Загрузил GuitarHikki

Энциклопедический Словарь Расстояний в Математике - Деза Е. (2008)

реклама
ìÑä 53(038)
ÅÅä 22.3
Ñ26
èÂ‚Ӊ Ò ‡Ì„ÎËÈÒÍÓ„Ó flÁ˚͇
Ç.à. ë˚˜Â‚‡
ÑÂÁ‡ Ö.à., ÑÂÁ‡ å.-å.
ù̈ËÍÎÓÔ‰˘ÂÒÍËÈ ÒÎÓ‚‡¸ ‡ÒÒÚÓflÌËÈ / ÖÎÂ̇ ÑÂÁ‡, å˯Âθ-å‡Ë ÑÂÁ‡ ;
[ÔÂ. Ò ‡Ì„Î. Ç.à. ë˚˜Â‚‡] ; åÓÒÍ. „ÓÒ. Ô‰. ÛÌ-Ú ; çÓχθ̇fl ‚˚Ò¯. ¯Í., è‡ËÊ. –
å. : ç‡Û͇, 2008. – Ò. – ISBN 978-5-02-036043-3 (‚ ÔÂ.).
Ç ÒÎÓ‚‡ Ô˂‰ÂÌ˚ ÚÓÎÍÓ‚‡ÌËfl ÚÂÏËÌÓ‚ ‡ÒÒÚÓflÌËÂ, ÏÂ‡, ÏÂÚË͇, ÔÓÒÚ‡ÌÒÚ‚Ó Ë Ú.Ô., ‚ ÔËÏÂÌÂÌËË Í ‡Á΢Ì˚Ï ÒÙÂ‡Ï ̇ÛÍË Ë ‡θÌÓÈ ÊËÁÌË.
ÑÎfl ¯ËÓÍÓ„Ó ÍÛ„‡ ÒÔˆˇÎËÒÚÓ‚.
èÓ ÒÂÚË "Ä͇‰ÂÏÍÌË„‡"
ISBN 978-5-02-036043-3
© Deza E., Deza M.-M., 2006
© ELSEVIER, 2006
© ÑÂÁ‡ Ö.à., ÑÂÁ‡ å.-å., 2008
© ë˚˜Â‚ Ç.à., ÔÂ‚Ӊ ̇ ÛÒÒÍËÈ flÁ˚Í, 2008
© ꉇ͈ËÓÌÌÓ-ËÁ‰‡ÚÂθÒÍÓ ÓÙÓÏÎÂÌËÂ.
àÁ‰‡ÚÂθÒÚ‚Ó "ç‡Û͇", 2008
2 ‡ÔÂÎfl 2006 „. ËÒÔÓÎÌËÎÓÒ¸ 100 ÎÂÚ ÒÓ ‰Ìfl Á‡˘ËÚ˚ Ù‡ÌˆÛÁÒÍËÏ Û˜ÂÌ˚Ï
åÓËÒÓÏ î¯ ‚˚‰‡˛˘ÂÈÒfl ‰ÓÍÚÓÒÍÓÈ ‰ËÒÒÂÚ‡ˆËË, ‚ ÍÓÚÓÓÈ ÓÌ ‚ÔÂ‚˚Â
(‚ ‡Ï͇ı ÒËÒÚÂχÚ˘ÂÒÍÓ„Ó ËÁÛ˜ÂÌËfl ÙÛÌ͈ËÓ̇θÌ˚ı ÓÔÂ‡ˆËÈ) ‚‚ÂÎ
‡·ÒÚ‡ÍÚÌÓ ÔÓÌflÚË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡.
ÅÓΠ90 ÎÂÚ ÔÓ¯ÎÓ Ú‡ÍÊÂ Ò ÔÛ·ÎË͇ˆËË ‚ 1914 „. îÂÎËÍÒÓÏ ï‡ÛÒ‰ÓÙÓÏ
Á̇ÏÂÌËÚÓÈ ÍÌË„Ë "éÒÌÓ‚˚ ÚÂÓËË ÏÌÓÊÂÒÚ‚", ‚ ÍÓÚÓÓÈ ËÏ ·˚· Ô‰ÒÚ‡‚ÎÂ̇ ÚÂÓËfl ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó Ë ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚.
å˚ ÔÓÒ‚fl˘‡ÂÏ ‰‡ÌÌ˚È ù̈ËÍÎÓÔ‰˘ÂÒÍËÈ ÒÎÓ‚‡¸ Ò‚ÂÚÎÓÈ Ô‡ÏflÚË ˝ÚËı
‚ÂÎËÍËı χÚÂχÚËÍÓ‚ Ë Ëı ‰ÓÒÚÓÈÌÓÈ ÊËÁÌË ‚ ÚflÊÂÎ˚ ‚ÂÏÂ̇ ÔÂ‚ÓÈ
ÔÓÎÓ‚ËÌ˚ ïï ÒÚÓÎÂÚËfl.
åÓËÒ î¯ (1878–1973) ‚‚ÂÎ
‚ Ó·‡˘ÂÌË ‚ 1906 „. ÚÂÏËÌ eåcart
(ÔÓÎÛÏÂÚË͇)
îÂÎËÍÒ ï‡ÛÒ‰ÓÙ (1868–1942) ‚‚ÂÎ
‚ Ó·‡˘ÂÌË ‚ 1914 „. ÚÂÏËÌ
ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
è‰ËÒÎÓ‚ËÂ
èÓÌflÚË ‡ÒÒÚÓflÌËfl fl‚ÎflÂÚÒfl Ó‰ÌËÏ ËÁ ÓÒÌÓ‚Ì˚ı ‚Ó ‚ÒÂÈ ˜ÂÎӂ˜ÂÒÍÓÈ ‰ÂflÚÂθÌÓÒÚË. Ç Ôӂ҉̂ÌÓÈ ÊËÁÌË ‡ÒÒÚÓflÌË ӷ˚˜ÌÓ ÓÁ̇˜‡ÂÚ ÌÂÍÓÚÓÛ˛ ÒÚÂÔÂ̸
·ÎËÁÓÒÚË ‰‚Ûı ÙËÁ˘ÂÒÍËı Ó·˙ÂÍÚÓ‚ ËÎË Ë‰ÂÈ (Ú.Â. ‰ÎËÌÛ, ‚ÂÏÂÌÌÓÈ ËÌÚÂ‚‡Î,
ÔÓÏÂÊÛÚÓÍ, ‡Á΢ˠ‡Ì„Ó‚, ÓÚ˜ÛʉÂÌÌÓÒÚ¸ ËÎË Û‰‡ÎÂÌÌÓÒÚ¸), ‚ ÚÓ ‚ÂÏfl ͇Í
ÚÂÏËÌ ÏÂÚË͇ Á‡˜‡ÒÚÛ˛ ËÒÔÓθÁÛÂÚÒfl Í‡Í Òڇ̉‡ÚÌÓ ÔÓÌflÚË ÏÂ˚ ËÎË
ËÁÏÂÂÌËfl. Ç Ì‡¯ÂÈ ÍÌË„Â, Á‡ ËÒÍβ˜ÂÌËÂÏ ‰‚Ûı ÔÓÒΉÌËı „·‚, ‡ÒÒχÚË‚‡ÂÚÒfl
χÚÂχÚ˘ÂÒÍÓ Á̇˜ÂÌË ˝ÚËı ÚÂÏËÌÓ‚, ÍÓÚÓÓ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ‡·ÒÚ‡ÍˆË˛
ËÁÏÂÂÌËfl. å‡ÚÂχÚ˘ÂÒÍË ÔÓÌflÚËfl ÏÂÚËÍË (Ú.Â. ÙÛÌ͈ËË d(x, y) ËÁ X × X
‚ ÏÌÓÊÂÒÚ‚Ó ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂÎ, Û‰Ó‚ÎÂÚ‚Ófl˛˘ÂÈ ÛÒÎÓ‚ËflÏ d(x, y) 0
Ò ‡‚ÂÌÒÚ‚ÓÏ ÚÓθÍÓ ÔË x = y, d(x, y) = d(x, y) Ë d(x, y) d(x, z) + d(z, y)) Ë
ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ·˚ÎË ‚‚‰ÂÌ ÔÓ˜ÚË ‚ÂÍ Ì‡Á‡‰ å. î¯ (‚
1906 „.) Ë î. ï‡ÛÒ‰ÓÙÓÏ (‚ 1914 „.) ‚ ͇˜ÂÒÚ‚Â ÒÔˆˇθÌÓ„Ó ÒÎÛ˜‡fl ·ÂÒÍÓ̘ÌÓ„Ó ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. ìÔÓÏflÌÛÚÓ ‚˚¯Â ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇
d(x, y) d(x, z) + d(z, y) ÏÓÊÌÓ Ì‡ÈÚË ÛÊÂ Û Ö‚ÍÎˉ‡. ÅÂÒÍÓ̘Ì˚ ÏÂÚ˘ÂÒÍËÂ
ÔÓÒÚ‡ÌÒÚ‚‡ ÔÓfl‚Îfl˛ÚÒfl Ó·˚˜ÌÓ Í‡Í Ó·Ó·˘ÂÌËfl ÏÂÚËÍË |x–y| ̇ ÏÌÓÊÂÒÚ‚Â
‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂÎ. éÒÌÓ‚Ì˚ÏË Ëı Í·ÒÒ‡ÏË fl‚Îfl˛ÚÒfl ÏÂ˚ ÔÓÒÚ‡ÌÒÚ‚‡
(‰Ó·‡‚¸Ú ÏÂÛ) Ë ·‡Ì‡ıÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ (‰Ó·‡‚¸Ú ÌÓÏÛ Ë ÔÓÎÌÓÚÛ).
é‰Ì‡ÍÓ, ̇˜Ë̇fl Ò ä. åÂÌ„Â‡ (ÍÓÚÓ˚È ‚ 1928 „. ‚‚ÂÎ ÔÓÌflÚË ÏÂÚ˘ÂÒÍÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ ‚ „ÂÓÏÂÚ˲) Ë ã.å. ÅβÏÂÌÚ‡Îfl (1953 „.), ËÌÚÂÂÒ Í‡Í Í ÍÓ̘Ì˚Ï,
Ú‡Í Ë Í ·ÂÒÍÓ̘Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚‡Ï ÂÁÍÓ ÔÓ‚˚¯‡ÂÚÒfl. ÑÛ„ÓÈ
ÚẨÂ̈ËÂÈ ÒÚ‡ÎÓ ÚÓ, ˜ÚÓ ÏÌÓ„Ë χÚÂχÚ˘ÂÒÍË ÚÂÓËË ‚ ÔÓˆÂÒÒ Ëı Ó·Ó·˘ÂÌËfl
ÒÚ‡·ËÎËÁËÓ‚‡ÎËÒ¸ ̇ ÛÓ‚Ì ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡.
ùÚÓÚ ÔÓˆÂÒÒ ÔÓ‰ÓÎʇÂÚÒfl Ë ÒÂȘ‡Ò, ‚ ˜‡ÒÚÌÓÒÚË, ÔËÏÂÌËÚÂθÌÓ Í ËχÌÓ‚ÓÈ
„ÂÓÏÂÚËË, ‰ÂÈÒÚ‚ËÚÂθÌÓÏÛ ‡Ì‡ÎËÁÛ, ÚÂÓËË ÔË·ÎËÊÂÌËÈ.
åÂÚËÍË Ë ‡ÒÒÚÓflÌËfl ÒÚ‡ÎË ‚‡ÊÌ˚Ï ËÌÒÚÛÏÂÌÚÓÏ ËÒÒΉӂ‡ÌËÈ ‚ Ò‡Ï˚ı
‡ÁÌ˚ı ӷ·ÒÚflı χÚÂχÚËÍË Ë Â ÔËÎÓÊÂÌËÈ, ‚Íβ˜‡fl „ÂÓÏÂÚ˲, ÚÂÓ˲
‚ÂÓflÚÌÓÒÚÂÈ, ÒÚ‡ÚËÒÚËÍÛ, ÚÂÓ˲ ÍÓ‰ËÓ‚‡ÌËfl, ÚÂÓ˲ „‡ÙÓ‚, Í·ÒÚÂÌ˚È
‡Ì‡ÎËÁ, ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı, ‡ÒÔÓÁ̇‚‡ÌË ӷ‡ÁÓ‚, ÚÂÓ˲ ÒÂÚÂÈ, χÚÂχÚ˘ÂÒÍÛ˛
ËÌÊÂÌÂ˲, ÍÓÏÔ¸˛ÚÂÌÛ˛ „‡ÙËÍÛ, χ¯ËÌÌÓ ÁÂÌËÂ, ‡ÒÚÓÌÓÏ˲, ÍÓÒÏÓÎӄ˲,
ÏÓÎÂÍÛÎflÌÛ˛ ·ËÓÎӄ˲ Ë ÏÌÓ„Ë ‰Û„Ë ÓÚ‡ÒÎË Ì‡ÛÍË. ëÓÁ‰‡ÌË ̇˷ÓÎÂÂ
Û‰Ó·Ì˚ı ÏÂÚËÍ ÒÚ‡ÎÓ ˆÂÌÚ‡Î¸ÌÓÈ Á‡‰‡˜ÂÈ ‰Îfl ÏÌÓ„Ëı ËÒÒΉӂ‡ÚÂÎÂÈ. éÒÓ·ÂÌÌÓ
ËÌÚÂÌÒË‚ÌÓ ‚‰ÛÚÒfl ÔÓËÒÍË Ú‡ÍËı ‡ÒÒÚÓflÌËÈ, ‚ ˜‡ÒÚÌÓÒÚË, ‚ χÚÂχÚ˘ÂÒÍÓÈ
·ËÓÎÓ„ËË, ‡ÒÔÓÁ̇‚‡ÌËË Â˜Ë Ë Ó·‡ÁÓ‚, ‚˚·ÓÍ ËÌÙÓχˆËË. çÂ‰ÍË ÒÎÛ˜‡Ë,
ÍÓ„‰‡ Ó‰ÌË Ë Ú Ê ÏÂÚËÍË ÔÓfl‚Îfl˛ÚÒfl ÌÂÁ‡‚ËÒËÏÓ ‰Û„ ÓÚ ‰Û„‡ ‚ Ú‡ÍËı ÒÓ‚Â¯ÂÌÌÓ ‡ÁÌ˚ı ÒÙÂ‡ı, ͇Í, ̇ÔËÏÂ, ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÎÓ‚‡ÏË Ë ˝‚ÓβˆËÓÌÌÓÂ
‡ÒÒÚÓflÌË ‚ ·ËÓÎÓ„ËË, ‡ÒÒÚÓflÌË ã‚Â̯ÚÂÈ̇ ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl Ë ‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡ – Ò ÔÓÔÛÒ͇ÏË ËÎË ı˝ÏÏËÌ„Ó‚Ó Ú‡ÒÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌËÂ.
ç‡ÍÓÔÎÂÌ̇fl ËÌÙÓχˆËfl Ó ‡ÒÒÚÓflÌËflı ̇ÒÚÓθÍÓ Ó·¯Ë̇ Ë ‡ÁÓÁÌÂÌ̇, ˜ÚÓ
‡·ÓÚ‡Ú¸ Ò ÌÂÈ ÒÚ‡ÎÓ ÔÓ˜ÚË Ì‚ÓÁÏÓÊÌÓ. í‡Í, ̇ÔËÏÂ, ÍÓ΢ÂÒÚ‚Ó Ô‰·„‡ÂÏ˚ı
‚·-Ò‡ÈÚÓÏ "Google" ‚‚Ó‰ËÏ˚ı ‰‡ÌÌ˚ı ÔÓ ÚÂχÚËÍ "‡ÒÒÚÓflÌËÂ", "ÏÂÚ˘ÂÒÍÓÂ
8
è‰ËÒÎÓ‚ËÂ
ÔÓÒÚ‡ÌÒÚ‚Ó" Ë "ÏÂÚË͇" Ô‚ÓÒıÓ‰ËÚ 300 ÏÎÌ (Ú.Â. ÓÍÓÎÓ 4% Ó·˘Â„Ó Ó·˙Âχ
‚‚Ó‰ËÏ˚ı ‰‡ÌÌ˚ı), 12 ÏÎÌ Ë 6 ÏÎÌ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, Ë ˝ÚÓ ·ÂÁ Û˜ÂÚ‡ ‚ÒÂÈ Ô˜‡ÚÌÓÈ
ËÌÙÓχˆËË, ˆËÍÛÎËÛ˛˘ÂÈ ‚Ì ÒÂÚË àÌÚÂÌÂÚ, ËÎË ÚÓ„Ó "Ì‚ˉËÏÓ„Ó" χÒÒË‚‡
҂‰ÂÌËÈ, ÒÓ‰Âʇ˘ËıÒfl ‚ ‰ÓÒÚÛÔÌ˚ı ‰Îfl ÔÓËÒ͇ ·‡Á‡ı ‰‡ÌÌ˚ı. èË ˝ÚÓÏ ‚Òfl ˝Ú‡
Ó·¯Ë̇fl ËÌÙÓχˆËfl Ó ‡ÒÒÚÓflÌËflı ‚ÂҸχ ‡Á·Ó҇̇ ÔÓ ËÒÚÓ˜ÌË͇Ï, ‡ ‚
ÌÂÍÓÚÓ˚ı ‡·ÓÚ‡ı ÔÓ·ÎÂχÚË͇ ‡ÒÒÚÓflÌËÈ Í‡Ò‡ÂÚÒfl ̇ÒÚÓθÍÓ ÒÔˆËÙ˘ÂÒÍËı
Ô‰ÏÂÚÓ‚, ˜ÚÓ „Ó‚ÓËÚ¸ Ó Â ‰ÓÒÚÛÔÌÓÒÚË ‰Îfl ÌÂÒÔˆˇÎËÒÚÓ‚ Ì ÔËıÓ‰ËÚÒfl.
Ç Ò‚flÁË Ò ˝ÚËÏ ÏÌÓ„Ë ËÒÒΉӂ‡ÚÂÎË, ‚ ˜‡ÒÚÌÓÒÚË Ò‡ÏË ‡‚ÚÓ˚, ÒÚ‡‡˛ÚÒfl
͇̇ÔÎË‚‡Ú¸ Ë ı‡ÌËÚ¸ ‰‡ÌÌ˚Â Ó ‡ÒÒÚÓflÌËflı ÔËÏÂÌËÚÂθÌÓ Í ÒÓ·ÒÚ‚ÂÌÌ˚Ï
ÒÙÂ‡Ï ̇ۘÌÓÈ ‰ÂflÚÂθÌÓÒÚË. Ç ÛÒÎÓ‚Ëflı ‡ÒÚÛ˘ÂÈ ÔÓÚ·ÌÓÒÚË ‚ ÏÂʉËÒˆËÔÎË̇ÌÓÏ ËÒÚÓ˜ÌËÍ ËÌÙÓχˆËË Ó·˘Â„Ó ÔÓθÁÓ‚‡ÌËfl Ó ‡ÒÒÚÓflÌËflı Ë ÏÂÚË͇ı
‡‚ÚÓ˚ ¯ËÎË ‡Ò¯ËËÚ¸ Ò‚Ó˛ ΢ÌÛ˛ ÍÓÎÎÂÍˆË˛ Ë ÒÓÁ‰‡Ú¸ ̇  ·‡ÁÂ
"ù̈ËÍÎÓÔ‰˘ÂÒÍËÈ ÒÎÓ‚‡¸ ‡ÒÒÚÓflÌËÈ". ÑÓÔÓÎÌËÚÂθÌ˚ χÚÂˇÎ˚ ·˚ÎË
ÔÓ˜ÂÔÌÛÚ˚ ËÁ ËÁ‰‡ÌËÈ ˝ÌˆËÍÎÓÔ‰˘ÂÒÍÓ„Ó ı‡‡ÍÚÂ‡, ‚ Á̇˜ËÚÂθÌÓÈ ÏÂÂ
ËÁ "å‡ÚÂχÚ˘ÂÒÍÓÈ ˝ÌˆËÍÎÓÔ‰ËË" ([Öå98]), "åË‡ χÚÂχÚËÍË" ([Weis99]),
"è·ÌÂÚ˚ "å‡ÚÂχÚË͇" ([êå]) Ë "ÇËÍËÔ‰ËË" ([WFE]). é‰Ì‡ÍÓ „·‚Ì˚Ï ËÒÚÓ˜ÌËÍÓÏ ËÌÙÓχˆËË ‰Îfl ÒÎÓ‚‡fl fl‚Ë·Ҹ ÒÔˆˇθ̇fl ÎËÚÂ‡ÚÛ‡.
èÓÏËÏÓ ÒÓ·ÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌËÈ ‡‚ÚÓ˚ ‚Íβ˜ËÎË ‚ ÍÌË„Û ÏÌÓ„Ó Ó‰ÒÚ‚ÂÌÌ˚ı
ÔÓÌflÚËÈ (ÓÒÓ·ÂÌÌÓ ‚ „Î. 1) Ë Ô‡‡‰Ë„Ï, ÔÓÁ‚ÓÎfl˛˘Ëı ÔËÏÂÌflÚ¸ Ô‡ÍÚ˘ÂÒÍË
χÎÓÔÓÌflÚÌ˚ ‰Îfl ÌÂÒÔˆˇÎËÒÚÓ‚ ÚÂÏËÌ˚, Ô‰ÒÚ‡‚ÎÂÌÌ˚ ‚ „ÓÚÓ‚ÓÏ ‰Îfl
ËÒÔÓθÁÓ‚‡ÌËfl ‚ˉÂ. ÇÒ ˝ÚÓ, ‡ Ú‡ÍÊ ÔÓfl‚ÎÂÌË ÌÂÍÓÚÓ˚ı ‡ÒÒÚÓflÌËÈ ‚ ÒÓ‚Â¯ÂÌÌÓ ËÌÓÏ ÍÓÌÚÂÍÒÚ ÏÓÊÂÚ ‰‡Ú¸ ÚÓΘÓÍ ÌÓ‚˚Ï ËÒÒΉӂ‡ÌËflÏ.
Ç Ì‡¯Â ‚ÂÏfl, ÍÓ„‰‡ ˜ÂÁÏÂ̇fl ÒÔˆˇÎËÁ‡ˆËfl Ë ÚÂÏËÌÓÎӄ˘ÂÒÍË ·‡¸Â˚
‚‰ÛÚ Í ‡ÁÓ·˘ÂÌ˲ ËÒÒΉӂ‡ÚÂÎÂÈ, ̇¯ ÒÎÓ‚‡¸ ‚˚ÔÓÎÌflÂÚ ÒÍÓ ˆÂÌÚÓÒÚÂÏËÚÂθÌÛ˛ Ë Ó·˙‰ËÌËÚÂθÌÛ˛ ÙÛÌ͈ËË, Ó·ÂÒÔ˜˂‡fl ‰ÓÒÚÛÔÌÓÒÚ¸ Ë ·ÓÎÂÂ
¯ËÓÍËÈ Ó·ÁÓ ËÌÙÓχˆËË, ÌÓ ·ÂÁ Ò͇Ú˚‚‡ÌËfl Í Ì‡Û˜ÌÓÈ ÔÓÔÛÎflËÁ‡ˆËË Ô‰ÏÂÚ‡. ùÚÓ ÒÚÂÏÎÂÌË ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ Ó·‡ÁÓÏ Ò·‡Î‡ÌÒËÓ‚‡Ú¸ ËÁ·„‡ÂÏ˚È
χÚÂˇΠÔ‰ÓÔ‰ÂÎËÎÓ ÒÚÛÍÚÛÛ Ë ÒÚËθ ÍÌË„Ë.
чÌÌ˚È ÒÔ‡‚Ó˜ÌËÍ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÒÔˆˇÎËÁËÓ‚‡ÌÌ˚È ˝ÌˆËÍÎÓÔ‰˘ÂÒÍËÈ ÚÂχÚ˘ÂÒÍËÈ ÒÎÓ‚‡¸. éÌ ÒÓÒÚÓËÚ ËÁ 28 „·‚ ‚ ÒÂÏË ˜‡ÒÚflı ÔËÏÂÌÓ
Ó‰Ë̇ÍÓ‚Ó„Ó Ó·˙Âχ. ç‡Á‚‡ÌËfl ˜‡ÒÚÂÈ Ô‰̇ÏÂÂÌÌÓ ‰‡Ì˚ ÔË·ÎËÊÂÌÌÓ ‚
‡Ò˜ÂÚ ̇ ÚÓ, ˜ÚÓ ˜ËÚ‡ÚÂθ Ò‡ÏÓÒÚÓflÚÂθÌÓ ‚˚·ÂÂÚ ÚÂχÚËÍÛ ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ
ÒÓ·ÒÚ‚ÂÌÌ˚ı ËÌÚÂÂÒÓ‚ Ë ÍÓÏÔÂÚÂÌÚÌÓÒÚË. í‡Í, ̇ÔËÏÂ, ˜‡ÒÚË II, III Ë IV, V
ÔÓÚÂ·Û˛Ú ÓÔ‰ÂÎÂÌÌÓ„Ó ÛÓ‚Ìfl Á̇ÌËÈ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‚ ӷ·ÒÚË ˜ËÒÚÓÈ Ë
ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍË, ‚ ÚÓ ‚ÂÏfl Í‡Í ÒÓ‰ÂʇÌË ˜‡ÒÚË VII ·Û‰ÂÚ ‰ÓÒÚÛÔÌÓ
β·ÓÏÛ ÌÂÒÔˆˇÎËÒÚÛ.
É·‚˚ fl‚Îfl˛ÚÒfl ÔÓ ÒÛ˘ÂÒÚ‚Û ÔÂ˜ÌflÏË ÚÂχÚËÍ ÔÓ ‡Á΢Ì˚Ï Ó·Î‡ÒÚflÏ
χÚÂχÚËÍË ËÎË ÔËÎÓÊÂÌËflÏ, ÍÓÚÓ˚ ÏÓ„ÛÚ ˜ËÚ‡Ú¸Òfl ÌÂÁ‡‚ËÒËÏÓ ‰Û„ ÓÚ ‰Û„‡.
èË ÌÂÓ·ıÓ‰ËÏÓÒÚË „·‚‡ ËÎË ‡Á‰ÂÎ ÏÓ„ÛÚ Ô‰‚‡flÚ¸Òfl Í‡ÚÍËÏ ‚‚‰ÂÌËÂÏ –
˝ÍÒÍÛÒÓÏ ÔÓ ÓÒÌÓ‚Ì˚Ï ÔÓÌflÚËflÏ. èÓÏËÏÓ Ú‡ÍËı Ô‰ËÒÎÓ‚ËÈ ÓÔËÒ‡ÌË ı‡‡ÍÚÂÌ˚ı ÓÒÓ·ÂÌÌÓÒÚÂÈ Ë Ó·Î‡ÒÚÂÈ ÔËÏÂÌÂÌËfl ‡ÒÒÚÓflÌËÈ ‰‡ÂÚÒfl ‚ ÚÂÍÒÚ ÒÍÓ ͇Í
ËÒÍβ˜ÂÌËÂ. Ä‚ÚÓ˚ ÒÚ‡‡ÎËÒ¸, ÔÓ ÏÂ ‚ÓÁÏÓÊÌÓÒÚË, ÛÔÓÏË̇ڸ ÚÂı, ÍÚÓ ÔÂ‚˚Ï
‚‚ÂÎ ÚÓ ËÎË ËÌÓ ÓÔ‰ÂÎÂÌË ‡ÒÒÚÓflÌËfl, ÔË ˝ÚÓÏ Ô‰·„‡Âχfl Ó·¯Ë̇fl
·Ë·ÎËÓ„‡ÙËfl ËÏÂÂÚ ˆÂθ˛ Ó·ÂÒÔ˜ËÚ¸ Û‰Ó·Ì˚È ËÒÚÓ˜ÌËÍ ‰Îfl ·˚ÒÚÓ„Ó ÔÓËÒ͇.
ä‡Ê‰‡fl ËÁ „·‚ ÍÓÏÔÓÌÛÂÚÒfl Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ ÏÂÊ‰Û Â ‡Á‰Â·ÏË
ÔÓÒÎÂÊË‚‡Î‡Ò¸ ‚Á‡ËÏÓÒ‚flÁ¸. ÇÒ Á‡„ÓÎÓ‚ÍË ‡Á‰ÂÎÓ‚ Ë Íβ˜Â‚˚ ÚÂÏËÌ˚
‚˚ÌÂÒÂÌ˚ ÓÚ‰ÂθÌÓ ‚ Ô‰ÏÂÚÌ˚È Û͇Á‡ÚÂθ (ÓÍÓÎÓ 1500 ÔÛÌÍÚÓ‚) Ë Ó·ÓÁ̇˜ÂÌ˚
ÊËÌ˚Ï ¯ËÙÚÓÏ, ÂÒÎË ÚÓθÍÓ Ëı Á̇˜ÂÌË Ì ‚˚ÚÂ͇ÂÚ ËÁ ÍÓÌÚÂÍÒÚ‡. ùÚÓ
ӷ΄˜‡ÂÚ ÔÓËÒÍ ÓÔ‰ÂÎÂÌËÈ ÔÓ ÚÂχÚËÍ ‚ÌÛÚË „·‚˚ Ë ÔÓ ‡ÎÙ‡‚ËÚÛ ‚ Ò‡ÏÓÏ
Û͇Á‡ÚÂÎÂ. íÂÍÒÚ˚ ‚‚‰ÂÌËÈ Ë ÓÔ‰ÂÎÂÌËfl ÓËÂÌÚËÓ‚‡Ì˚ ̇ Û‰Ó·ÒÚ‚Ó ‰Îfl
è‰ËÒÎÓ‚ËÂ
9
˜ËÚ‡ÚÂÎfl Ë Ï‡ÍÒËχθÌÓ ÌÂÁ‡‚ËÒËÏ˚ ‰Û„ ÓÚ ‰Û„‡. éÌË ÓÒÚ‡˛ÚÒfl ‚Á‡ËÏÓÒ‚flÁ‡ÌÌ˚ÏË ÔÓÒ‰ÒÚ‚ÓÏ Ó·ÓÁ̇˜ÂÌÌ˚ı ÊËÌ˚Ï ¯ËÙÚÓÏ ÚÂÍÒÚÓ‚˚ı ÒÒ˚ÎÓÍ
(ÔÓ ÚËÔÛ ÙÓχڇ HTML Ò „ËÔÂÒÒ˚Î͇ÏË) ̇ ÒıÓÊË ÓÔ‰ÂÎÂÌËfl.
åÌÓ„Ó ËÌÚÂÂÒÌ˚ı ҂‰ÂÌËÈ Ô‰ÒÚ‡‚ÎÂÌÓ ‚ ˝ÚÓÏ ·ËÓ„‡Ù˘ÂÒÍÓÏ ÒÔ‡‚Ó˜ÌËÍÂ
‡ÒÒÚÓflÌËÈ "äÚÓ ÂÒÚ¸ ÍÚÓ". èËÏÂ‡ÏË Á‡ÌflÚÌ˚ı ÚÂÏËÌÓ‚ fl‚Îfl˛ÚÒfl ÓÚÌÓÒfl˘ÂÂÒfl
Í ‚ÂÁ‰ÂÒÛ˘ÂÏÛ Â‚ÍÎË‰Ó‚Û ‡ÒÒÚÓflÌ˲ ‚˚‡ÊÂÌË "Í‡Í ‚ÓÓ̇ ÎÂÚ‡ÂÚ" (Ú.Â. ÔÓ
ÔflÏÓÈ ÎËÌËË), "ÏÂÚË͇ ˆ‚ÂÚÓ˜ÌÓ„Ó Ï‡„‡ÁË̇" (Í‡Ú˜‡È¯Â ‡ÒÒÚÓflÌË ÏÂʉÛ
‰‚ÛÏfl ÚӘ͇ÏË Ò ÔÓÏÂÊÛÚÓ˜Ì˚Ï ÔÓÒ¢ÂÌËÂÏ ÚÓ˜ÍË "ˆ‚ÂÚÓ˜ÌÓ„Ó Ï‡„‡ÁË̇"),
"ÏÂÚË͇ ıÓ‰‡ ÍÓÌfl" ̇ ¯‡ıχÚÌÓÈ ‰ÓÒÍÂ, "ÏÂÚË͇ „Ó‰Ë‚‡ ÛÁ·", "ÏÂÚË͇
·Ûθ‰ÓÁÂ‡", ‡ÒÒÚÓflÌË ·ËÓÚÓÔ‡, "ÔÓÍÛÒÚÓ‚Ó ‡ÒÒÚÓflÌËÂ", "ÏÂÚË͇ ÎËÙÚ‡",
"ÔÓ˜ÚÓ‚‡fl ÏÂÚË͇", ıÓÔ-ÏÂÚË͇ àÌÚÂÌÂÚ‡, Í‚‡ÁË-ÏÂÚË͇ „ËÔÂÒÒ˚ÎÓÍ WWW,
"ÏÓÒÍÓ‚Ò͇fl ÏÂÚË͇", "‡ÒÒÚÓflÌË ÒÓ·‡ÍÓ‚Ó‰‡".
äÓÏ ‡·ÒÚ‡ÍÚÌ˚ı ‡ÒÒÚÓflÌËÈ ‡ÒÒχÚË‚‡˛ÚÒfl Ú‡ÍÊ ‡ÒÒÚÓflÌËfl Ò ÙËÁ˘ÂÒÍËÏ ÒÓ‰ÂʇÌËÂÏ (ÓÒÓ·ÂÌÌÓ ‚ ˜‡ÒÚË VI). éÌË ÒÛ˘ÂÒÚ‚Û˛Ú ‚ ‰Ë‡Ô‡ÁÓÌ ÓÚ
1,6 × 10–35 Ï (‰ÎË̇ è·Ì͇) ‰Ó 7,4 × 1026 Ï (ÓˆÂÌË‚‡ÂÏ˚ ‡ÁÏÂ˚ ̇·Î˛‰‡ÂÏÓÈ
ÇÒÂÎÂÌÌÓÈ, ÓÍÓÎÓ 46 × 1060 ‰ÎËÌ è·Ì͇).
äÓ΢ÂÒÚ‚Ó ÏÂÚËÍ ·ÂÒÍÓ̘ÌÓ Ë ÔÓ˝ÚÓÏÛ ÔÂ˜ËÒÎËÚ¸ Ëı ‚Ò Ì‚ÓÁÏÓÊÌÓ.
é‰Ì‡ÍÓ ‡‚ÚÓ˚ ·˚ÎË ‚‰ÓıÌÓ‚ÎÂÌ˚ ÔËÏÂÓÏ ÛÒÔ¯ÌÓ„Ó ÒÓÒÚ‡‚ÎÂÌËfl ÚÂχÚ˘ÂÒÍËı
ÒÎÓ‚‡ÂÈ ÔÓ ‰Û„ËÏ ·ÂÒÍÓ̘Ì˚Ï ÔÂ˜ÌflÏ, ‚ ˜‡ÒÚÌÓÒÚË, ˆÂÎÓ˜ËÒÎÂÌÌ˚Ï ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏ, ÌÂ‡‚ÂÌÒÚ‚‡Ï, ÒÎÛ˜‡ÈÌ˚Ï ÔÓˆÂÒÒ‡Ï, ‡ Ú‡ÍÊ ‡Ú·ÒÓ‚ ÙÛÌ͈ËÈ,
„ÛÔÔ, ÙÛÎÎÂÂÌÓ‚ Ë Ú.Ô. äÓÏ ÚÓ„Ó, Ó·¯ËÌÓÒÚ¸ ÚÂχÚËÍË Á‡˜‡ÒÚÛ˛ ‚˚ÌÛʉ‡Î‡
‡‚ÚÓÓ‚ ËÁ·„‡Ú¸ χÚÂˇΠ‚ ·ÍÓÌ˘ÌÓÈ ÙÓÏ ۘ·ÌÓ„Ó ÔÓÒÓ·Ëfl.
ùÚÓÚ ÒÎÓ‚‡¸ ÓËÂÌÚËÓ‚‡Ì ‚ ÓÒÌÓ‚ÌÓÏ Ì‡ ̇ۘÌ˚ı ‡·ÓÚÌËÍÓ‚, Á‡ÌËχ˛˘ËıÒfl
ËÒÒΉӂ‡ÌËflÏË Ò Ôӂ‰ÂÌËÂÏ ‡Á΢Ì˚ı ËÁÏÂÂÌËÈ, Ë ‚ ÓÔ‰ÂÎÂÌÌÓÈ ÏÂ ̇
ÒÚÛ‰ÂÌÚÓ‚, ‡ Ú‡ÍÊ ËÌÚÂÂÒÛ˛˘ËıÒfl ̇ÛÍÓÈ fl‰Ó‚˚ı ˜ËÚ‡ÚÂÎÂÈ.
Ä‚ÚÓ˚ ÔÓÔ˚Ú‡ÎËÒ¸ Óı‚‡ÚËÚ¸, ÔÛÒÚ¸ ‰‡Ê Ì ÔÓÎÌÓÒÚ¸˛, ‚ÂÒ¸ ÒÔÂÍÚ ÔËÍ·‰ÌÓ„Ó ËÒÔÓθÁÓ‚‡ÌËfl ÔÓÌflÚËfl ‡ÒÒÚÓflÌËfl. é‰Ì‡ÍÓ ÌÂÍÓÚÓ˚ ‡ÒÒÚÓflÌËfl Ì ̇¯ÎË
ÓÚ‡ÊÂÌËfl ‚ ÍÌË„Â ÎË·Ó ÔÓ Ô˘ËÌ ÌÂı‚‡ÚÍË ÏÂÒÚ‡ (ËÁ-Á‡ ˜ÂÁÏÂÌÓÈ ÒÔˆËÙËÍË
ËÎË ÒÎÓÊÌÓÒÚË Ô‰ÏÂÚ‡), ÎË·Ó ÔÓ Ì‰ÓÒÏÓÚÛ ‡‚ÚÓÓ‚. Ç ˆÂÎÓÏ Ó·˙ÂÏ ÚÂÍÒÚ‡ Ë
Ò·‡Î‡ÌÒËÓ‚‡ÌÌÓÒÚ¸ ÒÓ‰ÂʇÌËfl (Ú.Â. ÓÔ‰ÂÎÂÌË ˆÂÎÂÒÓÓ·‡ÁÌÓÈ ‰ÓÒÚ‡ÚÓ˜ÌÓÒÚË
ËÌÙÓχˆËË ÔÓ ÚÓÈ ËÎË ËÌÓÈ ÚÂÏÂ) fl‚ËÎËÒ¸ ÓÒÌÓ‚ÌÓÈ ÚÛ‰ÌÓÒÚ¸˛. å˚ ·Û‰ÂÏ
·Î‡„Ó‰‡Ì˚ ˜ËÚ‡ÚÂÎflÏ, ÍÓÚÓ˚ ‚˚Ò͇ÊÛÚÒfl Á‡ ‚Íβ˜ÂÌË ‚ ÒÎÓ‚‡¸ ͇ÍËı-ÎË·Ó
ÔÓÔÛ˘ÂÌÌ˚ı ËÎË ‰ÓÔÓÎÌËÚÂθÌ˚ı ‡ÒÒÚÓflÌËÈ. Ç ÍÓ̈ ÍÌË„Ë ‰Îfl ΢Ì˚ı Á‡ÏÂÚÓÍ
˜ËÚ‡ÚÂÎÂÈ Ì‡ ˝ÚÛ ÚÂÏÛ Á‡ÂÁÂ‚ËÓ‚‡ÌÓ ÌÂÒÍÓθÍÓ ˜ËÒÚ˚ı ÒÚ‡Ìˈ.
Ä‚ÚÓ˚ ‚˚‡Ê‡˛Ú ·Î‡„Ó‰‡ÌÓÒÚ¸ ÏÌÓ„ËÏ Î˛‰flÏ Á‡ Ó͇Á‡ÌÌÛ˛ ÔË Ì‡ÔËÒ‡ÌËË
‰‡ÌÌÓ„Ó ÒÎÓ‚‡fl ÔÓÏÓ˘¸ Ë ‚ ÔÂ‚Û˛ Ó˜Â‰¸ ܇ÍÛ ÅÂȷ‰ÂÛ, å˝Ú¸˛ Ñ˛ÚÛÛ,
ùÏχÌÛ˝Î˛ ÉÂÂ, ܇ÍÛ äÛÎÂÌÛ, ÑÊËÌ ïÓ ä‚‡ÍÛ, ïËÓ¯Ë å‡˝ı‡‡, ëÂ„²
ëÔÂÍÚÓÓ‚Û, ÄÎÂÍÒ² ëÓÒËÌÒÍÓÏÛ Ë ñÁfl̸ˆ‡ÌÛ óÊۇ̄Û.
ëÓ‰ÂʇÌËÂ
è‰ËÒÎÓ‚Ë .................................................................................................................................
óÄëíú I. åÄíÖåÄíàäÄ êÄëëíéüçàâ
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
1.1 ŇÁÓ‚˚ ÓÔ‰ÂÎÂÌËfl ...........................................................................................................
1.2 éÒÌÓ‚Ì˚ ÔÓÌflÚËfl, Ò‚flÁ‡ÌÌ˚Â Ò ‡ÒÒÚÓflÌËflÏË Ë ˜ËÒÎÓ‚˚ ËÌ‚‡ˇÌÚ˚ .....................
1.3 鷢ˠ‡ÒÒÚÓflÌËfl .................................................................................................................
É·‚‡ 2. íÓÔÓÎӄ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡
É·‚‡ 3. é·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚
3.1 m-ÏÂÚËÍË ...............................................................................................................................
3.2 çÂÓÔ‰ÂÎÂÌÌ˚ ÏÂÚËÍË ....................................................................................................
3.3 íÓÔÓÎӄ˘ÂÒÍË ӷӷ˘ÂÌËfl ................................................................................................
3.4 ᇠÔ‰Â·ÏË ˜ËÒÂÎ ...............................................................................................................
É·‚‡ 4. åÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl
4.1 åÂÚËÍË Ì‡ ÚÓÏ Ê ÏÌÓÊÂÒÚ‚Â ...........................................................................................
4.2 åÂÚËÍË Ì‡ ‡Ò¯ËÂÌËflı ‰‡ÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ..................................................................
4.3 åÂÚËÍË Ì‡ ‰Û„Ëı ÏÌÓÊÂÒÚ‚‡ı ..........................................................................................
É·‚‡ 5. åÂÚËÍË Ì‡ ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı
óÄëíú II. ÉÖéåÖíêàü à êÄëëíéüçàü
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
6.1 ÉÂÓ‰ÂÁ˘ÂÒ͇fl „ÂÓÏÂÚËfl .....................................................................................................
6.2 èÓÂÍÚ˂̇fl „ÂÓÏÂÚËfl .......................................................................................................
6.3 ÄÙÙËÌ̇fl „ÂÓÏÂÚËfl ...........................................................................................................
6.4 ç‚ÍÎˉӂ‡ „ÂÓÏÂÚËfl .......................................................................................................
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
7.1 êËχÌÓ‚˚ ÏÂÚËÍË Ë Ëı Ó·Ó·˘ÂÌËfl ...................................................................................
7.2 êËχÌÓ‚˚ ÏÂÚËÍË ‚ ÚÂÓËË ËÌÙÓχˆËË ........................................................................
7.3 ùÏËÚÓ‚˚ ÏÂÚËÍË Ë Ëı Ó·Ó·˘ÂÌËfl ...................................................................................
É·‚‡ 8. ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı
8.1 鷢ˠÏÂÚËÍË Ì‡ ÔÓ‚ÂıÌÓÒÚflı ........................................................................................
8.2 ÇÌÛÚÂÌÌË ÏÂÚËÍË Ì‡ ÔÓ‚ÂıÌÓÒÚflı ...............................................................................
8.3 ê‡ÒÒÚÓflÌËfl ̇ ÛÁ·ı ...............................................................................................................
ëÓ‰ÂʇÌËÂ
11
É·‚‡ 9. ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı, ÍÓÌÛÒ‡ı Ë ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı
9.1. ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı ...........................................................................................
9.2. ê‡ÒÒÚÓflÌËfl ̇ ÍÓÌÛÒ‡ı ..........................................................................................................
9.3. ê‡ÒÒÚÓflÌËfl ̇ ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı ...................................................................
óÄëíú III. êÄëëíéüçàü Ç äãÄëëàóÖëäéâ åÄíÖåÄíàäÖ
É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
10.1. åÂÚËÍË Ì‡ „ÛÔÔ‡ı ...........................................................................................................
10.2. åÂÚËÍË Ì‡ ·Ë̇Ì˚ı ÓÚÌÓ¯ÂÌËflı .................................................................................
10.3. åÂÚËÍË ¯ÂÚÓÍ ...............................................................................................................
É·‚‡ 11. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ë ÔÂÂÒÚ‡Ìӂ͇ı
11.1. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ó·˘Â„Ó ‚ˉ‡ ................................................................................
11.2. ê‡ÒÒÚÓflÌËfl ̇ ÔÂÂÒÚ‡Ìӂ͇ı ...........................................................................................
É·‚‡ 12. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı
12.1. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı .........................................................................................................
12.2. ê‡ÒÒÚÓflÌËfl ̇ ÏÌÓ„Ó˜ÎÂ̇ı ...............................................................................................
12.3. ê‡ÒÒÚÓflÌËfl ̇ χÚˈ‡ı .....................................................................................................
É·‚‡ 13. ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
13.1 åÂÚËÍË Ì‡ ÙÛÌ͈ËÓ̇θÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı .................................................................
13.2 åÂÚËÍË Ì‡ ÎËÌÂÈÌ˚ı ÓÔÂ‡ÚÓ‡ı ...................................................................................
É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ
14.1 ê‡ÒÒÚÓflÌËfl ̇ ÒÎÛ˜‡ÈÌ˚ı ‚Â΢Ë̇ı ................................................................................
14.2 ê‡ÒÒÚÓflÌËfl ̇ Á‡ÍÓ̇ı ‡ÒÔ‰ÂÎÂÌËfl .............................................................................
óÄëíú IV. êÄëëíéüçàü Ç èêàäãÄÑçéâ åÄíÖåÄíàäÖ
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
15.1 ê‡ÒÒÚÓflÌËfl ̇ ‚Â¯Ë̇ı „‡Ù‡ .........................................................................................
15.2 É‡Ù˚, ÓÔ‰ÂÎflÂÏ˚ ‚ ÚÂÏË̇ı ‡ÒÒÚÓflÌËÈ ...............................................................
15.3 ê‡ÒÒÚÓflÌËfl ̇ „‡Ù‡ı ..........................................................................................................
15.4 ê‡ÒÒÚÓflÌËfl ̇ ‰Â‚¸flı .......................................................................................................
É·‚‡ 16. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl
16.1 åËÌËχθÌÓ ‡ÒÒÚÓflÌËÂ Ë Â„Ó ‡Ì‡ÎÓ„Ë ..........................................................................
16.2 éÒÌÓ‚Ì˚ ‡ÒÒÚÓflÌËfl ̇ ÍÓ‰‡ı .........................................................................................
É·‚‡ 17. ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı
17.1 èÓ‰Ó·ÌÓÒÚË Ë ‡ÒÒÚÓflÌËfl ‰Îfl ˜ËÒÎÓ‚˚ı ‰‡ÌÌ˚ı ............................................................
17.2 Ä̇ÎÓ„Ë Â‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl .........................................................................................
17.3 èÓ‰Ó·ÌÓÒÚË Ë ‡ÒÒÚÓflÌËfl ‰Îfl ·Ë̇Ì˚ı ‰‡ÌÌ˚ı ...........................................................
17.4 äÓÂÎflˆËÓÌÌ˚ ÔÓ‰Ó·ÌÓÒÚË Ë ‡ÒÒÚÓflÌËfl ....................................................................
12
ëÓ‰ÂʇÌËÂ
É·‚‡ 18. ê‡ÒÒÚÓflÌËfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ËÌÊÂÌÂËË
18.1 ê‡ÒÒÚÓflÌËfl ‚ Ó„‡ÌËÁ‡ˆËË ‰‚ËÊÂÌËfl ................................................................................
18.2 ê‡ÒÒÚÓflÌËfl ‰Îfl ÍÎÂÚÓ˜Ì˚ı ‡‚ÚÓχÚÓ‚ ..............................................................................
18.3 ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓÌÚÓÎfl ...........................................................................................
18.4 åéÖÄ ‡ÒÒÚÓflÌËfl ...............................................................................................................
óÄëíú V. êÄëëíéüçàü Ç äéåèúûíÖêçéâ ëîÖêÖ
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
19.1 åÂÚËÍË Ì‡ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔÎÓÒÍÓÒÚË . ..........................................................................
19.2 åÂÚËÍË Ì‡ ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚË .....................................................................................
É·‚‡ 20. ê‡ÒÒÚÓflÌËfl ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó
20.1 ä·ÒÒ˘ÂÒÍË ‡ÒÒÚÓflÌËfl ÇÓÓÌÓ„Ó .................................................................................
20.2 ê‡ÒÒÚÓflÌËfl ÇÓÓÌÓ„Ó Ì‡ ÔÎÓÒÍÓÒÚË ..................................................................................
20.3 ÑÛ„Ë ‡ÒÒÚÓflÌËfl ÇÓÓÌÓ„Ó .............................................................................................
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
21.1 ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ ...........................................................................................
21.2 ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ Á‚ÛÍÓ‚ ..............................................................................................
É·‚‡ 22. ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı
22.1 ëÂÚË, ÌÂÁ‡‚ËÒËÏ˚ ÓÚ ¯Í‡Î ...............................................................................................
22.2 ëÂχÌÚ˘ÂÒÍË ‡ÒÒÚÓflÌËfl ‚ ÒÂÚ‚˚ı ÒÚÛÍÚÛ‡ı .........................................................
22.3 ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ç·-ÒÂÚË .................................................................................
óÄëíú VI. êÄëëíéüçàü Ç ÖëíÖëíÇÖççõï çÄìäÄï
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
23.1 ÉÂÌÂÚ˘ÂÒÍË ‡ÒÒÚÓflÌËfl ‰Îfl ‰‡ÌÌ˚ı Ó ˜‡ÒÚÓÚ „ÂÌÓ‚ ..................................................
23.2 ê‡ÒÒÚÓflÌËfl ‰Îfl ‰‡ÌÌ˚ı Ó Ñçä ..........................................................................................
23.3 ê‡ÒÒÚÓflÌËfl ‰Îfl ‰‡ÌÌ˚ı Ó ·ÂÎ͇ı .......................................................................................
23.4 ÑÛ„Ë ·ËÓÎӄ˘ÂÒÍË ‡ÒÒÚÓflÌËfl ...................................................................................
É·‚‡ 24. ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË
24.1 ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍ ...........................................................................................................
24.2 ê‡ÒÒÚÓflÌËfl ‚ ıËÏËË ..............................................................................................................
É·‚‡ 25. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË, „ÂÓÙËÁËÍÂ Ë ‡ÒÚÓÌÓÏËË
25.1 ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË Ë „ÂÓÙËÁËÍ ................................................................................
25.2 ê‡ÒÒÚÓflÌËfl ‚ ‡ÒÚÓÌÓÏËË ...................................................................................................
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
26.1 ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË ...................................................................................................
26.2 ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË .............................................................................
ëÓ‰ÂʇÌËÂ
13
óÄëíú VII. êÄëëíéüçàü Ç êÖÄãúçéå åàêÖ
É·‚‡ 27. åÂ˚ ‰ÎËÌ˚ Ë ¯Í‡Î˚
27.1 åÂ˚ ‰ÎËÌ˚ .........................................................................................................................
27.2 ò͇Î˚ ÙËÁ˘ÂÒÍËı ‰ÎËÌ ....................................................................................................
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
28.1 ê‡ÒÒÚÓflÌËfl, Ò‚flÁ‡ÌÌ˚Â Ò ÓÚ˜ÛʉÂÌÌÓÒÚ¸˛ ......................................................................
28.2 ê‡ÒÒÚÓflÌËfl ÁËÚÂθÌÓ„Ó ‚ÓÒÔËflÚËfl ................................................................................
28.3 ê‡ÒÒÚÓflÌËfl Ó·ÓÛ‰Ó‚‡ÌËfl ...................................................................................................
28.4 èӘˠ‡ÒÒÚÓflÌËfl ..............................................................................................................
ãËÚÂ‡ÚÛ‡ ...................................................................................................................................
è‰ÏÂÚÌ˚È Û͇Á‡ÚÂθ ...............................................................................................................
ó‡ÒÚ¸ I
åÄíÖåÄíàäÄ êÄëëíéüçàâ
É·‚‡ 1
鷢ˠÓÔ‰ÂÎÂÌËfl
1.1. ÅÄáéÇõÖ éèêÖÑÖãÖçàü
ê‡ÒÒÚÓflÌËÂ
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : ï × ï → ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ (ËÎË ÌÂÔÓıÓÊÂÒÚ¸˛) ̇ ï, ÂÒÎË ‰Îfl ‚ÒÂı x, y ∈ X ‚˚ÔÓÎÌfl˛ÚÒfl
ÛÒÎÓ‚Ëfl:
1) d(x, y) ≥ 0 (ÔÓÎÓÊËÚÂθ̇fl ÓÔ‰ÂÎÂÌÌÓÒÚ¸);
2. d(x, y) = d(y, x) (ÒËÏÏÂÚ˘ÌÓÒÚ¸);
3. d(x, ı) = 0 (ÂÙÎÂÍÒË‚ÌÓÒÚ¸).
Ç ÚÓÔÓÎÓ„ËË Ú‡Í‡fl ÙÛÌ͈Ëfl ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ ÒËÏÏÂÚËÍÓÈ. ÇÂÍÚÓ ÓÚ ı Í Û,
‰ÎË̇ ÍÓÚÓÓ„Ó ‡‚ÌflÂÚÒfl d(x, y), ̇Á˚‚‡ÂÚÒfl ÔÂÂÌÂÒÂÌËÂÏ. ê‡ÒÒÚÓflÌËÂ, ‡‚ÌÓÂ
Í‚‡‰‡ÚÛ ÏÂÚËÍË, ̇Á˚‚‡ÂÚÒfl Í‚‡‰‡ÌÒÓÏ.
ÑÎfl β·Ó„Ó ‡ÒÒÚÓflÌËfl d ÙÛÌ͈Ëfl, ÓÔ‰ÂÎflÂχfl ÔË x ≠ y Í‡Í D (x, y) =
= d(x, y) + c, „‰Â Ò = maxx, y, z ∈X(d(x, y) – d(x , z) – d(y, z)), Ë D(x, ı) = 0, fl‚ÎflÂÚÒfl
ÏÂÚËÍÓÈ.
èÓÒÚ‡ÌÒÚ‚Ó ‡ÒÒÚÓflÌËÈ
èÓÒÚ‡ÌÒÚ‚ÓÏ ‡ÒÒÚÓflÌËÈ (ï, d) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ï, Ò̇·ÊÂÌÌÓ ‡ÒÒÚÓflÌËÂÏ d.
èÓ‰Ó·ÌÓÒÚ¸
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl s : ï × ï → ̇Á˚‚‡ÂÚÒfl
ÔÓ‰Ó·ÌÓÒÚ¸˛ ̇ ï, ÂÒÎË s fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ, ÒËÏÏÂÚ˘ÌÓÈ, Ë
‰Îfl β·˚ı x, y ∈ X ËÏÂÂÚ ÏÂÒÚÓ ÌÂ‡‚ÂÌÒÚ‚Ó s(x, y) ≤ s(x, x), ÍÓÚÓÓ Ô‚‡˘‡ÂÚÒfl ‚
‡‚ÂÌÒÚ‚Ó ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ı = y.
éÒÌÓ‚Ì˚ÏË ÔÂÓ·‡ÁÓ‚‡ÌËflÏË, ‰‡˛˘ËÏË ‡ÒÒÚÓflÌË (ÌÂÔÓıÓÊÂÒÚ¸) d ËÁ ÔÓ‰Ó·ÌÓÒÚË s, Ó„‡Ì˘ÂÌÌÓÈ 1 Ò‚ÂıÛ, fl‚Îfl˛ÚÒfl
d = 1 − s, d =
1− s
, d = 1 − s , d = 2(1 − s 2 ), d = arccos s, d = − ln s (ÒÏ. „Î. 4).
s
èÓÎÛÏÂÚË͇
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : ï × ï → ̇Á˚‚‡ÂÚÒfl
ÔÓÎÛÏÂÚËÍÓÈ (ËÎË ÔÒ‚‰ÓÏÂÚËÍÓÈ) ̇ ï, ÂÒÎË d fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ
ÓÔ‰ÂÎÂÌÌÓÈ, ÒËÏÏÂÚ˘ÌÓÈ, ÂÙÎÂÍÒË‚ÌÓÈ, Ë ‰Îfl β·˚ı x, y, z ∈ X ÒÔ‡‚‰ÎË‚Ó
ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇
d(x, y) ≤ d(x, z) + d(z, y).
ÑÎfl β·Ó„Ó ‡ÒÒÚÓflÌËfl d ‡‚ÂÌÒÚ‚Ó d(x, x) = 0 Ë ÒÚÓ„Ó ÌÂ‡‚ÂÌÒÚ‚Ó
ÚÂÛ„ÓθÌË͇ d(x, y) ≤ d(x, z) + d(y, z) „‡‡ÌÚËÛ˛Ú, ˜ÚÓ d fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ.
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
17
åÂÚË͇
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : ï × ï → ̇Á˚‚‡ÂÚÒfl
ÏÂÚËÍÓÈ Ì‡ ï, ÂÒÎË ‰Îfl ‚ÒÂı x, y, z ∈ X ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl:
1. d(x, y) ≥ 0 (ÔÓÎÓÊËÚÂθ̇fl ÓÔ‰ÂÎÂÌÌÓÒÚ¸);
2. d(x, y) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y (‡ÍÒËÓχ ÚÓʉÂÒÚ‚ÂÌÌÓÒÚË
Ò‡ÏÓÏÛ Ò·Â);
3. d(x, y) = d(y, x) (ÒËÏÏÂÚ˘ÌÓÒÚ¸);
4. d(x, y) ≤ d(x, z) + d(z, y) (ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇).
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
åÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (X , d) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ï, Ò̇·ÊÂÌÌÓÂ
ÏÂÚËÍÓÈ d.
åÂÚ˘ÂÒ͇fl ÒıÂχ
åÂÚ˘ÂÒÍÓÈ ÒıÂÏÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ˆÂÎÓ˜ËÒÎÂÌÌÓÈ
ÏÂÚËÍÓÈ.
ê‡Ò¯ËÂÌ̇fl ÏÂÚË͇
ê‡Ò¯ËÂÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl ÏÂÚËÍË: ‰Îfl d ‰ÓÔÛÒÚËÏÓ
Á̇˜ÂÌË ∞.
èÓ˜ÚË-ÏÂÚË͇
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. ê‡ÒÒÚÓflÌË d ̇ ï ̇Á˚‚‡ÂÚÒfl ÔÓ˜ÚËÏÂÚËÍÓÈ, ÂÒÎË ÌÂ‡‚ÂÌÒÚ‚Ó
0 d(x, y) ≤ C(d(x, z1 ) + d(z1 , z2 ) +…+ d(zn , y))
‚˚ÔÓÎÌÂÌÓ, ÔË ÌÂÍÓÚÓÓÈ ÍÓÌÒÚ‡ÌÚ ë > 1, ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı x, y, z1 , …, zn ∈ X.
åÂÚË͇ ÛÔÓ˘ÂÌÌÓ„Ó ÔÛÚË
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. åÂÚË͇ d ̇ ï ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ
ÛÔÓ˘ÂÌÌÓ„Ó ÔÛÚË, ÂÒÎË ‰Îfl ÌÂÍÓÚÓÓ„Ó ÙËÍÒËÓ‚‡ÌÌÓ„Ó ë > 0 Ë ‰Îfl ͇ʉÓÈ Ô‡˚
ÚÓ˜ÂÍ x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ x = x0, x 1 , ..., xt = y, ‰Îfl ÍÓÚÓÓÈ d(x i–1,
xi) ≤ C ÔË i = 1, …, t, Ë
d(x, y) ≥ d(x 0 , x1) + d(x 1 , x2) + ... + d(xt–1, xt) – C,
t
Ú.Â. ÓÒ··ÎÂÌÌÓ ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇ d(x, y) ≤
∑ d ( x i −1 , x i )
ÒÚ‡ÌÓ‚ËÚÒfl
i =1
‡‚ÂÌÒÚ‚ÓÏ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó Ó„‡Ì˘ÂÌÌÓÈ Ó¯Ë·ÍË.
䂇ÁË‡ÒÒÚÓflÌËÂ
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl s : ï × ï → ̇Á˚‚‡ÂÚÒfl
Í‚‡ÁË‡ÒÒÚÓflÌËÂÏ Ì‡ ï, ÂÒÎË d fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ Ë ÂÙÎÂÍÒË‚ÌÓÈ.
䂇ÁËÔÓÎÛÏÂÚË͇
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : ï × ï → ̇Á˚‚‡ÂÚÒfl
Í‚‡ÁËÔÓÎÛÏÂÚËÍÓÈ Ì‡ ï, ÂÒÎË d fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ Ë ÂÙÎÂÍÒË‚ÌÓÈ, Ë ‰Îfl ‚ÒÂı x, y, z ∈ X ÒÔ‡‚‰ÎË‚Ó ÓËÂÌÚËÓ‚‡ÌÌÓ ÌÂ‡‚ÂÌÒÚ‚Ó
ÚÂÛ„ÓθÌË͇
d(x, y) ≤ d(x, z) + d(z, y).
18
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
䂇ÁËÏÂÚËÍÓÈ Äθ·ÂÚ‡ ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÔÓÎÛÏÂÚË͇ d ̇ ï ÒÓ Ò··ÓÈ
ÓÔ‰ÂÎÂÌÌÓÒÚ¸˛: ‰Îfl ‚ÒÂı x, y ∈ X ËÁ ‡‚ÂÌÒÚ‚‡ d(x, y) = d(y, x) ÒΉÛÂÚ ‡‚ÂÌÒÚ‚Ó
x = y.
ë··ÓÈ Í‚‡ÁËÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl Í‚‡ÁËÔÓÎÛÏÂÚË͇ d ̇ ï ÒÓ Ò··ÓÈ
ÒËÏÏÂÚËÂÈ: ‰Îfl β·˚ı x, y X ‡‚ÂÌÒÚ‚Ó d(x, y) = 0 ËÏÂÂÚ ÏÂÒÚÓ ÚÓ„‰‡ Ë ÚÓθÍÓ
ÚÓ„‰‡, ÍÓ„‰‡ d(y, ı) = 0.
䂇ÁËÏÂÚË͇
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : ï × ï → ̇Á˚‚‡ÂÚÒfl
Í‚‡ÁËÏÂÚËÍÓÈ Ì‡ ï, ÂÒÎË ‰Îfl ‚ÒÂı x, y ∈ X ËÏÂÂÚ ÏÂÒÚÓ ÌÂ‡‚ÂÌÒÚ‚Ó d(x, y) ≥ 0,
ÍÓÚÓÓ ÒÚ‡ÌÓ‚ËÚÒfl ‡‚ÂÌÒÚ‚ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y, Ë ‰Îfl ‚ÒÂı x, y, z ∈
X ÒÔ‡‚‰ÎË‚Ó ÓËÂÌÚËÓ‚‡ÌÌÓ ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇
d(y, x) ≤ d(x, z) + d(z, y).
䂇ÁËÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (X,d) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ï, Ò̇·ÊÂÌÌÓÂ
Í‚‡ÁËÏÂÚËÍÓÈ d.
ÑÎfl β·ÓÈ Í‚‡ÁËÏÂÚËÍË d ÙÛÌ͈ËË max{d(x, y), d(y, x)}, min{d(x, y), d(y, x)}
d ( x, y) + d ( y, x )
Ë
fl‚Îfl˛ÚÒfl (˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË) ÏÂÚË͇ÏË.
2
ç‡ıËωӂÓÈ Í‚‡ÁËÏÂÚËÍÓÈ d ̇Á˚‚‡ÂÚÒfl Í‚‡ÁË‡ÒÒÚÓflÌË ̇ ï, ÍÓÚÓÓÂ
Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÒÎÂ‰Û˛˘ÂÈ ÛÒËÎÂÌÌÓÈ ‚ÂÒËË ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ÌÂ‡‚ÂÌÒÚ‚‡
ÚÂÛ„ÓθÌË͇: ‰Îfl ‚ÒÂı x, y, z ∈ X
d(x, y) ≤ max{d(x, z), d(z, y)}.
2k-„Ó̇θÌÓ ‡ÒÒÚÓflÌËÂ
2k-„Ó̇θÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË d ̇ ï, Û‰Ó‚ÎÂÚ‚Ófl˛˘ÂÂ
2k-„Ó̇θÌÓÏÛ ÌÂ‡‚ÂÌÒÚ‚Û
∑
bi b j d ( xi , x j ) ≤ 0
1≤ i < j ≤ n
n
‰Îfl ‚ÒÂı b ∈ n Ò
n
∑ bi = 0
Ë
i =1
x1, ..., xn ∈ X.
∑
bi = 2 k , Ë ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı ˝ÎÂÏÂÌÚÓ‚
i =1
ê‡ÒÒÚÓflÌË ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡
ê‡ÒÒÚÓflÌËÂÏ ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË d ̇ ï , ÍÓÚÓÓÂ
fl‚ÎflÂÚÒfl 2k-„Ó̇θÌ˚Ï ‰Îfl β·Ó„Ó k ≥ 1, Ú.Â. Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÌÂ‡‚ÂÌÒÚ‚Û ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡
∑
bi b j d ( xi , x j ) ≤ 0
1≤ i < j ≤ n
n
‰Îfl ‚ÒÂı b ∈ n Ò
∑ bi = 0 Ë ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı ˝ÎÂÏÂÌÚÓ‚ x1, ..., xn ∈ X.
i =1
ê‡ÒÒÚÓflÌË ÏÓÊÂÚ ·˚Ú¸ ‡ÒÒÚÓflÌËÂÏ ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡, Ì fl‚ÎflflÒ¸ ÔË ˝ÚÓÏ
ÔÓÎÛÏÂÚËÍÓÈ. ä˝ÎË ‰Ó͇Á‡Î, ˜ÚÓ ÏÂÚË͇ d fl‚ÎflÂÚÒfl L2-ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ
ÚÓ„‰‡, ÍÓ„‰‡ d2 – ‡ÒÒÚÓflÌË ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡.
(2k + 1)-„Ó̇θÌÓ ‡ÒÒÚÓflÌËÂ
19
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
(2k + 1)-„Ó̇θÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË d ̇ ï, ÍÓÚÓÓ ۉӂÎÂÚ‚ÓflÂÚ (2k + 1)-„Ó̇θÌÓÏÛ ÌÂ‡‚ÂÌÒÚ‚Û
∑
bi b j d ( xi , x j ) ≤ 0
1≤ i < j ≤ n
n
∑
‰Îfl ‚ÒÂı b ∈ n Ò
i =1
n
bi = 1 Ë
∑
bi = 2 k + 1, Ë ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı ˝ÎÂÏÂÌÚÓ‚
i =1
x1, ..., xn ∈ X.
(2k+1)-„Ó̇θÌÓ ÌÂ‡‚ÂÌÒÚ‚Ó Ò k =1 fl‚ÎflÂÚÒfl Ó·˚˜Ì˚Ï ÌÂ‡‚ÂÌÒÚ‚ÓÏ ÚÂÛ„ÓθÌË͇. (2k+1)-„Ó̇θÌÓ ÌÂ‡‚ÂÌÒÚ‚Ó ‚ΘÂÚ 2k-„Ó̇θÌÓ ÌÂ‡‚ÂÌÒÚ‚Ó.
ÉËÔÂÏÂÚË͇
ÉËÔÂÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË d ̇ ï, ÍÓÚÓÓ fl‚ÎflÂÚÒfl (2k+1)-„Ó̇θÌ˚Ï ‰Îfl β·Ó„Ó k ≥ 1, Ú.Â. Û‰Ó‚ÎÂÚ‚ÓflÂÚ „ËÔÂÏÂÚ˘ÂÒÍÓÏÛ ÌÂ‡‚ÂÌÒÚ‚Û
∑
bi b j d ( xi , x j ) ≤ 0
1≤ i < j ≤ n
n
‰Îfl ‚ÒÂı b ∈ n Ò
∑ bi = 1, Ë ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı ˝ÎÂÏÂÌÚÓ‚ x1, ..., xn ∈ X. ã˛·‡fl
i =1
„ËÔÂÏÂÚË͇ fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ Ë ‡ÒÒÚÓflÌËÂÏ ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡. ã˛·‡fl
L 1 -ÏÂÚË͇ fl‚ÎflÂÚÒfl „ËÔÂÏÂÚËÍÓÈ.
ê-ÏÂÚË͇
ê-ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ d ̇ ï ÒÓ Á̇˜ÂÌËflÏË ËÁ ÏÌÓÊÂÒÚ‚‡ [0, 1],
ÍÓÚÓ‡fl Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÍÓÂÎflˆËÓÌÌÓÏÛ ÌÂ‡‚ÂÌÒÚ‚Û ÚÂÛ„ÓθÌË͇
d(x, y) ≤ d(x, z) + d(y, z) – d(x, z)d(z, y).
ùÍ‚Ë‚‡ÎÂÌÚÌÓ ÌÂ‡‚ÂÌÒÚ‚Ó 1–d(x, y) ≥ (1–d(x , z))(1–d(z, y )) ÓÁ̇˜‡ÂÚ, ˜ÚÓ
‚ÂÓflÚÌÓÒÚ¸, Ò͇ÊÂÏ, ‰ÓÒÚ˘¸ ı ËÁ Û ˜ÂÂÁ z ÎË·Ó ‡‚̇ ‚Â΢ËÌ (1–d(x, z))(1–d(z,
y)) (ÌÂÁ‡‚ËÒËÏÓ ÓÚ ‚ÓÁÏÓÊÌÓÒÚË ‰ÓÒÚ˘¸ z ËÁ ı Ë Û ËÁ z ), ÎË·Ó Ô‚˚¯‡ÂÚ ÂÂ
(ÔÓÎÓÊËÚÂθ̇fl ÍÓÂÎflˆËfl).
åÂÚË͇ ·Û‰ÂÚ ê-ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ
ÔÂÓ·‡ÁÓ‚‡ÌËfl òÂÌ·Â„‡ (ÒÏ. „Î. 4).
èÚÓÎÂÏ‚‡ ÏÂÚË͇
èÚÓÎÂÏ‚ÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ d ̇ ï , Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÌÂ‡‚ÂÌÒÚ‚Û èÚÓÎÂÏÂfl (‰Ó͇Á‡ÌÌÓÏÛ èÚÓÎÂÏÂÂÏ ‰Îfl ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡): ‰Îfl ‚ÒÂı
x, y, u, z ∈ X
d(x, y)d(u, z) ≤ d(x, u)d(y, z) + d(x, z)d(y, u).
èÚÓÎÂÏ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÌÓÏËÓ‚‡ÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V,||.||), ‚ ÍÓÚÓÓÏ Â„Ó ÏÂÚË͇ ÌÓÏ˚ ||x–y|| fl‚ÎflÂÚÒfl ÔÚÓÎÂÏ‚ÓÈ.
çÓÏËÓ‚‡ÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ÔÚÓÎÂÏ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÚÓ„‰‡
Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ;
Ú‡ÍËÏ Ó·‡ÁÓÏ, ÏÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó (ÒÏ. „Î. 6) fl‚ÎflÂÚÒfl ‚ÍÎˉӂÓÈ ÚÓ„‰‡ Ë
ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ fl‚ÎflÂÚÒfl ÔÚÓÎÂÏ‚ÓÈ.
20
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
d ( x, y)
, fl‚ÎflÂÚÒfl
d ( x, z )d ( y, z )
ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl β·Ó„Ó z ∈ X ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d fl‚ÎflÂÚÒfl ÔÚÓÎÂÏ‚ÓÈ ÏÂÚËÍÓÈ ([FoSC06]).
ÑÎfl β·ÓÈ ÏÂÚËÍË d ‡ÒÒÚÓflÌË d fl‚ÎflÂÚÒfl ÔÚÓÎÂÏ‚ÓÈ ÏÂÚËÍÓÈ
([FoSC06]).
àÌ‚ÓβÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X \z, d z), „‰Â d ( x, y) =
ë··‡fl ÛθÚ‡ÏÂÚË͇
ë··ÓÈ ÛθÚ‡ÏÂÚËÍÓÈ (ËÎË ë-ÔÒ‚‰Ó‡ÒÒÚÓflÌËÂÏ) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂ
d ̇ ï, ‰Îfl ÍÓÚÓÓ„Ó ÔË ÌÂÍÓÚÓÓÈ ÍÓÌÒÚ‡ÌÚ ë ≥ 1, ÌÂ‡‚ÂÌÒÚ‚Ó
0 < d(x, y) ≤ C max{d(x, z), d(z, y)}
‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y, z ∈ X, ı ≠ Û. ÑÎfl Ú‡ÍÓ„Ó ‡ÒÒÚÓflÌËfl d ‡ÒÒÚÓflÌË d(x, y) =
= inf
d ( z i , z i +1 ), „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏ
∑
i
x = z0 , ..., zn+1), fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ.
íÂÏËÌ ÔÒ‚‰Ó‡ÒÒÚÓflÌË ËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ ‚ ÌÂÍÓÚÓ˚ı ÔËÎÓÊÂÌËflı ‰Îfl
Ó·ÓÁ̇˜ÂÌËfl ÔÒ‚‰ÓÏÂÚËÍË, Í‚‡ÁË‡ÒÒÚÓflÌËfl, ÔÓ˜ÚË-ÏÂÚËÍË, ‡ÒÒÚÓflÌËfl, ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸ ·ÂÒÍÓ̘Ì˚Ï, ‡ÒÒÚÓflÌËfl Ò Ó¯Ë·ÍÓÈ Ë Ú.Ô.
ìθÚ‡ÏÂÚË͇
ìθÚ‡ÏÂÚËÍÓÈ (ËÎË Ì‡ıËωӂÓÈ ÏÂÚËÍÓÈ) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ d ̇ ï,
ÍÓÚÓ‡fl Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒËÎÂÌÌÓÈ ‚ÂÒËË ÌÂ‡‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇:
d(x, y) ≤ max{d(x, z), d(z, y)}
‰Îfl ‚ÒÂı x, y, z ∈ X. í‡ÍËÏ Ó·‡ÁÓÏ, ÔÓ Í‡ÈÌÂÈ ÏÂ ‰‚‡ Á̇˜ÂÌËfl ËÁ d(x, y), d(z, y) Ë
d(x, z) ÒÓ‚Ô‡‰‡˛Ú.
åÂÚË͇ d fl‚ÎflÂÚÒfl ÛθÚ‡ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡  ÒÚÂÔÂÌÌÓÂ
ÔÂÓ·‡ÁÓ‚‡ÌË (ÒÏ. „Î. 4) d α fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‰Îfl β·Ó„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó
‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ· α. ã˛·‡fl ÛθÚ‡ÏÂÚË͇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÌÂ‡‚ÂÌÒÚ‚Û
˜ÂÚ˚Âı ÚÓ˜ÂÍ. åÂÚË͇ d fl‚ÎflÂÚÒfl ÛθÚ‡ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡
ÓÌÓ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÔÂÓ·‡ÁÓ‚‡ÌËfl î‡ËÒ‡ (ÒÏ. „Î. 4) ÏÂÚËÍË ÌÂ‡‚ÂÌÒÚ‚‡
˜ÂÚ˚Âı ÚÓ˜ÂÍ.
åÂÚË͇ ÌÂ‡‚ÂÌÒÚ‚‡ ˜ÂÚ˚Âı ÚÓ˜ÂÍ
åÂÚË͇ d ̇ ï Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ ÌÂ‡‚ÂÌÒÚ‚‡ ˜ÂÚ˚Âı ÚÓ˜ÂÍ (ËÎË Ì‡Á˚‚‡ÂÚÒfl ‡‰‰ËÚË‚ÌÓÈ ÏÂÚËÍÓÈ), ÂÒÎË ËÏÂÂÚ ÏÂÒÚÓ ÛÒËÎÂÌ̇fl ‚ÂÒËfl ÌÂ‡‚ÂÌÒÚ‚‡
ÚÂÛ„ÓθÌË͇: ‰Îfl ‚ÒÂı x, y, z, u ∈ X
d(x, y) + d(z, u) ≤ max{d(x, z) + d(y, u), d(x, u) + d(y, z)}.
ÑÛ„ËÏË ÒÎÓ‚‡ÏË, ËÁ ÚÂı ÒÛÏÏ d(x, y) + d(z, u), d(x, z) + d(y, u) Ë d(x, u) + d(y, z) ‰‚Â
̇˷Óθ¯Ë ÒÓ‚Ô‡‰‡˛Ú.
åÂÚË͇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÌÂ‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡
Ó̇ fl‚ÎflÂÚÒfl ‰‚ӂˉÌÓÈ ÏÂÚËÍÓÈ.
ã˛·‡fl ÏÂÚË͇, Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÌÂ‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ, fl‚ÎflÂÚÒfl
ÔÚÓÎÂÏ‚ÓÈ ÏÂÚËÍÓÈ Ë l1 -ÏÂÚËÍÓÈ.
äÛÒÚ‡ÌËÍÓ‚‡fl ÏÂÚË͇ – ÏÂÚË͇, ‰Îfl ÍÓÚÓÓÈ ‚Ò ÌÂ‡‚ÂÌÒÚ‚‡ ˜ÂÚ˚Âı ÚÓ˜ÂÍ
fl‚Îfl˛ÚÒfl ‡‚ÂÌÒÚ‚‡ÏË, Ú.Â. ‡‚ÂÌÒÚ‚Ó d(x, y) + d(u, z) = d(x, u) + d(y, z) ÒÔ‡‚‰ÎË‚Ó
ÔË Î˛·˚ı Á̇˜ÂÌËflı u, x, y, z ∈ X.
21
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
åÂÚË͇ ÓÒ··ÎÂÌÌÓ„Ó ÌÂ‡‚ÂÌÒÚ‚‡ ˜ÂÚ˚Âı ÚÓ˜ÂÍ
åÂÚË͇ d ̇ ï Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ ÓÒ··ÎÂÌÌÓ„Ó ÌÂ‡‚ÂÌÒÚ‚‡ ˜ÂÚ˚Âı
ÚÓ˜ÂÍ, ÂÒÎË, ‰Îfl ‚ÒÂı x, y, z ∈ X ËÁ ÚÂı ÒÛÏÏ
d(x, y) + d(z, u), d(x, z) + d(y, u), d(x, u) + d(y, z)
ÔÓ Í‡ÈÌÂÈ ÏÂ ‰‚ (Ì ӷflÁ‡ÚÂθÌÓ Ì‡Ë·Óθ¯ËÂ) ÒÓ‚Ô‡‰‡˛Ú.
åÂÚË͇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÓÒ··ÎÂÌÌÓÏÛ ÌÂ‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ ÚÓ„‰‡ Ë
ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ fl‚ÎflÂÚÒfl ÓÒ··ÎÂÌÌÓÈ ‰‚ӂˉÌÓÈ ÏÂÚËÍÓÈ.
␦-„ËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇
ÖÒÎË δ ≥ 0, ÚÓ ÏÂÚË͇ d ̇ ÏÌÓÊÂÒÚ‚Â ï ̇Á˚‚‡ÂÚÒfl ␦-„ËÔÂ·Ó΢ÂÒÍÓÈ, ÂÒÎË
Ó̇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ␦-„ËÔÂ·Ó΢ÂÒÍÓÏÛ ÌÂ‡‚ÂÌÒÚ‚Û ÉÓÏÓ‚‡ (¢ ӉÌÓ ÓÒ··ÎÂÌË ÌÂ‡‚ÂÌÒÚ‚‡ ˜ÂÚ˚Âı ÚÓ˜ÂÍ): ‰Îfl ‚ÒÂı x, y, z, u ∈ X
d(x, y) + d(z, u) ≤ 2δ + max{d(x, z) + d(y, u), d(x, u) + d(y, z)}.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) fl‚ÎflÂÚÒfl δ-„ËÔÂ·Ó΢ÂÒÍËÏ ÚÓ„‰‡ Ë ÚÓθÍÓ
ÚÓ„‰‡, ÍÓ„‰‡
{
}
( x. y) x 0 ≥ min ( x.z ) x 0 , ( y.z ) x 0 − δ
1
( d ( x 0 , x ) + d ( x 0 , y) − d ( x, y)) –
2
ÔÓËÁ‚‰ÂÌË ÉÓÏÓ‚‡ ÚÓ˜ÂÍ ı Ë Û ËÁ ï ÓÚÌÓÒËÚÂθÌÓ ·‡ÁÓ‚ÓÈ ÚÓ˜ÍË x 0 ∈ X.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) fl‚ÎflÂÚÒfl 0-„ËÔÂ·Ó΢ÂÒÍËÏ ÚÓ„‰‡ Ë ÚÓθÍÓ
ÚÓ„‰‡, ÍÓ„‰‡ d Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÌÂ‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ. ä‡Ê‰Ó ӄ‡Ì˘ÂÌÌÓÂ
ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, Ëϲ˘Â ‰Ë‡ÏÂÚ D, fl‚ÎflÂÚÒfl D-„ËÔÂ·Ó΢ÂÒÍËÏ. nÏÂÌÓ „ËÔÂ·Ó΢ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ln 3-„ËÔÂ·Ó΢ÂÒÍËÏ.
‰Îfl ‚ÒÂı x, y, z ∈ X Ë ‰Îfl β·Ó„Ó x0 ∈ X, „‰Â ( x, y) x 0 =
èÓ‰Ó·ÌÓÒÚ¸ ÔÓËÁ‚‰ÂÌËfl ÉÓÏÓ‚‡
èÛÒÚ¸ (ï, d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÙËÍÒËÓ‚‡ÌÌÓÈ ÚÓ˜ÍÓÈ x0 ∈ X.
èÓ‰Ó·ÌÓÒÚ¸˛ ÔÓËÁ‚‰ÂÌËfl ÉÓÏÓ‚‡ (ËÎË ÔÓËÁ‚‰ÂÌËÂÏ ÉÓÏÓ‚‡, ÍÓ‚‡ˇÌÚÌÓÒÚ¸˛) (.) x 0 ̇Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸ ̇ ï, ÓÔ‰ÂÎflÂχfl ÔÓ ÙÓÏÛÎÂ
( x. y ) x 0 =
1
( d ( x 0 , x ) + d ( x 0 , y) − d ( x, y)).
2
ÖÒÎË (ï, d) fl‚ÎflÂÚÒfl ‰Â‚ÓÏ, ÚÓ ( x. y) x 0 = d ( x 0 [ x, y]). ÖÒÎË (X,d) –
ÔÓÎÛÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÏÂ˚, Ú.Â. d(x, y) = µ(x∆y) ‰Îfl ·ÓÂ΂ÓÈ ÏÂ˚ µ ̇
ï , ÚÓ (x.y)ø = µ(x ∩ y). ÖÒÎË d fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡, Ú.Â.
d ( x, y) = d E2 ( x, y) ‰Îfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ï ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n, ÚÓ (ı.Û)0 ·Û‰ÂÚ
Ó·˚˜Ì˚Ï Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ Ì‡ n (ÒÏ. åÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl î‡ËÒ‡,
„Î. 4).
1.2. éëçéÇçõÖ èéçüíàü, ëÇüáÄççõÖ ë êÄëëíéüçàÖå,
à óàëãéÇõÖ àçÇÄêàÄçíõ
åÂÚ˘ÂÒÍËÈ ¯‡
èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. åÂÚ˘ÂÒÍËÏ ¯‡ÓÏ
(ËÎË Á‡ÏÍÌÛÚ˚Ï ÏÂÚ˘ÂÒÍËÏ ¯‡ÓÏ) Ò ˆÂÌÚÓÏ x0 ∈ X Ë ‡‰ËÛÒÓÏ r > 0
̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó B ( x 0 , r ) = {x ∈ X : d ( x 0 , x ) ≤ r}. éÚÍ˚Ú˚Ï ÏÂÚ˘ÂÒÍËÏ
22
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
¯‡ÓÏ Ò ˆÂÌÚÓÏ x0 ∈ X Ë ‡‰ËÛÒÓÏ r > 0 ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó B(x0, r) =
= {x0 ∈ X : d(x 0 , x) < r}.
åÂÚ˘ÂÒÍÓÈ ÒÙÂÓÈ Ò ˆÂÌÚÓÏ x0 ∈ X Ë ‡‰ËÛÒÓÏ r > 0 ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó
S(x 0 , r) = {x0 ∈ X : d(x 0 , x) = r}.
ÑÎfl ÏÂÚËÍË ÌÓÏ˚ ̇ n-ÏÂÌÓÏ ÌÓÏËÓ‚‡ÌÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â
(V,|| ⋅ ||) ÏÂÚ˘ÂÒÍËÈ ¯‡ B n = {x ∈ X : x ≤ 1} ̇Á˚‚‡ÂÚÒfl ‰ËÌ˘Ì˚Ï ¯‡ÓÏ, ‡
ÏÌÓÊÂÒÚ‚Ó Sn–1 = {x ∈ V : || x || = 1} – ‰ËÌ˘ÌÓÈ ÒÙÂÓÈ (ËÎË Â‰ËÌ˘ÌÓÈ
„ËÔÂÒÙÂÓÈ). Ç ‰‚ÛÏÂÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÏÂÚ˘ÂÒÍËÈ ¯‡ (ÓÚÍ˚Ú˚È
ËÎË Á‡ÏÍÌÛÚ˚È) ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ‰ËÒÍÓÏ (ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÓÚÍ˚Ú˚Ï ËÎË
Á‡ÏÍÌÛÚ˚Ï).
åÂÚ˘ÂÒ͇fl ÚÓÔÓÎÓ„Ëfl
åÂÚ˘ÂÒ͇fl ÚÓÔÓÎÓ„Ëfl – ÚÓÔÓÎÓ„Ëfl ̇ ï, ÔÓÓʉ‡Âχfl ÏÂÚËÍÓÈ d ̇ ï.
ÖÒÎË (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÓÔ‰ÂÎËÏ ÓÚÍ˚ÚÓÂ
ÏÌÓÊÂÒÚ‚Ó ‚ ï Í‡Í ÔÓËÁ‚ÓθÌÓ ӷ˙‰ËÌÂÌË (ÍÓ̘ÌÓ„Ó ËÎË ·ÂÒÍÓ̘ÌÓ„Ó
˜ËÒ·) ÓÚÍ˚Ú˚ı ÏÂÚ˘ÂÒÍËı ¯‡Ó‚ B(x, r) = {y ∈ X : d(x, y) < r}, x ∈ X, r ∈ ,
r > 0. á‡ÏÍÌÛÚÓ ÏÌÓÊÂÒÚ‚Ó ÓÔ‰ÂÎflÂÚÒfl ÚÂÔÂ¸ Í‡Í ‰ÓÔÓÎÌÂÌË ÓÚÍ˚ÚÓ„Ó
ÏÌÓÊÂÒÚ‚‡. åÂÚ˘ÂÒÍÓÈ ÚÓÔÓÎÓ„ËÂÈ Ì‡ (X,d) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı
ÓÚÍ˚Ú˚ı ‚ ï ÏÌÓÊÂÒÚ‚. íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸
ÔÓÎÛ˜ÂÌÓ Ú‡ÍËÏ Ó·‡ÁÓÏ ËÁ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ̇Á˚‚‡ÂÚÒfl ÏÂÚËÁÛÂÏ˚Ï
ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
åÂÚËÁ‡ˆËÓÌÌ˚ ÚÂÓÂÏ˚ – ÚÂÓÂÏ˚, ‰‡˛˘Ë ‰ÓÒÚ‡ÚÓ˜Ì˚ ÛÒÎÓ‚Ëfl ÏÂÚËÁÛÂÏÓÒÚË ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡.
ë ‰Û„ÓÈ ÒÚÓÓÌ˚, ÚÂÏËÌ ÏÂÚË͇ Û͇Á˚‚‡ÂÚ ÒÍÓ ̇ Ò‚flÁ¸ Ò ÏÂÓÈ, ÌÂÊÂÎË Ò
‡ÒÒÚÓflÌËÂÏ, ÔËÏÂÌËÚÂθÌÓ Í fl‰Û ‚‡ÊÌÂȯËı χÚÂχÚ˘ÂÒÍËı ÓÔ‰ÂÎÂÌËÈ,
̇ÔËÏÂ, ‚ ÏÂÚ˘ÂÒÍÓÈ ÚÂÓËË ˜ËÒÂÎ, ÏÂÚ˘ÂÒÍÓÈ ÚÂÓËË ÙÛÌ͈ËÈ, ÏÂÚ˘ÂÒÍÓÈ Ú‡ÌÁËÚË‚ÌÓÒÚË.
á‡ÏÍÌÛÚ˚È ÏÂÚ˘ÂÒÍËÈ ËÌÚÂ‚‡Î
èÛÒÚ¸ x, Û ∈ X – ‰‚ ‡Á΢Ì˚ ÚÓ˜ÍË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d). á‡ÏÍÌÛÚ˚Ï ÏÂÚ˘ÂÒÍËÏ ËÌÚÂ‚‡ÎÓÏ ÏÂÊ‰Û ı Ë Û Ì‡Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó
I(x, y) = {z ∈ X : d(x, y) = d(x, z) + d(z, y)}.
éÒÌÓ‚ÌÓÈ „‡Ù ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
éÒÌÓ‚ÌÓÈ „‡Ù (ËÎË „‡Ù ÒÓÒ‰ÒÚ‚‡) ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) – „‡Ù Ò
ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ ï, ‚ ÍÓÚÓÓÏ ıÛ fl‚ÎflÂÚÒfl ·ÓÏ, ÂÒÎË I(x, y) = {x, y}, Ú.Â. ÌÂ
ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸ÂÈ ÚÓ˜ÍË z ∈ X, ‰Îfl ÍÓÚÓÓÈ ‚˚ÔÓÎÌflÎÓÒ¸ ·˚ ‡‚ÂÌÒÚ‚Ó
d(x, y) = d(x, z) + d(z, y).
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÏÓÌÓÚÓÌÌÓ ÓÚÌÓÒËÚÂθÌÓ ‡ÒÒÚÓflÌËfl
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÏÓÌÓÚÓÌÌ˚Ï
ÓÚÌÓÒËÚÂθÌÓ ‡ÒÒÚÓflÌËfl, ÂÒÎË ‰Îfl β·Ó„Ó ËÌÚÂ‚‡Î‡ Ë ÒÛ˘ÂÒÚ‚ÛÂÚ I(x, x')
Ë y ∈ X\I(x, x') ÒÛ˘ÂÒÚ‚ÛÂÚ x" ∈ X(x, x') Ú‡ÍÓ ˜ÚÓ d(y, x") > d(x, x').
åÂÚ˘ÂÒÍËÈ ÚÂÛ„ÓθÌËÍ
íË ‡Á΢Ì˚ ÚÓ˜ÍË x, y, z ∈ X ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ó·‡ÁÛ˛Ú
ÏÂÚ˘ÂÒÍËÈ ÚÂÛ„ÓθÌËÍ, ÂÒÎË Á‡ÏÍÌÛÚ˚ ÏÂÚ˘ÂÒÍË ËÌÚÂ‚‡Î˚ I (x, y), I(z, x)
Ë I(z, x) ÔÂÂÒÂ͇˛ÚÒfl ÚÓθÍÓ ‚ Ó·˘Ëı ÍÓ̈‚˚ı ÚӘ͇ı.
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
23
åÓ‰ÛÎflÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÏÓ‰ÛÎflÌ˚Ï, ÂÒÎË ‰Îfl β·˚ı ÚÂı
‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y, z ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ u ∈ I(x, y) ∩ I(y, z) ∩ I(z, x).
ç ÒΉÛÂÚ Òϯ˂‡Ú¸ ˝ÚÓ Ò ÏÓ‰ÛÎflÌ˚Ï ‡ÒÒÚÓflÌËÂÏ (ÒÏ. „Î. 10) Ë ÏÂÚËÍÓÈ
ÏÓ‰ÛÎ˛Ò‡ (ÒÏ. „Î. 6).
åÂÚ˘ÂÒÍËÈ ˜ÂÚ˚ÂıÛ„ÓθÌËÍ
óÂÚ˚ ‡Á΢Ì˚ ÚÓ˜ÍË x, y, z, u ∈ X ÔÓËÁ‚ÓθÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ó·‡ÁÛ˛Ú ÏÂÚ˘ÂÒÍËÈ ˜ÂÚ˚ÂıÛ„ÓθÌËÍ, ÂÒÎË x, z ∈ I(y, u)
Ë y , u ∈ I(x, z). ÑÎfl Ú‡ÍÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ˜ÂÚ˚ÂıÛ„ÓθÌË͇ ·Û‰ÛÚ ËÏÂÚ¸ ÏÂÒÚÓ
‡‚ÂÌÒÚ‚‡ d(x, y) = d(z, u) Ë d(x, u) = d(y, z).
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl Ò··Ó ÒÙÂ˘ÂÒÍËÏ, ÂÒÎË ‰Îfl β·˚ı
ÚÂı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y, z ∈ X Ò y ∈ I(x, z) ÒÛ˘ÂÒÚ‚ÛÂÚ u ∈ X, Ú‡ÍÓ ˜ÚÓ
x, y, z, u Ó·‡ÁÛ˛Ú ÏÂÚ˘ÂÒÍËÈ ˜ÂÚ˚ÂıÛ„ÓθÌËÍ.
ë‚flÁÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl Ò‚flÁÌ˚Ï, ÂÒÎË Â„Ó ÌÂθÁfl ‡Á·ËÚ¸
̇ ‰‚‡ ÌÂÔÛÒÚ˚ı ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚‡ (ÒÏ. ë‚flÁÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó, „Î. 2).
ÅÓΠÒËθÌ˚Ï Ò‚ÓÈÒÚ‚ÓÏ fl‚ÎflÂÚÒfl ÔÛÚ¸ – Ò‚flÁÌÓÒÚ¸, ÔË ÍÓÚÓÓÈ Î˛·˚ ‰‚Â
ÚÓ˜ÍË ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚ ÔÛÚÂÏ.
åÂÚ˘ÂÒ͇fl ÍË‚‡fl
åÂÚ˘ÂÒ͇fl ÍË‚‡fl (ËÎË ÔÓÒÚÓ ÍË‚‡fl) γ ‚ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X,d)
Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÌÂÔÂ˚‚ÌÓ ÓÚÓ·‡ÊÂÌË γ : I → X ËÌÚÂ‚‡Î‡ I ËÁ ‚ ï .
äË‚‡fl ̇Á˚‚‡ÂÚÒfl ‰Û„ÓÈ (ËÎË ÔÛÚÂÏ, ÔÓÒÚÓÈ ÍË‚ÓÈ), ÂÒÎË Ó̇ fl‚ÎflÂÚÒfl
ËÌ˙ÂÍÚË‚ÌÓÈ. äË‚‡fl γ : [a, b] → X ̇Á˚‚‡ÂÚÒfl ÊÓ‰‡ÌÓ‚ÓÈ ÍË‚ÓÈ (ËÎË ÔÓÒÚÓÈ
Á‡ÏÍÌÛÚÓÈ ÍË‚ÓÈ), ÂÒÎË Ó̇ Ì ÔÂÂÒÂ͇ÂÚ Ò‡ÏÛ Ò·fl Ë γ(a) = γ(b).
ÑÎË̇ l(γ) ÍË‚ÓÈ γ : [a, b] → X ÓÔ‰ÂÎflÂÚÒfl ÙÓÏÛÎÓÈ


