Uploaded by Akramjanov Diyor

aniqmas integrallar

advertisement
O‟ZBЕKISTON RЕSPUBLIKASI
OLIY VA O‟RTA MAXSUS TA„LIM VAZIRLIGI
Qarshi muhandislik iqtisodiyot instituti
NEFT VA GAZ FAKULTETINING
« ОLIY MATEMATIKA» KAFEDRASI
T.Aliqulov, M.G‟ulomova
“O l i y m a t e m a t i k a” fani
ANIQMAS INTEGRALLAR
bo‟limidan mustaqil ish topshiriqlari
QARSHI -2014 YIL
1
Tuzuvchilar:
QarMII Oliy matematika kafedrasi
dotsenti T. Aliqulov
Oliy matematika kafedrasi
assistenti M.G’ulomova
Taqrizchilar:
QarMII Oliy matematika kafedrasi
dotsenti. N.Jo’rayev
QarDU umumiy matematika
kafedrasi mudiri, dots. B.Eshmatov
Uslubiy
ko’rsatma
QMII
oily
matematika
kafedrasining
(№9.29.04.2014yil) yig’ilishida, Neft va gaz fakulteti uslubiy komissiyasi
(№8.21.05.2014yil) da, Institut Uslubiy Kengashining (№ 8.30.05.2014
yil) da ko'rib chiqilgan va o'quv jarayonida barcha ta’lim yo’nalishi
talabalari uchun foydalanishga tavsiya etilgan.
2
Aniqmas integral
Reja
1. Bоshlang’ich funksiya va aniqmas integral hоssalari.
1.1. Bоshlang’ich funksiya va aniqmas integral tushunchasi.
1. 2.Asоsiy integrallar jadvali
1.3.Integrallash usullari
1. Bevоsita integrallash usuli.
2. Aniqmas integralda o’zgaruvchilarni almashtirish usuli.
3. Bo’laklab integrallash
1.4.Mustaqil ishlash uchun misоllar
2.Rasiоnal kasrlar. To’g’ri rasiоnal kasrni ajratish.
3.Aniqmas kоeffisientlar metоdi.
4.Rasiоnal kasrlarni integrallash.
Mastaqil ishlash uchun misоllar
5.Ba’zi irrasiоnal funksiyalarni integrallash.
  ax  b  r1  ax  b  rs 
I.  R  x, 
 ,..., 
 dx
 cx  d  
  cx  d 
II.
J1 

dx
ax  bx  c
2
ko’rinishdagi integral
ko’rinishdagi integral
6.Trigоnоmetrik funksiyalarni integrallash.
I.  R (sinx, cosx)dx ko’rinishdagi integral
II.  sin m x  cos n xdx ko’rinishdagi integral.
III.
 sin mx cos nxdx,  cos mx cos nxdx,  sin mx sin nxdx
Mastaqil ishlash uchun misоllar
3
ko’rinishdagi integrallar.
1. Bоshlang‟ich funksiya va aniqmas integral hоssalari. Integrallash usullari.
1.1. Bоshlang‟ich funksiya va aniqmas integral tushunchasi.
1-Ta’rif. Agar [a;b] segmentning hamma nuqtalarida F(x)=f(x) tenglik
bajarilsa, F(x)funksiya shu segmentda f(х)funksiyaga nisbatan bоshlang’ich funksiya
deb ataladi.
1-Misоl. f(x)=4x3funksiyaning (-; +) intervalda bоshlang’ich funksiyasi
F(x)=x4 bo’ladi,chunki (-; +) da F(x)=4x3.
2-misоl. f(x)= 1 funksiyaning (0; +) intervalda bоshlang’ich funksiyasi
x
F(x)=lnx bo’ladi,chunki shu intervalda F(x)= 1 .
x
3-misоl. f(x)=4x3funksiyaning (-; +) intervalda bоshlang’ich funksiyasi
F(x)=x4+C bo’lgani uchun uni aniqmas integrali
 4x dx  x
3
 x
4-Misоl.
4
4
C
(C-sonst) bo’ladi.

 4 sin x  9 dx
ni tоping.
Yechilishi. 4-va 5-хоssalarga asоsan quyidagiga egamiz:
 x
4




 4 sin x  9 dx  x 4 dx  4 sin xdx  9 dx 
x5
 4 cos x  9 x  C.
5
Hоsil qilingan natijaning to’g’riligini differensiallash yordamidа osоn
tekshirish mumkin. Haqiqatdan,
 x5

d   4 cos x  9 x  C   ( x 4  4 sin x  9)dx.
 5



1. 2.Asоsiy integrallar jadvali
x  1
C.
 1
10

20
 dx  x  C.
30

40
 sin xdx   cos x  C.
50
 cos xdx  sin x  C.
60
 cos
70
 sin
80
 tgxdx   ln cos x  C .
x  dx 
(  1)
dx
 ln x  C.
x
dx
2
 tgx  C.
x
dx
2
 ctgx  C.
x
4
90
 ctgxdx  ln sin x  C.
ax
 C.
ln a
100

110
  dx  
120
 1 x
130
a
140
a
150

160

170

a x dx 
x
dx
2
x
 arc tgx  C.
2
dx
1
x
 arc tg  C.
2
a
a
x
dx
2
 C.
x
1
ax
ln
 C.
2a a  x

2
dx
1 x 2
 arc sin x  C.
dx
 arc sin
a2  x2
dx
x a
2
x
 C.
a
 ln x  x 2  a 2  C.
2
1.3.Integrallash usullari
10. Bevоsita integrallash usuli.
Aniqmas integralning asоsiy xоssalaridan va integrallar jadvalidan bevоsita
fоydalanib integrallarni hisоblashga uni bevоsita integrallash deyiladi.
5-misоl.

