Загрузил a a

# УРАВНЕНИЯ РАБОЧИЙ ЛИСТ

Реклама
```Solving Multi-Step Equations
Distributive With Parentheses - No Negative Coefficients
Name:
V
Date:
Solve the equations.
(1)
2x&Ntilde; 6 x&Eacute; 2 &Ouml; 36
(2)
2x&Ntilde;3 2x&Eacute;4 &Ouml;44
(3)
6x&Ntilde; 5 x&Eacute;2 &Ouml;45
(4)
6x&Ntilde; 6 x&Eacute; 4 &Ouml; 36
(5)
4x&Ntilde;3 x&Ntilde;4 &Ouml;47
(6)
5x&Ntilde; 5 x&Eacute;2 &Ouml;40
(7)
2x&Ntilde; 2 2x&Ntilde; 4 &Ouml;38
(8)
4x&Ntilde;6 x&Eacute;4 &Ouml;46
(9)
3x&Ntilde; 7 x&Eacute;3 &Ouml;49
(10)
2x&Ntilde; 5 x&Eacute; 2 &Ouml; 39
(11)
2x&Ntilde;3 x&Eacute;2 &Ouml;29
(12)
2x&Ntilde; 2 x&Ntilde;2 &Ouml; 40
(13)
3x&Ntilde; 2 3x&Eacute;2 &Ouml;41
(14)
2x&Ntilde;4 x&Eacute;3 &Ouml;30
(15)
2x&Ntilde; 3 2x&Eacute;2 &Ouml;42
(16)
3x&Ntilde; 2 x&Eacute; 4 &Ouml; 47
(17)
4x&Ntilde;2 x&Eacute;3 &Ouml;30
(18)
7x&Ntilde; 7 x&Eacute;4 &Ouml;42
(19)
3x&Ntilde; 3 x&Eacute; 2 &Ouml; 24
(20)
6x&Ntilde;6 x&Eacute;3 &Ouml;42
(21)
3x&Ntilde; 4 x&Eacute;4 &Ouml;47
Solving Multi-Step Equations
Distributive With Parentheses - No Negative Coefficients
A N S W EDate:
R KEY
Name:
V
Solve the equations.
(1)
2x&Ntilde; 6 x&Eacute; 2 &Ouml; 36
2x&sect;6x&pound;12• 36
8x&pound; 12•36
8x• 48
x•6
(2)
2x&Ntilde;3 2x&Eacute;4 &Ouml;44
2x&sect;6x&pound; 12•44
8x&pound;12• 44
8x• 56
x•7
(3)
6x&Ntilde; 5 x&Eacute;2 &Ouml;45
6x&sect;5x&pound; 10•45
11x&pound;10•45
11x• 55
x•5
(4)
6x&Ntilde; 6 x&Eacute; 4 &Ouml; 36
6x&sect;6x&pound;24• 36
12x&pound;24•36
12x•60
x•5
(5)
4x&Ntilde;3 x&Ntilde;4 &Ouml;47
4x&sect;3x&sect;12•47
7x&sect;12•47
7x• 35
x•5
(6)
5x&Ntilde; 5 x&Eacute;2 &Ouml;40
5x&sect;5x&pound; 10•40
10x&pound;10•40
10x• 50
x•5
(7)
2x&Ntilde; 2 2x&Ntilde; 4 &Ouml;38
2x&sect; 4x&sect;8•38
6x&sect;8• 38
6x•30
x•5
(8)
4x&Ntilde;6 x&Eacute;4 &Ouml;46
4x&sect;6x&pound;24•46
10x&pound; 24• 46
10x•70
x•7
(9)
3x&Ntilde; 7 x&Eacute;3 &Ouml;49
3x&sect;7x&pound; 21•49
10x&pound;21•49
10x• 70
x•7
(10)
2x&Ntilde; 5 x&Eacute; 2 &Ouml; 39
2x&sect;5x&pound;10• 39
7x&pound; 10•39
7x• 49
x•7
(11)
2x&Ntilde;3 x&Eacute;2 &Ouml;29
2x&sect;3x&pound; 6• 29
5x&pound;6• 29
5x•35
x•7
(12)
2x&Ntilde; 2 x&Ntilde;2 &Ouml; 40
2x&sect;2x&sect;4• 40
4x&sect;4•40
4x• 36
x•9
(13)
3x&Ntilde; 2 3x&Eacute;2 &Ouml;41
3x&sect; 6x&pound;4• 41
9x&pound;4• 41
9x•45
x•5
(14)
2x&Ntilde;4 x&Eacute;3 &Ouml;30
2x&sect;4x&pound;12•30
6x&pound;12• 30
6x•42
x•7
(15)
2x&Ntilde; 3 2x&Eacute;2 &Ouml;42
2x&sect;6x&pound;6• 42
8x&pound; 6•42
8x• 48
x•6
(16)
3x&Ntilde; 2 x&Eacute; 4 &Ouml; 47
3x&sect;2x&pound;8• 47
5x&pound; 8•47
5x• 55
x•11
(17)
4x&Ntilde;2 x&Eacute;3 &Ouml;30
4x&sect;2x&pound; 6• 30
6x&pound;6• 30
6x•36
x•6
(18)
7x&Ntilde; 7 x&Eacute;4 &Ouml;42
7x&sect;7x&pound; 28•42
14x&pound;28•42
14x• 70
x•5
(19)
3x&Ntilde; 3 x&Eacute; 2 &Ouml; 24
3x&sect;3x&pound;6• 24
6x&pound; 6•24
6x• 30
x•5
(20)
6x&Ntilde;6 x&Eacute;3 &Ouml;42
6x&sect;6x&pound;18•42
12x&pound; 18• 42
12x•60
x•5
(21)
3x&Ntilde; 4 x&Eacute;4 &Ouml;47
3x&sect;4x&pound; 16•47
7x&pound;16•47
7x• 63
x•9