69,1
11, 20
11,80
12,5
о
46,3
49,2
iЗ.1
51,9
65,1
58,5
52,0 55,1 58,6 62,1 65,6 69,1 73,3 i7,5
37,1
52,7
56,3
-
53,2
-
5),4
53,1
55,8
59,4
63,0
-
-
-
-
-
-
-
-
-
-
-
-
13. 20
14,()()
83,1
15,00
59,1 63,1 67,1 71,1 75,1 79,1
83,9 83,7
16.00
84,1
94,3
-
59,1
67,1
-
66,6
75,6
-
74, 1
-
66,6 71,1 75,6 80,1 84,6 89,1 94,5 99,9
17,0
16,00
пяции на две сто1,оны 26-0,45(0,50), 0,55 I0,62), 0,i2(0,82), 0,96( 1,06), 1,20(1,35),
считать по толщине изоляции, указанной в скобках.
стороне а от 1,8 до 5,6 мм и по стороне Ь от 6,7 до 18 мм с изоляцией то,,щцноi\
4.40 (4,G5) ММ,
Алюминиевый провод кругдого сечения марки АПБ с
проволокой диаметрами от 1,32 до 8,0 мм и площадью се­
чени я от 1, 37 до 50,24 мм 2 выпускается с той же толщ и­
ной изоляции, что и медный провод (табл. 5.1).
Медный провод прямоугольного сечения марки ПБ, ис­
пользуемый в силовых трансформаторах, имеет размеры
поперечного сечения проволоки - меньший от 1,4 до 5,60
и больrпий от 3, 75 до 16,0 мм при площади сечения от 5,04
213
до 83,1 мм2 и толщине изоляции от 0,45 до 1,92 мм. В тран.
сформаторах классов напряжения от 220 кВ и выше при­
меняется также медный провод марки ПБУ, изолирован.
ный лентами кабельной высоковольтной уплотненной бу­
маги с номинальной толщиной пзоляции на две стороны от
1,35 до 4,40 мм. Размеры поперечного сечения проволоки в
проводах ПБУ - меньший от 1,80 до 5,60 и больший от 6,70
до 16,0 мм. Сортамент медного прямоугольного провода
приведен в табл. 5.2.
Алюминиевый провод прямоугольного сечения марки
АПБ имеет размеры поперечного сечения проволоки меньший от 1,80 до 5,60 мм и больший от 3,75 до 18,0 мм
при площади поперечного сечения от 6,39 до 99,9 мм 2 и
номинальной толщине изоляции на две стороны такой же,
как и у медного провода (табл. 5.2).
В сухих трансформаторах может применяться провод
тех же марок, что и в масляных. Однако при необходимо­
сти получения пожаробезопасной установки, а также при
расчете обмоток на работу при повышенной температуре
обычно применяют провода других марок с изоляцией по­
вышенной наrревостойкости по ГОСТ 7019-80. К этим мар­
кам относятся: медный провод марки ПСД с изоляцией из
стеклянных нитей, наложенных двумя слоями, с подклей­
кой и пропиткой нагревостойким лаком или 1юмпаундом
класса нагревостойкости F (155 °С) и марки ПСДК с та­
кой же стеклянной изоляцией, но с подклейкой и пропиткой
кремнийорганическим лаком класса нагревостойкости Н
Та б л и ц а 5.3. Номинальные размеры и сечения2прям оугольного
размеры) (размеры а и Ь - в мм, сечения - в мм )
�Ь
1,40
�
а а\
1,60
6, 19
5,39
4,00
6,99
6,09
4,50
7,79
6,79
5,00
8,75
5,60
7,63
6,30
9,87
8,61
9,73
7, 10
11,20
11,00
12,60
8,00
12,40
14,20
9,00
15,80
13,80
10,00
11,20
12,50
n р им е чан и е Номинальная
1,80
2.00
2,24
2,50
6,84
7,74
8,64
9,72
10,40
12,40
14,00
15,80
16,60
7,64
8,64
9,64
10,80
12,20
13,80
15,60
17,50
19,60
8,60
9,72
10,80
12,20
13,80
15,50
17 .60
19,80
22,00
24,70
27,60
9,45
10,7
12,0
13,5
15,2
17,2
19,5
22,0
24,5
27,5
-
-
vдвоенная толщина
для провоАОВ с размером Ь>б,30 мм - 26-0,50 мм.
214
изо.аяцни
-
26 .... 0,27-;-,:
( !80 °С). Эти провода выпускаются как круглого попереч­
ного сечения в сортаменте по табл. 5.1, так и прямоуголь­
ного сечения в сортаменте табл. 5.3 с номинальной толщи­
ной изо.�яции на две стороны от 0,27 до 0,48 мм.
Алюминиевый провод марок АПСД и АПСДК с круг­
лым и прямоугольным поперечным сечением выпускается
с такой же изо.rrяцией, как и медный, в пределах сортамен­
та алюминиевого провода по табл. 5.1 и 5.3.
Медные и алюминиевые провода имеют различную це­
ну. Так, если среднюю цену 1 кг медного провода прямо­
угольного сечения марки ПБ принять за 100 %, то цена
1 кг алюминиевого провода марки АПБ с такой же изоля­
цией составит в среднем 85, медного провода марки ПСД110 и алюминиевого провода марки АПСД-150 %.
Электрическая прочность изоляции обмоточного прово­
да, являющейся в большинстве обмоток трансформаторов
витковой изоляцией, в значительной мере определяет на­
дежность продольной изоляции обмоток. Для обеспечения
достаточной прочности изоляции провода существенное
значение имеет отделка поверхности проволоки, из кото­
рой изготовлен провод, - отсутствие на ней неровностей и
заусенцев, а также равномерное наложение лент кабельной
бумаги. Плотное наложение бумажной изоляции провода
гарантирует получение реальных размеров обмоток, близ­
ких к расчетным. В расчетные формулы при расчете тран­
сформатора обычно входит масса металла провода обмот­
ки без изоляции, но количество провода при заказе и стоме дного обмоточного провода марок ПСД и ПСДК (предпочтительные
0
5
1 2,8 1 3, 1 1
10,7
12, !
13,5
15, 1
17, 1
19,3
21,9
24,7
27,5
30,8
-
13,6
15,2
17,1
19,3
21,8
24 ,7
27,8
3! ,о
34,7
-
3,55
4.00
4,5 0
5,00
5,60
-
-
-
-
-
!7,2
19,3
21,8
24,7
27,9
31,4
35,0
39,2
-
21 ,5
24,3
27,5
31, 1
35,1
39,1
43,9
-
-
-
27,5
31,1
:_15, 1
39,6
44,1
49,5
-
34,6
39,2
44,1
49, 1
55,1
-
-
-
43,9
-
1/.
4,00
4,50
5,00
5,60
6,30
7,10
8,00
9,00
10,00
11,20
12,50
-�О.4 8 мм В расчете прннимать цля проводов с раз>1ером b.;;;5,G0 мм 26-0,45 '1м;
215
Та 6 л и ц а 5.4. Ориентировочное увеличение в процентах массы
медноrо провода марки П Б и алюминиевоrо марки А П Б ( см. прим. 1)
за счет ИЗОЛЯЦИИ
При толщине 11золяции 26, мм
- ------,------.,-------,------,---Диаметр
5, 76
провода, мм 1
4,08
о,п
l,20
1,92
1, 18
1,40
1,60
1,80
2,00
2, 12
2,50
3,00
3,55
4,00
4,50
5,20
18
14
12
10
9
8,5
7,5
б
5
4,5
4
4
-
35
27
23
19
17
16
12,5
10
9
8
7
б
-
-
-
-
·-
22
18
14
12
11
10
-
-
54
46
38
34
28
24
Пр им е ч а и и я: 1. Для алюминиевого провода марки АПБ данные табли­
цы умножить на 3,3.
2. Для промежуточных значений диаметра провода н толщины изоляции
можно пользоваться линейной интерполяцией.
Т а б л и ц а 5.5. Ориентировочное увеличение массы прямоугольного
медного провода в процентах за счет изоляции для марки ПБ и
алюминиевого марки АПБ (см. прим. 3) при номинальной толщине
изоляции на две стороны 2 о=О,45 мм
�!
3,75-7,50
8,0-18,0
1.4�1,80
3,5
2,5
1,90-2,65
3
2
2,80-3,75
2,5
2,0
4.�7,00
2,0
1,5
Пр и м е ча н и я: 1. При другой толщине изоляции данные из таблицы
умножать при 26=0,96 мм на 2,5; при 26=1,35 мм на 3.5; при 26-1,92 мм на 5.0.
2. Для провода марок ПСД и ПСДI( данные из таблицы умножать при 26-0.45 мм на 1,7; при 26-0,50 мм на 2,0
3. Для алюминиевого провода данные, полученные из таблицы или с учетом
прим. 1 и 2. умножать на v мl'l'A =3,3.
имость провода
должны рассчитываться с учетом
изоляции. Для определения массы изолированного провода
обычно увеличивают массу металла обмотки в соответст­
вии с данным табл. 5.1, 5.4 и 5.5. Это увеличение массы за­
висит от толщины изоляции провода, материала изоляции
и плотности металла обмотки.
216
б
' z
aJ
J
Рис. 5.4. Транспонированный про­
вод:
а - поперечное сечение провода (/ -
[illffi-;;i
[Ш1:!г'
nараллельные проводники с эмалевой
нзоляциеi\; 2 - прокладка из кабель­
ШIJ1h,
[ШП_}.:.J
транспозиции семи проводников
0:illh:1
ноi\ бумаги: З - общая изоляция нз
кабельной бумаги); 6 - пример схемы
[mizP
В современных трансформаторах
больших мощностей ( от 160 ООО до
630000 кВ-А) номинальный ток, да­
же в обмотках высшего напряжения
110 и 220 кВ, достигает 1000-3000 А
и сечение витка таких обмоток, а тем
более обмоток
низшего напряжения этих и трансформаторов
меньших мощностей составляется из сечений многих параллельных мед­
ных проводов с одинаковыми размера ми и площадью поперечного се­
чения. Поскольку изоляция между параллельными проводами одного
витка требуется минимальная, а изоляция между соседними витками
может быть обеспечена общей изоляцией всех проводов витка, возник­
ла идея создания комбинированного провода, состоящего из нескольких
параллельных медных проводников, имеющих тонкую эмалевую изоля­
цию на каждом проводе и общую изоляцию из кабельной бумаrн на
всех параллельных проводах (рис. 5.4).
Для выравнивания полных сопротивлений параллельных проводни­
ков и равномерного распределения тока между ними эти проводники
неоднократно транспонируются по длине провода, т. е. меняются места­
ми, например по схеме, показанной на рис. 5.4, б для семи проводников.
Расстояние между двумя транспозициям,� (на рис. 5.4, б между двумя
соседними расположениями проводш1ков) по дJшне провода составляет
для проводов различного сечения от 40 до 250 мм. Провода такого ти­
па называются транспонированными.
Провода, заказ на которые не требует предварительного согласова•
217
Та б л и ц а 5.6. Число элементарных проводников в
Меньшая
сто-1
рана сечения
а. мм
Бол�.шая сторона сечения
3,75
4,50
4,75
5,00
5,30
23
11-21
11-19
11-23
11-19
9-19
11-23
11-21
9-21
9-17
11-25
11-23
9-19
9-17
2,00
2 , 24
2.50
2 ,80
3 , 15
5,GiJ
11-:27
11-23
9-21
9-19
7-15
нпя с поставщиком, имеют следующие данные. Число элементарных
проводников в таком проводе должно быть нечетным и составдяет
обычно от 7 до 31 проводника. Провод медный прямоугольного сечения
эмалированный высокопрочный марки ПЭМП. Размеры проводников меньшая сторона от 2,00 до 3,15 мм; большая сторона от 3,75 до
8,00 мм. Между дву�1я рядами элементарных проводнш<ов прокладыва­
ется лента кабельной бумаги толщиной 0,24 мм (2ХО,12 мм). Общая
изоляция провода марки ПТБ состоит из кабедьной обычной ид и мн-:>rо­
слойной бумаги и марки ПТБУ из кабельной высоковольтной бумаги.
Число элементарных проводников с одина1<овыми размерами и се­
чением в транспонированном проводе показано в табд. 5.6. Общее се­
чение провода может быть получено путем суммирования сечений эле­
ментарных проводни1<ов, взятых из табл. 5.2.
Удвоенная номинальная то.�щина общей изодяцни провода может
быть равной для провода марки ПТБ 26=0,72 (0,82); 0,96 (1,06); 1,36
(1,51) и 1,92 (2,07); ДJJЯ провода марки ПТБУ 26=2,ОО (2,10); 2,48
(2,63); 2,96 (3,11) и 3,60 (3,80). При этом в скоб1<ах указана макси­
мальная удвоенная толщина изоляции 2бmar ,
Размеры А и В, мм, провода можно ориентировочно определить по
формулам
А
= 2Ь+ 2бэм+ бпрок.rr + 2бтах + <'!техн,
(5. 1)
где Ь - размер неизолированного проводника по рис. 5.4, а. мм; 2бэм удвоенная толщина эмалевой изоляции проводника (2бэм=О,2 мм);
барок., - толщина прок,1ад1<И (б п рокл =О,24 мм); 2б тах - максимальная
удвоенн�я толщина и:юляцни провода, мм; бтех к - возможное увелнче­
шrе размера по техно.,огическим причинам. Можно принять для провода
марки ПТБ б,ех н= 1,7 мм при раэмере провода а=2,00+2,44 мм и
2,00 мм при размере а=2,50+3,15 м:-.t. Для провода марки ПТБУ
б техп = 1,7 мм при размере а=2,00+2,50 мм; 2,05 мм при размере а=
=2,80 мм и 2,20 мм при размере а=3,15 мм;
В= 1 ,05 [
218
(а+О , l )(п+ 1)
+2•u],
2
(5.2)
транспонированных проводах
лроводника без изоляции Ь, мм
6,00
6,30
6, 70
7,10
7,50
8,00
8,50
11-29
11-25
9-23
9-21
7-17
11-29
11-27
9-23
9-21
7-19
11-31
11-29
9-25
9-23
7-19
11-33
11-31
9-29
9-23
7-21
11-33
11-31
9-29
9-25
7-23
11-35
9-31
9-27
-
-
-
9-33
9-29
-
где а - размер неиэолированноrо проводника по рис. 5.4, а, мм; п число проводников в проводе.
Применение транспонированных проводов позволяет уменьшить
объем и массу металла обмоток, упростить процесс намотки обмоток
и уменьшить добавочные потерн в обмотках.
В трансформаторах мощностью от 25 до 1000 кВ·А в
качестве обмоточного материала для обмоток низшего
напряжения при напряжениях до 690 В находит при­
менение неизолированная алюминиевая лента по ГОСТ
13726-78. В качестве изоляции между витками служит по­
лоса кабельной бумаги, вматываемой при намотке обмот­
ки. В силоБых трансформаторах реально может быть ис­
пользована отожженная лента толщиной от 0,25 до 3,0 мм
и шириной от 40 до 1000 мм. Предельные отклонения по
толщине ленты от -20 до -5 % . В стандарте не установ­
лены требования к удельному электрическому сопротивле­
нию ленты, и этот параметр должен оговариваться при за­
казе ленты.
В качестве проводникового материала для обмоток выс­
шего напряжения силовых трансформаторов не исключено
применение неизолированной алюминиевой фольги, изго­
тавливаемой по ГОСТ 618-73. ПосколLку эта фольга не
предусмотрена как обмоточный материал для трансформа­
торов, к ней не предъявляется требование определенного
удельного электрического сопротивления. Поэтому некото­
рые партии фольги с повышенным удельным сопротивлени­
ем не могут применяться для изготовления обмоток. Также
может оказаться необходимой отбраковка ленты, прокатан­
ной с предельным отклонением от номинала до -15 % .
Одним из важнейших требований, предъявляемых к об­
моточному проводу, является требование определенного
удельного электрического сопротивления. Для всех круг­
лых и прямоугольных медных проводов, включенных в
219
табл. 5.1-5.3, согласно стандартам это сопротивление при
20 °С для отрезка проволоки длиной I м с сечением I мм 2
должно быть не более 0,01724 Ом. Для алюминиевого пря­
моугольно го провода по табл. 5.2 и для круглого провода
диаметром 1,80 мм и более по табл. 5.1 это сопрогивление
должно быть не более 0,0280 Ом, а для круглого диаметром
от 1,35 до 1,70 мм - не более 0,0283 Ом.
В сравнительно редких случаях, например во входных
катушках обмоток на 110-500 кВ, может применяться до­
бавочная изоляция витков путем обмотки их лентой из ка­
бельной бумаги или лакоткани.
Между витками, состоящими из нескольких параллель­
ных проводов, в обмотках некоторых типов могут быть сде­
ланы радиальные (горизонтальные) каналы, основное на­
значение которых состоит в том, чтобы обеспечить свобод­
ный доступ масла или воздуха для надлежащего охлаж­
дения всех параллельных проводов витка. Эти каналы
обеспечивают также надежную, с большим запасом изоля­
цию между витками.
В обмотках, состоящих из нескольких слоев круглого
или прямоугольного провода, собственная изоляция витко 13
может оказаться недостаточной, и возникает необходи­
мость введения добавочной изоляции между слоями, тем
большей, чем больше суммарное рабочее (а следовательно,
и испытательное) напряжение двух соседних слоев. Между­
слойная изоляция может осуществляться прокладкой меж­
ду слоями витков обмотки полос кабельной или телефонной
бумаги, электроизоляционного картона или оставлением
между слоями осевого масляного или воздушного канала,
обеспечивающего как достаточную изоляцию, так и сво­
бодный доступ к обмотке охлаждающего масла, или возду­
х а, или другого теплоносителя. Различные виды между­
слойной изоляции показаны на рис. 5.5.
При разделении обмотки на катушки возникает необхо­
димость в надлежащей междукатушечной изоляции. Эта
изоляция для катушек, расположенных в осевом направле­
нии обмотки, как это видно из рис. 5.6, 6-г, требуется то
у наружного, то у внутреннего края катушки. Обычно изо­
ляция между катушками выполняется в виде радиальных
или осевых каналов, служащих для лучшего охлаждения
обмотки.
В трансформаторах мощностью на один стержень до
110 кВ. А, в которых вопрос охлаждения обмотки еще не
играет существенной роли, оказывается возможным вооб220
ще не делать радиальных междукатушечных каналов. В
обмотках трансформаторов от 1000 до 6300 кВ-А с потеря­
ми короткого замыкания по ГОСТ 11920-85 часто бывает
возможно заменить шайбами половину масляных каналов.
Такая замена вследствие малой толщины шайб (1-2 мм)
по сравнению с масляными каналами (4-6 мм) позволяет
а)
6)
8)
il}
г)
Рис. 5.5. Междуслойнгя изо.1яц11я
а - кабельная бумага, 6 - кабельная или телефонная бумага; в н г - картон
электроизоляционный; г - масляный канал
а)
tl)
В)
г)
Рис. 5.6. Различные виды междукатушечной изоляции:
а - осевой канал; 6 - радиальный канал; в - шайбы; г - радиальный канал и
шайбы
получить некоторую экономию места по высоте (осевому
размеру) обмотки (рис. 5.6, в).
Наружный диаметр междукатушечных шайб принима­
ется обычно больше наружного диаметра катушки, для то­
го чтобы удлинить путь возможного разряда по поверхно­
сти между катушками. Сделать такой же выступ шайбы
внутрь обмотки не представляется возможным ввиду того,
что при отсутствии внутреннего осевого канала обмотка на­
матывается непосредственно на цилиндр, а при наличии
канала выступ шайбы будет закрывать канал и тем самым
сводить к нулю его охлаждающее действие.
221
Изоляция между обмотками, а также обмоток от маг­
нитной системы при рабочем напряжении не выше 35 кВ
может быть осуществлена путем применения изоляционных
цилиндров (рис. 5.7, а). Высота (осевой размер) цилиндра
в этом случае делается больше высоты обмотки, чем удли­
няется возможный путь разряда по поверхности между об­
мотками. В трансформаторах с рабочим напряжением 110
а)
lf)
6)
Рис. 5.7. Изоляция между обмотками и обмоток от магнитной системы:
а - изоляция при помощи жестких цилиндров; 6 - комбинация цилиндров и уг­
ловых шайб; в - отбортованные цилиндры нз кабельной бумаги
и 220 кВ и более для изоляции обмоток ВН обычно при­
меняется комбинация изоляционных цилиндров с угловы­
ми шайбами .(рис. 5.7, 6).
Изоляционные цилиндры применяются или жесткие бу­
мажно-бакелитовые, или так называемые мягкие, состав­
ленные из намотанных один на другой листов электроизо­
ляционного картона. Угловые шайбы также могут быть
жесткими - бумажно-бакелитовыми, или прессованными
из электроизоляционного картона, или мягкими, свернуты­
ми из полос картона. Для мягких цилиндров и угловых
шайб в трансформаторах классов напряжения 110 кВ и бо­
лее рекомендуется применять мягкий электроизоляционный
картон марки А по ГОСТ 4194-83 с плотностью 9001000 кг/м 3 •
Некоторые иностранные фирмы выполняют главную изо­
ляцию обмоток классов напряжения 110 кВ и выше из ка­
бельной бумаги. На внутреннюю обмотку НН наматывает­
ся большое число слоев кабельной бумаги с шириной по­
лотна большей, чем высота обмотки НН, и общей толщиной
до 40 мм и более. Затем наматывается многослойная ци­
линдрическая обмотка ВН из прямоугольного провода с
междуслойной изоляцией также из кабельной бумаги. Осе222
вые масляные каналы делаются только для охлаждения
внутренних слоев обмотки. После окончания намотки части
цилиндров, образованных слоями кабельной бумаги, высту­
пающие за длину обмотки, отбортовываются вручную, т. е.
разрываются по образующим цилиндра на полоски шири­
ной 40-50 мм, которые затем отгибаются под углом 90° в
радиальном направлении, образуя плоские шайбы, перпен­
дикулярные оси обмотки (рис. 5.7, в) .
.
��
111
oJ
r-r-
,J��- 1"
В}
,,IВы
Z}
Рис. 5.8. Различные формы поперечного сечения
реек
6
Рис. 5.9. Форма поперечного сечения реек и меж­
дукатушечных прокладок
Для образования в обмотках и между обмотками и изо­
ляционными цилиндрами осевых каналов чаще всего при­
меняются· рейки, склеенные бакелитовым или другим лаком
из полос электроизоляционного картона или изготовлен­
ные из дерева твердой породы, например белого или крас­
ного бука. При намотке рейки укладываются по образую­
щим цилиндра и плотно прижимаются проводами к цилин­
дру или ранее намотанной катушке. Толщина рейки при
этом определяет ширину (радиальный размер) осевого ка­
нала (рис. 5.8).
Рейки формы, показанной на рис. 5.8, а и 6, применя­
ются для образования осевых каналов в обмотках, не
имеющих радиальных каналов. Рейки формы по рис. 5.8, в
и г применяются в обмотках с радиальными каналами вме­
сте с прокладками по форме рис. 5.9. Деревянные рейки ис­
пользуются в обмотках класса напряжения не выше 10 кВ
,(испытательное напряжение 35 кВ). Полоски электроизо­
ляционного картона, прикрепленные к деревянным рейкам
,(рис. 5.8, а), служат для защиты изоляции обмотки от по-
223
вреждений при нажиме ребром рейки при забивании рейки
в обмотку.
Радиальные (горизонтальные) каналы между катушка­
ми или между витками в обмотках с большим числом па­
раллельных проводов обычно образуются междукатушеч­
ными прокладками, выштампованными из электроизоляци­
онного картона (рис. 5.9). Каждая междукатушечная или
междувитковая прокладка набирается из нескольких пла­
стин толщиной от 0,5-3 мм до нужной толщины, соответ­
ствующей осевому размеру радиального канала. При на­
личии картона большей толщины можно штамповать про­
кладки и вырезать рейки из листов картона толщиной, со­
ответствующей осевому или радиальному размеру канала.
/
I
z
f
f
/J
-
2
rc--5l
r?
�
.,;("-,
'
f/.
Рис. 5.10. Расположение реек
и междукатушечных прокладок:
1 - цилиндр; 2 - катушки; 3-ре!\­
ки; 4 - междукатушечные про­
Рис. 5.11. Обмотка с замковыми про­
кладками без реек
кладки
Для того чтобы связать рейки с междукатушеч ными
прокладками, в картонных прокладках проштамповывают­
ся просечки по рис. 5.9. Этими просечками междукатушеч­
ные прокладки надеваются на крайнюю широкую полосу
рейки (рис. 5.10) при намотке на станке или сборке об­
мотки на стержне.
В обмотках некоторых типов, например в чередующих­
ся, или в обмотках, наматываемых отдельными катушками,
применение реек иногда оказывается неудобным. В этом
случае применяются так называемые замковые междука­
тушечные прокладки. Одна из конструкций замковой про­
кладки изображена на рис. 5.11. Осевой канал между об224
моткой и цилиндром в этом случае образуется специальны­
ми прокладками со сквозной просечкой (деталь 1 на рис.