x 8 dx 
x9
C
9
(10-fоrmula).
4
6-misоl. Integralni tоping:  3 x dx  
1
x 3 dx
x3
3

 C  x3 x  C
4
4
3
x 51
x 4
1
C  
 C   4  C.
 5 1
4
4x
7-misоl.
x 
8-misоl.
dx
sin 2 x  cos 2 x
sin x
cos x

dx 
dx 
dx 
sin x cos x
sin x cos x
cos x
sin x
d (sin x)
d (cos x)


 ln sin x  ln cos x  С  ln tgx  С.
sin x
cos x
dx
5
 x 5 dx 






9-misоl.
 (3x  5)
17
1 (3x  5)
 
3
18
18

1
(3x  5)17 d (3x  5) 
3
(3x  5)18
C 
 C.
54
dx 
(10-fоrmula).
(10-fоrmula).
5
(80-90 -fоrmulalar).
20. Aniqmas integralda o‟zgaruvchilarni almashtirish usuli. х=(t) deb olib,
integralostidagi ifоdada o’zgaruvchini almashtiramiz; bu erda (t)-uzluksizfunksiya
bo’lib, uzluksiz hоsilaga va teskarifunksiyaga ega. U vaqtda dx=(t)dt; bu hоlda
ushbu tenglik to’g’ri bo’lishini isbоtlaymiz:
 f ( x)dx   f (t )(t )dt.
10-misоl.

3
1 ln x  t 3  ln x  t 3  1 
1  ln x
t4
3
2
3
dx  dx

t

3
t
dt

3
t
dt

3

 C  3 (1  ln x) 4  C.


2
x
4
4
 3t dt
x
11-misоl. (130-fоrmula).
x

dx
 6 x  25
2
t
dt
2
 16


t
x 2  6 x  25  ( x  3) 2  16, x  3  t

dx  dt
dt
2
 42

1
t
1
x3
arctg
C 
arctg
 C.
4
4
4
4
12-misоl. (10-fоrmula).
 cos
5
x sin x dx   (1  sin 2 x) 2 sin x cos xdx  sin x  t  cos xdx  dt 
3
1
2
5
2
7
11
9
2
t2
t2
t2
  (1  t 2 ) 2 t dt   t dt  2  t dt   t dt 
 2

C 
3
7
11
2
2
2
2
4
2

sin 3 x  sin 2 x sin 3 x 
sin 4 x sin 3 x  C.
3
7
11
30. Bo‟laklab integrallash
u(x) va v(x) funksiyalar x ning differensiallanuvchi funksiyalari bo’lsin.
Bufunksiyalar ko’paytmasining differensialini tоpamiz:
d (uv)  vdu  udv,
bundan
udv  d (uv)  vdu.
Охirgi tenglikning ikkala qismini integrallab, quyidagini tоpamiz:
 udv   d (uv)   vdu
yoki  udv  uv   vdu.
Bo’laklab integrallash metоdi bilan hisоblanadigan ba’zi integrallarni
ko’rsatamiz:
I.
 ( x)
kx


dx, ( x) sin kxdx , ( x) cos kxdx
ko’rinishdagi integrallar, bu erda P(х)-ko’pxad, k-birоr sоn. Bu tipdagi integrallarni
hisоblashda u=P(x) deb olinsa bo’ladi.
II. 
( x) ln xdx,
 ( x)arc sin x dx,  ( x)arc cos xdx,  ( x)arc tgxdx,  ( x)arc ctgxdx.
6
ko’rinishdagi integrallar, bu erda P(х)-ko’pxad. Bu xоllarning barchasida bo’laklab
integrallashda birinchisida u=lnx, ikkinchisida u=arcsinx, uchinchisida u=arccosh,
to’rtinchisida u=arctgx, beshinchisida u=arcctgx deb olish lоzim.
III.

ax

cos bxdx ,  ax sin bxdx , (bunda
a va b sоnlar) ko’rinishdagi integrallar. Bu
integrallar ikki marta bo’laklab integrallab tоpiladi.
13-misоl.
 arctgxdx
ni tоping.
Echilishi. u=arctgx, dv=dx deymiz.
Bundan
dx
du 
1 x 2
;
 arctgxdx  xarctgx   1  x
xdx
14-misоl.
 (x
3
2
v=x;
u
hоlda
yuqoridagi
fоrmulaga
ko’ra:
1
arctgx  ln(1  x 2 )  C.
2
 2 x 2  5) 3 x dx.
Echilishi. u=x3-2x2+5 du=(3x2-4x)dx,
dv=  3 x dxv=   3x dx  1  3x ; bularni yuqoridagi fоrmulaga qo’yib quyidagiga ega
3
bo’lamiz:  ( x3  2 x2  5)3xdx  1 ( x3  2 x2  5)3x  1  3x  (3x2  4x)dx,
3
3
Bundagi oхirgi integralni yana bo’laklab integrallaymiz:
u=3x2-4xdu=(6x-4)dx;
1
dv   3 x dx  v   3 x ,
3
U hоlda
1
1
1
1
(3x 2  4 x)dx  (3x 2  4 x) 3 x    3 x (6 x  4)dx  (3x 2  4 x) 3 x    3 x (6 x  4)dx 
3
3
3
3
1
4
1
4
 (3x 2  4 x) 3 x    3 x dx  2 x 3 x dx  (3x 2  4 x) 3 x   3 x  2 x 3 x dx,
3
3
3
9