l( γ ) = sup 
d ( γ (ti ), γ (ti −1 )) : n ∈ , a = t0 < ... < tn = b .
1≤ i ≤ n

∑
ëÔflÏÎflÂχfl ÍË‚‡fl – ˝ÚÓ ÍË‚‡fl ÍÓ̘ÌÓÈ ‰ÎËÌ˚. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
(X,d), ‚ ÍÓÚÓÓÏ Í‡Ê‰˚ ‰‚ ÚÓ˜ÍË ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚ ÒÔflÏÎflÂÏÓÈ ÍË‚ÓÈ,
̇Á˚‚‡ÂÚÒfl ë-Í‚‡ÁË‚˚ÔÛÍÎ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÔË Ì‡Î˘ËË ÌÂÍÓÚÓÓÈ
ÍÓÌÒÚ‡ÌÚ˚ C ≥ 1, Ú‡ÍÓÈ ˜ÚÓ Í‡Ê‰‡fl Ô‡‡ x, y ∈ X ÏÓÊÂÚ ·˚Ú¸ ÒÓ‰ËÌÂ̇
ÒÔflÏÎflÂÏÓÈ ÍË‚ÓÈ Ï‡ÍÒËχθÌÓÈ ‰ÎËÌ˚ ëd(x, y). ÖÒÎË ë = 1, ÚÓ ˝Ú‡ ‰ÎË̇ ‡‚̇
d(x, y), Ú.Â. ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) fl‚ÎflÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ (ËÎË ÒÚÓ„Ó ‚ÌÛÚÂÌÌËÏ)
ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
ÉÂÓ‰ÂÁ˘ÂÒ͇fl
ÑÎfl ÔÓËÁ‚ÓθÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) „ÂÓ‰ÂÁ˘ÂÒÍÓÈ Ì‡Á˚‚‡ÂÚÒfl
ÎÓ͇θÌÓ Í‡Ú˜‡È¯‡fl ÏÂÚ˘ÂÒ͇fl ÍË‚‡fl, Ú.Â. ÎÓ͇θÌÓ ËÁÓÏÂÚ˘ÂÒÍÓÂ
‚ÎÓÊÂÌËÂ ‚ ï.
ÉÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ (ËÎË Í‡Ú˜‡È¯ËÏ ÔÛÚÂÏ) [x, y] ÓÚ ı ‰Ó Û fl‚ÎflÂÚÒfl
ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌË γ : [a, b] → X Ò γ(a) = x Ë γ(b) = y.
åÂÚ˘ÂÒ͇fl Ôflχfl – „ÂÓ‰ÂÁ˘ÂÒ͇fl, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ÏËÌËχθÌÓÈ ÏÂʉÛ
‰‚ÛÏfl β·˚ÏË Â ÚӘ͇ÏË; Ó̇ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌËÂ
‚ÒÂ„Ó ‚ ï . åÂÚ˘ÂÒÍËÈ ÎÛ˜ Ë ÏÂÚ˘ÂÒÍËÈ ·Óθ¯ÓÈ ÍÛ„ Ô‰ÒÚ‡‚Îfl˛Ú ÒÓ·ÓÈ
ËÁÓÏÂÚ˘ÂÒÍË ‚ÎÓÊÂÌËfl ‚ ï ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÔÓÎÛÔflÏÓÈ ≥0 Ë ÓÍÛÊÌÓÒÚË
S(0, r).
24
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÉÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ‰‚ β·˚ ÚÓ˜ÍË ÒÓ‰ËÌÂÌ˚ „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ. éÌÓ
̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍË ÔÓÎÌ˚Ï, ÂÒÎË Í‡Ê‰˚È Ú‡ÍÓÈ ÓÚÂÁÓÍ fl‚ÎflÂÚÒfl ÔÓ‰‰Û„ÓÈ
ÏÂÚ˘ÂÒÍÓÈ ÔflÏÓÈ.
ÉÂÓ‰ÂÁ˘ÂÒ͇fl ‚˚ÔÛÍÎÓÒÚ¸
ÑÎfl ÔÓËÁ‚ÓθÌÓ„Ó „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ë ÔÓ‰ÏÌÓÊÂÒÚ‚‡ å ⊂ X ÏÌÓÊÂÒÚ‚Ó å ̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍË ‚˚ÔÛÍÎ˚Ï (ËÎË
‚˚ÔÛÍÎ˚Ï), ÂÒÎË ‰Îfl β·˚ı ‰‚Ûı ÚÓ˜ÂÍ ËÁ å ÒÛ˘ÂÒÚ‚ÛÂÚ ÒÓ‰ËÌfl˛˘ËÈ Ëı
„ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ, ÍÓÚÓ˚È ÔÓÎÌÓÒÚ¸˛ ÔË̇‰ÎÂÊËÚ å; ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl
ÎÓ͇θÌÓ ‚˚ÔÛÍÎ˚Ï, ÂÒÎË Ú‡ÍÓÈ ÓÚÂÁÓÍ ÒÛ˘ÂÒÚ‚ÛÂÚ ‰Îfl β·˚ı ‰‚Ûı ‰ÓÒÚ‡ÚÓ˜ÌÓ
·ÎËÁÍËı ÚÓ˜ÂÍ ÏÌÓÊÂÒÚ‚‡ å.
ꇉËÛÒÓÏ ËÌ˙ÂÍÚË‚ÌÓÒÚË ÏÌÓÊÂÒÚ‚‡ å ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯Â ˜ËÒÎÓ r, Ú‡ÍÓÂ
˜ÚÓ ‰Îfl ‰‚Ûı β·˚ı ÚÓ˜ÂÍ ËÁ å, ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÍÓÚÓ˚ÏË <r, ÒÛ˘ÂÒÚ‚ÛÂÚ
‰ËÌÒÚ‚ÂÌÌ˚È ÒÓ‰ËÌfl˛˘ËÈ Ëı „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ, ÍÓÚÓ˚È ÔÓÎÌÓÒÚ¸˛
ÔË̇‰ÎÂÊËÚ å.
åÌÓÊÂÒÚ‚Ó å ̇Á˚‚‡ÂÚÒfl ‚ÔÓÎÌ ‚˚ÔÛÍÎ˚Ï, ÂÒÎË ‰Îfl β·˚ı ‰‚Ûı Â„Ó ÚÓ˜ÂÍ
͇ʉ˚È ÒÓ‰ËÌfl˛˘ËÈ Ëı „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ ÔÓÎÌÓÒÚ¸˛ ÔË̇‰ÎÂÊËÚ å. ÑÎfl
‰‡ÌÌÓÈ ÚÓ˜ÍË x ∈ X ‡‰ËÛÒÓÏ ‚˚ÔÛÍÎÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ‡‰ËÛÒ Ì‡Ë·Óθ¯Â„Ó ‚ÔÓÎÌÂ
‚˚ÔÛÍÎÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ¯‡‡ Ò ˆÂÌÚÓÏ ‚ ÚӘ͠ı.
Ç˚ÔÛÍÎÓÒÚ¸ ÅÛÁÂχ̇
ÉÂÓ‰ÂÁ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÔÓ
ÅÛÁÂχÌÛ (ËÎË „ÎÓ·‡Î¸ÌÓ ÌÂÔÓÎÓÊËÚÂθÌÓ ËÒÍË‚ÎÂÌÌ˚Ï ÔÓ ÅÛÁÂχÌÛ), ÂÒÎË ‰Îfl
β·˚ı ÚÂı ÚÓ˜ÂÍ x, y, z ∈ X Ë Ò‰ËÌÌ˚ı ÚÓ˜ÂÍ m(x, z) Ë m(y, z) ‚˚ÔÓÎÌflÂÚÒfl
ÛÒÎÓ‚ËÂ
d ( m( x, z ), m( y, z )) ≤
1
d ( x, y).
2
ÑÛ„ËÏË ÒÎÓ‚‡ÏË, ‡ÒÒÚÓflÌË D(c1, c2) ÏÂÊ‰Û Î˛·˚ÏË „ÂÓ‰ÂÁ˘ÂÒÍËÏË ÓÚÂÁ͇ÏË Ë c1 = [a1 , b 1 ] fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎÓÈ ÙÛÌ͈ËÂÈ. (ÑÂÈÒÚ‚ËÚÂθ̇fl ÙÛÌ͈Ëfl f,
ÓÔ‰ÂÎÂÌ̇fl ̇ ÌÂÍÓÚÓÓÏ ËÌÚÂ‚‡ÎÂ, ̇Á˚‚‡ÂÚÒfl ‚˚ÔÛÍÎÓÈ, ÂÒÎË ÛÒÎÓ‚ËÂ
f(λx + (1 – λ)y) ≤ λf(x) + (1 – λ)f(y) ‚˚ÔÓÎÌÂÌÓ ‰Îfl β·˚ı ı, Û Ë λ ∈ (0, 1).)
èÎÓÒ͇fl ‚ÍÎˉӂ‡ ÔÓÎÓÒ‡ {(x, y) ∈ 2: 0 < x < 1} fl‚ÎflÂÚÒfl „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÓ
ÉÓÏÓ‚Û, ÌÓ Ì fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎÓÈ ÔÓ ÅÛÁÂχÌÛ. Ñ‚Â Î˛·˚ ÚÓ˜ÍË ÔÓÎÌÓ„Ó
ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ‚˚ÔÛÍÎÓ„Ó ÔÓ ÅÛÁÂχÌÛ, Ò‚flÁ‡Ì˚ ‰ËÌÒÚ‚ÂÌÌ˚Ï
„ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ.
ÉÂÓ‰ÂÁ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) fl‚ÎflÂÚÒfl ÎÓ͇θÌÓ ‚˚ÔÛÍÎ˚Ï ÔÓ
ÅÛÁÂχÌÛ (ÅÛÁÂχÌ, 1948), ÂÒÎË ‚˚¯ÂÛ͇Á‡ÌÌÓ ÌÂ‡‚ÂÌÒÚ‚Ó ‚˚ÔÎÓÌflÂÚÒfl
ÎÓ͇θÌÓ.
ã˛·Ó ÎÓ͇θÌÓ ëÄí(0) ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ÒÏ. „Î. 6) fl‚ÎflÂÚÒfl
ÎÓ͇θÌÓ ‚˚ÔÛÍÎ˚Ï ÔÓ ÅÛÁÂχÌÛ Ë Î˛·Ó „ÂÓ‰ÂÁ˘ÂÒÍÓ ëÄí(0) ÏÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÔÓ ÅÛÁÂχÌÛ, ÌÓ Ó·‡ÚÌÓ Ì‚ÂÌÓ.
Ç˚ÔÛÍÎÓÒÚ¸ ÔÓ åÂÌ„ÂÛ
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÔÓ åÂÌ„ÂÛ, ÂÒÎË ‰Îfl
‰‚Ûı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl ÚӘ͇ z ∈ X , ‰Îfl ÍÓÚÓÓÈ
d(x, y) = d(x, z) + d(z, y), Ú.Â. ÛÒÎÓ‚Ë |I(x, y)| > 2 ËÏÂÂÚ ÏÂÒÚÓ ‰Îfl Á‡ÏÍÌÛÚÓ„Ó
ÏÂÚ˘ÂÒÍÓ„Ó ËÌÚÂ‚‡Î‡ I (x, y) = {z ∈ X : d(x, y) = d(x, z) + d(z, y)}. åÂÚ˘ÂÒÍÓÂ
25
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÒÚÓ„Ó ‚˚ÔÛÍÎ˚Ï ÔÓ åÂÌ„ÂÛ, ÂÒÎË Ú‡Í‡fl ÚӘ͇ z
fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓÈ ‰Îfl ‚ÒÂı x, y ∈ X.
èÓ‰ÏÌÓÊÂÒÚ‚Ó M ⊂ X ̇Á˚‚‡ÂÚÒfl d-‚˚ÔÛÍÎ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ (åÂÌ„Â, 1928), ÂÒÎË
‰Îfl β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X ËÏÂÂÚ ÏÂÒÚÓ ‚Íβ˜ÂÌË I(x, y) ⊂ M. îÛÌ͈Ëfl
f : M → , ÓÔ‰ÂÎÂÌ̇fl ̇ d -‚˚ÔÛÍÎÓÏ ÏÌÓÊÂÒÚ‚Â M ⊂ X , ̇Á˚‚‡ÂÚÒfl
d-‚˚ÔÛÍÎÓÈ ÙÛÌ͈ËÂÈ, ÂÒÎË ‰Îfl β·Ó„Ó z ∈ I(x, y) ⊂ M ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚ËÂ
f (z) ≤
d ( y, z )
d ( x, z )
f ( x) +
f ( y).
d ( x, y)
d ( x, y)
ë‰ËÌ̇fl ‚˚ÔÛÍÎÓÒÚ¸
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl Ò‰ËÌÌÓ ‚˚ÔÛÍÎ˚Ï (ËÎË
‰ÓÔÛÒ͇˛˘ËÏ Ò‰ËÌÌÓ ÓÚÓ·‡ÊÂÌËÂ), ÂÒÎË ‰Îfl β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X
ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl ÚӘ͇ z ∈ X, ̇Á˚‚‡Âχfl Ò‰ËÌÌÓÈ ÚÓ˜ÍÓÈ m(x, y), ‰Îfl ÍÓÚÓÓÈ
1
‚˚ÔÓÎÌfl˛ÚÒfl ‡‚ÂÌÒÚ‚‡ d(x, y) = d(x, z) + d(z, y) Ë d ( x, z ) = d ( x, y).
2
éÚÓ·‡ÊÂÌË m : ï × ï → X ̇Á˚‚‡ÂÚÒfl Ò‰ËÌÌ˚Ï ÓÚÓ·‡ÊÂÌËÂÏ
(ÒÏ. ë‰ËÌÌÓ ÏÌÓÊÂÒÚ‚Ó); ÓÌÓ ·Û‰ÂÚ Â‰ËÌÒÚ‚ÂÌÌ˚Ï, ÂÒÎË Û͇Á‡Ì̇fl ‚˚¯Â ÚӘ͇ z
‰ËÌÒÚ‚ÂÌ̇ ‰Îfl ‚ÒÂı x, y ∈ X.
èÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ
ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ Ò‰ËÌÌÓ ‚˚ÔÛÍÎÓ.
ò‡Ó‚‡fl ‚˚ÔÛÍÎÓÒÚ¸
ë‰ËÌÌÓ ‚˚ÔÛÍÎÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ¯‡Ó‚Ó
‚˚ÔÛÍÎ˚Ï, ÂÒÎË ÌÂ‡‚ÂÌÒÚ‚Ó
d ( m( x, y), z ) ≤ max{d ( x, z ), d ( y, z )}
ÒÔ‡‚‰ÎË‚Ó ‰Îfl ‚ÒÂı x, y, z ∈ X Ë Î˛·Ó„Ó Ò‰ËÌÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl m(x, y).
ò‡Ó‚‡fl ‚˚ÔÛÍÎÓÒÚ¸ ‚ΘÂÚ, ˜ÚÓ ‚Ò ÏÂÚ˘ÂÒÍË ¯‡˚ ‚ÔÓÎÌ ‚˚ÔÛÍÎ˚,
Ë, ‚ ÒÎÛ˜‡Â „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ̇ӷÓÓÚ.
2
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( 2 , d ( x, y) =
∑
xi − yi ) ¯‡Ó‚Ó ‚˚ÔÛÍÎ˚Ï ÌÂ
i =1
fl‚ÎflÂÚÒfl.
ê‡ÒÒÚÓflÌ̇fl ‚˚ÔÛÍÎÓÒÚ¸
ë‰ËÌÌÓ ‚˚ÔÛÍÎÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌÌÓ
‚˚ÔÛÍÎ˚Ï, ÂÒÎË
d ( m( x, y), z ) ≤
1
( d ( x, z ) + d ( y, z )).
2
ÉÂÓ‰ÂÁ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ ‚˚ÔÛÍÎ˚Ï ÚÓ„‰‡
Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÒÛÊÂÌË ÙÛÌ͈ËË ‡ÒÒÚÓflÌËfl d(x, ⋅ ), x ∈ X ̇ ͇ʉ˚È
„ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎÓÈ ÙÛÌ͈ËÂÈ.
ê‡ÒÒÚÓflÌ̇fl ‚˚ÔÛÍÎÓÒÚ¸ ÔÓÓʉ‡ÂÚ ¯‡Ó‚Û˛ ‚˚ÔÛÍÎÓÒÚ¸ Ë, ‰Îfl ÒÎÛ˜‡fl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ‚˚ÔÛÍÎÓ„Ó ÔÓ ÅÛÁÂχÌÛ, ̇ӷÓÓÚ.
åÂÚ˘ÂÒ͇fl ‚˚ÔÛÍÎÓÒÚ¸
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍË ‚˚ÔÛÍÎ˚Ï, ÂÒÎË ‰Îfl
β·Ó„Ó ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X Ë Î˛·Ó„Ó λ ∈ (0, 1) ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl ÚӘ͇
26
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
z = z(x, y, λ) ∈ X, ‰Îfl ÍÓÚÓÓÈ d(x, y) = d(x, z) + d(z, y) Ë d(x, z) = λd(x, y). åÂÚ˘ÂÒ͇fl
‚˚ÔÛÍÎÓÒÚ¸ ÔÓÓʉ‡ÂÚ ‚˚ÔÛÍÎÓÒÚ¸ ÔÓ åÂÌ„ÂÛ.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÒÚÓ„Ó ÏÂÚ˘ÂÒÍË ‚˚ÔÛÍÎ˚Ï, ÂÒÎË
ڇ͇fl ÚӘ͇ z(x, y, λ) fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓÈ ‰Îfl ‚ÒÂı x, y ∈ X Ë λ ∈ (0, 1).
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÒËθÌÓ ÏÂÚ˘ÂÒÍË ‚˚ÔÛÍÎ˚Ï, ÂÒÎË
‰Îfl β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X Ë Î˛·˚ı λ1, λ2 ∈ (0, 1) ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl
ÚӘ͇ z = z(x, y, λ) ∈ X, ‰Îfl ÍÓÚÓÓÈ d(z(x, y, λ1), z(x, y, λ2) = |λ1–λ 2 |d(x, y). ëËθ̇fl
ÏÂÚ˘ÂÒ͇fl ‚˚ÔÛÍÎÓÒÚ¸ ÔÓÓʉ‡ÂÚ ÏÂÚ˘ÂÒÍÛ˛ ‚˚ÔÛÍÎÓÒÚ¸, Ë Í‡Ê‰Ó ÔÓÎÌÓÂ
ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚˚ÔÛÍÎÓ ÔÓ åÂÌ„ÂÛ, fl‚ÎflÂÚÒfl ÒËθÌÓ ÏÂÚ˘ÂÒÍË
‚˚ÔÛÍÎ˚Ï.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÔÓ˜ÚË ‚˚ÔÛÍÎ˚Ï (å‡Ì‰ÂÎÍÂÌ, 1983), ÂÒÎË ‰Îfl β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X Ë Î˛·˚ı λ, µ > 0, Ú‡ÍËı ˜ÚÓ
d(x, y) < λ + µ, ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl ÚӘ͇ z ∈ X, ‰Îfl ÍÓÚÓÓÈ d(x, z) < λ Ë d(z, y) < µ,
Ú.Â. z ∈ B(x, λ) ∩ B(y, µ). åÂÚ˘ÂÒ͇fl ‚˚ÔÛÍÎÓÒÚ¸ ÔÓÓʉ‡ÂÚ ÔÓ˜ÚË ‚˚ÔÛÍÎÓÒÚ¸.
Ç˚ÔÛÍÎÓÒÚ¸ ÔÓ í‡Í‡ı‡¯Ë
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÔÓ í‡Í‡ı‡¯Ë, ÂÒÎË ‰Îfl
β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X Ë Î˛·Ó„Ó λ ∈ (0, 1) ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl ÚӘ͇
z = z(x, y, λ) ∈ X, ڇ͇fl ˜ÚÓ ÌÂ‡‚ÂÌÒÚ‚Ó d(z(x, y, λ), u) ≤ λd(x, u) + (1 – λ)d(y, u) ËÏÂÂÚ
ÏÂÒÚÓ ‰Îfl ‚ÒÂı u ∈ X. ã˛·Ó ‚˚ÔÛÍÎÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÌÓÏËÓ‚‡ÌÌÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ‚˚ÔÛÍÎ˚Ï ÔÓ í‡Í‡ı‡¯Ë,
Ò z(x, y, λ) = λd + (1 – λ)y.
åÌÓÊÂÒÚ‚Ó M ⊂ X fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÔÓ í‡Í‡ı‡¯Ë, ÂÒÎË z(x, y, λ) ∈ M ‰Îfl ‚ÒÂı
x, y ∈ X Ë λ ∈ [0, 1]. í‡Í‡ı‡¯Ë ‰Ó͇Á‡Î ‚ 1970 „., ˜ÚÓ ‚ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â,
‚˚ÔÛÍÎÓÏ ÔÓ í‡Í‡ı‡¯Ë, ‚Ò Á‡ÏÍÌÛÚ˚ ÏÂÚ˘ÂÒÍË ¯‡˚, ÓÚÍ˚Ú˚ ÏÂÚ˘ÂÒÍËÂ
¯‡˚ Ë ÔÓËÁ‚ÓθÌÓ ÔÂÂÒ˜ÂÌË ÔÓ‰ÏÌÓÊÂÒÚ‚, ‚˚ÔÛÍÎ˚ı ÔÓ í‡Í‡ı‡¯Ë, fl‚Îfl˛ÚÒfl ‚˚ÔÛÍÎ˚ÏË ÔÓ í‡Í‡ı‡¯Ë.
ÉËÔÂ‚˚ÔÛÍÎÓÒÚ¸
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl „ËÔÂ‚˚ÔÛÍÎ˚Ï, ÂÒÎË ÓÌÓ ÏÂÚ˘ÂÒÍË ‚˚ÔÛÍÎÓ Ë Â„Ó ÏÂÚ˘ÂÒÍË ¯‡˚ ӷ·‰‡˛Ú ·ÂÒÍÓ̘Ì˚Ï Ò‚ÓÈÒÚ‚ÓÏ ïÂÎÎË,
Ú.Â. β·‡fl ÒËÒÚÂχ ‚Á‡ËÏÌÓ ÔÂÂÒÂ͇˛˘ËıÒfl Á‡Í˚Ú˚ı ¯‡Ó‚ ‚ ï ËÏÂÂÚ ÌÂÔÛÒÚÓÂ
ÔÂÂÒ˜ÂÌËÂ. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) fl‚ÎflÂÚÒfl „ËÔÂ‚˚ÔÛÍÎ˚Ï ÚÓ„‰‡ Ë
ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ – ËÌ˙ÂÍÚË‚ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó.
èÓÒÚ‡ÌÒÚ‚‡ l∞m , l∞ Ë L∞ fl‚Îfl˛ÚÒfl „ËÔÂ‚˚ÔÛÍÎ˚ÏË, ‡ l2 – ÌÂÚ.
åÂÚ˘ÂÒ͇fl ˝ÌÚÓÔËfl
èÛÒÚ¸ ε > 0. åÂÚ˘ÂÒ͇fl ˝ÌÚÓÔËfl (ËÎË ε-˝ÌÚÓÔËfl) Hε(M, X) ÔÓ‰ÏÌÓÊÂÒÚ‚‡
M ⊂ ï ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ( X,d) ÓÔ‰ÂÎflÂÚÒfl (äÓÎÏÓ„ÓÓ‚, 1956) ͇Í
Hε(M, X) = log2 N ε(M, X),
„‰Â Nε(M, X) fl‚ÎflÂÚÒfl ̇ËÏÂ̸¯ËÏ ÍÓ΢ÂÒÚ‚ÓÏ ÚÓ˜ÂÍ ‚ ε-ÒÂÚË (ËÎË ε-̇Í˚ÚËË)
‰Îfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (M, d), Ú.Â. ‚ ÏÌÓÊÂÒÚ‚Â ÚÓ˜ÂÍ, Ú‡ÍËı ˜ÚÓ
Ó·˙‰ËÌÂÌË ÓÚÍ˚Ú˚ı ε-¯‡Ó‚ Ò ˆÂÌÚ‡ÏË ‚ Û͇Á‡ÌÌ˚ı ÚӘ͇ı ̇Í˚‚‡ÂÚ å.
èÓÌflÚË ÏÂÚ˘ÂÒÍÓÈ ˝ÌÚÓÔËË ‰Îfl ‰Ë̇Ï˘ÂÒÍÓÈ ÒËÒÚÂÏ˚ fl‚ÎflÂÚÒfl Ó‰ÌËÏ ËÁ
‚‡ÊÌÂȯËı ËÌ‚‡ˇÌÚÓ‚ ˝„Ӊ˘ÂÒÍÓÈ ÚÂÓËË.
åÂÚ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ë Î˛·Ó„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ· q > 0
ÔÛÒÚ¸ N x(q) ·Û‰ÂÚ ÏËÌËχθÌ˚Ï ÍÓ΢ÂÒÚ‚ÓÏ ÏÌÓÊÂÒÚ‚ Ò ‰Ë‡ÏÂÚÓÏ, Ì ÔÂ-
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
27
‚ÓÒıÓ‰fl˘ËÏ q, ÍÓÚÓ˚ ÌÂÓ·ıÓ‰ËÏ˚ ‰Îfl ̇Í˚ÚËfl ï (ÒÏ. åÂÚ˘ÂÒ͇fl ˝ÌÚÓÔËfl).
ln( N (q )
óËÒÎÓ lim
(ÂÒÎË ÓÌÓ ÒÛ˘ÂÒÚ‚ÛÂÚ) ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛
q →0 ln(1 / q )
(ËÎË ‡ÁÏÂÌÓÒÚ¸˛ åËÌÍÓ‚ÒÍӄӖŇÎË„‡Ì‰‡, ‡ÁÏÂÌÓÒÚ¸˛ åËÌÍÓ‚ÒÍÓ„Ó, ÛÔ‡ÍÓ‚Ó˜ÌÓÈ ‡ÁÏÂÌÓÒÚ¸˛, ·ÓÍÒ-‡ÁÏÂÌÓÒÚ¸˛ ÔÓÒÚ‡ÌÒÚ‚‡ ï.
ÖÒÎË Û͇Á‡ÌÌÓ„Ó ‚˚¯Â Ô‰Â· Ì ÒÛ˘ÂÒÚ‚ÛÂÚ, ÚÓ ‡ÒÒχÚË‚‡˛ÚÒfl ÒÎÂ‰Û˛˘ËÂ
ÔÓÌflÚËfl ‡ÁÏÂÌÓÒÚË:
ln( N (q )
1. óËÒÎÓ lim
̇Á˚‚‡ÂÚÒfl ÌËÊÌÂÈ ÏÂÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛ (ËÎË
q →0 ln(1 / q )
ÌËÊÌÂÈ ·ÓÍÒ-‡ÁÏÂÌÓÒÚ¸˛, ‡ÁÏÂÌÓÒÚ¸˛ èÓÌÚfl„Ë̇–òÌËÂÎχ̇, ÌËÊÌÂÈ
‡ÁÏÂÌÓÒÚ¸˛ åËÌÍÓ‚ÒÍÓ„Ó).
ln( N (q )
2. óËÒÎÓ lim
̇Á˚‚‡ÂÚÒfl ‚ÂıÌÂÈ ÏÂÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛ (ËÎË
q →0 ln(1 / q )
˝ÌÚÓÔ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛, ‡ÁÏÂÌÓÒÚ¸˛ äÓÎÏÓ„ÓÓ‚‡–íËıÓÏËÓ‚‡, ‚ÂıÌÂÈ
·ÓÍÒ-‡ÁÏÂÌÓÒÚ¸˛).
çËÊ ÔË‚Ó‰flÚÒfl ÔflÚ¸ ÔËÏÂÓ‚ ‰Û„Ëı, ÏÂÌ Á̇˜ËÏ˚ı ÔÓÌflÚËÈ ÏÂÚ˘ÂÒÍÓÈ
‡ÁÏÂÌÓÒÚË, ‚ÒÚ˜‡˛˘ËÂÒfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ÎËÚÂ‡ÚÛÂ.
1. (ŇÁËÒ̇fl) ÏÂÚ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, – ÏËÌËχθÌÓ ͇‰Ë̇θÌÓ ˜ËÒÎÓ Â„Ó ÏÂÚ˘ÂÒÍÓ„Ó ·‡ÁËÒ‡, Ú.Â. Â„Ó Ì‡ËÏÂ̸¯Â„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ S, Ú‡ÍÓ„Ó ˜ÚÓ Ì ÒÛ˘ÂÒÚ‚ÛÂÚ ‰‚Ûı ÚÓ˜ÂÍ Ò ‡‚Ì˚ÏË ‡ÒÒÚÓflÌËflÏË ‰Ó ‚ÒÂı
ÚÓ˜ÂÍ ËÁ S.
2. (ꇂÌӷӘ̇fl) ÏÂÚ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ –
χÍÒËχθÌÓ ͇‰Ë̇θÌÓ ˜ËÒÎÓ Â„Ó ˝Í‚ˉËÒÚ‡ÌÚÌÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡, Ú.Â. Ú‡ÍÓ„Ó, ˜ÚÓ Î˛·˚ ‰‚Â Â„Ó ‡Á΢Ì˚ ÚÓ˜ÍË ‡‚ÌÓÓÚÒÚÓflÚ ‰Û„ ÓÚ ‰Û„‡. ÑÎfl
ÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ˝Ú‡ ‡ÁÏÂÌÓÒÚ¸ ‡‚̇ χÍÒËχθÌÓÏÛ ˜ËÒÎÛ
ÔÓÔ‡ÌÓ Í‡Ò‡˛˘ËıÒfl Ô‡‡ÎÎÂθÌ˚ı ÔÂÂÌÓÒÓ‚ Â„Ó Â‰ËÌ˘ÌÓ„Ó ¯‡‡.
3. ÑÎfl β·Ó„Ó Ò > 1 ÏÂÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛ (ÔÓ ÌÓÏËÓ‚‡ÌÌÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û) dimc (X) ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl
̇ËÏÂ̸¯‡fl ‡ÁÏÂÌÓÒÚ¸ ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
1
(V, || ⋅ ||), Ú‡ÍÓ„Ó ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ‚ÎÓÊÂÌË f : X → V Ò
d ( x, y) ≤ f ( x ) − f ( y) ≤
c
≤ d ( x, y).
4. (Ö‚ÍÎˉӂÓÈ) ÏÂÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛ ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯‡fl ‡ÁÏÂÌÓÒÚ¸ n ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n , Ú‡ÍÓ„Ó ˜ÚÓ (X, f(d)) fl‚ÎflÂÚÒfl Â„Ó ÏÂÚ˘ÂÒÍËÏ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ, „‰Â
ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÌÂÔÂ˚‚Ì˚Ï ÏÓÌÓÚÓÌÌÓ ‚ÓÁ‡ÒÚ‡˛˘ËÏ ÙÛÌ͈ËflÏ f(t)
ÓÚ t ≥ 0.
5. ëÚÂÔÂ̸˛ ÏÌÓ„ÓÏÂÌÓÒÚË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl ˜ËÒÎÓ
µ2
, „‰Â µ Ë σ2 fl‚Îfl˛ÚÒfl Ò‰ÌËÏ Ë ÓÚÍÎÓÌfl˛˘ËÏÒfl Á̇˜ÂÌËflÏË Â„Ó „ËÒÚÓ„‡ÏÏ˚
2σ 2
‡ÒÒÚÓflÌËÈ; ‰‡ÌÌÓ ÔÓÌflÚË ËÒÔÓθÁÛÂÚÒfl ‰Îfl ‚˚·ÓÍË ËÌÙÓχˆËË ÔË ÔÓËÒÍÂ
ÓÚÌÓ¯ÂÌËÈ ·ÎËÁÓÒÚË.
ê‡Ì„ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
ê‡Ì„ÓÏ åËÌÍÓ‚ÒÍÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl χÍÒËχθ̇fl ‡ÁÏÂÌÓÒÚ¸ ÌÓÏËÓ‚‡ÌÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V, || ⋅ ||), Ú‡ÍÓ„Ó ˜ÚÓ
ÒÛ˘ÂÒÚ‚ÛÂÚ ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌË (V, || ⋅ ||) → (X,d).
28
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
Ö‚ÍÎˉӂ˚Ï ‡Ì„ÓÏ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl χÍÒËχθ̇fl
‡ÁÏÂÌÓÒÚ¸ n-ÏÂÌÓÈ ÔÎÓÒÍÓÒÚË ‚ ÌÂÏ, Ú.Â. ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n , Ú‡ÍÓ„Ó ˜ÚÓ
ÒÛ˘ÂÒÚ‚ÛÂÚ ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌË n → (X,d).
䂇ÁË‚ÍÎˉӂ˚Ï ‡Ì„ÓÏ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl
χÍÒËχθ̇fl ‡ÁÏÂÌÓÒÚ¸ n-ÏÂÌÓÈ Í‚‡ÁËÔÎÓÒÍÓÒÚË ‚ ÌÂÏ, Ú.Â. ‚ÍÎˉӂ‡
ÔÓÒÚ‡ÌÒÚ‚‡ n , Ú‡ÍÓ„Ó ˜ÚÓ ‚ ÌÂÏ ÒÛ˘ÂÒÚ‚ÛÂÚ Í‚‡ÁËËÁÓÏÂÚËfl n → (X,d). ê‡Ì„
β·Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, „ËÔÂ·Ó΢ÂÒÍÓ„Ó ÔÓ ÉÓÏÓ‚Û, ‡‚ÂÌ 1.
ê‡ÁÏÂÌÓÒÚ¸ ï‡ÛÒ‰ÓÙ‡
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ë Î˛·˚ı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı p, q > 0 ÔÛÒÚ¸
M pq ( X ) =
+∞
p
∑ (diam( Ai )) , „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ Ò˜ÂÚÌ˚Ï ÔÓÍ˚ÚËflÏ {Ai}i
i =1
ÏÌÓÊÂÒÚ‚‡ ï Ò ‰Ë‡ÏÂÚÓÏ Ai ÏÂ̸¯Â q. ê‡ÁÏÂÌÓÒÚ¸ ï‡ÛÒ‰ÓÙ‡ (ËÎË ‡ÁÏÂÌÓÒÚ¸ ï‡ÛÒ‰ÓÙ‡-ÅÂÒËÍӂ˘‡, ‡ÁÏÂÌÓÒÚ¸ ÂÏÍÓÒÚË, Ù‡Íڇθ̇fl ‡ÁÏÂÌÓÒÚ¸)
dim Haus(X,d) ÏÌÓÊÂÒÚ‚‡ ï ÓÔ‰ÂÎflÂÚÒfl ͇Í