5.11). Эти прокладки 1 и прокладки, образующие между­
катушечные радиальные каналы 2, прошиваются полоской
картона 3, отгибаемой в междукатушечный канал,
Ввиду того, что стандартные толщины листов электро­
изоляционного картона кратны 0,5 мм, расчетные толщины
прокладок (и размеры каналов) должны быть также
кратны 0,5 мм. Это соображение относится также к рей­
кам, склеенным из полосок картона. Для упрощения на­
мотки обмотки желательно размеры всех радиальных и
осевых каналов выбирать кратными одному из значений
стандартной толщины картона (0,5; 1,0; 1,5; 2,0; 2,5 и 3,0
мм). Существенное усложнение в комплектование реек и
прокладок перед намоткой обмотки вносит набор прокла­
док из картона разной толщины (например, канал 5,5 мм=
=2Х2 мм+l,5 мм) или чередование каналов 5=2+2+1 мм
и 6=3+3 мм.
После установки обмоток и сборки отводов активная
часть трансформатора обычно подвергается сушке под ва­
куумом при температуре около 100 °С. В результате сушки
междукатушечные прокладки и шайбы дают усадку, по
толщине достигающую 4-6 % . При расчете всех типов об­
моток, имеющих радиальные каналы или шайбы, следует
учитывать, что действительный суммарный осевой размер
междукатушечной (междувитковой) изоляции после сушки
и опрессовки обмоток будет меньше расчетного размера на
значение усадки.
Число реек по окружности для трансформаторов до
630 кВ-А выбирают обычно исходя из условий удобства
намотки, для более мощных трансформаторов - из усло­
вий механической прочности. Для ориентировки при выбо­
ре числа реек могут служить следующие данные для транс­
форматоров мощностью:
До
От
От
От
От
100. кВ,А . . . . .
100 до 630 кВ-А . . .
1000 до 1600 кВ•А . .
2500 до I О ООО кВ· А
16 000 до 63 000 кВ·А
6 реек
8 реек
8-12 реек
12-16 реек
16-24 реек
В трансформаторах от 10 ООО кВ. А и выше число реек
должно быть таким, чтобы расстояние между их осями по
среднему витку внешней обмотки было равно 150-180 мм.
Ширина Ь прокладок обычно принимается равной от 40 до
15-510
225
60 мм, длина (см. рис. 5.9) определяется радиальным раз­
мером обмотки.
Все обмотки трансформаторов по характеру намотки
можно подразделить на следующие основные типы: 1) ци­
линдрические; 2) щштовые; 3) катушечные.
Эти типы обмоток в свою очередь могут подразделять­
ся по ряду второстепенных признаков: числу слоев или хо­
дов, наличию параллельных ветвей, наличию транспозиций
и т. д.
S.3. ЦИЛИНДРИЧЕСКИЕ OliMOTKИ ИЗ ПРЯМОУГОЛЬНОГО
ПРОВОДА
Простой цилиндрической называется обмотка, сечение
витка которой состоит из сечений одного или нескольких
параллельных проводов, а витки и все их параллельные
провода расположены в один ряд без интервалов на цилин­
дрической поверхности в ее осевом направлении.
Обмотка, состоящая из двух или большего числа кон­
центрически расположенных простых цилиндрических об­
моток (слоев), называется двухслойной или многослойной
цилиндрической обмоткой (рис. 5.12).
Любая цилиндрическая обмотка может быть намотана
из круглого или прямоугольного провода, однако обмотки
с одним-тремя слоями для силовых трансформаторов в
большинстве случаев выполняются из прямоугольного
провода. На рис. 5.13 показана однослойная цилиндричес­
кая параллельная обмотка из трех параллельных прямо­
угольных проводов с семью витками и с высотой витка h u .
Ввиду того что намотка витков ведется по винтовой линии
и начала первого витка слоя и его последнего витка оказы­
ваются на одной образующей цилиндра, общая высота об­
мотки l определяется высотой не семи витков, а на один
больше. Это правило справедливо для всех цилиндричес­
ких обмоток. Для выравнивания торцовых поверхностей об­
мотки к верхнему и нижнему виткам каждого слоя при­
крепляется опорное разрезное кольцо, вырезанное из бу­
мажно-бакелитового цилиндра (рис. 5.14). Крепление такого
кольца к обмотке осуществляется путем подвязки хлопча­
тобумажной лентой. Концы ленты, охватывающей кольцо,
пропускаются между несколькими крайними витками об­
моток.
При таком закреплении концов ленты, естественно, не­
сколько увеличивается осевой размер обмотки. Кроме то226
го, приходится считаться с возможностью некотuрого уве­
личения осевого размера вследствие неплотности намотки
провода и возможных отклонений действительной толщины
изоляции от расчетной. В сумме все возможные отклонения
действительного осевого размера дJIЯ обмоток с осевым
размером от 0,2 до 1,0 м обычно составляют от 5 до 15 мм.
Рис. 5.12. Uилиндрическая обмотка:
а - простая из ш ести витков; б - двухслоАная из
двенадцати витков
Рис. 5.13. Цилиндрическая обмотка из семи
витков
Рис. 5.14. Опорное кольцо обмотки:
а - разрезное кольцо из бумажно-бакелитового
цилиндра; 6 - плоская развертка опорного коль­
ца
Поэтому при расчете осевого размера такой обмотки рас­
четную сумму высот проводов принимают на 5-15 мм
меньше заданного осевого размера l. В этом случае, когда
в процессе намотки обнаруживается, что запас по высоте
5-15 мм оказывается частично или полностью излишним,
в обмотку для заполнения высоты параллельно с проводом
вматываются полоски электроизоляционного картона. Та­
ким образом делается «разгон» обмотки так, чтобы общий
осевой размер l был непременно выдержан. Полоски кар15*
227
тона при этом наматываются на ребро и для удобства на­
мотки снабжаются треугольными просечками (рис. 5.15).
В некоторых случаях, когда сортамент прямоугольного
провода не позволяет получить плотного заполнения высо­
ты обмотки проводами витков, может быть применен раз­
гон более чем на 15 мм.
ь
IZZI
�
l2'ZZ1
�
IZ?Z.a
�
а)
Рис. 5.15. Uилиндрическая обмотка С разrоном по высоте
tf)
1::1
�
�
�
�
�
6)
Рис. 5.16. Способы намотки:
а - намотка плашмя; 6 - намотка на ребро; в - неправильная намотка на ребро
Намотка провода может производиться плашмя (рис.
5.16, а) или на ребро (рис. 5.16, 6). В первом случае боль­
ший размер провода Ь располагается в осевом направле­
нии, во втором - в радиальном. Намотка на ребро нес­
колько труднее намотки плашмя, потому что привод
пружинит и стремится повернуться вокруг оси так, как это
показано на рис. 5.16, в. Кроме того, при намотке на ребро
увеличиваются добавочные потери в обмотке, поэтому ре­
комендуется избегать намотки на ребро, а в случае при­
менения ее употреблять провод с соотношением сторон по­
перечного сечения 1,З<Ь/а<З.
Цилиндрическая обмотка может быть намотана из не­
скольких параллельных нроводов с одинаковой площадью
и одинаковыми размерами поперечного сечения.
В трехфазных трансформаторах мощностью 25-630
кВ· А цилиндрическая обмотка чаще всего наматывается в
два слоя. При мощности 10-16 кВ-А иногда удается вы­
полнить обмотку в один слой. Сравнительно редко приме­
няется обмотка в три слоя. Во всех случаях для обеспе­
чения нормального охлаждения каждый слой такой обмот­
ки должен хотя бы с одной стороны омываться маслом.
228
Критерием для определения числа поверхностей слоя, омы­
ваемых маслом, служит плотность теплового потока на
охлаждаемой поверхности слоя q, Вт/м 2 , т. е. потери в об­
мотке, отнесенные к единице площади поверхности. Вопрос
о числе поверхностей слоя (одна или две), охлаждаемых
маслом, решается в зависимости от материала обмотки
(медь или алюминий), плотности тока в обмотке и ради­
ального размера провода согласно с указаниями § 5.7.
Плотность теплового потока в обмотках этого типа обычно
не превышает 800- 1 ООО Вт/м 2 при медном проводе и 600800 Вт/м 2 при алюминиевом.
При выполнении обмотки в два слоя витки обоих слоев
соединяются, как правило, последовательно. При их парал­
лельном соединении активные и реактивные сопротивления
этих слоев различаются и токи нагрузки в них не будут
одинаковыми, что вызовет увеличение потерь в обмотке.
Такое соединение не приведет к увеличению потерь, если
выполнить транспозицию витков между солями.
При последовательном соединении слоев общее число
витков обмотки может быть как четным, так и нечетным.
В обоих случаях число витков каждого слоя делается рав­
ным половине числа витков всей обмотки. При общем не­
четном числе витков число витков каждого слоя получает­
ся дробным, кратным половине витка. В этом случае
переход из одного слоя в другой располагается со сдвигом
180° по окружности обмотки по отношению к расположе­
нию начала и конца обмотки. Полное число витков об­
мотки одного стержня всегда должно быть целым числом.
В двухслойной обмотке с последовательным соединени­
ем слоев напряжение между двумя крайними витками двух
слоев, т. е. между началом и концом обмотки, равно пол­
ному напряжению обмотки одного стержня. Изоляция меж­
ду такими витками, а значит, и изоляция между слоями
обмотки должна быть рассчитана по полному напряжению
обмотки одного стержня. При рабочих напряжениях до
1 кВ эта изоляция легко осуществляется масляным кана­
лом шириной 4-8 мм или цилиндрической прокладкой
между слоями из электроизоляционного картона. При ра­
бочих напряжениях обмотки 3 и 6 кВ необходим масляный
канал с барьером из двух слоев электроизоляционного
картона общей толщиной 2 мм. Масляный канал между
слоями образуется при помощи реек (см. рис. 5.8, а или 6).
При напряжениях более высоких, чем 6 кВ, вследствие ус­
ложнения междуслойной изоляции двухслойная цилиндри229
ческая обмотка в трансформаторах мощностью 25-630
кВ• А обычно не применяется.
Механическая стойкость цилиндрической обмотки, пред.
ставляющей в сечении каждого слоя, как это видно из рис.
5.13, высокую колонку с относительно малым поперечным
размером и относительно неплотной намоткой, при осевых
силах, возникающих при коротких замыканиях, невелика.
ВслЕ:дствие этого применение одно- и двухслойных цилин­
дрических обмоток ограничивается обычно трансформато­
рами мощностью не более 630 кВ-А. Также по соображе­
ниям механической прочности ограничивается и применение
большого числа параллельных проводов. С увеличени­
е:.1 числа параллельных проводов увеличивается высота
витка, измеренная в осевом напряжении, а вместе с тем и
угол наклона провода к плоскости поперечного сечения об­
мотки, что при значительных осевых силах, возникающих
при коротких замыканиях, может привести к «сползанию»
витков. Обычно по этим соображениям не рекомендуется
брать число параллельных проводов более четырех-шести
при намотке плашмя и шести-восьми при намотке на
ребро.
Предельный ток в обмотке одного стержня, на который
может быть рассчитана такая обмотка при максимально
возможном числе параллельных проводов, ограничивается
сечением применяемого прямоугольного провода и обычно
принимаемой плотностью тока /=2,3-106 +3,5-106 А/м2 для медных и /=l,5-10 6 +2,5,106 А/м2 - для алюминие­
вых обмоток. Такие обмотки применяются для токов в об­
мотке одного стержня не свыше 800 А из медного провода
и не свыше 600-650 А из алюминиевого провода.
В производстве при намотке на обмоточном станке
двухслойная цилиндрическая обмотка является более про­
стой и дешевой, чем винтовая или непрерывная катушеч­
ная, но существенно уступает по этим показателям много­
слойной цилиндрической обмотке, наматываемой из алю­
миниевой или медной ленты.
Цилиндрическая обмотка из прямоугольного провода
может применяться при сечении витка не менее 5,04 мм2 ,
равном минимальному сечению медного прямоугольного
провода по сортаменту, что при наименьшей плотности
тока в медном проводе соответствует нижнему пределу
рабочего тока обмотки 15-18 А и в алюминиевом проводе
с минимальным сечением 6,39 мм2 10-13 А.
В соответствии со всеми приведенными соображениями
230
одно - и двухслойная цилиндрическая обмотка из прямо­
угольного провода с успехом широко применяется как об­
мотка НН трех- и однофазных масляных силовых транс­
форматоров с мощностью на один стержень S'�250 кВ-А
при напряжении обмотки не выше 6 кВ. Этот тип обмотки
может также применяться в качестве обмотки ВН при на­
пряжении в пределах до 6 кВ.
В силовых трансформаторах мощностью от !ООО.кВ• А
и выше все более широкое распространение получает мно­
гослойная цилиндрическая обмотка из провода прямоуголь­
ного сечения с последовательным соединением слоев (рис.
5.17). Этот тип обмотки отличается от простой цилиндричеf
2
J
н
[П
Рис. 5.17. Многослойная цилиндрическая обмотка из прямоугольного
провода:
1 - междуслоnная изоляция из кабельной бумаги; 2 - буыажно-бакелитовое
опорное кольцо; 3 - рейка, образующая охлаждающий канал
екай обмотки числом слоев, и замечания, сделанные ранее
относительно числа параллельных проводов и их размеще­
ния в слое, относительно опорных колец, разгона витков и
др., в основном остаются справедливыми и для каждого
слоя многослойной обмотки. Так же как и в простой, в мно­
гослойной цилиндрической обмотке все параллельные про­
вода должны иметь одинаковые размеры и площадь попе­
речного сечения.
В этой обмотке не применяется намотка на ребро, по­
скольку добавочные потери возрастают пропорционально
второй степени числа слоев и четвертой степени радиаль­
ного размера провода.
Направ�ние намотки слоев многослойной обмотки
различно. Все нечетные слои, считая изнутри, имеют одно
231
направление намотки, обычно левое, все четные - другое,
обычно правое. Напряжение между первым витком како­
го-либо слоя и последним витком с.11едующего слоя равно
сумме рабочих напряжений двух слоев и при рабочем на­
пряжении обмотки 35 кВ может достигать 5000-6000 В. В
качестве междуслойной изоляции обычно применяется ка­
бельная бумага, намотанная в несколько слоев. Для пре­
дотвращения разряда между соседними слоями ширина
полосы кабельной бумаги должна быть больше высоты об­
мотки на 20-50 мм. Междуслойную изоляцию можно при­
нять по табл. 4.7. Каждый слой обмотки внизу и вверху
должен иметь опорные кольца, вырезанные из бумажно­
бакелитового цилиндра (см. рис. 5.14, а). Эти кольца при­
крепляются к крайним виткам соответствующего слоя об­
мотки хлопчатобумажной лентой. Для получения доста­
точной поверхности охлаждения в этих
обмотках
предусматриваются один или два осевых канала между
слоями. Ширина каждого канала около 1/100 высоты об­
мотки. Критерием для выбора числа каналов служит плот•
ность теплового потока (потерь в обмотке) на охлаждае­
мой поверхности. С учетом перепада температуры при дви­
жении тепла внутри обмотки плотность теплового потока
на ее поверхности рекомендуется допускать не более
1200-1400 Вт/м2 •
Многослойная цилиндрическая обмотка из прямоуголь­
ного провода находит применение в качестве обмоток ВН
и НН трансформаторов мощностью от 630 до 40 000-80 ООО
кВ-А классов напряжения 10 и 35 кВ. Ее широкое распро­
странение определяется возможностью обеспечить более
плотное заполнение окна магнитной системы, использовать
более эффективную теплоотдачу от обмотки к маслу в
вертикальных каналах по сравнению с горизонтальными
каналами и получить более технологичную конструкцию по
сравнению с обмотками других типов. Эта обмотка при
воздействии импу.11ьсных перенапряжений также имеет бо­
лее высокую электрическую прочность по сравнению с ка­
тушечными обмотками.
Для защиты от грозовых перенапряжений многослойная
цилиндрическая обмотка при классе напряжения 35 кВ
может быть дополнительно защищена электрическим экра­
ном. Экран - незамкнутый цилиндр из немагнитного ме­
талла толщиной .0,2-0,5 мм - располагается под внут­
ренним слоем по всей высоте обмотки и электрически сое­
диняется с ее линейным концом ( см. § 4.5).
232
Особое значение для многослойных цилиндрических об­
моток из прямоугольного провода, предназначенных для
трансформаторов мощностью от 630 до 80 ООО кВ· А, имеет
обеспечение достаточной механической прочности этих об­
моток при коротком замыкании трансформатора. Это до­
стигается плотной намоткой каждого слоя обмотки с ме­
ханическим осевым поджимом. Рекомендуется после
намотки и сушки опрессовать обмотку на прессе с силой,
близкой к расчетной осевой силе при коротком замыкании.
Обмотки, намотанные и обработанные по такой технологии,
обычно хорошо выдерживают полное короткое замыкание
трансформатора. Увеличение механической прочности мо­
жет дать вакуумная пропитка обмотки лаком после намот­
ки и сушки с последующим запеканием лака. Некоторые
иностранные фирмы применяют также склеивание витков
каждого слоя и слоев между собой специальной пастой,
наносимой при намотке обмотки.
Многослойная цилиндрическая обмотка может быть
намотана также из неизолированной алюминиевой или
3
Рис. 5.18. Многослойная цилин­
дрическая обмотка НН из а.�ю­
миниевой ленты:
1 - алюминиевая лента; 2 - меж­
дуслоi!ная (междувитковая) изоля­
ция из кабельной бумаги; 3-бор­
тик из электроизоляционного кар­
тона
2
1
медной ленты. Этот тип обмотки находит применение в
трансформаторах мощностью до 1 ООО кВ• А при классе на­
пряжения не выше 1 кВ. Каждый слой обмотки состоит из
одного витка, высота которого (ширина ленты ) равна вы­
соте обмотки. Изоляция между витками образуется одним­
двумя слоями кабельной бумаги, ширина полосы которой
на 16-24 мм больше ширины ленты. Для образования же­
сткой торцовой опорной изоляции на краях полосы бума­
ги приклеивается бортик - полоска электроизоляционного
картона с толщиной, равной толщине ленты, и шириной от
8до 12 мм (рис. 5.18).
Этот тип обмотки из более дешевого проводникового
мате.риала, с меньшим количеством изоляционных матери­
алов, чем другие типы обмоток, дает более высокий коэф233
фициент заполнения окна магнитной системы активным ма.
териалом и значительно проще и дешевле в изготовлении
на станке.
Обмотки этого типа, намотанные из алюминиевой лен­
ты обладают высокой теплопроводностью в осевом и ра­
ди�льном направлениях, что приводит к более равномер.
ному распределению температуры по высоте и ширине
обмотки и снижению температуры наиболее нагретой точ•
ки обмотки по сравнению с обмотками, намотанными из
изолированного провода. Медная лента в трансформаторах
мощностью до 1 ООО кВ• А обычно не применяется.
Обмоточный станок, предназначенный для намотки об­
моток этого типа, должен быть оборудован устройствами
для установки рулона ленты, рулона кабельной бумаги,
рулончиков узкой полосы картона для бортиков, а также
устройством для сварки начала и конца ленты с алюми•
ниевыми шинами отводов. При продольной резке ленты
стандартной ширины для получения ленты с шириной,
равной высоте витка (обмотки), не должно быть заусен•
цев, которые могут нарушить междувитковую изоляцию.
Заусенцы должны быть тщательно удалены.
Существенным недостатком обмотки, намотанной из
алюминиевой ленты, является ее меньшая механическая
прочность при воздействии радиальных сил при коротком
замыкании трансформатора по сравнению с обмотками,
намотанными из изолированного провода. Под воздействи•
ем этих сил обмотка может потерять механическую стой•
кость ( см. § 7.3). В целях достижения необходимой меха·
нической стойкости обмотку этого типа рекомендуется на•
матывать из отожженной алюминИР.вой ленты по ГОСТ
13726-78, изготовляемой из алюминия марок А6 или А5 с
химическим составом по ГОСТ 11069-74.
Обмотки ВН классов напряжения 6, 10 и 35 кВ транс•
форматоров мощностью до 1ООО кВ· А имеют не менее 200
витков и не могут быть намотаны в виде одной катушки с
высотой витка, равной высоте всей обмотки. N1атериалом
такой обмотки может служить уже не лента, а фольга­
материал с толщиной не более 0,2 мм.
Отводы от обмотки НН, намотанной из алюминиевой
ленты, ,могут быть выполнены в виде шин, надежно прива•
ринаемых к торцам ленты (рис. 5.19, а). При более тонкой
фольге отводы от обмотки ВН можно выполнить с меньшей
надежностью, например с отгибом конца ленты фольги по
рис. 5.19, б.
234
Рис. 5.19. Образование отвода
от об�ю11ш из ленты или фоль­
ги:
а - алюминиевая
шина, П()Икреn•
ленная точечной сваркой; б - об­
разование отвода путем отворота
ленты (фольги)
d
rn
.
о
а)
Необходимость разделения обмотки ВН на катушки, со­
единяемые при помощи пайки, и трудность крепления от­
водов к катушкам из фольги с толщиной 0,1-0,2 мм при­
водят к тому, что часто предпочитают обмотку НН выпол­
нить из ленты, а обмотку ВН из провода.
5.4. МНОГОСЛО�НЫЕ ЦИЛИНДРИЧЕСКИЕ OliMOTKИ
из КРУГлого ПРОВОДА
В трансформаторах мощностью от 25 до 630 кВ ·А наш­
ли широкое применение многослойные цилиндрические
обмотки из круглого· медного или алюминиевого провода
бортики из
,JJIClfmpolfOpfllOHO
Рис. 5.20. Многослойная цилиндриче­
ская обмотка из круглого провода
Рис. 5.21. Изо.�яция в торцовой части
многослойной цилиндрической об­
мотки из круглого провода
А!ежilуслоиноп
изолпция
.в качестве обмоток ВН при напряжещ-1ях от 3 до 35 кВ и
обмоток НН при напряжениях от 3 до 10 кВ (рис. 5.20).
В многослойной цилиндрической обмотке с последова­
тельным соединением слоев вследствие значительного чис­
ла витков в слое между соседними витками, лежащими в
235
разных слоях, могут возникнуть значительные напряжения.
Так, между первым витком какого-либо слоя и рядом Jiе­
жащи м последним витком последующего слоя при нор­
мальной работе трансформатора возникает рабочее, а прп
испытании индуктированным напряжением - испытатель­
ное напряжение двух слоев обмотки. В трансформаторах
мощностью до 630 кВ• А при классе напряжения от 3 до
35 кВ суммарное рабочее напряжение двух слоев может
достигнуть 5000-6000 В, а испытательное 10 000-12 ООО В.
Собственная изоляция провода в этих условиях оказыва­
ется недостаточной, и для обеспечения электрической проч­
ности обмотки приходится применять дополнительную изо­
ляцию между слоями. В качестве такой междуслойной
изоляции с успехом применяется кабельная бумага, поло•
женная в несколько слоев (рис. 5.21). Применение меньше•
ro числа слоев более толстого электроизоляционного кар­
тона не оправдывает себя, так как картон менее эластичен,
чем кабельная бумага, и при намотке сильно натянутого
провода при не совсем гладкой поверхности обмотки иног­
да дает местные изломы, что в дальнейшем приводит к
пробою междуслойной изоляции.
Для предохранения обмотки от разряда между сосед­
ними или вообще различными слоями по ее торцовой по­
верхности высота междуслойной изоляции де,1ается обыч­
но большей, чем высота слоя обмотки, на 20-50 мм (на
две стороны), благодаря чему искусственно увеличивается
длина пути возможного разряда. Для выравнивания высо­
ты слоя обмотки с высотой междуслойной изоляции и со­
здания твердой опорной поверхности обмотки к каждому
слою обмотки прикрепляются так называемые бортики, т. е.
свернутые в кольцо полоски электроизоляционного карто­
на толщиной, равной толщине слоя. При намотке обмотки
эти бортики предварительно приклеиваются к более широ­
ким (40-50 мм) полоскам телефонной бумаги (толщиной
0,05 мм), а затем эти полоски укладываются на между­
слойную изоляцию и прижимаются крайними витками сле­
дующего слоя.
Витки, лежащие во внутренних слоях многослойной ци­
линдрической обмотки, не имеют непосредственного сопри­
косновения с охлаждающей средой - маслом или возду•
хом. Тепло, выделяющееся в этих витках, должно прохо­
дить в радиальном направлении через толщу слоев
проводов и междуслойной изоляции, отделяющих эти слои
от охлаждающего канала. При прохождении теплового
236
потока через толщу обмотки возникает внутренний пере­
пад температуры тем больший, чем больше число слоев об­
мотки и толщина междуслойной изоляции, и достигающий
в отдельных случаях 10-12 °С.
Для уменьшения этого перепада температуры старают­
ся увеличить общую поверхность охлаждения и уменьшить
радиальный раЗJмер обмотки. Этого можно достигнуть, раз­
делив всю обмотку на две катушки с осевым каналом меж-
а)
tf)
О)
г)
а;
Рис. 5.22. Различные варианты выполнения многослойной цилиндриче•
ской обмоши:
а - обмотка ВН на цилиндре; б - обмотка ВН на рейках; в - обмотка НН; г обмотка ВН на цилиндре с каналом; д - обмотка ВН на реl!ках с каналом
ду ними. В обмотках НН, располагаемых между стержнем
и обмоткой ВН, такой охлаждающий канал делит обмотку
на две катушки с одинаковым числом слоев (рис. 5.22, в}.