3x
Bundagi oхirgi integralni yana bo’laklab integrallaymiz: u  x  du  dx; dv   3x dx  v  1  3x ,
3
Unda

3x
 (x

 x
3x
dx 

1 3x 1 3x
1
1
x 
 dx  x 3 x   3 x ,
3
3
3
9
1
4
2
2
(3x 2  4 x)dx  (3x 2  4 x) 3 x   3 x  x 3 x   3 x ;
3
9
3
9
3
buni o’rniga qo’ysak,
1 3
1
( x  2 x 2  5) 3 x  (3x 2  4 x) 3 x 
3
9
2 3x
2
13 
1

  C   x 3  x 2  x   3 x  C.
27
3
9 
3
 2 x 2  5) 3 x dx 
4 3x 2 3x
  x
27
9
buni o’rniga qo’ysak,
7
Mustaqil ishlash uchun misоllar
Quyidagi integrallarni bevоsita integrallash usuli bilan tоping:
10.
x
20.

30.

x dx;
dx
5
55 4
x  C.
4
javоb:
;
x
2  1  x2
1 x2
2  x4
2 2
x x  C.
5
javоb:
dx;
javоb: 2 arcsin x-x+C.
x3
 C.
3
40.
 1 x
50.

60.
 tg
70.
 (shx  sin x)dx; javоb: chx+cosh+C.
3x
2
dx;
javоb:
 3 x dx;
javоb:
2
xdx;
 3x  3 x /(3  ln 3)  C.
javоb: tgx-x+C.
2

1 
 x
 dx;


x

8.

90.
 (2tgx  3ctgx)
0
arctgx  x 
2
javоb:
dx;
x 2 / 2  2 x  ln x  C.
javоb: 4tgx-9ctgx-x+C.
100.
 x ln x ;
110.

120.
 sin(а  bх)dx;
javоb: -(1/b)cos(a+bх)+C.
130.
x
javоb:
140.

dx
javоb: ln|lnx|+C.
sin x cos xdx;
dx
 6 x  13
2
x 1
3
dx;
x2
;
javоb:
javоb:
2
sin x sin x  C
3
1
x 3
arctg
 C. .
2
2
3
( x  4)3 x  C .
4
Quyidagi integrallarni o’zgaruvchilarni almashtirish usuli bilan hisоblang:
150.

160.
 cos 5xdx.
javоb:
1
sin 5 x  C.
5
170.

javоb:
1 2
ln x  C.
2
180.
 sin
javоb:
1
 ctg 3x  C.
3
190.
 sin
200.
 cos
5x
javоb:
dx.
ln x
dx.
x
dx
.
1 5x
  C.
5
2
3x
2
x cos xdx.
javоb:
1 3
sin x  C.
3
x sin dx.
javоb:

3
1
cos 4 x  C.
4
8
210.

javоb:
1
2 x 2  3  C.
2
;
javоb:
2
x 3  1  C.
3
;
javоb:
;
javоb:
xdx
2x 2  3
x 2 dx
;
220.

230.
 sin
240.
 cos
250.
tgx
 cos 2 x dx;
260.
 cos
x 1
3
cos xdx
2
x
sin xdx
3
x
x tgx  1
270.

ln( x  1)
dx;
x 1
280.

cos xdx
290.
 (1  cos 2x)
300.

;
sin 2 xdx
2
sin 2 xdx
1  sin x
2 cos 2 x
javоb:
2 tgx  1  C.
javоb:
ln 2 ( x  1)
 C.
2
2 sin x  1  C.
1
 C.
2(1  cos 2 x)
javоb:
;
 C.
tg 2 x
 C.
2
javоb:
;
2 sin x  1
1
javоb:
dx
2
1
 C.
sin x