inf  p : lim M pq ( X ) = 0 .
 q→0

ã˛·Ó ҘÂÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ËÏÂÂÚ ‡ÁÏÂÌÓÒÚ¸ ï‡ÛÒ‰ÓÙ‡,
‡‚ÌÛ˛ 0; ‡ÁÏÂÌÓÒÚ¸ ï‡ÛÒ‰ÓÙ‡ ‰Îfl ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n ‡‚̇ n.
ÑÎfl Í‡Ê‰Ó„Ó ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Â„Ó ‡ÁÏÂÌÓÒÚ¸
ï‡ÛÒ‰ÓÙ‡ Ó„‡Ì˘Â̇ ÏÂÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛ Ò‚ÂıÛ Ë ÚÓÔÓÎӄ˘ÂÒÍÓÈ
‡ÁÏÂÌÓÒÚ¸˛ ÒÌËÁÛ.
íÓÔÓÎӄ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸
ÑÎfl β·Ó„Ó ÍÓÏÔ‡ÍÚÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Â„Ó ÚÓÔÓÎӄ˘ÂÒ͇fl
‡ÁÏÂÌÓÒÚ¸ (ËÎË ‡ÁÏÂÌÓÒÚ¸ η„ӂ‡ ÔÓÍ˚ÚËfl) ÓÔ‰ÂÎflÂÚÒfl ͇Í
{
}
inf dim ( X , d ′) ,
d′
Haus
„‰Â d' – β·‡fl ÏÂÚË͇ ̇ ï, ÚÓÔÓÎӄ˘ÂÒÍË ˝Í‚Ë‚‡ÎÂÌÚ̇fl d, ‡ dim – ‡ÁÏÂÌÓÒÚ¸
Haus
ï‡ÛÒ‰ÓÙ‡.
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÚÓÔÓÎӄ˘ÂÒÍÓÈ
ï ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯Â ˆÂÎÓÂ
ÓÚÍ˚ÚÓ„Ó ÔÓÍ˚ÚËfl ÏÌÓÊÂÒÚ‚‡ ï
(Ú.Â. ÔÓ‰‡Á‰ÂÎÂÌËÂ), Ú‡ÍÓ ˜ÚÓ ÌË
·ÓΠ˜ÂÏ n + 1 ˝ÎÂÏÂÌÚ‡Ï.
‡ÁÏÂÌÓÒÚ¸˛ ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
˜ËÒÎÓ n, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·Ó„Ó ÍÓ̘ÌÓ„Ó
ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓ̘ÌÓ ÓÚÍ˚ÚÓ ÔÓ‰ÔÓÍ˚ÚËÂ
Ӊ̇ ËÁ ÚÓ˜ÂÍ ÏÌÓÊÂÒÚ‚‡ ï Ì ÔË̇‰ÎÂÊËÚ
î‡ÍÚ‡Î
íÓÔÓÎӄ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸ β·Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ì Ô‚˚¯‡ÂÚ
Â„Ó ‡ÁÏÂÌÓÒÚË ï‡ÛÒ‰ÓÙ‡. î‡ÍÚ‡ÎÓÏ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó,
‰Îfl ÍÓÚÓÓ„Ó ˝ÚÓ ÌÂ‡‚ÂÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÒÚÓ„ËÏ. (èÂ‚Ó̇˜‡Î¸ÌÓ å‡Ì‰Âθ·ÓÈÚ
ÓÔ‰ÂÎËÎ Ù‡ÍÚ‡Î Í‡Í ÚӘ˜ÌÓ ÏÌÓÊÂÒÚ‚Ó Ò ÌˆÂÎÓ˜ËÒÎÂÌÌÓÈ ‡ÁÏÂÌÓÒÚ¸˛
ï‡ÛÒ‰ÓÙ‡). ç‡ÔËÏÂ, ÏÌÓÊÂÒÚ‚Ó ä‡ÌÚÓ‡, ‡ÒÒχÚË‚‡ÂÏÓÂ Í‡Í ÍÓÏÔ‡ÍÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓÒÚ‡ÌÒÚ‚‡ , d(x, y) = |x–y|), ӷ·‰‡ÂÚ ‡Áln 2
ÏÂÌÓÒÚ¸˛ ï‡ÛÒ‰ÓÙ‡
; (ÒÏ. ‰Û„Û˛ ä‡ÌÚÓÓ‚Û ÏÂÚËÍÛ Ì‡ ÌÂÏ ‚ „Î. 11, 18).
ln 3
ÑÛ„ÓÈ Í·ÒÒ˘ÂÒÍËÈ Ù‡ÍÚ‡Î, ÍÓ‚Â ëÂÔËÌÒÍÓ„Ó ÏÌÓÊÂÒÚ‚‡ [0,1] × [0,1], fl‚ÎflÂÚ-
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
29
Òfl ÔÓÎÌ˚Ï „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚‡
( 2 , d(x, y) = ||x–y||1 ).
íÂÏËÌ Ù‡ÍڇΠËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ ‚ ·ÓΠӷ˘ÂÏ ÒÏ˚ÒΠ‰Îfl Ó·ÓÁ̇˜ÂÌËfl
Ò‡ÏÓÔÓ‰Ó·ÌÓÒÚË (Ú.Â., „Û·Ó „Ó‚Ófl, ÔÓ‰Ó·Ëfl ÔË Î˛·ÓÏ Ï‡Ò¯Ú‡·Â) Ó·˙ÂÍÚ‡
(Ó·˚˜ÌÓ – ÔÓ‰ÏÌÓÊÂÒÚ‚‡ n).
ê‡ÁÏÂÌÓÒÚ¸ ÄÒÒÛ‡‰–燄‡Ú‡
ê‡ÁÏÂÌÓÒÚ¸˛ ÄÒÒÛ‡‰‡–燄‡Ú˚ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl
̇ËÏÂ̸¯Â ‰ÂÈÒÚ‚ËÚÂθÌÓ ˜ËÒÎÓ n (ËÎË ∞, ÂÒÎË Ú‡ÍÓ„Ó ˜ËÒ· n Ì ÒÛ˘ÂÒÚ‚ÛÂÚ),
‰Îfl ÍÓÚÓÓ„Ó ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÒÚ‡ÌÚ‡ ë > 0, ڇ͇fl ˜ÚÓ ‰Îfl ‚ÒÂı s > 0 ËÏÂÂÚÒfl
ÔÓÍ˚ÚË ï Â„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË Ò ‰Ë‡ÏÂÚ‡ÏË ≤ë s, ‚ ÍÓÚÓÓÏ Í‡Ê‰ÓÂ
ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï ‰Ë‡ÏÂÚ‡ ≤s ÔÂÂÒÂ͇ÂÚÒfl Ò ≤n + 1 ˝ÎÂÏÂÌÚ‡ÏË ÔÓÍ˚ÚËfl.
ê‡ÁÏÂÌÓÒÚ¸ ÄÒÒÛ‡‰‡–燄‡Ú˚ ·Û‰ÂÚ ÍÓ̘ÌÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡
d – ÏÂÚË͇ Û‰‚ÓÂÌËfl.
íÓÔÓÎӄ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ì Ô‚˚¯‡ÂÚ Â„Ó
‡ÁÏÂÌÓÒÚË ÄÒÒÛ‡‰‡–燄‡Ú˚.
ê‡ÁÏÂÌÓÒÚ¸ Û‰‚ÓÂÌËfl
ê‡ÁÏÂÌÓÒÚ¸˛ Û‰‚ÓÂÌËfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯Â ˆÂÎÓ ˜ËÒÎÓ N (ËÎË ∞, ÂÒÎË Ú‡ÍÓ„Ó ˜ËÒ· N Ì ÒÛ˘ÂÒÚ‚ÛÂÚ), Ú‡ÍÓ ˜ÚÓ
͇ʉ˚È ÏÂÚ˘ÂÒÍËÈ ¯‡ (ËÎË, Ò͇ÊÂÏ, ÏÌÓÊÂÒÚ‚Ó ÍÓ̘ÌÓ„Ó ‰Ë‡ÏÂÚ‡) ÏÓÊÂÚ
·˚Ú¸ ÔÓÍ˚Ú ÒÂÏÂÈÒÚ‚ÓÏ Ì ·ÓΠ2N ÏÂÚ˘ÂÒÍËı ¯‡Ó‚ (ËÎË ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ
ÏÌÓÊÂÒÚ‚) Ò ÔÓÎÓ‚ËÌÌ˚Ï ‰Ë‡ÏÂÚÓÏ. ÖÒÎË (X,d) ËÏÂÂÚ ÍÓ̘ÌÛ˛ ‡ÁÏÂÌÓÒÚ¸
Û‰‚ÓÂÌËfl, ÚÓ d ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ Û‰‚ÓÂÌËfl.
ê‡ÁÏÂÌÓÒÚ¸ ÇÓθ·Â„‡–äÓÌfl„Ë̇
ê‡ÁÏÂÌÓÒÚ¸˛ ÇÓθ·Â„‡–äÓÌfl„Ë̇ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯‡fl ÍÓÌÒÚ‡ÌÚ‡ C > 1 (ËÎË ∞, ÂÒÎË Ú‡ÍÓ„Ó ˜ËÒ· C Ì ÒÛ˘ÂÒÚ‚ÛÂÚ), ‰Îfl
ÍÓÚÓÓÈ ï ӷ·‰‡ÂÚ ÏÂÓÈ Û‰‚ÓÂÌËfl, Ú.Â. ·ÓÂ΂ÒÍÓÈ ÏÂÓÈ µ, Ú‡ÍÓÈ ˜ÚÓ
µ( B ( x, 2 r )) ≤ Cµ( B , r ))
‰Îfl ‚ÒÂı x ∈ X Ë r > 0. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ӷ·‰‡ÂÚ ÏÂÓÈ Û‰‚ÓÂÌËfl
ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Û‰‚ÓÂÌËfl, Ë Î˛·‡fl ÔÓÎ̇fl ÏÂÚË͇
Û‰‚ÓÂÌËfl ӷ·‰‡ÂÚ ÏÂÓÈ Û‰‚ÓÂÌËfl.
äÓÌÒÚ‡ÌÚÓÈ ä‡„Â‡–êÛ· ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯‡fl ÍÓÌÒÚ‡ÌÚ‡ Ò > 1 (ËÎË ∞, ÂÒÎË Ú‡ÍÓ„Ó ˜ËÒ· Ò Ì ÒÛ˘ÂÒÚ‚ÛÂÚ), ‰Îfl ÍÓÚÓÓÈ
B ( x, 2 r ) ≤ c B ( x, r )
‰Îfl ‚ÒÂı x ∈ X Ë r > 0. ÖÒÎË Ó̇ ÍÓ̘̇ (Ò͇ÊÂÏ, ‡‚̇ t), ÚÓ Ï‡ÍÒËχθÌÓÂ
Á̇˜ÂÌË ‡ÁÏÂÌÓÒÚË Û‰‚ÓÂÌËfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÒÓÒÚ‡‚ËÚ 4t.
ÄÒËÏÔÚÓÚ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸
èÓÌflÚË ‡ÒËÏÔÚÓÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ·˚ÎÓ
‚‚‰ÂÌÓ ÉÓÏÓ‚˚Ï. ùÚÓ – ̇ËÏÂ̸¯Â ˜ËÒÎÓ n, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·Ó„Ó s > 0
ÒÛ˘ÂÒÚ‚Û˛Ú ÍÓÌÒÚ‡ÌÚ‡ D = D(s) Ë ÔÓÍ˚ÚË ï Â„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË Ò ‰Ë‡ÏÂÚ‡ÏË,
Ì Ô‚ÓÒıÓ‰fl˘ËÏË D , ‚ ÍÓÚÓÓÏ Í‡Ê‰Ó ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï ‰Ë‡ÏÂÚ‡ ≤s ÔÂÂÒÂ͇ÂÚÒfl Ò ≤n + 1 ˝ÎÂÏÂÌÚ‡ÏË ÔÓÍ˚ÚËfl.
ê‡ÁÏÂÌÓÒÚ¸ ÉÓ‰ÒËΖå‡ÍÍÂfl
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ËÏÂÂÚ ‡ÁÏÂÌÓÒÚ¸ ÉÓ‰ÒËΖå‡ÍÍÂfl n ≥ 0, ÂÒÎË
ÒÛ˘ÂÒÚ‚Û˛Ú ˝ÎÂÏÂÌÚ x0 ∈ X Ë ‰‚ ÔÓÎÓÊËÚÂθÌ˚ ÍÓÌÒÚ‡ÌÚ˚ Ò Ë ë , Ú‡ÍË ˜ÚÓ
30
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÌÂ‡‚ÂÌÒÚ‚Ó ckn ≤ |{x ∈ X : d(x, x0) ≤ k}| ≤ Ckn ËÏÂÂÚ ÏÂÒÚÓ ‰Îfl Í‡Ê‰Ó„Ó ˆÂÎÓ„Ó ˜ËÒ·
k 0. чÌÌÓ ÔÓÌflÚË ·˚ÎÓ ‚‚‰ÂÌÓ ‚ [GoMc80] ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ÏÂÚËÍË ÔÛÚË
Ò˜ÂÚÌÓ„Ó ÎÓ͇θÌÓ ÍÓ̘ÌÓ„Ó „‡Ù‡. Å˚ÎÓ ‰Ó͇Á‡ÌÓ, ˜ÚÓ ÂÒÎË „ÛÔÔ‡ n ‰ÂÈÒÚ‚ÛÂÚ
̇ ‚Â¯Ë̇ı „‡Ù‡ ÚÓ˜ÌÓ Ë Ò ÍÓ̘Ì˚Ï ˜ËÒÎÓÏ Ó·ËÚ, ÚÓ ‰‡Ì̇fl ‡ÁÏÂÌÓÒÚ¸
‡‚̇ n.
ÑÎË̇ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
ÑÎËÌÓÈ îÂÏÎË̇ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl Ó‰ÌÓÏÂ̇fl ‚̯Ìflfl
ÏÂ‡ ï‡ÛÒ‰ÓÙ‡ ̇ X.
ÑÎËÌÓÈ ïÂÈÍχ̇ lng(Y) ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ⊂ X ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d)
̇Á˚‚‡ÂÚÒfl sup{lng( M ′) : M ′ ⊂ M , M ′ < ∞}. á‰ÂÒ¸ lng(∅ ) = 0 Ë, ‰Îfl ÍÓ̘ÌÓ„Ó
n
ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M' ⊂ X, lng(M') = min
∑ d( xi −1, xi ),
„‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ
i =1
ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏ x 0 , ..., xn, Ú‡ÍËÏ ˜ÚÓ {x i : i = 0, 1, ..., n} = M'.
ÑÎËÌÓÈ òÂıÚχ̇ ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl
n
inf
∑ ai2
ÔÓ ‚ÒÂÏ Ú‡ÍËÏ ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏ a1, ..., an ÔÓÎÓÊËÚÂθÌ˚ı ˜ËÒÂÎ, ˜ÚÓ
i =1
ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ï0, …, ïn ‡Á·ËÂÌËÈ ï ÒÓ ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË:
1. ï 0 = {X} Ë ïn = {{x} : x ∈ X};
2. ï i ÔÓ‰‡Á·Ë‚‡ÂÚ ïi–1 ‰Îfl i = 1, …, n;
3. ÑÎfl i = 1,…, n Ë B, C ⊂ A ∈ Xi– 1 Ò B, C ∈ X i ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ ӉÌÓÁ̇˜ÌÓÂ
ÓÚÓ·‡ÊÂÌË f ËÁ Ç Ì‡ ë, ˜ÚÓ d(x, f)(x)) ≤ ai ‰Îfl ‚ÒÂı x ∈ B.
íËÔ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
íËÔ ÔÓ ÖÌÙÎÓ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ‡‚ÂÌ , ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡Í‡fl
ÍÓÌÒÚ‡ÌÚ‡ 1 ≤ ë < ∞, ˜ÚÓ ‰Îfl Í‡Ê‰Ó„Ó n ∈ Ë Í‡Ê‰ÓÈ ÙÛÌ͈ËË f : {–1,1}n → X ËÏÂÂÚ
ÏÂÒÚÓ ÌÂ‡‚ÂÌÒÚ‚Ó
∑
d p ( f (ε ), f ( − ε )) ≤
ε ∈{−1,1}
n
n
≤ Cp
∑ ∑
j =1 ε ∈{−1,1}
d p ( f (ε1 ,..., ε j −1 , ε j +1 ,..., ε n ), f (ε1 ,..., ε j −1 , − ε j ,..., ε n )).
n
Ň̇ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (V, || ⋅ ||) ÚËÔ‡  ÔÓ ÖÌÙÎÓ ËÏÂÂÚ ÚËÔ  ÔÓ ê‡‰ÂχıÂÛ,
Ú.Â. ‰Îfl ‚ÒÂı ı1 ,…,ın ∈ V ‚˚ÔÓÎÌflÂÚÒfl ÌÂ‡‚ÂÌÒÚ‚Ó
p
n
∑ ∑
ε ∈{−1,1}n j =1
εjxj
n
≤ Cp
∑
p
xj .
j =1
ÑÎfl ‰‡ÌÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÒËÏÏÂÚ˘ÌÓÈ ˆÂÔ¸˛ å‡ÍÓ‚‡
∞
̇ ï fl‚ÎflÂÚÒfl ˆÂÔ¸ å‡ÍÓ‚‡ { l }l = 0 ̇ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓflÌËÈ {ı1,…,ım} ⊂ X
c Ú‡ÍËÏ ÒËÏÏÂÚ˘Ì˚Ï ÔÂÂÌÓÒÓÏ m × m χÚˈ˚ ((aij)) ˜ÚÓ P(Zl+1 = xj : Zl = xj) = aij Ë
1
P(Z 0 = xi) =
‰Îfl ‚ÒÂı ˆÂÎ˚ı 1 ≤ i, j ≤ m Ë l ≥ 0. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d)
m
31
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
ËÏÂÂÚ ÚËÔ  ÔÓ å‡ÍÓ‚Û (ÅÓÎÎ, 1992), ÂÒÎË supT Mp (X, T) < ∞, „‰Â Mp (X, T) – ڇ͇fl
∞
̇ËÏÂ̸¯‡fl ÍÓÌÒÚ‡ÌÚ‡ C > 0, ˜ÚÓ ‰Îfl ͇ʉÓÈ ÒËÏÏÂÚ˘ÌÓÈ ˆÂÔË å‡ÍÓ‚‡ { l }l = 0
Ì ‡ ï ‚˚ÔÓÎÌflÂÚÒfl, ‚ ÚÂÏË̇ı ÓÊˉ‡ÂÏÓÈ ‚Â΢ËÌ˚ (Ò‰ÌÂ„Ó Á̇˜ÂÌËfl)
[ X ] =
xp( x ) ‰ËÒÍÂÚÌÓÈ ÒÎÛ˜‡ÈÌÓÈ ‚Â΢ËÌ˚ ï, ÌÂ‡‚ÂÌÒÚ‚Ó
∑
x
d p ( ZT , Z0 ) ≤ TC pd p ( Z1 , Z0 ).
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÚËÔ‡  ÔÓ å‡ÍÓ‚Û ËÏÂÂÚ ÚËÔ  ÔÓ ÖÌÙÎÓ.
ëË· ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò s ‡Á΢Ì˚ÏË ÌÂÌÛ΂˚ÏË Á̇˜ÂÌËflÏË dx,y. Ö„Ó ÒË· ÂÒÚ¸ ̇˷Óθ¯Â ˜ËÒÎÓ t, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·˚ı
ˆÂÎ˚ı p, q ≥ 0 c p + q ≤ t ÒÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓ„Ó˜ÎÂÌ fpq(s) ÒÚÂÔÂÌË, Ì Ô‚ÓÒıÓ‰fl˘ÂÈ
(
)(
) (( f
min{p, q}, Ú‡ÍÓÈ ˜ÚÓ ( dij2 p ) ( dij2 q ) =
)).
2
pq ( dij )
åÂÚ˘ÂÒÍËÈ ÙÛÌ͈ËÓ̇Î
ÑÎfl ÒÎÛ˜‡fl ÍÓ̘ÌÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ⊂ X ‚ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X,d)
ÔËÏÂ˚ ÏÂÚ˘ÂÒÍÓ„Ó ÙÛÌ͈ËÓ̇· ̇ å Ô˂‰ÂÌ˚ ÌËÊÂ.
1
-˝ÌÂ„Ëfl ÏÌÓÊÂÒÚ‚‡ å ÂÒÚ¸ ˜ËÒÎÓ
; Ó·˚˜ÌÓ  = 1,2.
p
d ( x, y)
x , y ∈M , x ≠ y
∑
ë‰Ì ‡ÒÒÚÓflÌË ÏÌÓÊÂÒÚ‚‡ å ÂÒÚ¸ ˜ËÒÎÓ
∑
1
d ( x, y).
M ( M − 1) x , y ∈M
à̉ÂÍÒ ÇËÌÂ‡ ÏÌÓÊÂÒÚ‚‡ å (ÔËÏÂÌflÂÏ˚È ‚ ıËÏËË) ÂÒÚ¸ ˜ËÒÎÓ
∑
1
d ( x, y).
2 x , y ∈M
ñÂÌÚ χÒÒ˚ ÍÓ̘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ å ÂÒÚ¸ ÚӘ͇ x ∈ M, ÏËÌËÏËÁËÛ˛˘‡fl
ÙÛÌ͈ËÓ̇Î
d 2 ( x, y).
∑
y ∈M
óËÒÎÓ ‚ÒÚ˜Ë
óËÒÎÓÏ ‚ÒÚÂ˜Ë (ËÎË ˜ËÒÎÓÏ ÉÓÒÒ‡, χ„˘ÂÒÍËÏ ˜ËÒÎÓÏ) ÏÂÚ˘ÂÒÍÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ ˜ËÒÎÓ r(X,d) (ÂÒÎË
Ú‡ÍÓ ÒÛ˘ÂÒÚ‚ÛÂÚ), Ú‡ÍÓ ˜ÚÓ ‰Îfl Í‡Ê‰Ó„Ó ˆÂÎÓ„Ó n Ë Î˛·˚ı (Ì ӷflÁ‡ÚÂθÌÓ
‡Á΢Ì˚ı) x1,...,xn ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ x ∈ X, ‰Îfl ÍÓÚÓÓ„Ó
r( X, d ) =
1
2
n
∑ d( xi , x ).
i =1
ÖÒÎË ‰Îfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ˜ËÒÎÓ ‚ÒÚÂ˜Ë r(X,d) ÒÛ˘ÂÒÚ‚ÛÂÚ, ÚÓ
„Ó‚ÓflÚ, ˜ÚÓ (X,d) ËÏÂÂÚ Ò‚ÓÈÒÚ‚Ó Ò‰ÌÂ„Ó ‡ÒÒÚÓflÌËfl Ë Â„Ó Ï‡„˘ÂÒ͇fl ÍÓÌÒÚ‡ÌÚ‡
r( X, d )
ÓÔ‰ÂÎflÂÚÒfl ͇Í
, „‰Â diam(X,d) = max d ( x, y) – ‰Ë‡ÏÂÚ (X,d).
x , y ∈X
diam( X , d )
ä‡Ê‰Ó ÍÓÏÔ‡ÍÚÌÓ ҂flÁÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ó·Î‡‰‡ÂÚ Ò‚ÓÈÒÚ‚ÓÏ
Ò‰ÌÂ„Ó ‡ÒÒÚÓflÌËfl. Ö‰ËÌ˘Ì˚È ¯‡ {x ∈ V : ||x|| ≤ 1} ·‡Ì‡ıÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡
(V, || ⋅ ||) ËÏÂÂÚ Ò‚ÓÈÒÚ‚Ó Ò‰ÌÂ„Ó ‡ÒÒÚÓflÌËfl Ò ˜ËÒÎÓÏ ‚ÒÚÂ˜Ë 1.
32
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
èÓfl‰ÓÍ ÍÓÌ„Û˝ÌÚÌÓÒÚË
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ӷ·‰‡ÂÚ ÔÓfl‰ÍÓÏ ÍÓÌ„Û˝ÌÚÌÓÒÚË n, ÂÒÎË
͇ʉÓ ÍÓ̘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, Ì fl‚Îfl˛˘ÂÂÒfl ËÁÓÏÂÚ˘ÂÒÍË
‚ÎÓÊËÏ˚Ï ‚ (X,d), ËÏÂÂÚ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó, ÒÓ‰Âʇ˘Â Ì ·ÓΠn ÚÓ˜ÂÍ, ÍÓÚÓÓÂ
Ì ÏÓÊÂÚ ·˚Ú¸ ËÁÓÏÂÚ˘ÂÒÍË ‚ÎÓÊÂÌÓ ‚ (X,d).
ꇉËÛÒ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
èÛÒÚ¸ (X,d) – Ó„‡Ì˘ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë M ⊂ X. åÂÚ˘ÂÒÍËÏ
‡‰ËÛÒÓÏ (ËÎË ‡‰ËÛÒÓÏ) ÏÌÓÊÂÒÚ‚‡ å ̇Á˚‚‡ÂÚÒfl ËÌÙËÏÛÏ ‡‰ËÛÒÓ‚ ÏÂÚ˘ÂÒÍËı
¯‡Ó‚, ÒÓ‰Âʇ˘Ëı å, Ú.Â. inf sup d ( x, y). çÂÍÓÚÓ˚ ‡‚ÚÓ˚ ̇Á˚‚‡˛Ú ‡‰ËÛÒÓÏ
x ∈M y ∈M
ÔÓÎÓ‚ËÌÛ ‰Ë‡ÏÂÚ‡.
ꇉËÛÒÓÏ ÔÓÍ˚ÚËfl ÏÌÓÊÂÒÚ‚‡ M ⊂ X ̇Á˚‚‡ÂÚÒfl max min d ( x, y), Ú.Â. ̇Ëx ∈X y ∈M
ÏÂ̸¯Â ˜ËÒÎÓ R, Ú‡ÍÓ ˜ÚÓ ÓÚÍ˚Ú˚ ÏÂÚ˘ÂÒÍË ¯‡˚ ‡‰ËÛÒ‡ R c ˆÂÌÚ‡ÏË ‚
˝ÎÂÏÂÌÚ‡ı å ÔÓÍ˚‚‡˛Ú ï. Ö„Ó Ì‡Á˚‚‡˛Ú ¢ ÓËÂÌÚËÓ‚‡ÌÌ˚Ï ı‡ÛÒ‰ÓÙÓ‚˚Ï
‡ÒÒÚÓflÌËÂÏ ÓÚ ï Í å. åÌÓÊÂÒÚ‚Ó å ̇Á˚‚‡ÂÚÒfl ε-ÔÓÍ˚ÚËÂÏ, ÂÒÎË Â„Ó ‡‰ËÛÒ
ÔÓÍ˚ÚËfl Ì Ô‚˚¯‡ÂÚ ε. ÑÎfl ‰‡ÌÌÓ„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó ˜ËÒ· m ÏËÌËχÍÒËχθ̇fl ‡ÒÒÚÓflÌ̇fl ÍÓÌÙË„Û‡ˆËfl ‡ÁÏÂ‡ m ÂÒÚ¸ m-ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï Ò
̇ËÏÂ̸¯ËÏ ‡‰ËÛÒÓÏ ÔÓÍ˚ÚËfl.
ꇉËÛÒÓÏ ÛÔÎÓÚÌÂÌËfl ÏÌÓÊÂÒÚ‚‡ M ⊂ X ̇Á˚‚‡ÂÚÒfl Ú‡ÍÓ ̇˷Óθ¯Â r, ˜ÚÓ
ÓÚÍ˚Ú˚ ÏÂÚ˘ÂÒÍË ¯‡˚ ‡‰ËÛÒ‡ r Ò ˆÂÌÚ‡ÏË ‚ ˝ÎÂÏÂÌÚ‡ı å fl‚Îfl˛ÚÒfl
ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËÏËÒfl, Ú.Â. min min d ( x, y) > 2 r. åÌÓÊÂÒÚ‚Ó å ̇Á˚‚‡ÂÚÒfl
y ∈X y ∈M
ε-ÛÔÎÓÚÌÂÌËÂÏ, ÂÒÎË Â„Ó ‡‰ËÛÒ ÛÔÎÓÚÌÂÌËfl Ì ÏÂÌ ε. ÑÎfl ‰‡ÌÌÓ„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó ˜ËÒ· m χÍÒËχθ̇fl ‡ÒÒÚÓflÌ̇fl ÍÓÌÙË„Û‡ˆËfl ‡ÁÏÂ‡ m ÂÒÚ¸ m-ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ ï Ò Ì‡Ë·Óθ¯ËÏ ‡‰ËÛÒÓÏ ÛÔÎÓÚÌÂÌËfl.
ê‡ÁÏÂ ̇ËÏÂ̸¯Â„Ó ε -ÔÓÍ˚ÚËfl Ì Ô‚ÓÒıÓ‰ËÚ ‡ÁÏÂ‡ ̇˷Óθ¯Â„Ó
ε
ε
-ÛÔÎÓÚÌÂÌËfl. -ÛÔÎÓÚÌÂÌË å fl‚ÎflÂÚÒfl ÌÂ‡Ò¯ËflÂÏ˚Ï, ÂÒÎË M ∪ {x} Ì fl‚ÎflÂÚ2
2
ε
Òfl -ÛÔÎÓÚÌÂÌËÂÏ ‰Îfl Í‡Ê‰Ó„Ó x ∈ X\M, Ú.Â. å fl‚ÎflÂÚÒfl Ú‡ÍÊ ε-ÒÂÚ¸˛.
2
ùÍÒˆÂÌÚËÒËÚÂÚ
èÛÒÚ¸ (X,d) – Ó„‡Ì˘ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ùÍÒˆÂÌÚËÒËÚÂÚÓÏ ÚÓ˜ÍË
x ∈ X ̇Á˚‚‡ÂÚÒfl ˜ËÒÎÓ e( x ) = max d ( x, y). óËÒ· max e( x ) Ë min e( x ) ̇Á˚‚‡˛ÚÒfl
y ∈X
x ∈X
x ∈X
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‰Ë‡ÏÂÚÓÏ Ë ‡‰ËÛÒÓÏ (X,d).
íÓ˜ÍË x ∈ X Ò Ï‡ÍÒËχθÌ˚Ï Â(ı) ̇Á˚‚‡˛ÚÒfl ÔÂËÙÂËÈÌ˚ÏË ÚӘ͇ÏË.
åÌÓÊÂÒÚ‚‡ {x ∈ X : e(x) ≤ e(z) ‰Îfl β·Ó„Ó z ∈ X} Ë {x ∈ X :
d ( x, y) ≤
d ( z, y)
∑
y ∈X
∑
y ∈X
‰Îfl β·Ó„Ó z ∈ X } ̇Á˚‚‡˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÏÂÚ˘ÂÒÍËÏ ˆÂÌÚÓÏ (ËÎË
ˆÂÌÚÓÏ ˝ÍÒˆÂÌÚËÒËÚÂÚ‡, ˆÂÌÚÓÏ) Ë ÏÂÚ˘ÂÒÍÓÈ Ï‰ˇÌÓÈ (ËÎË ˆÂÌÚÓÏ
‡ÒÒÚÓflÌËfl) ÔÓÒÚ‡ÌÒÚ‚‡ (X,d).
k-ÔÓ‰ÏÌÓÊÂÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl M ⊂ X k-ωˇÌÓÈ, ÂÒÎË Ó̇ ÏËÌËÏËÁËÛÂÚ ÒÛÏÏÛ
d ( x, M ), „‰Â d(x,M) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ.
∑
x ∈X
33
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
åÂÚ˘ÂÒÍËÈ ‰Ë‡ÏÂÚ
åÂÚ˘ÂÒÍËÈ ‰Ë‡ÏÂÚ (ËÎË ‰Ë‡ÏÂÚ, ¯ËË̇) diam(M) ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ⊆ X
ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÓÔ‰ÂÎflÂÚÒfl ͇Í
sup d ( x, y).
x , y ∈M
É‡Ù ‰Ë‡ÏÂÚ‡ ÏÌÓÊÂÒÚ‚‡ å ËÏÂÂÚ ‚Â¯Ë̇ÏË ‚Ò ÚÓ˜ÍË x ∈ M Ò d(x,y) =
= diam(M) ‰Îfl ÌÂÍÓÚÓÓ„Ó y ∈ M, ‡ ‚ ͇˜ÂÒÚ‚Â ·Â – Ô‡˚ Â„Ó ‚Â¯ËÌ Ì‡
‡ÒÒÚÓflÌËË diam(M) ‚ (X,d).
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ‡ÌÚËÔÓ‰‡Î¸Ì˚Ï ÏÂÚ˘ÂÒÍËÏ
ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË ‰Ë‡ÏÂÚ‡Î¸Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ), ÂÒÎË ‰Îfl
β·Ó„Ó x ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ‰Ë‡ÏÂÚ‡Î¸ÌÓ ÔÓÚË‚ÓÔÓÎÓÊ̇fl ÚӘ͇ – Â„Ó ‡ÌÚËÔÓ‰, Ú.Â.
‰ËÌÒÚ‚ÂÌÌÓ x' ∈ X, Ú‡ÍÓ ˜ÚÓ ËÌÚÂ‚‡Î I(x,x') ÒÓ‚Ô‡‰‡ÂÚ Ò ï.
ïÓχÚ˘ÂÒÍË ˜ËÒ· ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
ÑÎfl ‰‡ÌÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ë ÌÂÍÓÚÓÓ„Ó ÏÌÓÊÂÒÚ‚‡ D
ÔÓÎÓÊËÚÂθÌ˚ı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂÎ D-ıÓχÚ˘ÂÒÍËÏ ˜ËÒÎÓÏ ÔÓÒÚ‡ÌÒÚ‚‡
(X,d) ̇Á˚‚‡ÂÚÒfl Òڇ̉‡ÚÌÓ ıÓχÚ˘ÂÒÍÓ ˜ËÒÎÓ „‡Ù‡ D -‡ÒÒÚÓflÌËfl ‰Îfl (X,d),
Ú.Â. „‡Ù‡ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ ï Ë ÏÌÓÊÂÒÚ‚ÓÏ ·Â {xy :d(x,y) ∈ D}. é·˚˜ÌÓ
(X,d) fl‚ÎflÂÚÒfl lp -ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ë D = {1} (ıÓχÚ˘ÂÒÍÓ ˜ËÒÎÓ ÅẨ‡–èÂÎÂÒ‡)
ËÎË D = [1–ε, 1+ε] (ıÓχÚ˘ÂÒÍÓ ˜ËÒÎÓ „‡Ù‡ ε-‰ËÌ˘ÌÓ„Ó ‡ÒÒÚÓflÌËfl).
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÔÓÎËıÓχÚ˘ÂÒÍËÏ ˜ËÒÎÓÏ Ì‡Á˚‚‡ÂÚÒfl
ÏËÌËχθÌÓ ˜ËÒÎÓ ˆ‚ÂÚÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÓÍ‡¯Ë‚‡ÌËfl ‚ÒÂı ÚÓ˜ÂÍ x ∈ X Ú‡ÍËÏ
Ó·‡ÁÓÏ, ˜ÚÓ·˚ ‰Îfl Í‡Ê‰Ó„Ó Í·ÒÒ‡ ˆ‚ÂÚ‡ ëi ÒÛ˘ÂÒÚ‚Ó‚‡ÎÓ Ú‡ÍÓ ‡ÒÒÚÓflÌË di,
˜ÚÓ·˚ ÌË͇ÍË ‰‚ ÚÓ˜ÍË ËÁ ëi Ì ̇ıÓ‰ËÎËÒ¸ ̇ ‡ÒÒÚÓflÌËË di.
ÑÎfl β·Ó„Ó ˆÂÎÓ„Ó ˜ËÒ· t > 0 ıÓχÚ˘ÂÒÍÓ ˜ËÒÎÓ t-‡ÒÒÚÓflÌËfl ÏÂÚ˘ÂÒÍÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ ˆ‚ÂÚÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÓÍ‡¯Ë‚‡ÌËfl
‚ÒÂı ÚÓ˜ÂÍ x ∈ X Ú‡Í, ˜ÚÓ·˚ β·˚ ‰‚ ÚÓ˜ÍË Ì‡ ‡ÒÒÚÓflÌËË ≤t ËÏÂ˛Ú ‡ÁÌ˚Â
ˆ‚ÂÚ‡.
ÑÎfl β·Ó„Ó ˆÂÎÓ„Ó ˜ËÒ· t > 0 t-Ï ˜ËÒÎÓÏ Å‡·‡Ë ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl
ÏËÌËχθÌÓ ˜ËÒÎÓ ˆ‚ÂÚÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÓÍ‡¯Ë‚‡ÌËfl ‚ÒÂı ÚÓ˜ÂÍ x ∈ X Ú‡Í,
˜ÚÓ·˚ ‰Îfl β·Ó„Ó ÏÌÓÊÂÒÚ‚‡ D ÔÓÎÓÊËÚÂθÌ˚ı ‡ÒÒÚÓflÌËÈ Ò |D| ≤ t ˆ‚ÂÚ‡ β·˚ı
‰‚Ûı ÚÓ˜ÂÍ, ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÍÓÚÓ˚ÏË ÔË̇‰ÎÂÊËÚ D, Ì ÒÓ‚Ô‡‰‡ÎË.
éÚÌÓ¯ÂÌË òÚÂÈÌÂ‡
èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë V ⊂ X – Â„Ó ÍÓ̘ÌÓÂ
ÔÓ‰ÏÌÓÊÂÒÚ‚Ó. ê‡ÒÒÏÓÚËÏ ÔÓÎÌ˚È ‚Á‚¯ÂÌÌ˚È „‡Ù G = (V,E) Ò ÏÌÓÊÂÒÚ‚ÓÏ
‚Â¯ËÌ V Ë ‚ÂÒ‡ÏË ·Â d(x,y) ‰Îfl ‚ÒÂı x,y ∈ V.
éÒÚÓ‚Ì˚Ï ‰Â‚ÓÏ í „‡Ù‡ G ̇Á˚‚‡ÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ËÁ |V| – 1 ·‡,
Ó·‡ÁÛ˛˘Â ‰ÂÂ‚Ó Ì‡ V, Ò ‚ÂÒÓÏ d(T), ‡‚Ì˚Ï ÒÛÏÏ ‚ÂÒÓ‚ Â„Ó ·Â. èÛÒÚ¸ MSTV –
ÏËÌËχθÌÓ ÓÒÚÓ‚ÌÓ ‰ÂÂ‚Ó „‡Ù‡ G, Ú.Â. ÓÒÚÓ‚ÌÓ ‰ÂÂ‚Ó ÏËÌËχθÌÓ„Ó ‚ÂÒ‡
d(MSTV).
åËÌËχθÌÓ ‰ÂÂ‚Ó òÚÂÈÌÂ‡ ̇ V ÂÒÚ¸ Ú‡ÍÓ ‰ÂÂ‚Ó SMTV, ˜ÚÓ Â„Ó ÏÌÓÊÂÒÚ‚Ó ‚Â¯ËÌ fl‚ÎflÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ ï, ÒÓ‰Âʇ˘ËÏ V, Ë d ( SMTV ) =
=
inf
d ( MSTM ).
M ⊂ X :V ⊂ M
éÚÌÓ¯ÂÌË òÚÂÈÌÂ‡ S t(X,d) ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÓÔ‰ÂÎflÂÚÒfl
͇Í
inf
V⊂X
d ( SMTV )
.
d ( MSTV )
34
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÑÎfl β·Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ËÏÂÂÏ
l2 -ÏÂÚËÍË (Ú.Â. ‚ÍÎˉӂÓÈ ÏÂÚËÍË) ̇ 2, ÓÌÓ ‡‚ÌÓ
1 -ÏÂÚËÍË
̇ 2 ÓÌÓ ‡‚ÌÓ
1
≤ St ( X , d ) ≤ 1. ÑÎfl
2
3
, ‚ ÚÓ ‚ÂÏfl Í‡Í ‰Îfl l
2
2
.
3
åÂÚ˘ÂÒÍËÈ ·‡ÁËÒ
èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. èÓ‰ÏÌÓÊÂÒÚ‚Ó M ⊂ X
̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ·‡ÁËÒÓÏ ï, ÂÒÎË ‚˚ÔÓÎÌflÂÚÒfl ÒÎÂ‰Û˛˘Â ÛÒÎÓ‚ËÂ: d(x,s) =
d(y,s) ‰Îfl ‚ÒÂı s ∈ M ‚ΘÂÚ x = y. ÑÎfl x ∈ X ˜ËÒ· d(x,s), s ∈ M ̇Á˚‚‡˛ÚÒfl
ÏÂÚ˘ÂÒÍËÏË ÍÓÓ‰Ë̇ڇÏË ı.
ë‰ËÌÌÓ ÏÌÓÊÂÒÚ‚Ó
èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë y, z ∈ X – ‰‚ „Ó
‡Á΢Ì˚ ÚÓ˜ÍË. ë‰ËÌÌÓÏ ÏÌÓÊÂÒÚ‚ÓÏ (ËÎË ·ËÒÒÂÍÚËÒÓÈ) ï ̇Á˚‚‡ÂÚÒfl
ÏÌÓÊÂÒÚ‚Ó {x ∈ X : d(x,y) = d(x,z)} Ò‰ËÌÌ˚ı ÚÓ˜ÂÍ ı.
ÉÓ‚ÓflÚ, ˜ÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ËÏÂÂÚ n-ÚӘ˜ÌÓ ҂ÓÈÒÚ‚Ó ·ËÒÒÂÍÚËÒ˚, ÂÒÎË ‰Îfl ͇ʉÓÈ Ô‡˚ Â„Ó ÚÓ˜ÂÍ Ò‰ËÌÌÓ ÏÌÓÊÂÒÚ‚Ó ËÏÂÂÚ Ó‚ÌÓ n
ÚÓ˜ÂÍ. 1-íӘ˜ÌÓ ҂ÓÈÒÚ‚Ó ·ËÒÒÂÍÚËÒ˚ ÓÁ̇˜‡ÂÚ Â‰ËÌÒÚ‚ÂÌÌÓÒÚ¸ ÓÚÓ·‡ÊÂÌËfl
Ò‰ËÌÌÓÈ ÚÓ˜ÍË (ÒÏ. ë‰ËÌ̇fl ‚˚ÔÛÍÎÓÒÚ¸).
îÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl
îÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl (ËÎË Îۘ‚‡fl ÙÛÌ͈Ëfl) ÂÒÚ¸ ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl ̇
ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X,d) (Ó·˚˜ÌÓ Ì‡ ‚ÍÎˉӂÓÏ ÔÓÒÚ‡ÌÒÚ‚Â n)
f : X → 0, ÍÓÚÓÓ fl‚ÎflÂÚÒfl Ó‰ÌÓÓ‰Ì˚Ï, Ú.Â. f(tx) = tf(f) ‰Îfl ‚ÒÂı t ≥ 0 Ë ‚ÒÂı x ∈
X.
îÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl f ̇Á˚‚‡ÂÚÒfl ÒËÏÏÂÚ˘ÌÓÈ, ÂÒÎË f(x) = f(–x),
ÔÓÎÓÊËÚÂθÌÓÈ, ÂÒÎË f(x) > 0 ‰Îfl ‚ÒÂı ı ≠ 0 Ë ‚˚ÔÛÍÎÓÈ, ÂÒÎË f(x + y) ≤ f(x) + f(y) c
f(0) = 0.
ÖÒÎË ï = n , ÚÓ ÏÌÓÊÂÒÚ‚Ó {x ∈ n : f(x) < 1} ̇Á˚‚‡ÂÚÒfl Á‚ÂÁ‰Ì˚Ï ÚÂÎÓÏ; ÓÌÓ
ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌÓÈ ÙÛÌ͈ËË ‡ÒÒÚÓflÌËfl. á‚ÂÁ‰ÌÓ ÚÂÎÓ ·Û‰ÂÚ Ó„‡Ì˘ÂÌÌ˚Ï, ÂÒÎË f ÔÓÎÓÊËÚÂθ̇, ÓÌÓ ·Û‰ÂÚ ÒËÏÏÂÚ˘Ì˚Ï ÓÚÌÓÒËÚÂθÌÓ Ì‡˜‡Î‡
ÍÓÓ‰Ë̇Ú, ÂÒÎË f ÒËÏÏÂÚ˘̇, Ë ‚˚ÔÛÍÎ˚Ï, ÂÒÎË f – ‚˚ÔÛÍ·.
Ç˚ÔÛÍ·fl ÙÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl
èÛÒÚ¸ B ⊂ n – ÍÓÏÔ‡ÍÚ̇fl ‚˚ÔÛÍ·fl ӷ·ÒÚ¸, ÒÓ‰Âʇ˘‡fl ‚ Ò‚ÓÂÈ ‚ÌÛÚÂÌÌÓÒÚË
̇˜‡ÎÓ ÍÓÓ‰Ë̇Ú. Ç˚ÔÛÍÎÓÈ ÙÛÌ͈ËÂÈ ‡ÒÒÚÓflÌËfl (ËÎË ËÁÏÂËÚÂÎÂÏ, ÙÛÌ͈ËÂÈ
‡ÒÒÚÓflÌËfl åËÌÍÓ‚ÒÍÓ„Ó) dB(x,y) ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÏÂÚË͇ ̇ n, ÓÔ‰ÂÎÂÌ̇fl
‰Îfl x ≠ y ͇Í
inf{α > 0 : y – x ∈ αB}.
y − x2
, „‰Â
x − z2
z – ‰ËÌÒÚ‚ÂÌ̇fl ÚӘ͇ „‡Ìˈ˚ ∂(x + B), ÔË̇‰ÎÂʇ˘‡fl ÎÛ˜Û, ‚˚ıÓ‰fl˘ÂÏÛ ËÁ ı Ë
ÔÓıÓ‰fl˘ÂÏÛ ˜ÂÂÁ Û. èË ˝ÚÓÏ B = {x ∈ n : dB(0, x) ≤ 1} Ò ‡‚ÂÌÒÚ‚ÓÏ ÚÓθÍÓ ‰Îfl
x ∈ ∂B . Ç˚ÔÛÍ·fl ÙÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl ̇Á˚‚‡ÂÚÒfl ÔÓÎË˝‰‡Î¸ÌÓÈ, ÂÒÎË
Ç – ÏÌÓ„Ó„‡ÌÌËÍ, ÚÂÚ‡˝‰‡Î¸ÌÓÈ, ÂÒÎË ˝ÚÓ ÚÂÚ‡˝‰, Ë Ú.‰.
ÖÒÎË ÏÌÓÊÂÒÚ‚Ó Ç ˆÂÌÚ‡Î¸ÌÓÒËÏÏÂÚ˘ÌÓ ÓÚÌÓÒËÚÂθÌÓ Ì‡˜‡Î‡ ÍÓÓ‰Ë̇Ú, ÚÓ
dB fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ åËÌÍÓ‚ÒÍÓ„Ó (ÒÏ. „Î. 6), ‰ËÌ˘Ì˚È ¯‡ ÍÓÚÓÓÈ ÂÒÚ¸ Ç.
ùÍ‚Ë‚‡ÎÂÌÚÌ˚Ï Ó·‡ÁÓÏ Ó̇ ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ ͇Í
35
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
ùÎÂÏÂÌÚ Ì‡ËÎÛ˜¯Â„Ó ÔË·ÎËÊÂÌËfl
èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë M ⊂ X – Â„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚Ó. íÓ„‰‡ ˝ÎÂÏÂÌÚ u0 ∈ M ̇Á˚‚‡ÂÚÒfl ˝ÎÂÏÂÌÚÓÏ Ì‡ËÎÛ˜¯Â„Ó ÔË·ÎËÊÂÌËfl
Í ‰‡ÌÌÓÏÛ ˝ÎÂÏÂÌÚÛ x ∈ X, ÂÒÎË d ( x, u0 ) = inf d ( x, u), Ú.Â. ÂÒÎË ‚Â΢Ë̇ d(x, u0)
u ∈M
fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ d(x, M).
åÂÚ˘ÂÒ͇fl ÔÓÂ͈Ëfl (ËÎË ÓÔÂ‡ÚÓ ̇ËÎÛ˜¯Â„Ó ÔË·ÎËÊÂÌËfl, ÓÚÓ·‡ÊÂÌËÂ
·ÎËʇȯÂÈ ÚÓ˜ÍË) ÂÒÚ¸ ÏÌÓ„ÓÁ̇˜ÌÓ ÓÚÓ·‡ÊÂÌËÂ, ÒÚ‡‚fl˘Â ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËÂ
͇ʉÓÏÛ ˝ÎÂÏÂÌÚÛ d(x ∈ X) ÏÌÓÊÂÒÚ‚Ó ˝ÎÂÏÂÌÚÓ‚ ̇ËÎÛ˜¯Â„Ó ÔË·ÎËÊÂÌËfl ËÁ
ÏÌÓÊÂÒÚ‚‡ å (ÒÏ. ê‡ÒÒÚÓflÌÌÓ ÓÚÓ·‡ÊÂÌËfl).
åÌÓÊÂÒÚ‚ÓÏ ó·˚¯Â‚‡ (ËÎË ÒÂÎÂÍÚËÛÂÏ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ) ‚ ÔÓËÁ‚ÓθÌÓÏ
ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X,d) ̇Á˚‚‡ÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚Ó M ⊂ X , ÒÓ‰Âʇ˘ÂÂ
‰ËÌÒÚ‚ÂÌÌ˚È ˝ÎÂÏÂÌÚ Ì‡ËÎÛ˜¯Â„Ó ÔË·ÎËÊÂÌËfl ‰Îfl Í‡Ê‰Ó„Ó x ∈ X. èÓ‰ÏÌÓÊÂÒÚ‚Ó M ⊂ X ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ÔÓÎÛ-ó·˚¯Â‚‡, ÂÒÎË ËÏÂÂÚÒfl Ì ·ÓÎÂÂ
Ó‰ÌÓ„Ó Ú‡ÍÓ„Ó ˝ÎÂÏÂÌÚ‡, Ë ÔÓÍÒËÏË̇θÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ, ÂÒÎË ËÏÂÂÚÒfl Ì ÏÂÌÂÂ
Ó‰ÌÓ„Ó Ú‡ÍÓ„Ó ˝ÎÂÏÂÌÚ‡.
ꇉËÛÒÓÏ ó·˚¯Â‚‡ ‰Îfl ÏÌÓÊÂÒÚ‚‡ å ̇Á˚‚‡ÂÚÒfl inf sup d ( x, y), ‡ ˆÂÌÚÓÏ
x ∈X y ∈M
ó·˚¯Â‚‡ ‰Îfl ÏÌÓÊÂÒÚ‚‡ å – ˝ÎÂÏÂÌÚ x 0 ∈ X, ‡ÎËÁÛ˛˘ËÈ ‰‡ÌÌ˚È ËÌÙËÏÛÏ.
ê‡ÒÒÚÓflÌÌÓ ÓÚÓ·‡ÊÂÌËÂ
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ë ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ⊂ X ‡ÒÒÚÓflÌÌ˚Ï
ÓÚÓ·‡ÊÂÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÙÛÌ͈Ëfl fM : X → ≥ 0, „‰Â f M ( x ) = inf d ( x, u) ÂÒÚ¸
u ∈M
‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ d(x,M) (ÒÏ. åÂÚ˘ÂÒ͇fl ÔÓÂ͈Ëfl).
ÖÒÎË „‡Ìˈ‡ Ç(å) ÏÌÓÊÂÒÚ‚‡ å ÓÔ‰ÂÎÂ̇, ÚÓ ÙÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl ÒÓ Á̇ÍÓÏ
gM ÓÔ‰ÂÎflÂÚÒfl Í‡Í gM ( x ) = − inf d ( x, u) ‰Îfl x ∈ M Ë Í‡Í gM ( x ) = inf d ( x, u)
u ∈B( M )
u ∈B( M )
‚ ÓÒڇθÌ˚ı ÒÎÛ˜‡flı. ÖÒÎË å fl‚ÎflÂÚÒfl (Á‡ÏÍÌÛÚ˚Ï Ë ÓËÂÌÚËÛÂÏ˚Ï) ÏÌÓ„ÓÓ·‡ÁËÂÏ ‚ n, ÚÓ gM ·Û‰ÂÚ ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ˝ÈÍÓ̇· |∇g | = 1 ‰Îfl „Ó
„‡‰ËÂÌÚ‡ ∇.
ÖÒÎË ï = n Ë ‰Îfl Í‡Ê‰Ó„Ó x ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌ˚È ˝ÎÂÏÂÌÚ u(x)
c d(x,M) = d(x,u(x)), (Ú.Â. å ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ó·˚¯Â‚‡), ÚÓ ||x–u(x)|| ̇Á˚‚‡ÂÚÒfl
‚ÂÍÚÓÌÓÈ ÙÛÌ͈ËÂÈ ‡ÒÒÚÓflÌËfl.
ê‡ÒÒÚÓflÌËfl ÓÚÓ·‡ÊÂÌËfl ÔËÏÂÌfl˛ÚÒfl ÔË ÔÓ„‡ÏÏËÓ‚‡ÌËË ‰‚ËÊÂÌËfl
Ó·ÓÚÓÚÂıÌ˘ÂÒÍËı ÛÒÚÓÈÒÚ‚ (å ‚˚ÒÚÛÔ‡ÂÚ Í‡Í ÏÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ ÔÂÔflÚÒÚ‚ËÈ) Ë,
„·‚Ì˚Ï Ó·‡ÁÓÏ, ÔË Ó·‡·ÓÚÍ ËÁÓ·‡ÊÂÌËÈ (‚ ˝ÚÓÏ ÒÎÛ˜‡Â å fl‚ÎflÂÚÒfl
ÏÌÓÊÂÒÚ‚ÓÏ ‚ÒÂı ËÎË ÚÓθÍÓ ÔÓ„‡Ì˘Ì˚ı ÔËÍÒÂÎÂÈ Ó·‡Á‡). èË ï = n
„‡Ù {x, f M(x)) : x ∈ X) ‰Îfl d ( x,M) ̇Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸˛ ÇÓÓÌÓ„Ó ‰Îfl
ÏÌÓÊÂÒÚ‚‡ å.
ÑËÒÍÂÚ̇fl ‰Ë̇Ï˘ÂÒ͇fl ÒËÒÚÂχ
ÑËÒÍÂÚ̇fl ‰Ë̇Ï˘ÂÒ͇fl ÒËÒÚÂχ ÂÒÚ¸ Ô‡‡, ÒÓÒÚÓfl˘‡fl ËÁ ÌÂÔÛÒÚÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d), ̇Á˚‚‡ÂÏÓ„Ó Ù‡ÁÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ë
ÌÂÔÂ˚‚ÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl f : X → X, ̇Á˚‚‡ÂÏÓ„Ó ˝‚ÓβˆËÓÌÌ˚Ï Á‡ÍÓÌÓÏ. ÑÎfl
β·Ó„Ó x ∈ X Â„Ó Ó·ËÚ‡ ÂÒÚ¸ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ {fn(x)}n , „‰Â fn(x) = f(fn–1(x))
Ò f0 (x) = x. é·ËÚ‡ x ∈ X ̇Á˚‚‡ÂÚÒfl ÔÂËӉ˘ÂÒÍÓÈ, ÂÒÎË fn (x) = x ‰Îfl ÌÂÍÓÚÓÓ„Ó n >
0.
é·˚˜ÌÓ ‰ËÒÍÂÚÌ˚ ‰Ë̇Ï˘ÂÒÍË ÒËÒÚÂÏ˚ ËÒÒÎÂ‰Û˛ÚÒfl (̇ÔËÏÂ, ‚ ÚÂÓËË
ÛÔ‡‚ÎÂÌËfl) ‚ ÍÓÌÚÂÍÒÚ ÒÚ‡·ËθÌÓÒÚË ÒËÒÚÂÏ; ÚÂÓËfl ı‡ÓÒ‡, ÒÓ Ò‚ÓÂÈ ÒÚÓÓÌ˚,
Á‡ÌËχÂÚÒfl χÍÒËχθÌÓ ÌÂÒÚ‡·ËθÌ˚ÏË ÒËÒÚÂχÏË.
36
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÄÚÚ‡ÍÚÓ – Ú‡ÍÓ Á‡ÏÍÌÛÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó Ä ÏÌÓÊÂÒÚ‚‡ ï, ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ÓÚÍ˚Ú‡fl ÓÍÂÒÚÌÓÒÚ¸ U ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä, ӷ·‰‡˛˘‡fl Ò‚ÓÈÒÚ‚ÓÏ
lim d ( f n (b), A) = 0 ‰Îfl Í‡Ê‰Ó„Ó b ∈ U, Ú.Â. Ä ÔËÚfl„Ë‚‡ÂÚ ‚Ò ·ÎËÁÎÂʇ˘ËÂ
n →∞
Ó·ËÚ˚. Ç ˝ÚÓÏ ÒÎÛ˜‡Â d (x,A) = inf d ( x, y) ÂÒÚ¸
y ∈A
‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ
Ë ÏÌÓÊÂÒÚ‚ÓÏ.
ÑË̇Ï˘ÂÒ͇fl ÒËÒÚÂχ ̇Á˚‚‡ÂÚÒfl ı‡ÓÚ˘ÂÒÍÓÈ (ÚÓÔÓÎӄ˘ÂÒÍË ËÎË ÔÓ Ñ‚‡ÌË),
ÂÒÎË Ó̇ fl‚ÎflÂÚÒfl „ÛÎflÌÓÈ (Ú.Â. ï ËÏÂÂÚ ÔÎÓÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ˝ÎÂÏÂÌÚÓ‚ Ò
ÔÂËӉ˘ÂÒÍËÏË Ó·ËÚ‡ÏË) Ë Ú‡ÌÁËÚË‚ÌÓÈ (Ú.Â. ‰Îfl β·˚ı ‰‚Ûı ÌÂÔÛÒÚ˚ı
ÓÚÍ˚Ú˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ Ä, Ç ÏÌÓÊÂÒÚ‚‡ ï ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ ˜ËÒÎÓ n, ˜ÚÓ
f n ( A) ∩ B ≠ 0/) .
åÂÚ˘ÂÒÍÓ ‡ÒÒÎÓÂÌËÂ
èÛÒÚ¸ (X,d) – ÔÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. èÓ‰ÏÌÓÊÂÒÚ‚‡ å1 Ë å2
ÏÌÓÊÂÒÚ‚‡ ï ̇Á˚‚‡˛ÚÒfl ˝Í‚ˉËÒÚ‡ÌÚÌ˚ÏË (‡‚ÌÓÓÚÒÚÓfl˘ËÏË), ÂÒÎË ‰Îfl
Í‡Ê‰Ó„Ó x ∈ M1 ÒÛ˘ÂÒÚ‚ÛÂÚ y ∈ M 2 Ò d(x,y), ‡‚Ì˚Ï ı‡ÛÒ‰ÓÙÓ‚ÓÈ ÏÂÚËÍ ÏÂʉÛ
ÏÌÓÊÂÒÚ‚‡ÏË å1 Ë å2 . åÂÚ˘ÂÒÍÓ ‡ÒÒÎÓÂÌË ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÂÒÚ¸ ‡Á·ËÂÌËÂ
ÏÌÓÊÂÒÚ‚‡ ï ̇ ËÁÓÏÂÚ˘ÂÒÍË ‚Á‡ËÏÌÓ ˝Í‚ˉËÒÚ‡ÌÚÌ˚ Á‡ÏÍÌÛÚ˚ ÏÌÓÊÂÒÚ‚‡.
åÂÚ˘ÂÒÍÓ هÍÚÓ-ÔÓÒÚ‡ÌÒÚ‚Ó X/ ̇ÒΉÛÂÚ Ì‡ÚÛ‡Î¸ÌÛ˛ ÏÂÚËÍÛ, ‰Îfl
ÍÓÚÓÓÈ ‡ÒÒÚÓflÌÌÓ ÓÚÓ·‡ÊÂÌË fl‚ÎflÂÚÒfl ÔÓ‰ÏÂÚËÂÈ.
ëÚÛÍÚÛ‡ ÏÂÚ˘ÂÒÍÓ„Ó ÍÓÌÛÒ‡
èÛÒÚ¸ (X, d, x0) – ÔÛÌÍÚËÓ‚‡ÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, Ú.Â. ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) Ò ÙËÍÒËÓ‚‡ÌÌÓÈ ÚÓ˜ÍÓÈ x0 ∈ X. ëÚÛÍÚÛÓÈ ÏÂÚ˘ÂÒÍÓ„Ó ÍÓÌÛÒ‡ ̇ ÌÂÏ
fl‚ÎflÂÚÒfl (ÚӘ˜ÌÓ) ÌÂÔÂ˚‚ÌÓ ÒÂÏÂÈÒÚ‚Ó ft(t ∈ ≥ 0) ‡ÒÚflÊÂÌËÈ ÏÌÓÊÂÒÚ‚‡ ï,
ÓÒÚ‡‚Îfl˛˘Ëı ËÌ‚‡ˇÌÚÌÓÈ ÚÓ˜ÍÛ ı0 , Ú‡Í ˜ÚÓ d(ft(x,y), f t(y)) = td(x,y) ‰Îfl ‚ÒÂı ı, Û
Ë ft ⋅ fs = fts.
Ň̇ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ËÏÂÂÚ Ú‡ÍÛ˛ ÒÚÛÍÚÛÛ ‰Îfl ‡ÒÚflÊÂÌËÈ ft(x) =
= tx(t ∈ ≥ 0). ֢ ӉÌËÏ ÔËÏÂÓÏ fl‚ÎflÂÚÒfl ‚ÍÎˉӂ ÍÓÌÛÒ Ì‡‰ ÏÂÚ˘ÂÒÍËÏ
ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÒÏ. åÂÚË͇ ÍÓÌÛÒ‡, „Î.9).
åÂÚ˘ÂÒÍËÈ ÍÓÌÛÒ
åÂÚ˘ÂÒÍËÏ ÍÓÌÛÒÓÏ Ì‡Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÔÓÎÛÏÂÚËÍ Ì‡ ÏÌÓÊÂÒÚ‚Â
Vn = {1,…,n}.
å‡Úˈ‡ ‡ÒÒÚÓflÌËÈ
èÛÒÚ¸ (X = {x1,…,xn}, d) – ÍÓ̘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. Ö„Ó Ï‡Úˈ‡
‡ÒÒÚÓflÌËÈ – ˝ÚÓ ÒËÏÏÂÚ˘̇fl n × n χÚˈ‡ ((dij)), „‰Â dij = d(xi, xj) ‰Îfl β·˚ı
1 ≤ i, j ≤ n.
å‡Úˈ‡ ä˝ÎË–åÂÌ„Â‡
èÛÒÚ¸ (X = {x 1 ,…,xn}, d) – ÍÓ̘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. å‡ÚˈÂÈ ä˝ÎË–
åÂÌ„Â‡ ‰Îfl ÌÂ„Ó fl‚ÎflÂÚÒfl ÒËÏÏÂÚ˘̇fl (n+1) × (n+1) χÚˈ‡
0
CM ( X , d ) =  T
e
e
,
D
„‰Â D = (dij)) ÂÒÚ¸ χÚˈ‡ ‡ÒÒÚÓflÌËÈ ÔÓÒÚ‡ÌÒÚ‚‡ (X , d ), ‡ –n-‚ÂÍÚÓ, ‚ÒÂ
ÍÓÏÔÓÌÂÌÚ˚ ÍÓÚÓÓ„Ó ‡‚Ì˚ 1. éÔ‰ÂÎËÚÂθ χÚˈ˚ CM(X,d) ̇Á˚‚‡ÂÚÒfl
ÓÔ‰ÂÎËÚÂÎÂÏ ä˝ÎË–åÂÌ„Â‡.
37
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
å‡Úˈ‡ É‡Ïχ
èÛÒÚ¸ v1 ,…,vk – ˝ÎÂÏÂÌÚ˚ ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡. å‡ÚˈÂÈ É‡Ïχ fl‚ÎflÂÚÒfl
ÒËÏÏÂÚ˘̇fl k × k χÚˈ‡
G( v1 ,...vk ) =
(( v , v ))
i
j
ÔÓÔ‡Ì˚ı Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ ˝ÎÂÏÂÌÚÓ‚ v1 ,…,vk.
k × k χÚˈ‡ fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÔÓÎÛÓÔ‰ÂÎÂÌÌÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡,
ÍÓ„‰‡ ˝ÚÓ Ï‡Úˈ‡ É‡Ïχ. k × k χÚˈ‡ fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ
ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ – χÚˈ‡ É‡Ïχ Ò ÎËÌÂÈÌÓ ÌÂÁ‡‚ËÒËÏ˚ÏË
ÓÔ‰ÂÎfl˛˘ËÏË ‚ÂÍÚÓ‡ÏË.
1
G(v1,…,vk) = (( d E2 ( vi , v j ))) + d E2 ( v0 , v j ) − d E2 ( vi , v j ))), Ú.Â. Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌËÂ
2
⟨,⟩ ÂÒÚ¸ ÔÓ‰Ó·ÌÓÒÚ¸ ÔÓËÁ‚‰ÂÌËfl ÉÓÏÓ‚‡ ‰Îfl Í‚‡‰‡Ú‡ ‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl d E2 .
k × k χÚˈ‡ (( d E2 ( vi , v j ))) ÂÒÚ¸ ‡ÒÒÚÓflÌË ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡; ‚Ò ڇÍË k × k
χÚˈ˚ Ó·‡ÁÛ˛Ú (ÌÂÔÓÎË˝‰‡Î¸Ì˚) Á‡ÏÍÌÛÚ˚È ‚˚ÔÛÍÎ˚È ÍÓÌÛÒ ‚ÒÂı Ú‡ÍËı
‡ÒÒÚÓflÌËÈ Ì‡ ‰‡ÌÌÓÏ k-ÏÌÓÊÂÒÚ‚Â.
éÔ‰ÂÎËÚÂθ χÚˈ˚ É‡Ïχ ̇Á˚‚‡ÂÚÒfl ÓÔ‰ÂÎËÚÂÎÂÏ É‡Ïχ; „Ó
‚Â΢Ë̇ ‡‚̇ Í‚‡‰‡ÚÛ k-ÏÂÌÓ„Ó Ó·˙Âχ Ô‡‡ÎÎÂÎÓÚÓÔ‡, ÔÓÒÚÓÂÌÌÓ„Ó Ì‡
v1 ,…,vk.
àÁÓÏÂÚËfl
èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. îÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl
ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËÂÏ ï ‚ Y, ÂÒÎË Ó̇ ËÌ˙ÂÍÚ˂̇ Ë ‰Îfl ‚ÒÂı x, y ∈ X ËÏÂÂÚ
ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó dY(f(x), f(y)) = dX(x,y).
àÁÓÏÂÚËÂÈ Ì‡Á˚‚‡ÂÚÒfl ·ËÂÍÚË‚ÌÓ ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌËÂ. Ñ‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡˛ÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏË (ËÎË ËÁÓÏÂÚ˘ÂÒÍË ËÁÓÏÓÙÌ˚ÏË), ÂÒÎË ÏÂÊ‰Û ÌËÏË ÒÛ˘ÂÒÚ‚ÛÂÚ ËÁÓÏÂÚËfl.
ë‚ÓÈÒÚ‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚, ÒÓı‡Ìfl˛˘ËÂÒfl ËÌ‚‡ˇÌÚÌ˚ÏË ÓÚÌÓÒËÚÂθÌÓ ËÁÓÏÂÚËÈ (ÔÓÎÌÓÚ‡, Ó„‡Ì˘ÂÌÌÓÒÚ¸ Ë Ú.Ô.), ̇Á˚‚‡˛ÚÒfl ÏÂÚs˘ÂÒÍËÏË
Ò‚ÓÈÒÚ‚‡ÏË (ËÎË ÏÂÚ˘ÂÒÍËÏË ËÌ‚‡ˇÌÚ‡ÏË).
àÁÓÏÂÚËÂÈ ÔÛÚË (ËÎË ÎËÌÂÈÌÓÈ ËÁÓÏÂÚËÂÈ) fl‚ÎflÂÚÒfl ÔÂÓ·‡ÁÓ‚‡ÌËÂ ï ‚ Y (ÌÂ
Ó·flÁ‡ÚÂθÌÓ ·ËÂÍÚË‚ÌÓÂ), ÒÓı‡Ìfl˛˘Â ‰ÎËÌÛ ÍË‚˚ı.
ÜÂÒÚÍÓ ÔÂÂÏ¢ÂÌË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
ÜÂÒÚÍËÏ ÔÂÂÏ¢ÂÌËÂÏ (ËÎË ÔÓÒÚÓ ÔÂÂÏ¢ÂÌËÂÏ) ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ËÁÓÏÂÚËfl (X,d) ̇ Ò·fl.
ÑÎfl ÔÂÂÏ¢ÂÌËfl f ÙÛÌ͈Ëfl ÔÂÂÌÂÒÂÌËfl df (x) ‡‚̇ df (x, f(x)). èÂÂÏ¢ÂÌË f
̇Á˚‚‡ÂÚÒfl ÔÓÎÛÔÓÒÚ˚Ï, ÂÒÎË inf d f ( x ) = d ( x 0 , f ( x 0 )) ‰Îfl ÌÂÍÓÚÓÓ„Ó x0 ∈ X,
x ∈X
Ë Ô‡‡·Ó΢ÂÒÍËÏ ‚ ÓÒڇθÌ˚ı ÒÎÛ˜‡flı. èÓÎÛÔÓÒÚÓ ÔÂÂÏ¢ÂÌË ̇Á˚‚‡ÂÚÒfl
˝ÎÎËÔÚ˘ÂÒÍËÏ, ÂÒÎË inf d f ( x ) = 0 Ë ÓÒ‚˚Ï (ËÎË „ËÔÂ·Ó΢ÂÒÍËÏ) ‚ ÓÒڇθÌ˚ı
x ∈X
ÒÎÛ˜‡flı. èÂÂÏ¢ÂÌË ̇Á˚‚‡ÂÚÒfl ÔÂÂÌÓÒÓÏ äÎËÙÙÓ‰‡, ÂÒÎË ÙÛÌ͈Ëfl ÔÂÂÌÂÒÂÌËfl df (x) fl‚ÎflÂÚÒfl ÍÓÌÒÚ‡ÌÚÓÈ ‰Îfl ‚ÒÂı x ∈ X.
ëËÏÏÂÚ˘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÒËÏÏÂÚ˘Ì˚Ï, ÂÒÎË ‰Îfl
ÔÓËÁ‚ÓθÌÓÈ ÚÓ˜ÍË p ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ÒËÏÏÂÚËfl ÓÚÌÓÒËÚÂθÌÓ ‰‡ÌÌÓÈ ÚÓ˜ÍË,
38
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
Ú.Â. Ú‡ÍÓ ÔÂÂÏ¢ÂÌË f p ˝ÚÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ˜ÚÓ fp (fp (x)) = x ‰Îfl
‚ÒÂı x ∈ X, Ë  fl‚ÎflÂÚÒfl ËÁÓÎËÓ‚‡ÌÌÓÈ ÙËÍÒËÓ‚‡ÌÌÓÈ ÚÓ˜ÍÓÈ fp .
é‰ÌÓÓ‰ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl Ó ‰ Ì Ó  Ó ‰ Ì ˚ Ï (ËÎË ÒËθÌÓÚ‡ÌÁËÚË‚Ì˚Ï), ÂÒÎË ‰Îfl ͇ʉ˚ı ‰‚Ûı ÍÓ̘Ì˚ı ËÁÓÏÂÚ˘ÂÒÍËı ÔÓ‰ÏÌÓÊÂÒÚ‚
Y = {y 1 , ..., ym} Ë Z = {z1 , ..., zm} ÏÌÓÊÂÒÚ‚‡ ï ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÂÂÏ¢ÂÌË ï , ÓÚÓ·‡Ê‡˛˘Â Y ‚ Z. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÚӘ˜ÌÓ-Ó‰ÌÓÓ‰Ì˚Ï,
ÂÒÎË ‰Îfl β·˚ı ‰‚Ûı Â„Ó ÚÓ˜ÂÍ ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÂÂÏ¢ÂÌËÂ, ÓÚÓ·‡Ê‡˛˘Â ӉÌÛ ËÁ
˝ÚËı ÚÓ˜ÂÍ ‚ ‰Û„Û˛. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â Ó‰ÌÓÓ‰ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ‚
ÒÓ˜ÂÚ‡ÌËË Ò ‰‡ÌÌÓÈ Ú‡ÌÁËÚË‚ÌÓÈ „ÛÔÔÓÈ ÒËÏÏÂÚËÈ.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍË Ó‰ÌÓÓ‰Ì˚Ï É˛Ì·‡ÛÏ–äÂÎÎË ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÂÒÎË {d(x, z) : z ∈ X} = {d(y, z) : z ∈ X} ‰Îfl
β·˚ı x, y ∈ X.
ê‡ÒÚflÊÂÌËÂ
èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë r – ‰ÂÈÒÚ‚ËÚÂθÌÓÂ
ÔÓÎÓÊËÚÂθÌÓ ˜ËÒÎÓ. îÛÌ͈Ëfl f : X → X ̇Á˚‚‡ÂÚÒfl ‡ÒÚflÊÂÌËÂÏ, ÂÒÎË d(f(x),
f(y)) = rd(x,y) ‰Îfl β·˚ı x, y ∈ X.
åÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌËÂ
åÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌË ÂÒÚ¸ ‡ÒÒÚÓflÌËÂ, ÔÓÎÛ˜‡ÂÏÓÂ Í‡Í ÙÛÌ͈Ëfl ‰‡ÌÌÓÈ
ÏÂÚËÍË (ÒÏ. „Î. 4).
ÉÓÏÂÓÏÓÙÌ˚ ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡
Ñ‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡ (X, dï) Ë (Y, dY) ̇Á˚‚‡˛ÚÒfl „ÓÏÂÓÏÓÙÌ˚ÏË (ËÎË
ÚÓÔÓÎӄ˘ÂÒÍË ËÁÓÏÓÙÌ˚ÏË), ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ „ÓÏÂÓÏÓÙËÁÏ ËÁ ï ‚ Y, Ú.Â. ڇ͇fl
·ËÂÍÚ˂̇fl ÙÛÌ͈Ëfl f : X → Y, ˜ÚÓ f Ë f–1 ÌÂÔÂ˚‚Ì˚ (ÔÓÓ·‡Á Í‡Ê‰Ó„Ó ÓÚÍ˚ÚÓ„Ó
ÏÌÓÊÂÒÚ‚‡ ‚ Y fl‚ÎflÂÚÒfl ÓÚÍ˚Ú˚Ï ‚ ï).
Ñ‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡ (X, dï) Ë (Y, dY ) ̇Á˚‚‡˛ÚÒfl ‡‚ÌÓÏÂÌÓ
ËÁÓÏÓÙÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡Í‡fl ·ËÂÍÚ˂̇fl ÙÛÌ͈Ëfl f : X → Y, ˜ÚÓ f Ë f–1
fl‚Îfl˛ÚÒfl ‡‚ÌÓÏÂÌÓ ÌÂÔÂ˚‚Ì˚ÏË ÙÛÌ͈ËflÏË. (îÛÌ͈Ëfl g ·Û‰ÂÚ ‡‚ÌÓÏÂÌÓ
ÌÂÔÂ˚‚ÌÓÈ, ÂÒÎË ‰Îfl β·Ó„Ó ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ δ > 0, ˜ÚÓ ‰Îfl β·˚ı
x, y ∈ X ËÁ ÌÂ‡‚ÂÌÒÚ‚‡ dX(x,y) < δ ÒΉÛÂÚ ÌÂ‡‚ÂÌÒÚ‚Ó dY(g(x), f(y)) < ε; ÌÂÔÂ˚‚̇fl
ÙÛÌ͈Ëfl fl‚ÎflÂÚÒfl ‡‚ÌÓÏÂÌÓ ÌÂÔÂ˚‚ÌÓÈ, ÂÒÎË ÔÓÒÚ‡ÌÒÚ‚Ó ï ÍÓÏÔ‡ÍÚÌÓ.)
äÓÌÙÓÏÌÓ ÏÂÚ˘ÂÒÍÓ ÓÚÓ·‡ÊÂÌËÂ
èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. éÚÓ·‡ÊÂÌË f : X → Y
̇Á˚‚‡ÂÚÒfl ÍÓÌÙÓÏÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÓÚÓ·‡ÊÂÌËÂÏ, ÂÒÎË ‰Îfl β·˚ı x ∈ X
d ( f ( x ), f ( y))
ÒÛ˘ÂÒÚ‚ÛÂÚ Ô‰ÂÎ lim Y
, ÍÓÚÓ˚È fl‚ÎflÂÚÒfl ÍÓ̘Ì˚Ï Ë ÔÓÎÓÊËy→ x
d ( x, y)
ÚÂθÌ˚Ï.
䂇ÁËÍÓÌÙÓÏÌÓ ÏÂÚ˘ÂÒÍÓ ÓÚÓ·‡ÊÂÌËÂ
èÛÒÚ¸ (X, d ï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. ÉÓÏÂÓÏÓÙËÁÏ f : X → Y
̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÍÓÌÙÓÏÌ˚Ï (ËÎË ë-Í‚‡ÁËÍÓÌÙÓÏÌ˚Ï) ÏÂÚ˘ÂÒÍËÏ ÓÚÓ·‡ÊÂÌËÂÏ, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÒÚ‡ÌÚ‡ ë, ڇ͇fl ˜ÚÓ ÒÓÓÚÌÓ¯ÂÌËÂ
lim sup
r→0
max{dY ( f ( x ), f ( y)) : d X ( x, y) ≤ r}
≤C
min{dY ( f ( x ), f ( y)) : d X ( x, y) ≥ r}
39
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
‚˚ÔÓÎÌflÂÚÒfl ‰Îfl Í‡Ê‰Ó„Ó x ∈ X. ç‡ËÏÂ̸¯‡fl ڇ͇fl ÍÓÌÒÚ‡ÌÚ‡ ë ̇Á˚‚‡ÂÚÒfl
ÍÓÌÙÓÏÌ˚Ï ‡ÒÚflÊÂÌËÂÏ.
䂇ÁËÍÓÌÙÓÏÌÓ ÓÚÓ·‡ÊÂÌË f ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÒËÏÏÂÚ˘Ì˚Ï, ÂÒÎË, ÍÓÏÂ
ÚÓ„Ó, ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÒÚ‡ÌÚ‡ ë', ڇ͇fl ˜ÚÓ
max{dY ( f ( x ), f ( y)) : d X ( x, y) ≤ r}
≤C
min{dY ( f ( x ), f ( y)) : d X ( x, y) ≥ r}
‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x ∈ X Ë ‚ÒÂı ÔÓÎÓÊËÚÂθÌ˚ı r.
äÓÌÙÓÏ̇fl ‡ÁÏÂÌÓÒÚ¸ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) (è‡ÌÒ˛, 1989)
fl‚ÎflÂÚÒfl ËÌÙËÏÛÏÓÏ ‡ÁÏÂÌÓÒÚË ï‡ÛÒ‰ÓÙ‡ ÔÓ ‚ÒÂÏ Í‚‡ÁËÍÓÌÙÓÏÌ˚Ï
ÓÚÓ·‡ÊÂÌËflÏ ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ‚ ÌÂÍÓÚÓÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó.
ãËÔ¯ËˆÂ‚Ó ÓÚÓ·‡ÊÂÌËÂ
èÛÒÚ¸ Ò – ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡. ÑÎfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (X, dï) Ë
(Y, d Y) ÙÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl ÎËԯˈ‚˚Ï ÓÚÓ·‡ÊÂÌËÂÏ (ËÎË
Ò-ÎËԯˈ‚˚Ï, ÂÒÎË ÌÂÓ·ıÓ‰ËÏÓ ÛÔÓÏflÌÛÚ¸ ÔÓÒÚÓflÌÌÛ˛ Ò), ÂÒÎË ÌÂ‡‚ÂÌÒÚ‚Ó
dY ( f ( x ), f ( y)) ≤ cd X ( x, y)
‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y ∈ X.
Ò-ÎËÔ¯ËˆÂ‚Ó ÓÚÓ·‡ÊÂÌË ̇Á˚‚‡ÂÚÒfl ÛÍÓ‡˜Ë‚‡˛˘ËÏ, ÂÒÎË Ò = 1, Ë ÒÊËχ˛˘ËÏ, ÂÒÎË Ò < 1.
ÅË-ÎËÔ¯ËˆÂ‚Ó ÓÚÓ·‡ÊÂÌËÂ
èÛÒÚ¸ Ò > 1 – ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡. íÓ„‰‡ ‰Îfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (X,
dï) Ë (Y, dY) ÙÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl ·Ë-ÎËԯˈ‚˚Ï ÓÚÓ·‡ÊÂÌËÂÏ (ËÎË
Ò-·Ë-ÎËԯˈ‚˚Ï ÓÚÓ·‡ÊÂÌËÂÏ, Ò - ‚ÎÓÊÂÌËÂÏ), ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ ÔÓÎÓÊËÚÂθÌÓ ˜ËÒÎÓ r, ˜ÚÓ ‰Îfl β·˚ı x, y ∈ X ËÏÂ˛Ú ÏÂÒÚÓ ÌÂ‡‚ÂÌÒÚ‚‡
rd X ( x, y) ≤ dY ( f ( x ), f ( y)) ≤ crd X ( x, y).
ä‡Ê‰Ó ·Ë-ÎËÔ¯ËˆÂ‚Ó ÓÚÓ·‡ÊÂÌË fl‚ÎflÂÚÒfl Í‚‡ÁËÍÓÌÙÓÏÌ˚Ï ÏÂÚ˘ÂÒÍËÏ
ÓÚÓ·‡ÊÂÌËÂÏ.
ç‡ËÏÂ̸¯‡fl ÍÓÌÒÚ‡ÌÚ‡ Ò, ‰Îfl ÍÓÚÓÓÈ f fl‚ÎflÂÚÒfl Ò-·Ë-ÎËԯˈ‚˚Ï ÓÚÓ·‡ÊÂÌËÂÏ, ̇Á˚‚‡ÂÚÒfl ËÒ͇ÊÂÌËÂÏ f.
ÅÛ„‡ÈÌ ‰Ó͇Á‡Î, ˜ÚÓ Í‡Ê‰Ó k-ÚӘ˜ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò-‚ÎÓÊËÏÓ ‚
ÌÂÍÓÚÓÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Ò ËÒ͇ÊÂÌËÂÏ O(lnk). àÒ͇ÊÂÌË ÉÓÏÓ‚‡ ‰Îfl
ÍË‚˚ı Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ Ï‡ÍÒËχθÌÓ ÓÚÌÓ¯ÂÌË ‰ÎËÌ˚ ‰Û„Ë Í ‰ÎËÌ ıÓ‰˚.
Ñ‚Â ÏÂÚËÍË d1 Ë d2 ̇ ï ̇Á˚‚‡˛ÚÒfl ·Ë-ÎËÔ¯ËˆÂ‚Ó ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË
ÒÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍË ÔÓÎÓÊËÚÂθÌ˚ ÍÓÌÒÚ‡ÌÚ˚ Ò Ë ë, ˜ÚÓ ÌÂ‡‚ÂÌÒÚ‚Ó
cd1(x,y) ≤ d2 (x,y) ≤ Cd 1 (x,y) ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y ∈ X, Ú.Â. ÚÓʉÂÒÚ‚ÂÌÌÓÂ
ÓÚÓ·‡ÊÂÌË ÂÒÚ¸ ·Ë-ÎËÔ¯ËˆÂ‚Ó ÓÚÓ·‡ÊÂÌË (X, d1 ) ‚ (X, d2 ).
ꇂÌÓÏÂÌÓ ÏÂÚ˘ÂÒÍÓ ÓÚÓ·‡ÊÂÌËÂ
èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. îÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl
‡‚ÌÓÏÂÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÓÚÓ·‡ÊÂÌËÂÏ, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍË ‰‚Â
ÌÂÛ·˚‚‡˛˘Ë ÙÛÌ͈ËË g1 Ë g2 ËÁ ≥ 0 ‚ Ò·fl Ò lim gi (r ) = ∞ ‰Îfl i = 1, 2, ˜ÚÓ
r →∞
ÌÂ‡‚ÂÌÒÚ‚‡
g1 ( d X ( x, y) ≤ dY ( f ( x ), f ( y)) ≤ g2 ( d X ( x, y))
ËÏÂ˛Ú ÏÂÒÚÓ ‰Îfl ‚ÒÂı x, y ∈ X.
40
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÅË-ÎËÔ¯ËˆÂ‚Ó ÓÚÓ·‡ÊÂÌË ÂÒÚ¸ ‡‚ÌÓÏÂÌÓ ÏÂÚ˘ÂÒÍÓ ÓÚÓ·‡ÊÂÌË Ò
ÎËÌÂÈÌ˚ÏË ÙÛÌ͈ËflÏË g1 Ë g2.
åÂÚ˘ÂÒÍÓ ˜ËÒÎÓ ê‡ÏÒÂfl
ÑÎfl ‰‡ÌÌÓ„Ó Í·ÒÒ‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (Ó·˚˜ÌÓ lp -ÔÓÒÚ‡ÌÒÚ‚),
‰‡ÌÌÓ„Ó ˆÂÎÓ„Ó ˜ËÒ· n ≥ 1 Ë ‰‡ÌÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ· Ò ≥ 1 ÏÂÚ˘ÂÒÍÓÂ
˜ËÒÎÓ ê‡ÏÒÂfl (ËÎË Ò-ÏÂÚ˘ÂÒÍÓ ˜ËÒÎÓ ê‡ÏÒÂfl) RM(c, n) fl‚ÎflÂÚÒfl ̇˷Óθ¯ËÏ
ˆÂÎ˚Ï ˜ËÒÎÓÏ m , Ú‡ÍËÏ ˜ÚÓ ‚ ͇ʉÓÏ n-ÚӘ˜ÌÓÏ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â
ËÏÂÂÚÒfl ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÁÏÂÓÏ m, ÍÓÚÓÓ Ò-‚ÎÓÊËÏÓ ‚ Ó‰ÌÓ ËÁ ÏÂÚ˘ÂÒÍËı
ÔÓÒÚ‡ÌÒÚ‚ ËÁ (ÒÏ. [BLMN05]).
Ò-ËÁÓÏÓÙËÁÏ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚
èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. ãËԯˈ‚‡ ÌÓχ || ⋅ ||Lip ̇
ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÌ˙ÂÍÚË‚Ì˚ı ÓÚÓ·‡ÊÂÌËÈ f : X → Y ÓÔ‰ÂÎflÂÚÒfl ͇Í
f
Lip
=
dY ( f ( x ), f ( y))
.
d X ( x, y)
x , y ∈X , x ≠ y
sup
Ñ‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡ ï Ë Y ̇Á˚‚‡˛ÚÒfl Ò-ËÁÓÏÓÙÌ˚ÏË, ÂÒÎË
ÒÛ˘ÂÒÚ‚ÛÂÚ ËÌ˙ÂÍÚË‚ÌÓ ÓÚÓ·‡ÊÂÌË f : X → Y, Ú‡ÍÓ ˜ÚÓ ||f||Lip||f–1|| ≤ c.
䂇ÁËËÁÓÏÂÚËfl
èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. îÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl
Í‚‡ÁËËÁÓÏÂÚËÂÈ (ËÎË (ë,Ò)-Í‚‡ÁËËÁÓÏÂÚËÂÈ), ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ‰ÂÈÒÚ‚ËÚÂθÌ˚Â
˜ËÒ· ë > 0 Ë c ≥ 0, Ú‡ÍË ˜ÚÓ
C −1d X ( x, y) − c ≤ dY ( f ( x ), f ( y)) ≤ Cd X ( x, y) + c,
Ë Y = ∪ BdY ( f ( x ), c), Ú.Â. ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË y ∈ Y ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡Í‡fl ÚӘ͇ x ∈ X, ˜ÚÓ
z ∈X
dY(y,f(x)) ≤ c.
䂇ÁËËÁÓÏÂÚËfl Ò ë = 1 ̇Á˚‚‡ÂÚÒfl „Û·ÓÈ ËÁÓÏÂÚËÂÈ (ËÎË ÔË·ÎËÊÂÌÌÓÈ
ËÁÓÏÂÚËÂÈ). ëÏ. ê‡Ì„ Í‚‡ÁË‚ÍÎË‰Ó‚Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡.
ÉÛ·ÓÂ ‚ÎÓÊÂÌËÂ
èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. îÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl
„Û·˚Ï ‚ÎÓÊÂÌËÂÏ, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ÌÂÛ·˚‚‡˛˘Ë ÙÛÌ͈ËË ρ1, ρ 2 : [0, ∞) → [0, ∞),
Ú‡ÍË ˜ÚÓ ρ1(dX(x,y) ≤ (dY(f(x), ρ 2 (dX(x,y)) ‰Îfl ‚ÒÂı x, y ∈ X Ë lim ρ, t = +∞.
t →∞
åÂÚËÍË d1 Ë d 2 ̇ ï ̇Á˚‚‡˛ÚÒfl „Û·Ó ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË ÏÂÚË͇ÏË, ÂÒÎË
ÒÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍË ÌÂÛ·˚‚‡˛˘Ë ÙÛÌ͈ËË f, g: [0, ∞) → [0, ∞ ), ˜ÚÓ d1 ≤ f(d2 ) Ë
d2 ≤ g(d1 ).
ëÊËχ˛˘Â ÓÚÓ·‡ÊÂÌËÂ
èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. îÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl
ÒÊËχ˛˘ËÏ ÓÚÓ·‡ÊÂÌËÂÏ ( Ë Î Ë
ÒʇÚËÂÏ, ÒÚÓ„Ó ÛÍÓ‡˜Ë‚‡˛˘ËÏ
ÓÚÓ·‡ÊÂÌËÂÏ) ÂÒÎË dY(f(x), f(y)) < dX(x,y) ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı x, y ∈ X.
ä‡Ê‰Ó ÒʇÚË ËÁ ÔÓÎÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‚ Ò·fl ËÏÂÂÚ Â‰ËÌÒÚ‚ÂÌÌÛ˛ ÌÂÔÓ‰‚ËÊÌÛ˛ ÚÓ˜ÍÛ.
çÂÒÚfl„Ë‚‡˛˘Â ÓÚÓ·‡ÊÂÌËÂ
ÑÎfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (X, dï) Ë (Y, dY) ÙÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl
ÌÂÒÚfl„Ë‚‡˛˘ËÏ ÓÚÓ·‡ÊÂÌËÂÏ, ÂÒÎË dY(f(x), f(y)) < dX(x,y) ‰Îfl ‚ÒÂı x, y ∈ X.
ä‡Ê‰‡fl ÌÂÒÚfl„Ë‚‡˛˘‡fl ·ËÂ͈Ëfl ËÁ ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ ̇ Ò·fl ÂÒÚ¸ ËÁÓÏÂÚËfl.
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
41
ìÍÓ‡˜Ë‚‡˛˘Â ÓÚÓ·‡ÊÂÌËÂ
ÑÎfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (X, dï) Ë (Y, dY) ÙÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl
ÛÍÓ‡˜Ë‚‡˛˘ËÏ ÓÚÓ·‡ÊÂÌËÂÏ (ËÎË ÌÂ‡Ò¯Ëfl˛˘ËÏÒfl, ÔÓÎÛÒÊËχ˛˘ËÏ
ÓÚÓ·‡ÊÂÌËÂÏ), ÂÒÎË dY(f(x), f(y)) ≤ dX(x,y) ‰Îfl ‚ÒÂı x, y ∈ X.
ã˛·ÓÂ Ò˛˙ÂÍÚË‚ÌÓ ÛÍÓ‡˜Ë‚‡˛˘Â ÓÚÓ·‡ÊÂÌË f : X → Y fl‚ÎflÂÚÒfl
ËÁÓÏÂÚËÂÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ (X, dï) fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÏÂÚ˘ÂÒÍËÏ
ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
èÓ‰ÏÂÚËfl ÂÒÚ¸ ÛÍÓ‡˜Ë‚‡˛˘Â ÓÚÓ·‡ÊÂÌËÂ, Ú‡ÍÓ ˜ÚÓ Ó·‡Á β·Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ¯‡‡ fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ¯‡ÓÏ ÚÓ„Ó Ê ‡‰ËÛÒ‡.
Ñ‚‡ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡˛ÚÒfl (ÔÓ
ÉÓÛ˝ÒÛ) ÔÓ‰Ó·Ì˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ÛÍÓ‡˜Ë‚‡˛˘Ë ÓÚÓ·‡ÊÂÌËfl f : A → X ,
g : b → X Ë Ú‡ÍÓ χÎÓ ε > 0, ˜ÚÓ Í‡Ê‰‡fl ÚӘ͇ Ä Ì‡ıÓ‰ËÚÒfl ‚ Ô‰Â·ı ε ÓÚ
ÌÂÍÓÚÓÓÈ ÚÓ˜ÍË ÏÌÓÊÂÒÚ‚‡ Ç , ͇ʉ‡fl ÚӘ͇ Ç Ì‡ıÓ‰ËÚÒfl ‚ Ô‰Â·ı ε ÓÚ
ÌÂÍÓÚÓÓÈ ÚÓ˜ÍË ÏÌÓÊÂÒÚ‚‡ Ä Ë |d ( x, g(f(x))) – d(y, f(g(y)))| ≤ ε ‰Îfl ‚ÒÂı x ∈ A
Ë y ∈ B.
ä‡Ú„ÓËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚
ä‡Ú„ÓËfl Ψ ÒÓÒÚÓËÚ ËÁ Í·ÒÒ‡ ObΨ, ˝ÎÂÏÂÌÚ˚ ÍÓÚÓÓ„Ó Ì‡Á˚‚‡˛ÚÒfl
Ó·˙ÂÍÚ‡ÏË Í‡Ú„ÓËË, Ë Í·ÒÒ‡ åorΨ, ˝ÎÂÏÂÌÚ˚ ÍÓÚÓÓ„Ó Ì‡Á˚‚‡˛ÚÒfl ÏÓÙËÁχÏË Í‡Ú„ÓËË. ùÚË Í·ÒÒ˚ ‰ÓÎÊÌ˚ Û‰Ó‚ÎÂÚ‚ÓflÚ¸ ÔÂ˜ËÒÎÂÌÌ˚Ï ÌËÊÂ
ÛÒÎÓ‚ËflÏ.
1. ä‡Ê‰ÓÈ ÛÔÓfl‰Ó˜ÂÌÌÓÈ Ô‡ ӷ˙ÂÍÚÓ‚ Ä Ë Ç ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÏÌÓÊÂÒÚ‚Ó ç(Ä,Ç)
ÏÓÙËÁÏÓ‚.
2. ä‡Ê‰˚È ÏÓÙËÁÏ ÔË̇‰ÎÂÊËÚ ÚÓθÍÓ Ó‰ÌÓÏÛ ÏÌÓÊÂÒÚ‚Û H (A, B).
3. äÓÏÔÓÁˈËfl f ⋅ g ‰‚Ûı ÏÓÙËÁÏÓ‚ f : A → B, g : C → D ÓÔ‰ÂÎÂ̇, ÂÒÎË B = C, ‚
˝ÚÓÏ ÒÎÛ˜‡Â Ó̇ ·Û‰ÂÚ ÔË̇‰ÎÂʇڸ H(A, D).
4. äÓÏÔÓÁˈËfl ÏÓÙËÁÏÓ‚ ‡ÒÒӈˇÚ˂̇.
5. ä‡Ê‰Ó ÏÌÓÊÂÒÚ‚Ó ç(Ä, Ä) ‚Íβ˜‡ÂÚ ‚ ͇˜ÂÒڂ ‰ËÌ˘ÌÓ„Ó ˝ÎÂÏÂÌÚ‡ Ú‡ÍÓÈ
ÏÓÙËÁÏ idA, ˜ÚÓ f ⋅ idA = f Ë idA ⋅ g = g ‰Îfl β·˚ı ÏÓÙËÁÏÓ‚ f : X → Y Ë g : A → Y.
ä‡Ú„ÓËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚, Ó·ÓÁ̇˜‡Âχfl Met (ÒÏ. [Isbe64]) – ˝ÚÓ
͇Ú„ÓËfl, ‚ ÍÓÚÓÓÈ ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡ ‚˚ÒÚÛÔ‡˛Ú Í‡Í Ó·˙ÂÍÚ˚, ‡
ÛÍÓ‡˜Ë‚‡˛˘Ë ÓÚÓ·‡ÊÂÌËfl – Í‡Í ÏÓÙËÁÏ˚. Ç ‰‡ÌÌÓÈ Í‡Ú„ÓËË ‰Îfl ͇ʉӄÓ
Ó·˙ÂÍÚ‡ ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌ̇fl ËÌ˙ÂÍÚ˂̇fl Ó·ÓÎӘ͇; Ó̇ ÏÓÊÂÚ ·˚Ú¸
ÓÚÓʉÂÒÚ‚ÎÂ̇ Ò Â„Ó Ì‡ÚflÌÛÚÓÈ ÎËÌÂÈÌÓÈ Ó·ÓÎÓ˜ÍÓÈ. åÓÌÓÏÓÙËÁχÏË ‚ Met
fl‚Îfl˛ÚÒfl ËÌ˙ÂÍÚË‚Ì˚ ÛÍÓ‡˜Ë‚‡˛˘Ë ÓÚÓ·‡ÊÂÌËfl, ‡ ËÁÓÏÓÙËÁχÏË –
ËÁÓÏÂÚËË.
àÌ˙ÂÍÚË‚ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ̇Á˚‚‡ÂÚÒfl ËÌ˙ÂÍÚË‚Ì˚Ï, ÂÒÎË ‰Îfl ͇ʉӄÓ
ËÁÓÏÂÚ˘ÂÒÍÓ„Ó ‚ÎÓÊÂÌËfl f : X → X' ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d) ‚ ‰Û„Ó ÏÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó (ï', d') ÒÛ˘ÂÒÚ‚ÛÂÚ ÛÍÓ‡˜Ë‚‡˛˘Â ÓÚÓ·‡ÊÂÌË f' ËÁ X' ‚ ï Ò
f ' ⋅ f = idX , Ú.Â. ï ÂÒÚ¸ ÂÚ‡ÍÚ ï'. ùÍ‚Ë‚‡ÎÂÌÚÌÓ, ï fl‚ÎflÂÚÒfl ‡·ÒÓβÚÌ˚Ï
ÂÚ‡ÍÚÓÏ, Ú.Â. ÂÚ‡ÍÚÓÏ Í‡Ê‰Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ‚ ÍÓÚÓÓ ÓÌÓ
‚ÎÓÊËÏÓ ËÁÓÏÂÚ˘ÂÒÍË. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) fl‚ÎflÂÚÒfl ËÌ˙ÂÍÚË‚Ì˚Ï
ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ „ËÔÂ‚˚ÔÛÍÎÓ.
àÌ˙ÂÍÚ˂̇fl Ó·ÓÎӘ͇
èÓÌflÚË ËÌ˙ÂÍÚË‚ÌÓÈ Ó·ÓÎÓ˜ÍË fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl ÔÓÔÓÎÌÂÌËfl
äÓ¯Ë. èÛÒÚ¸ (ï, d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. éÌÓ ÏÓÊÂÚ ·˚Ú¸ ËÁÓÏÂÚ˘ÂÒÍË
‚ÎÓÊËÏÓ ‚ ÌÂÍÓÚÓÓ ËÌ˙ÂÍÚË‚ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( Xˆ , dˆ ); ÂÒÎË ‚ÁflÚ¸
42
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
β·Ó ڇÍÓ ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌË f : X → Xˆ , ‰Îfl ÌÂ„Ó ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌÓ ̇ËÏÂ̸¯Â ËÌ˙ÂÍÚË‚ÌÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó ( X , d ) ÔÓÒÚ‡ÌÒÚ‚‡ ( Xˆ , dˆ ),
ÒÓ‰Âʇ˘Â f (X), ÍÓÚÓÓ ̇Á˚‚‡ÂÚÒfl ËÌ˙ÂÍÚË‚ÌÓÈ Ó·ÓÎÓ˜ÍÓÈ ï . éÌÓ ËÁÓÏÂÚ˘ÂÒÍË ÚÓʉÂÒÚ‚ÂÌÌÓ Ì‡ÚflÌÛÚÓÈ ÎËÌÂÈÌÓÈ Ó·ÓÎӘ͠ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d).
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ‚Ô‡‰‡ÂÚ ÒÓ Ò‚ÓÂÈ ËÌ˙ÂÍÚË‚ÌÓÈ Ó·ÓÎÓ˜ÍÓÈ ÚÓ„‰‡ Ë
ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ËÌ˙ÂÍÚË‚Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
ç‡ÚflÌÛÚÓ ‡Ò¯ËÂÌËÂ
ê‡Ò¯ËÂÌË (ï', d') ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d) ̇Á˚‚‡ÂÚÒfl ̇ÚflÌÛÚ˚Ï
‡Ò¯ËÂÌËÂÏ, ÂÒÎË ‰Îfl ͇ʉÓÈ ÔÓÎÛÏÂÚËÍË d" ̇ X', Û‰Ó‚ÎÂÚ‚Ófl˛˘ÂÈ ÛÒÎÓ‚ËflÏ
d"(x1, x 2 ) = d(x1, x 2 ) ‰Îfl ‚ÒÂı x 1 , x 2 ∈ X Ë d"(y1, y 2 ) ≤ d'(y1, y 2 ) ‰Îfl ‚ÒÂı y 1 , y 2 ∈ X', ËÏÂÂÏ
d"(y1, y2) = d'(y1, y2) ‰Îfl ‚ÒÂı y1, y2 ∈ X'.
ç‡ÚflÌÛÚ‡fl ÎËÌÂÈ̇fl Ó·ÓÎӘ͇ – ÛÌË‚Â҇θÌÓ ̇ÚflÌÛÚÓ ‡Ò¯ËÂÌË ï,
Ú.Â. Ó̇ ÒÓ‰ÂÊËÚ, Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ͇ÌÓÌ˘ÂÒÍËı ËÁÓÏÂÚËÈ, ͇ʉÓ ̇ÚflÌÛÚÓÂ
‡Ò¯ËÂÌË ï, ÌÓ Ò‡Ï‡ ÒÓ·ÒÚ‚ÂÌÌÓ„Ó Ì‡ÚflÌÛÚÓ„Ó ‡Ò¯ËÂÌËfl Ì ËÏÂÂÚ.
ç‡ÚflÌÛÚ‡fl ÎËÌÂÈ̇fl Ó·ÓÎӘ͇
ÇÓÁ¸ÏÂÏ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ÍÓ̘ÌÓ„Ó ‰Ë‡ÏÂÚ‡ Ë ‡ÒÒÏÓÚËÏ ‚
ÌÂÏ ÏÌÓÊÂÒÚ‚Ó X = {f : X → }. ç‡ÚflÌÛÚ‡fl ÎËÌÂÈ̇fl Ó·ÓÎӘ͇ T(X,d) ÔÓÒÚ‡ÌÒÚ‚‡
(ï, d) ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó T(X,d) = {f ∈ X : f(x) = = sup ( d ( x, y) − f ( y)) ‰Îfl
y ∈X
‚ÒÂı x ∈ X}, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ, ÔÓÓʉ‡ÂÏÓÈ Ì‡ T(X,d) ÌÓÏÓÈ f = sup f ( x ).
x ∈X
åÌÓÊÂÒÚ‚Ó ï ÏÓÊÌÓ ÓÚÓʉÂÒÚ‚ËÚ¸ Ò ÏÌÓÊÂÒÚ‚ÓÏ {hx ∈ T(X, d) : hx(y) = d(y,x)}
ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, Ò ÏÌÓÊÂÒÚ‚ÓÏ T0(X, D) = {f ∈ T(X, d) : 0 ∈ f(X)}. àÌ˙ÂÍÚ˂̇fl
Ó·ÓÎӘ͇ ( X , d ) ÏÌÓÊÂÒÚ‚‡ ï ÏÓÊÂÚ ·˚Ú¸ ËÁÓÏÂÚ˘ÂÒÍË ÓÚÓʉÂÒÚ‚ÎÂ̇ Ò
̇ÚflÌÛÚÓÈ ÎËÌÂÈÌÓÈ Ó·ÓÎÓ˜ÍÓÈ T(X,d) ͇Í
X → T ( X , d ), x → hX ∈ T ( X , d ) : hX ( y) = d ( f ( y), x ).
ç‡ÔËÏÂ, ÂÒÎË ï = {x 1 , x2}, ÚÓ T (X,d) fl‚ÎflÂÚÒfl ËÌÚÂ‚‡ÎÓÏ ‰ÎËÌ˚ d(x1, x2).
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ‚Ô‡‰‡ÂÚ ÒÓ Ò‚ÓÂÈ Ì‡ÚflÌÛÚÓÈ ÎËÌÂÈÌÓÈ Ó·ÓÎÓ˜ÍÓÈ
ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ËÌ˙ÂÍÚË‚Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
ç‡ÚflÌÛÚÛ˛ ÎËÌÂÈÌÛ˛ Ó·ÓÎÓ˜ÍÛ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d) ÍÓ̘ÌÓ„Ó
‰Ë‡ÏÂÚ‡ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÌÓ„Ó„‡ÌÌ˚È ÍÓÏÔÎÂÍÒ. ê‡ÁÏÂÌÓÒÚ¸ Ú‡ÍÓ„Ó
ÍÓÏÔÎÂÍÒ‡ ̇Á˚‚‡ÂÚÒfl ‡ÁÏÂÌÓÒÚ¸˛ ÑÂÒÒ‡ (ËÎË ÍÓÏ·Ë̇ÚÓÌÓÈ ‡ÁÏÂÌÓÒÚ¸˛)
ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d).
ÑÂÈÒÚ‚ËÚÂθÌÓ ‰Â‚Ó
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ̇Á˚‚‡ÂÚÒfl (ÔÓ íËÚÒÛ, 1977) ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï
‰Â‚ÓÏ (ËÎË -‰Â‚ÓÏ), ÂÒÎË ‰Îfl β·˚ı x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌ̇fl ‰Û„‡ ÓÚ
ı Í Û Ë ˝Ú‡ ‰Û„‡ – „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ. ÑÂÈÒÚ‚ËÚÂθÌÓ ‰ÂÂ‚Ó Ú‡ÍÊ ̇Á˚‚‡ÂÚÒfl
ÏÂÚ˘ÂÒÍËÏ ‰Â‚ÓÏ (ÒΉÛÂÚ ÓÚ΢‡Ú¸ ÓÚ ÏÂÚ˘ÂÒÍÓ„Ó ‰Â‚‡ ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı,
ÒÏ. „Î. 17).
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) fl‚ÎflÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ‰Â‚ÓÏ ÚÓ„‰‡ Ë
ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ÔÛÚ¸-Ò‚flÁÌ˚Ï Ë 0-„ËÔÂ·Ó΢ÂÒÍËÏ ÔÓ ÉÓÏÓ‚Û
(Ú.Â. Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÌÂ‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ).
ÑÂÈÒÚ‚ËÚÂθÌ˚ ‰Â‚¸fl ÂÒÚ¸ ‚ ÚÓ˜ÌÓÒÚË ‰‚ÓÔÓ‰Ó·Ì˚ ÏÂÚ˘ÂÒÍË ÔÓ
ÒÚ‡ÌÒÚ‚‡, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏË. Ñ‚ÓÔÓ‰Ó·Ì˚ ÏÂÚ˘ÂÒÍË ÔÓ
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
43
ÒÚ‡ÌÒÚ‚‡ ÔÓ ÓÔ‰ÂÎÂÌ˲ fl‚Îfl˛ÚÒfl ÏÂÚ˘ÂÒÍËÏË ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË ‰ÂÈÒÚ
‚ËÚÂθÌ˚ı ‰Â‚¸Â‚, ‡ ‰ÂÈÒÚ‚ËÚÂθÌ˚ ‰Â‚¸fl fl‚Îfl˛ÚÒfl ‚ ÚÓ˜ÌÓÒÚË Ë Ì ˙
ÂÍÚË‚Ì˚ÏË ÏÂÚ˘ÂÒÍËÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË ÒÂ‰Ë ‰‚ÓÔÓ‰Ó·Ì˚ı ÔÓÒÚ‡ÌÒÚ‚.
ÖÒÎË (ï, d) – ÍÓ̘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ Ì‡ÚflÌÛÚ‡fl ÎËÌÂÈ̇fl
Ó·ÓÎӘ͇ í(ï, d) fl‚ÎflÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ‰Â‚ÓÏ Ë ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl ͇Í
·ÂÌÓ ‚Á‚¯ÂÌÌÓ ÚÂÓÂÚËÍÓ-„‡ÙÓ‚Ó ‰Â‚Ó.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ÔÓÎÌ˚Ï ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ‰Â‚ÓÏ ÚÓ„‰‡ Ë
ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ „ËÔÂ‚˚ÔÛÍÎÓ Ë Î˛·˚ ‰‚Â Â„Ó ÚÓ˜ÍË ÒÓ‰ËÌfl˛ÚÒfl
ÏÂÚ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ.
èÎÓÒÍÓÒÚ¸ 2 Ò Ô‡ËÊÒÍÓÈ ÏÂÚËÍÓÈ Ë ÏÂÚËÍÓÈ ÎËÙÚ‡ (ÒÏ. „Î. 19) fl‚Îfl˛ÚÒfl
ÔËÏÂ‡ÏË -‰Â‚‡.
1.3. éÅôàÖ êÄëëíéüçàü
ÑËÒÍÂÚ̇fl ÏÂÚË͇
ÑËÒÍÂÚ̇fl (ËÎË Ú˂ˇθ̇fl) ÏÂÚË͇ d ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ï,
ÓÔ‰ÂÎflÂχfl Í‡Í d(x, y) = 1 ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı x, y ∈ X (Ë d(x, x) = 0). åÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ̇Á˚‚‡ÂÚÒfl ‰ËÒÍÂÚÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
ÄÌÚˉËÒÍÂÚ̇fl ÔÓÎÛÏÂÚË͇
ÄÌÚˉËÒÍÂÚÌÓÈ ÔÓÎÛÏÂÚËÍÓÈ d ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ï,
ÓÔ‰ÂÎflÂχfl Í‡Í d(x, y) = 0 ‰Îfl ‚ÒÂı x, y ∈ X.
ù͂ˉËÒÚ‡ÌÚ̇fl ÏÂÚË͇
ÑÎfl ÏÌÓÊÂÒÚ‚‡ ï Ë ÔÓÎÓÊËÚÂθÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ· t ˝Í‚ˉËÒÚ‡ÌÚÌÓÈ
ÏÂÚËÍÓÈ d ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ï, ÓÔ‰ÂÎflÂχfl Í‡Í d(x, y) = t ‰Îfl ‚ÒÂı
‡Á΢Ì˚ı x, y ∈ X (Ë d(x, ı) = 0).
(1, 2)-Ç-ÏÂÚË͇
ÑÎfl ÏÌÓÊÂÒÚ‚‡ ï (1, 2)-Ç-ÏÂÚË͇ d fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ï, Ú‡ÍÓÈ ˜ÚÓ ‰Îfl
β·Ó„Ó x ∈ X ÍÓ΢ÂÒÚ‚Ó ÚÓ˜ÂÍ y ∈ X Ò d(x, y) = 1 Ì Ô‚˚¯‡ÂÚ Ç, ‡ ‚Ò ‰Û„ËÂ
‡ÒÒÚÓflÌËfl ‡‚Ì˚ 2. (1, 2)-Ç-ÏÂÚË͇ fl‚ÎflÂÚÒfl ÛÒ˜ÂÌÌÓÈ ÏÂÚËÍÓÈ „‡Ù‡ Ò Ï‡ÍÒËχθÌÓÈ ÒÚÂÔÂ̸˛ ‚Â¯ËÌ, ‡‚ÌÓÈ Ç.
à̉ۈËÓ‚‡Ì̇fl ÏÂÚË͇
à̉ۈËÓ‚‡ÌÌÓÈ ÏÂÚËÍÓÈ (ËÎË ÓÚÌÓÒËÚÂθÌÓÈ ÏÂÚËÍÓÈ) ̇Á˚‚‡ÂÚÒfl ÒÛÊÂÌËÂ
d' ÏÂÚËÍË d (̇ ÏÌÓÊÂÒÚ‚Â ï) ̇ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï' ÏÌÓÊÂÒÚ‚‡ ï.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X', d') ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ
ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d), ‡ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl
ÏÂÚ˘ÂÒÍËÏ ‡Ò¯ËÂÌËÂÏ (X', d').
ÑÓÏËÌËÛ˛˘‡fl ÏÂÚË͇
èÛÒÚ¸ d Ë d1 – ÏÂÚËÍË Ì‡ ÏÌÓÊÂÒÚ‚Â ï. ÉÓ‚ÓËÚÒfl, ˜ÚÓ d1 ‰ÓÏËÌËÛÂÚ Ì‡‰ d, ÂÒÎË
d1 (ı, Û) ≥ d(x, y) ‰Îfl ‚ÒÂı x, y ∈ X.
ùÍ‚Ë‚‡ÎÂÌÚÌ˚ ÏÂÚËÍË
Ñ‚Â ÏÂÚËÍË d 1 Ë d2 ̇ ÏÌÓÊÂÒÚ‚Â ï ̇Á˚‚‡˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÓÌË
ÓÔ‰ÂÎfl˛Ú Ó‰ÌÛ Ë ÚÛ Ê ÚÓÔÓÎӄ˲ ̇ ï, Ú.Â., ÂÒÎË ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË x0 ∈ X
ÓÚÍ˚Ú˚È ÏÂÚ˘ÂÒÍËÈ ¯‡ Ò ˆÂÌÚÓÏ ‚ x0, Á‡‰‡ÌÌ˚È ÓÚÌÓÒËÚÂθÌÓ d1 , ÒÓ‰ÂÊËÚ
ÓÚÍ˚Ú˚È ÏÂÚ˘ÂÒÍËÈ ¯‡ Ò ÚÂÏ Ê ˆÂÌÚÓÏ, ÌÓ Á‡‰‡ÌÌ˚È ÓÚÌÓÒËÚÂθÌÓ d2 ,
Ë Ì‡Ó·ÓÓÚ.
44
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
Ñ‚Â ÏÂÚËÍË d1 Ë d2 ·Û‰ÛÚ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ‰Îfl ͇ʉӄÓ
ε > 0 Ë Í‡Ê‰Ó„Ó x ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ δ > 0, Ú‡ÍÓ ˜ÚÓ ËÁ d1 (x,y) ≤ δ ÒΉÛÂÚ d2 (x,y) ≤ ε Ë
̇ӷÓÓÚ, ËÁ d2 (x,y) ≤ δ ÒΉÛÂÚ d1(x,y) ≤ ε.
ÇÒ ÏÂÚËÍË Ì‡ ÍÓ̘ÌÓÏ ÏÌÓÊÂÒÚ‚Â fl‚Îfl˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË; ÓÌË ÔÓÓʉ‡˛Ú ‰ËÒÍÂÚÌÛ˛ ÚÓÔÓÎӄ˲.
èÓÎ̇fl ÏÂÚË͇
èÛÒÚ¸ (X,d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ÉÓ‚ÓflÚ, ˜ÚÓ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ {x n }n ,
xn ∈ X ÒıÓ‰ËÚÒfl Í x* ∈ X, ÂÒÎË lim d ( x n , x ∗ ) = 0, Ú.Â. ‰Îfl β·Ó„Ó ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ
n →∞
n0 ∈ , Ú‡ÍÓ ˜ÚÓ d(xn, x*) < ε ‰Îfl β·Ó„Ó n > n0.
èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ {xn}n , x n ∈ X ̇Á˚‚‡ÂÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ äÓ¯Ë, ÂÒÎË
ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ n0 ∈ , ˜ÚÓ d(x n , xm) < ε ‰Îfl β·˚ı m, n > n0 .
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÔÓÎÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÂÒÎË Í‡Ê‰‡fl Â„Ó ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ äÓ¯Ë ÒıÓ‰ËÚÒfl. Ç ˝ÚÓÏ ÒÎÛ˜‡Â
ÏÂÚË͇ d ̇Á˚‚‡ÂÚÒfl ÔÓÎÌÓÈ ÏÂÚËÍÓÈ.
èÓÔÓÎÌÂÌË äÓ¯Ë
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X , d ) Â„Ó ÔÓÔÓÎÌÂÌËÂÏ äÓ¯Ë Ì‡Á˚‚‡ÂÚÒfl
ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X* , d* ) ̇ ÏÌÓÊÂÒÚ‚Â X* ‚ÒÂı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË
ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ äÓ¯Ë, „‰Â ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ {xn}n ̇Á˚‚‡ÂÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌÓÈ {yn}n , ÂÒÎË lim d ( x n , yn ) = 0. åÂÚË͇ d* ÓÔ‰ÂÎflÂÚÒfl ͇Í
n →∞
d ∗ ( x ∗ , y ∗ ) lim d ( x n , yn )
n →∞
‰Îfl β·˚ı x*, y* ∈ X, „‰Â {x n }n (ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, {y n }n ) – β·ÓÈ ˝ÎÂÏÂÌÚ ËÁ Í·ÒÒ‡
˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË x* (ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ y * ).
èÓÔÓÎÌÂÌË äÓ¯Ë (X* , d* ) fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌ˚Ï Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ËÁÓÏÂÚËË
ÔÓÎÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ‚ ÍÓÚÓÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d)
‚Í·‰˚‚‡ÂÚÒfl Í‡Í ÔÎÓÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó.
èÓÔÓÎÌÂÌËÂÏ äÓ¯Ë ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (, |x–y|) ‡ˆËÓ̇θÌ˚ı ˜ËÒÂÎ
fl‚ÎflÂÚÒfl ˜ËÒÎÓ‚‡fl Ôflχfl (, |x–y|). Ň̇ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÔÓÔÓÎÌÂÌËÂÏ
äÓ¯Ë ÌÓÏËÓ‚‡ÌÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V , || ⋅ ||) Ò ÏÂÚËÍÓÈ ÌÓÏ˚
||x–y||. ÉËθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÒÎÛ˜‡˛ ÌÓÏ˚ Ò͇ÎflÌÓ„Ó
ÔÓËÁ‚‰ÂÌËfl x = ( x, x ).
é„‡Ì˘ÂÌ̇fl ÏÂÚË͇
åÂÚË͇ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â – ‡ÒÒÚÓflÌËÂ) d ̇ ÏÌÓÊÂÒÚ‚Â ï ̇Á˚‚‡ÂÚÒfl
Ó„‡Ì˘ÂÌÌÓÈ, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÒÚ‡ÌÚ‡ ë > 0, ڇ͇fl ˜ÚÓ d(x,y) ≤ C ‰Îfl β·˚ı x,
y ∈ X.
í‡Í, ̇ÔËÏÂ, ÂÒÎË d – ÏÂÚË͇ ̇ ï, ÚÓ ÏÂÚË͇ D ̇ ï, ÓÔ‰ÂÎflÂχfl ͇Í
d ( x, y)
D( x, y) =
, Ó„‡Ì˘Â̇ Ë ë = 1.
1 + d ( x, y)
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) Ò Ó„‡Ì˘ÂÌÌÓÈ ÏÂÚËÍÓÈ d ̇Á˚‚‡ÂÚÒfl
Ó„‡Ì˘ÂÌÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
ÇÔÓÎÌ ӄ‡Ì˘ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌ˚Ï, ÂÒÎË ‰Îfl
Í‡Ê‰Ó„Ó ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓ̘̇fl ε-ÒÂÚ¸, Ú.Â. ÍÓ̘ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó M ⊂ X,
45
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
Ú‡ÍÓ ˜ÚÓ ‡ÒÒÚÓflÌË ÓÚ ÚÓ˜ÍË ‰Ó ÏÌÓÊÂÒÚ‚‡ ‰Îfl β·Ó„Ó (ÒÏ. ÇÔÓÎÌ ӄ‡Ì˘ÂÌÌÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó, „Î. 2).
ÇÒflÍÓ ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌ˚Ï
Ë ÒÂÔ‡‡·ÂθÌ˚Ï.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡,
ÍÓ„‰‡ Â„Ó ÔÓÔÓÎÌÂÌË äÓ¯Ë fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
CÂÔ‡‡·ÂθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÒÂÔ‡‡·ÂθÌ˚Ï, ÂÒÎË ÓÌÓ ÒÓ‰ÂÊËÚ
Ò˜ÂÚÌÓ ÔÎÓÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó, Ú.Â. ÌÂÍÓ ҘÂÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó, Ò ÔÓÏÓ˘¸˛
ÍÓÚÓÓ„Ó ÏÓ„ÛÚ ‡ÔÔÓÍÒËÏËÓ‚‡Ú¸Òfl ‚ÒÂ Â„Ó ˝ÎÂÏÂÌÚ˚.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÒÂÔ‡‡·ÂθÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡
ÓÌÓ ‚ÚÓ˘ÌÓ-Ò˜ÂÚÌÓ, Ë ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ
ãË̉ÂÎÂÙ‡.
åÂÚ˘ÂÒÍËÈ ÍÓÏÔ‡ÍÚ
åÂÚ˘ÂÒÍËÈ ÍÓÏÔ‡ÍÚ (ËÎË ÍÓÏÔ‡ÍÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ‚Òfl͇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ËÏÂÂÚ ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ äÓ¯Ë Ë ˝ÚË ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚË fl‚Îfl˛ÚÒfl ÒıÓ‰fl˘ËÏËÒfl.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ
‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌÓÂ Ë ÔÓÎÌÓÂ. èÓ‰ÏÌÓÊÂÒÚ‚Ó Â‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n fl‚ÎflÂÚÒfl
ÍÓÏÔ‡ÍÚÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ Ó„‡Ì˘ÂÌÓ Ë Á‡ÏÍÌÛÚÓ.
ëÓ·ÒÚ‚ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï (ËÎË ÍÓ̘ÌÓ ÍÓÏÔ‡ÍÚÌ˚Ï), ÂÒÎË Î˛·ÓÈ Á‡ÏÍÌÛÚ˚È ÏÂÚ˘ÂÒÍËÈ ¯‡ ‚ ˝ÚÓÏ ÔÓÒÚ‡ÌÒÚ‚Â fl‚ÎflÂÚÒfl
ÍÓÏÔ‡ÍÚÌ˚Ï. ÇÒflÍÓ ÒÓ·ÒÚ‚ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï.
Ò-‡‚ÌÓÏÂÌÓ ÒÓ‚Â¯ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
ä‡Ê‰˚È ÒÓ·ÒÚ‚ÂÌÌ˚È ÏÂÚ˘ÂÒÍËÈ ¯‡ ‡‰ËÛÒ‡ r ‚ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â
ËÏÂÂÚ ‰Ë‡ÏÂÚ Ì ·ÓΠ2r. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl Ò-‡‚ÌÓÏÂÌÓ
ÒÓ‚Â¯ÂÌÌ˚Ï, 0 < c ≤ 1, ÂÒÎË ˝ÚÓÚ ‰Ë‡ÏÂÚ ÒÓÒÚ‡‚ÎflÂÚ Ì ÏÂÌ 2Òr.
êç ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl êç ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË
ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÄÚÒÛ‰ÊË), ÂÒÎË Î˛·‡fl ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl ËÁ ÌÂ„Ó ‚ ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ‡‚ÌÓÏÂÌÓ ÌÂÔÂ˚‚ÌÓÈ.
ä‡Ê‰˚È ÏÂÚ˘ÂÒÍËÈ ÍÓÏÔ‡ÍÚ fl‚ÎflÂÚÒfl êç ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÇÒflÍÓÂ
êç ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï.
èÓθÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
èÓθÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÌÓ ÒÂÔ‡‡·ÂθÌÓ ÏÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ëÛÒÎË̇, ÂÒÎË
ÓÌÓ fl‚ÎflÂÚÒfl ÌÂÔÂ˚‚Ì˚Ï Ó·‡ÁÓÏ ÔÓθÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡.
åÂÚ˘ÂÒ͇fl ÚÓÈ͇ (ËÎË mm-ÔÓÒÚ‡ÌÒÚ‚Ó) fl‚ÎflÂÚÒfl ÔÓθÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ
(X, d) Ò ·ÓÂ΂ÓÈ ‚ÂÓflÚÌÓÒÚÌÓÈ ÏÂÓÈ µ, Ú.Â. ÌÂÓÚˈ‡ÚÂθÌÓÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ
ÙÛÌ͈ËÂÈ µ ̇ ·ÓÂ΂ÓÈ σ-‡Î„· ÏÌÓÊÂÒÚ‚‡ ï ÒÓ ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË:
µ( An ) ‰Îfl β·ÓÈ ÍÓ̘ÌÓÈ ËÎË Ò˜ÂÚÌÓÈ ÒÓ‚ÓÍÛÔÌÓÒÚË
µ(Ø) = 0, µ(X) = µ(∪ n An ) =
∑n
ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÏÌÓÊÂÒÚ‚ A n ∈ .
èÛÒÚ¸ (X, τ) – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. σ-‡Î„·ÓÈ Ì‡ ï ̇Á˚‚‡ÂÚÒfl
ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï, ӷ·‰‡˛˘‡fl ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË:
46
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
0≥÷ ∈ @, X\U ∈ ‰Îfl U ∈ Ë ∪ n An ∈ ‰Îfl ÍÓ̘ÌÓÈ ËÎË Ò˜ÂÚÌÓÈ ÒÓ‚ÓÍÛÔÌÓÒÚË
{An }n , An ∈ . σ-‡Î„·‡ ̇ ï, ÍÓÚÓ‡fl ÒÓÓÚÌÓÒËÚÒfl Ò ÚÓÔÓÎÓ„ËÂÈ Ì‡ ï, Ú.Â. ‚Íβ˜‡ÂÚ ‚Ò ÓÚÍ˚Ú˚Â Ë Á‡ÏÍÌÛÚ˚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÏÌÓÊÂÒÚ‚‡ ï, ̇Á˚‚‡ÂÚÒfl ·ÓÂ΂ÓÈ
σ-‡Î„·ÓÈ ÏÌÓÊÂÒÚ‚‡ ï . ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ·ÓÂ΂Ó
ÔÓÒÚ‡ÌÒÚ‚Ó, Ú.Â. ÏÌÓÊÂÒÚ‚Ó, Ò̇·ÊÂÌÌÓ ·ÓÂ΂ÓÈ σ-‡Î„·ÓÈ.
åÂÚË͇ ÌÓÏ˚
ÑÎfl ‰‡ÌÌÓ„Ó ÌÓÏËÓ‚‡ÌÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V, ||⋅ ||) ÏÂÚË͇
ÌÓÏ˚ ̇ V ÓÔ‰ÂÎflÂÚÒfl ͇Í
|| x–y ||
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V, || x–y ||) ̇Á˚‚‡ÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ,
ÂÒÎË ÓÌÓ ÔÓÎÌÓÂ. èËÏÂ‡ÏË ÏÂÚËÍ ÌÓÏ˚ fl‚Îfl˛ÚÒfl lp - Ë Lp -ÏÂÚËÍË, ‚ ˜‡ÒÚÌÓÒÚË
‚ÍÎˉӂ‡ ÏÂÚË͇.
åÂÚË͇ ÔÛÚË
ÇÓÁ¸ÏÂÏ Ò‚flÁÌÓÈ „‡Ù G = (V,E). Ö„Ó ÏÂÚËÍÓÈ ÔÛÚË dpath ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇
V, ÓÔ‰ÂÎflÂχfl Í‡Í ‰ÎË̇ (Ú.Â. ÍÓ΢ÂÒÚ‚Ó ·Â) Í‡Ú˜‡È¯Â„Ó ÔÛÚË,
ÒÓ‰ËÌfl˛˘Â„Ó ‰‚ ‰‡ÌÌ˚ ‚Â¯ËÌ˚ ı Ë Û „‡Ù‡ G (ÒÏ. „Î. 15).
åÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl
ÇÓÁ¸ÏÂÏ ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó ï Ë ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó (Û̇Ì˚ı) ÓÔÂ‡ˆËÈ
‰‡ÍÚËÓ‚‡ÌËfl ̇ ï. åÂÚËÍÓÈ ‰‡ÍÚËÓ‚‡ÌËfl ̇ ï ·Û‰ÂÚ ÏÂÚË͇ ÔÛÚË „‡Ù‡
Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ ï Ë ·ÓÏ ıÛ, ÂÒÎË Û ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ ËÁ ı
ÔÓÒ‰ÒÚ‚ÓÏ Ó‰ÌÓÈ ËÁ ÓÔÂ‡ˆËÈ ‚ .
åÂÚË͇ „‡ÎÂÂË
ä‡ÏÂ̇fl ÒËÒÚÂχ – ÏÌÓÊÂÒÚ‚Ó ï (˝ÎÂÏÂÌÚ˚ ÍÓÚÓÓ„Ó Ì‡Á˚‚‡˛ÚÒfl ͇ÏÂ‡ÏË),
Ò̇·ÊÂÌÌÓ n ÓÚÌÓ¯ÂÌËflÏË ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ~i, 1 ≤ i ≤ n. ɇÎÂÂfl – ڇ͇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ͇ÏÂ ı1 ,…, ım, ˜ÚÓ ıi ~j x i+1 ‰Îfl Í‡Ê‰Ó„Ó i Ë ÌÂÍÓÚÓÓ„Ó j, Á‡‚ËÒfl˘Â„Ó
ÓÚ i. åÂÚË͇ „‡ÎÂÂË ÂÒÚ¸ ‡Ò¯ËÂÌ̇fl ÏÂÚË͇ ̇ ï, ÓÔ‰ÂÎflÂχfl Í‡Í ‰ÎË̇
Í‡Ú˜‡È¯ÂÈ „‡ÎÂÂË, ÒÓ‰ËÌfl˛˘ÂÈ ı Ë y ∈ X (Ë Í‡Í ∞, ÂÒÎË ÒÓ‰ËÌfl˛˘ÂÈ x Ë y
„‡ÎÂÂË Ì ÒÛ˘ÂÒÚ‚ÛÂÚ). åÂÚË͇ „‡ÎÂÂË fl‚ÎflÂÚÒfl (‡Ò¯ËÂÌÌÓÈ) ÏÂÚËÍÓÈ ÔÛÚË
„‡Ù‡ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ ï Ë ·ÓÏ ıÛ, ÂÒÎË ı ~i y ‰Îfl ÌÂÍÓÚÓÓ„Ó 1 ≤ i ≤ n.
êËχÌÓ‚‡ ÏÂÚË͇
ÇÓÁ¸ÏÂÏ Ò‚flÁÌÓ n-ÏÂÌÓ „·‰ÍÓ ÏÌÓ„ÓÓ·‡ÁË Mn . Ö„Ó ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ
̇Á˚‚‡ÂÚÒfl ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ÒËÏÏÂÚ˘Ì˚ı ·ËÎËÌÂÈÌ˚ı
ÙÓÏ ((gij)) ̇ ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı ÏÌÓ„ÓÓ·‡ÁËfl Mn , ÍÓÚÓ˚ „·‰ÍÓ
ËÁÏÂÌfl˛ÚÒfl ÓÚ ÚÓ˜ÍË Í ÚÓ˜ÍÂ. ÑÎË̇ ÍË‚ÓÈ γ ̇ Mn ‚˚‡Ê‡ÂÚÒfl ͇Í
∫γ ∑i, j gij dxi dx j ,
‡ ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ Mn , ̇Á˚‚‡Âχfl ËÌÓ„‰‡ ËχÌÓ‚˚Ï
‡ÒÒÚÓflÌËÂÏ, ÓÔ‰ÂÎflÂÚÒfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı β·˚ ‰‚Â
ÚÓ˜ÍË x, y ∈ Mn (ÒÏ. „Î. 7).
èÓÂÍÚ˂̇fl ÏÂÚË͇
èÓÂÍÚË‚ÌÓÈ ÏÂÚËÍÓÈ d ̇Á˚‚‡ÂÚÒfl ÌÂÔÂ˚‚̇fl ÏÂÚË͇ ̇ n, Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÛÒÎӂ˲
d(x, z) = d(x, y) + d(y, z)
‰Îfl β·˚ı ÍÓÎÎË̇Ì˚ı ÚÓ˜ÂÍ x, y, z, ‡ÒÔÓÎÓÊÂÌÌ˚ı ‚ ˝ÚÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË
̇ Ó·˘ÂÈ ÔflÏÓÈ. óÂÚ‚ÂÚ‡fl ÔÓ·ÎÂχ ÉËθ·ÂÚ‡ (1900 „.) ÒÓÒÚÓËÚ ‚ Í·Ò-
47
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
ÒËÙË͇ˆËË Ú‡ÍËı ÏÂÚËÍ; ˝ÚÓ Ò‰Â·ÌÓ ÚÓθÍÓ ‰Îfl ‡ÁÏÂÌÓÒÚË n = 2 ([Amba76]);
ÒÏ. „Î. 6.
ä‡Ê‰‡fl ÏÂÚË͇ ÌÓÏ˚ ̇ n fl‚ÎflÂÚÒfl ÔÓÂÍÚË‚ÌÓÈ. ä‡Ê‰‡fl ÔÓÂÍÚ˂̇fl
ÏÂÚË͇ ̇ 2 fl‚ÎflÂÚÒfl „ËÔÂÏÂÚËÍÓÈ.
åÂÚË͇ ÔÓËÁ‚‰ÂÌËfl
ÇÓÁ¸ÏÂÏ n ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (X1 , d2 ), (X2 , d 2 ),…, (Xn , dn ). åÂÚËÍÓÈ
ÔÓËÁ‚‰ÂÌËfl ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ‰Â͇ÚÓ‚ÓÏ ÔÓËÁ‚‰ÂÌËË X1 × X2 × …× Xn =
= {x = (x 1 , x2,…, xn): x1 ∈ Xn } ÓÔ‰ÂÎflÂχfl Í‡Í ÙÛÌ͈Ëfl ÓÚ d1 ,…,dn (ÒÏ. „Î. 4).
ï˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇
ï˝ÏÏËÌ„Ó‚ÓÈ ÏÂÚËÍÓÈ dH ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ n , Á‡‰‡‚‡Âχfl ͇Í
|{i : 1 ≤ i ≤ n, xi ≠ yi}|
ç‡ ·Ë̇Ì˚ı ‚ÂÍÚÓ‡ı x, y ∈ {0,1}n ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌËÂ Ë l1 -ÏÂÚË͇
ÒÓ‚Ô‡‰‡˛Ú.
åÂÚË͇ ãË
èÛÒÚ¸ m, n , m ≥ 2. åÂÚËÍÓÈ ãË d L e e ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ nm =
= {0, 1, …, m − 1}n , ÓÔ‰ÂÎflÂχfl ͇Í
∑
min{| xi − yi |, m − | xi − yi |},
1≤ i ≤ n
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (
∑ m , d Lee ) fl‚ÎflÂÚÒfl ‰ËÒÍÂÚÌ˚Ï ‡Ì‡ÎÓ„ÓÏ ˝ÎÎËÔn
Ú˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡.
åÂÚË͇ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË
èÛÒÚ¸ Á‡‰‡ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÏÂÓÈ (Ω , , µ). èÓÎÛÏÂÚËÍÓÈ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË (ËÎË ÔÓÎÛÏÂÚËÍÓÈ ÏÂ˚) d∆ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â
µ = {A ∈ : µ() < ∞}, ÓÔ‰ÂÎflÂχfl ͇Í
µ(A∆B),
„‰Â A∆B = (A ∪ B)\(A ∩ B) – ÒËÏÏÂÚ˘ÂÒ͇fl ‡ÁÌÓÒÚ¸ ÏÌÓÊÂÒÚ‚ Ä Ë B ∈ µ.
ꇂÂÌÒÚ‚Ó d ∆(A, B) = 0 ËÏÂÂÚ ÏÂÒÚÓ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ µ(A∆B) = 0,
Ú.Â. ÍÓ„‰‡ Ä Ë Ç ÔÓ˜ÚË ‚Ò˛‰Û ‡‚Ì˚. éÚÓʉÂÒÚ‚Îflfl ‰‚‡ ÏÌÓÊÂÒÚ‚‡ A, B ∈ µ, ÂÒÎË
µ(A∆B) = 0, ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË (ËÎË ‡ÒÒÚÓflÌË î¯–
çËÍÓ‰Ëχ–ÄÓÌÁfl̇, ÏÂÚËÍÛ ÏÂ˚).
ÖÒÎË µ – ͇‰Ë̇θÌÓ ˜ËÒÎÓ, Ú.Â. µ(A) = | A | fl‚ÎflÂÚÒfl ÍÓ΢ÂÒÚ‚ÓÏ ˝ÎÂÏÂÌÚÓ‚ ‚
Ä, ÚÓ d∆(A, B) = | A∆B |. Ç ˝ÚÓÏ ÒÎÛ˜‡Â | A∆B | = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ä = Ç.
A∆B
ê‡ÒÒÚÓflÌË ÑÊÓÌÒÓ̇ ÏÂÊ‰Û k-ÏÌÓÊÂÒÚ‚‡ÏË Ä Ë Ç ‡‚ÌÓ
= k− | A ∩ B | .
2
åÂÚË͇ ùÌÓÏÓÚÓ–ä‡ÚÓ̇
ÖÒÎË ËÏÂÂÚÒfl ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó ï Ë ˆÂÎÓ ˜ËÒÎÓ k, Ú‡ÍÓ ˜ÚÓ 2k ≤ | X |, ÚÓ
ÏÂÚËÍÓÈ ùÌÓÏÓÚÓ–ä‡ÚÓ̇ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ÏË
Ô‡‡ÏË (ï1, ï2) Ë (Y 1 , Y 2 ) ÌÂÔÂÂÒÂ͇˛˘ËıÒfl k-ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï,
ÓÔ‰ÂÎflÂÏÓ ͇Í
min{| X1 \Y1 | + | X2 \Y2 |, | X1 \Y2 | + | X2 \Y1 |}.
48
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ê‡ÒÒÚÓflÌË òÚÂÈÌ„‡ÛÁ‡
ÑÎfl ÔÓÒÚ‡ÌÒÚ‚‡ Ò ÏÂÓÈ (Ω , , µ) ‡ÒÒÚÓflÌËÂÏ òÚÂÈÌ„‡ÛÁ‡ dSt ̇Á˚‚‡ÂÚÒfl
ÔÓÎÛÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â µ = {A ∈ : µ() < ∞}, ÓÔ‰ÂÎflÂχfl ËÁ ‡‚ÂÌÒÚ‚‡
µ( A∆B)
µ( A ∩ B)
= 1−
,
µ( A ∪ B)
µ( A ∪ B)
ÂÒÎË µ(A ∪ B) > 0 (Ë ‡‚̇fl 0, ÂÒÎË µ(A) = µ(B) = 0). é̇ ÒÚ‡ÌÓ‚ËÚÒfl ÏÂÚËÍÓÈ Ì‡
ÏÌÓÊÂÒÚ‚Â Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ˝ÎÂÏÂÌÚÓ‚ ËÁ µ ; ÔË ˝ÚÓÏ ˝ÎÂÏÂÌÚ˚
Ä, Ç ∈ µ ̇Á˚‚‡˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË µ(A∆B) = 0.
| ( A∆B) |
ê‡ÒÒÚÓflÌË ·ËÓÚÓÔ‡ (ËÎË ‡ÒÒÚÓflÌË í‡ÌËÏÓÚÓ)
fl‚ÎflÂÚÒfl ˜‡ÒÚÌ˚Ï
| ( A ∪ B) |
ÒÎÛ˜‡ÂÏ ‡ÒÒÚÓflÌËfl òÚÂÈÌ„‡ÛÁ‡, ÔÓÎÛ˜ÂÌÌÓ„Ó ‰Îfl ͇‰Ë̇θÌÓ„Ó ˜ËÒ· µ(A) = | A |
(ÒÏ. Ú‡ÍÊ ӷӷ˘ÂÌ̇fl ÏÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·ËÓÚÓÔ‡, „Î. 4).
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ
d(x, A) ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ Ä ÏÌÓÊÂÒÚ‚‡ ï ÓÔ‰ÂÎflÂÚÒfl ͇Í
inf d ( x, y).
y∈A
ÑÎfl β·˚ı x, y ∈ X Ë Î˛·Ó„Ó ÌÂÔÛÒÚÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä ÏÌÓÊÂÒÚ‚‡ ï ÒÔ‡‚‰ÎË‚ ÒÎÂ‰Û˛˘ËÈ ‚‡ˇÌÚ ÌÂ‡‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇: d(x, A) ≤ d (x,y) + d(x, A)
(ÒÏ. ê‡ÒÒÚÓflÌÌÓ ÓÚÓ·‡ÊÂÌËÂ).
ÑÎfl ‰‡ÌÌÓÈ ÚӘ˜ÌÓÈ ÏÂ˚ µ(ı) ̇ ï Ë ÙÛÌ͈ËË ¯Ú‡ÙÓ‚  ÓÔÚËχθÌ˚Ï
Í‚‡ÌÚÓ‚‡ÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó B ⊂ X, Ú‡ÍÓ ˜ÚÓ
∫ p(d( x, B))dµ( x ) fl‚ÎflÂÚÒfl
̇ËÏÂ̸¯ËÏ ‚ÓÁÏÓÊÌ˚Ï.
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË Ä Ë Ç
ÏÌÓÊÂÒÚ‚‡ ï Á‡‰‡ÂÚÒfl ͇Í
ing d ( x, y).
x ∈A, y ∈B
Ç ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË Ì‡Á˚‚‡ÂÚÒfl ‰ËÌ˘ÌÓÈ
Ò‚flÁ¸˛, ‚ ÚÓ ‚ÂÏfl Í‡Í supx∈A,y∈Bd(x, y) ̇Á˚‚‡ÂÚÒfl ÔÓÎÌÓÈ Ò‚flÁ¸˛.
ï‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ı‡ÛÒ‰ÓÙÓ‚ÓÈ ÏÂÚËÍÓÈ (ËÎË ‰ ‚ ÛÒÚÓÓÌÌËÏ ı‡ÛÒ‰ÓÙÓ‚˚Ï ‡ÒÒÚÓflÌËÂÏ) d Haus ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÒÓ‚ÓÍÛÔÌÓÒÚË ‚ÒÂı ÍÓÏÔ‡ÍÚÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ ï, Á‡‰‡‚‡Âχfl ͇Í
max{ddHaus (A, B), ddHaus(B, A)},
„‰Â ddHaus(A, B) = maxx∈A miny∈Bd(x, y) fl‚ÎflÂÚÒfl ÓËÂÌÚËÓ‚‡ÌÌ˚Ï ı‡ÛÒ‰ÓÙÓ‚˚Ï
‡ÒÒÚÓflÌËÂÏ (ËÎË Ó‰ÌÓÒÚÓÓÌÌËÏ ı‡ÛÒ‰ÓÙÓ‚˚Ï ‡ÒÒÚÓflÌËÂÏ) ÓÚ Ä Í Ç. àÌ˚ÏË
ÒÎÓ‚‡ÏË, ddHaus(A, B) ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ ε (̇Á˚‚‡ÂÏÓ ڇÍÊ ‡ÒÒÚÓflÌËÂÏ
ÅÎfl¯ÍÂ), Ú‡ÍÓ ˜ÚÓ Á‡ÏÍÌÛÚ‡fl ε-ÓÍÂÒÚÌÓÒÚ¸ Ä ÒÓ‰ÂÊËÚ Ç, ‡ Á‡ÏÍÌÛÚ‡fl
ε-ÓÍÂÒÚÌÓÒÚ¸ Ç ÒÓ‰ÂÊËÚ Ä. åÓÊÌÓ ÔÓ͇Á‡Ú¸ Ú‡ÍÊÂ, ˜ÚÓ ‡‚ÌÓ ddHaus(A, B)
sup | d ( x, A) − d ( x, B) |,
x ∈X
49
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
„‰Â d(x, A) = miny∈A d(x, y) fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ.
ï‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ ÏÂÚËÍÓÈ ÌÓÏ˚ Ì fl‚ÎflÂÚÒfl.
ÖÒÎË ‚˚¯ÂÔ˂‰ÂÌÌÓ ÓÔ‰ÂÎÂÌË ‡ÒÔÓÒÚ‡ÌËÚ¸ ̇ ÌÂÍÓÏÔ‡ÍÚÌ˚ Á‡ÏÍÌÛÚ˚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç ÏÌÓÊÂÒÚ‚‡ ï, ÚÓ ddHaus(A, B) ÏÓÊÂÚ ·˚Ú¸ ·ÂÒÍÓ̘ÌÓÈ,
Ú.Â. Ó̇ ÒÚ‡ÌÓ‚ËÚÒfl ‡Ò¯ËÂÌÌÓÈ ÏÂÚËÍÓÈ. ÑÎfl ÔÓ‰ÏÌÓÊÂÒÚ‚ Ä Ë Ç ÏÌÓÊÂÒÚ‚‡ ï,
Ì ӷflÁ‡ÚÂθÌÓ Á‡ÏÍÌÛÚ˚ı, ı‡ÛÒ‰ÓÙÓ‚‡ ÔÓÎÛÏÂÚË͇ ÏÂÊ‰Û ÌËÏË ÓÔ‰ÂÎflÂÚÒfl
Í‡Í ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ ÏÂÊ‰Û Ëı Á‡Ï˚͇ÌËflÏË. ÖÒÎË ï ÍÓ̘ÌÓ, ÚÓ d dHaus
fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ ï.
ï‡ÛÒ‰ÓÙÓ‚Ó L p -‡ÒÒÚÓflÌËÂ
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ı‡ÛÒ‰ÓÙÓ‚Ó L p -‡ÒÒÚÓflÌË ([Badd92])
ÏÂÊ‰Û ‰‚ÛÏfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË Ä Ë Ç ÏÌÓÊÂÒÚ‚‡ ï Á‡‰‡ÂÚÒfl ͇Í
(
∑ | d( x, A) − d( x, B) |
1
P p
) ,
x ∈X
„‰Â d(x, A) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ. é·˚˜Ì‡fl ı‡ÛÒ‰ÓÙÓ‚‡
ÏÂÚË͇ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÒÎÛ˜‡˛  = ∞.
é·Ó·˘ÂÌ̇fl ı‡ÛÒ‰ÓÙÓ‚‡ G-ÏÂÚË͇
ÇÓÁ¸ÏÂÏ „ÛÔÔÛ (G , ⋅, e), ‰ÂÈÒÚ‚Û˛˘Û˛ ̇ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X, d).
é·Ó·˘ÂÌ̇fl ı‡ÛÒ‰ÓÙÓ‚‡ G-ÏÂÚË͇ ÏÂÊ‰Û ‰‚ÛÏfl Á‡ÏÍÌÛÚ˚ÏË ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË Ä
Ë Ç ÏÌÓÊÂÒÚ‚‡ ï Á‡‰‡ÂÚÒfl ͇Í
min d Haus ( g1 ( A), g2 ( B)),
g1 , g 2 ∈G
„‰Â d Haus – ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇. ÖÒÎË d(g(x), g(y)) = d(x, y) ‰Îfl β·Ó„Ó g ∈ G
(Ú.Â. ÏÂÚË͇ d ΂ÓËÌ‚‡ˇÌÚ̇ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í G), ÚÓ ‚˚¯ÂÛ͇Á‡Ì̇fl ÏÂÚË͇
·Û‰ÂÚ ‡‚̇ ming∈G dHaus(A), g(B).
åÂÚË͇ ÉÓÏÓ‚‡–ï‡ÛÒ‰ÓÙ‡
åÂÚËÍÓÈ ÉÓÏÓ‚‡–ï‡ÛÒ‰ÓÙ‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÁÓÏÂÚ˘ÂÒÍËı Í·ÒÒÓ‚ ÍÓÏÔ‡ÍÚÌ˚ı ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚, Á‡‰‡‚‡Âχfl ͇Í
inf dHaus(f(X), g(Y))
‰Îfl β·˚ı ‰‚Ûı Í·ÒÒÓ‚ X* Ë Y * Ò Ô‰ÒÚ‡‚ËÚÂÎflÏË X Ë Y ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, „‰Â dHaus –
ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇, ‡ ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚‡Ï å
Ë ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËflÏ f : X → M, g : Y → M. ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÉÓÏÓ‚‡–ï‡ÛÒ‰ÓÙ‡.
åÂÚË͇ î¯Â
èÛÒÚ¸ (X, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ê‡ÒÒÏÓÚËÏ ÏÌÓÊÂÒÚ‚Ó
‚ÒÂı ÌÂÔÂ˚‚Ì˚ı ÓÚÓ·‡ÊÂÌËÈ f : A → X, g : B → X, …, „‰Â Ä, Ç, … fl‚Îfl˛ÚÒfl
ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË n, „ÓÏÂÓÏÓÙÌ˚ÏË [0,1]n ‰Îfl ÙËÍÒËÓ‚‡ÌÌÓÈ ‡ÁÏÂÌÓÒÚË n ∈ .
èÓÎÛÏÂÚËÍÓÈ î¯ dF ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ , Á‡‰‡‚‡Âχfl ͇Í
inf sup d ( f ( x ), g(σ( x ))),
σ x ∈A
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÒÓı‡Ìfl˛˘ËÏ ÓËÂÌÚ‡ˆË˛ „ÓÏÂÓÏÓÙËÁÏ‡Ï σ : A →
→ B. é̇ Ô‚‡˘‡ÂÚÒfl ‚ ÏÂÚËÍÛ î¯ ̇ ÏÌÓÊÂÒÚ‚Â Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË
f* = {g : dF(g, f) = 0}.
50
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ê‡ÒÒÚÓflÌË Ň̇ı‡–å‡ÁÛ‡
ê‡ÒÒÚÓflÌË Ň̇ı‡–å‡ÁÛ‡ dBM ÏÂÊ‰Û ‰‚ÛÏfl ·‡Ì‡ıÓ‚˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË V Ë W
Á‡‰‡ÂÚÒfl ͇Í
ln inf || T || ⋅ || T −1 ||,
T
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ËÁÓÏÓÙËÁÏ‡Ï T : V → W. éÌÓ ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡ÌÓ
Ú‡ÍÊÂ Í‡Í ln d(V,W), „‰Â ˜ËÒÎÓ d(V,W) ÂÒÚ¸ ̇ËÏÂ̸¯Â ÔÓÎÓÊËÚÂθÌÓ d ≥ 1, Ú‡ÍÓÂ
˜ÚÓ BWn ⊂ T ( BVn ) ⊂ dBWn ‰Îfl ÌÂÍÓÚÓÓ„Ó ÎËÌÂÈÌÓ„Ó Ó·‡ÚËÏÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl
T : V → W. á‰ÂÒ¸ ( BVn ) = {x ∈ V :|| x ||V ≤ 1} Ë ( BWn ) = {x ∈ W :|| x ||W ≤ 1} fl‚Îfl˛ÚÒfl
‰ËÌ˘Ì˚ÏË ¯‡‡ÏË ÌÓÏËÓ‚‡ÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚ (V,|| ⋅||V ) Ë (W,|| ⋅ ||W) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
dBM(V,W) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ V Ë W ËÁÓÏÂÚ˘Ì˚, Ë ÒÚ‡ÌÓ‚ËÚÒfl
ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â Xn ‚ÒÂı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË n-ÏÂÌÓ„Ó ÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, „‰Â V ~ W, ÂÒÎË ÓÌË ËÁÓÏÂÚ˘Ì˚. è‡‡ (Xn , dBM) fl‚ÎflÂÚÒfl
ÍÓÏÔ‡ÍÚÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ̇Á˚‚‡ÂÏ˚Ï ÍÓÏÔ‡ÍÚÓÏ Å‡Ì‡ı‡–
å‡ÁÛ‡.
ê‡ÒÒÚÓflÌË ÉÎÛÁÍË̇–‡Ó‚‡ (ËÎË ÏÓ‰ËÙˈËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË Ň̇ı‡å‡ÁÛ‡) Á‡‰‡ÂÚÒfl ͇Í
inf{|| T || X → Y :| det T | = 1} ⋅ inf{|| T ||Y → X :| det T | = 1}.
ê‡ÒÒÚÓflÌË íÓϘ‡Í–Ö„Âχ̇ (ËÎË Ò··Ó ‡ÒÒÚÓflÌË Ň̇ı‡–å‡ÁÛ‡) ÓÔ‰ÂÎflÂÚÒfl ͇Í
max}γ Y (id X ), γ X (id Y )},
„‰Â ‰Îfl ÓÔÂ‡ÚÓ‡ U : X → Y ˜ÂÂÁ γ Z (U ) Ó·ÓÁ̇˜‡ÂÚÒfl inf
∑
∑ || Wk |||| Vk || .
á‰ÂÒ¸
ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ Ô‰ÒÚ‡‚ÎÂÌËflÏ U =
Wk Vk ‰Îfl Vk : X → Z Ë Vk : Z →Y,
‡ idz ÂÒÚ¸ ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌËÂ. чÌÌÓ ‡ÒÒÚÓflÌË ÌËÍÓ„‰‡ Ì Ô‚˚¯‡ÂÚ
ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó ‡ÒÒÚÓflÌËfl Ň̇ı‡–å‡ÁÛ‡.
ê‡ÒÒÚÓflÌË 䇉ÂÚÒ‡
èÓÔÛÒÍ (ËÎË ‡Á˚‚) ÏÂÊ‰Û ‰‚ÛÏfl Á‡ÏÍÌÛÚ˚ÏË ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË ï Ë Y
·‡Ì‡ıÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ (V,|| ⋅ ||) ÓÔ‰ÂÎflÂÚÒfl ͇Í
gap(X,Y) = max{δ(X, Y), δ(Y,X)},
„‰Â δ(X,Y) = sup{infy∈Y ||x–y||: x ∈ X, ||x|| = 1} (ÒÏ. ê‡ÒÒÚÓflÌË ‡Á˚‚‡, „Î. 12 Ë
åÂÚË͇ ‡Á˚‚‡, „Î. 18).
ê‡ÒÒÚÓflÌË 䇉ÂÚÒ‡ ÏÂÊ‰Û ‰‚ÛÏfl ·‡Ì‡ıÓ‚˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË V Ë W fl‚ÎflÂÚÒfl