В обмотках ВН, у которых внешняя поверхность свободно
обтекается ,маслом и охлаждается лучше, чем внутренние
поверхности, число слоев внутренней катушки составляет
от 1/3 до 2/5 общего числа слоев. Расположение обмотки на
цилиндре для различных вариантов может быть выполнено
по рис. 5.22, а, 6, г, д. С учетом этого перепада темпера­
туры рекомендуется ограничивать перепад на охлаждаемой
поверхности обмотки и допускать плотность теплового по­
тока не более 800-1000 Вт/м2 •
Уменьшению внутреннего перепада температуры спо­
собствует также пропитка обмотки лаком. Главной целью
пропитки является склеивание витков обмотки между со­
бой и с междуслойной изоляцией, чем создается повыше­
ние механической прочности обмотки при коротких замы­
каниях трансформатора. Электрическая прочность внут•
ренней изоляции обмотки от пропитки лаком не повыша­
ется, а в рассматриваемых многослойных цилиндричеСl{ИХ
обмотках, пропитываемых обычно простым погружением в
лак с выдержкой в лаке без вакуумирования, даже нес237
колько понижается. Понижение электрической прочности
внутренней изоляции обмотки в этом случае объясняется
пузырьками воздуха, остающимися главным образом меж­
ду листами междуслойной изоляции. Для более полного
удал,�ния воздуха из обмотки рекомендуется производить
проПIJТКУ лаком под вакуумом.
Многослойная цилиндрическая обмотка может быть на­
мотана одним круглым проводом, а также, редко, двумя
параллельными круглыми проводами. Ввиду того что всt:
параллельные провода каждого витка располагаются у
такой обмотки в одном и том же слое и, следовательно,
сцеплены практически с одной и той же частью потока рас­
сеяния, обмотка этого типа при последовательном соедине­
нии слоев не требует транспозиции параллельных прово­
дов.
Пределы применения обмотки этого тиnа по току опре­
деляются сортаментом круглого медного обмоточного про­
вода от наименьшего сечения 0,1134 мм 2 при диаметре 0,38
мм до двух параллельных проводов наибодьшего диаметра
5,20 мм и сечения 2Х21,22=42,44 мм2 • Это соответствует
максимально возможному току обмотки одного стержня до
40-60 А при одном проводе и до 80-120 А при двух па­
раллельных проводах в медных обмотках.
Круглый алюминиевый провод применяется диаметра•
ми от 1,32 до 8 мм и сечениями от 1,37 до 50,24 мм2 , что
соответствует максимально аозможному току обмотки
120-130 А, поскольку обмотки из провода диаметром 68 мм наматываются только в один провод.
Так же как и в других цилиндрических обмотках, вы­
сота каждого слоя (осевой размер обмотки) определяется
числом витков в слое, увеличенным на единицу.
В случае применения многослойной цилиндрической об­
мотки в качестве обмотки ВН витки, служащие для ре­
гулирования напряжения, располагаются в наружном слое
обмотки или при большом числе слоев в двух наружных
слоях. Регулировочные ответвления часто делаются путем
вывода петли обмоточного провода без обрыва его (рис.
5.23, в). Эти ответвления выводятся к верхней торцовой
части обмотки и укладываются под верхний слой витков по
образующей или под хлопчатобумажную киперную ленту,
которой обмотка обматывается по наружной цилиндричес­
кой поверхности для повышения механической прочности
(рис. 5.23, а и 6). Для изоляции ответвления от слоев об­
мотки, между которыми оно проходит, обычно применяют238
рнс. 5.23. Расположение регудиро•
вочных ответnле1111й в �1ногосдой•
ной цндиндричес1(0Й обмотке:
а - под верхним слоем витков; б под бан;�.ажом 11з кнnерной ленты; в­
выполнение ответвления
В)
ся поJiоски электроизоляци•
онноrо картона толщиной
0,5 и шириной 20-30 мм.
Витки, откJiючаемые при
регулировании напряжения
на каждой ступени, должны
быть разделены на две рав­
ные группы, расположенные
в верхней и нижней полови­
нах слоя симметрично отно­
сительно середины высоты
6)
а)
обмотки. Такое расположе­
ние уменьшает осевые силы,
действующие на всю обмотку, и силы, действующие на от•
дельные витки внешнего слоя при коротком замыкании
трансформатора. По условиям механической прочности
применение многослойной обмотки из круглого провода ог­
раничивается трансформаторами мощностью не более
630 кВ-А.
Междуслойная изоляция рассчитывается по сум.марно­
му рабочему напряжению двух слоев обмотки. Обмотки с
рабочим напряжением до 11-15 кВ оказываются при этом
достаточно прочными и при воздействии на них импульс­
ных перенапряжений. В обмотках с рабочим напряжением
35 кВ для сглаживания неравномерного распределения
напряжений при импульсах хорошие результаты дает раз­
мещение под внутренним слоем обмотки металлического
немагнитного экрана (рис. 5.21) - медного, латунного или
алюминиевого листа толщиной 0,4-0,5 мм, свернутого в
виде разрезанного цилиндра. Разрез шириной 30-40 мм
по образующей цилиндра делается во избежание образова­
ния из цилиндра короткозамкнутого витка. Высота экра­
на принимается обычно равной высоте обмотки /. Экран
изолируется от первого (внутреннего) слоя обмотки меж­
дуслойной изоляцией из кабельной бумаги. Такая же изо­
ляция укладывается под экран.
При наличии экрана ввод линейного конца делается к
239
внутреннему слою обмотки и экран электрически соединя.
ется с началом обмотки. В обмотках напряжением 35 кВ,
имеющих экран, отпадает необходимость усиления изоля­
ции входных витков ( или слоев).
Во избежание пробоя витковой изоляции вследствие
подъема напряжения у нейтрали при воздействии на об­
мотку и,мпульсного перенапряжения усиливается изоляция
последних четырех-пяти витков на каждой ступени регу­
лирования напряжения.
В производстве многослойная цилиндрическая обм1J �ка
из круглого провода для трансформаторов мощностью до
630 кВ• А является более простой и дешевой по сравнению
с применяемой иногда непрерывной катушечной обмоткой,
поскольку позволяет вести намотку непрерывным прово­
дом без перекладки витков и точной укладки их в катушки,
с частотой вращения оправки, на которой наматывается об­
мотка, до 100-200 об/мин.
К.роме простоты намотки этот тип представляет боль­
шие удобства в выполнении регулировочных ответвлений.
При выполнении изоляционного цилиндра между обмотка­
ми ВН и НН в виде «мягкого» цилиндра, намотанного из
рольного электроизоляционного кнрто­
на или кабельной бумаги, обмотки ВН
и НН на один стержень трансформа­
тора могут быть изготовлены в обмо­
точном цехе в виде готового комплек­
та, что в значительной мере облегчает
установку обмоток на стержень и уп­
рощает сборку трансформатора.
Многослойной цилиндрической I<а­
тушечной обмоткой называется обмот­
ка, составленная из ряда отдельных,
расположенных в осевом направлении
катушек, представляющих собой мно­
гослойные цилиндрические обмотки.
Многослойная цилиндрическая каа)
тушечная обмотка, как правило, вы­
полняется из одного круглого провода
без применения параллельных прово­
дов. Для удобства сборки такая обмот-
oJ
240
Рис. 5.24. Двойная (а) и одинарная (б) катуш­
ки. Междуслойная изоляция картон (а) и ка­
бельная бумаr а (б)
ка обычно выполняется в виде спаренных катушек, из ко­
торых одна наматывается правой, а другая левой намот­
кой. Применение различного направления намотки в сосед­
н их катушках позволяет производить их последовательное
соединение, соединяя вместе одноименные, например внут­
ренние, концы. При этом начало и конец каждой такой
пары катушек будут находиться на наружной поверхности
обмотки. Такие две последовательно соединенные катуш­
ки правой и левой намоток, имеющих начало и конец на
наружной поверхности, комплектно изготовленные, носят
название двойной катушки (рис. 5.24, а). Каждая из двух
одинарных простых катушек, входящих в двойную, может
отличаться от другой катушки не только направлением на­
мотки, но и числом витков, изоляцией витковой и между­
слойной, а в отдельных случаях даже сечением провода.
Применение в многослойной цилиндрической катушечной
обмотке двойных катушек обусловливает обязательное чет­
ное число одинарных катушек на стержне трансформатора.
S.S. ВИНТОВЫЕ 06МОТКИ
Одноходовой винтовой обмоткой трансформатора назы­
вается обмотка, витки которой следуют один за другим в
осевом направлении по винтовой линии, а сечение каждого
витка образовано сечениями нескольких параллельных про­
водов прямоугольного сечения, расположенными в один
ряд в радиальном направлении обмотки (рис. 5.25, а).
Обычно витки обмотки разделяются радиальными масля­
ными или воздушными охлаждающими каналами. В неко­
торых обмотках эти каналы могут быть сделаны через два
витка. Винтовая одноходовая обмотка может быть намота­
на и без радиальных каналов с плотным прилеганием вит­
ка к витку.
Обмотка, состоящая из двух (или более) одноходовых
обмоток, взаимно расположенных подобно ходам резьбы
двухходоБого (многоходового) винта, назыается двухходо­
вой (многоходовой) винтовой обмоткой. Сечение витка при
этом образуется общим поперечным сечением проводов всех
ходов. Эта обмотка также может быть выполнена с ради­
альными каналами между всеми витками и внутри витков
между образующими их ходами, или с каналами только
между витками и без каналов внутри витков, или совсем
без радиальных каналов с плотным прилеганием всех хо­
дов.
16-510
241
Винтовая обмотка выполняется только из прямоугольно­
го провода. При этом все параллельные провода этой об­
мотки обязательно должны иметь равные не только пло­
щади, но и размеры поперечного сечения. При несоблюде­
нии этого правила становится невозможным уравнивание
Рис. 5.25. Винтовая обмотка:
а - одноходовая нз шести витков; 6- двухходовая из четырех витков
сопротивлений _параллельных проводов путем их переклад­
ки в процессе намотки обмотки.
В ряде случаев, когда сечение витка по расчету получа­
ется весьма значительным, могут быть приняты две груп­
пы параллельных проводов и обмотка выполнена в виде
двухходовой. На рис. 5.25, 6 изображена двухходовая вин­
товая обмотка. Сравнительно редко применяется четырех­
ходовая обмотка.
Обе группы проводов у начала и конца обмотки соеди­
няются параллельно. В большинстве случаев в двухходо­
вых обмотках радиальные каналы выполняются как меж­
ду витками, так и внутри витка между группами проводов
(рис. 5.26, 6). Иногда для экономии места по высоте
обмотки радиальные каналы делаются только между вит242
ками и обе группы проводов в каждом витке наматывают­
ся вплотную с прокладкой между группами толщиной 0,51,0 мм Jсм. рис. 5.26, в). Прокладка обеспечивает механи­
ческую устойчивость обмотки. Двух- и четырехходовая
в интовая обмотка может быть также выполнена совсем без
радиальных каналов и без прокладок в витках и между
витками (рис. 5.26, г).
Обычно винтовая обмотка наматывается на жестком
бумажно-бакелитовом цилиндре на рейках, расположенных
по образующим цилиндра. Для мощных трансформаторов
6)
2)
Рис. 5.26. Сечение витка винтовой обмотки:
а - одноходово!I; б - двухходовой с каналом между двумя группами проводов;
в - двухходовой без канала ввутри витка; г - двухходовой без радиальных ка­
налов
:< более 1 О ООО кВ• А на один стержень) обмотка может быть
намотана на специальной оправке, затем снята с нее и при
насадке на стержеJJь изолирована от него мягким цилинд­
ром из электроизоляционного картона. Радиальные каналы
между витками в обоих случаях образуются междувитко­
выми прокладками из электроизоляционного картона, на­
низываемыми на рейки.
В винтовой обмотке параллельные провода наматывают­
ся на ци.1Jиндрических поверхностях с разными диаметра­
ми. Вследствие этого активные сопротивления параллель­
ных проводов получаются неравными. В трансформаторах
с концентрическим расположением обмоток ВН и НН поле
рассеяния направлено в осевом направлении обмоток. В ра­
диальном направлении по ширине каждой из обмоток
индукция поля рассеяния возрастает по прямой линии от
внешнего края обмотки к каналу между обмотками ВН и
НН _(рис. 5.27). Различное положение проводов в поле
16*
243
---1
_....,._�
�
---1
Рис. 5.27. Схема транспозиций па­
раллельных проводов в одноходо­
вой обмоше:
а - четное число проводов; 6 - нечет­
ное число проводов
рассеяния обмотки приводит
к неравенству реактивных, а
следовательно,
и полных со­
�
..........................
противлений параллельных
проводов. Для выравнива­
ния полных сопротивлений
проводов во избежание не­
равномерного распределе­
ния тока в винтовой обмот­
ке обязательно должна протранспозиция
"" изводиться
б)
�
(перекладка}
проводов.
а}
В одноходовой обмотке
обычно применяют комбина­
цию двух видов транспо;шции - групповую, когда все парал­
лельные провода делятся на две или большее число групп
и изменяется взаимное расположение этих групп без изме­
нения расположения проводов в группе, и общую, при ко­
торой изменяется взаимное расположение всех проводов.
При применении транспозиции этих видов обмотка делится
по длине на четыре равных участка, содержащих по 1/4
всех витков обмотки. На границах этих участков произво­
дится три транспозиции - две групповые на 1/4 и 3/4 об­
щего числа витков, считая от начала обмотки, и одна общая
на 2/4 общего числа витков. В групповых транспозициях
все паралле_льные провода делятся на две равные группы
:{при нечетном числе проводов одна из групп имеет на один
провод больше, чем другая}. В общих транспозициях каж­
дый провод перекладывается самостоятеJ1ьно. Принципиаль­
ная схема транспозиции для одноходовой обмотки из шести
параллельных проводов показана на рис. 5.27, а. Такой же
способ транспозиции может быть применен и при нечетном
числе параллельных проводов, например при пяти прово­
дах (рис. 5.27, 6).
Для получения правильной транспозиции, дающей дей­
ствительное выравнивание сопротивлений проводов, необ­
ходимо группировать провода так, чтобы в обеих групповых
транспозициях в одни и те же группы соединялись одни и
244
те же проводники, как это показано на рис. 5.27. Чтобы
проверить правильность схемы транспозиций, достаточно
для каждого провода просуммировать номера мест, кото­
рые он занимает в витке на всех четырех участках обмотки.
Так по рис. 5.27, а для провода 1, выделенного жирной лини­
ей, эта сумма дает 1+4+3+6= 14, по рис. 5.27, 6 для соот­
ветствующего провода 1 +4+2+5=12. В правильно транс­
понированной обмотке такие суммы для всех параллельных
проводов должны получаться равными между собой. Не­
трудно убедиться, что в схемах транспозиций обмоток, изо­
браженных на рис. 5.27, это правило соблюдается.
Необходимо заметить, что такая транспозиция является
совершенной только для четырех параллельных проводов.
При большем числе проводов эта транспозиция не являет­
ся полностью совершенной, однако у силовых трансформа­
торов общего назначения дает почти равномерное распре­
деление тока между параллельными проводами и относи­
тельно малые добавочные потери.
При числе параллельных проводов обмотки от 12-15 и
больше применяются и более сложные схемы транспози­
ций [6].
Внешний вид общей и групповой транспозиции показан
на рис. 5.28. Как видно из рисунка, каждая такая транспо­
зиция увеличивает осевой размер обмотки на высоту витка
и радиального канала. Таким образом, общий осевой раз­
мер _(высота) обмотки при двух групповых и одной общей
транспозициях увеличивается на высоту трех витков и трех
каналов. Следует также помнить, что за счет совпадения
на одной образующей начала и конца обмотки осевой раз­
мер увеличивается еще на высоту одного витка и одного
канала.
В двухходовой винтовой обмотке в каждом ее ходу мо­
гут быть также сделаны групповые и общие транспозиции.
Однако в такой обмотке можно применить и другой, более
совершенный вид транспозиции. Сечение витка такой об­
мотки, изображенное на рис. 5.29, состоит из двух групп
проводов. Идея транспозиции заключается в постепенном
круговом перемещении проводов в сечении витка по мере
намотки обмотки так, чтобы каждый провод побывал во
всех возможных положениях, проходя в них равные отрез­
ки (выражаемые обычно в числе витков). В отличие от
групповой и общей транспозиций, сосредоточенных в трех
точках обмотки, такую транспозицию можно назвать рав­
номерно распределенной. Обычно в двухходовой обмотке
245
число транспозиций делают равным числу параллельных
проводов или их удвоенному числу. На рис. 5.29 показана
схема равномерно распределенной транспозиции в двуххо­
довой обмотке из восьми параллельных проводов. Во избе­
жание усложнения чертежа на схеме показано перемещение
только двух проводов - 1 и 5.
Рассrояния между двумя транспозициями при числе па­
раллельных проводов п" принимаются равными 1/п в обще­
го числа витков обмотки, а крайние участки у начала и
конца обмотки вполовину короче, т. е. 1/2 nв общего числа
витков.
Рис. 5.28. Увеличение высоты одноходовой об­
мотки при транспозиции обмопш из четырех
проводов:
а - групповая транспозиция; б - общая транспози­
ция
Рис. 5.29. Схема равномерно распределенной
транспозиции в двухходовой обмотке из восьми
параллельных проводов
246
По схеме рис. 5.29 нетрудно убедиться в том, что при
таком распределении транспозиций каждый провод по ме­
ре прохождения по длине обмотки пройдет каждое из п.
возможных положений в сечении витка на 1/п в общей дли­
ны обмотки.
Практически равномерно распределенная транспозиция
выполняется так, как показано на рис. 5.30. Верхний про­
вод 4 левой группы отгибается вправо и становится верх-
Рис. 5.30. Выполнение равномерно распределенной
транспозиции
ним проводом правой группы. Одновременно нижний про­
вод 8 правой группы переходит нижним проводом в левую
группу. Провода левой группы 1, 2 и 3 поднимаются на од­
но положение вверх, а провода 5, б и 7 правой опускаются
на одно положение вниз.
Равномерно распределенная транспозиция в двухходо­
вой обмотке может быть сделана при любом числе парал­
лельных проводов и дает более полное уравнение их сопро­
тивлений, чем групповые и общие транспозиции. Другое
преимущество равномерно распределенной транспозиции
заключается в том, что она не требует добавочного места
по высоте обмотки. Однако при определении изоляционных
расстояний следует учитывать, что в местах транспозиции
радиальный размер обмотки увеличивается на одну толщи­
ну провода.
� четырехходовой обмотке равномерно распределенная
транспозиция выполняется самостоятельно в каждой паре
ходов. Поэтому трехходовая винтовая обмотка с такой
транспозицией· обычно не применяется, но винтовая обмот­
ка с любым числом ходов может быть выполнена из транс­
понированного провода _( см. § 5.2). При этом отпадает не247
обходимость в дополнительной транспозиции параллель­
ных проводников, помимо той, которая сделана в самом
проводе.
Плотность тока в обмотках силовых трансформаторов,
выпускаемых в последние годы с относительно малыми по­
·терями короткого замыкания, составляет в медных обмот­
ках ОКОЛО 2· }0 6 +3-10 6 (иногда ДО 3,5-106) И В аЛЮМИНИе•
вых 1,2-106 +2· 10 6 А/м 2• При такой плотности тока потери
в единице объема обмотки и плотность теплового потока на
осевых и радиальных охлаждаемых поверхностях витков
невелики и возникает во::�можность существенного уменьше­
ния числа каналов в обмотке вплоть до полного отказа от
горизонтальных каналов.
Винтовая обмотка без горизонтальных каналов с плот­
ным прилеганием витков в осевом направлении может быть
одно-, двух- и четырехходовой с обычными для таких обмо­
ток транспозициями. Такая обмотка наматывается на ци­
линдре на рейках типа рис. 5.8, а и 6 или на оправке без
реек и без прокладок между ходами. Не исключена намот­
ка двухслойной винтовой обмотки, т. е. двух концентричес­
ких винтовых обмоток левого и правого направлений на­
мотки, соединяемых последовательно.
При использовании винтовой обмотки без горизонталь­
ных каналов следует принимать во внимание то, что плот­
ность теплового потока на охлаждаемой поверхности об­
мотки существенно возрастает и ее не рекомендуется до­
пускать более 1200-1400 Вт/м 2• При этом превышение
температуры поверхности обмотки, имеющей только верти­
кально расположенные поверхности, охлаждаемые маслом,
над температурой масла составляет 21-23 °С, что пример­
но на 20 % ниже, чем в обмотке с витками, имеющими го­
ризонтальные и вертикальные поверхности. Необходимо
также учитывать, что в обмотке без горизонтальных кана­
лов добавочные потери могут быть в 1,5-2 раза больше,
чем в обмотке с тем же числом витков и с тем же числом,
размерами и расположением параллельных проводов, но с
гориз·онтальными каналами.
В механическом отношении при возникновении осевых
механических сил винтовая обмотка является значительно
более прочной, чем одно- и двухслойная цилиндрическая.
Параллельные провода в каждом витке располагаются в
ней не в осевом, а в радиальном направлении, образуя от­
носительно большую опорную поверхность. Механическая
жесткость обмотки усиливается рейками, идущими по всей
248
длине обмотки, и связанными с ними горизонтальными про­
кладками, плотно зажатыми между витками обмотки.
В трансформаторах с ПБВ часто регулировочные витки
обмотки ВН располагаются в середине ее высоты, что при
работе обмотки ВН на низших ступенях регулирования на­
пряжения приводит к возникновению в зоне отключенных
витков поперечного магнитного поля и значительных ос�
вых сил при коротком замыкании (см. § 7.3). Винтовая об­
мотка позволяет существенно ограничить эти силы путем
разгона витков в середине ее высоты в зоне размещения
отключаемых регулировочных витков обмотки ВН. Разгон
витков применяется в трансформаторах с мощностью S�
� 1ООО кВ• А и достигается путем увеличения двух-трех ра­
диальных каналов в середине высоты обмотки НН до
15-20 мм. Достаточную механическую прочность обмотка
получает только при некотором минимальном сечении вит­
ка, не менее 75-100 мм2 , что соответствует току около
300 А для медных и 150-200 А для алюминиевых обмоток.
Этот нижний предел допустимого сечения витка и тока
обмотки соответствует силовым трансформаторам с мощ­
ностью S=l60+1000 кВ-А. При больших мощностях ниж­
ним пределом применения винтовой обмотки считается
обычно 400-500 А.
По соображениям механической прочности, а также
удобства выполнения транспозиций число параллельных
проводов принимается обычно не менее четырех.
Наличие масляных каналов между соседними витками
обеспечивает высокую электрическую прочность винтовой
обмотки, и она находит широкое применение как обмотка
НН в трансформаторах с напряжением НН от 230 В до
35 кВ включительно.
На стороне ВН винтовая обмотка совершенно не нашла
применения ввиду неудобства выполнения ответвлений для
регулирования напряжения.
В производстве винтовая обмотка существенно дороже
многослойной цилиндрической обмотки из прямоугольного
провода.
Винтовая обмотка используется также в качестве обмот­
ки НН в сухих трансформаторах с естественным воздуш­
ным охлаждением при мощностях от 250 до 1600 кВ• А и
выборе размеров радиальных и осевых воздушных каналов
в соответствии с требованием табл. 9.2б и 9.2в.
249
5.6. КдТУШЕЧНЫЕ О&МОТКН
Обмотка, состоящая из ряда последовательно соединен­
ных катушек, намотанных в виде плоских спиралей из од­
ного или более проводов прямоугольного сечения и распо­
ложенных в осевом направлении обмотки, с радиальными
каналами между всеми или частью катушек называется
катушечной обмоткой. Если катушечная обмотка наматы­
вается непрерывным проводом или несколькими непрерыв­
ными параллельными проводами, она называется непрерыв­
ной I<атушечной обмоткой (рис. 5.31). Катушечная обмотка,
Рис. 5.31. Непрерывная катушечная об•
мотка
Рис. 5.32. Переход между катушками с
транспозицией трех параллельных про•
водов
собранная из отдельно намотанных катушек, называется
дисковой катушечной обмоткой.
Непрерывная катушечная обмотка не имеет обрывов и
паек провода. Все переходы из одной катушки в другую
осуществляются кратчайшим путем по направлению внут­
ренней или внешней образующей обмотки. Такая обмотка
может быть намотана также из двух, трех, а иногда и
более параллельных проводов. В этом случае во избежа­
ние излишнего увеличения радиального размера обмотки в
месте перехода из катушки в катушку каждый из парал•
лельных проводов переходит самостоятельно так, как изо­
бражено на рис. 5.32. При таком переходе провода меня­
ются местами: наружный провод катушки переходит
внутрь, внутренний наружу и т. д. При этом одновременно
осуществляется и транспозиция проводов, необходимая для
уравнивания полных сопротивлений параллельных прово250
дов. Необходимость транспозиции обусловливается тем, что
параллельные провода наматываются на окружностях раз­
ных диаметров и находятся в различных зонах поля рас­
сеяния.
Вследствие значительного угла изгиба провода на ребро
в местах перехода из одной катушки в другую изоляция
проводов может быть повреждена. Поэтому для обеспече­
ния надлежащей электрической прочности обычно применя­
ют в местах перехода добавочную изоляцию провода в ви­
де оплетки полосками кабельной бумаги или лакоткани или
подвязки изоляционных коробочек из электроизоляционно­
го картона.
Непрерывная катушечная обмотка может быть намота­
на на жестком бумажно-бакелитовом цилиндре, на рейках,
расположенных по образующим цилиндра. При примене­
нии мягких изоляционных цилиндров из электроизоляцион­
ного картона обмотка наматывается на станке на рейках,
расположенных на временной цилиндрической оправке без
изоляционного цилиндра. В этом случае цилиндр наматы­
вается при сборке трансформатора перед насадкой соот­
ветствующей обмотки. Для образования радиальных меж­
дукатушечных каналов применяются прокладки, штампо­
ванные из электроизоляционного картона, как показано на
рис. 5.9 и 5.10.