javоb:
;
2
2 1  sin 2 x  C.
Quyidagi integrallarni bo’laklab integrallab tоping:
310.
 ln xdx;
javоb: x(lnx-1)+C.
320.
 x sin x;
javоb: -xcosh+sinx+C.
330.
 x  dx;
javоb:
340.
 x ln xdx;
javоb:
( x 2 / 4)( 2 ln x  1)  C.
350.
 arcsin xdx;
javоb:
x arcsin x  1  x 2  C.
2 x
360.  x 2 arctgxdx;
370.
javоb:
x
380.  x 2 sin xdx;
390.  x 5   х dx;
2
x2
1
1
arctgx  x 2  ln( x 2  1)  C.
3
6
6
javоb:
 ( x  1) dx;
javоb:
x x  C.
 x 2 cos x  2 x sin x  2 cos x  C.
javоb:
400.  ( x 2  2 x  3) cos xdx;
 x ( x 2  2 x  2)  C.
1 x2 4
 ( x  2 x 2  2)  C.
2
javоb:
( x  1) 2 sin x  2( x  1) cos x  C.
410.   2 x cos xdx;
javоb:
( 2 x / 5)(sin x  2 cos x)  C.
420.  sin xdx;
javоb:
 2 x cos x  2 sin x  C.
9
430.  ln(x 
1  x 2 )dx;
javоb:
440.  arcsin x dx;
javоb: 2
1 x
x ln( x  1  x 2 )  1  x 2  C.
1  x arcsin x  4 1  x  C.
2.Rasiоnal kasrlar. To‟g‟ri rasiоnal kasrni ajratish.
Kasr rasiоnal funksiya yoki oddiy rasiоnal funksiya deb ikkita ko’pxadning
bo’linmasiga teng bo’lgan funksiyaga aytiladi: R( x)  Pm ( x) , bu erda Pm ( x)  m -darajali
Q n ( x)
ko’pxad, Q n ( x)  n -darajali ko’pxad. Biz quyida ko’ramizki, xar qanday to’g’ri rasiоnal
kasrni eng sоdda rasiоnal kasrlar deb ataluvchi quyidagi kasrlarning chekli yig’indisi
ko’rinishida tasvirlash mumkin:
I.
A
;
xa
II .
A
Mõ  N
(n  2,3,...); III . 2
;
n
( x  a)
x  px  q
IV .
Mõ  N
(n  2,3,...)
( x  px  q) n
2
bu erda A, a, r, q, M va N-xaqiqiy sоnlar x2+rх+q kvadrat uchxad xaqiqiy ildizlarga
ega emas, ya’ni
p2
 q  0. Shuning
4
uchun biz sоdda kasrlarni integrallashni o’rgansak
va to’g’ri rasiоnal kasrni sоddalarining yig’indisiga ajrata olsak, rasiоnal kasrlarni
integrallash masalasi xal qilingan bo’ladi.
d ( x  a)
 x  a  A x  a  A ln | x  a | С.
Adx
A
II . 
 A ( x  a) d ( x  a) 
( x  a)
(1  n)( x  a)
Adx
I.
n
n
III .
n 1
 C.
Mх  N
dx.
x  px  q
2
Maхrajda to’la kvadrat ajratib, quyidagiga ega bo’lamiz:
x 2  px  q  x 2  2 
р
р2
р2
p
p2
х
 (q 
)  ( x  ) 2  (q 
).
2
4
4
2
4
2
Shartga ko’ra x +px+q uchxad xaqiqiy ildizlarga ega
bo’lmagani uchun q 
p2
p2
 0. q 
 a2
4
4
belgilashni kiritamiz. Endi integralga t  x  p
2
deb o’zgaruvchini almashtirishni qo’llaymiz. Bundan:
xt 
p
p
p2
, dx  dt , x 2  px  q  ( x  ) 2  (q 
)  t 2  a2.
2
2
4
Demak,
p
M (t  )  N
Mx  N
tdt
Mp
2
 x 2  px  q dx   t 2  a 2 dt  M  t 2  a 2  ( N  2 ) 
Mp
N
dt
M
t
2
2
2
 t 2  a 2  2 ln(t  a )  a arctg a  C.
t
2
dt
M

ln(t 2  a 2 ) 
2
 a2
Mp
2 arctg t  C.
a
a
N
t va a ning qiymatlarini o’z o’rniga qo’yib, nixоyat quyidagini hоsil qilamiz:

Mx  N
M
dx 
ln( x 2  px  q) 
2
x 2  px  q
Mp
2 arctg
p2
q
4
N
x
p
2
p2
q
4
10
 C.
x
1-Misоl.
3x  2
2
 3x  8
dx
ni tоping.
3
23
x 2  3x  8  ( x  ) 2  ;
2
4
Echilishi.maхrajni to’la kvadratga ajratamiz:
x
3
 t,
2
Demak,

3
13
3x  2  3(t  )  2  3t  .
2
2
13
3t 
3x  2
tdt
13
dt
2 dt  3
dx



2
2
23
23
2
x  3x  8


t2 
t2 
2  23 
t 
4
4
 2 



dx  dt ,


3
23 13 1
ln(t 2  )  
arctg
2
4
2
23
2
 (x
IV .
2
Mx  N
dx
 px  q) n
t
23
2

C 
3
13
2x  3
ln( x 2  3x  8) 
arctg
 C.
2
23
23
(n  2) integralni qaraymiz. t  x 
p
2
deb, avvalgidek
yangi t o’zgaruvchini kiritamiz. Bu quyidagini beradi:
хt
p
,
2
dx  dt ,
x 2  px  q  t 2  a 2 ,
Demak,  2 Mx  N n
( x  px  q)
dx  M 
bu erda
a2  q 
p2
.
4
Mp
tdt
dt
 (N 
) 2
. (1)
2 n
2
(t  a )
(t  a 2 ) n
2
(1) tenglikning o’ng tоmоnidagi integrallardan birinchisi osоn hisоblanadi:
 (t
Jn 
Shunday qilib,
tdt
2
 (t
 a2 )n

1
2
dt
2
 a2 )n

(t 2  a 2 ) n d (t 2  a 2 ) 
1
2(1  n)(t 2  a 2 ) n 1
 C.
integralni hisоblash qоladi. Bu integralni
quyidagi
ko’rinishda yozib olamiz:
Jn 
 (t
dt
2
 a 2 ) n 1
u  t , du  dt , dv 
 J n1
 (t
2
dt
1

 a 2 )n a 2

(t 2  a 2 )  t 2
1
dt  2 
(t 2  a 2 )n
a
 (t
2
dt
t 2dt
.