ÔÓÎÛÏÂÚËÍÓÈ, ÓÔ‰ÂÎflÂÏÓÈ (ÔÓ ä‡‰ÂÚÒÛ, 1975) ͇Í
inf gap( B f (V ) , Bg( W ) ),
Z, f ,g
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚‡Ï Z Ë ‚ÒÂÏ ÎËÌÂÈÌ˚Ï
ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËflÏ f : V → Z Ë g : W → Z; Á‰ÂÒ¸ Bf(V) Ë Bg(W) ÒÛÚ¸ ‰ËÌ˘Ì˚Â
ÏÂÚ˘ÂÒÍË ¯‡˚ ·‡Ì‡ıÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ f(V) Ë g(W) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
çÂÎËÌÂÈÌ˚Ï ‡Ì‡ÎÓ„ÓÏ ‡ÒÒÚÓflÌËfl 䇉ÂÚÒ‡ fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌË ÉÓÏÓ‚‡–
ï‡ÛÒ‰ÓÙ‡ ÏÂÊ‰Û ·‡Ì‡ıÓ‚˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË U Ë W:
inf d Haus ( f ( BV ), g( BW )),
Z, f ,g
51
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚‡Ï Z Ë ‚ÒÂÏ ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËflÏ f : V → Z Ë g : W → Z; Á‰ÂÒ¸ dHaus – ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇.
ê‡ÒÒÚÓflÌË ÔÛÚË ä‡‰ÂÚÒ‡ ÏÂÊ‰Û ‰‚ÛÏfl ·‡Ì‡ıÓ‚˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË V Ë W
Á‡‰‡ÂÚÒfl (ÔÓ éÒÚÓ‚ÒÍÓÏÛ, 2000) Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ (ÓÚÌÓÒËÚÂθÌÓ ‡ÒÒÚÓflÌËfl ÔÛÚË
䇉ÂÚÒ‡) ‚ÒÂı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı V Ë W (Ë Í‡Í ∞, ÂÒÎË Ú‡ÍËı ÍË‚˚ı ÌÂÚ).
ãËÔ¯ËˆÂ‚Ó ‡ÒÒÚÓflÌËÂ
ÇÓÁ¸ÏÂÏ ‰‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡ (X, dX) Ë (Y, dY). ãËԯˈ‚‡ ÌÓχ || ⋅ ||Lip
̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÌ˙ÂÍÚË‚Ì˚ı ÙÛÌ͈ËÈ f : X → Y ÓÔ‰ÂÎflÂÚÒfl ͇Í
d ( f ( x ), f ( y))
|| f || Lip = sup x , y ∈X , x ≠ y Y
.
d X ( x, y)
ãËÔ¯ËˆÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÂÚ˘ÂÒÍËÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË (X, d X ) Ë (Y, dY)
Á‡‰‡ÂÚÒfl ͇Í
ln inf || f || Lip ⋅ || f −1 || Lip ,
f
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ·ËÂÍÚË‚Ì˚Ï ÙÛÌ͈ËflÏ f : X → Y. ùÍ‚Ë‚‡ÎÂÌÚÌÓ, ÓÌÓ
fl‚ÎflÂÚÒfl ËÌÙËÏÛÏÓÏ ˜ËÒÂÎ ln α, Ú‡ÍËı ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ·ËÂÍÚË‚ÌÓ ·ËÎËԯˈ‚Ó
ÓÚÓ·‡ÊÂÌË ÏÂÊ‰Û (X, dX ) Ë (Y, dY) Ò ÍÓÌÒÚ‡ÌÚ‡ÏË exp(-α), exp(α). éÌÓ ÒÚ‡ÌÓ‚ËÚÒfl
ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÁÓÏÂÚ˘ÂÒÍËı Í·ÒÒÓ‚ ÍÓÏÔ‡ÍÚÌ˚ı ÏÂÚ˘ÂÒÍËı
ÔÓÒÚ‡ÌÒÚ‚.
чÌÌÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ‡Ì‡ÎÓ„ÓÏ ‡ÒÒÚÓflÌËfl Ň̇ı‡–å‡ÁÛ‡ Ë, ‰Îfl ÒÎÛ˜‡fl
ÍÓ̘ÌÓÏÂÌ˚ı ‚¢ÂÒÚ‚ÂÌÌ˚ı ·‡Ì‡ıÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚, ÒÓ‚Ô‡‰‡ÂÚ Ò ÌËÏ. éÌÓ
ÒÓ‚Ô‡‰‡ÂÚ Ú‡ÍÊÂ Ò „Ëθ·ÂÚÓ‚ÓÈ ÔÓÂÍÚË‚ÌÓÈ ÏÂÚËÍÓÈ Ì‡ ÌÂÓÚˈ‡ÚÂθÌ˚ı
ÔÓÂÍÚË‚Ì˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı, ÍÓÚÓ˚ ÏÓ„ÛÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ˚ n+ ËÁ ÓÚÓʉÂÒÚ‚ÎÂÌËÂÏ Î˛·ÓÈ ÚÓ˜ÍË ı Ò Òı,Ò > 0.
ãËÔ¯ËˆÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÂ‡ÏË
ÑÎfl ÍÓÏÔ‡ÍÚÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ÔÓÎÛÌÓχ ãËԯˈ‡ || ⋅ ||Lip
̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÙÛÌ͈ËÈ f : X → ÓÔ‰ÂÎflÂÚÒfl ͇Í
| f ( x ) − f ( y) |
|| ⋅ || Lip = sup x , y ∈X , x ≠ y
.
d ( x, y)
ãËÔ¯ËˆÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÂ‡ÏË µ Ë ν ̇ ï Á‡‰‡ÂÚÒfl ͇Í
sup
|| f || Lip ≤1
∫ fd(µ − ν).
ÖÒÎË µ Ë ν – ‚ÂÓflÚÌÓÒÚÌ˚ ÏÂ˚, ÚÓ ˝ÚÓ – ÏÂÚË͇ ä‡ÌÚÓӂ˘‡–å˝ÎÎÓÛÁ‡–
åÓÌʇ–LJÒÒÂ¯ÚÂÈ̇.
Ä̇ÎÓ„ÓÏ ÎËԯˈ‚‡ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÏÂ‡ÏË ‰Îfl ÔÓÒÚ‡ÌÒÚ‚‡ ÒÓÒÚÓflÌËÈ
ÛÌËÚ‡ÌÓÈ ë* -‡Î„·˚ fl‚ÎflÂÚÒfl ÏÂÚË͇ äÓÌ̇.
ŇˈÂÌÚ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ÔÛÒÚ¸ (B(X), ||µ–ν||TV ·Û‰ÂÚ ÏÂÚ˘ÂÒÍËÏ
ÔÓÒÚ‡ÌÒÚ‚ÓÏ, „‰Â Ç(ï) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı „ÛÎflÌ˚ı ·ÓÂ΂˚ı ‚ÂÓflÚÌÓÒÚÌ˚ı
ÏÂ ̇ ï Ò Ó„‡Ì˘ÂÌÌ˚Ï ÌÓÒËÚÂÎÂÏ Ë ||µ–ν||TV – ‡ÒÒÚÓflÌË ÌÓÏ˚, ÓÔ‰ÂÎflÂÏÓÂ
ÔÓÎÌÓÈ ‚‡ˇˆËÂÈ
∫X | p(µ) − p( ν) | dλ,
„‰Â p(µ) Ë p ( ν) fl‚Îfl˛ÚÒfl ÙÛÌ͈ËflÏË
ÔÎÓÚÌÓÒÚË ÏÂ µ Ë ν ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÓÚÌÓÒËÚÂθÌÓ σ-ÍÓ̘ÌÓÈ ÏÂ˚
µ+ν
.
2
52
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) ·Û‰ÂÚ ·‡ˈÂÌÚ˘ÂÒÍËÏ, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ
ÍÓÌÒÚ‡ÌÚ‡ β > 0 Ë ÓÚÓ·‡ÊÂÌË f : B(X) → X ËÁ Ç(ï) ̇ ï, Ú‡ÍË ˜ÚÓ ÌÂ‡‚ÂÌÒÚ‚Ó
d(f(µ), f(ν)) ≤ βdiam(supp(µ + ν))|| µ–ν ||TV
ÒÔ‡‚‰ÎË‚Ó ‰Îfl β·˚ı ÏÂ µ, ν ∈ B(X).
ä‡Ê‰Ó ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (X, d = || x–y ||) ÂÒÚ¸ ·‡ˈÂÌÚ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ Ì‡ËÏÂ̸¯Â β ‡‚ÌÓ 1, Ë ÓÚÓ·‡ÊÂÌË f(µ)
fl‚ÎflÂÚÒfl Ó·˚˜Ì˚Ï ˆÂÌÚÓÏ Ï‡ÒÒ˚
∫X xdµ( x ). ã˛·Ó ‡‰‡Ï‡‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó
(Ú.Â. ÔÓÎÌÓ ëÄí(0) ÔÓÒÚ‡ÌÒÚ‚Ó) ·Û‰ÂÚ ·‡ˈÂÌÚ˘ÂÒÍËÏ Ò Ì‡ËÏÂ̸¯ËÏ β,
‡‚Ì˚Ï 1, Ë ÓÚÓ·‡ÊÂÌËÂÏ f(µ) ‚ ͇˜ÂÒڂ ‰ËÌÒÚ‚ÂÌÌÓÈ ÚÓ˜ÍË ÏËÌËÏÛχ ÙÛÌ͈ËË
g( y ) =
∫X d
2f
( x, y)dµ( x ) ̇ ï.
äÓÏÔ‡ÍÚÌÓ ͂‡ÌÚÓ‚Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
èÛÒÚ¸ V ·Û‰ÂÚ ÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË, ·ÓΠӷӷ˘ÂÌÌÓ,
ÎÓ͇θÌÓ ‚˚ÔÛÍÎ˚Ï ÚÓÔÓÎӄ˘ÂÒÍËÏ ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ), ‡ V – „Ó
ÌÂÔÂ˚‚Ì˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ú.Â. ÏÌÓÊÂÒÚ‚ÓÏ ‚ÒÂı ÌÂÔÂ˚‚Ì˚ı
ÎËÌÂÈÌ˚ı ÙÛÌ͈ËÓ̇ÎÓ‚ f ̇ V. ë··‡fl* ÚÓÔÓÎÓ„Ëfl (ËÎË ÚÓÔÓÎÓ„Ëfl ÉÂθه̉‡) ̇
V ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ò‡Ï‡fl Ò··‡fl (Ú.Â. Ò Ì‡ËÏÂ̸¯ËÏ ÍÓ΢ÂÒÚ‚ÓÏ ÓÚÍ˚Ú˚ı
ÏÌÓÊÂÒÚ‚) ÚÓÔÓÎÓ„Ëfl ̇ V, ڇ͇fl ˜ÚÓ ‰Îfl Í‡Ê‰Ó„Ó x ∈ V ÓÚÓ·‡ÊÂÌË Fx : V → ,
Á‡‰‡‚‡ÂÏÓ ÛÒÎÓ‚ËÂÏ Fx(f) = f(x) ‰Îfl ‚ÒÂı f ∈ V, ÓÒÚ‡ÂÚÒfl ÌÂÔÂ˚‚Ì˚Ï.
èÓÒÚ‡ÌÒÚ‚ÓÏ ÔÓfl‰ÍÓ‚ÓÈ Â‰ËÌˈ˚ ̇Á˚‚‡ÂÚÒfl ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓÂ
‰ÂÈÒÚ‚ËÚÂθÌÓ (ÍÓÏÔÎÂÍÒÌÓÂ) ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (Ä, p
− ) Ò ‚˚‰ÂÎÂÌÌ˚Ï
˝ÎÂÏÂÌÚÓÏ Â, ̇Á˚‚‡ÂÏ˚Ï ÔÓfl‰ÍÓ‚ÓÈ Â‰ËÌˈÂÈ, ÍÓÚÓÓ ı‡‡ÍÚÂËÁÛÂÚÒfl ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË:
1) ‰Îfl β·Ó„Ó a ∈ A ÒÛ˘ÂÒÚ‚ÛÂÚ r ∈ , Ú‡ÍÓ ˜ÚÓ a p
− re;
2) ÂÒÎË a ∈ A Ë a p
− re ‰Îfl ‚ÒÂı ÔÓÎÓÊËÚÂθÌ˚ı r ∈ , ÚÓ a p
− 0 (‡ıËωӂÓÒÚ¸).
éÒÌÓ‚Ì˚Ï ÔËÏÂÓÏ ÔÓÒÚ‡ÌÒÚ‚‡ ÔÓfl‰ÍÓ‚ÓÈ Â‰ËÌˈ˚ fl‚ÎflÂÚÒfl ‚ÂÍÚÓÌÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÒÂı Ò‡ÏÓÔËÒÓ‰ËÌÂÌÌ˚ı ˝ÎÂÏÂÌÚÓ‚ ÛÌËÚ‡ÌÓÈ C*-‡Î„·˚, ‰ËÌ˘Ì˚Ï ˝ÎÂÏÂÌÚÓÏ ‚ ÍÓÚÓÓÈ ÒÎÛÊËÚ ÔÓfl‰ÍÓ‚‡fl ‰ËÌˈ‡. á‰ÂÒ¸ C* -‡Î„·‡ fl‚ÎflÂÚÒfl
·‡Ì‡ıÓ‚ÓÈ ‡Î„·ÓÈ Ì‡‰ , Ò̇·ÊÂÌÌÓÈ ÒÔˆˇθÌ˚Ï ËÌ‚ÓβÚË‚Ì˚Ï ÓÚÓ·‡ÊÂÌËÂÏ. é̇ ̇Á˚‚‡ÂÚÒfl ÛÌËÚ‡ÌÓÈ, ÂÒÎË ËÏÂÂÚ Â‰ËÌËˆÛ (˝ÎÂÏÂÌÚ, ÌÂÈÚ‡Î¸Ì˚È
ÓÚÌÓÒËÚÂθÌÓ ÛÏÌÓÊÂÌËfl); Ú‡ÍË C * -‡Î„·˚ ‚ÂҸχ ÔË·ÎËÊÂÌÌÓ Ì‡Á˚‚‡˛Ú ¢Â
ÍÓÏÔ‡ÍÚÌ˚ÏË ÌÂÍÓÏÏÛÚ‡ÚË‚Ì˚ÏË ÚÓÔÓÎӄ˘ÂÒÍËÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË. íËÔ˘Ì˚Ï ÔËÏÂÓÏ ÛÌËÚ‡ÌÓÈ C* -‡Î„·˚ fl‚ÎflÂÚÒfl ÍÓÏÔÎÂÍÒ̇fl ‡Î„·‡ ÎËÌÂÈÌ˚ı
ÓÔÂ‡ÚÓÓ‚ ̇ ÍÓÏÔÎÂÍÒÌÓÏ „ËηÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â, ÍÓÚÓÓ ÚÓÔÓÎӄ˘ÂÒÍË
Á‡ÏÍÌÛÚÓ ‚ ÚÓÔÓÎÓ„ËË ÌÓÏ˚ ÓÔÂ‡ÚÓÓ‚ Ë Á‡ÏÍÌÛÚÓ ÓÚÌÓÒËÚÂθÌÓ ÓÔÂ‡ˆËË
‚ÁflÚËfl ÒÓÔflÊÂÌÌ˚ı ̇ ÏÌÓÊÂÒÚ‚Â ÓÔÂ‡ÚÓÓ‚.
èÓÒÚ‡ÌÒÚ‚Ó ÒÓÒÚÓflÌËÈ ÔÓÒÚ‡ÌÒÚ‚‡ ÔÓfl‰ÍÓ‚ÓÈ Â‰ËÌˈ˚ ( A, p
−, e) fl‚ÎflÂÚÒfl
ÏÌÓÊÂÒÚ‚ÓÏ S( A) = { f ∈ A+′ :|| f || = 1} ÒÓÒÚÓflÌËÈ, Ú.Â. ÌÂÔÂ˚‚Ì˚ı ÎËÌÂÈÌ˚ı ÙÛÌ͈ËÓ̇ÎÓ‚ f Ò || f || = f(e ) = 1. äÓÏÔ‡ÍÚÌÓ ͂‡ÌÚÓ‚Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
êËÙÙÂÎfl – ˝ÚÓ Ô‡‡ (Ä, || ⋅ ||Lip), „‰Â ( A, p
−, e) ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓfl‰ÍÓ‚ÓÈ
‰ËÌˈ˚ Ë || ⋅ ||Lip – ÔÓÎÛÌÓχ ̇ Ä (ÒÓ Á̇˜ÂÌËflÏË ‚ [0, +∞]), ̇Á˚‚‡Âχfl
ÎËԯˈ‚ÓÈ ÔÓÎÛÌÓÏÓÈ, ÍÓÚÓ‡fl Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÒÎÂ‰Û˛˘ËÏ ÛÒÎÓ‚ËflÏ:
1) ‰Îfl a ∈ A ‡‚ÂÌÒÚ‚Ó || a ||Lip = 0 ‚˚ÔÓÎÌflÂÚÒfl ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡
a ∈ e;
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
53
2) ÏÂÚË͇ d Lip ( f , g) = sup a ∈A:|| a || Lip ≤1 | f ( a) − g( a) | ÔÓÓʉ‡ÂÚ Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â
ÒÓÒÚÓflÌËÈ S(A) Â„Ó Ò··Û˛* ÚÓÔÓÎӄ˲.
í‡ÍËÏ Ó·‡ÁÓÏ, Ï˚ ÔÓÎÛ˜‡ÂÏ Ó·˚˜ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (S(A), d Lip).
ÖÒÎË ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓfl‰ÍÓ‚ÓÈ Â‰ËÌˈ˚ ( A, p
−, e) fl‚ÎflÂÚÒfl C*-‡Î„·ÓÈ, ÚÓ dLip ÂÒÚ¸
ÏÂÚË͇ äÓÌ̇, Ë ÂÒÎË, ·ÓΠÚÓ„Ó, C*-‡Î„·‡ fl‚ÎflÂÚÒfl ÌÂÍÓÏÏÛÚ‡ÚË‚ÌÓÈ, ÚÓ
ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (S(A), dLip) ̇Á˚‚‡ÂÚÒfl ÌÂÍÓÏÏÛÚ‡ÚË‚Ì˚Ï ÏÂÚ˘ÂÒÍËÏ
ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
Ç˚‡ÊÂÌË ͂‡ÌÚÓ‚Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓfl‚ËÎÓÒ¸ ÔÓÚÓÏÛ, ˜ÚÓ
ÏÌÓ„Ë ˝ÍÒÔÂÚ˚ ‚ ӷ·ÒÚË Í‚‡ÌÚÓ‚ÓÈ „‡‚ËÚ‡ˆËË Ë ÚÂÓËË ÒÚÛÌ Ò˜ËÚ‡˛Ú
„ÂÓÏÂÚ˲ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË ‚·ÎËÁË ‰ÎËÌ˚ è·Ì͇ ÒıÓÊÂÈ Ò „ÂÓÏÂÚËÂÈ
Ú‡ÍËı ÌÂÍÓÏÏÛÚ‡ÚË‚Ì˚ı ë* -‡Î„·. ç‡ÔËÏÂ, ÚÂÓËfl ÌÂÍÓÏÏÛÚ‡ÚË‚ÌÓ„Ó ÔÓÎfl
Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ Ì‡ ‰ÓÒÚ‡ÚÓ˜ÌÓ Ï‡Î˚ı (Í‚‡ÌÚÓ‚˚ı) ‡ÒÒÚÓflÌËflı ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ ÍÓÓ‰Ë̇Ú˚ Ì ÍÓÏÏÛÚËÛ˛Ú, Ú.Â. Ì‚ÓÁÏÓÊÌÓ ÚÓ˜ÌÓ ËÁÏÂËÚ¸ ÔÓÎÓÊÂÌËÂ
˜‡ÒÚˈ˚ ÓÚÌÓÒËÚÂθÌÓ ·ÓΠ˜ÂÏ Ó‰ÌÓÈ ÓÒË.
ìÌË‚Â҇θÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (U, d) ̇Á˚‚‡ÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ‰Îfl ÒÂÏÂÈÒÚ‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚, ÂÒÎË Î˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (M, d M ) ËÁ fl‚ÎflÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËÂÏ ‚ (U , d), Ú.Â. ÒÛ˘ÂÒÚ‚ÛÂÚ ÓÚÓ·‡ÊÂÌË f : M → U, ÍÓÚÓÓ ۉӂÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ dM (x, y) = d(f(x, f(y) ‰Îfl β·˚ı x,
y ∈ M.
ä‡Ê‰Ó ÒÂÔ‡‡·ÂθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ÏÓÊÂÚ ·˚Ú¸
ËÁÓÏÂÚ˘ÂÒÍË ‚ÎÓÊÂÌÓ (ÔÓ î¯Â, 1909) ‚ (ÌÂÒÂÔ‡‡·ÂθÌÓÂ) ·‡Ì‡ıÓ‚Ó
ÔÓÒÚ‡ÌÒÚ‚Ó l∞. àÏÂÌÌÓ, d(x, y) = supi | d(x, ai) – d(y, a i) |, „‰Â ÂÒÚ¸ (a1 ,…,ai,...)
ÔÎÓÚÌÓ ҘÂÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ ï.
ä‡Ê‰Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ËÁÓÏÂÚ˘ÂÒÍË ‚ÎÓÊËÏÓ (ÔÓ äÛ‡ÚÓ‚ÒÍÓÏÛ,
1935) ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó L ∞(X) Ó„‡Ì˘ÂÌÌ˚ı ÙÛÌ͈ËÈ f : X → Ò ÌÓÏÓÈ
supx∈X| f(x) |.
èÓÒÚ‡ÌÒÚ‚Ó ì˚ÒÓ̇ ÂÒÚ¸ Ó‰ÌÓÓ‰ÌÓ ÔÓÎÌÓ ÒÂÔ‡‡·ÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó,
ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ÒÂı ÒÂÔ‡‡·ÂθÌ˚ı ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚.
ÉËθ·ÂÚÓ‚ ÍÛ· fl‚ÎflÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl Í·ÒÒ‡
ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ ÒÓ Ò˜ÂÚÌÓÈ ·‡ÁÓÈ.
É‡Ù˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÎÛ˜‡ÈÌÓ„Ó „‡Ù‡ ù‰Â¯‡–êÂÌË (ÓÔ‰ÂÎflÂÏÓ„Ó Í‡Í ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÔÓÒÚ˚ı ˜ËÒÂÎ p ≡ 1(mod4), ̇ ÍÓÚÓÓÏ Ô‡‡ pq
·Û‰ÂÚ ·ÓÏ, ÂÒÎË  – Í‚‡‰‡Ú˘Ì˚È ‚˚˜ÂÚ ÔÓ ÏÓ‰Ûβ q) fl‚ÎflÂÚÒfl ÛÌË‚Â҇θÌ˚Ï
ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl β·Ó„Ó ÍÓ̘ÌÓ„Ó ËÎË Ò˜ÂÚÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ Ò ‡ÒÒÚÓflÌËflÏË, ÔËÌËχ˛˘ËÏË ÚÓθÍÓ Á̇˜ÂÌËfl 0, 1 ËÎË 2. éÌÓ
Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ‰ËÒÍÂÚÌ˚È ‡Ì‡ÎÓ„ ÔÓÒÚ‡ÌÒÚ‚‡ ì˚ÒÓ̇.
ëÛ˘ÂÒÚ‚ÛÂÚ ÏÂÚË͇ d ̇ , Ë̉ۈËÛ˛˘‡fl Ó·˚˜ÌÛ˛ (ËÌÚÂ‚‡Î¸ÌÛ˛) ÚÓÔÓÎӄ˲, ڇ͇fl ˜ÚÓ (, d) fl‚ÎflÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl
‚ÒÂı ÍÓ̘Ì˚ı ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (ïÓίÚËÌÒÍËÈ, 1978). Ň̇ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó l∞n fl‚ÎflÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ÒÂı
ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (ï, d) Ò | X | ≤ n + 2 (ÇÛθÙ, 1967). Ö‚ÍÎˉӂÓ
ÔÓÒÚ‡ÌÒÚ‚Ó n fl‚ÎflÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ÒÂı
ÛθÚ‡ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (ï, d) Ò | X | ≤ n + 1; ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÒÂı ÍÓ̘Ì˚ı
ÙÛÌ͈ËÈ f(t) : ≥0 → , Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ d(f, g) = sup{t : f(t) ≠ g(t)}, fl‚ÎflÂÚÒfl
ÛÌË‚Â҇θÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ÒÂı ÛθÚ‡ÏÂÚ˘ÂÒÍËı
ÔÓÒÚ‡ÌÒÚ‚ (Ä. ãÂÏËÌ, Ç. ãÂÏËÌ, 1996).
54
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ìÌË‚Â҇θÌÓÒÚ¸ ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ Ë ‰Îfl ‰Û„Ëı ÓÚÓ·‡ÊÂÌËÈ
ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (ÔÓÏËÏÓ ËÁÓÏÂÚ˘ÂÒÍËı ‚ÎÓÊÂÌËÈ), ̇ÔËÏÂ ‰Îfl ·ËÎËԯˈ‚‡ ‚ÎÓÊÂÌËfl Ë ‰Û„Ëı. í‡Í, β·Ó ÍÓÏÔ‡ÍÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÌÂÔÂ˚‚Ì˚È Ó·‡Á ͇ÌÚÓÓ‚‡ ÏÌÓÊÂÒÚ‚‡ Ò Ì‡ÚÛ‡Î¸ÌÓÈ
ÏÂÚËÍÓÈ | x–y |, Û̇ÒΉӂ‡ÌÌÓÈ ÓÚ .
äÓÌÒÚÛÍÚË‚ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
äÓÌÒÚÛÍÚË‚ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó – Ô‡‡ (ï, d), „‰Â ï fl‚ÎflÂÚÒfl ÌÂÍËÏ
̇·ÓÓÏ ÍÓÌÒÚÛÍÚË‚Ì˚ı Ó·˙ÂÍÚÓ‚ (Ó·˚˜ÌÓ ˝ÚÓ ÒÎÓ‚‡ ̇‰ ÌÂÍÓÚÓ˚Ï ‡ÎÙ‡‚ËÚÓÏ),
‡ d – ‡Î„ÓËÚÏ Ô‚‡˘ÂÌËfl β·ÓÈ Ô‡˚ ˝ÎÂÏÂÌÚÓ‚ ÏÌÓÊÂÒÚ‚‡ ï ‚ ÍÓÌÒÚÛÍ
ÚË‚ÌÓ ‚¢ÂÒÚ‚ÂÌÌÓ ˜ËÒÎÓ d(x, y) Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ d ÒÚ‡ÌÓ‚ËÚÒfl ÏÂÚËÍÓÈ Ì‡ ï.
ùÙÙÂÍÚË‚ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
èÛÒÚ¸ {xn }n∈ – ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ˝ÎÂÏÂÌÚÓ‚ Á‡‰‡ÌÌÓ„Ó ÔÓÎÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d), ڇ͇fl ˜ÚÓ ÏÌÓÊÂÒÚ‚Ó {xn : n ∈ } fl‚ÎflÂÚÒfl ÔÎÓÚÌ˚Ï ‚ (ï, d).
èÛÒÚ¸ (m, n, k) – ͇ÌÚÓÓ‚Ó ˜ËÒÎÓ ÚÓÈÍË (n, m, k) ∈ 3 , a {qk}k∈ , ‡ – ÙËÍÒËÓ‚‡Ì̇fl Òڇ̉‡Ú̇fl ÌÛÏÂ‡ˆËfl ÏÌÓÊÂÒÚ‚‡ ‡ˆËÓ̇θÌ˚ı ˜ËÒÂÎ.
íÓÈ͇ (X, d,{xn }n∈ ̇Á˚‚‡ÂÚÒfl ˝ÙÙÂÍÚË‚Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ
([Hemm02]), ÂÒÎË ÏÌÓÊÂÒÚ‚Ó {(n,m,k):d(x m, xn) < qk} fl‚ÎflÂÚÒfl ÂÍÛÒË‚ÌÓ ÔÂ˜ËÒÎËÏ˚Ï. éÌÓ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ‡‰‡ÔÚ‡ˆË˛ ‚‚‰ÂÌÌÓ„Ó ÇÂÈı‡ÛıÓÏ ÔÓÌflÚËfl
‚˚˜ËÒÎflÂÏÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ËÎË ÂÍÛÒË‚ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡).
É·‚‡ 2
íÓÔÓÎӄ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, τ)) ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ï Ò ÚÓÔÓÎÓ„ËÂÈ τ, Ú.Â. ÒËÒÚÂÏÓÈ ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï, ӷ·‰‡˛˘Ëı ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË:
1) X ∈ τ, 0/ ∈ τ;
2) ÂÒÎË Ä, B ∈ τ, ÚÓ Ä ∩ B ∈ τ;
3) ‰Îfl β·ÓÈ ÒËÒÚÂÏ˚ {Aα}α, ÂÒÎË ‚Ò A∝ ∈ τ, ÚÓ ∪α Aα ∈ τ.
åÌÓÊÂÒÚ‚‡ ËÁ τ ̇Á˚‚‡˛ÚÒfl ÓÚÍ˚Ú˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË, ‡ Ëı ‰ÓÔÓÎÌÂÌËfl
̇Á˚‚‡˛ÚÒfl Á‡ÏÍÌÛÚ˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË. ŇÁÓÈ ÚÓÔÓÎÓ„ËË τ fl‚ÎflÂÚÒfl ÒËÒÚÂχ
ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚, ڇ͇fl ˜ÚÓ Í‡Ê‰Ó ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó ÂÒÚ¸ Ó·˙‰ËÌÂÌËÂ
ÏÌÓÊÂÒÚ‚ ËÁ ·‡Á˚. ë‡Ï‡fl „Û·‡fl ÚÓÔÓÎÓ„Ëfl ËÏÂÂÚ ‰‚‡ ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚‡ (ÔÛÒÚÓÂ
Ë ÏÌÓÊÂÒÚ‚Ó ï) Ë Ì‡Á˚‚‡ÂÚÒfl Ú˂ˇθÌÓÈ (ËÎË ‡ÌÚˉËÒÍÂÚÌÓÈ) ÚÓÔÓÎÓ„ËÂÈ.
ç‡Ë·ÓΠ‰Âڇθ̇fl ÚÓÔÓÎÓ„Ëfl ‚Íβ˜‡ÂÚ ‚Ò ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ‚ ͇˜ÂÒÚ‚Â ÓÚÍ˚Ú˚ı Ë
̇Á˚‚‡ÂÚÒfl ‰ËÒÍÂÚÌÓÈ ÚÓÔÓÎÓ„ËÂÈ.
Ç ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X, d) ÓÔ‰ÂÎËÏ ÓÚÍ˚Ú˚È ¯‡ Í‡Í ÏÌÓÊÂÒÚ‚Ó
B(x,r) = {y ∈ X : d(x,y) < r}, „‰Â x ∈ X (ˆÂÌÚ ¯‡‡) Ë r ∈ , r > 0 (‡‰ËÛÒ ¯‡‡).
èÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ ï, ÍÓÚÓÓ fl‚ÎflÂÚÒfl Ó·˙‰ËÌÂÌËÂÏ (ÍÓ̘ÌÓ„Ó ËÎË
·ÂÒÍÓ̘ÌÓ„Ó ˜ËÒ·) ÓÚÍ˚Ú˚ı ¯‡Ó‚, ̇Á˚‚‡ÂÚÒfl ÓÚÍ˚Ú˚Ï ÏÌÓÊÂÒÚ‚ÓÏ.
ùÍ‚Ë‚‡ÎÂÌÚÌÓ, ÔÓ‰ÏÌÓÊÂÒÚ‚Ó U ÏÌÓÊÂÒÚ‚‡ ï ̇Á˚‚‡ÂÚÒfl ÓÚÍ˚Ú˚Ï, ÂÒÎË ‰Îfl
β·ÓÈ ÙËÍÒËÓ‚‡ÌÌÓÈ ÚÓ˜ÍË x ∈ U ÒÛ˘ÂÒÚ‚ÛÂÚ ‰ÂÈÒÚ‚ËÚÂθÌÓ ˜ËÒÎÓ ε > 0, Ú‡ÍÓÂ
˜ÚÓ ‰Îfl β·ÓÈ ÚÓ˜ÍË y ∈ X, Û‰Ó‚ÎÂÚ‚Ófl˛˘ÂÈ ÛÒÎӂ˲ d(x,y) < ε, ‚˚ÔÓÎÌflÂÚÒfl
ÛÒÎÓ‚Ë y ∈ U. ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÚÓÔÓÎӄ˘ÂÒÍËÏ, Ò
ÚÓÔÓÎÓ„ËÂÈ (ÏÂÚ˘ÂÒÍÓÈ ÚÓÔÓÎÓ„ËÂÈ, ÚÓÔÓÎÓ„ËÂÈ, ÔÓÓʉ‡ÂÏÓÈ ÏÂÚËÍÓÈ d)
ÒÓÒÚÓfl˘ÂÈ ËÁ ‚ÒÂı ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚. åÂÚ˘ÂÒ͇fl ÚÓÔÓÎÓ„Ëfl ‚Ò„‰‡ ÂÒÚ¸ T4
(ÒÏ. ÔÂ˜Â̸ ÚÓÔÓÎӄ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ ÌËÊÂ). íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó,
ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ Ú‡ÍËÏ Ó·‡ÁÓÏ ËÁ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡,
̇Á˚‚‡ÂÚÒfl ÏÂÚËÁÛÂÏ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
èÓÎÛÏÂÚ˘ÂÒ͇fl ÚÓÔÓÎÓ„Ëfl – ÚÓÔÓÎÓ„Ëfl ̇ ï, ÔÓÓʉ‡Âχfl ‡Ì‡Îӄ˘Ì˚Ï
Ó·‡ÁÓÏ ÔÓÎÛÏÂÚËÍÓÈ Ì‡ ï. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ‰‡Ì̇fl ÚÓÔÓÎÓ„Ëfl Ì fl‚ÎflÂÚÒfl ‰‡ÊÂ
í0. 䂇ÁËÏÂÚ˘ÂÒ͇fl ÚÓÔÓÎÓ„Ëfl ÂÒÚ¸ ÚÓÔÓÎÓ„Ëfl ̇ ï, ÔÓÓʉ‡Âχfl Í‚‡ÁËÏÂÚËÍÓÈ Ì‡ ï.
èÛÒÚ¸ (X, τ) – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. íÓ„‰‡ ÓÍÂÒÚÌÓÒÚ¸˛ ÚÓ˜ÍË x ∈ X
̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó, ÒÓ‰Âʇ˘Â ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó, ÍÓÚÓÓÂ, ‚ Ò‚Ó˛
Ó˜Â‰¸, ÒÓ‰ÂÊËÚ ı. á‡Ï˚͇ÌËÂÏ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
fl‚ÎflÂÚÒfl ̇ËÏÂ̸¯Â Á‡ÏÍÌÛÚÓ ÏÌÓÊÂÒÚ‚Ó, Â„Ó ÒÓ‰Âʇ˘ÂÂ. éÚÍ˚ÚÓÂ
ÔÓÍ˚ÚË ÏÌÓÊÂÒÚ‚‡ ï ÂÒÚ¸ ÒËÒÚÂχ ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚, Ó·˙‰ËÌÂÌËÂ
ÍÓÚÓ˚ı ‡‚ÌÓ ï; Â„Ó ÔÓ‰ÔÓÍ˚ÚËÂÏ fl‚ÎflÂÚÒfl ÔÓÍ˚ÚË , Ú‡ÍÓ ˜ÚÓ Í‡Ê‰˚È
Ó·˙ÂÍÚ ËÁ fl‚ÎflÂÚÒfl Ó·˙ÂÍÚÓÏ ËÁ ; Â„Ó ÔÓ‰‡Á‰ÂÎÂÌËÂÏ fl‚ÎflÂÚÒfl ÔÓÍ˚ÚË ,
Ú‡ÍÓ ˜ÚÓ Í‡Ê‰˚È Ó·˙ÂÍÚ ËÁ ÂÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÌÂÍÓÂ„Ó Ó·˙ÂÍÚ‡ ËÁ .
ëÂÏÂÈÒÚ‚Ó ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï ̇Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ ÍÓ̘Ì˚Ï, ÂÒÎË
͇ʉ‡fl ÚӘ͇ ÏÌÓÊÂÒÚ‚‡ ï ËÏÂÂÚ ÓÍÂÒÚÌÓÒÚ¸, ÔÂÂÒÂ͇˛˘Û˛Òfl ÚÓθÍÓ Ò
ÍÓ̘Ì˚Ï ˜ËÒÎÓÏ ˝ÚËı ÔÓ‰ÏÌÓÊÂÒÚ‚. èÓ‰ÏÌÓÊÂÒÚ‚Ó A ⊂ X ̇Á˚‚‡ÂÚÒfl ÔÎÓÚÌ˚Ï,
56
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÂÒÎË ÓÌÓ ËÏÂÂÚ ÌÂÔÛÒÚÓ ÔÂÂÒ˜ÂÌËÂ Ò Í‡Ê‰˚Ï ÌÂÔÛÒÚ˚Ï ÓÚÍ˚Ú˚Ï ÏÌÓÊÂÒÚ‚ÓÏ
ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, ÂÒÎË Â‰ËÌÒÚ‚ÂÌÌ˚Ï ÒÓ‰Âʇ˘ËÏ Â„Ó Á‡ÏÍÌÛÚ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ
fl‚ÎflÂÚÒfl Ò‡ÏÓ ÏÌÓÊÂÒÚ‚Ó ï. Ç ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X, d) ÔÎÓÚÌ˚Ï
ÏÌÓÊÂÒÚ‚ÓÏ ·Û‰ÂÚ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó A ⊂ X, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·Ó„Ó x ∈ X Ë Î˛·Ó„Ó ε > 0
ÒÛ˘ÂÒÚ‚ÛÂÚ y ∈ A, Ú‡ÍÓ ˜ÚÓ d(x, y) < ε. ãÓ͇θÌÓÈ ·‡ÁÓÈ ÚÓ˜ÍË x ∈ X fl‚ÎflÂÚÒfl
ÒÂÏÂÈÒÚ‚Ó
ÓÍÂÒÚÌÓÒÚÂÈ ÚÓ˜ÍË ı, Ú‡ÍÓ ˜ÚÓ Í‡Ê‰‡fl ÓÍÂÒÚÌÓÒÚ¸ ÚÓ˜ÍË ı
ÒÓ‰ÂÊËÚ ÌÂÍËÈ ˝ÎÂÏÂÌÚ ÒÂÏÂÈÒÚ‚‡ .
îÛÌ͈Ëfl ËÁ Ó‰ÌÓ„Ó ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‚ ‰Û„Ó ̇Á˚‚‡ÂÚÒfl ÌÂÔÂ˚‚ÌÓÈ, ÂÒÎË ÔÓÓ·‡Á Í‡Ê‰Ó„Ó ÓÚÍ˚ÚÓ„Ó ÏÌÓÊÂÒÚ‚‡ ·Û‰ÂÚ ÓÚÍ˚Ú˚Ï. ÉÛ·Ó
„Ó‚Ófl, ‰Îfl ‰‡ÌÌÓ„Ó x ∈ X ‚Ò ·ÎËÁÍËÂ Í ı ÚÓ˜ÍË ÓÚÓ·‡Ê‡˛ÚÒfl ‚ ÚÓ˜ÍË, ·ÎËÁÍË Í
f(x). îÛÌ͈Ëfl f ËÁ Ó‰ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, dX ) ‚ ‰Û„Ó (Y, d Y) ·Û‰ÂÚ
ÌÂÔÂ˚‚ÌÓÈ ‚ ÚӘ͠c ∈ X, ÂÒÎË ‰Îfl β·Ó„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó
˜ËÒ· ε ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓÎÓÊËÚÂθÌÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ ˜ËÒÎÓ δ, Ú‡ÍÓ ˜ÚÓ ‚Ò x ∈ X,
Û‰Ó‚ÎÂÚ‚Ófl˛˘Ë ÌÂ‡‚ÂÌÒÚ‚Û dX(x, c) < δ, ·Û‰ÛÚ Ú‡ÍÊ ۉӂÎÂÚ‚ÓflÚ¸ ÌÂ‡‚ÂÌÒÚ‚Û
dY(f(x), f(y)) < ε. îÛÌ͈Ëfl ̇Á˚‚‡ÂÚÒfl ÌÂÔÂ˚‚ÌÓÈ Ì‡ ËÌÚÂ‚‡Î I, ÂÒÎË Ó̇
ÌÂÔÂ˚‚̇ ‚ β·ÓÈ ÚӘ͠ËÌÚÂ‚‡Î‡ I.
è˂‰ÂÌÌ˚ ÌËÊ Í·ÒÒ˚ ÚÓÔÓÎӄ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (‰Ó T 4 ) ‚Íβ˜‡˛Ú
β·˚ ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡.
í0 -ÔÓÒÚ‡ÌÒÚ‚Ó
í0-ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó äÓÎÏÓ„ÓÓ‚‡) ÂÒÚ¸ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, τ), ̇ ÍÓÚÓÓÏ ‚˚ÔÓÎÌflÂÚÒfl í0-‡ÍÒËÓχ ÓÚ‰ÂÎËÏÓÒÚË: ‰Îfl ͇ʉ˚ı
‰‚Ûı ÚÓ˜ÂÍ x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó U, Ú‡ÍÓ ˜ÚÓ x ∈ U Ë y ∉ U ËÎË
y ∈ U Ë y ∉ U (͇ʉ˚ ‰‚ ÚÓ˜ÍË fl‚Îfl˛ÚÒfl ÚÓÔÓÎӄ˘ÂÒÍË ÓÚ΢ËÏ˚ÏË).
í1-ÔÓÒÚ‡ÌÒÚ‚Ó
í1-ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï , τ), ̇ ÍÓÚÓÓÏ ‚˚ÔÓÎÌflÂÚÒfl í1--‡ÍÒËÓχ ÓÚ‰ÂÎËÏÓÒÚË: ‰Îfl ͇ʉ˚ı ‰‚Ûı ÚÓ˜ÂÍ x, y ∈ X ÒÛ˘ÂÒÚ‚Û˛Ú ‰‚‡
Ú‡ÍËı ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚‡ U Ë V, ˜ÚÓ x ∈ U Ë y ∉ U ËÎË y ∈ V Ë x ∉ V (͇ʉ˚ ‰‚Â
ÚÓ˜ÍË fl‚Îfl˛ÚÒfl ‡Á‰ÂÎÂÌÌ˚ÏË). í 1 -ÔÓÒÚ‡ÌÒÚ‚‡ ‚Ò„‰‡ fl‚Îfl˛ÚÒfl í 0 -ÔÓÒÚ‡ÌÒÚ‚‡ÏË.
í2-ÔÓÒÚ‡ÌÒÚ‚Ó
í2-ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, ‡Á‰ÂÎÂÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó) –
ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï , τ), Û‰Ó‚ÎÂÚ‚Ófl˛˘Â ÛÒÎӂ˲ í 2-‡ÍÒËÓÏ˚:
͇ʉ˚ ‰‚ ÚÓ˜ÍË x, y ∈ X ËÏÂ˛Ú ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl ÓÍÂÒÚÌÓÒÚË. í 2 -ÔÓÒÚ‡ÌÒÚ‚‡
‚Ò„‰‡ fl‚Îfl˛ÚÒfl í1-ÔÓÒÚ‡ÌÒÚ‚‡ÏË.
ê„ÛÎflÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
ê„ÛÎflÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl
ÓÍÂÒÚÌÓÒÚ¸ ÔÓËÁ‚ÓθÌÓÈ ÚÓ˜ÍË ÒÓ‰ÂÊËÚ Á‡ÏÍÌÛÚÛ˛ ÓÍÂÒÚÌÓÒÚ¸ ÚÓÈ Ê ÚÓ˜ÍË.
í3-ÔÓÒÚ‡ÌÒÚ‚Ó
í3 -ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó ÇËÂÚÓËÒ‡, „ÛÎflÌÓ ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó) ÂÒÚ¸ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓ fl‚ÎflÂÚÒfl í1-ÔÓÒÚ‡ÌÒÚ‚ÓÏ
Ë „ÛÎflÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
ÇÔÓÎÌ „ÛÎflÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
ÇÔÓÎÌ „ÛÎflÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó íËıÓÌÓ‚‡) ÂÒÚ¸
ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (ï, τ ), ‚ ÍÓÚÓÓÏ Î˛·Ó Á‡ÏÍÌÛÚÓ ÏÌÓÊÂÒÚ‚Ó Ä Ë
β·Ó x ∉ A fl‚Îfl˛ÚÒfl ÙÛÌ͈ËÓ̇θÌÓ ‡Á‰ÂÎÂÌÌ˚ÏË.
É·‚‡ 2. íÓÔÓÎӄ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡
57
Ñ‚‡ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç ÏÌÓÊÂÒÚ‚‡ ï ̇Á˚‚‡˛ÚÒfl ÙÛÌ͈ËÓ̇θÌÓ ‡Á‰ÂÎÂÌÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl f : X → [0,1], ڇ͇fl ˜ÚÓ f(x) = 0 ‰Îfl
β·Ó„Ó x ∈ A, Ë f(y) = 1 ‰Îfl β·Ó„Ó y ∈ B.
èÓÒÚ‡ÌÒÚ‚Ó åÛ‡
èÓÒÚ‡ÌÒÚ‚Ó åÛ‡ ÂÒÚ¸ „ÛÎflÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ‡Á‚ËÚËÂÏ.
ê‡Á‚ËÚË – ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ { n }n ÓÚÍ˚Ú˚ı ÔÓÍ˚ÚËÈ, Ú‡ÍËı ˜ÚÓ ‰Îfl
Í‡Ê‰Ó„Ó x ∈ X Ë Í‡Ê‰Ó„Ó ÓÚÍ˚ÚÓ„Ó ÏÌÓÊÂÒÚ‚‡ Ä, ÒÓ‰Âʇ˘Â„Ó ı, ËÏÂÂÚÒfl ˜ËÒÎÓ n,
‰Îfl ÍÓÚÓÓ„Ó ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë St(x, n) = ∪{U ∈ n : x ∈ U}, Ú.Â. {St(x, n)}n
fl‚ÎflÂÚÒfl ·‡ÁÓÈ ÓÍÂÒÚÌÓÒÚÂÈ ‰Îfl ı.
çÓχθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
çÓχθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó –ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ‰Îfl β·˚ı
‰‚Ûı ÌÂÔÂÂÒÂ͇˛˘ËıÒfl Á‡ÏÍÌÛÚ˚ı ÏÌÓÊÂÒÚ‚ Ä Ë Ç ÒÛ˘ÂÒÚ‚Û˛Ú ‰‚‡ ÓÚÍ˚Ú˚ı
ÏÌÓÊÂÒÚ‚‡ U Ë V, Ú‡ÍËı ˜ÚÓ Ë A ⊂ U Ë B ⊂ V.
í4-ÔÓÒÚ‡ÌÒÚ‚Ó
í4 -ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó íËÚÒ‡, ÌÓχθÌÓ ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó) ÂÒÚ¸ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓ fl‚ÎflÂÚÒfl í1-ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ë ÌÓχθÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d)
fl‚ÎflÂÚÒfl í4-ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
ÇÔÓÎÌ ÌÓχθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
ÇÔÓÎÌ ÌÓχθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó – ˝ÚÓ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ Î˛·˚ ‰‚‡ ‡Á‰ÂÎÂÌÌ˚ı ÏÌÓÊÂÒÚ‚‡ ËÏÂ˛Ú ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl ÓÍÂÒÚÌÓÒÚË.
åÌÓÊÂÒÚ‚‡ Ä Ë Ç Ì‡Á˚‚‡˛ÚÒfl ‡Á‰ÂÎÂÌÌ˚ÏË ‚ ï, ÂÒÎË Í‡Ê‰Ó ËÁ ÌËı Ì ÔÂÂÒÂ͇ÂÚÒfl Ò Á‡Ï˚͇ÌËÂÏ ‰Û„Ó„Ó.
í5-ÔÓÒÚ‡ÌÒÚ‚Ó
í5-ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË ‚ÔÓÎÌ ÌÓχθÌÓ ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó) ÂÒÚ¸
ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ‚ÔÓÎÌ ÌÓχθÌ˚Ï Ë í 1 -ÔÓÒÚ‡ÌÒÚ‚ÓÏ. í 5 -ÔÓÒÚ‡ÌÒÚ‚‡ ‚Ò„‰‡ fl‚Îfl˛ÚÒfl í4-ÔÓÒÚ‡ÌÒÚ‚‡ÏË.
ëÂÔ‡‡·ÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
ëÂÔ‡‡·ÂθÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚
ÍÓÚÓÓÏ ËÏÂÂÚÒfl Ò˜ÂÚÌÓ ÔÎÓÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó.
èÓÒÚ‡ÌÒÚ‚Ó ãË̉ÂÎÂÙ‡
èÓÒÚ‡ÌÒÚ‚ÓÏ ãË̉ÂÎÂÙ‡ ̇Á˚‚‡ÂÚÒfl ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ
͇ʉÓ ÓÚÍ˚ÚÓ ÔÓÍ˚ÚË ËÏÂÂÚ Ò˜ÂÚÌÓ ÔÓ‰ÔÓÍ˚ÚËÂ.
èÂ‚˘ÌÓ-Ò˜ÂÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÔÂ‚˘ÌÓ-ÒÂÚÌ˚Ï, ÂÒÎË Í‡Ê‰‡fl „Ó
ÚӘ͇ ӷ·‰‡ÂÚ ÎÓ͇θÌÓÈ Ò˜ÂÚÌÓÈ ·‡ÁÓÈ. ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
fl‚ÎflÂÚÒfl ÔÂ‚˘ÌÓ-Ò˜ÂÚÌ˚Ï.
ÇÚÓ˘ÌÓ-Ò˜ÂÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ‚ÚÓ˘ÌÓ-Ò˜ÂÚÌ˚Ï, ÂÒÎË Â„Ó ÚÓÔÓÎÓ„Ëfl ӷ·‰‡ÂÚ Ò˜ÂÚÌÓÈ ·‡ÁÓÈ.
ÇÚÓ˘ÌÓ-ÒÂÚÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ ‚Ò„‰‡ ‡Á‰ÂÎËÏ˚, ÔÂ‚˘ÌÓ-Ò˜ÂÚÌ˚ Ë fl‚Îfl˛ÚÒfl
ÔÓÒÚ‡ÌÒÚ‚‡ÏË ãË̉ÂÎÂÙ‡.
58
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÑÎfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ Ò‚ÓÈÒÚ‚‡ ·˚Ú¸ ‚ÚÓ˘ÌÓ-ÒÂÚÌ˚ÏË, ·˚Ú¸ ÒÂÔ‡‡·ÂθÌ˚ÏË Ë ·˚Ú¸ ÔÓÒÚ‡ÌÒÚ‚‡ÏË ãË̉ÂÎÂÙ‡ fl‚Îfl˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË.
Ö‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó n Ò Â„Ó Ó·˚˜ÌÓÈ ÚÓÔÓÎÓ„ËÂÈ Ú‡ÍÊ fl‚ÎflÂÚÒfl ‚ÚÓ˘ÌÓÒ˜ÂÚÌ˚Ï.
èÓÒÚ‡ÌÒÚ‚Ó Å˝‡
èÓÒÚ‡ÌÒÚ‚Ó Å˝‡ ÂÒÚ¸ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ÔÂÂÒ˜ÂÌËÂ
β·Ó„Ó Ò˜ÂÚÌÓ„Ó ÒÂÏÂÈÒÚ‚‡ ‚Ò˛‰Û ÔÎÓÚÌ˚ı ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚ ‚Ò˛‰Û ÔÎÓÚÌÓ.
ë‚flÁÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, τ) ̇Á˚‚‡ÂÚÒfl Ò‚flÁÌ˚Ï, ÂÒÎË ÓÌÓ Ì fl‚ÎflÂÚÒfl
Ó·˙‰ËÌÂÌËÂÏ Ô‡˚ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÌÂÔÛÒÚ˚ı ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚. Ç ˝ÚÓÏ
ÒÎÛ˜‡Â ÏÌÓÊÂÒÚ‚Ó ï ̇Á˚‚‡ÂÚÒfl Ò‚flÁÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ.
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, τ) ̇Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ Ò‚flÁÌ˚Ï, ÂÒÎË ‚Òfl͇fl
ÚӘ͇ x ∈ X ӷ·‰‡ÂÚ ÎÓ͇θÌÓÈ ·‡ÁÓÈ, ÒÓÒÚÓfl˘ÂÈ ËÁ Ò‚flÁÌ˚ı ÏÌÓÊÂÒÚ‚.
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, τ) ̇Á˚‚‡ÂÚÒfl ÔÛÚ¸-Ò‚flÁÌ˚Ï (ËÎË 0-Ò‚flÁÌ˚Ï),
ÂÒÎË ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÛÚ¸ τ ÓÚ ı Í Û, Ú.Â. ÌÂÔÂ˚‚̇fl
ÙÛÌ͈Ëfl γ : [0,1] → X Ò γ(x) = 0, γ(y) = 1.
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, τ) ̇Á˚‚‡ÂÚÒfl Ó‰ÌÓÒ‚flÁÌ˚Ï (ËÎË 1-Ò‚flÁÌ˚Ï),
ÂÒÎË ÒÓÒÚÓËÚ ËÁ Ó‰ÌÓÈ ˜‡ÒÚË Ë Ì ËÏÂÂÚ ÍÛ„ÓÓ·‡ÁÌ˚ı "‰˚" ËÎË "Û˜ÂÍ", ËÎË,
˝Í‚Ë‚‡ÎÂÌÚÌÓ, ÂÒÎË Í‡Ê‰‡fl ÌÂÔÂ˚‚̇fl ÍË‚‡fl ÔÓÒÚ‡ÌÒÚ‚‡ ï fl‚ÎflÂÚÒfl
ÒÚfl„Ë‚‡ÂÏÓÈ, Ú.Â. ÏÓÊÂÚ ·˚Ú¸ ÛÏÂ̸¯Â̇ ‰Ó Ó‰ÌÓÈ ËÁ  ÚÓ˜ÂÍ ÔÓÒ‰ÒÚ‚ÓÏ
ÌÂÔÂ˚‚ÌÓÈ ‰ÂÙÓχˆËË.
è‡‡ÍÓÏÔ‡ÍÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl Ô‡‡ÍÓÏÔ‡ÍÚÌ˚Ï, ÂÒÎË Î˛·Ó „Ó
ÓÚÍ˚ÚÓ ÔÓÍ˚ÚË ËÏÂÂÚ ÎÓ͇θÌÓ ÍÓ̘ÌÓ ÔÓ‰‡Á·ËÂÌËÂ. ã˛·Ó ÏÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) fl‚ÎflÂÚÒfl Ô‡‡ÍÓÏÔ‡ÍÚÌ˚Ï.
ãÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌ˚Ï, ÂÒÎË ‚Òfl͇fl
Â„Ó ÚӘ͇ ӷ·‰‡ÂÚ ÎÓ͇θÌÓÈ ·‡ÁÓÈ, ÒÓÒÚÓfl˘ÂÈ ËÁ ÍÓÏÔ‡ÍÚÌ˚ı ÓÍÂÒÚÌÓÒÚÂÈ.
ÉÛ·Ó „Ó‚Ófl, ‚Òfl͇fl χ·fl ˜‡ÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚‡ ÔÓıÓʇ ̇ χÎÛ˛ ˜‡ÒÚ¸
ÍÓÏÔ‡ÍÚÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. Ö‚ÍÎˉӂ˚ ÔÓÒÚ‡ÌÒÚ‚‡ n fl‚Îfl˛ÚÒfl ÎÓ͇θÌÓ
ÍÓÏÔ‡ÍÚÌ˚ÏË. èÓÒÚ‡ÌÒÚ‚‡  p-‡‰Ë˜ÂÒÍËı ˜ËÒÂÎ Ú‡ÍÊ ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌ˚.
ÇÔÓÎÌ ӄ‡Ì˘ÂÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌ˚Ï, ÂÒÎË ÓÌÓ
ÏÓÊÂÚ ·˚Ú¸ ÔÓÍ˚ÚÓ ÍÓ̘Ì˚Ï ˜ËÒÎÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚ β·Ó„Ó ÙËÍÒËÓ‚‡ÌÌÓ„Ó
‡ÁÏÂ‡.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÂÒÎË ‰Îfl Í‡Ê‰Ó„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ· r ÒÛ˘ÂÒÚ‚ÛÂÚ
ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó ÓÚÍ˚Ú˚ı ¯‡Ó‚ ‡‰ËÛÒ‡ r, Ó·˙‰ËÌÂÌË ÍÓÚÓ˚ı ‡‚ÌÓ ï.
äÓÏÔ‡ÍÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï , τ) ̇Á˚‚‡ÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï, ÂÒÎË ‚ÒflÍÓÂ
ÓÚÍ˚ÚÓ ÔÓÍ˚ÚË ÏÌÓÊÂÒÚ‚‡ ï ËÏÂÂÚ ÍÓ̘ÌÓ ÔÓ‰ÔÓÍ˚ÚËÂ. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ï
̇Á˚‚‡ÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ.
äÓÏÔ‡ÍÚÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ ‚Ò„‰‡ fl‚Îfl˛ÚÒfl ÔÓÒÚ‡ÌÒÚ‚‡ÏË ãË̉ÂÎÂÙ‡, ‚ÔÓÎÌÂ
Ó„‡Ì˘ÂÌÌ˚ÏË Ë Ô‡‡ÍÓÏÔ‡ÍÚÌ˚ÏË. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ÍÓÏÔ‡ÍÚÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ ÔÓÎÌÓÂ Ë ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌÓÂ. èÓ‰ÏÌÓ-
59
É·‚‡ 2. íÓÔÓÎӄ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡
ÊÂÒÚ‚Ó Â‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡,
ÍÓ„‰‡ ÓÌÓ Á‡ÏÍÌÛÚÓÂ Ë Ó„‡Ì˘ÂÌÌÓÂ.
ëÛ˘ÂÒÚ‚ÛÂÚ fl‰ ÚÓÔÓÎӄ˘ÂÒÍËı Ò‚ÓÈÒÚ‚, ÍÓÚÓ˚ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ Ò‚ÓÈÒÚ‚Û
ÍÓÏÔ‡ÍÚÌÓÒÚË ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚, ÌÓ Ì½͂˂‡ÎÂÌÚÌ˚ ‰Îfl Ó·˘Ëı ÚÓÔÓÎӄ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚. í‡Í, ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ÍÓÏÔ‡ÍÚÌ˚Ï ÚÓ„‰‡ Ë
ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ÒÂÍ‚Â̈ˇθÌÓ ÍÓÏÔ‡ÍÚÌ˚Ï (͇ʉ‡fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ӷ·‰‡ÂÚ ÒıÓ‰fl˘ÂÈÒfl ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛) ËÎË Ò ˜ Â Ú Ì Ó
ÍÓÏÔ‡ÍÚÌ˚Ï (͇ʉÓ ҘÂÚÌÓ ÓÚÍ˚ÚÓ ÔÓÍ˚ÚË ӷ·‰‡ÂÚ ÍÓ̘Ì˚Ï ÔÓ‰ÔÓÍ˚ÚËÂÏ), ËÎË ÔÒ‚‰ÓÍÓÏÔ‡ÍÚÌ˚Ï (͇ʉ‡fl ‰ÂÈÒÚ‚ËÚÂθ̇fl ÌÂÔÂ˚‚̇fl
ÙÛÌ͈Ëfl ̇ ‰‡ÌÌÓÏ ÔÓÒÚ‡ÌÚÒÚ‚Â fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌÓÈ), ËÎË Ò··Ó Ò˜ÂÚÌ˚Ï
ÍÓÏÔ‡ÍÚÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (͇ʉÓ ·ÂÒÍÓ̘ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó Ó·Î‡‰‡ÂÚ
Ô‰ÂθÌÓÈ ÚÓ˜ÍÓÈ).
ãÓ͇θÌÓ ‚˚ÔÛÍÎÓ ÔÓÒÚ‡ÌÒÚ‚Ó
íÓÔÓÎӄ˘ÂÒÍËÏ ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓÂ
(ÍÓÏÔÎÂÍÒÌÓÂ) ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó V, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ı‡ÛÒ‰ÓÙÓ‚˚Ï
ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ò ÌÂÔÂ˚‚Ì˚ÏË ÓÔÂ‡ˆËflÏË ÒÎÓÊÂÌËfl ‚ÂÍÚÓÓ‚ Ë ÛÏÌÓÊÂÌËfl
‚ÂÍÚÓ‡ ̇ Ò͇Îfl. éÌÓ Ì‡Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ ‚˚ÔÛÍÎ˚Ï, ÂÒÎË Â„Ó ÚÓÔÓÎÓ„Ëfl
ӷ·‰‡ÂÚ ·‡ÁÓÈ, ‚ÒflÍËÈ ˝ÎÂÏÂÌÚ ÍÓÚÓÓÈ fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ.
èÓ‰ÏÌÓÊÂÒÚ‚Ó Ä ÏÌÓÊÂÒÚ‚‡ V ̇Á˚‚‡ÂÚÒfl ‚˚ÔÛÍÎ˚Ï, ÂÒÎË ‰Îfl ‚ÒÂı x, y ∈ A Ë
β·Ó„Ó t ∈ [0,1] ÚӘ͇ tx + (1–t)y ∈ A, Ú.Â. ‚Òfl͇fl ÚӘ͇ ÓÚÂÁ͇, ÒÓ‰ËÌfl˛˘Â„Ó ı Ë
Û, ÔË̇‰ÎÂÊËÚ Ä.
ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V,|| x–y ||) ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ)
‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V Ò ÏÂÚËÍÓÈ ÌÓÏ˚ || x–y || fl‚ÎflÂÚÒfl ÎÓ͇θÌÓ ‚˚ÔÛÍÎ˚Ï
ÔÓÒÚ‡ÌÒÚ‚ÓÏ; ‚Òfl͇fl ÚӘ͇ ÔÓÒÚ‡ÌÒÚ‚‡ V ӷ·‰‡ÂÚ ÎÓ͇θÌÓÈ ·‡ÁÓÈ, ÒÓÒÚÓfl˘ÂÈ
ËÁ ‚˚ÔÛÍÎ˚ı ÏÌÓÊÂÒÚ‚.
ë˜ÂÚÌÓ-ÌÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
ë˜ÂÚÌÓ-ÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ ‚˚ÔÛÍÎÓ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (V, τ), ÚÓÔÓÎÓ„Ëfl ÍÓÚÓÓ„Ó Á‡‰‡ÂÚÒfl ˜ÂÂÁ Ò˜ÂÚÌÓ ÏÌÓÊÂÒÚ‚Ó
ÒÓ‚ÏÂÒÚÌ˚ı ÌÓÏ || ⋅ ||1,… ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ, ÂÒÎË ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ {xn}n
˝ÎÂÏÂÌÚÓ‚ ÏÌÓÊÂÒÚ‚‡ V, fl‚Îfl˛˘‡flÒfl ÙÛ̉‡ÏÂÌڇθÌÓÈ ÓÚÌÓÒËÚÂθÌÓ ÌÓÏ || ⋅ ||i Ë
|| ⋅ ||j, ÒıÓ‰ËÚÒfl Í ÌÛβ ÓÚÌÓÒËÚÂθÌÓ Ó‰ÌÓÈ ËÁ ˝ÚËı ÌÓÏ, ÚÓ Ó̇ ·Û‰ÂÚ ÒıÓ‰ËÚ¸Òfl Í
ÌÛβ Ë ÓÚÌÓÒËÚÂθÌÓ ‰Û„ÓÈ. ë˜ÂÚÌÓ-ÌÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl
ÏÂÚËÁÛÂÏ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ë Â„Ó ÏÂÚË͇ ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì‡ ͇Í
∞
|| x − y ||
∑ 2 n 1+ || x − yn||n .
1
n =1
ÉËÔÂÔÓÒÚ‡ÌÒÚ‚Ó
ÉËÔÂÔÓÒÚ‡ÌÒÚ‚ÓÏ ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ï , τ) ̇Á˚‚‡ÂÚÒfl
ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡ ÏÌÓÊÂÒÚ‚Â CL(X) ‚ÒÂı ÌÂÔÛÒÚ˚ı Á‡ÏÍÌÛÚ˚ı (ËÎË,
·ÓΠÚÓ„Ó, ÍÓÏÔ‡ÍÚÌ˚ı) ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï. íÓÔÓÎÓ„Ëfl „ËÔÂÔÓÒÚ‡ÌÒÚ‚‡
ï ̇Á˚‚‡ÂÚÒfl „ËÔÂÚÓÔÓÎÓ„ËÂÈ. èËÏÂ‡ÏË Ú‡ÍÓÈ ÚÓÔÓÎÓ„ËË Û‰‡‡-ÔÓχı‡ ÏÓ„ÛÚ
ÒÎÛÊËÚ¸ ÚÓÔÓÎÓ„Ëfl ÇËÂÚÓËÒ‡ Ë ÚÓÔÓÎÓ„Ëfl îÂη. èËÏÂ‡ÏË Ú‡ÍÓÈ Ò··ÓÈ
ÚÓÔÓÎÓ„ËË „ËÔÂÔÓÒÚ‡ÌÒÚ‚‡ fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒ͇fl ÚÓÔÓÎÓ„Ëfl ï‡ÛÒ‰ÓÙ‡ Ë
ÚÓÔÓÎÓ„Ëfl LJÈÒχ̇.
ÑËÒÍÂÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
ÑËÒÍÂÚÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, τ) Ò
‰ËÒÍÂÚÌÓÈ ÚÓÔÓÎÓ„ËÂÈ. Ö„Ó ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
(X, d) Ò ‰ËÒÍÂÚÌÓÈ ÏÂÚËÍÓÈ: d(x, x) = 0, Ë d(x, Û) = 1 ‰Îfl x ≠ y.
60
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÄÌÚˉËÒÍÂÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
ÄÌÚˉËÒÍÂÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï , τ ) Ò
‡ÌÚˉËÒÍÂÚÌÓÈ ÚÓÔÓÎÓ„ËÂÈ. Ö„Ó ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÔÓÎÛÏÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) Ò ‡ÌÚˉËÒÍÂÚÌÓÈ ÔÓÎÛÏÂÚËÍÓÈ: d(x, Û) = 0 ‰Îfl β·˚ı x,y ∈ X.
åÂÚËÁÛÂÏÓ ÔÓÒÚ‡ÌÒÚ‚Ó
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÏÂÚËÁÛÂÏ˚Ï, ÂÒÎË ÓÌÓ „ÓÏÂÓÏÓÙÌÓ
ÌÂÍÓÚÓÓÏÛ ÏÂÚ˘ÂÒÍÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û. åÂÚËÁÛÂÏ˚ ÔÓÒÚ‡ÌÒÚ‚‡ ‚Ò„‰‡
fl‚Îfl˛ÚÒfl í2 -ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ë Ô‡‡ÍÓÏÔ‡ÍÚÌ˚ÏË (‡ Á̇˜ËÚ ÌÓχθÌ˚ÏË Ë ‚ÔÓÎÌÂ
„ÛÎflÌ˚ÏË) ÔÓÒÚ‡ÌÒÚ‚‡ÏË, ‡ Ú‡ÍÊ ÔÂ‚˘ÌÓ-Ò˜ÂÚÌ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË.
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ ÏÂÚËÁÛÂÏ˚Ï, ÂÒÎË Î˛·‡fl
Â„Ó ÚӘ͇ ӷ·‰‡ÂÚ ÏÂÚËÁÛÂÏÓÈ ÓÍÂÒÚÌÓÒÚ¸˛.
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï , τ) ̇Á˚‚‡ÂÚÒfl ÔÓ‰ÏÂÚËÁÛÂÏ˚Ï, ÂÒÎË
ÒÛ˘ÂÒÚ‚ÛÂÚ ÏÂÚËÁÛÂχfl ÚÓÔÓÎÓ„Ëfl τ ̇ ï, ·ÓΠ„Û·‡fl, ˜ÂÏ τ.
çËÊ ‰‡Ì˚ ÚË ÔËÏÂ‡ ‰Û„Ëı Ó·Ó·˘ÂÌËÈ ÏÂÚËÁÛÂÏ˚ı ÔÓÒÚ‡ÌÒÚ‚.
å-ÔÓÒÚ‡ÌÒÚ‚Ó åÓËÚ˚ – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï , τ), ËÁ ÍÓÚÓÓ„Ó
ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂÔÂ˚‚ÌÓ ÓÚÓ·‡ÊÂÌË f ̇ ÏÂÚËÁÛÂÏÓ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (Y, τ) , Ú‡ÍÓ ˜ÚÓ f Á‡ÏÍÌÛÚÓ Ë f1 (y) Ò˜ÂÚÌÓ ÍÓÏÔ‡ÍÚÌÓ ‰Îfl Í‡Ê‰Ó„Ó y∈ Y.
M1 -ÔÓÒÚ‡ÌÒÚ‚Ó ë‰Â‡ –ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, τ ) Ò ·‡ÁÓÈ, ÒÓı‡Ìfl˛˘ÂÈ σ-Á‡Ï˚͇ÌË (ÏÂÚËÁÛÂÏ˚ ÔÓÒÚ‡ÌÒÚ‚‡ ËÏÂ˛Ú σ -ÎÓ͇θÌÓ ÍÓ̘Ì˚Â
·‡Á˚).
σ-ÔÓÒÚ‡ÌÒÚ‚Ó éÍÛflÏ˚ – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, τ ) Ò σ-ÎÓ͇θÌÓ
ÍÓ̘ÌÓÈ ÒÂÚ¸˛, Ú.Â. Ú‡ÍËÏ ÒÂÏÂÈÒÚ‚ÓÏ
ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï, ˜ÚÓ ‰Îfl
‰‡ÌÌÓÈ ÚÓ˜ÍË x ∈ U („‰Â U – ÓÚÍ˚ÚÓ) ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ U ∈ , ˜ÚÓ x ∈ U ⊂ U
(·‡Á‡ fl‚ÎflÂÚÒfl ÒÂÚ¸˛, ÒÓÒÚÓfl˘ÂÈ ËÁ ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚).
É·‚‡ 3
é·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚
çÂÍÓÚÓ˚ ӷӷ˘ÂÌËfl ÔÓÌflÚËfl ÏÂÚËÍË, ‚ ˜‡ÒÚÌÓÒÚË ÔÓÌflÚËfl Í‚‡ÁËÏÂÚËÍË,
ÔÓ˜ÚË-ÏÂÚËÍË, ‡Ò¯ËÂÌÌÓÈ ÏÂÚËÍË, ·˚ÎË ‡ÒÒÏÓÚÂÌ˚ ‚ „Î. 1. Ç ‰‡ÌÌÓÈ „·‚Â
Ô‰ÒÚ‡‚ÎÂÌ˚ ÌÂÍÓÚÓ˚ ӷӷ˘ÂÌËfl, Ò‚flÁ‡ÌÌ˚Â Ò ÚÓÔÓÎÓ„ËÂÈ, ÚÂÓËÂÈ ‚ÂÓflÚÌÓÒÚÂÈ, ‡Î„·ÓÈ Ë Ú.Ô.
3.1. m-åÖíêàäà
m-ïÂÏËÏÂÚË͇ÏÂÚË͇
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : Xm+1 → ̇Á˚‚‡ÂÚÒfl m-ıÂÏËÏÂÚËÍÓÈ, ÂÒÎË d ÌÂÓÚˈ‡ÚÂθ̇, Ú.Â. d(x 1 ,…,xn+1) ≥ 0 ‰Îfl ‚ÒÂı x1,…, xn+1 ∈ X, ÂÒÎË d
‚ÔÓÎÌ ÒËÏÏÂÚ˘̇, Ú.Â. Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ d(x 1 ,…, xm+1 ) = d(xπ(1),…, xπ(m+1))
‰Îfl ‚ÒÂı x1,…, xm+1 ∈ X Ë Î˛·ÓÈ ÔÂÂÒÚ‡ÌÓ‚ÍË π ˝ÎÂÏÂÌÚÓ‚ {1,…, m+1}, ÂÒÎË d
Ô˂‰Â̇ Í ÌÛβ, Ú.Â. d(x1,…, xm+1 ) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x 1 ,…, xm+1 ÌÂ
fl‚Îfl˛ÚÒfl ÔÓÔ‡ÌÓ ‡Á΢Ì˚ÏË, Ë ÂÒÎË ‰Îfl ‚ÒÂı x 1 ,…, xm+2 ∈ X ÙÛÌ͈Ëfl d
Û‰Ó‚ÎÂÚ‚ÓflÂÚ m-ÒËÏÔÎÂÍÒÌÓÏÛ ÌÂ‡‚ÂÌÒÚ‚Û:
d ( x1 , …, x m +1 ) ≤
m +1
∑ d( x1,…, xi −1, xi +1,…, xm + 2 ).
i =1
2-ÏÂÚË͇
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl ̇Á˚‚‡ÂÚÒfl d : X → 2-ÏÂÚËÍÓÈ,
ÂÒÎË d ÌÂÓÚˈ‡ÚÂθ̇, ‚ÔÓÎÌ ÒËÏÏÂÚ˘̇, Ô˂‰Â̇ Í ÌÛβ Ë Û‰Ó‚ÎÂÚ‚ÓflÂÚ
ÌÂ‡‚ÂÌÒÚ‚Û ÚÂÚ‡˝‰‡
d ( x1 , x 2 , x3 ) ≤ d ( x 4 , x 2 x3 ) + d ( x1 , x 4 , x 4 ) + d ( x1 , x 2 , x 4 ).
ùÚÓ – ̇˷ÓΠ‚‡ÊÌ˚È ÒÎÛ˜‡È m = 2 ÔÓËÁ‚ÓθÌÓÈ m-ıÂÏËÏÂÚËÍË.
(m, s)-ÒÛÔÂÏÂÚË͇
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó Ë s – ÔÓÎÓÊËÚÂθÌÓ ‚¢ÂÒÚ‚ÂÌÌÓ ˜ËÒÎÓ.
îÛÌ͈Ëfl d : Xm+1 → ̇Á˚‚‡ÂÚÒfl (m, s)-ÒÛÔÂÏÂÚËÍÓÈ ([DeDu03]), ÂÒÎË d ÌÂÓÚˈ‡ÚÂθ̇, ‚ÔÓÎÌ ÒËÏÏÂÚ˘̇, Ô˂‰Â̇ Í ÌÛβ Ë Û‰Ó‚ÎÂÚ‚ÓflÂÚ (m, s)-ÒËÏÔÎÂÍÒÌÓÏÛ ÌÂ‡‚ÂÌÒÚ‚Û:
d ( x1 , …, x m +1 ) ≤
m +1
∑ d( x1,…, xi −1, xi +1,…, xm + 2 ).
i =1
(m, s)-ÒÛÔÂÏÂÚË͇ fl‚ÎflÂÚÒfl m-ÔÓÎÛÏÂÚËÍÓÈ, ÂÒÎË s ≥ 1.
62
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
3.2. çÖéèêÖÑÖãÖççõÖ åÖíêàäà
çÂÓÔ‰ÂÎÂÌ̇fl ÏÂÚË͇
çÂÓÔ‰ÂÎÂÌ̇fl ÏÂÚË͇ (ËÎË G-ÏÂÚË͇) ̇ ‚¢ÂÒÚ‚ÂÌÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ)
‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V ÂÒÚ¸ ·ËÎËÌÂÈ̇fl (‰Îfl ÒÎÛ˜‡fl ÍÓÏÔÎÂÍÒÌÓÈ ÔÂÂÏÂÌÌÓÈ –