Радиальные каналы в обмотке обычно выполняются
между всеми катушками, однако в трансформаторах с по­
ниженными потерями короткого замыкания и в алюминие­
вых обмотках (§ 5.2 и 5.7) иногда каналы могут быть сде­
ланы через две катушки. В этом случае половина радиаль­
ных каналов между катушками заменяется разрезными
шайбами по две шайбы толщиной 0,5 мм взамен каждого
канала. Пара катушек, разделенных шайбами или ради­
альным каналом, называется двойной катушкой.
Переход провода из одной катушки в другую в непрерыв­
ной катушечной обмотке делается в промежутках между
прокладками, образующими радиальные каналы. Число вит­
ков в каждой катушке, указываемое в расчетной записке,
может быть как целым, так и дробным. В последнем случае
знаменатель дроби указывает число междукатушечных про­
кладок .(реек) по окружности обмотки. Так, при 16 про­
кладках (рейках) в обмотке правильным будет указание
намотать в катушке, например, 8 4 / 16 витка, а не 8¼ витка.
При намотке такой обмотки на станке наматывают восемь
полных витков, а потом отсчитывают четыре промежутка
251
между прокладками и делают переход на следующую ка.
тушку.
Максимальный радиальный размер обмотки при дроб­
ном числе витков определяется числом целых витков плюс
один виток. В разобранном примере максимальный ради­
альный размер равен в+ 1 =9 толщинам провода с изоля­
цией.
Возможность намотки в катушке дробного числа витков
всегда позволяет легко разместить полученное по расчету
число витков по катушкам, одна­
11-б
ко для упрощения намотки об­
мотки на станке рекомендуется
рассчитывать катушки с целым
числом витков. В одной обмотке
рекомендуется применять не бо­
лее четырех типов катушек с раз­
ным числом витков, а общее чис­
ло катушек брать четным.
"'"'"'б
"
11
Иногда по условиям сборки
или изоляции обмоток, например
в обмотках на 220 кВ и более, не­
прерывная намотка катушечных
обмоток неудобна. В этом случае
обмотка изготавливается в виде
Рис. 5.33. Двойная катушка
комплекта
двойных катушек
катушечной обмотки
.(рис. 5.33).
Витки, служащие для регули­
рования напряжения в обмотках ВН, должны располагать­
ся в отдельных катушках так, чтобы регулировочные от­
ветвления выполнялись на переходах между катушками,
а не от средних витков катушки. Также в отдельных ка­
тушках должны размещаться входные витки с усиленной
изоляцией, которая может быть выполнена в виде усилен­
ной изоляции провода или оплетки всей катушки снару­
жи лентой из кабельной бумаги или лакоткани. Усилен­
ная изоляция между слоями (витками) в виде прокладок,
как правило, не применяется.
Катушки с различным числом витков - основные, ре­
гулировочные, с усиленной изоляцией - принято для удоб­
ства обозначать различными буквами алфавита.
При размещении витков обмотки в катушки необходимо
следить за тем, чтобы радиальные размеры катушек раз­
личных типов были приблизительно равными. Рекоменду­
ется это размещение производить так, чтобы радиальные
:�с
252
размеры наиболее широкой и наиболее узкой катушек об­
мотки стержня, в том числе и регулировочных, и с усилен­
ной изоляцией, отличались не более чем на двойную тол­
щину провода. В тех случаях, когда этого нельзя добиться
простым перемещением витков, например в регулировочных
катушках, допускается выравнивание радиального размера
отдельных катушек путем вматывания между их вит1.<ами
полосок электроизоляционного картона.
Намотка непрерывной катушечной обмотки из прямо­
угольного провода имеет свои особенности. Для того чтобы
вести обмотку не прерывая провода и делать переход про­
вода из катушки в катушку то у внутреннего, то у внешне­
го края катушки, витки половины катушек (обычно нечет­
ных) после намотки катушки перекладываются так, что
внутренний виток оказывается наружным, а наружный вну­
тренним. Остальные катушки (обычно четные) наматываются без перекладки [5).
В механическом отношении непрерывная катушечная
обмотка является одной из самых прочных обмоток, приме­
няемых в трансформаторах. С увеличением мощности
трансформатора и ростом осевой составляющей механичес­
ких сил при коротком замыкании растут также радиальный
размер катушек обмотки и ее механическая стойкость.
Таким образом, условия механической прочности не ста­
вят практически никаких пределов применению обмотки
этого типа, и она может применяться на очень большом
диапазоне мощности трансформаторов от
160 до
1 ООО ООО кВ• А. Обмотка этого типа с успехом применяется
также и в широком диапазоне напряжений от 2-3 до
500 кВ и более.
При достаточно высоких напряжениях усложняется за­
щита обмоток от импульсных атмосферных перенапряже­
ний, вследствие чего обмотку приходится разделять на ча­
сти, наматываемые непрерывно, и на части, состоящие из
отдельно наматываемых катушек. С этой целью часть об­
мотки может быть сделана также переплетенной, когда по­
рядок последовательного соединения витков отличается от
последовательности их размещения в катушках, например
когда в двух соседних катушках соединяются последова­
тельно сначала все нечетные витки, а затем последователь­
но с ними все четные. Возможны и другие способы получе­
ния переплетенной обмотки (см.§ 4.5).
Непрерывная катушечная обмотка может быть примене­
на при всех токах нагрузки, когда при выбранной плотности
253
тока и достаточном числе витков сечение проводника полу.
чается равным или большим, чем минимальное по сортамен.
ту сечение прямоугольного медного провода 5,04 или алю.
миниевого провода 6,39 мм 2 • При наименьшей применяемой
плотности тока в обмот1{ах это соответствует нижнему пре­
делу рабочего тока обмотки в медном проводе 15-18 и в
алюминиевом проводе 10-13 А.
Плотность теплового потока на поверхности катушечных
обмоток обычно допускают не более 1200-1400 Вт/м2•
В производстве непрерывная катушечная обмотка при
равном числе витков и сечении витка несколько сложнее_ и
дороже, чем одно- и двухслойная цилиндрическая из прямо•
угольного провода или многослойная цилиндрическая из
круглого или прямоугольного провода. Поэтому в транс­
форматорах с мощностью на один стержень до 250 кВ· А
предпочитают применять цилиндрические обмотки из круг­
лого провода. В трансформаторах большей мощности, где
требования механической прочности играют решающую
роль, непрерывная катушечная обмотка является наиболее
употребительной наряду с многослойной цилиндрической из
прямоугольного провода. Благодаря высокой механической
прочности, легкости распределения витков обмотки по ка•
тушкам, удобству выполнения регулировочных ответвлений,
сравнительной простоте намотки, отсутствию паек между
катушками и простоте установки на стержне трансформа­
тора непрерывная катушечная обмотка находит широкое
применение в масляных силовых трансформаторах в каче­
стве обмотки ВН для трансформаторов с мощностью от
160 до 63 ООО кВ• А и выше при токах нагрузки от 1015 А и выше. Обмотка этого типа находит применение так­
же в качестве обмоток НН при токах от 10-15 до 300 А.
В этом случае для уменьшения осевых механичес1шх сил в
обмотках трансформаторов мощностью 1ООО кВ• А и выше
с ПБВ, у которых регулировочная часть обмотки ВН рас­
полагается в середине высоты стержня, рекомендуется
делать в середине высоты обмотки НН разгон между ка­
тушками путем увеличения двух-трех радиальных каналов
до 15-20 мм.
Непрерывная катушечная обмотка из прямоугольного
провода находит также применение в качестве обмотки ВН
в сухих трансформаторах с естественным воздушным охла•
ждением при мощностях от 250 до 1600 кВ-А при выборе
размеров радиальных и осевых воздушных каналов в соот­
ветствии с требованиями табл. 9.2б и 9.2в,
254
5.7. ВЫ&ОР КОНСТРУКЦИИ О&МОТОК
Выбор типа конструкции обмоток при расчете транс­
форматора должен производиться с учетом эксплуатацион­
ных и производственных требований, предъявляемых к
трансформаторам в целом (см.§ 5.1).
В настоящем параграфе даются общие указания по вы­
бору конструкции обмотки по ее электрическим величинам:
току нагрузки одного стержня /с , мощности трансформато­
ра S и номинальному напряжению Ина .., а также по попе­
речному сечению витка обмотки П. Именно эти данные
трансформатора служат основными критериями при выбо­
ре типа обмотки.
Ориентировочное сечение витка каждой обмотки, м2 , мо­
жет быть определено по формуле
(5.3)
где /с - ток соответствующей обмотки одного стержня, А;
Jер - средняя плотность тока в обмотках ВН и НН, А/м2 •
Выбор средней плотности тока в обмотках не является
произвольным. На том этапе расчета, когда выбирается тип
обмотки, уже известны основные размеры магнитной систе­
мы, ЭДС одного витка и числа витков в каждой из обмоток,
а также ориентировочные основные размеры обмотки (вну­
тренний диаметр и высота). В зависимости от выбора зна­
чения /ер будут изменяться объем и масса обмоток, а сле­
довательно, и основные потери в·них Роси, Обычно при рас­
чете трансформатора потери короткого замыкания Рх
бывают заданы и выбор средней плотности тока должен
быть связан с заданной величиной Рх .
Для определения средней плотности тока в обмотках,
А/м2, обеспечивающей получение заданных потерь корот­
кого замыкания, можно воспользоваться формулами, выве­
денными в § 7.1:
для медных обмоток
и
Рк в 1Q4 ;
Jc p =-= 0,746kд ��
(5.4)
для алюминиевых обмоток
Sd12
и
Jcp=0,463kд Рк в}О4,
Sd12
(5.5)
Плотность тока в обмотках из транспонированного про­
вода определяется по 15,4), в обмотках из алюминиевой
ленты - по (5.5).
255
При расчете трехобмоточного трансформатора в (5.4) и
:(5.5) следует подставлять потери короткого замыкания Рк
для двух внутренних обмоток при 100 %-ной мощности,
полную ( 100 % ) мощность трансформатора S и диаметр
d 12 для двух внутренних обмоток, определяемый по методи­
ке, принятой для двухобмоточных трансформаторов. Для
обмоток, рассчитываемых на 67 % полной мощности транс­
форматора, значение плотности тока, найденное по (5.4) и
,(5.5), следует умножить на 0,67.
Для автотрансформаторов под S следует понимать ти­
повую (расчетную) мощность автотрансформатора.
Формулы (5.4) и (5.5) связывают искомую среднюю
плотность тока в обмотках ВН и НН с заданными величи­
нами: по.тшой мощностью трансформатор·а S, кВ• А, потеря­
ми короткого замыкания Рк, Вт, и величинами, определяе­
мыми до расчета обмоток: ЭДС одного витка и в, В, и сред­
ним диаметром канала между обмотками d 1 2, м. Коэффи­
циент kд учитывает наличие добавочных потерь в обмотках,
потери в отводах, стенках бака и т. д. Значения kд могут
быть взяты из табл. 3.6. Значение плотности тока, получен­
ное из (5.4) или (5.5), следует сверить с данными табл.
5.7, где приведены ориентировочные значения практиче­
ски применяемых плотностей токов. Сверка рассчитанного
значения /ер с таблицей имеет целью избежать грубых
ошибок в расчете J ер, Точного совпадения Jер с цифрами
таблицы не требуется. По этой же таблице можно выбрать
среднюю плотность тока в обмотках в том случае, когда
потери короткого замыкания не заданы.
Найденное по (5.4) или (5.5) значение П;1отности тока
является ориентировочным средним значением для обмо­
ток ВН и НН. Действительная средняя плотность тока в
обмотках должна быть выдержана близкой к этой. Плот­
ности тока в каждой из обмоток масляного трансформато­
ра с медными или алюминиевыми обмотками могут отли­
чаться от среднего значения, желательно, однако, чтобы не
более чем на 1 О % . Следует помнить, что отклонение дейст­
вительной средней плотности тока от найденной по (5.4) и
,(5.5) в сторону возрастания увеличивает потери короткого
замыкания Рк и в сторону уменьшения - снижает.
В сухих трансформаторах вследствие существенного
различия условий охлаждения для внутренних и наружных
обмоток плотность тока во внутренней обмотке НН обычно
снижают на 20-30 % по сравнению с плотностью в наруж­
ной обмотке ВН. Поэтому в таких трансформаторах откло256
Та блиц а 5 .7. Средняя плотность тока в обмотках 1, МА/м 2, для
современных трансформаторов с потерями короткого замыкания по
гост
а) Масляные трансформаторы
Мощность
трансформа•
тора. кВ -А
25-40
б.З-630
Медь
1,8- 2 ,2
2 , 2-3,5
2 ,2 -3,5
Алюминий
1,1-1,8
1, 2- 2 ,5
1,5-2 ,6 11, 5- 2,71
1 2 ,0-3, 5 1 2 ,0-3,5
б) Сухие трансформаторы
Мощность
трансформа•
тора, кВ-А
Обмотка
10-160; 0,5 кВ
Внутренняя
нн
Медь
2 ,0-1,4
Алюминий
1,3-0,9
Наружная
вн
1
1
2,2-2 ,8 1
'
1,3-1, 8 1
160-1600; 10 кв
Вн_утре нняя
нн
Наружная
2,0-1,2
2 ,0-2,8
1,4-0,8
1,4-2 ,0
вн
П р и и е ча н и я: 1. Для трансформаторов с потерями короткого замыкания
выше указанных ГОСТ возможен выбор плотности тока в масляных трансформа­
торах до 4,5 МА/м' в медных и до 2,7 МА/м' в алюминиевых обмотках; в сухих
трансформаторах - соответственно до 3 и 2 МА/м'.
2. Плотность тока в обмотках нз транспонированного пр;:,вода выбирается
так же, как и для медного или алюминиевого провода.
3. Плотность тока в обмотках нз алюминиевой ленты выбирается, как для
алюминиевого провода.
нение действительной плотности тока в обмотках от най­
денного среднего значения может достигать ± (15-20) % .
По этой же причине среднюю плотность тока в обмот­
ках этих трансформаторов рекомендуется принимать 0,930,97 значения, найденного по (5.4) или (5.5). После опреде­
ления средней плотности тока /ер и сечения витка П для
каждой из обмоток можно произвести выбор типа конст­
рукции обмотки, пользуясь указаниями, сделанными в пре­
дыдущих параграфах и сведенными вкратце в табл. 5.8.
При выборе конструкции обмоток ВН следует учитывать
также и возможность получения наиболее удобной схемы
регулирования напряжения обмотки ВН в соответствии с
указаниями, данными в§ 6.2.
17-510
257
Та б л и ц а 5.8. Основные своiiства и нормальные прецелы применения
Применение
на стороне
Тип обмотки
главное
Ц11лиидричес1<ая одно- и
двухслойная
из прямоуголь­
ного провода
Цилиндричес­
мноrо­
кая
с,1ойная из пря­
моугольного
провода
Цилиндричес­
кая многослой­
ная из алюми­
ниевой ленты
Цилиндричес­
кая многослой­
ная из круrло­
rо провода
Винтовая одно-,
ДВУХ·
возмож­
ное
нн
вн
вн
нн
нн
вн
нн
нн
ходовая из пря­
моугольного
провода
258
вн
Основные
недостатки
Простая
тех- Малая механи­
проч­
нология изго- ческая
товления, хоро­ ность
шее охлажде­
ние
Хорошее запол­
нение окна магнитной систепростая
мы,
технология из­
готовления
Уменьшение
охлаждаемой
поверхности по
сравнению с об­
мотками, имею­
щими радиаль­
ные каналы
Простая техно­
логия изготов­
ления, хорошее
охлаждение,
хорошее запол­
нение окна маг­
нитной системы
Малая механи­
ческая
проч­
ность в ради­
альном направ­
лении
Простая техно­ Ухудшение теп­
логия изготов­ .1оотдачи
и
уменьшение ме­
ления
ханической
прочности
с
мощростом
ности
Высокая меха­ Более высокая
ническая проч­ стоимость
по
ность, надеж­ сравнению с ци­
ная изоляция, линдрической
ох­ обмоткой
хорошее
лаждение
И МНОГО·
Непрерывная
катушечная
прямо­
из
угольного про­
вода
Основные
достоинства
нн
Высокая элект­ Необходи­
пере­
рическая и ме­ мость
кладки полови­
ханическая
катушек
прочность, хо­ ны
рошее охлажде­ при намотке
ние
различных типов обмоток масляных трансформаторов
Пределы применения, включительно
Материал
обмоток
Медь
по мощности
трансфор-
/, А
S, кВ-А
1
До 630
по напряженню
по току
на стержень
матора
\
От 15-18
до 800 1
От 10-13
Алюми- До
6301 до !ЮО-650 1
ний 1
Медь
Алюминий
Алюми-
ний
Медь
От 630 От 15-18
до
до 80 ООО
1000-1200
До
16 00025 000
От 160
до 1000
До 630
и.
кв
До 6
До 6
10 и 35
10 и 35
От 10-13
до
1000-1200
От 100
1500
До 10
ДО
О, 0,3-0,S 1 Д о 35
до 80-100
по сече-
НИЮ ВИТ·
Число
nараллельных
проводов
ка П, мw 1
От 5,04
1 ДО 250
От 6,39
1 до 300
От 5,04
ДО 400
От 6,39
до 500
-
От 1
до 4-8
Рис.
6.6, а, б
От 1
до 1
-
От 100
до 1000
От 1,094 1
до 42, 44
От 300
и выше
От
1 75-100
и выше
Алю�и- От 100 От 150-200 До 35 От 75и выше
нии
и выше 1
100
1
1
1 и выше
Медь
От 160
1 и выше 1
1
От 16 0 От 15-18
1 и выше 1 и выше 1
Алюми- От 100 От 10-13
ний 1 и выше 1 и выше 1
11•
До 35
От 3
От 5,04
до
1 и оыше
110-220
От 6,39
От 3
до
1 и выше
110-220
наnряжения
От 1
до 4-8
Алюми- До 630
От 2-3
До 35 От 1 3
1
ний 1
4
1 до 50,2
, 71
1 до 125-135 1
1
Медь
Схема
реrули-
рования
4
1
2
1
Рис.
6.6, а,
1216 и
более
3-5
Рис. 6.6,
в, г
259
В тех случаях, когда возможно применить два различ­
ных типа обмотки, если нет других указаний, следует, как
правило, отдавать предпочтение типу, более простому и
дешевому в производстве. Если к трансформатору предъяв­
ляются какие-либо специальные требования, например по­
вышенной механической или электрической прочности или
другие, следует выбирать тип обмотки, наиболее отвечаю­
щий этим требованиям.
В сухих трансформаторах могут быть применены те же
основные типы обмоток, которые применяются в маслянь1х
трансформаторах при условии уменьшения плотности тока
согласно табл. 5.7 и увеличения размеров охлаждающих
каналов согласно табл. 9.2. При выборе типа обмоток для
сухого трансформатора можно пользоваться табл. 5.8 с
сохранением всех пределов применения обмоток, кроме
предела применения по току на один стержень и напряже­
нию. Цифры таблицы для тока должны быть снижены на
30-35 %, а номинальное напряжение обмоток не должно
быть более 15 кВ.
При расчете обмоток существенное значение имеет пра­
вильный выбор размеров провода. В обмотках из провода
круглого сечения обычно выбирается провод, ближайший
по площади поперечного сечения к сечению П, определяе­
мому по выбранной плотности тока / ер, или в редких случа­
ях подбираются два провода с соответствующим общим
суммарным сечением.
При расчете винтовых, катушечных и в большинстве
случаев двух- и многослойных цилиндрических обмоток из
провода прямоугольного сечения желательно применять
наиболее крупные сечения провода, что упрощает намотку
обмотки на станке и позволяет получить наиболее компакт­
ное ее размещение на магнитной системе. Однако примене­
ние наиболее крупных размеров провода ограничивается
условиями охлаждения обмотки и допустимыми добавоч­
ными потерями от вихревых токов, вызываемых полем рас­
сеяния.
Выбор размеров поперечного сечения провода связан с
плотностью теплового потока на охлаждаемой поверхности
обмотки q. Значение q в целях недопущения чрезмерного на­
грева обмоток в трансформаторах с естественным масля­
ным охлаждением ограничивается q�120071400 Вт/м2 и
во всяком случае не более 1500 Вт/м 2 • В трансформаторах
с искусственной циркуляцией масла допускают q�20007
-:-'2200 Вт/м 2 • Превышение указанных значений q приво260
дит к существенному увеличению массы системы охлажде­
ния трансформатора. Высокие значения q определяют так­
же значительный нагрев масла в каналах обмоток, что
ускоряет старение масла. Снижение допустимых значений
q для медных обмоток примерно до 1000 Вт/м2 позволит
существенно замедлить старение масла и удлинить сроки
его замены. Для алюминиевых обмоток значения q обычно
естественно получаются на 20-25 % ниже, чем для мед­
ных.
В обмотках сухих трансформаторов могут быть допу­
щены различные значения q в зависимости от класса на­
гревостойкости изоляции и размеров охлаждающих кана­
лов. Выбор размеров вертикальных и горизонтальных ка­
налов и соответствующих значений q, обеспечивающих
получение допустимых превышений температуры, может
быть сделан по табл. 9.2б и 9.2в.
При изоляции класса наrревостойкости А для внутрен-­
них обмоток при вертикальных каналах шириной 1 и гори­
зонтальных 0,8 см можно допустить q:::;;;280 Вт/м 2 • Для на­
ружных обмоток, имеющих только одну внешнюю поверх­
ность (обмотка, намотанная на цилиндре без канал а),
можно допустить q::;;;;600 Вт/м2 •
В обмотках масляного трансформатора из прямоуголь­
ного провода, каждый провод которых с двух сторон омыва­
ется маслом (в одно- и двухслойных цилиндрических с на­
моткой на ребро, в винтовых и непрерывных катушечных с
намоткой плашмя) значение большого из двух размеров
поперечного сечения провода Ь, м _(см. рис. 7.3, в) может
быть выбрано по формулам:
для медного провода
b<;qkэl(1,07J2• 10-8);
( 5.6)
для алюминиевого провода
Ь
< qk f(l, 72J . I0-8).
s
2
(5. 7)
Для винтовых и катушечных обмоток следует принять
Найденный размер
провода следует рассматривать как предельно допустимый
для заданного значения q. При выборе провода по сорта­
менту он может быть принят и меньшим. Выбор предель­
ного значения Ь можно сделать также и по графикам рис.
k,=I; для цилиндрических k 3 =0,8.
5.34.
Если размер Ь получается близким к предельному раз.
меру по сортаменту табл. 5.2 или выходит за эти пределы,
261
то в катушечной обмотке можно выбрать действительный
размер провода, равный половине или меньше половины
найденного по формуле или графикам рис. 5.34, сдвоить
катушки и сделать радиальные масляные каналы через две
катушки. В одноходовой винтовой обмотке в этом случае
'Ь,мм
32
32 l-\--+--'4+-'+1-1...+---+--'---f
9, Вт/м 1
2'100
20
lJ
2200
2000
1800
1600
1-..\--,..._J.,...\-�¼l\;'I,-\._,,,-
1 чоо
1200
L...-L...---L---=r:::-_i::::-�
2,0
2,5
з,о а) 3,5
'1,ОJ,мА/м 2
Рис. 5.34. Графики для ориентировочного определения размера провода
Ь по заданным значениям q н J в катушечных, винтовых и цилиндри­
ческих обмотках из прямоугольного провода:
ll - медный провод; б - апюмнниевыl! провод. Дпя ципиидрических обмоток
размер Ь, попученныl! по графику, умножить на 0,8
можно сделать радиальные масляные каналы не через один
виток, а через два; в двухходовой винтовой обмотке можно
отказаться от радиальных каналов между ходами. В алю­
миниевых обмотках трансформаторов мощностью до
6300 кВ• А возможность сдвоить витки в винтовой обмотке
или катушки в непрерывной катушечной обмотке представ­
ляется достаточно часто.
Для обмоток сухих трансформаторов предельный раз­
мер Ь может быть найден также по (5.6) и (5.7) с учетом
допустимого значения q и размеров осевых каналов по
табл. 9.2б и 9.2в.
В многослойных цилиндричес1<их обмотках из прямо­
угольного провода, наматываемого плашмя, маслом омыва262
поверхности, прилегающие к масляным охлаждающим
каналам, и внешняя поверхность наружной обмотки стерж­
ня. В этом случае на охлаждаемые поверхности выходит
тепло, возникающее в нескольких слоях проводов, находя­
щихся между двумя каналами, и под искомым значением
Ь, определяемым по (5.6) и (5.7) при /г 3 =0,8, следует по­
нимать сумму размеров металла проводов в радиальном на­
правлении обмотки между двумя осевыми каналами. Если
данная часть (катушка) обмотки намотана непосредствен·­
но на изоляционном цилиндре без масляного канала и име­
ет только одну цилиндрическую поверхность, омываемую
маслом, значения Ь, полученные из (5.6) или ,(5.7) или по
графикам рис. 5.34', следует умножить на 0,5.