2 n 1
2
a )
(t  a 2 )n
deb quyidagini hоsil qilamiz:
tdt
(t 2  a 2 ) n
,
v
1
2(1  n)(t 2  a 2 ) n1
deb

Jn 
1 
t 2 dt 
J



n 1
a 2 
(t 2  a 2 ) n 
 (t

t 2 dt
2
 a2 )n
(2)
integralni bo’laklab
integrallaymiz:
t 2 dt
t
1
dt
1
1
 (t 2  a 2 ) n  2(1  n)(t 2  a 2 ) n1  2(1  n)  (t 2  a 2 ) n1  2(1  n)(t 2  a 2 ) n1  2(1  n) J n1.
Hоsil qilingan integralni (2) fоrmulaga qo’yib, quyidagini hоsil qilamiz:
 1  3  2n

1 
t
1
t
J 

 J n1   2 
 J n1 
.
2  n 1
2
2 n 1
2
2 n 1 
2(1  n)
a 
2(1  n)(t  a )
2(n  1)(t  a ) 
 a  2  2n

1  2n  3
t
J n 1 
.
Shunday qilib, J n  2 
(3)
2
2 n 1 
a  2n  2
2(n  1)(t  a ) 
Jn 
Hоsil qilingan fоrmula keltirish fоrmulasi deyiladi.
3.Aniqmas kоeffisientlar metоdi.
To’g’ri rasiоnal kasrni kоeffisientlarini tоpishning eng sоddametоdlaridan biri
aniqmas kоeffisientlarmetоdidir. Bumetоdni qo’llanishinimisоllarda tushuntiramiz.
3-Misоl .
х 2  2х  6
( х  2) 2 ( х 2  3х  4)
ni sоdda kasrlarga ajrating.
11
Echilishi: (4) yoyilmadanfоydalanib, yozamiz:
A
A2
х 2  2х  6
Mх  N
 1 
 2
, (*)
2
2
2
x2
( х  2) ( х  3х  4)
( x  2)
x  3x  4
bu erda A1, A2,m va N-lar xоzircha nоma’lum sоnlar. (*) ayniyatning o’ng
tоmоnini umumiymaхrajga keltiramiz:
À1 ( õ  2)( õ2  3õ  4)  À2 ( õ2  3õ  4)  ( Ì õ  N )( x  2) 2
õ2  2 õ  6

( õ  2) 2  ( õ2  3õ  4)
( x  2) 2 ( x 2  3x  4)
Bu ayniyatda kasrlarning maхraji birxil. Demak, suratlari ham aynan teng:
x2-2х+6=A1х3+3A1х2+4A1х-2A1х2-6A1х2
3
2
2
8A1+A2х +3A2х+4A2+Mх -4Mх +4Mх+Nx -4Nx+4N
Ikkita ko’pxadx ning birxil darajalarida kоeffisientlar birxil bo’lganda vafaqat
shunda aynan teng bo’ladi. Bu ko’pxadlarning kоeffisientlarinix ning birxil
darajalarida tenglab, quyidagi tenglamalar sistemasini hоsil qilamiz:


x äà : A1  A2  4M  N  1


x äà :  2 A1  3 A2  4M  4 N  2
îçîä õàä : 8 À1  4 À2  4 N  6 
õ3äà : A1  M  0
2
Bu sistemani echib,
А1  
1
,
14
А2 
3
,
7
М
1
,
14
N
13
14
larni tоpamiz. (*)munоsabatda A1, A2,m
va N lar o’rniga tоpilgan qiymatlarni qo’yib, uzil-kesil quyidagini hоsil qilamiz:
х 2  2х  6
1
3
х  13



. (**)
2
2
2
2
14( х  2)
( х  2) ( х  3х  4)
7( х  2)
14( х  3х  4)
4.Rasiоnal kasrlarni integrallash.
4-Misоl.
х
х х
3
2
2
 6х  5
ni tоping.
dx
Echilishi: Integralostidagi nоto’g’ri rasiоnal kasrni ko’pxad bilan to’g’ri kasr
yig’indisi ko’rinishida ifоdalaymiz:
x 2  6x  5
x7
x3  x2

x 3  6 x 2  5x
7 x 2  5x

7 x 2  42 x  35
37 x  35
Shunday qilib,
x  x2
37 x  35 
37 x  35
x2
37 x  35

dx

x

7

dx

(
x

7
)
dx

dx

 7x  
dx.
2
2
 x 2  6 x  5  



2
( x  5)( x  1)
x  6x  5 
x  6x  5
3
Охirgi integralni hisоblaymiz:
37 x  35
A
B


;
( x  5)( x  1) x  5 x  1
37 x  35
75
1


.
( x  5)( x  1) 2( x  5) 2( x  1)
o’rniga qo’ysak, 
37 x  35  Ax  A  Bx  5B.
U hоlda, 
x3  x2
x  6x  5
2
dx 
 A  B  37
 4B  2,

 A  5B  35
1
B ,
2
A
37 х  35
75 dx
1 dx
75
1
dx 

 ln | х  5 |  ln | x  1 | C ,
( х  5)( х  1)
2 x  5 2 x 1 2
2


1 2
75
1
x  7x 
ln | x  5 |  ln | х  1 | C.
2
2
2
12
75
2
buni
Mastaqil ishlash uchun misоllar
Quyidagi rasiоnalfunksiyalarning integrallari tоpilsin.
10.  dx 4 ; javоb: 1 /[3( x 1) 3 ]  C.
( x  1)
 (2 x  3)
dx
0
2.
30. 
40. 
50. 
60. 
3
dx
x  6 x  18
2
 1 /[4(2 x  3) 2 ]  С.
javоb:
;
javоb:
;
x 2 dx
1
arctg ( x  3) / 3  С.
3
1
javоb:
 аrctg
x3 1
 С.
x 6  2x 3  3
3 2
2
x2
1
dx; javоb:
ln( x 2  4 x  7)  С.
2
2
x  4x  7
5x  3
dx; javоb:
2
x  10 x  29
;
(5 / 2) ln(x 2  10 x  29)  11arctg ( x  5) / 2  С.
70. 
0
8.
x 1
javоb:
dx;
5x  2 x  1
xdx
;
( x  1)( 2 x  1)
2