ÒÂÒÍËÎËÌÂÈ̇fl) ÙÓχ G ̇ V, Ú.Â. ÙÛÌ͈Ëfl G V × V (), ڇ͇fl ˜ÚÓ ‰Îfl β·˚ı
x, y, z ∈ V Ë Î˛·˚ı Ò͇ÎflÓ‚ α, β ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡:
G(αx + βy, z ) = αG( x, z ) + βG( y, z ) Ë G( x, αy + βz ) = αG( x, z ) + β G( y, z )
„‰Â α = a + bi = a − bi Ó·ÓÁ̇˜‡ÂÚ ÍÓÏÔÎÂÍÒÌÓ ÒÓÔflÊÂÌËÂ).
ÖÒÎË G – ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl ÒËÏÏÂÚ˘̇fl ÙÓχ, ÚÓ ˝ÚÓ Ò͇ÎflÌÓÂ
ÔÓËÁ‚‰ÂÌË ̇ V Ë Â„Ó ÏÓÊÌÓ ËÒÔÓθÁÓ‚‡Ú¸ ‰Îfl ͇ÌÓÌ˘ÂÒÍÓ„Ó ‚‚‰ÂÌËfl ÌÓÏ˚ Ë
ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÏÂÚËÍË ÌÓÏ˚ ̇ V. ÑÎfl ÒÎÛ˜‡fl Ó·˘ÂÈ ÙÓÏ˚ G Ì ÒÛ˘ÂÒÚ‚ÛÂÚ
ÌË ÌÓÏ˚, ÌË ÏÂÚËÍË, ͇ÌÓÌ˘ÂÒÍË Ò‚flÁ‡ÌÌÓÈ Ò G, Ë ÚÂÏËÌ ÌÂÓÔ‰ÂÎÂÌ̇fl
ÏÂÚË͇ ÚÓθÍÓ Ì‡ÔÓÏË̇ÂÚ Ó ÚÂÒÌÓÈ Ò‚flÁË ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ·ËÎËÌÂÈÌ˚ı ÙÓÏ Ò ÌÂÍÓÚÓ˚ÏË ÏÂÚË͇ÏË ‚ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â
(ÒÏ. „Î. 7 Ë 26).
è‡‡ (V, G) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ò ÌÂÓÔ‰ÂÎÂÌÌÓÈ ÏÂÚËÍÓÈ. äÓ̘ÌÓÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÌÂÓÔ‰ÂÎÂÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ·ËÎËÌÂÈÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÉËθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ç, Ò̇·ÊÂÌÌÓ ÌÂÔÂ˚‚ÌÓÈ
G -ÏÂÚËÍÓÈ, ̇Á˚‚‡ÂÚÒfl „Ëθ·ÂÚÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ò ÌÂÓÔ‰ÂÎÂÌÌÓÈ
ÏÂÚËÍÓÈ. ç‡Ë·ÓΠ‚‡ÊÌ˚Ï ÔËÏÂÓÏ Ú‡ÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ fl‚ÎflÂÚÒfl J-ÔÓÒÚ‡ÌÒÚ‚Ó.
èÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó L ‚ ÔÓÒÚ‡ÌÒÚ‚Â (V, G) Ò ÌÂÓÔ‰ÂÎÂÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÓÊËÚÂθÌ˚Ï, ÓÚˈ‡ÚÂθÌ˚Ï ËÎË ÌÂÈÚ‡Î¸Ì˚Ï ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ
‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ‚˚ÔÓÎÌÂÌËfl ÌÂ‡‚ÂÌÒÚ‚ G(x, x) > 0, G(x, x) < 0 ËÎË G(x, x) = 0 ‰Îfl
‚ÒÂı x → L.
ùÏËÚÓ‚‡ G-ÏÂÚË͇
ùÏËÚÓ‚‡ G -ÏÂÚË͇ ÌÂÓÔ‰ÂÎÂÌ̇fl ÏÂÚË͇ GH ̇ ÍÓÏÔÎÂÍÒÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V , ڇ͇fl ˜ÚÓ ‰Îfl ‚ÒÂı x , y ∈ V ËÏÂÂÚ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó
G H ( x, y) = G H ( y, x ), „‰Â α = a + bi = a − bi ÓÁ̇˜‡ÂÚ ÍÓÏÔÎÂÍÒÌÓ ÒÓÔflÊÂÌËÂ.
ê„ÛÎfl̇fl G-ÏÂÚË͇
ê„ÛÎfl̇fl G -ÏÂÚË͇ ÂÒÚ¸ ÌÂÔÂ˚‚̇fl ÌÂÓÔ‰ÂÎÂÌ̇fl ÏÂÚË͇ G ̇ „Ëθ·ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ç ̇‰ , ÔÓÓʉ‡Âχfl Ó·‡ÚËÏ˚Ï ˝ÏËÚÓ‚˚Ï ÓÔÂ‡ÚÓÓÏ
í ÔÓ ÙÓÏÛÎÂ
G(x, y) = ⟨T(x), y⟩,
„‰Â ⟨,⟩ – Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ ç.
ùÏËÚÓ‚ ÓÔÂ‡ÚÓ ̇ „Ëθ·ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ç – ·ËÎËÌÂÈÌ˚È ÓÔÂ‡ÚÓ í
̇ ç, Á‡‰‡‚‡ÂÏ˚È Ì‡ ӷ·ÒÚË ÔÎÓÚÌÓÒÚË D(T) ÔÓÒÚ‡ÌÒÚ‚‡ ç ÔÓ Á‡ÍÓÌÛ ⟨T(x), y⟩ =
= ⟨x, T(y)⟩ ‰Îfl β·˚ı x, y ∈ D(T). é„‡Ì˘ÂÌÌ˚È ˝ÏËÚÓ‚ ÓÔÂ‡ÚÓ ÎË·Ó ÓÔ‰ÂÎÂÌ
̇ ‚ÒÂÏ ç, ÎË·Ó ÏÓÊÂÚ ·˚Ú¸ ÌÂÔÂ˚‚ÌÓ ÔÓ‰ÓÎÊÂÌ Ì‡ ‚Ò ç Ë ÚÓ„‰‡ í = í * . ç‡
ÍÓ̘ÌÓÏÂÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ˝ÏËÚÓ‚ ÓÔÂ‡ÚÓ ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì ˝ÏËÚÓ‚ÓÈ
χÚˈÂÈ (( aij )) = (( a ji )).
É·‚‡ 3. é·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚
63
J-ÏÂÚË͇
J-ÏÂÚË͇ – ÌÂÔÂ˚‚̇fl ÌÂÓÔ‰ÂÎÂÌ̇fl ÏÂÚË͇ G ̇ „Ëθ·ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ç ̇‰ ë, Á‡‰‡‚‡Âχfl ÌÂÍËÏ ˝ÏËÚÓ‚˚Ï ËÌ‚ÓβÚË‚Ì˚Ï ÓÚÓ·‡ÊÂÌËÂÏ J
̇ ç ÔÓ ÙÓÏÛÎÂ
G(x, y) = ⟨J(x), y⟩,
„‰Â ⟨,⟩ – ÂÒÚ¸ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ ç.
àÌ‚ÓβÚË‚ÌÓ ÓÚÓ·‡ÊÂÌË – ÓÚÓ·‡ÊÂÌË ç ̇ ç, Í‚‡‰‡Ú ÍÓÚÓÓ„Ó fl‚ÎflÂÚÒfl
ÚÓʉÂÒÚ‚ÂÌÌ˚Ï ÓÚÓ·‡ÊÂÌËÂÏ. àÌ‚ÓβÚË‚ÌÓ ÓÚÓ·‡ÊÂÌË J ÏÓÊÂÚ ·˚Ú¸
Ô‰ÒÚ‡‚ÎÂÌÓ ‡‚ÂÌÒÚ‚ÓÏ J = P + – P– , , „‰Â ê+ Ë ê – fl‚Îfl˛ÚÒfl ÓÚÓ„Ó̇θÌ˚ÏË
ÔÓÂ͈ËflÏË ‚ ç, ‡ P + + P– = H. ê‡Ì„ ÌÂÓÔ‰ÂÎÂÌÌÓÒÚË J-ÏÂÚËÍË ÓÔ‰ÂÎflÂÚÒfl ͇Í
min{dim P+, dim P– }.
èÓÒÚ‡ÌÒÚ‚Ó (H, G) ̇Á˚‚‡ÂÚÒfl J-ÔÓÒÚ‡ÌÒÚ‚ÓÏ. J-ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÍÓ̘Ì˚Ï
‡Ì„ÓÏ ÌÂÓÔ‰ÂÎÂÌÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ èÓÌÚfl„Ë̇.
3.3. íéèéãéÉàóÖëäàÖ éÅéÅôÖçàü
ó‡ÒÚ˘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
ó‡ÒÚ˘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (å˝Ú¸˛Á, 1992) ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ô‡‡ (X,
d), „‰Â ï – ÌÂÍÓÚÓÓ ÏÌÓÊÂÒÚ‚Ó, ‡ d – ÌÂÓÚˈ‡ÚÂθ̇fl ÒËÏÏÂÚ˘̇fl ÙÛÌ͈Ëfl
d : X × X → , ڇ͇fl ˜ÚÓ d(x, x) ≤ d(x, y) ‰Îfl ‚ÒÂı x, y ∈ X (Ú.Â. β·Ó ҇ÏÓ‡ÒÒÚÓflÌËÂ
x(x. x), χÎÓ), ı = Û, ÂÒÎË d(x, x) = d(x, y) = d(y, y) = 0 (í 0 – ‡ÍÒËÓχ ÓÚ‰ÂÎËÏÓÒÚË) Ë
ÌÂ‡‚ÂÌÒÚ‚Ó
d(x, y) ≤ d(x, z) + d(z, y) – d(z, z)
‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y, z ∈ X (ÒËθÌÓ ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇).
ÖÒÎË d fl‚ÎflÂÚÒfl ˜‡ÒÚ˘ÌÓÈ ÏÂÚËÍÓÈ, ÚÓ d(x, y) – d(x, x) ·Û‰ÂÚ Í‚‡ÁËÔÓÎÛÏÂÚËÍÓÈ
Ë (X, d) ÏÓÊÂÚ ·˚Ú¸ ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÓ, ÂÒÎË Ï˚ ÓÔ‰ÂÎËÏ x p
− y ÚÓ„‰‡ Ë ÚÓθÍÓ
ÚÓ„‰‡ d(x, y) – d(x, x) = 0.
ëıÓ‰ÒÚ‚Ó
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : X × X → ̇Á˚‚‡ÂÚÒfl
ÒıÓ‰ÒÚ‚ÓÏ Ì‡ ï, ÂÒÎË d ÒËÏÏÂÚ˘ÌÓ Ë ÂÒÎË ‰Îfl ‚ÒÂı x, y ∈ X ‚˚ÔÓÎÌflÂÚÒfl ÎË·Ó
d(x, x) ≤ d(x, y) – ‚ Ú‡ÍÓÏ ÒÎÛ˜‡Â d ̇Á˚‚‡ÂÚÒfl ÒıÓ‰ÒÚ‚ÓÏ ‚ÔÂ‰ ÌÂ‡‚ÂÌÒÚ‚Ó, ÎË·Ó
d(x, x) ≥ d(x, y) – ÚÓ„‰‡ d ̇Á˚‚‡ÂÚÒfl ÒıÓ‰ÒÚ‚ÓÏ Ì‡Á‡‰.
ÇÒflÍÓ ÒıÓ‰ÒÚ‚Ó d ÔÓÓʉ‡ÂÚ ÒÚÓ„ËÈ ˜‡ÒÚ˘Ì˚È ÔÓfl‰ÓÍ Ɱ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı
ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ı Ô‡ ˝ÎÂÏÂÌÚÓ‚ ï ÔÓÒ‰ÒÚ‚ÓÏ Á‡‰‡ÌËfl {x, y} Ɱ {u, ν} ÚÓ„‰‡ Ë
ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d(x, y) < d(u, ν).
ÑÎfl β·Ó„Ó ÒıÓ‰ÒÚ‚‡ ̇Á‡‰ d ÒıÓ‰ÒÚ‚Ó ‚ÔÂ‰ – d ÔÓÓʉ‡ÂÚ ÚÓÚ Ê ˜‡ÒÚ˘Ì˚È
ÔÓfl‰ÓÍ.
èÓÒÚ‡ÌÒÚ‚Ó ␶-‡ÒÒÚÓflÌËfl
èÓÒÚ‡ÌÒÚ‚Ó ␶ -  ‡ Ò Ò Ú Ó fl Ì Ë fl ÂÒÚ¸ Ô‡‡ (X, f), „‰Â ï – ÚÓÔÓÎӄ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó, ‡ f fl‚ÎflÂÚÒfl τ-‡ÒÒÚÓflÌËÂÏ ÄÏË–åÛÚ‡‚‡ÍËÎfl ̇ ï, Ú.Â. ÌÂÓÚˈ‡ÚÂθÌÓÈ ÙÛÌ͈ËÂÈ f : X × X → , Ú‡ÍÓÈ ˜ÚÓ ‰Îfl β·Ó„Ó x ∈ X Ë Î˛·ÓÈ
ÓÍÂÒÚÌÓÒÚË U ÚÓ˜ÍË ı ÒÛ˘ÂÒÚ‚ÛÂÚ ε > 0 c ÛÒÎÓ‚ËÂÏ {y ∈ X : f(x, y) < ε} ⊂ U.
ã˛·Ó ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÒÒÚÓflÌËÈ (X, d) ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó τ-‡ÒÒÚÓflÌËfl ‰Îfl
ÚÓÔÓÎÓ„ËË τ f, ÓÔ‰ÂÎÂÌÌÓÈ ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: A ∈ τf, ÂÒÎË ‰Îfl β·Ó„Ó x ∈ X
ÒÛ˘ÂÒÚ‚ÛÂÚ ε > 0, Ú‡ÍÓ ˜ÚÓ {y ∈ X : f(x, y) < ε} ⊂ A. é‰Ì‡ÍÓ ÒÛ˘ÂÒÚ‚Û˛Ú ÌÂÏÂÚËÁÛÂÏ˚ ÔÓÒÚ‡ÌÒÚ‚‡ τ-‡ÒÒÚÓflÌËfl. τ-ê‡ÒÒÚÓflÌË f(x, y) Ì ӷflÁ‡ÚÂθÌÓ ‰ÓÎÊÌÓ
64
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
·˚Ú¸ ÒËÏÏÂÚ˘Ì˚Ï ËÎË Ó·‡˘‡Ú¸Òfl ‚ ÌÛθ ‰Îfl x = y; ̇ÔËÏÂ, e| x–y | fl‚ÎflÂÚÒfl
τ-‡ÒÒÚÓflÌËÂÏ Ì‡ ï = Ò Ó·˚˜ÌÓÈ ÚÓÔÓÎÓ„ËÂÈ.
èÓÒÚ‡ÌÒÚ‚Ó ·ÎËÁÓÒÚË
èÓÒÚ‡ÌÒÚ‚Ó ·ÎËÁÓÒÚË (ÖÙÂÏӂ˘, 1936) – ÏÌÓÊÂÒÚ‚Ó ï Ò ·Ë̇Ì˚Ï ÓÚÌÓ¯ÂÌËÂÏ δ ̇ ÒÚÂÔÂÌÌÓÏ ÏÌÓÊÂÒÚ‚Â ê(ï) ‚ÒÂı Â„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚, ÍÓÚÓÓ ۉӂÎÂÚ‚ÓflÂÚ ÒÎÂ‰Û˛˘ËÏ ÛÒÎÓ‚ËflÏ:
1) ÄδÇ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÇδÄ (ÒËÏÏÂÚ˘ÌÓÒÚ¸);
2) Äδ(Ç ∪ ë) ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÄδÇ ËÎË Äδë (‡‰‰ËÚË‚ÌÓÒÚ¸);
3) ÄδA ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ A ≠ 0/ (ÂÙÎÂÍÒË‚ÌÓÒÚ¸).
éÚÌÓ¯ÂÌË δ ÓÔ‰ÂÎflÂÚ ·ÎËÁÓÒÚ¸ (ËÎË ÒÚÛÍÚÛÛ ·ÎËÁÓÒÚË) ̇ ï. ÖÒÎË ÄδÇ
Ì ‚˚ÔÓÎÌflÂÚÒfl, ÚÓ ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç Ì‡Á˚‚‡˛ÚÒfl Û‰‡ÎÂÌÌ˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË.
ÇÒflÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó ·ÎËÁÓÒÚË: ÓÔ‰ÂÎËÏ,
˜ÚÓ ÄδÇ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d(A, B) = infx∈A,y∈B d(x, y) = 0.
ã˛·‡fl ·ÎËÁÓÒÚ¸ ̇ ï ÔÓÓʉ‡ÂÚ (‚ÔÓÎÌ „ÛÎflÌÛ˛) ÚÓÔÓÎӄ˲ ̇ ï Á‡‰‡ÌËÂÏ
̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ ï ÓÔÂ‡ÚÓ‡ Á‡Ï˚͇ÌËfl cl : P(X) → P(X) ÔÓ Á‡ÍÓÌÛ
cl(A) = {x ∈ X : {x}δA}.
ꇂÌÓÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
í‡ÍË ÚÓÔÓÎӄ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡ (Ò ‰ÓÔÓÎÌËÚÂθÌ˚ÏË ÒÚÛÍÚÛ‡ÏË) ‰‡˛Ú
Ó·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚, ÓÒÌÓ‚‡ÌÌ˚ ̇ ‡ÒÒÚÓflÌËË ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË.
ꇂÌÓÏÂÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (Ç˝Èθ, 1937) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ï Ò ‡‚ÌÓÏÂÌÓÒÚ¸˛ (ËÎË ‡‚ÌÓÏÂÌÓÈ ÒÚÛÍÚÛÓÈ) – ÌÂÔÛÒÚ˚Ï ÒÂÏÂÈÒÚ‚ÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚
ÏÌÓÊÂÒÚ‚‡ ï × ï, ̇Á˚‚‡ÂÏ˚ı ÓÍÛÊÂÌËflÏË Ë Ó·Î‡‰‡˛˘Ëı ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË:
1) ͇ʉÓ ËÁ ÔÓ‰ÏÌÓÊÂÒÚ‚ ï × ï, ÒÓ‰Âʇ˘Â ÏÌÓÊÂÒÚ‚Ó ËÁ , ÔË̇‰ÎÂÊËÚ ;
2) ‚ÒflÍÓ ÍÓ̘ÌÓ ÔÂÂÒ˜ÂÌË ÏÌÓÊÂÒÚ‚ ËÁ ÔË̇‰ÎÂÊËÚ ;
3) ͇ʉÓ ÏÌÓÊÂÒÚ‚Ó V ∈
ÒÓ‰ÂÊËÚ ‰Ë‡„Ó̇θ, Ú.Â. ÏÌÓÊÂÒÚ‚Ó {(x, x):
x ∈ X} ⊂ ï × ï;
4) ÂÒÎË V ÔË̇‰ÎÂÊËÚ , ÚÓ ÏÌÓÊÂÒÚ‚Ó {(y, x) : (x, y) ∈ V} ÔË̇‰ÎÂÊËÚ ;
5) ÂÒÎË V ÔË̇‰ÎÂÊËÚ , ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ V ∈ , ˜ÚÓ (x, z) ∈ V ‚Ó ‚ÒÂı
ÒÎÛ˜‡flı, ÍÓ„‰‡ (x, y), (y, z) ∈ V.
ä‡Ê‰Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) fl‚ÎflÂÚÒfl ‡‚ÌÓÏÂÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
éÍÛÊÂÌË ‚ (ï, d) ÂÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï × ï, ÒÓ‰Âʇ˘Â ÏÌÓÊÂÒÚ‚Ó Vε =
= {(x, y) ∈ X × X : d(x, y) < ε } ‰Îfl ÌÂÍÓÚÓÓ„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó
˜ËÒ· ε. ÑÛ„ËÏ ·‡ÁÓ‚˚Ï ÔËÏÂÓÏ ‡‚ÌÓÏÂÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ fl‚Îfl˛ÚÒfl ÚÓÔÓÎӄ˘ÂÒÍË „ÛÔÔ˚.
èÓÒÚ‡ÌÒÚ‚Ó ÔË·ÎËÊÂÌÌÓÒÚË
èÓÒÚ‡ÌÒÚ‚Ó ÔË·ÎËÊÂÌÌÓÒÚË (ïÂËı, 1974) ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ï ÒÓ ÒÚÛÍÚÛÓÈ ÔË·ÎËÊÂÌÌÓÒÚË, Ú.Â. ÌÂÔÛÒÚÓÈ ÒÓ‚ÓÍÛÔÌÓÒÚ¸˛
ÒÂÏÂÈÒÚ‚ ÔÓ‰ÏÌÓÊÂÒÚ‚
ÏÌÓÊÂÒÚ‚‡ ï, ̇Á˚‚‡ÂÏ˚ı ÒÂÏÂÈÒÚ‚‡ÏË ÔË·ÎËÊÂÌÌÓÒÚË, ÒÓ ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË:
1) ͇ʉÓ ÒÂÏÂÈÒÚ‚Ó, ÔÓ‰‡Á‰ÂÎfl˛˘Â ÒÂÏÂÈÒÚ‚Ó Ó ÔË·ÎËÊÂÌÌÓÒÚË, fl‚ÎflÂÚÒfl
ÒÂÏÂÈÒÚ‚ÓÏ ÔË·ÎËÊÂÌÌÓÒÚË;
2) ͇ʉÓ ÒÂÏÂÈÒÚ‚Ó Ò ÌÂÔÛÒÚ˚Ï ÔÂÂÒ˜ÂÌËÂÏ fl‚ÎflÂÚÒfl ÒÂÏÂÈÒÚ‚ÓÏ ÔË·ÎËÊÂÌÌÓÒÚË;
É·‚‡ 3. é·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚
65
3) V ∈ , ÂÒÎË {cl(A): A ∈ V} ∈ , „‰Â Òl(A) = {x ∈ X : {{x}, A ∈ };
4) 0/ ∈ , ‚ ÚÓ ‚ÂÏfl Í‡Í ÏÌÓÊÂÒÚ‚Ó ê(ï) ‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï ÌÂ
fl‚ÎflÂÚÒfl ÒÂÏÂÈÒÚ‚ÓÏ ÔË·ÎËÊÂÌÌÓÒÚË;
5) ÂÒÎË {A ∪ B : A ∈ ∞, B ∈ ε ∈ , ÚÓ ∞ ∈ ËÎË ε ∈ .
ꇂÌÓÏÂÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ fl‚Îfl˛ÚÒfl ‚ ÚÓ˜ÌÓÒÚË Ô‡‡ÍÓÏÔ‡ÍÚÌ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË ÔË·ÎËÊÂÌÌÓÒÚË.
èÓÒÚ‡ÌÒÚ‚Ó ÔË·ÎËÊÂÌËÈ
ùÚË ÚÓÔÓÎӄ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡ ‰‡˛Ú Ó·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚,
ÓÒÌÓ‚‡ÌÌ˚ ̇ ‡ÒÒÚÓflÌËË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ.
èÓÒÚ‡ÌÒÚ‚Ó ÔË·ÎËÊÂÌËÈ (ãÓÛ, 1989) ÂÒÚ¸ Ô‡‡ (ï, D), „‰Â ï – ÌÂÍÓÚÓÓ ÏÌÓÊÂÒÚ‚Ó, ‡ D – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ, Ú.Â. ÙÛÌ͈Ëfl
X × P(X) → [0, ∞] („‰Â ê(ï) fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ ï), Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ‰Îfl ‚ÒÂı x ∈ X Ë ‚ÒÂı A, B ∈ P(X) ÒÎÂ‰Û˛˘ËÏ ÛÒÎÓ‚ËflÏ:
1) D(x,{x}) = 0;
2) D(x,{x}) = ∞;
3) D(x, A ∪ B) = min{D(x, A), D(x, B)};
4) D(x, A) ≤ D(x, A ε) + ε ‰Îfl β·˚ı ε ∈ [0, ∞], „‰Â Aε = {x : D(x, A) ≤ ε} ÂÒÚ¸ "ε-¯‡"
Ò ˆÂÌÚÓÏ ‚ ı.
ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) (·ÓΠÚÓ„Ó, β·Ó ‡Ò¯ËÂÌÌÓÂ
Í‚‡ÁËÔÓÎÛÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó) ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó ÔË·ÎËÊÂÌËÈ Ò D(x, A),
fl‚Îfl˛˘ËÏÒfl Ó·˚˜Ì˚Ï ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ.
ÖÒÎË Ï˚ ËÏÂÂÏ ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌÓ ÒÂÔ‡‡·ÂθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
(ï, d) Ë ÒÂÏÂÈÒÚ‚Ó Â„Ó ÌÂÔÛÒÚ˚ı Á‡ÏÍÌÛÚ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚, ÚÓ ÙÛÌ͈Ëfl Å˝‰‰ÎË–
åÓΘ‡ÌÓ‚‡ ‰‡ÂÚ ËÌÒÚÛÏÂÌÚ ‰Îfl ‰Û„Ó„Ó Ó·Ó·˘ÂÌËfl. ùÚÓ – ÙÛÌ͈Ëfl D : X × → ,
ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ÌËÊÌÂÈ ÔÓÎÛÌÂÔÂ˚‚ÌÓÈ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Â ÔÂ‚ÓÈ ÔÂÂÏÂÌÌÓÈ, ËÁÏÂÂÌÌÓÈ ÓÚÌÓÒËÚÂθÌÓ ‚ÚÓÓÈ, Ë Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÒÎÂ‰Û˛˘ËÏ ‰‚ÛÏ ÛÒÎÓ‚ËflÏ:
F = {x ∈ X : D(x, F) ≤ 0} ‰Îfl F ∈ Ë D(x, F1) ≥ D(x, F2 ) ‰Îfl x ∈ X ‚ÒflÍËÈ ‡Á, ÍÓ„‰‡ F1 ,
F2 ∈ Ë F1 ⊂ F2.
ÑÓÔÓÎÌËÚÂθÌ˚ ÛÒÎÓ‚Ëfl D(x, {y}) = D(y, {x}) Ë D(x, F) ≤ D(x, {y}) + D({y}F) ‰Îfl
‚ÒÂı x, y ∈ X Ë ‚ÒÂı F ∈ ‰‡˛Ú Ì‡Ï ‡Ì‡ÎÓ„Ë ÒËÏÏÂÚËË Ë ÌÂ‡‚ÂÌÒÚ‚‡
ÚÂÛ„ÓθÌË͇. ëÎÛ˜‡È D(x, F) = d(x, F) ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ó·˚˜ÌÓÏÛ ‡ÒÒÚÓflÌ˲ ÏÂʉÛ
ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ ‰Îfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d); ÒÎÛ˜‡È D(x, F) = d(x, F)
‰Îfl x ∈ X\F Ë D(x, F) = –d(x, F\F) ‰Îfl x ∈ X ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÙÛÌ͈ËË ‡ÒÒÚÓflÌËfl ÒÓ
Á̇ÍÓÏ („Î. 1).
åÂÚ˘ÂÒ͇fl ·ÓÌÓÎÓ„Ëfl
èÛÒÚ¸ ï – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ÅÓÌÓÎÓ„ËÂÈ Ì‡ ï ·Û‰ÂÚ Î˛·ÓÂ
ÒÂÏÂÈÒÚ‚Ó ÒÓ·ÒÚ‚ÂÌÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ Ä ÏÌÓÊÂÒÚ‚‡ ï, ‰Îfl ÍÓÚÓ˚ı ‚˚ÔÓÎÌfl˛ÚÒfl
ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl:
1) ∪ A∈ A = X;
2) fl‚ÎflÂÚÒfl ˉ‡ÎÓÏ, Ú.Â. ÒÓ‰ÂÊËÚ ‚Ò ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ë ÍÓ̘Ì˚ ӷ˙‰ËÌÂÌËfl
Â„Ó Ó·˙ÂÍÚÓ‚;
ëÂÏÂÈÒÚ‚Ó fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒÍÓÈ ·ÓÌÓÎÓ„ËÂÈ ([Beer99]), ÂÒÎË, ·ÓΠÚÓ„Ó,
ËÏÂ˛Ú ÏÂÒÚÓ ÛÒÎÓ‚Ëfl;
3) ÒÓ‰ÂÊËÚ Ò˜ÂÚÌÛ˛ ·‡ÁÛ;
4) ‰Îfl β·Ó„Ó Ä ∈ ÒÛ˘ÂÒÚ‚ÛÂÚ Ä ∈ , Ú‡ÍÓ ˜ÚÓ Á‡Ï˚͇ÌË ÏÌÓÊÂÒÚ‚‡ Ä
ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚ÌÛÚÂÌÌËı ÚÓ˜ÂÍ ÏÌÓÊÂÒÚ‚‡ Ä.
åÂÚ˘ÂÒ͇fl ·ÓÌÓÎÓ„Ëfl ̇Á˚‚‡ÂÚÒfl Ú˂ˇθÌÓÈ, ÂÒÎË ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ê(ï)
‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï; ڇ͇fl ÏÂÚ˘ÂÒ͇fl ·ÓÌÓÎÓ„Ëfl ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ
66
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÒÂÏÂÈÒÚ‚Û Ó„‡Ì˘ÂÌÌ˚ı ÏÌÓÊÂÒÚ‚ ÌÂÍÓÚÓÓÈ Ó„‡Ì˘ÂÌÌÓÈ ÏÂÚËÍË. ÑÎfl ‚ÒflÍÓ„Ó
ÌÂÍÓÏÔ‡ÍÚÌÓ„Ó ÏÂÚËÁÛÂÏÓ„Ó ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ï ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂÓ„‡Ì˘ÂÌ̇fl ÏÂÚË͇, ÒÓ‚ÏÂÒÚËχfl Ò ‰‡ÌÌÓÈ ÚÓÔÓÎÓ„ËÂÈ. çÂÚ˂ˇθ̇fl ÏÂÚ˘ÂÒ͇fl
·ÓÌÓÎÓ„Ëfl ̇ Ú‡ÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ï ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÒÂÏÂÈÒÚ‚Û Ó„‡Ì˘ÂÌÌ˚ı
ÔÓ‰ÏÌÓÊÂÒÚ‚ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÌÂÍÓÂÈ ÌÂÓ„‡Ì˘ÂÌÌÓÈ ÏÂÚËÍÂ. çÂÍÓÏÔ‡ÍÚÌÓÂ
ÏÂÚËÁÛÂÏÓ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ï ‰ÓÔÛÒ͇ÂÚ ·ÂÒÍÓ̘ÌÓ ÏÌÓ„Ó
ÌÂÚ˂ˇθÌ˚ı ÏÂÚ˘ÂÒÍËı ·ÓÌÓÎÓ„ËÈ.
3.4. áÄ èêÖÑÖãÄåà óàëÖã
ÇÂÓflÚÌÓÒÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
èÓÌflÚË ‚ÂÓflÚÌÓÒÚÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ
ÔÓÌflÚËfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ÒÏ., ̇ÔËÏÂ, [ScSk83]) ÔÓ ‰‚ÛÏ Ì‡Ô‡‚ÎÂÌËflÏ: ‡ÒÒÚÓflÌËfl ÒÚ‡ÌÓ‚flÚÒfl ‡ÒÔ‰ÂÎÂÌËflÏË ‚ÂÓflÚÌÓÒÚË Ë ÒÛÏχ ‚
ÌÂ‡‚ÂÌÒÚ‚Â ÚÂÛ„ÓθÌË͇ Ô‚‡˘‡ÂÚÒfl ‚ ÓÔÂ‡ˆË˛ ÚÂÛ„ÓθÌË͇.
îÓχθÌÓ, ÔÛÒÚ¸ Ä – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÙÛÌ͈ËÈ ‡ÒÔ‰ÂÎÂÌËfl ‚ÂÓflÚÌÓÒÚË,
ÌÂÒÛ˘Â ÏÌÓÊÂÒÚ‚Ó ÍÓÚÓÓ„Ó Ì‡ıÓ‰ËÚÒfl ‚ [0, ∞]. ÑÎfl β·Ó„Ó a ∈ [0, ∞] Á‡‰‡‰ËÏ
εa ∈ A Í‡Í ε a (x) = 1, ÂÒÎË x > a ËÎË x = ∞ Ë ε a = 0, Ë̇˜Â. îÛÌ͈ËË ‚ Ä ·Û‰ÛÚ
ÛÔÓfl‰Ó˜ÂÌ˚: ·Û‰ÂÏ Ò˜ËÚ‡Ú¸, ˜ÚÓ F ≤ G, ÂÒÎË F(x) ≤ G(x) ‰Îfl ‚ÒÂı x ≥ 0. äÓÏÏÛÚ‡Ú˂̇fl Ë ‡ÒÒӈˇÚ˂̇fl ÓÔÂ‡ˆËfl τ ̇ Ä Ì‡Á˚‚‡ÂÚÒfl ÓÔÂ‡ˆËÂÈ ÚÂÛ„ÓθÌË͇,
ÂÒÎË Ó̇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ τ(F, ε0 ) = F ‰Îfl β·Ó„Ó F ∈ A, Ë τ(F, E) ≤ τ(G, H),
ÂÒÎË Ö ≤ G, F ≤ ç.
ÇÂÓflÚÌÓÒÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó – ˝ÚÓ ÚÓÈ͇ (ï, d, τ), „‰Â ï –
ÏÌÓÊÂÒÚ‚Ó, d – ÙÛÌ͈Ëfl X × X → A Ë τ – ÓÔÂ‡ˆËfl ÚÂÛ„ÓθÌË͇, ڇ͇fl ˜ÚÓ ‰Îfl
β·˚ı p, q, r ∈ X ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl:
1) d(p, q) = ε 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ p = q;
2) d(p, q) = d(q, p);
3) d(p, r) ≤ τ(d(p, q), d(q, r)).
çÂ‡‚ÂÌÒÚ‚Ó 3 ÒÚ‡ÌÓ‚ËÚÒfl ÌÂ‡‚ÂÌÒÚ‚ÓÏ ÚÂÛ„ÓθÌË͇, ÂÒÎË τ fl‚ÎflÂÚÒfl Ó·˚˜Ì˚Ï
ÒÎÓÊÂÌËÂÏ Ì‡ .
ÑÎfl β·Ó„Ó ı ≥ 0 Á̇˜ÂÌË d(p, q) ‚ ÚӘ͠ı ÏÓÊÂÚ ·˚Ú¸ ËÌÚÂÔÂÚËÓ‚‡ÌÓ Í‡Í
"‚ÂÓflÚÌÓÒÚ¸ ÚÓ„Ó, ˜ÚÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û  Ë q ÏÂ̸¯Â, ˜ÂÏ ı"; åÂÌ„Â Ô‰ÎÓÊËÎ
‚ 1942 „. ̇Á˚‚‡Ú¸ ‰‡ÌÌÓ ÔÓÌflÚË ÒÚ‡ÚËÒÚ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒ Ú ‚ Ó Ï . Ç ˝ÚÓÚ Ê ÔÂËÓ‰ ·˚ÎË ‚‚‰ÂÌ˚ ÔÓÌflÚËfl ̘ÂÚÍÓ ÓÔ‰ÂÎÂÌÌÓ„Ó
(‡ÒÔÎ˚‚˜‡ÚÓ„Ó) ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ÒÏ. Ú‡ÍÊ [Bloc99]).
é·Ó·˘ÂÌ̇fl ÏÂÚË͇
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. èÛÒÚ¸ (G, +, ≤) – ÛÔÓfl‰Ó˜ÂÌ̇fl ÔÓÎÛ„ÛÔÔ‡
(Ì ӷflÁ‡ÚÂθÌÓ ÍÓÏÏÛÚ‡Ú˂̇fl), Ëϲ˘‡fl ̇ËÏÂ̸¯ËÈ ˝ÎÂÏÂÌÚ 0. îÛÌ͈Ëfl
d : X × X → G ̇Á˚‚‡ÂÚÒfl Ó·Ó·˘ÂÌÌÓÈ ÏÂÚËÍÓÈ, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘ËÂ
ÛÒÎÓ‚Ëfl:
1) d(x, y) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y;
2) d(x, y) ≤ d(x, z) + d(z, y) ‰Îfl ‚ÒÂı x, y ∈ X;
3) d ( x, y) = d ( y, x ), „‰Â α fl‚ÎflÂÚÒfl ÙËÍÒËÓ‚‡ÌÌ˚Ï ËÌ‚ÓβÚË‚Ì˚Ï ÓÚÓ·‡ÊÂÌËÂÏ G, ÒÓı‡Ìfl˛˘ËÏ ÔÓfl‰ÓÍ.
è‡‡ (X, d) ̇Á˚‚‡ÂÚÒfl Ó·Ó·˘ÂÌÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
ÖÒÎË ÛÒÎÓ‚Ë 2 Ë Ú·ӂ‡ÌË "ÚÓθÍÓ ÚÓ„‰‡" ‚ ÛÒÎÓ‚ËË 1 ÒÌËχ˛ÚÒfl, Ï˚ ÔÓÎÛ˜‡ÂÏ Ó·Ó·˘ÂÌÌÓ ‡ÒÒÚÓflÌË d Ë Ó·Ó·˘ÂÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÒÒÚÓflÌËÈ (X, d).
É·‚‡ 3. é·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚
67
ê‡ÒÒÚÓflÌË ̇ ÔÓÒÚÓÂÌËË
ÉÛÔÔ‡ äÓÍÒÚÂ‡ – „ÛÔÔ‡ (W, ⋅,1) ÔÓÓʉ‡Âχfl ˝ÎÂÏÂÌÚ‡ÏË {w1 ,…,
wn : ( wi w j )
mij
= 1,1 ≤ i, j ≤ n}. á‰ÂÒ¸ M = ((m ij)) – χÚˈ‡ äÓÍÒÚÂ‡, Ú.Â. ÔÓËÁ-
‚Óθ̇fl ÒËÏÏÂÚ˘̇fl (n × n)-χÚˈ‡, ڇ͇fl ˜ÚÓ m = 1, a ÓÒڇθÌ˚ Á̇˜ÂÌËfl –
ÔÓÎÓÊËÚÂθÌ˚ ˆÂÎ˚ ˜ËÒ· ËÎË ∞. ÑÎË̇ l(x) ˝ÎÂÏÂÌÚ‡ x ∈ W ÂÒÚ¸ ̇ËÏÂ̸¯ÂÂ
˜ËÒÎÓ ÔÓÓʉ‡˛˘Ëı ÓÔÂ‡ÚÓÓ‚ w 1 ,…, wn, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ô‰ÒÚ‡‚ÎÂÌËfl ı.
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó (W,⋅,1) – „ÛÔÔ‡ äÓÍÒÚÂ‡. è‡‡ (X, d)
̇Á˚‚‡ÂÚÒfl ÔÓÒÚÓÂÌËÂÏ Ì‡‰ (W,⋅,1), ÂÒÎË ÙÛÌ͈Ëfl d : X × X → W, ̇Á˚‚‡Âχfl
‡ÒÒÚÓflÌËÂÏ Ì‡ ÔÓÒÚÓÂÌËË, ӷ·‰‡ÂÚ ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË:
1) d(x, y) = 1 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y;
2) d(x, y) = (d(x, y))–1;
3) ÓÚÌÓ¯ÂÌË ~i, Á‡‰‡‚‡ÂÏÓ ÛÒÎÓ‚ËÂÏ x ~i y, ÂÒÎË d(x, y) = 1 ËÎË w i, ÂÒÚ¸ ÓÚÌÓ¯ÂÌË ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË;
4) ‰Îfl ‰‡ÌÌÓ„Ó x ∈ X Ë Í·ÒÒ‡ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ë ËÁ ~i ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌÓÂ
x ∈ C, Ú‡ÍÓ ˜ÚÓ d(x, y) Í‡Ú˜‡È¯Â (Ú.Â. ̇ËÏÂ̸¯ÂÈ ‰ÎËÌ˚) Ë d(x, y) = d(x, y)w i ‰Îfl
β·Ó„Ó y ∈ C, y ≠ y.
ê‡ÒÒÚÓflÌË „‡ÎÂÂË Ì‡ ÔÓÒÚÓÂÌËË d ÂÒÚ¸ Ó·˚˜Ì‡fl ÏÂÚË͇ ̇ ï, Á‡‰‡‚‡Âχfl
Í‡Í l(d(x, y)). ê‡ÒÒÚÓflÌË d – ˝ÚÓ ÏÂÚË͇ ÔÛÚË Ì‡ „‡ÙÂ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ ï Ë
ıÛ ‚ ͇˜ÂÒÚ‚Â ·‡, ÂÒÎË d(x, y) = w i ‰Îfl ÌÂÍÓÚÓÓ„Ó 1 ≤ i ≤ n. ê‡ÒÒÚÓflÌË „‡ÎÂÂË Ì‡
ÔÓÒÚÓÂÌËË ÂÒÚ¸ ÓÒÓ·˚È ÒÎÛ˜‡È ÏÂÚËÍË „‡ÎÂÂË (͇ÏÂÌÓÈ ÒËÒÚÂÏ˚ ï).
ÅÛÎÂ‚Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
ÅÛ΂‡ ‡Î„·‡ (ËÎË ·Û΂‡ ¯ÂÚ͇) ÂÒÚ¸ ‰ËÒÚË·ÛÚ˂̇fl ¯ÂÚ͇ (B, ∨, ∧) Ò
̇ËÏÂ̸¯ËÏ ˝ÎÂÏÂÌÚÓÏ 0 Ë Ì‡Ë·Óθ¯ËÏ ˝ÎÂÏÂÌÚÓÏ 1, ڇ͇fl ˜ÚÓ Í‡Ê‰˚È ˝ÎÂÏÂÌÚ
x ∈ B ӷ·‰‡ÂÚ ‰ÓÔÓÎÌËÚÂθÌ˚Ï ˝ÎÂÏÂÌÚÓÏ x, Ú‡ÍËÏ ˜ÚÓ x ∨ x = 1 Ë x ∧ x = 0.
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó Ë (B, ∨, ∧) – ·Û΂‡ ‡Î„·‡. è‡‡ (X, d)
̇Á˚‚‡ÂÚÒfl ·Û΂˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡‰ Ç , ÂÒÎË ÙÛÌ͈Ëfl
d : X × X → B ӷ·‰‡ÂÚ ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË:
1) d(x, y) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y;
2) d(x, y) ≤ d(x, z) ∨ d(z, y) ‰Îfl ‚ÒÂı x, y, z ∈ X.
èÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ‡Î„·ÓÈ
èÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ‡Î„·ÓÈ ÂÒÚ¸ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ‰ËÙÙÂÂ̈ˇθÌÓ„ÂÓÏÂÚ˘ÂÒÍÓÈ ÒÚÛÍÚÛÓÈ, ÚÓ˜ÍË ÍÓÚÓÓ„Ó ÏÓ„ÛÚ ·˚Ú¸ Ò̇·ÊÂÌ˚ ÍÓÓ‰Ë̇ڇÏË
ËÁ ÌÂÍÓÚÓÓÈ ‡Î„·˚, Í‡Í Ô‡‚ËÎÓ, ‡ÒÒӈˇÚË‚ÌÓÈ Ë Ò Â‰ËÌ˘Ì˚Ï ˝ÎÂÏÂÌÚÓÏ.
åÓ‰Ûθ ̇‰ ‡Î„·ÓÈ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇‰ ÔÓÎÂÏ,
Â„Ó ÓÔ‰ÂÎÂÌË ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ ËÁ ÓÔ‰ÂÎÂÌËfl ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
ÔÛÚÂÏ Á‡ÏÂÌ˚ ÔÓÎfl ̇ ‡ÒÒӈˇÚË‚ÌÛ˛ ‡Î„·Û Ò Â‰ËÌ˘Ì˚Ï ˝ÎÂÏÂÌÚÓÏ. ÄÙÙËÌÌÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ‡Î„·ÓÈ fl‚ÎflÂÚÒfl ‡Ì‡Îӄ˘Ì˚Ï Ó·Ó·˘ÂÌËÂÏ ‡ÙÙËÌÌÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ ̇‰ ÔÓÎÂÏ. Ç ‡ÙÙËÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı ̇‰ ‡Î„·‡ÏË ÏÓÊÌÓ
ÓÔ‰ÂÎËÚ¸ ˝ÏËÚÓ‚Û ÏÂÚËÍÛ, ‚ ÚÓ ‚ÂÏfl Í‡Í ‰Îfl ÍÓÏÏÛÚ‡ÚË‚Ì˚ı ‡Î„· ÏÓÊÂÚ
·˚Ú¸ ÓÔ‰ÂÎÂ̇ ‰‡Ê ͂‡‰‡Ú˘̇fl ÏÂÚË͇. ÑÎfl ˝ÚÓ„Ó ‚ ÛÌËڇθÌÓÏ ÏÓ‰ÛÎÂ
ÌÂÓ·ıÓ‰ËÏÓ ÓÔ‰ÂÎËÚ¸ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ⟨x, y⟩, ‚ ÔÂ‚ÓÏ ÒÎÛ˜‡Â ÒÓ
Ò‚ÓÈÒÚ‚ÓÏ ⟨x, y⟩ = J(⟨y, x⟩), „‰Â J fl‚ÎflÂÚÒfl ËÌ‚ÓβÚË‚Ì˚Ï ÓÚÓ·‡ÊÂÌËÂÏ ‡Î„·˚, ‡
‚Ó ‚ÚÓÓÏ ÒÎÛ˜‡Â ÒÓ Ò‚ÓÈÒÚ‚ÓÏ ⟨x, y⟩ = ⟨y, x⟩,
n-åÂÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ‡Î„·ÓÈ Á‡‰‡ÂÚÒfl Í‡Í ÏÌÓ„ÓÓ·‡ÁËÂ
Ó‰ÌÓÏÂÌ˚ı ÔÓ‰ÏÓ‰ÛÎÂÈ (n + 1)-ÏÂÌÓ„Ó ÛÌËڇθÌÓ„Ó ÏÓ‰ÛÎfl ̇‰ ˝ÚÓÈ ‡Î„·ÓÈ.
ǂ‰ÂÌË Ò͇ÎflÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl ⟨x, y⟩ ‚ ÛÌËڇθÌÓÏ ÏÓ‰ÛΠÔÓÁ‚ÓÎflÂÚ Á‡‰‡Ú¸ ‚
ÔÓÒÚÓÂÌÌÓÏ Ò ÔÓÏÓ˘¸˛ ‰‡ÌÌÓ„Ó ÏÓ‰ÛÎfl ÔÓÂÍÚË‚ÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ˝ÏËÚÓ‚Û ËÎË,
‰Îfl ÒÎÛ˜‡fl ÍÓÏÏÛÚ‡ÚË‚ÌÓÈ ‡Î„·˚, Í‚‡‰‡Ú˘ÌÛ˛ ˝ÎÎËÔÚ˘ÂÒÍÛ˛ Ë „ËÔÂ·Ó-
68
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
΢ÂÒÍÛ˛ ÏÂÚËÍÛ. åÂÚ˘ÂÒÍËÈ ËÌ‚‡ˇÌÚ ÚÓ˜ÂÍ ˝ÚËı ÔÓÒÚ‡ÌÒÚ‚ ÂÒÚ¸
‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌË W = ⟨x, x⟩–1 ⟨x, y⟩ ⟨y, y⟩–1 ⟨x, y⟩. ÖÒÎË W – ‰ÂÈÒÚ‚ËÚÂθÌÓÂ
˜ËÒÎÓ, ÚÓ ËÌ‚‡ˇÌÚ w, ‰Îfl ÍÓÚÓÓ„Ó W = cos2w, ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ı Ë
Û ‚ ÔÓÒÚ‡ÌÒڂ ̇‰ ‡Î„·ÓÈ.
ó‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ‡ÒÒÚÓflÌËÂ
èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. èÛÒÚ¸ (G, ≤) – ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓÂ
ÏÌÓÊÂÒÚ‚Ó Ò Ì‡ËÏÂ̸¯ËÏ ˝ÎÂÏÂÌÚÓÏ g0 , Ú‡ÍÓ ˜ÚÓ G = G\{g0 } ÌÂÔÛÒÚÓ, Ë ‰Îfl
β·˚ı g1 , g2 ∈ G ÒÛ˘ÂÒÚ‚ÛÂÚ g3 ∈ G, Ú‡ÍÓ ˜ÚÓ g3 ≤ g1 Ë g3 ≤ g2 .
ó‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ‡ÒÒÚÓflÌË ÂÒÚ¸ ÙÛÌ͈Ëfl d : X × X → G, ڇ͇fl ˜ÚÓ ‰Îfl
β·˚ı x, y ∈ X ‡‚ÂÌÒÚ‚Ó d(x, y) = g0 ‚˚ÔÓÎÌflÂÚÒfl ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x =y.
ê‡ÒÒÏÓÚËÏ ÒÎÂ‰Û˛˘Ë ‚ÓÁÏÓÊÌ˚ ҂ÓÈÒÚ‚‡.
1. ÑÎfl β·Ó„Ó g1 ∈ G ÒÛ˘ÂÒÚ‚ÛÂÚ g 2 ∈ G, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·˚ı x, y ∈ X ËÁ
ÌÂ‡‚ÂÌÒÚ‚‡ d(x, y) ≤ g2 ÒΉÛÂÚ ÌÂ‡‚ÂÌÒÚ‚Ó d(x, y) ≤ g1 .
2. ÑÎfl β·Ó„Ó g1 ∈ G ÒÛ˘ÂÒÚ‚Û˛Ú g2 , g3 ∈ G, Ú‡ÍË ˜ÚÓ ‰Îfl β·˚ı x, y, z ∈ X ËÁ
ÌÂ‡‚ÂÌÒÚ‚ d(x, y) ≤ g2 Ë d(y, z) ≤ g2 ÒΉÛÂÚ ÌÂ‡‚ÂÌÒÚ‚Ó (y, x) ≤ g1 .
3. ÑÎfl β·Ó„Ó g1 ∈ G ÒÛ˘ÂÒÚ‚ÛÂÚ g 2 ∈ G, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·˚ı x, y, z ∈ X ËÁ
ÌÂ‡‚ÂÌÒÚ‚ d(x, y) ≤ g2 Ë d(y, z) ≤ g2 ÒΉÛÂÚ ÌÂ‡‚ÂÌÒÚ‚Ó d(y, x) ≤ g1 .
4. G Ì ËÏÂÂÚ ÔÂ‚Ó„Ó ˝ÎÂÏÂÌÚ‡.
5. d(x, y) = d(y, x) ‰Îfl β·˚ı x, y ∈ X.
6. ÑÎfl β·Ó„Ó g1 ∈ G ÒÛ˘ÂÒÚ‚ÛÂÚ g2 ∈ G, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·˚ı x, y ∈ X ËÁ
ÌÂ‡‚ÂÌÒÚ‚ d(x, y) <* g 2 Ë d(y, z) < * g 1 ÒΉÛÂÚ ÌÂ‡‚ÂÌÒÚ‚Ó d(x, z) <* g 1 ; Á‰ÂÒ¸ p <* q
ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÎË·Ó p < q, ÎË·Ó  Ì Ò‡‚ÌËÏÓ Ò q.
7. éÚÌÓ¯ÂÌË ÔÓfl‰Í‡ < fl‚ÎflÂÚÒfl ÎËÌÂÈÌ˚Ï ÔÓfl‰ÍÓÏ Ì‡ G.
Ç ÚÂÏË̇ı Û͇Á‡ÌÌ˚ı ‚˚¯Â Ò‚ÓÈÒÚ‚ d ̇Á˚‚‡ÂÚÒfl: ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓÂ
‡ÒÒÚÓflÌË ÄÔÔÂÚ‡, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl 1 Ë 2; ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓÂ
‡ÒÒÚÓflÌË ÉÓÎÏÂÒ‡ ÔÂ‚Ó„Ó ÚËÔ‡, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl 4, 5 Ë 6; ˜‡ÒÚ˘ÌÓ
ÛÔÓfl‰Ó˜ÂÌÌÓ ‡ÒÒÚÓflÌË ÉÓÎÏÂÒ‡ ‚ÚÓÓ„Ó ÚËÔ‡, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl 3, 4,
Ë 5; ‡ÒÒÚÓflÌË äÛÂÔ‡–î¯Â, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl 3, 4, 5 Ë 7.
àÏÂÌÌÓ, ÒÎÛ˜‡È G = ≥0 ‡ÒÒÚÓflÌËfl äÛÂÔ‡–î¯ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ V-ÔÓÒÚ‡ÌÒÚ‚Û î¯Â, Ú.Â. Ô‡ (X, d), „‰Â ï – ÏÌÓÊÂÒÚ‚Ó Ë d(x, y) – ÌÂÓÚˈ‡ÚÂθ̇fl
ÒËÏÏÂÚ˘̇fl ÙÛÌ͈Ëfl d : X × X → (ÒÓÒ‰ÒÚ‚Ó ÚÓ˜ÂÍ ı Ë Û), ڇ͇fl ˜ÚÓ d(x, y) = 0
ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y, Ë ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂÓÚˈ‡ÚÂθ̇fl ÙÛÌ͈Ëfl f : → Ò limt→0f(t) = 0 ÒÓ ÒÎÂ‰Û˛˘ËÏ Ò‚ÓÈÒÚ‚ÓÏ: ‰Îfl ‚ÒÂı x, y, z ∈ X Ë ‚ÒÂı ÔÓÎÓÊËÚÂθÌ˚ı r
ÌÂ‡‚ÂÌÒÚ‚Ó {d(x, y), d(y, z)} ≤ r ÔÓÓʉ‡ÂÚ ÌÂ‡ÂÌÒÚ‚‡ d(x, z) ≤ f(r).
É·‚‡ 4
åÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl
ëÛ˘ÂÒÚ‚ÛÂÚ ÌÂχÎÓ ÒÔÓÒÓ·Ó‚ ÔÓÎÛ˜ÂÌËfl ÌÓ‚˚ı ‡ÒÒÚÓflÌËÈ (ÏÂÚËÍ), ËÒÔÓθÁÛfl ÛÊÂ
Ëϲ˘ËÂÒfl ‡ÒÒÚÓflÌËfl (ÏÂÚËÍË). åÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl ÔÓÁ‚ÓÎfl˛Ú
ÔÓÎÛ˜‡Ú¸ ÌÓ‚˚ ‡ÒÒÚÓflÌËfl Í‡Í ÙÛÌ͈ËË ÓÚ Á‡‰‡ÌÌ˚ı ÏÂÚËÍ (ËÎË Á‡‰‡ÌÌ˚ı
‡ÒÒÚÓflÌËÈ) ̇ Ó‰ÌÓÏ Ë ÚÓÏ Ê ÏÌÓÊÂÒÚ‚Â ï. Ç Ú‡ÍÓÏ ÒÎÛ˜‡Â ÔÓÎÛ˜ÂÌ̇fl ÏÂÚË͇
·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl ÔÂÓ·‡ÁÓ‚‡ÌÌÓÈ ÏÂÚËÍÓÈ. çËÊÂ, ‚ ‡Á‰. 4.1 ÔË‚Ó‰flÚÒfl
‚‡ÊÌÂȯË ÔËÏÂ˚ Ú‡ÍËı ÔÂÓ·‡ÁÓ‚‡ÌÌ˚ı ÏÂÚËÍ.
èË Ì‡Î˘ËË ÏÂÚËÍË Ì‡ ÏÌÓÊÂÒÚ‚Â ï ÏÓÊÌÓ ÔÓÒÚÓËÚ¸ ÌÓ‚Û˛ ÏÂÚËÍÛ Ì‡
ÌÂÍÓÚÓÓÏ ‡Ò¯ËÂÌËË ï; ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ, ËÏÂfl ÒÂÏÂÈÒÚ‚Ó ÏÂÚËÍ Ì‡
ÏÌÓÊÂÒÚ‚‡ı ï1 ,…, ïn, ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ ÌÓ‚Û˛ ÏÂÚËÍÛ Ì‡ ÌÂÍÓÚÓÓÏ ‡Ò¯ËÂÌËË
ï1,…, ïn. èËÏÂ˚ Ú‡ÍËı ‡ÔÂ‡ˆËÈ Ô‰ÒÚ‡‚ÎÂÌ˚ ‚ ‡Á‰. 4.2.
ÖÒÎË ËÏÂÂÚÒfl ÏÂÚË͇ ̇ ï, ÒÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓ„Ó ‡ÒÒÚÓflÌËÈ Ì‡ ‰Û„Ëı ÒÚÛÍÚÛ‡ı,
Ò‚flÁ‡ÌÌ˚ı Ò ï, ̇ÔËÏÂ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï. éÒÌÓ‚Ì˚Â
‡ÒÒÚÓflÌËfl ‰‡ÌÌÓ„Ó ÚËÔ‡ ‡ÒÒχÚË‚‡˛ÚÒfl ‚ ‡Á‰. 4.3.
4.1. åÖíêàäà çÄ íéå ÜÖ åçéÜÖëíÇÖ
åÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌËÂ
åÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌË ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ï, ÔÓÎÛ˜ÂÌÌÓ ͇Í
ÙÛÌ͈Ëfl ‰‡ÌÌ˚ı ÏÂÚËÍ (ËÎË ‰‡ÌÌ˚ı ‡ÒÒÚÓflÌËÈ) ̇ ï .
Ç ˜‡ÒÚÌÓÒÚË, ËÏÂfl ÌÂÔÂ˚‚ÌÛ˛ ÏÓÌÓÚÓÌÌÓ ‚ÓÁ‡ÒÚ‡˛˘Û˛ ÙÛÌÍˆË˛ f(x) ÓÚ
x ≥ 0, ÍÓÚÓ‡fl ̇Á˚‚‡ÂÚÒfl ¯Í‡ÎÓÈ, Ë ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÒÒÚÓflÌËÈ (X, d), ÏÓÊÌÓ
ÔÓÎÛ˜ËÚ¸ ‰Û„Ó ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÒÒÚÓflÌËÈ (X, d f), ̇Á˚‚‡ÂÏÓ ÏÂÚ˘ÂÒÍËÏ
ÔÂÓ·‡ÁÓ‚‡ÌËÂÏ ¯ÍÓÎËÓ‚‡ÌËfl ÔÓÒÚ‡ÌÒÚ‚‡ ï, ÓÔ‰ÂÎflfl df(x, y) = f(d(x, y)).
ÑÎfl Í‡Ê‰Ó„Ó ÍÓ̘ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‡ÒÒÚÓflÌËÈ (X, d) ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡Í‡fl ¯Í‡Î‡ f,
˜ÚÓ (X, d f) fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ Â‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n .
ÖÒÎË (X, d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‡ f – ÌÂÔÂ˚‚̇fl ‰ËÙÙÂÂ̈ËÛÂχfl
ÒÚÓ„Ó ‚ÓÁ‡ÒÚ‡˛˘‡fl ÙÛÌ͈Ëfl Ò f(0) = 0 Ë Ì‚ÓÁ‡ÒÚ‡˛˘ÂÈ ÔÓËÁ‚Ó‰ÌÓÈ f, ÚÓ (X, df)
·Û‰ÂÚ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÒÏ. ÏÂÚË͇ ÙÛÌ͈ËÓ̇θÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl).
åÂÚË͇ d fl‚ÎflÂÚÒfl ÛθÚ‡ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ f(d) ÂÒÚ¸
ÏÂÚË͇ ‰Îfl ͇ʉÓÈ ÌÂÛ·˚‚‡˛˘ÂÈ ÙÛÌ͈ËË f : ≥0 → ≥0.
åÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl
åÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌÌËfl – ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ï , ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl
ÏÂÚ˘ÂÒÍËÏ ÔÂÓ·‡ÁÓ‚‡ÌËÂÏ, Ú.Â. ÔÓÎÛ˜Â̇ Í‡Í ÙÛÌ͈Ëfl Á‡‰‡ÌÌÓÈ ÏÂÚËÍË (ËÎË
Á‡‰‡ÌÌ˚ı ÏÂÚËÍ) ̇ ï. Ç ˜‡ÒÚÌÓÒÚË, ÏÂÚËÍÓÈ ÔÂÓ·‡ÁÓ‚‡ÌÌËfl ÏÓ„ÛÚ ·˚Ú¸
ÔÓÎÛ˜ÂÌ˚ ËÁ Á‡‰‡ÌÌÓÈ ÏÂÚËÍË d (ËÎË Á‡‰‡ÌÌ˚ı ÏÂÚËÍ d 1 Ë d2 ) ̇ ï β·ÓÈ ËÁ
Û͇Á‡ÌÌ˚ı ÌËÊ ÓÔÂ‡ˆËÈ (Á‰ÂÒ¸ t > 0):
1) td(x, y) (t-¯Í‡ÎËÓ‚‡ÌËfl ÏÂÚË͇, ËÎË ‡ÒÚflÌÛÚ‡fl ÏÂÚË͇, ÔӉӷ̇fl ÏÂÚË͇);
2) min{t, d(x, y)} (t-ÛÒ˜ÂÌ̇fl ÏÂÚË͇);
70
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
3) max{t, d(x, y)} ‰Îfl ı ≠ Û (t-‰ËÒÍÂÚ̇fl ÏÂÚË͇);
4) d(x, y) + t ‰Îfl x ≠ y (t-ÔÂÂÌÂÒÂÌ̇fl ÏÂÚË͇);
d ( x, y)
5)
;
1 + d ( x, y)
d ( x, y)
, „‰Â – ÙËÍÒËÓ‚‡ÌÌ˚È ˝ÎÂÏÂÌÚ ËÁ ï (ÏÂÚ6) dp( x, y) =
d ( x, p) + d ( y, p) + d ( x, y)
Ë͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·ËÓÚÓÔ‡);
7) max{d1 (x, y), d2 (x, y)};
8) αd1(x, y) + βd2 (x, y), „‰Â (ÒÏ. ÏÂÚ˘ÂÒÍËÈ ÍÓÌÛÒ, „Î. 1).
é·Ó·˘ÂÌ̇fl ÏÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·ËÓÚÓÔ‡
ÑÎfl ‰‡ÌÌÓÈ ÏÂÚËÍË d ̇ ÏÌÓÊÂÒÚ‚Â ï Ë Á‡ÏÍÌÛÚÓ„Ó ÏÌÓÊÂÒÚ‚‡ M ⊂ X
Ó·Ó·˘ÂÌ̇fl ÏÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·ËÓÚÓÔ‡ dM ̇ ï ÓÔ‰ÂÎflÂÚÒfl ͇Í
d M ( x, y) =
d ( x, y)
.
d ( x, y) + infz ∈M ( d ( x, z ) + d ( y, z ))
àÏÂÌÌÓ dM(x, y) Ë tt 1-ÛÒ˜ÂÌË {1, d M(x, y)} fl‚Îfl˛ÚÒfl ÏÂÚË͇ÏË. åÂÚË͇
ÔÂÓ·‡ÁÓ‚‡ÌËfl ·ËÓÚÓÔ‡ ÂÒÚ¸ dM(x, y) Ò å, ÒÓÒÚÓfl˘ËÏ ÚÓθÍÓ ËÁ Ó‰ÌÓÈ ÚÓ˜ÍË,
Ò͇ÊÂÏ, ; ‡ÒÒÚÓflÌË ·ËÓÚÓÔ‡ (ÒÏ. „Î. 23) ÔÓÎÛ˜‡ÂÚÒfl ‚ ÒÎÛ˜‡Â d(x, y) = |x∆y|, p = 0/ .
åÂÚË͇ aÛÌ͈ËÓ̇θÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl
èÛÒÚ¸ f : → – ‰‚‡Ê‰˚ ‰ËÙÙÂÂ̈ËÛÂχfl ‰ÂÈÒÚ‚ËÚÂθ̇fl ÙÛÌ͈Ëfl, Á‡‰‡Ì̇fl
‰Îfl ı ≥ 0, ڇ͇fl ˜ÚÓ f(0) = 0, f(x) > 0 ‰Îfl ‚ÒÂı ı ≥ 0 Ë f(x) ≤ 0 Ë ‰Îfl ‚ÒÂı ı ≥ 0.
(f fl‚ÎflÂÚÒfl ‚Ó„ÌÛÚÓÈ Ì‡ [0, ∞]; ‚ ˜‡ÒÚÌÓÒÚË f(x + y) ≤ f(x) + f(y).)
ÖÒÎË (X, d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ ÏÂÚË͇ ÙÛÌ͈ËÓ̇θÌÓ„Ó
ÔÂÓ·‡ÁÓ‚‡ÌËfl df ÂÒÚ¸ ÏÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇ ï, ÓÔ‰ÂÎÂÌ̇fl ͇Í
f(d(x, y)).
åÂÚËÍË df Ë d – ˝Í‚Ë‚‡ÎÂÌÚÌ˚. ÖÒÎË d ÂÒÚ¸ ÏÂÚË͇ ̇ ï, ÚÓ, Ì ‡ÔËÏÂ,
d
αd(α > 0), d α (0 < 1), ln(1 + d), arcsinh d, arccosh (1 + d ) Ë
·Û‰ÛÚ ÏÂÚË͇ÏË
1+ d
ÙÛÌ͈ËÓ̇θÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇ ï.
åÂÚË͇ ÒÚÂÔÂÌÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl
èÛÒÚ¸ 0 < α ≤ 1. ÖÒÎË ‰‡ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d), ÚÓ ÏÂÚË͇
ÒÚÂÔÂÌÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl (ËÎË ÏÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ÒÌÂÊËÌÍË) ÂÒÚ¸ ÏÂÚË͇
ÙÛÌ͈ËÓ̇θÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇ ï, ÓÔ‰ÂÎÂÌ̇fl ͇Í
(d(x, y))α.
ÑÎfl ‰‡ÌÌÓÈ ÏÂÚËÍË d ̇ ï Ë Î˛·Ó„Ó α > 1 ÙÛÌ͈Ëfl dα fl‚ÎflÂÚÒfl ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â
ÚÓθÍÓ ‡ÒÒÚÓflÌËÂÏ Ì‡ ï. é̇ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‰Îfl β·Ó„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó α
ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d – ÛθÚ‡ÏÂÚË͇.
åÂÚË͇ d fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Û‰‚ÓÂÌËfl ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ (ÄÒÒÛ‡‰,
1983) ÏÂÚË͇ ÒÚÂÔÂÌÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl dα ‰ÓÔÛÒ͇ÂÚ ·Ë-ÎËÔ¯ËˆÂ‚Ó ‚ÎÓÊÂÌË ‚
ÌÂÍÓÚÓÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ‰Îfl Í‡Ê‰Ó„Ó 0 < α ≤ 1 (ÒÏ. ÓÔ‰ÂÎÂÌËfl „Î. 1).
åÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl òÂÌ·Â„‡
èÛÒÚ¸ λ > 0. ÖÒÎË (X, d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ ÏÂÚËÍÓÈ ÔÂÓ·‡ÁÓ‚‡ÌËfl òÂÌ·Â„‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÙÛÌ͈ËÓ̇θÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇ ï,
71
É·‚‡ 4. åÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl
ÓÔ‰ÂÎÂÌ̇fl ͇Í
1 – –λd(x,y) .
åÂÚËÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl òÂÌ·Â„‡ fl‚Îfl˛ÚÒfl ‚ ÚÓ˜ÌÓÒÚË ê-ÏÂÚË͇ÏË („Î. 1),
ÍÓÚÓ˚ ÓÔ‰ÂÎfl˛ÚÒfl Ì ÙÛÌ͈ËÂÈ ÔÂÓ·‡ÁÓ‚‡ÌËfl, ‡ ÛÒËÎÂÌÌÓÈ ‚ÂÒËÂÈ ÌÂ‡‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇.
åÂÚË͇ Ó·‡ÚÌÓ„Ó Ó·‡Á‡
ÑÎfl ‰‚Ûı ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (X, d X), (Y, dY) Ë ËÌ˙ÂÍÚË‚ÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl
g : X → Y ÏÂÚË͇ Ó·‡ÚÌÓ„Ó Ó·‡Á‡ (ËÁ (Y, dY) ÔÓ ) ̇ ï Á‡‰‡ÂÚÒfl ͇Í
dY(g(x), g(y)).
ÖÒÎË (X, dX ) Ë (Y, dY) ÒÓ‚Ô‡‰‡˛Ú, ÚÓ ÏÂÚË͇ Ó·‡ÚÌÓ„Ó Ó·‡Á‡ ̇Á˚‚‡ÂÚÒfl
ÏÂÚËÍÓÈ g-ÔÂÓ·‡ÁÓ‚‡ÌËfl.
ÇÌÛÚÂÌÌflfl ÏÂÚË͇
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d), ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl Ô‡‡ ÚÓ˜ÂÍ ı, Û
ÒÓ‰ËÌÂ̇ ÒÔflÏÎflÂÏÓÈ ÍË‚ÓÈ, ËÌÚÂ̇θÌÓÈ ÏÂÚËÍÓÈ (ËÎË ÔÓÓʉÂÌÌÓÈ ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ), D ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇ ï, ÔÓÎÛ˜ÂÌ̇fl ËÁ d
Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ‚ÒÂı ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ‰‚ ‰‡ÌÌ˚ ÚÓ˜ÍË
ı Ë y ∈ X.
åÂÚË͇ d ̇ ï ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ (ËÎË ÏÂÚËÍÓÈ ‰ÎËÌ˚, ÒÏ.
„Î. 6), ÂÒÎË Ó̇ ÒÓ‚Ô‡‰‡ÂÚ ÒÓ Ò‚ÓÂÈ ÔÓÓʉÂÌÌÓÈ ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ.
åÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl î‡ËÒ‡
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) Ë ÚÓ˜ÍË z ∈ X ÔÂÓ·‡ÁÓ‚‡ÌË î‡ËÒ‡
ÂÒÚ¸ ÏÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌË Dz ̇ X\{z}, Á‡‰‡‚‡ÂÏÓÂ Í‡Í Dz(x, x) = 0, Ë ‰Îfl
‡Á΢Ì˚ı x, y ∈ X\{z} – ͇Í
Dz(x, y) = C – (x•y)z,
1
( d ( x, z ) + d ( y, z ) = d ( x, y)) ÂÒÚ¸
2
ÔÓËÁ‚‰ÂÌË ÉÓÏÓ‚‡ (ÒÏ. „Î. 1). èÂÓ·‡ÁÓ‚‡ÌË î‡ËÒ‡ ·Û‰ÂÚ ÏÂÚËÍÓÈ, ÂÒÎË
C ≥ maxx,y∈X\{z} d(x, z). íÓ˜ÌÂÂ, ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ ˜ËÒÎÓ C0 ∈ (maxx,y∈X\{z},x≠y (x.y)z,
maxx∈X\{z}d(x, z)], ˜ÚÓ ÔÂÓ·‡ÁÓ‚‡ÌË î‡ËÒ‡ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ
ÚÓ„‰‡, ÍÓ„‰‡ ë ≥ ë0 . éÌÓ fl‚ÎflÂÚÒfl ÛθÚ‡ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d
Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÌÂ‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ. Ç ÙËÎÓ„ÂÌÂÚËÍÂ, „‰Â ÓÌÓ ·˚ÎÓ
ÔËÏÂÌÂÌÓ ‚ÔÂ‚˚Â, ÚÂÏËÌ ÔÂÓ·‡ÁÓ‚‡ÌË î‡ËÒ‡ ËÒÔÓθÁÛÂÚÒfl ‰Îfl ÙÛÌ͈ËË
d(x, y) – d(x, z).
„‰Â ë ÂÒÚ¸ ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡, ‡ ( x. y)z =
åÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ËÌ‚ÓβÚË‚ÌÓ„Ó
ÇÓÁ¸ÏÂÏ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) Ë ÚÓ˜ÍÛ z ∈ X. åÂÚËÍÓÈ ËÌ‚ÓβÚË‚ÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌÌËfl ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌË dz ̇ X \{z},
Á‡‰‡‚‡ÂÏÓ ͇Í
dz ( x, y) =
d ( x, y)
.
d ( x, z )d ( y, z )
éÌÓ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‰Îfl β·Ó„Ó z ∈ X ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d ÂÒÚ¸
ÔÚÓÎÂÏ‚‡ ÏÂÚË͇ ([FoSC06]).
72
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
4.2. åÖíêàäà çÄ êÄëòàêÖçàüï ÑÄççéÉé åçéÜÖëíÇÄ
ê‡ÒÒÚÓflÌËfl ‡Ò¯ËÂÌËfl
ÖÒÎË d ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ Vn = {1,…, n} Ë α ∈ , α > 0, ÚÓ ËÒÔÓθÁÛ˛ÚÒfl ÒÎÂ‰Û˛˘Ë ‡ÒÒÚÓflÌËfl ‡Ò¯ËÂÌÌËfl (ÒÏ., ̇ÔËÏÂ, [DeLa97]).
ê‡ÒÒÚÓflÌË ‡Ò¯ËÂÌÌËfl ÒÂÎÂ͈ËË gat = gat αd ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ Vn+1 =
= {1,…, n+1}, Á‡‰‡‚‡ÂÏÓ ÒÎÂ‰Û˛˘ËÏË ÛÒÎÓ‚ËflÏË:
1) gat(1, n + 1) = α;
2) gat(i,n + 1) = α + d(1, i), ÂÒÎË 2 ≤ i ≤ n;
3) gat(i, j) = d(i, j), ÂÒÎË 1 ≤ i < j ≤ n.
ê‡ÒÒÚÓflÌË gat d0 ̇Á˚‚‡ÂÚÒfl 0-  ‡ Ò ¯ Ë  Â Ì Ë Â Ï cÂÎÂ͈ËË ËÎË ÔÓÒÚÓ
0-‡Ò¯ËÂÌËÂÏ ‡ÒÒÚÓflÌËfl d. ÖÒÎË α ≥ max2≤i≤n d(1, i), ÚÓ ‡ÌÚËÔÓ‰‡Î¸ÌÓ ‡ÒÒÚÓflÌËÂ
‡Ò¯ËÂÌÌËfl ant = ant αd ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ Vn+1, Á‡‰‡‚‡ÂÏÓ ÒÎÂ‰Û˛˘ËÏË ÛÒÎÓ‚ËflÏË:
1) ant(1, n + 1) = α;
2) ant(i, n + 1) = α – d(1, i), ÂÒÎË 2 ≤ i ≤ n;
3) ant(i, j) = d(i, j), ÂÒÎË 1 ≤ i < j ≤ n.
ÖÒÎË α ≥ max1≤i,j≤n d(i,j), ÚÓ ÔÓÎÌÓ ‡ÌÚËÔÓ‰‡Î¸ÌÓ ‡ÒÒÚÓflÌË ‡Ò¯ËÂÌÌËfl
Ant = Ant αd ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ V2n = {1,…,2n}, Á‡‰‡‚‡ÂÏÓ ÒÎÂ‰Û˛˘ËÏË ÛÒÎÓ‚ËflÏË:
1) Ant(i,n + i) = α, ÂÒÎË 1 ≤ i ≤ n;
2) Ant(i,n + j) = α – d(i, j), ÂÒÎË 1 ≤ i ≠ j ≤ n;
3) Ant(i, j) = d(i, j), ÂÒÎË 1 ≤ i ≠ j ≤ n;
4) Ant(n + i,n + j) = d(i,j), ÂÒÎË 1 ≤ i ≠ j ≤ n.
éÌÓ fl‚ÎflÂÚÒfl ÂÁÛθڇÚÓÏ ÔÓÒΉӂ‡ÚÂθÌÓ„Ó ÔËÏÂÌÂÌËfl ÓÔÂ‡ˆËË ‡ÌÚËÔÓ‰‡Î¸ÌÓ„Ó ‡Ò¯ËÂÌËfl n ‡Á, ̇˜Ë̇fl Ò d.
ê‡ÒÒÚÓflÌË ÒÙÂ˘ÂÒÍÓ„Ó ‡Ò¯ËÂÌËfl sph = sph αd ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ Vn+1, Á‡‰‡‚‡ÂÏÓ ÒÎÂ‰Û˛˘ËÏË ÛÒÎÓ‚ËflÏË:
1) sph(i,n + 1) = α, ÂÒÎË 1 ≤ i ≤ n;
2) sph(i, j) = d(i, j), ÂÒÎË 1 ≤ i < j ≤ n.
ê‡ÒÒÚÓflÌË 1 ÒÛÏÏ˚
èÛÒÚ¸ d1 – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ï1, d2 – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ï2 Ë
X1 ∩ X2 = {x0}. ê‡ÒÒÚÓflÌË 1 ÒÛÏÏ˚ d1 Ë d2 ÂÒÚ¸ ‡ÒÒÚÓflÌË d ̇ X1 ∪ X2 , Á‡‰‡‚‡ÂÏÓÂ
ÒÎÂ‰Û˛˘ËÏË ÛÒÎÓ‚ËflÏË:
ÂÒÎË x, y ∈ X1 ,
d1 ( x, y),