Если, например, в многослойной обмотке из прямоуголь­
ного алюминиевого провода при / = 1,6 • 10 6 А/м2 , при до­
пустимом значении q= 1400 Вт/м2 по (5.7)
10тся
1400·0,8
1,72• l ,б!. 101;.10-s
Ь = ------ = 0,0254 м (25,4 мм),
то это значит, что в катушке между двумя осевыми канала­
ми можно уложить из сортамента табл. 5.2 пять слоев про­
вода с размером в радиальном направлении по 5 мм или
шесть слоев с размером по 4,25 мм и т. д. при значении
q� 1400 Вт/м 2• Так же можно определить предельный ра­
диальный размер провода в винтовой обмотке, не имеющей
радиальных каналов.
В сухих трансформаторах с естественным воздушным
охлаждением многослойные цилиндрические обмотки из
прямоугольного провода применяются редко. При необхо­
димости в этом случае можно также воспользоваться фор­
мулами (5.6) и (5.7) при k з= О,8 или графиками рис. 5.34.
В многослойной цилиндрической обмотке из прямоуголь­
ного провода возникают добавочные потери, вызываемые
вихревыми токами. При осевом направлении потока маг­
нитного поля рассеяния обмоток эти потери пропорциональ­
ны четвертой степени радиального размера провода обмот­
ки и квадрату числа слоев обмотки в радиальном направ­
лении. В обмотках этого типа обычно стараются выбрать
число слоев обмотки и радиальный размер провода так,
чтобы добавочные потери не превысили 5 % основных по­
терь обмотки. Иногда, сравнительно редко, допускают до­
бавочные потери до 10 % .
Для ориентировочного выбора максимально допустимо­
го значения радиального размера прямоугольного провода
263
ь
е
а бли цаа мм
5.9. Ориент ировоч ные предел ные радиа льны р азмеры
Т
пр овод
а , , цилинд рических обмоток из провод а прямоу гольного
сечения ,фи добавочных потерях не превышающих 5, 10, 15 и 20 %
'8
Медные обмотки
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Добавочные потери до
Добавочные потери до
:z
� 1%1
���
��i
Алюминиевые обмотки
5%
9,0
6,3
5,3
4,5
4,0
3,75
3,35
3,35
3,15
3,0
2,8
2,65
2,5
2,36
21 36
2,24
1
10%
10,6
7,5
6,3
5,3
4,75
4,5
4,0
3,75
3,55
3,55
3, 15
3,15
3,0
3,0
2,8
2,65
1
15 %
11,8
8,5
6,7
6,0
5,3
4,75
4,5
4,25
4,0
4,0
3,75
3,35
3,35
3, 15
3,0
3,0
1
20%
5%
13,2
9,0
7,5
6,3
5,6
5,3
4,75
4,5
4,25
4,25
3,75
3,75
3,55
3,35
3,35
3,15
11,8
8,0
6,7
5,6
5,0
4,75
4,5
4,0
3,75
3,75
3,55
3,35
3,0
3,0
3,0
2,8
1
10%
13,2
10,0
8,0
6,7
6,0
5,6
5,0
4,75
4,5
4,5
4,0
3,75
3,75
3,55
3,55
3'i35
1
15%
15,0
10,6
8,5
7,5
6,7
6,0
5,6
5,6
5,0
5,0
4,5
4,5
4,0
3,75
3,75
3,75
1
20%
16,0
11,8
9,5
8,0
7,5.
6,7
6,0
5,6
5,6
5,6
4,75
4,75
415
4,0
4,0
4,0
в цилиндрических обмотках с числом слоев от 1 до 16 мож­
но воспользоваться табл. 5.9, в которой приведены предель­
ные значения радиального размера провода, дающие доба­
вочные потери до 5, 10, 15 и 20 % основных потерь в мед­
ных и алюминиевых обмотках. С ростом числа слоев в
обмотке существенно возрастают добавочные потери и
уменьшается максимально допустимый радиальный размер
провода. Возможность намотки провода на ребро данные
этой таблицы ограничивают тремя-четырьмя слоями. По
этой таблице можно также определить предельный ради­
альный размер провода в винтовой обмотке, не имеющей
радиальных каналов.
Следует иметь в виду, что предельное значение добавоч­
ных потерь, указанное в табл. 5.9, является средним для
всей обмотки. В крайних витках, прилегающих к каналу
между обмотками, добавочные потери будут в 3 раза
боJJьше.
В винтовых и катушечных обмотках с радиальными ка­
налами при прочих равных условиях (одинаковое число
слоев, одинаковые размеры провода, одинаковое число вит­
ков или одинаковая высота обмотки) индукция поля рас­
сеяния оказывается существено ниже, чем в обмотках, не
264
имеющих этих каналов, и добавочные потери составляют
от 0,4 до 0,6 добавочных потерь в обмотках без каналов.
Лри этом предельный радиальный размер провода в об­
м отках с радиальными каналами может быть принят на
25-15 % выше полученного из табл. 5.9.
Изменение добавочных потерь в обмотке любого типа с
заданным радиальным размером при изменении радиаль­
ного размера провода видно из следующего примера. В ка­
тушке (витке) из пяти проводов, расположенных в ради­
альном направлении, с радиальным размером каждого про­
вода 10 мм заменили пять проводов десятью проводами с
радиальным размером по 5 мм.
Отношение добавочных потерь стало
D10JD5 = 0,54 -10 2/(1,04 •52) = 6,25/25 = 1/4.
Гл11в11 шестая
РдСЧЕТ О&МОТОК
6.1. РАСЧЕТ 05МОТОК НН
Расчет обмоток трансформатора, как правило, начина­
ют с обмотки НН, располагае-мой у большинства трансфор­
маторов между стержнем и обмоткой ВН. В трехобмоточ­
ном трансформаторе .р_асчет ·обмоток начинают с внутренней
обмотки НН или СН, а затем постепенно переходят к СН
или нн и вн.
Число витков на одну фазу обмотки НН
(6.1)
w1 = ИФ1/(4,44/ВсПс),
ПоJiученное значение w1 округляется до ближайшего це­
лого числа и может быть как четным, так и нечетным.
Для трехфазного трансформатора или однофазного с
параллельным соединением обмоток стержней найденное
по (6.1) значение w 1 является также числом витков на
один стержень. Для однофазного трансформатора с после­
довательным соединением обмоток стержней число витков
на один стержень, как правило, равно половине найденно­
го значения w1. После округления числа витков следует
найти напряжение одного витка, В,
Uв = UФifW1
и действительную индукцию в стержне, Тл,
· Вс = U 1/(4,44/Пс)•
(6.2)
(6.3)'
265
Рис. 6.1. Двухс,1ойная цилиндрическая о б­
мотка из провода прямоугольного сечения
Дальнейший расчет для каждо­
го типа обмоток НН производится
своим особым путем.
1. Расчет двухслойных и одно­
слойных цилиндрических обмоток
из прямоугольного провода. Число
слоев обмотки (рис. 6.1) выбирает­
ся обычно равным двум. Для тран­
сформаторов мощностью на один
стержень до 6-10 кВ-А обмотка
может быть намотана в один слой
и в редких случаях для более мощ­
ных трансформаторов - в три слоя.
Число витков в одном слое:
для однослойной обмотки
(6.4)
W сл1 = W1;
для двухслойной обмотки
(6.4а)
Wcлi = w/2.
Ориентировочный осевой размер витка, м,
(6.5)
hв1 = 1/(Wr,лl + 1).
Ориентировочное сечение витка, мм 2,
п; = l l(J
i
cp ·
10---б),
(6.6)
где Jер - предварительное значение по (5.4) или (5.5).
К полученным значениям п; и hв1 по сортамен�у обмо­
точного провода для трансформаторов (см. табл. 5.2 или
5.3) подбираются подходящие провода с соблюдением сле­
дующих правил:
а) число параллельных проводов n в1 не более,4-6 при
намотке плашмя и не более 6-8 при намотке на ребро;
б) все провода имеют одинаковые размеры поперечно­
го сечения;
в) радиальные размеры всех параллельных проводов
витка равны между собой;
г) радиальные размеры проводов не выходят за пре­
дельные размеры, найденные по формулам, кривым или
266
таблицам § 5.7 по предельному q '(обычно для масляных
трансформаторов q� 1200 Вт/м 2 и в редких случаях q�
� 1400 Вт/м 2 ) или по допустимым добавочным потерям
,(обычно не более 5 %, см. табл. 5.9). В сухих трансформа­
торах следует принимать q�280 Вт/м 2 при классе нагревостойкости изоляции А и 320 Вт/м 2 при классе В;
д) при намотке на ребро отношение радиального раз­
мера провода к осевому его размеру не менее 1,3 и не бо­
лее 3;
е) расчетная высота обмотки (wcл+l)h81 на 5-15 мм
меньше/.
Подобранные размеры провода, мм, записываются так:
Число параллельных проводов Х Размеры провода без изоляц�и
Размеры провода с изоляциеи
или
п81 х а'ахь
ХЬ'
,
Полное сечение витка из ne1 параллельных проводов,
м 2, определяется по формуле
П1 = n81 п; • 10-6,
(6.7)
где П� - сечение одного провода, мм2,
Полученная плотность тока, А/м 2,
(6.8)
Jl = /1/П l.
Осевой размер витка, м, определяется по рис. 6.2
h81 = n 81 Ь', 10--3.
Осевой размер обмотки, м,
(6.9)
11 = h01 (Wсл + 1) + (0,005-+-0,015).
Радиальный размер обмотки _(обозначения по рис. 6.2
и 6.3), м:
однослойной
(6.1О)
двухслойной
(6. J 1)
Радиальный размер канала а1 1 при И1 � 1 кВ выбира­
ется по условиям изоляции не менее 4 мм и проверяется по
условиям отвода тепла по табл. 9.2. Если действительный
радиальный размер провода а равен или меньше полови­
ны предельного размера, найденного по предельному зна267
чению q '(см. выше), то канал между слоями может быть
заменен жесткой междуслойной изоляцией- двумя слоями
электризоляционного картона по 0,5 мм. В этом случае
в ( 6.11) вместо размера канала подставляется толщина
междуслойной изоляции 1 мм.
Рис. 6.2. Определение высоты витка
Рнс. 6.3. К определению радиальных разме,
ров обмотки
В сухих трансформаторах ширину воздушного канала
между двумя слоями обмотки следует принимать по табл.
9.26.
При напряжениях более высоких, чем 1 кВ, цилиндри­
ческая обмотка применяется редко. Междуслойная изоля­
ция при этом определяется согласно§ 4.5.
Внутренний диаметр обмотки, м,
v; = d + 2а01• I0-3•
(6.12)
Наружный диаметр обмотки, м,
D; = D; + 2а1 •
(6. 13)
Ширина ао1 канала между обмоткой НН и стержнем
определяется из условий изоляции обмотки и способа прес­
совки стержня согласно § 4.5 и 4.6. Однослойная обмотка
и двухслойная без охлаждающего канала между слоями
имеют две охлаждаемые поверхности. Полная охлаждае­
мая поверхнрсть обмотки НН, м2 , для всего трансdюрматора в этом случае
(6.14)
поl = ckз n (D; + D;) l l .
Двухслойная обмотка с каналом между слоями шири268
ной не менее, чем указано в табл. 9.2, имеет четыре охлаж­
даемые поверхности
(6.15)
по)= 2cfiзn (D� + D;) ll ,
где с - число активных (несущих обмотки) стержней.
Коэффициент kз учитывает закрытие части поверхности
обмотки рейками и другими изоляционными деталями.
При предварите.'!ьном расчете может быть принято kз =
=0,75.
После определения потерь короткого замыкания для
обмотки НН (см.§ 7.1) следует найти плотность теплового
потока, Вт/м2 , на поверхности обмотки
(6.16)
ql = Росн kд/По1
или по (7.17) или (7.17а).
Полученное значение q во избежание чрезмерного по­
вышения температуры обмотки необходимо выдерживать
в пределах, указанных в§ 5.7.
Цилиндрическая обмотка из прямоугольного провода
для стороны НН может быть намотана и в три-четыре слоя.
Расчет такой обмотки проводится так­
же по (6.1) - (6.16) с учетом дейст­
вительного числа слоев и внесения
соответствующих поправок в (6.4),
(6.11) и (6.15).
2. Расчет винтовой обмотки (рис.
6.4). Выбор одноходовой или двуххо­
довой (многоходовой) обмотки зави­
сит от осевого размера (высоты) одно­
го витка, м, ориентировочно определя­
емого по формулам:
для одноходовой обмотки
(6.17)
для двухходовой обмотки с равно­
мерно распределенной транспозицией
(6.18)
Рис. 6.4. Одноходовая винтовая параллельная
обмотка с тремя транспозициями
269
где hк1 - осевой размер масляного охлаждающего канал&
между витками. Ориентировочно значение hк1 может быть
принято равным hк i �0,la,, но не менее 0,004 м _(4 мм),
где а 1 - радиальный размер обмотки НН, приближенно
опредеденный по (3. 71).
Максимадьный возможный осевой размер витка одно­
ходовой обмотки равен максимальному размеру обмоточ­
ного провода в изоляции, т. е. не может превышать 16,5 мм
ддя медного и 18,5 мм для адюминиевого провода. Поэто­
му при получении по .(6.17) hв,�0,0165 м _(16,5 мм) для
медного провода и hв1 �0,0185 м (18,5 мм) для адюмини­
евого следует применять одноходовую обмотку. При полу­
чении по этой формуле 0,035 + О,045� h"1 � 0,0155 +
+О,0185 м (т. е. 35+45�hв1 �15,5+ 18,5 мм) по аналогич­
ным соображениям может быть применена двухходовая
обмотка. Более точное определение hв1 в этом случае дает
формула (6.18). В сравнительно редких случаях, напри­
мер для трехфазного трансформатора мощностью
1600 кВ• А при напряжении НН 400 В и токе обмотки фа­
зы НН 2309 А, может быть применена четырехходовая об­
мотка.
Ориентировочное сечение витка П1 находится по (6.6).
После определения числа ходов обмотки следует прове­
рить полученный осевой размер витка hв1 по допустимой
плотности теплового потока на поверхности обмотки q по
.(5.6) ИJIИ (5.7) или графикам рис. 5.34. Если найденный
осевой размер витка hв1 составляет не более половины Ь,
найденного по этим формулам или графикам, то в однохо­
довой обмотке можно сделать радиальные каналы через
два витка. В двухходовой обмотке масляный канал между
двумя группами проводов витка можно заменить проклад­
кой с толщиной 2ХО,5 мм, если hв1 -hк1 �Ь.
В том случае, когда плотность тока в медном проводе
обмотки не превышает 2,2-106+2,5• 106 А/м2 и в алюмини­
евом l,4• 106 + 1,8-106 А/м2 , возможно применение винто­
вой обмотки без радиальных каналов с плотным прилега­
нием витков. Высота одного витка такой обмотки может
быть найдена по (6.17) или (6.18) при hк, =0.
Если по (6.17) hв i�0,0155 м (15,5 мм) для медного или
hв1 �0,0185 м (18,5 мм) для алюминиевого провода, то воз­
можна одноходовая обмотка. При получении по (6.18)
0,031+0,037�hв 1�0,0l55+0,0l85
(31+37�h.,�
м
� 15,5+18,5 мм) следует принять двухходовую конструк­
цию.
270
Возможность применения этой обмотки определяется
ло § 5.7. По (5.6) или (5.7) находится общий предельный
радиальный размер металла проводов Ь при q = 1200-;1400 Вт/м 2 и k з= О,8. Число и радиальные размеры про­
водов витка (половины витка в двухходовой обмотке)
должны быть выбраны так, чтобы сумма их радиальных
размеров не была больше Ь-10 3 , мм, а радиальный размер
каждого провода, мм, не превосходил значение, найденное
по табл. 5.9 при выбранном числе проводов и принятом
уровне добавочных потерь.
В этом случае, когда радиальный размер одноходовой
обмотки без радиальных каналов оказывается существен­
но больше размера Ь, найденного по допустимому q, воз- .
можно применение двухходовой двухслойной винтовой об­
мотки с последовательным соединением слоев и осевым
масляным каналом между слоями шириной около 0,0ll.
При относительно большом числе витков возможно также
применение одноходовой двухслойной обмотки.
После окончательного выбора конструкции обмотки к
полученным ориентировочным значениям П; • 10-6 и h в 1 Х
Х 10-3 по сортаменту обмоточного провода (табл. 5.2 и
5.3) подбираются подходящие сечения провода с соблюде­
нием следующих требований:
1) минимальное число параллельных проводов в одно­
ходовой обмотке четыре, в двухходовой - восемь;
2) все параллельные провода имеют одинаковые разме­
ры и площадь поперечного сечения;
3) в обмотке с радиальными каналами больший размер
провода не выходит за предельный размер, найденный по
(5.6) или (5.7) или по графикам рис. 5.38 по предельно
допустимому значению q;
4) в обмотке без радиальных каналов радиальный раз­
мер и число проводов в радиальном направлении выбраны
с учетом допустимого значения q и допустимого уровня
добавочных потерь;
5) расчетная высота обмотки при выбранных размерах
проводов и радиальных каналов равна предварительно
рассчитанному значению.
Подобранные размеры проводов, мм, записываются
так:
Размеры провода без изоляции
Число параллельных проводов Х --�-�------­
а,Ь
Размеры провода в изоляции
ИЛИ nв1Х�·
271
Полное сечение витка, м2 ,
5
(6. 19)
= n81 п;, JQ- ,
где п; - сечение одного провода, мм2 , по табл. 5.2 и 5.3.
Плотность тока, А/м 2 ,
(6.20)
J = !/П1 .
Осевой размер витка hв1 и радиальный размер обмотки
для одно- и двухходовой обмоток определяются по рис. 6.5.
fl 1
а
а,
� 11�1�1�1�1�1 �1 · � � Ш:'J fi!Ш �J�r@�l�l�I ,� ��о� ,����,���
==t::"C>
a•l=
а,
а)
....,
-
а,
� ���
- --
rJJ
�����
о'
гJ
Рис. 6.5. Определение осевого размера nитка и рад11ального размера
для винтовой обмотки
Осевой размер (высота ) обмотки, опрессованной после
сушки трансформатора, l1, м, определяется по следующим
формулам:
для одноходовой обмотки (рис. 6.5, а) с тремя транс­
позициями
(6.21)
l1 = Ь', }О-3 (w1 + 4) + khи (w1 + 3 ) · 10-3;
для одноходовой обмотки с каналами через два витка
:(рис. 6.5,6) и с тремя транспозициями
l1 =b'-I0- 3 (w1+4)+k[hи (�1 +2)+б �1 10-зJ, (6.22)
где б - толщина прокладки между сдвоенными В{-lтками,
обычно равна 1-1,5 мм;
272
для двухходовой обмотки с равномерно распределенной
транспозицией по рис. 6.5, в
(6.23)
11 = 2Ь' • 10-3 (w1 + l) + kh и(2w1 + l) •10-3;
для двухходовой обмотки без канала между двумя
группами проводов по рис. 6.5, г
11 = 2Ь' · I 0-3(w1 + 1) + k lhи w1 + б (w1 + l) • I0-3]. (6.24)
Коэффициент k в (6.21)-(6.24) учитывает усадку меж­
дукатушечных прокладок после сушки и опрессовки об­
мотки и может быть принят 0,94-0,96.
Осевой размер обмотки без радиальных каналов, одно­
ходовой и двухходовой, может быть найден по формуле
(6.21) или (6.23) при hк=О.
Радиальный размер обмотки а;, мм, определяется по
рис. 6.5.
Внутренний диаметр обмотки, м,
v; = d + 2а01 • I0-3,
(6.25)
где ао ,, мм, по табл. 4 . 4 .
Наружный диаметр обмотки, м,
v; = v; + 2а;. 10-3•
(6.26)
Ширина а о 1 канала между обмоткой НН и стержнем
определяется из условий изоляции обмотки и способа прес­
совки стержня согласно § 4.5 и 4.6. После определения по­
терь короткого замыкания ( см. § 7.l) следует найти плот­
ность теплового потока на поверхности обмотки q по
(7.19)-(7.19в) для обмотки с радиальными каналами или
по (7.17) или (7.17а) для обмотки без радиальных кана­
лов и сравнить полученное q с допустимыми значениями.
Расположение транспозиций по длине обмотки опреде­
ляется числом витков, которые следует отсчитать при ее
намотке от начала до середины каждой транспозиции. В
обмотке с сосредоточенной транспозицией групповые транс­
позиции размещаются на ¼w 1 и ¾w 1 от начала обмотки,
общая транспозиция располагается на 2/ 4 w 1• В двухходо­
вых обмотках с равномерно распределенной транспозицией
общее число транспозиций принимается равным числу па­
раллельных проводов п 01 или 2п 01 • Первая транспозиция
располагается соответственно на расстоянии w 1 /(2n n 1) и.rrи
W 1 /4n в1 витков от начала намотки, а все последующие на
интервалах w 1 /n81 или w 1 (2n01 ) витков между соседними
транспозициями. Интервалы, на которых располагаются
18-510
273
транспозиции, могут быть выражены целым числом витков,
простой и.,1и смешанной дробью. Для удобства отсчета ин­
тервалов в процессе намотки обмотки знаменателем дроби
должно быть число реек по окружности обмотки. Транспо­
зиции в винтовой обмотке без радиальных каналов рассчи­
тываются так же, как и в обмотке с каналами. В однохо­
довой двухслойной обмотке не менее трех транспозиций
должны быть сделаны в каждом слое.
6.2. РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ ОБМОТОК ВН
При выборе типа обмотки ВН следует учитывать необ­
ходимость выполнения в обмотке ответвлений для регутr­
рования напряжения. В ГОСТ 16110-82 предусмотрены два
вида регулирования напряжения силового трансформато­
ра: а) регулирование напряжения переключение�1 ответв­
лений обмотки без возбуждения (ПБВ) после отключения
всех обмоток трансформатора от сети; б) регулирование на­
пряжения без перерыва нагрузки _(РПН) и без отключения
обмоток трансформатора от сети.
а) В масляных трансформаторах мощностью от 25 до
200 ООО кВ, А с ПБВ, ГОСТ 12022-76� 11920-85 и 12965-85,
предусмотрено выполнение в обмотках ВН (и СН) четы­
рех ответвлений на +5; +2,5; -2,5 и -5 % номинального
напряжения помимо основного зажима с номинальным на­
пряжением. Повышающие трансформаторы, например
трансформатор 250 ООО кВ-А класса напряжения 110 кВ,
могут вообще не иметь ответвлений. Переключение ответв­
лений обмоток должно производиться специальными пе­
реключателями, встроенными в трансформатор, с выведен­
ными из бака рукоятками управления.
Часто применяемые схемы размещения регулировочных
ответвлений в трансформаторах с ПБВ показаны на рис.
6.6. В трехобмоточных трансформаторах регулирование
напряжения может быть предусмотрено также и на обмот­
ке СН.
б) В сухих трансформаторах применяется реrуJiирова­
ние напряжения ВН на +2Х2,5 % по схеме рис. 6.6, г. Ре­
гулировочные ответвления выводятся на доску зажимов,
и пересоединение с одной ступени на другую осуществля­
ется при отключении всех обмоток трансформатора от се­
ти перестановкой контактной пластины, зажимаемой под
гайки контактных шпилек.
На рис. 6.6 показаны наиболее употребительные схемы
274
А
nп
х,
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
Xz
i
1
1
1
1
1
1
1
1
1
1 1 1
1
1
I
I
1
1
1
1
1
А
А
А
u
а)
Рис. 6.6. Различные схемы выполнения ответвлений в обмотке ВН при
регулировании напряжения без возбуждения ПБВ
выполнения регулировочных ответвлений в обмотке одной
фазы высшего или среднего напряжения трансформаторов
и стандартные обозначения начал, концов и ответвлений
обмоток ВН. Схемы регулирования напряжения вблизи
нулевой точки при соединении обмотки в звезду по рис.
6.6, а - в допускают применение наиболее простого и де­
шевого перек.ТJючателя - одного на три фазы трансформа­
тора. В этих схемах рабочее напряжение между отдельны­
ми частями переключателя не превышает 10 % линейного
напряжения трансформатора. В схеме рис. 6.6, г часто
применяют отдельные переключатели для обмотки каждой
фазы трансформатора. Выполнение одного трехфазного
переключателя по схеме рис. 6.6, г. представляет некоторые
трудности, так как рабочее напряжение между отдельны­
ми его частями может достигать 50 % номинального на­
пряжения обмотки, однако и такие переключатели нахо­
дят широкое применение.
Схема рис. 6.6, а для регулирования напряжения при
многослойной цилиндрической обмотке применяется в
трансформаторах мощностью до 160 кВ-А. В трансформа­
торах мощностью от 250 кВ• А и выше механические силы,
действующие на отдельные витки при коротком замыка­
нии трансформатора _(см. § 7.3), могут быть опасными и
�во
275
регулировочные витки обмотки ВН, обычно располагаемые
в ее наружном слое, рекомендуется размещать симметрич­
но относительно середины высоты обмотки, например по
схеме рис. 6.6, 6. Намотка регулировочных витков произ­
водится тем же проводом и с тем же направлением _намот­
ки, что и основных витков обмотки.
По схеме рис. 6.6, в может выполняться регулирование
напряжения при многослойной цилиндрической катушеч­
ной и непрерывной катушечной обмотке при номинальном
напряжении до 38,5 кВ. При этом одна половина обмотки
мотается правой, а другая левой намоткой. Схема
рис. 6.6, г может применяться для тех же обмоток, что и
схема рис. 6.6, в, при номинальном напряжении от 3 до
220 кВ.