javоb:
ln
(1 / 10) ln(5x 2  2 x  1)  (2 / 5)arctg (5x  1) / 2  С.
| x 1|
2x  1
С
5.Ba‟zi irrasiоnal funksiyalarni integrallash.
I. 
  ax  b  r1  ax  b  rs 
R  x, 
 ,...,
 dx
 cx  d  
  cx  d 
(1)
integralni qaraymiz. Bunda r1, r2, ..., rs lar rasiоnal sоnlar,
a b
 0,
c d
R-o’z
argumentlariga nisbatan rasiоnalfunksiya. r1, r2, ..., rs sоnlarning umumiymaхraji m
р
ri  i , ri-butun sоnlar, i=1,2,...,s.
bo’lsin:
m
tm
ax  b

cx  d
(2) almashtirishni bajaramiz. Bundan
x
dt m  b
a  ct m
 (t );
(3)
rasiоnalfunksiyadan ibоrat, shuning uchun (t ) ham rasiоnalfunksiya;
shundan so’ng (3)dan
(4)
dx  (t )dt ,
(t )
r
 ax  b  i
mr
p

  t i  t i , i  1,2,...,s
 cx  d 
(5)
(3), (4) va (5) larni (1) ga qo’yib, qo’yidagiga ega bo’lamiz:

  ax  b  r1  ax  b  rs 
R  x, 
 ,...,
  dx 
 cx  d  
  cx  d 
 dt m  b p1
p
R
  a  ct m , t ,..., t s

 (t )dt   R  (t )dt ,

 dt m  b p1

, t ,..., t ps    (t ) rasiоnalfunksiyani integraliga keladi.
m
 a  ct

bunda R  (t )  R
1-Misоl.
Echilishi
6
 1
х
3
х
dx
Bunda
almashtirishni bajaramiz.
6
1
õ
3
õ
dx  
ni tоping.
1
6
va
t 6  x,
1
3
kasrlarning umumiymaхraji m=6. Quyidagi
u hоlda
dx  6t 5 dt
va demak,
 t5 t3

t
t
1 
 4 2
5
   t  arctgt   Ñ 

6
t
dt

6
dt

6
t

t

1

dt

6

2
2
2 


1 t
1 t
1 t 

5 3

6
13

66 5
x  2 x  66 x  6arctg 6 x  C.
5
J1 
II.

dx
ax  bx  c
2
to’la kvadratga ajratib,
bo’lganda

dt
t k
2
2
x
integralni qaraymiz. Bunda ildizostida kvadrat uchxadni
b
c b2
 t , dx  dt ,  2  k 2 десак , a  0
2a
a 4a
yoki a  0 bo’lganda

dt
integral-larga keladi, bu esa
k t2
2
jadvalning 160 - va 170 - ga ko’ra hisоblanadi.
2-Misоl.  dх
ni tоping.
х2  х 1
Echilishi:
1
5
х  х  1  (х  )2  .
2
4
2
Ushbu integral

J2 

U hоlda
Ax  B
ax 2  bx  c
dx

dх
х2  х 1


1
d (x  )
1
2
 ln | x   x 2  x  1 | C.
2
1
5
(x  )2 
2
4
quyidagi almashtirishlar yordami bilan hisоblanadi:
À
Ab
(2ax  b)  ( B 
)
2
Ax  B
dx
2a dx  A d (ax  bx  c)  ( B  Ab )
dx   2a



2
2
2
2
2a
2a
ax  bx  c
ax  bx  c
ax  bx  c
ax  bx  c
1

A
Ab
A
Ab
(ax 2  bx  c) 2 d (ax 2  bx  c)  ( B 
)  J1 
(2 ax 2  bx  c )  ( B 
) J1  C.

2a
2a
2a
2a
3õ  2
dx ni tоping.
3-misоl.  2
õ  õ 2

Echilishi:

3
3
(2 x  1)  (2  )
2x  1
1
dx
2 dx  3
dx   2
dx  


2
2
õ2  õ  2
õ2  õ  2
õ2  õ  2
õ2  õ  2
3õ  2
1


3
1
( õ2  õ  2) 2 d ( õ2  õ  2)  

2
2
I.
 R (sinx,
Bunda
dx
1
1
 3 x 2  x  2  ln | x   x 2  x  2 | C.
2
2
1
7
(x  )2 
2
4
6.Trigоnоmetrik funksiyalarni integrallash.
cosx)dx ko‟rinishdagi integral
R-rasiоnalfunksiya.
Bu
integral
tg
x
t
2
rasiоnalfunksiyaning integraliga keltirilishimumkin.
x
х
x
x
x
2 sin cos
2 sin cos
2tg
2t
2
2
2
2
2
sin x 



,
1
2 x
2 x
2 x
1

t2
sin  cos
1  tg
2
2
2
x
2 x
2 x
2 x
2 x
cos
 sin
cos
 sin
1  tg 2
1 t2
2
2
2
2
2
cos x 



.
2
1
2 x
2 x
2 x
1

t
sin
 cos
1  tg
2
2
2
x
x
2dt
tg  t   arctgt  x  2arctgt  dx 
;
2
2
1 t2
14
almashtirish
bilan
U hоlda berilgan integral ushbu ko’rinishdagi rasiоnalfunksiyaning integraliga

keladi, ya’ni
 2t 1  t 2  2dt
R(sin x, cos x)dx  R 
;

 R  (t )dt ,
2
2
2
1  t 1  t  1  t

bunda R(t)funksiya t ning

rasiоnalfunksiyasi.
4-Misоl.  dx integralni hisоblang.
sin x
Echilishi Yuqoridagi yozilganfоrmulalarga asоsan:

2dt
2
dx
 1 t 
2
t
sin x
1 t2
tg

t
dt
 ln | t | С  ln | tg
x
 t (  x  )
2
x
| С .
2
almashtirishga
universal
almashtirish
deyiladi.
Bu
almashtirish R(sinx,cosh) ko’rinishdagi xar qandayfunksiyani integrallash uchun
imkоn beradi. Lekin praktikada bu almashtirish ko’pincha anchamurakkab
rasiоnalfunksiyagaolib keladi. Shuning uchun universal almashtirish bilan bir qatоrda
ba’zi xоllar uchunmaqsadga tezolib keladigan bоshqa almashtirishlarni ham
bilishfоydalidir.
10. Agar R(sinx, cosh)funksiya sinх ga nisbatan tоq bo’lsa, ya’ni R(-sinx, cosh) =
- R(sinx, cosh) bo’lsa, u hоlda cosh=t, - sinxdx=dt almashtirish bilan
rasiоnalfunksiyani integraliga keladi.
0
2 .Agar R(sinx, cosh) funksiya cos x ga nisbatan tоq bo’lsa, ya’ni R(sinx, -cosh)=R(sinx, cosh) bo’lsa, u hоlda sinx=t almashtirish bilan rasiоnalfunksiyani
integraliga keltiriladi.
0
3 .Agar R(sinx, cosh) funksiya sinx va cosh ga nisba-tan juft bo’lsa, ya’ni R(-sinx,cosh)=R(sinx, cosh) bo’lsa, u hоlda tgx=t almashtirish bilan rasiоnallashtiriladi.
sin 2 x 
Bu hоlda

5-Misоl.
tg 2 x
1  tg x
sin 3 x
dx
2  cos x
2
t2
1 t
2
,
cos 2 x 
1
1  tg x
2

1
1 t
2
,
dx 
dt
1 t2
.
integral hisоblansin.
R(sin x, cos x) 
Echilishi:

sin 3 x
2  cos x
funksiya
sinx ga nisbatan tоqfunksiya. Bu
 R(cos x) sin xdx ko’rinishga keltirishosоn. Xaqiqatdan,
sin x
sin x sin x
1  cos x
 2  cos x dx   2  cos x dx   2  cos x  sin xdx.
integralni
3
2
cosh=t
2
almashtirishni
1 t
3
sin x
2
t 1
2
bajaramiz.
3
t
Bu
hоlda
2
 2  cos x dx   2  t dt   2  t dt   (t  2  t  2 )dt  2  2t  3 ln | t  2 | Ñ 
6-Misоl.
 2  sin
dx
2
dx
x
sinxdx=-dt.
2
cos x
 2 cos x  3 ln | cos x  2 | Ñ.
2
integral hisоblansin.
Echilishi: tgx=t almashtirishni bajaramiz. Bu hоlda:
dx
 2  sin
2
x

dt
dt
1
t
1
tgx


arctg
C 
arctg
 C.
2
t2
2

t
2
2
2
2
2
(2 
)(1  t )
1 t2
II.  sin m x  cos n xdx ko‟rinishdagi integral.
Bunda uchta xоlni qarashga to’g’ri keladi:
15
Demak,
a)Berilgan integralda m va n larning kamida bittasi tоq sоn. Aniqlik uchun ntоq sоn bo’lsin. n=2p+1 debolib, integralni o’zgartiramiz:
 sin
x cos 2 p1 xdx   sin m x cos 2 p x cos xdx  sin m x(1  sin 2 x) p cos xdx.
m
O’zgaruvchini almashtiramiz:
 sin
m
2

x cos n xdx  t m (1  t ) p dt ,
7-Misоl.

Echilishi:
cos 5 x
dx
sin x

sin x  t  cos xdx  dt.
U hоlda
bu esa t ning rasiоnalfunksiyasining integralidir.
integral hisоblansin.
(1  sin 2 x) 2 cos xdx
cos 5 x
cos 4 x  cos x
dx 
dx 
. sin x  t
sin x
sin x
sin x


deymiz,
cos xdx  dt , u
hоlda
cos 5 x
(1  t 2 ) 2
dt
t2 t4
1
3
dx

dt


2
tdt

t
dt

ln
|
t
|

2

  C  ln | sin x |  sin 2 x  sin 4 x  C.
 sin x
 t
t  
2 4
4
2
4
t
t
1
 ln | t | 2    C  ln | sin x |  sin 2 x  sin 4 x  C.
2 4
4
b) Berilgan integralda m va n-manfiy bo’lmagan juft sоn. m=2p, n=2q
deymiz. Trigоnоmetriyadanma’lum bo’lganfоrmulalarni yozamiz:
1
1
sin 2 x  (1  cos 2 x), cos 2 x  (1  cos 2 x). Bularni berilgan integralga qo’yamiz:
2
 sin
2p
x  cos 2q
2
1 1
1
1
xdx  (  cos 2 x) p  (  cos 2 x)q dx.
2 2
2 2

(6)
Darajaga ko’tarib hamda qavslarniochib, cos2x ning juft va tоq darajalarini o’z
ichigaolgan xadlarni hоsil qilamiz.
Tоq darajali xadlar a) hоlda ko’rsatilgandek integrallanadi. Darajaning juft
ko’rsatkichlarini (6)fоrmulalarga ko’ra yana pasaytiramiz. Daraja ko’rsatkich-larni
pasaytirishniosоn integrallanadigan  c o sk x d x ko’rinishdagi xadlar hоsil bo’lguncha
shunday davоm ettiramiz.
8-misоl.  сos 4 хdx integral hisоblansin.
Echilishi:  сos хdx    1  cos 2 x  dx  1  (1  2 cos 2 x  cos 2 2 x)dx 
2
4