d ( x, y) = d2 ( x, y),
ÂÒÎË x, y ∈ X2 ,
d ( x, x ) + d ( x y), ÂÒÎË x ∈ X , y ∈ X .
0
0
1
2

Ç ÚÂÓËË „‡ÙÓ‚ ‡ÒÒÚÓflÌË 1 ÒÛÏÏ˚ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÔÛÚË, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ
ÓÔÂ‡ˆËË 1 ÒÛÏÏ˚ ‰Îfl „‡ÙÓ‚.
åÂÚË͇ ÌÂÔÂÂÒÂ͇˛˘Â„ÓÒfl Ó·˙‰ËÌÂÌËfl
èÛÒÚ¸ (Xt, d t), t ∈ T – ÒÂÏÂÈÒÚ‚Ó ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚. åÂÚËÍÓÈ ÌÂÔÂÂÒÂ͇˛˘Â„ÓÒfl Ó·˙‰ËÌÂÌËfl ·Û‰ÂÚ ÏÂÚË͇ ‡Ò¯ËÂÌËfl ̇ ÏÌÓÊÂÒÚ‚Â ∪ tXt × {t},
Á‡‰‡‚‡Âχfl ͇Í
d((x, t1), (y, t2)) = dt(x, y)
‰Îfl t1 = t2, Ë d((x, t1), (y, t2 )) = ∞ – Ë̇˜Â.
73
É·‚‡ 4. åÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl
åÂÚË͇ ÔÓËÁ‚‰ÂÌËfl
èÛÒÚ¸ (X1 , d ), (X 2 , d 2 ),…, (Xn , d n ) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. íÓ„‰‡ ÏÂÚË͇
ÔÓËÁ‚‰ÂÌËfl ÂÒÚ¸ ÏÂÚË͇ ̇ ‰Â͇ÚÓ‚ÓÏ ÔÓËÁ‚‰ÂÌËË X1 × X2 ×…× Xn = {x = (x1,
x2,…,xn) : x 1 ∈ X1 ,…, xn ∈ Xn } ÓÔ‰ÂÎflÂχfl Í‡Í ÙÛÌ͈Ëfl ÓÚ d1 ,…,dn . èÓÒÚÂȯËÂ
ÏÂÚËÍË ÔÓËÁ‚‰ÂÌËfl ÓÔ‰ÂÎfl˛ÚÒfl ͇Í
∑i =1 di ( xi , yi );
n
1)
2) (
∑ i =1
n
1
dip ( xi yi )) p , 1 < p < ∞;
3) max1≤i≤n d i(x i, yi);
4) min1≤i≤n {di(xi ,,yi};
n
∑ 2i 1 + idi (ixi ,iyi ) .
5)
1
d (x , y )
i =1
èÓÒΉÌË ‰‚ ÏÂÚËÍË fl‚Îfl˛ÚÒfl Ó„‡Ì˘ÂÌÌ˚ÏË Ë ÏÓ„ÛÚ ·˚Ú¸ ÔÓÒÚÓÂÌ˚ ‰Îfl
ÔÓËÁ‚‰ÂÌËfl Ò˜ÂÚÌÓ„Ó ˜ËÒ· ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚.
ÖÒÎË X 1 =… = Xn = , Ë d1 = … = dn = d, „‰Â d(x, y) = | x, y | fl‚ÎflÂÚÒfl ̇ÚÛ‡Î¸ÌÓÈ
ÏÂÚËÍÓÈ Ì‡ , ÚÓ ‚Ò ‚˚¯ÂÛ͇Á‡ÌÌ˚ ÏÂÚËÍË ÔÓËÁ‚‰ÂÌËfl Ë̉ۈËÛ˛Ú
‚ÍÎË‰Ó‚Û ÚÓÔÓÎӄ˲ ̇ n-ÏÂÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â n. éÌË Ì ÒÓ‚Ô‡‰‡˛Ú Ò Â‚ÍÎˉӂÓÈ ÏÂÚËÍÓÈ Ì‡ n , ÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ ÂÈ. Ç ˜‡ÒÚÌÓÒÚË, ÏÌÓÊÂÒÚ‚Ó n Ò Â‚ÍÎˉӂÓÈ ÏÂÚËÍÓÈ ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ‰Â͇ÚÓ‚Ó ÔÓËÁ‚‰ÂÌËÂ ×…× n
ÍÓÔËÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔflÏÓÈ ( , d) Ò ÏÂÚËÍÓÈ ÔÓËÁ‚‰ÂÌËfl, Á‡‰‡ÌÌÓÈ Í‡Í
∑i =1 d 2 ( xi , yi ).
n
åÂÚË͇ ÔÓËÁ‚‰ÂÌËfl î¯Â
èÛÒÚ¸ (X, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò Ó„‡Ì˘ÂÌÌÓÈ
ÏÂÚËÍÓÈ d. èÛÒÚ¸ X∞ = X ×…× X… = {x = (x1,…, xn,…): x 1 ∈ Xn ,…} – ÔÓÒÚ‡ÌÒÚ‚Ó
ÔÓËÁ‚‰ÂÌËfl ‰Îfl ï.
åÂÚË͇ ÔÓËÁ‚‰ÂÌËfl î¯ ÂÒÚ¸ ÏÂÚË͇ ÔÓËÁ‚‰ÂÌËfl ̇ X∞, Á‡‰‡‚‡Âχfl ͇Í
∞
∑ An d( xn , yn ),
n =1
∞
„‰Â
∑ An
fl‚ÎflÂÚÒfl β·˚Ï ÒıÓ‰fl˘ËÏÒfl fl‰ÓÏ, ÒÓÒÚÓfl˘ËÏ ËÁ ÔÓÎÓÊËÚÂθÌ˚ı
n =1
1
. åÂÚË͇ (ËÌÓ„‰‡  ̇Á˚‚‡˛Ú ÏÂÚË2n
ÍÓÈ î¯Â) ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ {xn}n ‰ÂÈÒÚ‚ËÚÂθÌ˚ı
(ÍÓÏÔÎÂÍÒÌ˚ı) ˜ËÒÂÎ, Á‡‰‡‚‡Âχfl ͇Í
˝ÎÂÏÂÌÚÓ‚. é·˚˜ÌÓ ËÒÔÓθÁÛÂÚÒfl An =
∞
|x −y |
∑ An 1+ | nxn − nyn | ,
n =1
∞
„‰Â
∑ An
n =1
fl‚ÎflÂÚÒfl β·˚Ï ÒıÓ‰fl˘ËÏÒfl fl‰ÓÏ Ò ÔÓÎÓÊËÚÂθÌ˚ÏË ˝ÎÂÏÂÌÚ‡ÏË,
74
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÔÓËÁ‚‰ÂÌËfl î¯ ‰Îfl Ò˜ÂÚÌÓ„Ó ˜ËÒ· ÍÓÔËÈ ÏÌÓÊÂÒÚ‚‡
1
1
(). é·˚˜ÌÓ ·ÂÂÚÒfl An = ËÎË An = n .
n!
2
åÂÚË͇ „Ëθ·ÂÚÓ‚‡ ÍÛ·‡
ÉËθ·ÂÚÓ‚ ÍÛ· I χ 0 ÂÒÚ¸ ‰Â͇ÚÓ‚Ó ÔÓËÁ‚‰ÂÌË ҘÂÚÌÓ„Ó ˜ËÒ· ÍÓÔËÈ ËÌÚÂ∞
‚‡Î‡ [0,1], Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ
∑ 2 −i | xi − yi |
(ÒÏ. åÂÚË͇ ÔÓËÁ‚‰ÂÌËfl
i =1
î¯Â). Ö„Ó ÏÓÊÌÓ ÓÚÓʉÂÒÚ‚ÎflÚ¸ (Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó „ÓÏÂÓÏÓÙËÁχ) Ò
ÍÓÏÔ‡ÍÚÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ó·‡ÁÛÂÏ˚Ï ‚ÒÂÏË ÔÓÒΉӂ‡ÚÂθ1
ÌÓÒÚflÏË {x n }n ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂÎ, Ú‡ÍËı ˜ÚÓ 0 ≤ x n ≤ , „‰Â ÏÂÚË͇ Á‡‰‡Ì‡
n
͇Í
∑ n = 1 ( x n − yn ) 2 .
∞
åÂÚË͇ ÍÓÒÓ„Ó ÔÓËÁ‚‰ÂÌËfl
èÛÒÚ¸ (X, dï) Ë (Y, dY) – ‰‚‡ ÔÓÎÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ ‰ÎËÌ˚ (ÒÏ. „Î. 1) Ë f : X → –
ÔÓÎÓÊËÚÂθ̇fl ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl. ÑÎfl ‰‡ÌÌÓÈ ÍË‚ÓÈ γ : [a, b] → X × Y
‡ÒÒÏÓÚËÏ Â ÔÓÂ͈ËË γ1 : [a, b] → Y Ë Ì‡ ï Ë Y, Ë ÓÔ‰ÂÎËÏ ‰ÎËÌÛ ÔÓ ÙÓÏÛÎÂ
b
∫a
| γ 1′ |2 (t ) + f 2 ( γ 1 (t )) | γ ′2 |2 (t ) dt.
åÂÚËÍÓÈ ÍÓÒÓ„Ó ÔÓËÁ‚‰ÂÌËfl ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ X × Y, Á‡‰‡‚‡Âχfl ͇Í
ËÌÙËÏÛÏ ‰ÎËÌ ‚ÒÂı ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ‰‚ ‰‡ÌÌ˚ ÚÓ˜ÍË ËÁ X× Y
(ÒÏ.[BuIv01]).
4.3. åÖíêàäà çÄ ÑêìÉàï åçéÜÖëíÇÄï
àÏÂfl ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d), ÏÓÊÌÓ ÔÓÒÚÓËÚ¸ ‡ÒÒÚÓflÌËfl
ÏÂÊ‰Û ÌÂÍÓÚÓ˚ÏË ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË ÏÌÓÊÂÒÚ‚‡ ï. éÒÌÓ‚Ì˚ÏË Ú‡ÍËÏË ‡ÒÒÚÓflÌËflÏË ·Û‰ÛÚ: ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ d(x, A) = infy∈A d(x, y),
ÓÔ‰ÂÎflÂÏÓ ÏÂÊ‰Û ÚÓ˜ÍÓÈ x ∈ X Ë ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ A ⊂ X, ‡ÒÒÚÓflÌË ÏÂʉÛ
ÏÌÓÊÂÒÚ‚‡ÏË inax∈A,y∈B d(x, y), ÓÔ‰ÂÎflÂÏÓ ÏÂÊ‰Û ‰‚ÛÏfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË Ä Ë Ç
ÏÌÓÊÂÒÚ‚‡ ï , ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ ÏÂÊ‰Û ÍÓÏÔ‡ÍÚÌ˚ÏË ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË ï.
ì͇Á‡ÌÌ˚ ‡ÒÒÚÓflÌËfl ‡ÒÒÏÓÚÂÌ˚ ‚ „Î. 1. Ç Ì‡ÒÚÓfl˘ÂÏ ‡Á‰ÂΠÔ‰ÒÚ‡‚ÎÂÌ
ÔÂ˜Â̸ ÌÂÍÓÚÓ˚ı ‰Û„Ëı ‡ÒÒÚÓflÌËÈ ˝ÚÓ„Ó ÚËÔ‡.
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔflÏ˚ÏË
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔflÏ˚ÏË ÂÒÚ¸ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË ‚ 3 , „‰Â ‚
͇˜ÂÒÚ‚Â ÏÌÓÊÂÒÚ‚ ·ÂÛÚÒfl ÒÍ¢˂‡˛˘ËÂÒfl ÔflÏ˚Â, Ú.Â. ‰‚ ÔflÏ˚Â, Ì ÎÂʇ˘ËÂ
‚ Ó‰ÌÓÈ ÔÎÓÒÍÓÒÚË. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔflÏ˚ÏË – ˝ÚÓ ‰ÎË̇ ÓÚÂÁ͇ Ëı Ó·˘Â„Ó
ÔÂÔẨËÍÛÎfl‡, ÍÓ̈˚ ÍÓÚÓÓ„Ó ÎÂÊ‡Ú Ì‡ ÔflÏ˚ı. ÑÎfl Ë l1 Ë l2 , Á‡‰‡ÌÌ˚ı
‡‚ÂÌÒÚ‚‡ÏË l1 : x = pt, t ∈ Ë l2 : x = r + st, t ∈ , ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË
‚˚˜ËÒÎflÂÚÒfl ÔÓ ÙÓÏÛÎÂ
| ⟨ r − p, q × s ⟩ |
,
|| q × s ||2
„‰Â × – ‚ÂÍÚÓÌÓ ÔÓËÁ‚‰ÂÌË ̇ 3 , ⟨,⟩ – Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ 3, || ⋅||2 –
‚ÍÎˉӂ‡ ÌÓχ. ÑÎfl x = (x1, x2, x3), y = (y 1 , y2, y3) ËÏÂÂÚ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó x × y =
= (x2y3 – x3y2, x3y1 – x1y3, x1y2 – x2y1).
É·‚‡ 4. åÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl
75
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÔflÏÓÈ
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÔflÏÓÈ ÂÒÚ¸ ˜‡ÒÚÌ˚È ÒÎÛ˜‡È ‡ÒÒÚÓflÌËfl ÏÂʉÛ
ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ, „‰Â ‚ ͇˜ÂÒÚ‚Â ÏÌÓÊÂÒÚ‚‡ ‡ÒÒχÚË‚‡ÂÚÒfl Ôflχfl.
Ç 2 ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ z = (z1 , z2 ) Ë ÔflÏÓÈ l: ax1 + bx2 + c 0 ‚˚˜ËÒÎflÂÚÒfl
ÔÓ ÙÓÏÛÎÂ
| az1 + bz 2 + c |
.
a2 + b2
Ç 3 ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ z = (z 1 , z 2 , z 3 ) Ë ÔflÏÓÈ l: x = p + qt, t ∈ ‚˚˜ËÒÎflÂÚÒfl ÔÓ ÙÓÏÛÎÂ
|| q × ( p − z ) ||2
,
|| q ||2
„‰Â × – ‚ÂÍÚÓÌÓ ÔÓËÁ‚‰ÂÌË ̇ 3 Ë || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ.
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÔÎÓÒÍÓÒÚ¸˛
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÔÎÓÒÍÓÒÚ¸˛ ÂÒÚ¸ ˜‡ÒÚÌ˚È ÒÎÛ˜‡È ‡ÒÒÚÓflÌËfl ÏÂʉÛ
ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ ‚ 3 , „‰Â ‚ ͇˜ÂÒÚ‚Â ÏÌÓÊÂÒÚ‚‡ ‡ÒÒχÚË‚‡ÂÚÒfl ÔÎÓÒÍÓÒÚ¸.
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ (z1 , z 2 , z 3 ) Ë ÔÎÓÒÍÓÒÚ¸˛ α : ax1 + bx2 + cx3 + d = 0
‚˚˜ËÒÎflÂÚÒfl ÔÓ ÙÓÏÛÎÂ
| az1 + bz 2 + cz 3 + d |
.
a2 + b2 + c2
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓÒÚ˚ÏË ˜ËÒ·ÏË
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓÒÚ˚ÏË ˜ËÒ·ÏË – ˜‡ÒÚÌ˚È ÒÎÛ˜‡È ‡ÒÒÚÓflÌËfl ÏÂʉÛ
ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ ‚ (, | n – m |), ‡ ËÏÂÌÌÓ ÏÂÊ‰Û ˜ËÒÎÓÏ n ∈ Ë ÏÌÓÊÂÒÚ‚ÓÏ
ÔÓÒÚ˚ı ˜ËÒÂÎ P ⊂ . чÌÌÓ ‡ÒÒÚÓflÌË ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‡·ÒÓβÚ̇fl ‚Â΢Ë̇
‡ÁÌÓÒÚË ÏÂÊ‰Û n Ë ·ÎËʇȯËÏ Í ÌÂÏÛ ÔÓÒÚ˚Ï ˜ËÒÎÓÏ.
ê‡ÒÒÚÓflÌË ‰Ó ·ÎËÊ‡È¯Â„Ó ˆÂÎÓ„Ó
ê‡ÒÒÚÓflÌË ‰Ó ·ÎËÊ‡È¯Â„Ó ˆÂÎÓ„Ó ÂÒÚ¸ ˜‡ÒÚÌ˚È ÒÎÛ˜‡È ‡ÒÒÚÓflÌËfl ÏÂʉÛ
ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ ‚ (, | x – y |), ‡ ËÏÂÌÌÓ, ÏÂÊ‰Û ˜ËÒÎÓÏ x ∈ Ë ÏÌÓÊÂÒÚ‚ÓÏ
ˆÂÎ˚ı ˜ËÒÂÎ ⊂ , Ú.Â. minn∈Z | x – n |.
ÅÛÁÂχÌÓ‚‡ ÏÂÚË͇ ÏÌÓÊÂÒÚ‚
ÖÒÎË (X, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ ·ÛÁÂχÌÓ‚ÓÈ ÏÂÚËÍÓÈ ÏÌÓÊÂÒÚ‚ (ÒÏ. [Buse55]) fl‚ÎflÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÌÂÔÛÒÚ˚ı
Á‡ÏÍÌÛÚ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï, ÓÔ‰ÂÎÂÌ̇fl ͇Í
sup | d ( x, A) − d ( x, B) | e − d ( p, x ) ,
x ∈X
„‰Â  – ÙËÍÒËÓ‚‡Ì̇fl ÚӘ͇ ÏÌÓÊÂÒÚ‚‡ ï, ‡ d(x, A) = miny∈d d(x,y) – ‡ÒÒÚÓflÌËÂ
ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ.
ÇÏÂÒÚÓ ‚ÂÒÓ‚Ó„Ó ÏÌÓÊËÚÂÎfl e–d(p,x) ÏÓÊÌÓ ‚ÁflÚ¸ β·Û˛ ÙÛÌÍˆË˛ ÔÂÓ·‡ÁÓ‚‡ÌËfl ‡ÒÒÚÓflÌËfl, Û·˚‚‡˛˘Û˛ ‰ÓÒÚ‡ÚÓ˜ÌÓ ·˚ÒÚÓ (ÒÏ. ï‡ÛÒ‰ÓÙÓ‚Ó Lp ‡ÒÒÚÓflÌËÂ, „Î. 21).
î‡ÍÚÓ-ÔÓÎÛÏÂÚË͇
èÛÒÚ¸ (X, d) – ‡Ò¯ËÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (Ú.Â. ÔÓÒÚ‡ÌÒÚ‚Ó Ò
ÏÂÚËÍÓÈ, ÍÓÚÓ‡fl, ‚ÓÁÏÓÊÌÓ, ÏÓÊÂÚ ÔËÌËχڸ Á̇˜ÂÌË ∞) Ë ~ ÂÒÚ¸ ÓÚÌÓ¯ÂÌËÂ
76
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË Ì‡ ï . íÓ„‰‡ Ù‡ÍÚÓ-ÔÓÎÛÏÂÚËÍÓÈ fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚË͇
̇ ÏÌÓÊÂÒÚ‚Â X = X / ~ Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË, ÓÔ‰ÂÎflÂχfl ‰Îfl β·˚ı
x , y ∈ X ͇Í
m
d ( x , y ) = inf
m ∈
∑ d( xi , yi ),
i =1
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏ x 1 , y1, x2, y2, y2,…, x m, ym Ò
1 ∈ x , ym ∈ y Ë yi ~ x i+1 ‰Îfl i = 1,2,…, m – 1. èË ˝ÚÓÏ ÌÂ‡‚ÂÌÒÚ‚Ó d ( x , y ) ≤ d ( x , y )
ÒÔ‡‚‰ÎË‚Ó ‰Îfl ‚ÒÂı x, y ∈ X Ë d fl‚ÎflÂÚÒfl ̇˷Óθ¯ÂÈ ÔÓÎÛÏÂÚËÍÓÈ X ̇ Ò Ú‡ÍËÏ
Ò‚ÓÈÒÚ‚ÓÏ.
É·‚‡ 5
åÂÚËÍË Ì‡ ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı
Ç ‰‡ÌÌÓÈ „·‚ ‡ÒÒχÚË‚‡˛ÚÒfl ÒÔˆˇθÌ˚ Í·ÒÒ˚ ÏÂÚËÍ, Á‡‰‡‚‡ÂÏ˚ı ̇
ÌÂÍÓÚÓ˚ı ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı Í‡Í ÌÓχ ‡ÁÌÓÒÚË ÏÂÊ‰Û ‰‚ÛÏfl ˝ÎÂÏÂÌÚ‡ÏË. í‡Í‡fl ÒÚÛÍÚÛ‡ ÏÓÊÂÚ ·˚Ú¸ „ÛÔÔÓÈ (Ò „ÛÔÔÓ‚ÓÈ ÌÓÏÓÈ), ‚ÂÍÚÓÌ˚Ï
ÔÓÒÚ‡ÌÒÚ‚ÓÏ (Ò ‚ÂÍÚÓÌÓÈ ÌÓÏÓÈ ËÎË ÔÓÒÚÓ ÌÓÏÓÈ), ‚ÂÍÚÓÌÓÈ ¯ÂÚÍÓÈ
(Ò ÌÓÏÓÈ êËÒÒ‡), ÔÓÎÂÏ (Ò ‚‡Î˛‡ˆËÂÈ) Ë Ú.Ô.
åÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚
åÂÚËÍÓÈ ÌÓÏ˚ „ÛÔÔ˚ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ „ÛÔÔ (G, +, 0), ÓÔ‰ÂÎflÂχfl
͇Í
|| x + (– y) || = || x – y ||,
„‰Â || ⋅ || – ÌÓχ „ÛÔÔ˚ ̇ G, Ú.Â. ÙÛÌ͈Ëfl | ⋅ ||: G → , ڇ͇fl ˜ÚÓ ‰Îfl ‚ÒÂı x, y ∈ G
ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡:
1) || x || ≥ 0 c || x || = 0 Ò ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0;
2) || x || = || – x ||;
3) || x + y || ≤ || x || + || y || (ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇).
ã˛·‡fl ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ d fl‚ÎflÂÚÒfl Ô‡‚ÓËÌ‚‡ˇÌÚÌÓÈ, Ú.Â. d(x, y) = d(x +
z, y + z) ‰Îfl β·˚ı x, y, z ∈ G. ë ‰Û„ÓÈ ÒÚÓÓÌ˚, β·‡fl Ô‡‚ÓËÌ‚‡ˇÌÚ̇fl (‡‚ÌÓ
Í‡Í Ë Î˛·‡fl ΂ÓËÌ‚‡ˇÌÚ̇fl Ë, ‚ ˜‡ÒÚÌÓÒÚË, ·ËËÌ‚‡ˇÌÚ̇fl) ÏÂÚË͇ d ̇ G
ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚, ÔÓÒÍÓθÍÛ ÌÓχ „ÛÔÔ˚ ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì‡ ̇ G ͇Í
|| x || = d(x, 0).
åÂÚË͇ F-ÌÓÏ˚
ÇÂÍÚÓÌÓ (ËÎË ÎËÌÂÈÌÓÂ) ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ÔÓÎÂÏ ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó V,
Ò̇·ÊÂÌÌÓ ‰ÂÈÒÚ‚ËflÏË ÒÎÓÊÂÌËfl ‚ÂÍÚÓÓ‚ + : V × V → V Ë ÛÏÌÓÊÂÌËfl ̇ Ò͇Îfl
⋅: F × V → V, Ú‡ÍËÏË ˜ÚÓ (V, +, 0) Ó·‡ÁÛÂÚ ‡·ÂÎÂ‚Û „ÛÔÔÛ („‰Â 0 ∈ V ÂÒÚ¸ ÌÛθ‚ÂÍÚÓ), ‡ ‰Îfl ‚ÒÂı ‚ÂÍÚÓÓ‚ x, y ∈ V Ë Î˛·˚ı Ò͇ÎflÌ˚ı ‚Â΢ËÌ a, b ∈ ËϲÚ
ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: 1 ⋅ x = x („‰Â 1 fl‚ÎflÂÚÒfl ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ Â‰ËÌˈÂÈ
ÔÓÎfl ), (ab) ⋅ x = a ⋅ (b ⋅ x), (a + b) ⋅ x = a ⋅ x + b ⋅ x Ë a ⋅ (x + y) = a ⋅ x + a ⋅ y. ÇÂÍÚÓÌÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ÔÓÎÂÏ ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂΠ̇Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï
‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÇÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ÔÓÎÂÏ ÍÓÏÔÎÂÍÒÌ˚ı
˜ËÒÂΠ̇Á˚‚‡ÂÚÒfl ÍÓÏÔÎÂÍÒÌ˚Ï ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ .
åÂÚË͇ F-ÌÓÏ˚ – ÏÂÚË͇ ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ
ÔÓÒÚ‡ÌÒÚ‚Â V, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x – y ||F,
„‰Â || ⋅ ||F fl‚ÎflÂÚÒfl F-ÌÓÏÓÈ Ì‡ V, Ú.Â. ÙÛÌ͈ËÂÈ || ⋅ ||F : V → Ú‡ÍÓÈ ˜ÚÓ ‰Îfl ‚ÒÂı x,
y ∈ V Ë ‰Îfl β·Ó„Ó Ò͇Îfl‡ ‡ Ò | a | = 1 ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡:
1) || x ||F ≥ 0 Ò || x ||F = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0;
2) || ax ||F = || x ||F;
3) || x + y||F ≤ || x ||F + || y ||F (ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇).
F-ÌÓχ ̇Á˚‚‡ÂÚÒfl -Ó‰ÌÓÓ‰ÌÓÈ, ÂÒÎË || ax ||F = | a |p || x ||F.
78
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
åÂÚË͇ F-ÌÓÏ˚ d fl‚ÎflÂÚÒfl ËÌ‚‡ˇÌÚÌÓÈ ÏÂÚËÍÓÈ ÔÂÂÌÓÒ‡, Ú.Â. d(x, y) =
= d(x + z, y + z) ‰Îfl ‚ÒÂı x, y, z ∈ V. à ̇ӷÓÓÚ, ÂÒÎË d fl‚ÎflÂÚÒfl ËÌ‚‡ˇÌÚÌÓÈ
ÏÂÚËÍÓÈ ÔÂÂÌÓÒ‡ ̇ V, ÚÓ || x ||F = d(x, 0) fl‚ÎflÂÚÒfl F-ÌÓÏÓÈ Ì‡ V.
F * -ÏÂÚË͇
F * -ÏÂÚË͇ – ÏÂÚË͇ F-ÌÓÏ˚ || x – y || F ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ)
‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V, ڇ͇fl ˜ÚÓ ‰ÂÈÒÚ‚Ëfl ÛÏÌÓÊÂÌËfl ̇ Ò͇Îfl Ë ÒÎÓÊÂÌËfl
‚ÂÍÚÓÓ‚ fl‚Îfl˛ÚÒfl ÌÂÔÂ˚‚Ì˚ÏË ÓÚÌÓÒËÚÂθÌÓ || ⋅ ||F. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ || ⋅ ||F ÂÒÚ¸
ÙÛÌ͈Ëfl || ⋅ ||F : V → ڇ͇fl ˜ÚÓ ‰Îfl ‚ÒÂı Ë ‚ÒÂı x, y, xn ∈ V Ò͇ÎflÌ˚ı ‚Â΢ËÌ ‡, ‡n
ËÏÂÂÏ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡:
1) || x ||F ≥ 0 c || x ||F = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0;
2) || ax ||F = || x ||F ‰Îfl ‚ÒÂı ‡ c | a | = 1;
3) || x + y||F ≤ || x ||F + || y ||F;
4) || anx ||F → 0 ÂÒÎË an → 0;
5) || axn || F → 0, ÂÒÎË xn → 0;
6) || anxn || F → 0 ÂÒÎË an → 0, xn → 0.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V, || x – y || F ) Ò F* -ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl F* -ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ùÍ‚Ë‚‡ÎÂÌÚÌÓ, F * -ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V, d)
Ò Ú‡ÍÓÈ ËÌ‚‡ˇÌÚÌÓÈ ÏÂÚËÍÓÈ ÔÂÂÌÓÒ‡ d , ˜ÚÓ ‰ÂÈÒÚ‚Ëfl ÛÏÌÓÊÂÌËfl ̇ Ò͇Îfl Ë
ÒÎÓÊÂÌËfl ‚ÂÍÚÓÓ‚ fl‚Îfl˛ÚÒfl ÌÂÔÂ˚‚Ì˚ÏË ÓÚÌÓÒËÚÂθÌÓ ˝ÚÓÈ ÏÂÚËÍË.
åÓ‰ÛÎflÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ fl‚ÎflÂÚÒfl F* -ÔÓÒÚ‡ÌÒÚ‚Ó (V, || ⋅ ||F), ‚ ÍÓÚÓÓÏ FÌÓχ | ⋅ ||F ÓÔ‰ÂÎflÂÚÒfl ͇Í
x