При соединении обмотки ВН в треугольник задача
расположения регулировочных витков усложняется. В схе­
мах регулирования рис. 6.6, а и 6 регулировочные витки
каждой обмотки фазы присоединяются к линейному зажиму
соседней фазы и рабочее напряжение между контактами
различных фаз на переключателе достигает 100 % номи­
нального напряжения обмотки. Для многослойных
цилиндрических обмоток это неизбежно. Непрерывная кату­
шечная обмотка при соединении в треугольник с располо­
жением регулировочных витков по схеме рис. 6.6, г допус­
кает применение переключателей тех же типов, что и при
соединении в звезду. Схема рис. 6.6, в при соединении об­
мотки в треугольник не применяется.
При регулировании напряжения по схеме на рис. 6.6,
в и г в месте разрыва обмотки в середине ее высоты обра­
зуется изоляционный промежуток в виде горизонтального
радиального масляного канала. Иногда этот канал запол­
няется набором шайб, изготовленных из электроизоляци­
онного картона. Размер этого промежутка по схеме рис.
6.6, в определяется половиной напряжения фазы обмотки,
а при схеме по рис. 6.6, г - примерно 0,1 напряжения фа­
зы. Увеличение этого промежутка нежелательно, так как
приводит к существенному увеличению осевых механичес­
ких сил в обмотках при коротком замыкании, возрастаю­
щих также и с ростом мощности трансформатора. Именно
это обстоятельство ограничивает применение схемы рис.
6.6, в напряжением не свыше 38,5 кВ и мощностью не бо­
лее 1000 кВ-А. Размер изоляционного промежутка в мес­
те разрыва обмотки и его заполнение определяются в соот­
ветствии с указаниями § 4.5.
276
Регулировочные ответвления на обмотках ВН (или
СН) с.�ужат обычно для поддержания напряжения у по­
требителей электрической энергии на одном уровне при
колебаниях нагрузки. В меньшей мере регулировочными
ответвлениями пользуются для какого-либо произвольного
изменения вторичного напряжения. У понижающих транс­
форматоров при необходимости повысить или понизить
напряжение на вторичной стороне НН следует на первич­
ной стороне ВН переходить соответственно на меньшее
или большее число витков. У повышающих трансформато­
ров переходят на большее или меньшее число витков об­
мотки ВН в соответствии с необходимостью повысить или
понизить напряжение на вторичной стороне ВН. Поддер­
жание стабильного напряжения при постоянно изменяю­
щейся нагрузке при необходимости перерыва нагрузки и
ручном управлении переключателями чрезвычайно за­
труднительно, так как требует много времени и не может
быть автоматизировано.
Для повышения гибкости и удобства управления крупными электри­
ческими сетями и системами большое значение имеет возможность ре­
гулирования напряжения 1рансформаторов без перерыва нагрузки и
отключения трансформатора от сети при дистанционном ручном и,1и
автоматическом управлении, т. е. регулирование под нагрузкой. В со­
ответствии с потребностью в трансформаторах РПН ГОСТ предусмотрен
их выпуск наряду с трансформаторами ПБВ и трансформаторами без
регулирования напряжения.
Трансформаторы мощностью 400 и 630 кВ-А классов напряжения 10
и 35 кВ могут выпускаться с устройствами РПН по согласованию меж­
ду потребителем и изготовителем. Для других трансформаторов уста­
навливаются следующие предеды регулирования:
Двухобмоточные трансформаторы
1000-6300 кВ-А, 20 и 35 кВ . . . . .
2500 кВ-А, 110 кВ, РПН на стороне НН
6300-125 000 кВ-А, 110 кВ . .
±6Х 1,50 = ± 9%
+10 Х 1,50= 15%
-SXl,50=-12%
±9Х 1,67= ± 16%
Трехобмоточные трансформаторы
6300 кВ•А, 35 кВ . . . . . .
10 000-16000 кВ-А, 35 кВ • .
6300-80 000 1<В·А, 110 кВ . . .
±6Х 1.50 = ± 9 %
± 8 Х 1,50 = 12 %
± 9 Х 1,67 = 16%
Наиболее употребительные схемы для регулирования напряжения под
нагрузкой показаны на рис. 6.7. Трансформаторы с напряжением ВН
10 кВ мощностью до 6300 кВ-А и 35 кВ до 16000 кВ-А могут выпол­
няться с РПН по схеме рис. 6.7, а. Аппаратура РПН в обмотках клас-2 77
са напряжения 110 кВ имеет класс напряжения 35 кВ и встраивается
в нейтраль этих обмоток (рис. 6.7, 6). Нейтраль должна быть заземлена
наглухо. Схема устройства по рис. 6.7, в обычно применяется при pery.
лировании напряжения на линейном конце обмотки. Не исключено ее
использование при регулировании в нейтрали.
oJ
Кточ/(е V
-=-
81
Ьх
Рис. 6.7. Схемы регулирования напряжения под нагрузкой при различ•
ных классах напряжения обмотки:
а - до 35 кВ; б - 110 кВ; в - 110 кВ и выше
Рис. 6.8. Схема устройства переключения под нагрузкой с токоограничи•
вающим реактором и последовательность операций при переходе с од­
ной ступени на другую
На рис. 6.8 показаны схе:11а переключающего устройства и порядок
перехода с одной ступени напряжения - ответвления Х3 - на другую
Х4 без перерыва рабочего тока.
Устройство по рис. 6.7, а может быть сделано для к.�асса напряже­
ния не бо,1ее 35 кВ. Это устройство при регулировании напряжения у
нейтрали по рис. 6.7, 6 может применяться также в обмотке классов
напряжения 110 и 220 кВ. Для регулирования напряжения у линейного
конца обмотки, что особенно важно дJIЯ автотрансформаторов, может
быть использовано быстродействующее устройство по рис. 6.7, в. Ток
278
короткого замыкания участка обмотки между соседними ответвлениям��
при переходе с одной ступени на другую в устройствах по рис. 6.7, а и б
ограничивается реактором, по рис. 6.7, в - резисторами. Время проте­
кания ограниченного тока короткого замыкания в схеме рис. 6.7, а и б
составляет около 1 с, в схеме рис. 6.7, в измеряется сотыми долями се­
кунды. Общее время перехода с одной ступени на соседнюю в том и
другом случае около 3 с.
В трансформаторах класса напряжения до 35 кВ включительно при
мощностях до 6300 кВ• А возможно применение несколько упрощенной
схемы рис. 6.7, а, но без выключателей В 1 и В2, В этом случае переход
с одной ступени на другую совершается в два приема: с положения 1
на положение 3 и затем на 5 по рис. 6.8. При этой схеме переключате­
ли П1 и П2 должны располагаться в отдельном баке, масло которого не
сообщается с маслом в баке трансформатора.
При регулировании напряжения на катушечных обмотках ВН, да•
же при переключении без возбуждения с регулированием в пределах
±5 %, во время работы трансформатора на низшей ступени напряжения
10 % витков обмотки ВН отключаются и в этой части обмотки возни­
кает небаланс токов ВН и НН. Вследствие этого существенно возраста­
ют поперечная составляющая поля рассеяния и осевые механические
снлы при коротком замыкании трансформатора. В значительно большей
сте I,Jенн на осевых силах сказывается отключение части витков обмотки
ВНпри регулировании без перерыва нагрузки в пределах ± (12-16) %.
Для повышения динамической стойкости обмоток при коротком за•
мыкании обычно принимаются меры, направленные на уменьшение осе­
вых сил и усиление конструкции обмоток в механическом отношенни.
Для уменьшения осевых сил в трансформаторах с ПБВ рекомендуется
в обмотке НН на участках, находящихся ыа одном уровне с регулиро·
вочной частью обмотки ВН, т. е. обы-1но в середине высоты обмоТl(И,
делать разгон витков на половину высоты зоны регулирования.
В трансформаторах РПН регулировочную обмотку, т. е. часть об­
мотки ВН (СН), имеющую ответвления, переключаемые при регулиро­
вании напряжениn, ре1<0мендуется выпо.,нять в форме цилиндра, рас­
положенного концентрически с основной частью обмотки снаружи ее и
имеющего ту же высоту. Витки, создающие напряжение каждой ступе­
ни от 1,25 до 1,67 % номинального напряжения, располагаются в один
слой равномерно по всей высоте обмотки. Поэтому включение или от­
ключение одной или несколькнх ступеней не создает небаланса токов
на отдельных участках обмоток ВН и НН. Выполнение регулировочной
обмотки возможно в виде винтовой или многослойной цилиндрической,
где каждый провод или слой образует одну ступень.
Возможна разли•шая компоновка отдельных частей регулировочной
обмотки. На рис. 6.9, а показана схема простой регулировочной обмот1(и.
Схема позволяет регулировать напряжение шестью ступенями обмотки
279
тонкого регулирования 3, включаемыми последовательно с основной
частью обмотки J. На рис. 6.9, б представлена схема регулировочной
обмотки, состоящей из двух частей - обмотки грубого регулирования 2,
рассчитанной на сумму напряжений нескольких ступеней (обычно на
половину общего числа ступеней), и обмотки тонкого регу;шрования 3,
\_._
А
А
А
1
1 2
3
3
3
х
а)
о)
х 8)
Рис. 6.9. Схемы расположения основной и регулировочной частей об­
мотки ВН в трансформаторах с РПН:
- основнаи обмотка; 2 - обмотка грубого регулирования; З - обмотка тонкого
регулирования
J
имеющей раз,11.е,1ьные ступени. Регулирование напряжения осуществля­
ется путем включения двух этих обмоток или только обмотки тонко1·0
регулирования при различных положениях переключателей.
Схема обмотки рис. 6.9, в позволяет выполнить регулировочную об­
мотку с половинным числом ступеней и реверсированием ее включения
обеспечить регулирование напряжения в полном диапазоне.
При всех трех схемах число витков обмотки ВН (СН) остается
одинаковым и преимущества по расходу обмоточного провода ни одна
из них не имеет. В схемах рис. 6.9, б и в несколько упрощается изго•
товление обмотки тонкого регулирования, но при схеме рис. 6.9, в уве­
дичпваются потери при работе на нижних ступенях.
Усиление механической прочности обмоток достигается установкой
в ярмовой изоляции опорных колец, склеенных из картонных шайб,
прошивкой междукатушечных прокладок снаружи обмоток картонными
рей1<ами, прессовкой обмоток в осевом направлении нажимными коль­
цами и некоторыми технологическими операциями - предваритедыюil
опрессовкой картонных деталей обмотки, опрессовкой обмоток во время
11 1юс.1е сушки и др.
280
Применен11е широкого регулирования напряжения, существенно
усложняя и удорожая трансформатор (усложнение обмоток, аппарату­
•Jа регулирования и т. д.), приводит к увеличению расхода метал,qа об­
моток, а также размеров и массы магнитной системы.
6.3. РАСЧЕТ ОБМОТОК ВН
Расчет обмоток ВН начинается с определения числа
витков, необходимого для получения номинального напря­
жения, для напряжений всех ответвлений. Число витков
при номинальном напряжении определяется по формуле
И Ф2
W н2= Wi-ИФ1
(6.27)
Число витков на одной ступени регулирования напряжения при соединении обмотки ВН в звезду
(6.28)
= ЛИ/(и в Vз),
где ЛИ - напряжение на одной ступени регулирования об­
мотки или разность напряжений двух соседних ответвле­
ний, В; и. - напряжение одного витка обмотки, В.
Обычно ступени регулирования напряжения выполня­
ются равными между собой, чем обусловливается также и
равенство числа витков на ступенях. В этом случае число
витков обмотки на ответвлениях:
Wp
При двух ступенях:
верхняя ступень напряжения .... w 2= Wв2+ w p ;
при номинальном напряжении: Wн 2;
нижняя ступень напряжения .... Wиr-Wp
На четырех ступенях:
верхние ступени напряжения .... W2=Wн2+2w 1, , w"2+wp ;
при номинальном напряжении: Wв2
нижние ступени напряжения .... Wиr-Wp, Wн:r-2Wp.
(6.29)
(6.30)
(6.3 J)
(6.32)
Для трехфазного трансформатора или однофазного с
параллельным соединением обмоток двух стержней на:1денное число витков Wн2+wp или Wн2+2wp является чис­
лом витков на один стержень. В однофазном трансформа­
торе с последовательным соединением обмоток двух стерж­
ней на одном стержне располагается половина этого числа
витков.
Осевой размер обмотки ВН 12 принимается равным ра­
нее определенному осевому размеру обмотки НН 1 1 •
281
Плотность тока, А/м2 , в обмотке ВН предварительно оп­
ределяется по формуле
J2 �2Jcp -J1 •
(6.33)
В тех случаях, когда потери короткого замыкания Рк
не заданы, для выбора плотности тока можно руководст­
воваться табл. 5.7.
Сечение витка обмотки ВН, мм2 , предварительно опре­
деляется по формуле
п; = li(J2• 10-6).
(6.34)
После того как обмотка ВН рассчитана и размещена на
стержне, для предварительной оценки ее нагрева опреде­
ляется плотность теплового потока на ее охлаждаемой по­
верхности, Вт/м2 , по формуле
q2 _
- Росн2 kд2,
По2
(6.35)
или по (7.19)- (7.l 9в). Полученное q не должно быть бо­
лее допустимого по§ 5.7.
Расчет мноrослойной цилиндрической обмотки
из круrлоrо провода (рнс. 6.10)
Ориентировочное сечение витка л; определяется по
(6.3 4). По этому сечению и сортаменту обмоточного про­
вода для трансформаторов ( см. табл, 5.1) подбирается
провод подходящего сечения или в редких случаях два
параллельных одинаковых провода с диаметрами провода
без изоляции d2 и провода в изоляции d�, мм. Подобран­
ные размеры провода записываются так:
Марка провода х n82 х
где
d
+
, мм,
d2
nв2 - число параллельных проводов.
Полное сечение витка, м 2,
п2 = пв2 п;.10-5,
где
2ь2
П; - сечение одного провода,
(6.36)
мм2 •
Полученная плотность тока, А/м 2,
12 = lz!П2.
(6.37)
Рис. 6.10. Многослойная цилиндриче•
екая обмотка из провода круглого се•
чення
Число витков в слое
Wсл2 = 12 • 103/(n02 d;)- 1. (6.38)
Число слоев в обмотке
(6. 39)
nсл2 = w21Wcл2
(псл2 округляется до ближай­
шего большего числа).
Рабочее напряжение двух
слоев, В,
(6.40)
По рабочему напряжению
двvх с.1оев по табл. 4.7 в соотв::тствии с указаниями § 4.5 выбираются число слоев и
общая толщина бмсл кабельной бумаги в изоляции между
двумя слоями обмотки.
В большинстве случаев по условиям охлаждения об­
мотка каждого стержня выполняется в виде двух конце нт­
рических катушек с осевым масляным каналом между ни­
ми. Число слоев внутренней катушки при этом должно со­
ставлять не более 1/3-2/5 общего числа слоев обмотки.
В случае применения этого типа обмотки на стороне НН
между двумя цилиндрами числа слоев внутренней и на­
ружной катушек делаются равными.
МинимаJ1ьная ширина масляного канала между катушками а�2 выбирается по табл. 9.2. В трансформаторих
мощностью на один стержень не более 3-6 кВ• А возмож­
но применение обмотки, состоящей из одной катушки без
осевого канала.
Радиальный размер обмотки, м:
одна катушка без экрана
·,,
.
а2 = [ d:псл2 -1-- бмсл (ncJ12 - l)] JО-З;
(6. 4 1)
две катушки без экрана
а2 = [d; пс"2 + бмсл ( nCJI� -- 1) +а�]. \ о--3.
(6.42)
В обr,юп<ах классов напряжений 20 и 35 кВ под внут­
ренним с.11оем обмотки устанавливается металлический эк283
ран - незамкнутый цилиндр из алюминиевого листа толщи­
ной 0,5 мм. Экран соединяется электрически с линейным
концом обмотки (начало внутреннего слоя) и изолируется
от внутреннего слоя обмотки обычно междуслойной изо­
ляцией. Такая же изоляция экрана устанавливается со сто­
роны масляного канала.
При наличии экрана радиальный размер обмотки опре­
деляется по формуле
(6. 43)
a2dl<P = а2 + lбэир + 2бм сл! · 10-З,
где а 2 определяется по (6. 41) или (6.42); б эк р =О,5 мм;
б мсл по табл. 4.7.
Для рабочего напряжения 35 кВ можно принять допол­
нительное увеличение радиального размера обмотки за
счет экрана и двух слоев междуслойной изоляции на 3 мм.
Минимальный радиальный размер а; 2 , мм, осевого ка­
нала между обмотками НН и ВН и толщина изоляцион­
ного цилиндра выбираются по испытательному напряже­
нию обмотки ВН согласно § 4 .5 для масляных и § 4.6 для
сухих трансформаторов.
В обмотках с экраном радиальный размер а2экр, опре­
деленный по (6.43), принимается в расчет только при оп­
ределении размеров обмотки. При подсчете ЭДС рассея­
ния для этих обмоток следует в расчет вводить размер а2,
определенный по (6.41) или (6. 42), и соответственно уве­
личивать расчетную ширину масляного канала между об­
мотками, т. е. принимать
а12экр = ( а;2 + <\и + 2бмсл ) • 10- 3.
(6.44)
р
Внутренний диаметр обмотки (при наличии экрана - до
его внутренней изоляции), м,
v; = v; + 2а12.
(6.45)
Наружный диаметр обмотки:
без экрана
(6.46)
с экраном
(6. 47)
Изоляционное расстояние между наружными обмотка­
ми соседних стержней а22 =а;2 . 10-з, где а�, мм, находит­
ся по табл. 4.5 для масляных и по табл. 4.15 для сухих
трансформаторов.
284
Поверхность охлаждения, м 2 ,
П02 = cnkn (D; + D;) 12 ,
( 6.48)
где с- число стержней магнитной системы.
Для одной катушки, намотанной непосредственно на
цилиндр, по рис. 5.22, а n= 1,0; D;=O; k= 1,0.
Для одной катушки по рис. 5.22, б n= 1,0; k=0,88.
Для двух катушек по рис. 5.22, г n= 1,�; k=0,83 и по
рис. 5.22, д n=2; k=0,8.
Коэффициент k в (6.48) учитывает закрытие части по­
верхностей обмотки изоляционными деталями и число
внутренних и наружных поверхностей. Для внутренних
поверхностей k=0,75. Для наружной поверхности при сво­
бодном доступе охлаждающего масла k= l,0. При приме­
нении этого типа обмотки на стороне НН (внутренняя об­
мотка, рис. 5.22, в) в _(6.48) надлежит принимать k=0,75;
n=2.
Расчет мноrосnойной цнnнндрнческой обмотки
нз прямоуrоnьноrо провода
Этот тип обмотки (рис. 6.11) может применяться в ка­
честве обмотки ВН (в некоторых случаях НН) в масляных
трансформаторах классов напряжения 10 и 35 кВ мощностью от l ООО кВ -А и более. После определения 1 2, П � и J2
необходимо выбрать один или два-три параллельных провода с общим сечением П; так, чтобы плотность теплового
потока на охлаждаемой поверхности обмотки q не превы­
сила предельно допустимое значение q=1200+ 1400 Вт/м2
J
Рис .. 6.1 !. Разрез торцовой
части многослойной цилинд­
рической обмотки из прово•
да прямоугольного сечения:
1 - провод обмотки; 2 - элект­
ростатическиn экран; 3 - буопорное
мажно-бакелитовое
кольцо слоя; 4 - междуслойная
изоляция иэ кабельной бумаги;
5 - рейка иэ электроиэоляциои•
1юго картона
'1
/
285
и добавочные потери не вышли за принятый уровень (от 5
до 20 %).
Общий суммарный радиальный размер проводов, м, не­
обходимый для получения полного сечения всех витков об­
мотки, для обмотки ВН
Ь = w 2 П2/(l2 k0c),
(6.49)
где koc -средний коэффициент, учитывающ ий изоляцию
проводов в осевом направлении обмотки, который может
быть принят 0,92 дл-я медного и 0,93 для алюминиевого
провода; П2 =П�- 10-6• Для обмотки НН в (6.49) подставляется число витков w 1•
Если найденный суммарный размер Ь окажется боль­
ше размера, допустимого по плотности теплового потока по
(5.6) или
(5.7), то обмотку следует разделить на две или три
_
концентрические катушки так, чтобы у каждой из них
суммарный размер был не больше допустимого. Ширина
каждого осевого канала между катушками должна быть
равна O,Ol/2, но не менее 5 мм. При расчете по (5.6) или
.(5.7) для обмотки ВН следует принимать k з =О,8 и для
обмотки НН k 3=0,75.
Радиальный размер провода а и число слоев обмотки
nсл 2 должны быть выбраны п ри помощи табл. 5.9 так, что­
бы добавочные потери в обмотке не вышли за принятый
уровень. Например, при алюминиевом проводе, добавочных
потерях до 5 % и суммарном радиальном размере проводов
Ь=О,03 м или 30 мм при числе слоев от одного до шести
радиальный размер провода а=Ь/nсл2 будет изменяться от
30/1 =30 до 30/6=5 мм. При таком числе слоев и разме­
рах проводов согласно табл. 5.9 получить добавочные по­
тери в пределах до 5 % невозможно. При семи- десяти
слоях радиальный размер провода будет изменяться от
30/7=4,3 до 30/10-=3 мм и добавочные потери в пределах
до 5 % возможны. Изменение числа слоев при расчете лег­
ко достигается путем варьирования соотношения размеров
поперечного сечения провода при заданной его площади.
Реальные сечения проводов подбираются по табл. 5.2 и
записываются так:
Марка провода Х Число проводов Х Размеры провода без изоляции ;
Размеры провода в изол�ции
или
а·Ь
Марка проводаХn в 2 • -- .
а' ·Ь'
286
Полное сечение витка, м 2 ,
п2 = пв2п;.10 б.
Полученная плотность тока, А/м2 ,
Число витков в слое
J2 = lzfПz.
W л
с 2
= _lz_ 103 - 1 •
nв2 Ь'
(6.50)
(6.51)
(6.52)
Число слоев в обмотке
(6.53)
n0л2 = wzlwcлz
,(nсл 2 округляется до ближайшего большего числа).
Рабочее напряжение двух слоев, В,
(6.54)
Имел = 2w0л 2 U8•
По рабочему напряжению двух слоев по табл. 4.7 в со­
ответствии с указаниями § 4.5 выбираются число слоев и
общая толщина 6мсл кабельной бумаги в изоляции между
двумя слоями обмотки.
В обмотках классов напряжения 20 и 35 кВ под внут­
ренним слоем обмотки устанавливается металлический эк­
ран - незамкнутый цилиндр из листа немагнитного метал­
ла толщиной 0,5 мм. Экран соединяется электрически с ли­
нейным концом обмотки (начало внутреннего слоя) и
изолируется от внутреннего слоя обмотки обычной между­
слойной изоляцией. Такая же изоляция экрана устанавли­
вается со стороны масляного канала.
Радиальный размер обмотки без экрана, м,
а2 = [а' псл 2 + 6мсл (псл 2 - 1) + а� пк] · I0 -3,
(6.55)
где а22 - радиальный размер канала, мм; n к - число осе­
вых каналов.
Радиальный размер обмотки с экраном, м,
(6.5 6)
а2311 р = а2 + 0,003,
где для классов напряжения 20 и 35 кВ принято увеличе­
ние радиального размера обмотки за счет экрана и двух
слоев междуслойной изоляции на 0,003 м ( 3 мм).
Минимальный радиальный размер а12 осевого канала
между обмотками НН и ВН и толщина изоляционного ци­
линдра выбираются по испытательному напряжению об­
мотки ВН и мощности трансформатора согласно § 4.5 для
масляных трансформаторов.
287
В обмотках с экраном радиальный размер а2экр, опре­
деленный по (6.56), принимается в расчет только при оп­
ределении размеров обмотки. При расчете ЭДС рассеяния
для этих обмоток следует в расчет вводить размер а2, оп­
ределенный по _(6.56), и соответственно увеличивать шири­
ну масляного канала между обмотками, т. е.
а 12экр
= ( а;2 + 3) • 1 О-З.
(6.57)
Внутренний диаметр обмотки (при наличии экрана до его внутренней изоляции), м,
(6.58)
D; -. D; + 2 а12•
Наружный диаметр обмотки, м:
без экрана
(6.59)
с экраном
(6.60)
Расстояние между обмотками соседних стержней выби­
рается согласно указаниям § 4.5.
Схема расположения регулировочных ответвлений при•
нимается по рис. 6.6, 6.
Поверхность охлаждения, м 2 , определяется по формуле
П02 = cnkn (D; + D;) l2•
(6.61)
Для обмотки ВН из двух катушек n=2; k=0,8. Для
такой же обмотки НН n=2; k=0,75.
Расчет непрерывной катушечной обмотки (рис. 6.12)
Ориентировочное сечение витка находится по (6.34).
К этому сечению витка по сортаменту обмоточного провода
·,(табл. 5.2) подбираются подходящие сечения прямоуголь­
ного провода - одно или два - четыре одинаковых сече­
ния. Больший размер провода Ь nри этом не должен пре­
восходить предельный размер, найденный по допустимому
значению по (5.6) или (5.7).
Выбранные размеры записываются так:
Марка проводаХЧисло параллельных проводовХ
т. е.
Х Размеры провода без изоляции
Размеры провода в изоляции
Марка провода Х пв2 •
288
а-Ь
-- •
а' •Ь'
п;, мм2•
п2 = nB2 п; • 10-6 •
Принятое сечение провода
Полное сечение витка, м 2 ,
Плотность тока, А/м 2,
(6.62)
J2 = //П2.