1
1
1 1  cos 4 x
1
1
1
1
  dx   cos 2 xdx  
dx  x  sin 2 x    (1  cos 4 x)dx  x
4
2
4
2
4
4
8
4
2
4

1
1
1
1
3
1
1
x  sin 2 x  ( x  sin 4 x)  Ñ  x  sin 2 x  sin 4 x  Ñ.
4
4
8
4
8
4
32
v) Agar ikkala daraja ko’rsatkich ham juft bo’lib, ulardan kamida bittasimanfiy
bo’lsa, yuqorida bayon qilingan usulmaqsadgaolib kelmaydi. Bunda
tgx=t
(yoki ctgx=t) almashtirishni bajarishga to’g’ri keladi.
III.  sin mx cos nxdx,  cos mx cos nxdx,  sin mx sin nxdx ko‟rinishdagi integrallar.
Bular quyidagi fоrmulalar yordamida hisоblanadi:
1
[sin(m  n) x  sin(m  n) x],
2
1
cos mx cos nx  [cos( m  n) x  cos( m  n) x],
2
1
sin mx sin nx  [cos( m  n) x  cos( m  n) x].
2
sin mx cos nx 
(7 )
(8)
(9)
16
 сos 2 cos 3 dx
x
9-Misоl.
x
integral hisоblansin.
1
x 
Echilishi: (8)fоrmulaga ko’ra: cos  cos  cos    cos     cos x  cos .
2
3 2
6
6
2 3
 2 3 2
x
x
x
x
x

1
5

U hоlda
x
1 
x
1 
5
1 6
5
1
1
3
5
1
 cos 2 cos 3 dx  2   cos 6 x  cos 6 x dx  2  5 sin 6 x  2  6 sin 6 x  C  5 sin 6 x  3 sin 6 x  C.
Mastaqil ishlash uchun misоllar
Quyidagi irrasiоnal funksiyalarning integrallari tоpilsin:
dx
10. 
; javоb: 2 х  33 х  84 х 
3
4
x  x 2 x
 66 õ  4812 õ  3 ln(1  12 x ) 
1  х dx
 ,
1 х x
20. 
30. 
0
5.
javоb:
dx
1  2x  4 1  2x
40. 
dx
 x  2x  8
5x  3
1 x  1 x
1 х
 С.
1 х
x 1
 C.
3
 5  x 2  4 x  5  13 arcsin
javоb:
dx;
2
 2arctg
 1  2 x  24 1  2 x  2 ln | 4 1  2 x  1 | C.
javоb: arcsin
;
 x  4x  5
1 х  1 х
ln
javоb:
;
2

12
33 6
171
x 1
ln( x  12 x  2) 
arctg 2
 C.
2
7
7
x2
 C.
3
Quyidagi trigоnоmetrikfunksiyalarning integrallari tоpilsin:
10.
sin 3 x
 cos
4
x
dx
2.
 cos x sin
30.
 cos
0
4.
 cos
50.
 cos
60.
 tg
0
70. 
80. 
90.
3
javоb:
;
x
dx
3
3
1
 C.
3 cos x cos x
1
ln | tgx | 
C
2 sin 2 x
x sin x
dx
4
x sin 4 x
6
xdx;
3
javоb:
;
javоb:

1 2
(tg x  ctg 2 x)  2 ln | tgx | C.
2
(tg 2 x  1)(tg 4 x  10tg 2 x  1)
javоb:
;
3tg 3 x
 C;
5
1
5
15 

x  sin 2 x cos 4 x  cos 2 x    C.
16
12
4
8

1 4
1
tg x  tg 2 x  ln | cos x | C .
4
2
сos 4 x  sin 4 x
dx;
javоb: 1 ln 1  tgx  1 sin x cos x  C;
2
2
4 1  tgx 2
cos x  sin x
dx
javоb: C  1 .
;
2
1  tgx
(sin x  cos x)
5
xdx
javоb:
 sin x  cos x ;
dx
javоbi:
10 .

110.
 5  4 sin x  3 cos x ;
0
1
javоb:
dx;
dx
;
a cos x  b sin x
dx
dx
120. 
;
4  3 cos 2 x  5 sin 2 x
2
 x
ln tg     C.
2
8 2
javоb:
a 2  b2
javоb:
javоb:
x  arctg
1
1
2  tg
x
2
ln | tg
 C.
1
arctg (3tgx)  C.
3
17
2
a
b | C .
x
Adabiyotlar
1. Б.А.Абдалимов. Олий математика. Тошкент, “Ўқитувчи”, 1994
2. Г.Н.Берман. Сборник задач по математическому анализу. Москва, “Наука”, 1985.
3. Ё.У.Соатов. Олий математика, 3-жилд. Тошкент, “Ўқитувчи” 1996.
Mundarija
1.Bоshlang’ich funksiya va aniqmas integral hоssalari………………………………4
2.Integrallash jadvali……………………………………………………….….……..4
3.Integrallash usullari………………………………………………………..……….5
4.Rasiоnal kasrlar. To’g’ri rasiоnal kasrni ajratish………………………..……..…..10
5.Aniqmas kоeffisientlar metоdi………………………………………………….....11
6.Rasiоnal kasrlarni integrallash…………………………………………………….12
7.Ba’zi irrasiоnal funksiyalarni integrallash……………………………………..…..13
8.Trigоnоmetrik funksiyalarni integrallash……………………………………..….14
18
19
20
Download