Обычно нужному сечению витка П � в сортаменте об­
моточного провода соответствует несколько сечений про­
вода с различным соотношени­
ем сторон Ь/а, что д ает возмож­
ность широкого варьирования
при размещении витков в катуш­
ке. Для получения более ком­
пактной конструкции обмотки ре­
комендуется выбирать из сорта­
мента более крупные сечения при
меньшем числе параллельных
проводов и сечения с большим
возможным размером Ь. При
этом должны соблюдаться следу­
ющие требования:
1) общее число катушек дол­
жно быть четным, число различ­
ных видов катушек не более че­
тырех;
2) рабочее напряжение одной
катушки при классе напряжения
до 35 кВ не должно превосходить
800-1000 В; при классе напря­
жения 110 кВ напряжение одной
катушки может достигать 1500- Рис. 6.12. Непрерывная ка1800 В, а при классе 220 кВ - тушечная обмотка
2500-3000 В;
3) при номинальном напряжении ВН 20, 35 кВ и выше
все витки, служащие для регу.,шрования напряжения, и
витки с усиленной изоляцией должны быть размещены в
отдельных катушках; катушки, содержащие различные
числа витков или отличающиеся µазмерами или изоляци­
ей, при расчете обычно для удобства обозначаются раз­
личными буквами;
4) число витков в катушке может быть целым или
дробным; в последнем случае знаменателем дроби должно
быть число реек по окружности обмотки;
19-510
289
5) общая высота обмотки (осевой размер) 12 после
сушки и опрессовки должна совпадать с высотой обмотки
нн 11 ,
Высота катушки hкат в этой обмотке равна большему
размеру провода в изоляции Ь'.
Входные витки (катушки) обмотки ВН при ее номи­
нальном напряжении от 20 кВ и выше обычно выполняются
с усиленной изоляцией, предотвращающей разряд между
витками при воздействии на обмоТl{у импульсных пере­
напряжений.
Усиленная изоляция выпо.1няется на входных катушках
обмотки каждой фазы с двух ее концов. Расчет усиленной
изоляции входных витков и катушек производится соглас­
но указаниям § 4.5.
При выборе большего размера поперечного сечения про­
вода без изоляции Ь его следует проверить по условиям
теплоотдачи обмотки. Этот размер не должен быть больше
размера, полученного по (5.6) или (5.7) при допустимом
значении плотности теплового потока на поверхности об­
мотки (обычно не более 1200-1400 Вт/м2). Если выбран­
ный размер Ь составляет не более половины полученного по
(5.6) или (5.7), можно радиальные каналы в двойных ка­
тушках заменить шайбами (см. § 5.6), сохранив каналы
между двойными катушками,
Осевой размер (высота) радиального канала h к в мас­
ляных трансформаторах мощностью от 160 до 6300 кВ· А
и рабочих напряжениях не более 35 кВ колеблется от 4
до 6 мм; в сухих трансформаторах - от 10 до 20 мм.
В двойных катушках, если в них не делается канал, вмес­
то канала прокладываются шайбы - по две шайбы толщи­
ной 0,5 мм каждая на одну двойную катушку. В транс­
�юрматорах большей мощности и при напряжении обмотки
110 и 220 кВ осевой размер канала может быть выбран
от 4 до 10-15 мм. Размер канала h к во всех случаях вы­
бирается по условиям обеспечения электрической проч­
ности изоляции согласно указаниям § 4.5 и проверяется по
условиям охлаждения (см. табл. 9.2).
Число катушек на одном стержне ориентировочно оп­
ределяется по формуле
п
~ /2·103
(6.63)
нат2""' ,
Ь
290
, ,
+ hк
Для сдвоенных катушек с шайбами в двойных катуш­
I<ах и с каналами между двойными катушками число ка­
тушек
пкат2 -
,
212· 10 3
(6.64)
,,
2Ь +hк+&ш
Число витков в катушке ориентировочно
(6 .65)
w2/nкат2.
Для обмотки с каналами между всеми катушками, м,
W1<ат2 �
Для обмотки с шайбами в двойных и с каналами между
двойными катушками
{ь' пнат2 + k [h'к ( пк2ат
l. =
2
2
-2)+h
кр
+
п1<ат2
2
б ]} , 10-з. (6.67)
ш
Высота канала в месте разрыва обмотки и размещения
регулировочных витков h:p выбирается по условиям обес­
печения электрической прочности изоляции согласно ука­
заниям § 4.5. Коэффициент k, учитывающий усадку изоля­
ции после сушки и опрессовки обмотки, k=0,94+0,96.
Радиальный размер обмотки, м,
(6 .68)
где Wкат2 - число витков катушки, дополненное до бли­
жайшего большего целого числа ; а' - радиальный размер
провода, мм.
Внутренний и наружный диаметры, а также плотность
теплового потока на поверхности обмотки q определяются
соответственно по (6.58 ), (6.59), (7.19)-(7.19в).
Расстояние между обмотками ВН соседних стержней
а22 выбирается согласно указаниям § 4.5 или 4.6.
6.4. ПРИМЕРЫ РАСЧЕТА. РАСЧЕТ ОБМОТОК
Трансформатор ТМ-1600/35. Вариант lм-медиы�з
обмотки (продоJМКение примера расчета § 3.6.J
Расчет обмотки НН (по § 6.1). Число витков обмотки НН W =
=ИФ /и8 =399/17,18=23,22. Принимаем w1 =24 витка. Напряж.:ние O.'l­
нoro витка и.=399/24= 16,63 В.
1
1
19*
291
Средняя плотность тока в обмотках по (5.4).
.
Риив
104=0,746-0,91
Jcp=U;74okд
. Sd12
=3,48 МА/м�.
Сечение витка ориентировочно
18 000-16,63
1600,0,3645
104 =
п:� 1339/(3,48°106)=384,8•10-б м2 =384,8 мм2 •
По табл. 5.8 по мощности 1600 кВ-А, току на один с�ржснь
1339 А, номинальному напряжению обмотки 690 В и сечению витка
384,8 мм2 выбираем конструкцюо винтовой обмотки. Размер радиаль•
наго канала предваритеJ1ьно h к=5 мм. Согласно § 5.1 число реек по
окружности обмотки 12, ширина междувитковых прокладок Ьпр=40 мм.
Ориентировочный осевой размер витка
h81
= l/(w1 + 4) -hи = 0,635/(24 + 4) -0,05 = 0,0177
м = 17 ,7 мм.
Ввнду того что h. 1 > 15 мм и по графикам рис. 5.38, а при макси­
мальном размере медного провода Ь=15 мм и плотности тока / =
=3,50 МА/м2 плотность теплового потока q=2000 Вт/м2, что при есте­
ственном масляном охлаждении не допускается, выбираем двухходо­
вую винтовую обмотку с радиальными каналами в витках и между
витками с равномерно распределенной транспозицией.
По полученным ориентировочным значениям П 1 и hв1 по табл. 5.2
подбираем сечение витка из двенадцати параллельных проводов
4,50•7,60
ПБ 12Х
, разделенных на две группы по шесть проводов с
5 ,00,8,00
каналами по 5 мм между группами витка и между витками (рис. 6.13).
Для частичной компенсации разрыва в обмотке ВН при регули­
ровании напряжения размещаем в середине высоты обмотки НН шесть
радиальных каналов по 10 мм.
Пол11ое сечение витка
П1 = 12-32 ,9 = 394, 7 мм�= 394 ,7 • 10-6 м�.
Плотность тока
J1 = 1339-10 6/ 394,7 =3 ,39 МА/м�.
5
292
Рис. 6.13. Сечение витка обмотки НН
из медного провода (вариант I м)
По графикам рис. 5.34, а находим для !=3,4 МА/м2 и Ь=7,5 мм
q=900 Вт/м2• Высота обмотки
11 = (24
+ 1)·2-8-10-�+ [(24·2 + 1 - 6) •5 + 10·6] Х
ХО, 95-1O-8 =O;661 м�О,66O м.
Радиальный размер обмотки а 1 =6,5• 10-3=0,030 м.
По табл. 4 .4 для Иисп = 5 кВ, S=l6OO кВ-А и винто11ой обмотки
находим 001 = 15 мм, обмотка наматывается на 12 рейках на бумажно­
бакелитовом цилиндре с размерами
0
0,270
0,278
Х 0, 770 м.
Внутренний диаметр обмотки
v; = d+ 2а01=О,260 + 2·0,015 = О,290 м.
Внешний диаметр обмотки
v; = v; + 2а01 = О,29O + 2·0,030 = 0 ,350
м.
Плотность теплового потока на поверхности обмотки по (7.19).
107J fwк kд
10 _10 =
а' 1)
q k3 (Ь'
1,05 -10 ,5,__
106 , 1339-0....;_
3,39,
10 7 •....;..
2
_____
__
1Q
8 39 Вт/ м_.
О,8 (О ,008 О ,030)
=
=
+
+
В обмотке предусматривается равномерно распределенная транс­
позиция параллельных проводов -12 транспозиций по принципиальной
схеме рис. 5.29. Первая транспозиция
А
после первого витка, 11 последующих с
шагом в два витка, т. е. после третьего,
пятого витка и т. д.
Масса металла обмотки по (7.6)
Go1 = 28· 108 cDcp Wi п1= 28, 1O8-3Х
6
Х О, 32 · 24 · 394 , 7·10- =254 , 6 кг.
Масса провода по табл. 5.5
Gnpi= 1,02-254 ,6=259, 7 кг.
Рис. 6.14. Схема регулирования напря­
жения ВН (вариант Iм, обмотка из мед-·
ного провода)
Az
A3-o----+-----
A5 »---t_f-_-_-_-:.__-o
А1 »---------о
х
2()3
Расчет об.t�отки ВН (по § 6.3). Выбираем схему регулирования по
рис. 6.14 с вывпдом концов всех трех фаз обмотки к одному трехфазно­
му п�реключателю. Контакты переключателя рассчитываются на рабо­
чий ток 26,4 А. Наибольшее напряжение между контактами переключателя в одной фазе: рабочее 10/VЗ % U2 , т. е. 2020 В; испытательное
2-10/VЗ% И2, т. е. 4040 В.
Для получения на стороне ВН различных напряжений необход•I·
мо соединить:
Напряжение, В
36 750
35 875
35 ООО
34 125
33 250
Ответвления обмотки
Число витков в обмотке ВН при номинальном напряжении
Wн2 = Иф2/и8 = 20 207/16,63 = 1215 витков.
Число витков на одной ступени регулирования
Шр = 875/ (Vз Uв ) = 875/ (Vз, 1·6,63) - 31,24 � 31 виток .
Для пяти ступеней:
Напряжение, В
36 750
35875
35 000
34 125
33�50
Число витков на ответвлениях
1215
1215
+ 2-31 = 1277
+ 31 = 1246
1215
1215-31 = 1984
1215-2-31 =1953
Ориентировочная плотность тока
J:::,: 2-3,48· 106 -3,39· 106 = 3,57 МА/м�.
Ориентировочное сечение витка
п;:::;:26,4/(3,57-106)=7,39-IО-6 м2 =7,39 мм2 •
По табл. 5.8 выбираем непрерывную катушечную обмотку из ме:1.­
мого прямоугольного провода (S= 1600 кВ-А; 12 =26,4 А; И2 =35 ООО В;
п; =7,39 мм2). По сортаменту медного обмоточного провода (табл.
б.2) выбираем провод марки ПБ
1,40Х5,60
сечением П2=7 ,625,IQ-6 м�.
l,9:)X6, 10
В двух верхних и двух нижних катушк3х обмотки каждой фазы
11рименяем провод того же размера с уси.1еююй изоляцией 1,35
(1,50) мм, с размерами провода в изоляции 2,90Х7,10 мм (см. табл,
.f.10).
ПБ-IХ
294
П:ютность тока в обмотке
!2 = 26 ,4/(7 ,625-10-6 ) = 3,46 МА/м2 •
При /2 =3,46 МА/м2 11 Ь=5,6 мм по графикам рис. 5.34, а находим
q,.,,800 Вт/м2•
Принимаем конструкцию обмотки с радиальными каналами по
4,5 мм между всеми катушками. Две крайние катушки вверху 11 внизу
отделены каналами по 7,5 мм (см. табл. 4.10). Схема реrулировани11
напряжения - п о рис. 6.14, канал в месте разрыва обмотки h.p= 12 мм
Jсм. табл. 4.9). Осевой размер катушки 6,1 мм.
Число катушек на стержне ориентировочно по (6.63)
пкат � l· 103f(ь'
+ h�) � 0, 635/(6,1 + 4) =
= 62,9 � 62 катушки.
Число витков в катушке ориентировочно
радиальный размер а; = 1,90· 21=39,9,,,,40 мм.
Общее распределение витков по катушкам:
W.ат""' 1277/62=20,6, 11
43 основные катушки В по 22 витка . . • .
7 основных катушек Г по 21 витку . . . . .
8 регулировочных катушек Д по 15,5 витка . .
4 катушки с усиленной изоляцией Е по 15 витков
Всего 62 катушки
946
147
124
60
1277
витков
Расположение катушек на стержне и размеры радиальных кана­
лов приняты по рис. 6.15, а. Данные катушек приведены в табл. 6.1.
Осевой размер обмотки
l = �иат + �hкан = [6 , 1-58 + 7, l •4 + 0,95 (12, 1 + 7, 5-56)] Х
Х 10- 3 = 0,661, 1 м � 0 ,660 м.
По испытательному напряжению Ии сu=85 кВ и мощности транс�
форматора S = 1600 кВ-А по табл. 4.5 находим:
Канал между обмотками ВН и НН
а�2 = 27 мм
Толщина цилиндра
6; J = 5 мм
Выступ цилиндра за высоту обмотки
l� = 55 мм
Между обмотками ВН двух соседних стержней
а'п, = 30 мм
Толщина междуфазной перегородки
6;J = 3 мм
Расстояние обмотки ВН до ярма
/� = 75 мм
Согласно § 4.3 принимаем размеры бумажно-бакелитовоrо цили1-ц­
ра, на котором на 12 рейках наматывается обмотка, диаметро,1
?.9.5
Та блиц а 6.1. Данные катушек обмотки ВН трансформатора
ТМ-1600/35. Вариант lм - медные обмотки
Условные обозначения катушкн
Данные
г
Назначение катушки
"'"1
Основная
Основная
д
Е
Реrули- с усироnочная ленной
нзоля-
Есего
-
ЦIIСЙ
Катушек на стержень 1
43
7
8
4
62
Число витков в
тушке
22
21
15,5
15
-
946
1 47
124
60
1277
Всего
Размеры провода:
без изо.1яции, мм
с изоляцией, мм
Сечение витка, мм2
7,625
1 ,40 Х5,6
1 ,90Х6, 1
7,625
7,625
1,40Х5,6
2,90Х7, 1
7,625
7,625
3,46
3,46
3,46
3,46
3,46
42
6, 1
40
(30 ,5)*
6,1
43,5
7,1
42
Масса провода, кг:
без изоляции
с изоляцией
6, 1
42
660
270 ,3
278,3
42,0
43,3
35,3
36,3
1, 105 1
364,8
376,9
Диаметры, м:
Внутренний
Внешний
1,03
17,2
19,0
0,404
0,488
0,40 4
0,488
0 ,484
0.404
0,404
0,491
0,40 4
0,488
Плотность то1<а,М.А/м 2 /
Размер, мм:
радиальный
осевой
kи, по табл . 5.5
1 ,0 3
1,03
• В катушку Д вмотать nолоску картона до радиального размера 40 мм.
П р и м е ч а ни е. k из - учитывает увеличение массы прово;,.а за счет мае-
tbl ИЗОЛЯЦ>IН,
296
О,370/О,380ХО,770 м. Основные размеры обмоток трансформатора покз­
заны на рис. 6.15, б.
Плотность теплового потока на поверхности обмотки для катуш­
кн Г по (7.19).
1071 2 · 106 Iw1<. kд
q2 -
Q2 =
k3
(Ь'
+ ai)
10-10.
· '
6 -26 4-22-1 05
107-316-10
'
'
' 10-\О 5
- 87
0,8(0,0061 +О,0042)
вт / м.2
Масса металла обмотки ВН по табл. 6.1
002
= 364 ,8
кг.
Масса провода в обмотке ВН с изоляцией
Gпр2 = 376,9 кг.
□ \D;DR
□�:□ g:.□/ аы пп �:□ \□/□
v \
Катушки
г---"----, � ,---,._.._ ,--J'--. ,--J'--. ,--л--. ,---,---, ,........,.___.
2Е
'IГ
228
'IД
7
29Х4,5мм
2Х7,5мм
'IД
1
1Х12мм
2fB
JГ
'27Х�,5мм
�Н�Ы
МБО
15
r;Jz70
11
Ф27В
rl!1
fdZ90
ii'
за
зz
s,
1
1
f!jЗSO
�370
<;5380
0�04
';4'f88
ц
,;
2Х7,5мм
�
1/2
27
2Е
L
]
5
--
з c:::::J
o)
Рис. 6.15. Обмотки трансформатора типа ТМ-1600/35 . Вариант l м :
хатушек и радиаnьных каналов; 6 - основные размеры об­
моток
а - расположение
297-
Масса металла (меди) двух обмоток
G0 = 254,6+ 364,8
Масса провода двух обмоток
Gпр = 259,7 + 376,9
= 619,4
кг.
= 636,6
кг.
Трансформатор ТМ-1600/35. Вариант llл алюминиевые обмотки (продолжение примера расчета
§ 3.6)
Расчет обмотки НН (по§ 6.1). Число витков w 1=399/(15·89)=
=25,11.
В предварительном расчете (см. § 3.6) потери холостого хода
Рх для выбранного варианта диаметра d=0,250 м оказались выше
заданного значения (3650 вместо 3100 Вт). Для уменьшения Рх при•
нимаем число витков w 1 =26, что приведет к некоторому снижению
расчетной индукции Вс и уменьшению потерь холостого хода за счет
1!екоторого увеличения массы металла обмоток. С этой же це,1ью
уменьшим высоту обмоток с 0,8997 до 0,860 м и соответственно длину
и массу стали стержня.
Напряжение одного витка u8 =399/26=15,35 В. Средняя плотность
тока по (3.49 а)
18 000-15,35
1600-0,3710
Сечение витка ориентировочно
J= 0,463-0,91
104 = 1 ,96 МА/м2 •
п� = 1339/(1,96-106) = 683,2 .10-6
м2 •
По сечению витка н плотности тока согласно § 5.3 выбираем мно­
гослойную цилиндрическую обмотку из алюминиевой ленты с высотой
витка (ширина ленты), равной высоте обмотки, 1=0,86 м и толщиной
б = 683,2-10-6/0,86 = 794,4• 10-6 м =О, 794 мм.
В соответствии с этим выбираем алюминиевую ленту марки Аб
по ГОСТ 13726-78 с шириной 860 11 толщиной 0,8 мм (О,86ХО,0008 м).
Сечение витка
Пв1 =0,85-0,0008 =0 ,000688 м�.
тока
ть
Плотнос
J = 1339/0,000688
= 1,946
МА/м2 •
Общий суммарный радиальный допустимый размер проводов для
алюминиевого провода (5.7)
Ь .._: q/г3/(l ,72J�-I0-8);
298
пµиниыаем q= 1200 Бт/м2 и kэ = О,8;
Ь = 1200,0,8/(1,72•1,9 46 �· 101�. 10- 8) =
= 147,4,10- 4
М=
14 ,7
ММ,
В этот предельный размер можно уложить не более 14,7/0,8, т . с.
не более 18, витков обмопш НН. Поэтому обмотку НН делим на две
катушки - внутреннюю А из 13 витков и наружную Б из 13 витков.
М.еждувитковая 1-'Золяuия - кабельная бумага марки К-120 по ГОСТ
2343 6 -83 в один слой. Между катушками осевой охлаждающий канал
шириной а11=0,01 l=0,01 ·0,86""0,009 м.
Радиальные размеры катуше1<
А:а; = (13,0 , 8 12,0, 12)-10-3 = 11 ,84,10-3 � 0 , 012 м;
+
Б:а; = (13·0,8 + 12·0 , 12) • I0-3 = 11, 84-10-3 � О ,012
м.
Радиальный размер обмотки НН а 1 = 0,012+0,009+0,012=0,033 м.
Обмотка нама1ывается на бумажно-бакелитовом цилиндре с раз­
мерами (см. табл. 4.4, 4.5 и § 4.3)
0 ,260
0 0 , 268
Диаметры обмотки:
, 96 ,
ХО
М
о;= О ,250 + 2·О ,015 = О,280 м;
о•;= 0,280 + 2-0,033 = 0,346 м.
внутренний
внешний
Плотность теплового потока на поверхности обмотки для катушек
АиБ
q=
172
О.В
1 0-10.1,05-13-0,0008-l ,94 �·10
6
12
= 1111 Бт/м�
при a/a' = l,0; k з= О,8 и kд=l,05.
Масса метаJ1ла обмотки G 01 =3·26·0,86-0,0008•2700=144,9 кr.
Расчет обмотки ВН (по § 5.3 и 6.3). Схема регулирования напрн­
жения в нейтрали по рис. 6.6, 6. Расположение регулировочных витков
и схема переключателя по рис. 6.16. Число витков обмотки БН при
номинальном напряжении
Число витков на одной ступени регулирования
Wp =
815/(Vз .15 ,35) = 32,9 � 33.
299
Для четырех ступеней регулирования имеем:
Напряжение, В
Число витков на отв�твления х
36 750
35 875
35000
34125
33 250
Ориентировочная плотность тока
1316-j-2-33=1382
1316+33=1349
)316
1316-33=1283
1316-2-33=1250
J � (2· 1,96- 1,946)-106 = 1,974,106 А/м2.
Ориентировочное сечение витка
п:
�
26,4/,(1 ,974• 106 )
= 0,00001337
м2 = 13, 37 мм2 •
В соответствии с ранее принятым решением рассчитываем много­
слойную цилиндрическую обмотку из прямоугольного алюминиево,о
провода марки АПБ по ГОСТ 16512-80. Выбираем провод АПБ 1 х
2 , 80•5,ОО
Х ----- сечением 13,45 мм 2• Сечение витка П82 = 13,45• l0-6 м2•
3,30-5,50
А
�Гl
1
Гl
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
u
1
LJ
1
10 BllmkOB.
1
,1��
16
1�
1 16
1 °'
11 ,g"'1г-1
1
z
!
lg
1"'
l.g
l:t:
1@Cj
i.J
Zч
t::; ) 33
,,��
1
17
Zs
17
16
17
10 Витков
а)
Рис. 6.16. Обмотка ВН трансформатора 1нпа ТМ-1600/35. Вариант Пл:
о. - расположение витков в наружном слое обмотки и схема вывода ответвле­
ии�: б - схема переключателя ответвлений
300
Плотность тока
J = 26,4/(13,45-10- 6) = 1,963-106 А/м2 •
Общий суммарный радиальный размер алюминиевых проводов по
(5.7), принимая q2=1200 Вт/м 2 н k 3= 0,8,
ь2 = 1200-0,8/(l,72•1,963;.101�. 10-8) = 144,8-10-' м =14,5 мм.
Число витков в слое
Wcn = 0,86/0,0055 - 1 = 156,3- 1 = 155 витков.
Обмотка ВН наматывается в девять слоев. Семь слоев по 155Х7=
= 1085 витков, восьмой слой - 145 витков н девятый - 152 витка.
Всего 1382 витка. Общий суммарный радиальный размер металла Ь =
= 2,8·9=25,2 мм = О,0252 м больше допустимого
размера 0,0145 мм.
Поэтому обмотку разделяем на две концентрические катушки - внут­
реннюю В в четыре слоя и наружную Г в пять слоев. Между катуш­
ками осевой охлаждающий канал шириной 9 мм (О,009 м ). При де­
вяти слоях алюминиевого провода с радиальным размером 2,8 ым до­
бавочные потери в обмотке составят менее 5 % (см. табл. 5.9).
Под внутренннем слоем обмотrш располагается электростатнчс•>
кий экран - алюминиевый незамкнутый цилиндр толщиной 0,5 мм,
соединенный электрически с линейным концом обмотки А (на других
фазах с В и С). Схема вывода ответвлений дана на рис. 6.16, строе­
ние обмоток - на рис. 6.17.
Напряжение двух слоев обмотки
Им ел=2-155-15,35= 4759 В.
Междуслойная изоляция по табл. 4.7 - кабельная бумага марки
К-120 по ГОСТ 23436-83Е, восемь слоев, выступ изоляции 22 м \1 с
каждого конца обмотки. С торцов каждого слоя вверху н внизу укреп­
ляются бумажно-бакелитовые цилиндрические кольца толщиной 3 мм.
Радиальный размер обмотки без экрана по ( 6.55)
+
+
8·8·0, 12 9), 10-� =О ,04638 � О ,0465 м.
а 2 = (3,3-9
Радиальный размер с экраном
а2011р = (46,5 3) -10-3 = 0,0495 м.
Диаметры обмотки:
внутренний до экрана
+
v;=0,346+2·0J 027=0,400 м;
внутренний до слоя проводов
D;0 = 0 ,400 + 2·0,003 = 0,406 м;
внешний
D;= 0,406 + 2-0,0465 = 0,499 м.
301
Расстояние между осями стержней
С= 0,499
+ 0,030 = 0,529 � 0,530 м.
При испытательном напряжении обмотки ВН Ик со = 85 кВ по
табл. 4.5 находим:
а;2 = 30 мм; б;2 = 5,О мм;
lд2 = 55 мм;
а�= 30 мм; 6� = 3,0 мм; 102 = 75 мм.
Согласно § 4.3 и табл. 4.5 принимаем размеры бумажно-бакелн­
тового цилиндра между обмотками ВН и НН
0,370
О 97 м.
е, 01380 Х ,
Масса металла обмотки по (7.7)
G02 = 8-,47, 3
О, 406
+ О,499
2
Масса провода (см. табл. 5.5)
, 1382 ,0,00001345 = 213,7 кг.
Gпр = 1,025-i ,033-213,7 = 226,3 кг.
95260
f/>280
f/>3'16
Ф26В
,1
370
Фзво
9НОО
ФЧ99
Рис. 6.17. Трансформатор типа ТМ-1600/35. Вариант IIл. Основные
размеры обмоток трансформатора
302
Масса мет.�лла двух обмоток
+
00 = 144,9 213,7 = 358,6 кг.
Поверхность охлаждения обмотки по (6.61)
Похл = 3-0,8-4n-0,4525-0,86 = 11,736 м�.
После намотки и сушки обмотку
25 ООО Н.
опрессовать
осевой
с илой
Глава седьмая
РАСЧЕТ ПАРАМЕТРОВ КОРОТКОГО Зд.МЫКд.НИЯ
7.1. ОПРЕДЕЛЕНИЕ ПОТЕРЬ КОРОТКОГО ЗАМЫКАНИЯ
Потерями короткого замыкания двухобмоточноrо транс­
форматора согласно ГОСТ 16110-82 называются потери,
возникающие в трансформаторе при номинальной частоте
и установлении в одной из обмоток тока, соответствующе­
го ее номинальной мощности, при замкнутой накоротко
второй обмотке. Предполагается равенство номинальных
мощностей обеих обмоток.
Потери короткого замыкания Рк в трансформаторе
могут быть разделены на следующие составляющие: 1) ос­
новные потери в обмотках НН и ВН, вызванные рабочим
током обмоток, Росн1 и Росн2; 2) добавочные потери в об­
мотках НН и ВН, т. е. потери от вихревых токов, наведен­
ных полем рассеяния в обмотках Рд1 и Рд2; 3) основные
потери в отводах между обмотками и вводами (проходны­
ми изоляторами) трансформатора Ротв� и Ротв2; 4) доба­
вочные потери в отводах, вызванные полем рассеяния от­
водов, Ротв,д1 и Ротв,д2; 5) потери в стенках бака и других
металлических, главным образом ферромагнитных, эле­
ментах конструкции трансформатора, вызванные полем
рассеяния обмоток и отводов, Р6 •
Потери короткого замыкания могут быть рассчитаны
или определены экспериментально в опыте короткого за­
мыкания трансформатора. При опыте короткого замыка­
ния номинальные токи в обмотках возникают при относи­
тельно малом напряжении (5-10 % номинального значе­
ния), а потери в магнитной системе, примерно пропорцио­
нальные второй степени напряжения, обычно пренебрежн­
мо малы.
303
Обычно добавочные потери в обмотках и отводах рас­
считывают, определяя коэффициент kд увеличения основ­
ных потерь вследствие наличия поля рассеяния. Так сумма
основных и добавочных потерь в обмотке заменяется вы­
ражением
Росн1
+
Рдl
= Роснl kд1.
Таким образом, полные потери короткого замыкания,
Вт, могут быть выражены формулой
рк = роснl kдl + Росн2 kд2 + Ротn1 kд,отвl + Ротв2 kд,отв2 + Рб• (7.1}
где k�l,O.
Согласно ГОСТ 11677-85 за расчетную (условную) тем­
пературу, к которой должны быть приведены потери и на­
пряжение короткого замыкания, принимают: 75 °С для всех
масляных и сухих трансформаторов с изоляцией классов
нагревостойкости А, Е, В; 115 °С для трансформаторов с,
изоляцией классов нагревостойкости F, Н, С.
Полные потери короткого замыкания готового транс­
форматора не должны отклоняться от гарантийного зна­
чения, заданного ГОСТ или техническими условиями на
проект трансформатора, более чем на 1 О % . Учитывая, что
потери готового трансформатора вследствие нормальных
допустимых отклонений в размерах его частей могут от­
клоняться на ±5 % расчетного значения, при расчете не
следует допускать отклонение расчетных потерь короткого
замыкания от гарантийного значения более чем на 5 % .
При нормальной работе трансформатора, т. е. при на­
грузке его номинальным током при номинальных первич­
ном напряжении и частоте, в его обмотках, отводах и эле­
ментах конструкции под воздействием токов обмоток и
созданного ими поля рассеяния возникают потери, практи­
чески равные потерям короткого замыкания и одинаково
с ними изменяющиеся при изменении тока нагрузки. По­
этому при всех расчетах потерь, вызванных в нормально
работающем трансформаторе изменяющимися токами на­
грузки обмоток, и при расчете КПД трансформатора обыч­
но в качестве исходной величины пользуются рассчитанны­
ми или измеренными потерями короткого замыкания.
В трехобмоточном трансформаторе рассчитываются и
измеряются три значения потерь короткого замыкания для
трех парных сочетаний обмоток (I и II, I и III, II и III)
при нагрузке каждой пары обмоток током, соответствую­
щим 100 % мощности трансформатора. Потери короткого
304
замыкания трехобмоточного трансформатора изменяются
в зависимости от того, как распределена нагрузка между
тремя его обмотками. Допускается любое распределение
нагрузки между тремя обмотками, но так, чтобы ни одна
из обмоток не была длительно нагружена током, превы­
шающим номинальный ток плюс 5 %-ная перегрузка, а об­
щие потери короткого замыкания трех обмоток не превы­
сили максимальные потери. При этом максимальными по­
терями считаются приведенные к расчетной температуре
потери короткого замыкания той пары обмоток, которая
имеет наибольшие потери короткого замыкания.
Основные потерн в обмотках
Для определения основных потерь можно воспользо­
ваться формулой Pocн=f2R. Однако на практике принято
пользоваться этой формулой в преобразованном, более
удобном для расчета виде. Заменяя ток / произведением
плотности тока в обмотке /, А/м2 , на сечение витка П, м 2 ,
и раскрывая значение R=pl/П, где р - удельное сопро­
тивление провода, мкОм • м, а l - полная длина провода,
м, получаем
Рос н = J2 П2 pl, 10-6/П = J2 (Пl) р• 10-6.
Заметив, что выражение в скобках Пl представляет со­
бой объем провода обмотки, м 3 , умножаем и делим пра­
вую часть равенства на плотность металла обмотки у0,
кr/м3,
Росн = J2 (Пly0 )-P-10-6•
Уо
Заменив в этом выражении произведение, заключенное
в скобках, равной ему массой металла обмотки Go, кг, и
подставив реальные значения плотности у0 и удельного
электрического сопротивления металла обмотки р при
температуре 75 °С, получаем
Рос н = KJ2 G0 •
(7.2)
Для медного провода (ум =8900 кг/м3; и РМ15 =
=0,02135 мкОм-м)
Р0с н = 2,4• l0-12 J2 Gм;
(7.3)
для алюминиевого провода (у А =2700 кг/м3 ; р д1s =
=0,0344 мкОм • м)
Росн = 12, 75, 1О- 12 J2 Gд.
(7.4)
20-510
305
При температуре 115 °С коэффициенты в (7.3) и (7.4) рав­
ны 2,72• 10- 12 для меди (р 115 =0,0242 мкОм-м) и 14,4-10- 12
для а.1юминия (p11s=0,0386 мкОм • м).
Масса металла, кг, каждой из об­
моток может быть найдена по рис. 7.1
11 формуле
G0 = cnDcp wПу0,
-1
Рис. 7.1. К определе­
нию массы металла и
потерь в обмотках
где с - число активных (несущих об­
мотки) стержней трансформатора;
Dcp - средний диаметр обмотки, м;
w - число витков обмотки; П - сече­
ние витка, м 2•
Подставляя л и реальное значение
'\'о, получаем
G0 = ky cDcp WП,
(7.5)
где k v =nyo.
Для медного провода .(vм=8900 кг/м3 )
Gм = 28· l03 cDcpwП;
(7.6)
для алюминиевого провода (ул =2700 кг/м3 )
О,,.= 8,47 · 103 cDcP wП.
(7.7)
При определении потерь в обмотках ВН в _(7.6) и (7.7)
подставляют число витков на средней ступени напряжения
Wн2 , При определении общей массы металла обмотки ВН
подставляют полное число витков обмотки на верхней сту­
пени w2.
В практике расчета трансформаторов часто предельное
значение потерь короткого замыкания бывает задано.
В частности, для всех силовых трансформаторов общего
назначения оно регламентировано ГОСТ. Это обстоятель­
ство налагает ограничения на выбор плотности тока при
расчете обмоток трансформаторов. Ранее было показано,
что основные потери в обмотках могут быть подсчитаны по
(7.2) . Подставляя в эту формулу значение G0 по _(7.5), по­
лучаем
Росн = kJ2 kv cDcpWП.
Далее, заменяя w=Uc /u 8 ; П=lс /1, где Ис и /с - на­
пряжение и ток обмот�,и одного стержня, получаем
306
Росн = kv J2 kv cDcP Uc ...!s. _ •
Un У
3
Замечая, что И сl с • l0- =S' - МОЩН0l'ТЬ обмотки одного
стер жня, кВ• А, получаем потери в одной обмотке
S'
Росн = kkv -103 c-D C' )J.
Uв
Основные потери в двух обмотках. двухобмоточноrо
трансформатора определяются по форму.11е
S'
(D cPl Jl + Dcp2J 2).
Р осн = kkv • 103 СUв
(7.8)
Практика большого числа расчетов трансформаторов
показывает, что выражение, заключенн ое в скобки в (7.8),
можно с достаточной степенью точносп1 заменить
Dc Pl Jl + Dcp2 J2 = 2d12 J"p,
диаметр канала между обмотками; /ер =
средний
d
где 12
= (1 1 +12) /2- среднеарифметическая 11лотность тока в
обмотках, А/м 2 •
Замечая также, что cS' =S - полна я мощность транс­
форматора, получаем
s
Рос н = k� · 103 - 2d 12 .Тер
Uв
и далее
Jcp= l0-3 PocнU8/(2kkv S'd1 J.
(7.9)
общег
о назначения основ­
В силовых трансформаторах
ные потери в обмотках составляют от О, 75 до 0,9 5 потерь
короткого замыкания Рк . Обознач11в это отношение
Р ос н!Р к= kд и подставив kдРк = Росн в (7.9) , получим
J - 10-з k р II Uв
сР - 2kkv
д
Sd12 '
где kд �l,0. Для медного провода (k,,i = 2,4- l0 -12; k v =
=28-10 3)
и
J Р = О 746k Рн в Н11•
(7.10)
S
С
'
д
d12
'
для алюминиевого провода (kл = 12,7:j, lQ-12; k v = 8,47Х
х 103 )
(7. l0a)
20*
307
При температуре обмоток 115 °С коэффициенты в (7.10)
и _(7.l0a) соответственно равны 0,658-104 и 0,4105-104•
Значения kд для силовых трансформаторов общего на­
значения могут быть взяты из табл. 3.6.
Формулы (7.10) и (7.l0a) связывают среднюю плотность
тока в обмотках трансформатора с заданными величинами
S, Рк и величинами, определяемыми в начале расчета до
выбора конструкции обмоток d 12 и и0 • Эти формулы позво­
ляют уже в начале расчета с достаточной точностью най­
ти среднюю плотность тока в обмотках, обеспечивающую
получение заданных потерь короткого замыкания. Эти фор­
мулы являются приближенными и полностью справедливы
лишь при равенстве плотностей тока в обмотках / 1 и / 2•
При подборе реальных сечений проводов по сортаменту
обмоточного провода всегда возможны отклонения истин­
ных значений / 1 и /2 от найденного lcp. Для того чтобы эти
отклонения не привели к существенному изменению Р к,
рекомендуется не допускать их более 5-10 % lcp, так
чтобы полусумма действительных значений / 1 и / 2 была
практически равна lcp, Поскольку обмотка ВН как наруж­
ная обмотка всегда по объему и массе больше обмотки НН,
то при 12>! 1 потери короткого замыкания будут откло­
няться от заданных Рк в большую сторону и при !2 <1 1 в
меньшую сторону.
В сухих трансформаторах вследствие лучших условий
охлаждения внешней обмотки (ВН) в этой обмотке допус­
кается более высокая плотность тока /2 , чем / 1 во внут­
ренней обмотке (НН), т. е. всегда 1 2>! 1• Поэтому во из­
бежание отклонения Р к от заданной в большую сторону
рекомендуется для сухих трансформаторов принимать lcp
около 0,93-0,97 значений, полученных по (7.1О) или
(7.l0a).
Добавочные потерн в обмотках
Ранее было указано, что определение добавочных по­
терь в обмотках практически сводится к расчету коэффи­
циента увеличения основных электрических потерь .обмот­
ки kд ,о, где kд ,о> 1 ,О. Этот коэффициент подсчитывается
отдельно для каждой обмотки трансформатора. Значение
коэффициента зависит от частоты тока f, размеров по­
перечного сечения проводников обмотки, их удельного
электрического сопротивления р и их расположения по от­
ношению к полю рассеяния трансформатора.
·зов
Любая обмотка трансформатора, намотанная из пря­
моугольного или круглого провода, может быть для расчета
коэффициента kд,о условно представлена в таком виде, как
на рис. 7.2. При этом в такой условной обмотке должно
быть сохранено число проводников реальной обмотки в на­
правлениях, параллельном и перпендикулярном направле­
нию вектора магнитной индукции поля рассеяния обмотки.
Наличие каналов, параллельных этому направлению, как
это будет видно из расчетных формул, не влияет на kд,<>•
Рис. 7.2. 1( определению добавочных потерь в обмотках:
а - из прямоугольного провода; 6- из круглого провода (стрелкой показано
направление индукционных лини А поля рассеяния обмотки Фр)
Добавочные потери от вихревых токов, вызванные соб­
ственным магнитным полем рассеяния обмоток, неодина­
ковы для отдельных проводников, раз,1ичным образом рас­
положенных в обмотке по отношению к полю рассеяния.
Наибольшие добавочные потери в двухобмоточном
трансформаторе возникают в проводниках, находящихся в
зоне наибольших индукций, т. е. в слое проводников, при­
легающем к каналу между обмотками. Наименьшие поте­
ри возникают в слое, наиболее удаленном от соседней об­
мотки. Коэффициент добавочных потерь для проводников
любого слоя с номером k (рис. 7.2, а) может быть найден
по формуле
2
kдk = l + 5,2�2 (-;) а4 (k - 0,5) 2 •
(7. \ l)
При расчете потерь короткого замыкания обычно рас­
считывают сре_дний 1<0эффициент увеличения потерь для
39.9
всей обмотки, если она имеет однородную структуру, или
для отдельных ее частей, если они отличаются размерами
или взаимным расположением проводников.
Средний коэффициент добавочных потерь для обмотки
из прямоугольного провода
kд = 1 + 1,73�2
для круглого провода
kц = 1
(-;-)2
а4 (п2 - 0,2);
+ 0,8�2 (-f )2 d4 (n2
-
0,2).
(7.1 2)
(7 .12а)
В этих выражениях значение � может быть подсчитано
по формулам:
для прямоугольного провода
�=
для круглого провода
�1
blm
kp;
(7.13)
= -1- kp .
(7.lЗа)
dtn
Значения � и �1 для изолированного провода всегда
меньше единицы.
В (7.11)-(7.13) f-частота тока, Гц; р-удельное
электрическое сопротивление металла обмоток, мкОм • м;
п -число проводников обмотки в направлении, перпенди­
кулярном направлению линий магнитной индукции поля
рассеяния; т - число проводников обмотки в направле­
нии, параллельном направлению линий магнитной индук­
ции поля рассеяния; а -размер проводника в направле­
нии, перпендикулярном линиям магнитной индукции поля
Р.ассеяния; Ь -размер проводника в направлении, парал­
лельном линиям магнитной индукции поля рассеяния; 1 общий размер обмотки в направлении, параллельном на­
правлению линий магнитной индукции поля рассеяния;
d-диаметр круглого проводника; kp - коэффициент при­
ведения поля рассеяния (см. § 7.2).
Размеры проводов а, Ь, d (а также размер обмотки /)
при расчетах по (7.11)-(7.13) следует выражать в метрах.
Для этого реальные размеры провода, выраженные в спра­
вочных таблицах в миллиметрах, следует умножить на
10-з. Коэффициент kp , если расчет k д производится до рас­
чета напряжения короткого замыкания, может быть для
концентрических обмоток принят равным 0,95.
310
Для некоторых частных случаев, например при часто­
те 50 Гц, для медных и алюминиевых проводов можно
пользоваться следующими формулами:
ддя медного прямоугольного провода (р=О,02135
мкОм,м) при f=50 Гц
k�м = 1 + О ' 095 . 10 8 �Р.2 а 4 п2'·
(7.14)
для круглого провода
kд,М = 1 + О '044,10 8 �!
R2 d4 n 2'•
(7.l 4a)
для алюминиевого прямоугольного провода (р=О,0344
мкОм -м) при f=50 Гц
(7.15)
kд,А = 1 +0'037,I0�RJJ2 a4 n2•'
для круглого провода
kд ,А = 1 +0,017,10 8 Md4 n2•
(7 .15а)
При одном слое проводов в (7.14), (7.15) следует вве­
сти во второе слагаемое коэффициент 0,8.
Добавочные потери в обмотках трансформатора возни­
кают как от продольного поля рассеяния с осевым по от­
ношению к обмоткам направлением индукционных линий,
так и от поперечного поля с радиальным направлением ли­
ний. Поперечное поле, возникающее при неравномерном
распределении тока (витков) по высоте обмотки вследст­
вие отклонения от осевого направления индукционных ли­
ний продольного поля вблизи торцов обмотки, имеет слож­
ную форму, однако оно всегда может быть разбито на ряд
участков с линейным распределением индукции, аналогич­
ным рис. 7.2. Для каждого такого участка расчет коэффи­
циента добавочных потерь может быть произведен с приме­
нением (7.11), (7.12).
В винтовых обмотках кроме добавочных потерь, вызван­
ных полем рассеяния, могут возникать добавочные потери
вследствие неравномерного распределения тока между па­
раллельными проводами от несовершенства транспозиций.
При этом равномерно распределенная транспозиция в двух­
или четырехходовой обмотке может считаться совершенной
и практически не вызывающей добавочных потерь. В одно­
ходовых обмотках с одной общей и двумя групповыми
транспозициями (см.§ 5.5) при четырех параллельных про­
водах можно не учитывать добавочных потерь от несовер­
шенства транспозиций.
При числе параллельных проводов tt=5 и больше сред311
ний коэффициент- добавочных потерь в такой обмотке мо­
жет быть приближенно рассчитан по формуле
kд = 1
2
+ 0,53, 10-��2 (-;)
а4 (п4 - 20п2
+ 64),
(7.16)
где все обозначения те же, что и в (7.11)-(7.15).
Из (7.11) и (7.12) видно, что добавочные потери про­
порциональны четвертой степени размера проводника (а
или d), измеренного в направлении, перпендикулярном на­
правлению поля рассеяния. Поэтому в концентрических
обмотках с осевым направлением поля рассеяния следует
стараться располагать прямоугольный провод большим
размером в осевом направлении, т. е. наматывать ero
плашмя. При намотке того же провода на ребро добавоч­
ные потери возрастают в несколько раз (см. § 5.7).
Добавочные потери в обмотках рационально рассчитан­
ных силовых трансформаторов с концентрическими обмот­
ками обычно достигают от 0,5-1,0 до 3,0-5,0 % основных
потерь, в некоторых случаях до I О % при прямоугольном
проводе, и, как правило, не более 1-2 % при применении
круглого провода с диаметром не более 3,55 мм.
При продолжительном режиме работы трансформатора
все потери, выделяющиеся в обмотках в виде тепла, долж­
ны быть отведены в масло с открытой поверхности обмо­
ток. При этом разность температур поверхности обмотки и
масла будет тем больше, чем больше плотность теплового
потока q на поверхности обмотки, т. е. потери, отнесенные
к единице охлаждаемой поверхности.
Для всех ,обмоток из ПJЭямоуrольного и круглого прово­
дов q может быть найдено по формулам (6.16) и (6.35),
требующим предварительного расчета охлаждаемой по­
верхности. Для некоторых обмоток из прямоугольного
провода могут быть получены формулы для расчета q и без
определения поверхности.
Рассмотрим элемент провода цилиндрической одно­
слойной обмотки с размерами поперечного сечения а Х Ь,
м, длиной 1 м ,(рис. 7.3, а). Объем этого элемента V=aX
XbXl, м3 , ero масса g=Vy =aby, кг, где у-плотность
металла провода, кг/м 3 •
Потери в выделенном элементе объема по (7.2), Вт,
р = kJ2 gk д = kJ2 аЬуk ц.
Охлаждаемая поверхность элемента, . м2 , при ус­
ловии, что каждый провод обмотки омывается маслом
312
С] c=i
С]
t:,
оо ооо
-- о
С] '
С] С]
<,
аPd iJ
ь
�
tf)
а)
....
(]
....
�
.,,
а'�z)
Рис. 7.3. К расчету q в обмотках разных типов
с двух сторон (рис. 7.3, а),
П0 = k3 •2a' -1,
где k э - коэффициент, учитывающий закрытие части по­
верхности обмотки изоляционными деталями, рейками
и т. д. Потери, отнесенные к единице поверхности, Вт/м2 ,
q = _f!_ = kJ 2 а�уkд = � kkд Ь � �J2.
П0
k,. .2a •!
k3
а
Для медного провода .(k м =2,4• 10-12; ум=8900 кг/м2)
107 10-10 k Ь а J2
qМ =--·
(7 .17)
д •
а'
kв
Для
алюминиевого провода ( k A =12,75-J0- 12; '\'А=
=2700 кг/м2 )
J 2•
10-10 kд Ь _!!_
(7.17а)
qA = �
а,
kэ
Выражения (7.17) и (7.17а) получены для простой од­
носJюйной цилиндрической обмотки. При применении их
для многослойной цилиндрической или для винтовой об­
мотки без радиальных каналов следует вместо Ь подста­
вить пЬ, где п - число слоев в катушке или в ходу.
Для потерь, рассчитанных при температуре 115 °С, ч11с­
ловые коэффициенты -в (7.17) и (7.17а) соответственно
равны 131 и 194.
,1\З
Из ,(7.17) и _(7.17а) могут быть получены выражения
для определения предельного размера провода Ь в начале
расчета обмоток при заданных значениях q и!.
Полагая (a/a')kд =l, находим
107n
м"" 3.!!L
ь �
.
1010'
А"" �
172n
ь �
1 01 0 .
(7.18)
(7.18а)
Для цилиндрической обмотк·и k, может быть принят
0,75. Для двухслойной обмотки без охлаждающего канала
между слоями (рис. 7.3, 6) в (7.17) и (7.17а) следует ввести
множитель 2 (или п при числе слоев п) в числитель, а в
(7.18) и (7.18а) - в знаменатель.
В обмотках винтовых и катушечных с каналами между
всеми витками или катушками (рис. 7.3, в) потери в эле­
менте объема обмотки, Вт,
р = kJ2 abn0p уkд,
где n пр - число витков в катушке, умноженное на число
параллельных проводов в витке или параллельных прово­
дов в витке одного хода винтовой обмотки. Заменив J =
=/пр/ (аЬ) и отнеся потери к единице поверхности элемен­
та, м2 ,
получим
Для меди
q=
kJ/ пр nпр Уkд
+
k3·2 (Ь'
-.::с,;__а' n0p)• I
:.:,:_:...=
_
107J/Wм kд
0•
10-1 ,
(7.19)
l 72J/wм kд
-ю,
1O
(7. l 9а)
для алюминия
qА
= ----"---=--)
k (Ь' + а
з
рад
где / - ток обмотки фазы (для однофазного трансформа­
тора ток обмотки стержня); Wк - число витков в катуш­
ке: для винтовой одноходовой обмотки 1,0; для двухходо­
вой винтовой обмотки 0,5; k, - коэффициент закрытия по­
верхности, k3 =0,75; арад - радиальный размер обмотки, м.
Для обмоток со сдвоенными катушками или витками
(рис. 7.3, г):
314
для меди
qм.
для алюминия
=
214!/ri'к kц
0,
l0-1 '
k3 (2Ь' + арад)
(7.196)
_ 344J/w11 kц
(7_198)
10-10.
qA - kз (2Ь' +
Орад)
В начале расчета обмоток для предварительной при­
ближенной оценки q или выбора предельного (по задан­
ным q и J) размера провода для винтовых и катушечных
обмоток можно пользоваться формулами (7.18) и (7.l8a),
приняв в них k э = 1.
Формулы (7.17)-(7.19) справедливы как для маслп­
ных, так и для сухих трансформаторов с расчетной темпе­
ратурой обмоток, к которой приведены потери короткого
замыкания, 75 °С. При расчете сухих трансформаторов с
расчетной температурой обмоток 115 °С можно пользо­
ваться (7.17)-(7.19), заменив в них коэффициенты 107,
172, 214 и 344 соответственно на 131, 194, 262 и 388.
Расчет основных потерь в отводах сводится к определе­
нию длины про