|| x || F = inf λ > 0 : ρ  < λ ,
 λ


Ë ρ ÂÒÚ¸ ÏÓ‰ÛÎfl ÏÂÚËÁÓ‚‡ÌËfl ̇ V, Ú.Â. ڇ͇fl ÙÛÌ͈Ëfl ρ : V → [0, ∞], ˜ÚÓ ‰Îfl ‚ÒÂı
x, y, xn ∈ V Ë ‚ÒÂı Ò͇ÎflÌ˚ı ‚Â΢ËÌ a, an ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡:
1) ρ(x) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0;
2) ÂÒÎË ρ(ax) = ρ(x), ÚÓ | a | = 1;
3) ÂÒÎË ρ(ax + by) ≤ ρ(x) + ρ(y), ÚÓ a + b = 1;
4) ρ(an x) → 0, ÂÒÎË an → 0 Ë ρ(x) < ∞;
5) ρ(axn) → 0, ÂÒÎË ρ(x n ) → 0 (Ò‚ÓÈÒÚ‚Ó ÏÂÚËÁÓ‚‡ÌËfl);
6) ‰Îfl β·Ó„Ó x ∈ V ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ k > 0, ˜ÚÓ ρ(kx) < ∞.
èÓÎÌÓ F* -ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl F-ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ãÓ͇θÌÓ ‚˚ÔÛÍÎÓÂ
F-ÔÓÒÚ‡ÌÒÚ‚Ó ËÁ‚ÂÒÚÌÓ ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ Í‡Í ÔÓÒÚ‡ÌÒÚ‚Ó î¯Â.
åÂÚË͇ ÌÓÏ˚
åÂÚË͇ ÌÓÏ˚ – ÏÂÚË͇ ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ
ÔÓÒÚ‡ÌÒÚ‚Â V, ÓÔ‰ÂÎflÂχfl ͇Í
|| x – y ||,
„‰Â || ⋅ || fl‚ÎflÂÚÒfl ÌÓÏÓÈ Ì‡ V, Ú.Â. Ú‡ÍÓÈ ÙÛÌ͈ËÂÈ || ⋅ ||: V → , ˜ÚÓ ‰Îfl ‚ÒÂı x, y ∈ V
Ë Î˛·Ó„Ó Ò͇Îfl‡ ‡ ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡:
1) || x || ≥ 0 Ò || x || = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0;
2) || ax || = | a | || x ||;
3) || x + y || ≤ || x || + || y || (ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇).
ëΉӂ‡ÚÂθÌÓ, ÌÓχ || ⋅ || fl‚ÎflÂÚÒfl 1-Ó‰ÌÓÓ‰ÌÓÈ F-ÌÓÏÓÈ. ÇÂÍÚÓÌÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó (V, || ⋅ ||) ̇Á˚‚‡ÂÚÒfl ÌÓÏËÓ‚‡ÌÌ˚Ï ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ËÎË
ÔÓÒÚÓ ÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
É·‚‡ 5. åÂÚËÍË Ì‡ ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı
79
ç‡ Î˛·ÓÏ ‰‡ÌÌÓÏ ÍÓ̘ÌÓÏÂÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ‚Ò ÌÓÏ˚ ˝Í‚Ë‚‡ÎÂÌÚÌ˚. ÇÒflÍÓ ÍÓ̘ÌÓÏÂÌÓ ÌÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï.
ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÏÓÊÂÚ ·˚Ú¸ ËÁÓÏÂÚ˘ÂÒÍË ‚ÎÓÊÂÌÓ ‚ ÌÂÍÓÚÓÓ ÌÓÏËÓ‚‡ÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Í‡Í Á‡ÏÍÌÛÚÓ ÎËÌÂÈÌÓ ÌÂÁ‡‚ËÒËÏÓÂ
ÔÓ‰ÏÌÓÊÂÒÚ‚Ó.
çÓÏËÓ‚‡ÌÌÓ ۄÎÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë Û Á‡‰‡ÂÚÒfl ͇Í
d ( x, y) =
x
y
−
.
|| x || || y ||
å‡ÎË„‡Ì‰‡ Á‡ÏÂÚËÎ ÒÎÂ‰Û˛˘Â ÛÒËÎÂÌË ÌÂ‡‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇ ‚ ÌÓÏËÓ‚‡ÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı: ‰Îfl β·˚ı x, y ∈ V ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚ËÂ
(2 – d(x, – y)) min{|| x ||, || y ||} ≤ || x || + || y || – || x + y|| ≤ (2 – d(x, –y)) {|| x ||, || x ||}.
èÓÎÛÏÂÚË͇ ÔÓÎÛÌÓÏ˚
èÓÎÛÏÂÚËÍÓÈ ÔÓÎÛÌÓÏ˚ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V, Á‡‰‡‚‡Âχfl ͇Í
|| x – y ||,
„‰Â || ⋅ || fl‚ÎflÂÚÒfl ÔÓÎÛÌÓÏÓÈ (ËÎË Ô‰ÌÓÏÓÈ) ̇ V, Ú.Â. Ú‡ÍÓÈ ÙÛÌ͈ËÂÈ
|| ⋅ ||: V → , ˜ÚÓ ‰Îfl ‚ÒÂı x, y ∈ V Ë Î˛·Ó„Ó Ò͇Îfl‡ ‡ ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘ËÂ
Ò‚ÓÈÒÚ‚‡:
1) || x || ≥ 0 Ò || 0 || = 0;
2) || ax || = | a | || x ||;
3) || x + y || ≤ || x || + || y || (ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇).
ÇÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V, || ⋅ ||) ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÌÓÏËÓ‚‡ÌÌ˚Ï ‚ÂÍÚÓÌ˚Ï
ÔÓÒÚ‡ÌÒÚ‚ÓÏ. åÌÓ„Ë ÌÓÏËÓ‚‡ÌÌ˚ ‚ÂÍÚÓÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡, ̇ÔËÏÂ
·‡Ì‡ıÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡, ÓÔ‰ÂÎfl˛ÚÒfl Í‡Í Ù‡ÍÚÓ-ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Û ˝ÎÂÏÂÌÚÓ‚ ÔÓÎÛÌÓÏ˚ ÌÛθ.
䂇ÁËÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ fl‚ÎflÂÚÒfl ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó V, ̇
ÍÓÚÓÓÏ Á‡‰‡Ì‡ Í‚‡ÁËÌÓχ. 䂇ÁËÌÓÏÓÈ Ì‡ V ̇Á˚‚‡ÂÚÒfl ÌÂÓÚˈ‡ÚÂθ̇fl
ÙÛÌ͈Ëfl || ⋅ || : → , Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÚÂÏ Ê ‡ÍÒËÓχÏ, ˜ÚÓ Ë ÌÓχ, Á‡ ËÒÍβ˜ÂÌËÂÏ ÌÂ‡‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇, ÍÓÚÓÓ Á‡ÏÂÌflÂÚÒfl ·ÓΠÒ··˚Ï ÛÒÎÓ‚ËÂÏ: ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÒÚ‡ÌÚ‡ ë > 0, ڇ͇fl ˜ÚÓ ‰Îfl ‚ÒÂı x, y ∈ V ‚˚ÔÓÎÌflÂÚÒfl ÌÂ‡‚ÂÌÒÚ‚Ó
|| x + y || ≤ C)|| x || + || y ||)
(ÒÏ. èÓ˜ÚË-ÏÂÚË͇, „Î. 1). èËÏÂÓÏ Í‚‡ÁËÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÍÓÚÓÓ Ì fl‚ÎflÂÚÒfl ÌÓÏËÓ‚‡ÌÌ˚Ï, ÏÓÊÂÚ ÒÎÛÊËÚ¸ ÎÂ·Â„Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó L p (Ω) Ò
0 < p < 1, ‚ ÍÓÚÓÓÏ Í‚‡ÁËÌÓχ Á‡‰‡ÂÚÒfl ͇Í
|| f ||= (
∫Ω | f ( x ) |
p
dx )1 / p , f ∈ L p (Ω).
Ň̇ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó
Ň̇ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË Ç-ÔÓÒÚ‡ÌÒÚ‚Ó) ÂÒÚ¸ ÔÓÎÌÓ ÏÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó (V, || x – y||) ̇ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V Ò ÏÂÚËÍÓÈ ÌÓÏ˚ || x – y||.
ùÍ‚Ë‚‡ÎÂÌÚÌÓ, ÓÌÓ fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï ÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (V, || ⋅ ||).
Ç ˝ÚÓÏ ÒÎÛ˜‡Â ÌÓχ || ⋅ || ̇ V ̇Á˚‚‡ÂÚÒfl ·‡Ì‡ıÓ‚ÓÈ ÌÓÏÓÈ. èËÏÂ‡ÏË
·‡Ì‡ıÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ fl‚Îfl˛ÚÒfl:
1) l pn - ÔÓÒÚ‡ÌÒÚ‚‡, l p∞ - ÔÓÒÚ‡ÌÒÚ‚‡, 1 ≤ p ≤ ∞, n ∈ ;
80
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
2) ÔÓÒÚ‡ÌÒÚ‚Ó ë ÒıÓ‰fl˘ËıÒfl ˜ËÒÎÓ‚˚ı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ Ò ÌÓÏÓÈ || x || =
= supn | x n |;
3) ÔÓÒÚ‡ÌÒÚ‚Ó ë0 ˜ËÒÎÓ‚˚ı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ, ÍÓÚÓ˚ ÒıÓ‰flÚÒfl Í ÌÛβ ÔÓ
ÌÓÏÂ | x || = maxn | xn ||;
4) ÔÓÒÚ‡ÌÒÚ‚Ó C[pa, b ] ,1 ≤ p ≤ ∞ ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ Ì‡ [a, b] Ò L p -ÌÓÏÓÈ
|| f || p = (
b
∫a
1
| f (t ) | p dt ) p ;
5) ÔÓÒÚ‡ÌÒÚ‚Ó ëä ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ Ì‡ ÍÓÏÔ‡ÍÚ ä Ò ÌÓÏÓÈ || f || =
= maxt∈K | f(t)|;
6) ÔÓÒÚ‡ÌÒÚ‚Ó (C [a,b])n ÙÛÌ͈ËÈ Ì‡ [a, b] Ò ÌÂÔÂ˚‚Ì˚ÏË ÔÓËÁ‚Ó‰Ì˚ÏË ‰Ó
ÔÓfl‰Í‡ n ‚Íβ˜ËÚÂθÌÓ Ò ÌÓÏÓÈ || f ||n =
∑ k = 0 max a ≤ t ≤ b | f (k ) (t ) |;
n
7) ÔÓÒÚ‡ÌÒÚ‚Ó Cn[I m] ‚ÒÂı ÙÛÌ͈ËÈ, ÓÔ‰ÂÎÂÌÌ˚ı ‚ m-ÏÂÌÓÏ ÍÛ·Â Ë ÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏ˚ı ‰Ó ÔÓfl‰Í‡ n ‚Íβ˜ËÚÂθÌÓ Ò ÌÓÏÓÈ ‡‚ÌÓÏÂÌÓÈ
Ó„‡Ì˘ÂÌÌÓÒÚË ‚Ó ‚ÒÂı ÔÓËÁ‚Ó‰Ì˚ı ÔÓfl‰Í‡ Ì ·Óθ¯Â, ˜ÂÏ n;
8) ÔÓÒÚ‡ÌÒÚ‚Ó M [a,b] Ó„‡Ì˘ÂÌÌ˚ı ËÁÏÂËÏ˚ı ÙÛÌ͈ËÈ Ì‡ [a, b] Ò ÌÓÏÓÈ
|| f ||= ess sup | f (t ) | = inf
sup | f (t ) |;
e, µ ( e ) = 0 t ∈[ a, b ] \ e
a≤t ≤b
9) ÔÓÒÚ‡ÌÒÚ‚Ó Ä (∆) ÙÛÌ͈ËÈ, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ‡Ì‡ÎËÚ˘ÂÒÍËÏË ‚ ÓÚÍ˚ÚÓÏ
‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ = {z ∈ : | z | < 1} Ë ÌÂÔÂ˚‚Ì˚ÏË ‚ Á‡Í˚ÚÓÏ ‰ËÒÍ ∆ Ò
ÌÓÏÓÈ || f ||= maxz ∈∆ | f ( z ) |;
10) η„ӂ˚ ÔÓÒÚ‡ÌÒÚ‚‡ Lp(Ω), 1 ≤ p ≤ ∞;
11) ÔÓÒÚ‡ÌÒÚ‚‡ ëÓ·Ó΂‡ Wk,p(Ω), Ω ⊂ n, 1 ≤ p ≤ ∞ ÙÛÌ͈ËÈ f ̇ Ω, Ú‡ÍËı ˜ÚÓ
f Ë Â ÔÓËÁ‚Ó‰Ì˚ ‚ÔÎÓÚ¸ ‰Ó ÌÂÍÓÚÓÓ„Ó ÔÓfl‰Í‡ k ËÏÂ˛Ú ÍÓ̘ÌÛ˛ Lp-ÌÓÏÛ, c
ÌÓÏÓÈ || f ||k , p =
∑i = 0 || f (i) ||0 ;
k
12) ÔÓÒÚ‡ÌÒÚ‚Ó ÅÓ‡ Äê ÔÓ˜ÚË ÔÂËӉ˘ÂÒÍËı ÙÛÌ͈ËÈ Ò ÌÓÏÓÈ
|| f || = sup | f (t ) | .
– ∞< t < +∞
äÓ̘ÌÓÏÂÌÓ ‚¢ÂÒÚ‚ÂÌÌÓ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ åËÌÍÓ‚ÒÍÓ„Ó. åÂÚË͇ ÌÓÏ˚ ÔÓÒÚ‡ÌÒÚ‚‡ åËÌÍÓ‚ÒÍÓ„Ó Ì‡Á˚‚‡ÂÚÒfl
ÏÂÚËÍÓÈ åËÌÍÓ‚ÒÍÓ„Ó (ÒÏ. „Î. 6). Ç ˜‡ÒÚÌÓÒÚË, β·‡fl lp -ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇
åËÌÍÓ‚ÒÍÓ„Ó.
ÇÒ n-ÏÂÌ˚ ·‡Ì‡ıÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ fl‚Îfl˛ÚÒfl ÔÓÔ‡ÌÓ ËÁÓÏÓÙÌ˚ÏË: Ëı
ÏÌÓÊÂÒÚ‚Ó ÒÚ‡ÌÓ‚ËÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï, ÂÒÎË ‚‚Ó‰ËÚÒfl ‡ÒÒÚÓflÌË Ň̇ı‡–å‡ÁÛ‡
dBM(V, W) = ln infT || T || ⋅ || T –1 ||, „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÓÔÂ‡ÚÓ‡Ï, ÍÓÚÓ˚Â
‡ÎËÁÛ˛Ú ËÁÓÏÓÙËÁÏ T : V → W.
lp -ÏÂÚË͇
lp -ÏÂÚË͇ dl p , 1 ≤ p ≤ ∞ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ n (ËÎË Ì‡ n), ÓÔ‰ÂÎÂÌ̇fl
͇Í
|| x – y ||p ,
„‰Â lp -ÌÓχ || ⋅ ||p Á‡‰‡ÂÚÒfl ͇Í
n
|| x || p = (
∑ | xi |
i =1
1
p p
) .
81
É·‚‡ 5. åÂÚËÍË Ì‡ ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı
ÑÎfl p = ∞ Ï˚ ÔÓÎÛ˜‡ÂÏ || x ||∞ = lim p →∞
p
∑i =1 | xi | p = max1≤ i ≤ n | xi | . åÂÚ˘ÂÒÍÓÂ
n
ÔÓÒÚ‡ÌÒÚ‚Ó ( n , dl p ) ÒÓÍ‡˘ÂÌÌÓ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í l pn Ë Ì‡Á˚‚‡ÂÚÒfl l pn ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
lp -ÏÂÚË͇, 1 ≤ p ≤ ∞ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ x = {x n}∞n =1 ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ˜ËÒÂÎ, ‰Îfl ÍÓÚÓ˚ı ÒÛÏχ
ËÏÂÂÚ ‚ˉ
∑ i =1 | x i | p
∞
(‰Îfl p = ∞ ÒÛÏχ
∑i =1 | xi |) fl‚ÎflÂÚÒfl ÍÓ̘ÌÓÈ, ÓÔ‰ÂÎflÂÚÒfl ͇Í
∞
∞
(
∑ | xi − yi |
1
p p
) .
i =1
ÑÎfl p = ∞ ÔÓÎÛ˜‡ÂÏ maxi≥1|xi – yi |. ùÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓÍ‡˘ÂÌÌÓ
Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í l p∞ Ë Ì‡Á˚‚‡ÂÚÒfl l p∞ -ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
ç‡Ë·ÓΠ‚‡ÊÌ˚ÏË fl‚Îfl˛ÚÒfl l1 –, l2- Ë l∞-ÏÂÚËÍË; l2 -ÏÂÚË͇ ̇ n ̇Á˚‚‡ÂÚÒfl
Ú‡ÍÊ ‚ÍÎˉӂÓÈ ÏÂÚËÍÓÈ. l2 -ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ {x n }n
‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ˜ËÒÂÎ, ‰Îfl ÍÓÚÓ˚ı
∑i =1 | xi |2 < ∞, ËÁ‚ÂÒÚ̇ Ú‡ÍÊÂ
∞
Í‡Í „Ëθ·ÂÚÓ‚‡ ÏÂÚË͇. ç‡ ‚Ò lp -ÏÂÚËÍË ÒÓ‚Ô‡‰‡˛Ú Ò Ì‡ÚÛ‡Î¸ÌÓÈ ÏÂÚËÍÓÈ
| x – y |.
Ö‚ÍÎˉӂ‡ ÏÂÚË͇
Ö‚ÍÎˉӂ‡ ÏÂÚË͇ (ËÎË ÔËÙ‡„ÓÓ‚Ó ‡ÒÒÚÓflÌËÂ, ‡ÒÒÚÓflÌË "Í‡Í ÎÂÚ‡ÂÚ
‚ÓÓ̇") dE – ÏÂÚË͇ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x = y ||2 = ( x1 − y1 )2 + … + ( x n − yn )2 .
ùÚÓ Ó·˚˜Ì‡fl l2 -ÏÂÚË͇ ̇ n. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (n, dE), ÒÓÍ‡˘ÂÌÌÓ
̇Á˚‚‡ÂÚÒfl ‚ÍÎˉӂ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË ‚¢ÂÒÚ‚ÂÌÌ˚Ï Â‚ÍÎˉӂ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ). àÌÓ„‰‡ ‚˚‡ÊÂÌËÂÏ "‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó" Ó·ÓÁ̇˜‡ÂÚÒfl ÚÂıÏÂÌ˚È ÒÎÛ˜‡È n = 3, ‚ ÔÓÚË‚Ó‚ÂÒ Â‚ÍÎˉӂÓÈ ÔÎÓÒÍÓÒÚË ‰Îfl n = 2. Ö‚ÍÎˉӂ‡
Ôflχfl (ËÎË ‰ÂÈÒÚ‚ËÚÂθ̇fl ‚ÍÎˉӂ‡ Ôflχfl) ÔÓÎÛ˜‡ÂÚÒfl ÔË n = 1, Ú.Â. fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (, | x – y |) Ò Ì‡ÚÛ‡Î¸ÌÓÈ ÏÂÚËÍÓÈ (ÒÏ. „Î. 12).
Ç ‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË n fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ (Ë
‰‡Ê „Ëθ·ÂÚÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ), Ú.Â. dE(x, y) = || x – y || = || x – y ||2 =
= ⟨ x − y, x − y ⟩ , „‰Â ⟨x, y⟩ ÂÒÚ¸ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n, ÍÓÚÓÓ Ô‰ÒÚ‡‚ÎÂÌÓ
‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ Ó·‡ÁÓÏ ‚˚·‡ÌÌÓÈ ÒËÒÚÂÏ (‰Â͇ÚÓ‚˚) ÍÓÓ‰ËÌ‡Ú ÙÓÏÛÎÓÈ
⟨ x, y ⟩ =
gij xi yi , „‰Â
gij xi yi . Ç Òڇ̉‡ÚÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ËÏÂÂÏ ⟨ x, y ⟩ =
n,
∑ i, j
∑ i, j
gij = ⟨ei, ej⟩ Ë ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ((gij)) fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ
ÒËÏÏÂÚ˘ÌÓÈ n × n χÚˈÂÈ.
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÔÓÒÚ‡ÌÒÚ‚Ó,
Ò‚ÓÈÒÚ‚‡ ÍÓÚÓÓ„Ó ÓÔËÒ˚‚‡˛ÚÒfl ‡ÍÒËÓχÏË Â‚ÍÎˉӂÓÈ „ÂÓÏÂÚËË.
ìÌËÚ‡̇fl ÏÂÚË͇
ìÌËÚ‡̇fl ÏÂÚË͇ (ËÎË ÍÓÏÔÎÂÍÒ̇fl ‚ÍÎˉӂ‡ ÏÂÚË͇) ÂÒÚ¸ l2 -ÏÂÚË͇ ̇
n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x − y ||2 = | x1 − y1 |2 +…+ | x n − yn |2 .
82
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (n, || x – y || 2 ) ̇Á˚‚‡ÂÚÒfl ÛÌËÚ‡Ì˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË ÍÓÏÔÎÂÍÒÌ˚Ï Â‚ÍÎˉӂ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ). ÑÎfl n = 1 ÔÓÎÛ˜ËÏ
ÍÓÏÔÎÂÍÒÌÛ˛ ÔÎÓÒÍÓÒÚ¸ (ËÎË ÔÎÓÒÍÓÒÚ¸ Ä„‡Ì‰‡), Ú.Â. ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
(, | z – u |) Ò ÏÂÚËÍÓÈ ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÓ‰ÛÎfl | z – u |; | z | =| z1 + iz 2 |= z12 + z 22 Á‰ÂÒ¸
fl‚ÎflÂÚÒfl ÍÓÏÔÎÂÍÒÌ˚Ï ÏÓ‰ÛÎÂÏ (ÒÏ. Ú‡ÍÊ ͂‡ÚÂÌËÓÌ̇fl ÏÂÚË͇, „Î. 12).
Lp -ÏÂÚË͇
Lp -ÏÂÚË͇ d L p , 1 ≤ p ≤ ∞ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ L p (Ω, , µ), Á‡‰‡Ì̇fl ͇Í
|| f – g ||p
‰Îfl β·˚ı f, g ∈ L p (Ω, , µ). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( L p (Ω, , µ ), d L p ) ̇Á˚‚‡ÂÚÒfl Lp -ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË Î·„ӂ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ).
á‰ÂÒ¸ Ω – ÌÂÍÓÚÓÓ ÏÌÓÊÂÒÚ‚Ó Ë fl‚ÎflÂÚÒfl σ-‡Î„·ÓÈ ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ Ω , Ú.Â. ÒÂÏÂÈÒÚ‚ÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ Ω, Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı
ÒÎÂ‰Û˛˘ËÏ Ò‚ÓÈÒÚ‚‡Ï:
1) Ω ∈ ;
2) ÂÒÎË A ∈ , ÚÓ Ω\A ∈ ;
3) ÂÒÎË A = ∪ i∞=1 Ai c Ai ∈ , ÚÓ A ∈ .
îÛÌ͈Ëfl µ : → ≥0 ̇Á˚‚‡ÂÚÒfl ÏÂÓÈ Ì‡ , ÂÒÎË Ó̇ ‡‰‰ËÚ˂̇, Ú.Â.
µ(∪ i ≥1 Ai ) =
µ( Ai ) ‰Îfl ‚ÒÂı ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÏÌÓÊÂÒÚ‚ A i ∈ ,
∑ i ≥1
Ë Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ µ(0/) = 0. èÓÒÚ‡ÌÒÚ‚Ó Ò ÏÂÓÈ Ó·ÓÁ̇˜‡ÂÚÒfl ÚÓÈÍÓÈ
(Ω, , µ).
ÑÎfl ‰‡ÌÌÓÈ ÙÛÌ͈ËË f : Ω → ()  Lp-ÌÓχ ÓÔ‰ÂÎflÂÚÒfl ͇Í
|| f || p = 
1
∫Ω
f (ω ) p µ( dω ) p .
èÛÒÚ¸ L p (Ω, , µ) = L p (Ω) Ó·ÓÁ̇˜‡ÂÚ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÙÛÌ͈ËÈ f : Ω → (),
ÍÓÚÓ˚ ۉӂÎÂÚ‚Ófl˛Ú ÛÒÎӂ˲ || f ||p < ∞. ëÚÓ„Ó „Ó‚Ófl, L p (Ω, , µ) ÒÓÒÚÓËÚ ËÁ
Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ÙÛÌ͈ËÈ, „‰Â ‰‚ ÙÛÌ͈ËË ˝Í‚Ë‚‡ÎÂÌÚÌ˚, ÂÒÎË ÓÌË
ÔÓ˜ÚË ‚Ò˛‰Û Ó‰Ë̇ÍÓ‚˚, Ú. ÏÌÓÊÂÒÚ‚Ó, ̇ ÍÓÚÓÓÏ ÓÌË ‡Á΢‡˛ÚÒfl, ӷ·‰‡ÂÚ
ÌÛ΂ÓÈ ÏÂÓÈ. åÌÓÊÂÒÚ‚Ó L∞(Ω, , µ) ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË
ËÁÏÂËÏ˚ı ÙÛÌ͈ËÈ f : Ω → (), ‡·ÒÓβÚÌ˚ ‚Â΢ËÌ˚ ÍÓÚÓ˚ı ÔÓ˜ÚË ‚Ò˛‰Û
Ó„‡Ì˘ÂÌ˚.
ç‡Ë·ÓΠËÁ‚ÂÒÚÌ˚Ï ÔËÏÂÓÏ L p -ÏÂÚËÍË fl‚ÎflÂÚÒfl d L p ̇ ÏÌÓÊÂÒÚ‚Â
L p (Ω, , µ ), „‰Â Ω – ÓÚÍ˚Ú˚È ËÌÚÂ‚‡Î (0,1), – ·ÓÂ΂‡ σ-‡Î„·‡ ̇ (0,1) Ë µ –
η„ӂ‡ ÏÂ‡. ùÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓÍ‡˘ÂÌÌÓ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í Lp(0,1)
Ë Ì‡Á˚‚‡ÂÚÒfl Lp(0,1)-ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
Ä̇Îӄ˘Ì˚Ï Ó·‡ÁÓÏ ÏÓÊÌÓ Á‡‰‡Ú¸ Lp-ÏÂÚËÍÛ Ì‡ ÏÌÓÊÂÒÚ‚Â C[ a, b ] ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ Ì‡ [a, b]:
b

p
d L p ( f , g) =  f ( x ) − g( x ) dx 


a

∫
1/ p
.
83
É·‚‡ 5. åÂÚËÍË Ì‡ ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı
ÑÎfl p = ∞ d L∞ ( f , g) = max a ≤ x ≤ b | f ( x ) − g( x ) |. ùÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓÍ‡˘ÂÌÌÓ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í C[pa, b ] Ë Ì‡Á˚‚‡ÂÚÒfl C[pa, b ] -ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
ÖÒÎË Ω = , = 2Ω fl‚ÎflÂÚÒfl ÒÂÏÂÈÒÚ‚ÓÏ ‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ Ω Ë µ – ͇‰Ë̇θÌ˚Ï ˜ËÒÎÓÏ (Ú.Â. µ( A) = | A |, ÂÒÎË Ä – ÍÓ̘ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó Ω Ë µ(A) = ∞ –
Ë̇˜Â), ÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
( L (Ω, 2
p
Ω
, | ⋅ | ), d L p
)Ël
∞
p -ÔÓÒÚ‡ÌÒÚ‚Ó
ÒÓ‚-
Ô‡‰‡˛Ú.
ÖÒÎË Ω = Vn ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó, ÒÓÒÚÓfl˘Â ËÁ n ˝ÎÂÏÂÌÚÓ‚, = 2 Vn , Ë µ fl‚ÎflÂÚÒfl
(
͇‰Ë̇θÌ˚Ï ˜ËÒÎÓÏ, ÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó L p (Vn , 2 Vn , | ⋅ | ), d L p
)Ë
l pn -
ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ‚Ô‡‰‡˛Ú.
Ñ‚ÓÈÒÚ‚ÂÌÌ˚Â ÏÂÚËÍË
lp -ÏÂÚË͇ Ë lq -ÏÂÚË͇, 1 < p , q < ∞ ̇Á˚‚‡˛ÚÒfl ‰‚ÓÈÒÚ‚ÂÌÌ˚ÏË, ÂÒÎË 1/p +
+ 1/q = 1.
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â, ÍÓ„‰‡ ˜¸ ˉÂÚ Ó ÌÓÏËÓ‚‡ÌÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â
(V , || ⋅ ||V ), ËÌÚÂÂÒ Ô‰ÒÚ‡‚Îfl˛Ú ÌÂÔÂ˚‚Ì˚ ÎËÌÂÈÌ˚ ÙÛÌ͈ËÓ̇Î˚ ËÁ V ‚
ÓÒÌÓ‚ÌÓ ÔÓΠ( ËÎË ). ùÚË ÙÛÌ͈ËÓ̇Î˚ Ó·‡ÁÛ˛Ú ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó
(V ′, || ⋅ ||V ′ ), ̇Á˚‚‡ÂÏÓ ÌÂÔÂ˚‚Ì˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï ‰Îfl ÔÓÒÚ‡ÌÒÚ‚‡ V. çÓχ
|| ⋅ ||V ′ ̇ V' Á‡‰‡ÂÚÒfl Í‡Í || T ||V ′ = sup|| x || ≤ 1 | T ( x ) |.
( )
çÂÔÂ˚‚Ì˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï ‰Îfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ l pn l p∞ fl‚ÎflÂÚÒfl
lqn
(ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ
l p∞ ).
( )
çÂÔÂ˚‚Ì˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï ‰Îfl ÔÓÒÚ‡ÌÒÚ‚‡ l1n l1∞
l∞n
l∞∞ ).
fl‚ÎflÂÚÒfl
(ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ
çÂÔÂ˚‚Ì˚ ‰‚ÓÈÒÚ‚ÂÌÌ˚ ‰Îfl ·‡Ì‡ıÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ë (ÒÓÒÚÓfl˘Â„Ó ËÁ ‚ÒÂı ÒıÓ‰fl˘ËıÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ Ò lⴥ-ÏÂÚËÍÓÈ) Ë
C 0 (ÒÓÒÚÓfl˘Â„Ó ËÁ ‚ÒÂı ÒıÓ‰fl˘ËıÒfl Í ÌÛβ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ Ò lⴥ-ÏÂÚËÍÓÈ)
ÏÓ„ÛÚ ·˚Ú¸ ÂÒÚÂÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ Ë‰ÂÌÚËÙˈËÓ‚‡Ì˚ Ò l1∞ .
èÓÒÚ‡ÌÒÚ‚Ó ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ
èÓÒÚ‡ÌÒÚ‚ÓÏ ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ (ËÎË Ô‰„Ëθ·ÂÚÓ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V , || x − y || ) ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ
(ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ ⟨ x, y ⟩
Ú‡ÍÓ ˜ÚÓ ÏÂÚË͇ ÌÓÏ˚ || x − y || ÒÚÓËÚÒfl Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÌÓÏ˚ Ò͇ÎflÌÓ„Ó
ÔÓËÁ‚‰ÂÌËfl || x || = ⟨ x, x ⟩ .
ë͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ⟨ , ⟩ ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V fl‚ÎflÂÚÒfl ÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ (‚ ÍÓÏÔÎÂÍÒÌÓÏ ÒÎÛ˜‡Â ÔÓÎÛÚÓ‡ÎËÌÂÈÌÓÈ) ÙÓÏÓÈ Ì‡ V, Ú.Â. ÙÛÌ͈ËÂÈ ⟨ , ⟩ : V × V → (), Ú‡ÍÓÈ ˜ÚÓ ‰Îfl ‚ÒÂı
x, y, z ∈ V Ë ‚ÒÂı Ò͇ÎflÌ˚ı ‚Â΢ËÌ α, β ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡:
1) ⟨ x, x ⟩ ≥ 0 c ⟨ x, x ⟩ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0;
2) ⟨ x, y ⟩ = ⟨ y, x ⟩, „‰Â α = a + bi = a − bi ÓÁ̇˜‡ÂÚ ÍÓÏÔÎÂÍÒÌÓ ÒÓÔflÊÂÌËÂ;
3) ⟨αx + βy, z ⟩ = α ⟨ x, z ⟩ + β⟨ y, z ⟩.
ÑÎfl ÍÓÏÔÎÂÍÒÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇Á˚‚‡ÂÚÒfl
Ú‡ÍÊ ˝ÏËÚÓ‚˚Ï Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ, ‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó – ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ò ˝ÏËÚÓ‚˚Ï Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ .
84
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
çÓχ || ⋅ || ‚ ÌÓÏËÓ‚‡ÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (V , || ⋅ ||) ÔÓÓʉ‡ÂÚÒfl Ò͇ÎflÌ˚Ï
ÔÓËÁ‚‰ÂÌËÂÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ‰Îfl ‚ÒÂı x, y ∈ V ËÏÂÂÚ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó
|| x + y ||2 + || x − y ||2 = 2(|| x ||2 + || y ||2 ).
ÉËθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó
ÉËθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ, ÍÓÚÓÓÂ, Í‡Í ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï. íӘ̠„Ó‚Ófl, „Ëθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÔÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( H , || x − y ||) ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ç ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ
⟨ , ⟩, Ú‡ÍËÏ ˜ÚÓ ÏÂÚË͇ ÌÓÏ˚ || x − y || ÒÚÓËÚÒfl ÔÓ ÌÓÏ Ò͇ÎflÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl
|| x ||= ⟨ x, x ⟩ . ã˛·Ó „Ëθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó.
èËÏÂÓÏ „Ëθ·ÂÚÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ ÒÎÛÊËÚ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ x = {x n}n ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ˜ËÒÂÎ, Ú‡ÍËı ˜ÚÓ
∞
∑ | xi |2 ÒıÓ‰ËÚÒfl
i =1
ÔÓ „Ëθ·ÂÚÓ‚ÓÈ ÏÂÚËÍÂ, Á‡‰‡‚‡ÂÏÓÈ Í‡Í
 ∞
| xi − yi

 i =1
∑

| 

2
1/ 2
.
Ç Í‡˜ÂÒÚ‚Â ‰Û„Ëı ÔËÏÂÓ‚ „Ëθ·ÂÚÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ÏÓÊÌÓ ÔË‚ÂÒÚË Î˛·ÓÂ
L2 -ÔÓÒÚ‡ÌÒÚ‚Ó Ë Î˛·Ó ÍÓ̘ÌÓÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ. Ç ˜‡ÒÚÌÓÒÚË, β·Ó ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl „Ëθ·ÂÚÓ‚˚Ï.
èflÏÓ ÔÓËÁ‚‰ÂÌË ‰‚Ûı „Ëθ·ÂÚÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ̇Á˚‚‡˛Ú ÔÓÒÚ‡ÌÒÚ‚ÓÏ ãËÛ‚ËÎÎfl (ËÎË ‡Ò¯ËÂÌÌ˚Ï „Ëθ·ÂÚÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ).
åÂÚË͇ ÌÓÏ˚ êËÒÒ‡
èÓÒÚ‡ÌÒÚ‚Ó êËÒÒ‡ (ËÎË ‚ÂÍÚÓ̇fl ¯ÂÚ͇) ÂÒÚ¸ ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓÂ
‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (VRi , p
− ), ‚ ÍÓÚÓÓÏ ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl:
1. ëÚÛÍÚÛ‡ ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ë ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌ̇fl ÒÚÛÍÚÛ‡
ÒÓ‚ÏÂÒÚËÏ˚, Ú.Â. ËÁ x p
− y ÒΉÛÂÚ, ˜ÚÓ x + z p
− y + z, ‡ ËÁ x f 0, a ∈ , a > 0 ÒΉÛÂÚ,
˜ÚÓ ax f 0.
2. ÑÎfl ‰‚Ûı β·˚ı ˝ÎÂÏÂÌÚÓ‚ x, y ∈ VRi ÒÛ˘ÂÒÚ‚ÛÂÚ Ó·˙‰ËÌÂÌË x ∧ y ∈ VRi Ë
ÔÂÂÒ˜ÂÌË (ÒÏ. „Î. 10).
åÂÚË͇ ÌÓÏ˚ êËÒÒ‡ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ VRi, Á‡‰‡‚‡Âχfl ͇Í
|| x − y || Ri ,
„‰Â || ⋅ || Ri ÂÒÚ¸ ÌÓχ êËÒÒ‡ ̇ V Ri , Ú.Â. ڇ͇fl ÌÓχ, ˜ÚÓ ‰Îfl ‚ÒÂı x, y ∈ VRi ÌÂ‡‚ÂÌÒÚ‚Ó | x | p
− | y |, „‰Â | x | = ( − x ) ∨ ( x ), ÔÓÓʉ‡ÂÚ ÌÂ‡‚ÂÌÒÚ‚Ó || x || Ri ≤ || y || Ri .
èÓÒÚ‡ÌÒÚ‚Ó (VRi , || ⋅ || Ri ) ̇Á˚‚‡ÂÚÒfl ÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ êËÒÒ‡.
Ç ÒÎÛ˜‡Â ÔÓÎÌÓÚ˚ ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl ·‡Ì‡ıÓ‚ÓÈ ¯ÂÚÍÓÈ.
äÓÏÔ‡ÍÚ Å‡Ì‡ı‡–å‡ÁÛ‡
ê‡ÒÒÚÓflÌË Ň̇ı‡–å‡ÁÛ‡ dBM ÏÂÊ‰Û ‰‚ÛÏfl n-ÏÂÌ˚ÏË ÌÓÏËÓ‚‡ÌÌ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË (V , || ⋅ ||V ) Ë (W , || ⋅ ||W ) ÓÔ‰ÂÎflÂÚÒfl ͇Í
ln inf || T || ⋅ || T −1 ||,
T
85
É·‚‡ 5. åÂÚËÍË Ì‡ ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ËÁÓÏÓÙËÁÏ‡Ï T : V → W . éÌÓ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡
ÏÌÓÊÂÒÚ‚Â Xn ‚ÒÂı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË n-ÏÂÌ˚ı ÌÓÏËÓ‚‡ÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚, „‰Â V ~ W ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌË ËÁÓÏÓÙÌ˚. íÓ„‰‡ Ô‡‡
( X n , dBM ) fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ̇Á˚‚‡ÂÏ˚Ï ÍÓÏÔ‡ÍÚÓÏ Å‡Ì‡ı‡–å‡ÁÛ‡.
î‡ÍÚÓ-ÏÂÚË͇
Ç ÒÎÛ˜‡Â ÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V , || ⋅ ||V ) Ò ÌÓÏÓÈ || ⋅ ||V Ë Á‡ÏÍÌÛÚ˚Ï
ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ W ÔÓÒÚ‡ÌÒÚ‚‡ V ÔÛÒÚ¸ (V / W , || ⋅ ||V / W ) ·Û‰ÂÚ ÌÓÏËÓ‚‡ÌÌ˚Ï
ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÒÏÂÊÌ˚ı Í·ÒÒÓ‚ x + W = {x + w : w ∈ W}, x ∈ V Ò Ù‡ÍÚÓ-ÌÓÏÓÈ
|| x + W ||V / VW = infw ∈W || x + w ||V .
î‡ÍÚÓ-ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ ̇ V/W, Á‡‰‡Ì̇fl ͇Í
|| ( x + W ) − ( y + W ) ||V / W .
åÂÚË͇ ÚÂÌÁÓÌÓÈ ÌÓÏ˚
ÑÎfl ÌÓÏËÓ‚‡ÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚ (V , || ⋅ ||V ) Ë (W , || ⋅ ||W ) ÌÓχ || ⋅ ||⊗ ̇ ÚÂÌÁÓÌÓÏ ÔÓËÁ‚‰ÂÌËË V ⊗ W ̇Á˚‚‡ÂÚÒfl ÚÂÌÁÓÌÓÈ ÌÓÏÓÈ (ËÎË ÍÓÒÒ-ÌÓÏÓÈ),
ÂÒÎË || x ⊗ y ||⊗ = || x ||V || y ||W ‰Îfl ‚ÒÂı ‡ÁÎÓÊËÏ˚ı ÚÂÌÁÓÓ‚ x ⊗ y.
åÂÚË͇ ÚÂÌÁÓÌÓÈ ÌÓÏ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ V ⊗ W , Á‡‰‡Ì̇fl ͇Í
|| z − t ||⊗ .
ÑÎfl β·˚ı z ∈ V ⊗ W , z =
∑ x j ⊗ yj,
j
π-ÌÓχ) ÓÔ‰ÂÎflÂÚÒfl Í‡Í || z || pr = inf
x j ∈ V , y j ∈ W  ÔÓÂÍÚ˂̇fl ÌÓχ (ËÎË
∑ || x j ||V || y j ||W ,
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ
j
‚ÒÂÏ Ô‰ÒÚ‡‚ÎÂÌËflÏ z ‚ ‚ˉ ÒÛÏÏ˚ ‡ÁÎÓÊËÏ˚ı ‚ÂÍÚÓÓ‚. ùÚÓ Ò‡Ï‡fl ·Óθ¯‡fl
ÚÂÌÁÓ̇fl ÌÓχ ̇ V ⊗ W .
åÂÚË͇ ‚‡Î˛‡ˆËË
åÂÚË͇ ‚‡Î˛‡ˆËË – ˝ÚÓ ÏÂÚË͇ ̇ ÔÓΠ, Á‡‰‡Ì̇fl ͇Í
|| x − y ||,
„‰Â || ⋅ || – ‚‡Î˛‡ˆËfl ̇ , Ú.Â. ÙÛÌ͈Ëfl || ⋅ ||: → , ڇ͇fl ˜ÚÓ ‰Îfl ‚ÒÂı x, y ∈ ËϲÚ
ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡:
1) || x || ≥ 0 Ò || x || = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0;
2) || xy || = || x || || y ||;
3) || x + y || ≤ || x || || y || ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇).
ÖÒÎË || x + y || ≤ max{|| x || || y ||}, ÚÓ ‚‡Î˛‡ˆËfl || ⋅ || ̇Á˚‚‡ÂÚÒfl ̇ıËωӂÓÈ.
Ç ˝ÚÓÏ ÒÎÛ˜‡Â ÏÂÚË͇ ‚‡Î˛‡ˆËË ·Û‰ÂÚ ÛθÚ‡ÏÂÚËÍÓÈ. èÓÒÚÂȯËÏ ÔËÏÂÓÏ
‚‡Î˛‡ˆËË fl‚ÎflÂÚÒfl Ú˂ˇθÌÓ ÌÓÏËÓ‚‡ÌË || ⋅ ||tr : || 0 ||tr = 0 Ë || ⋅ ||tr = 1 ‰Îfl
x ∈ \ {0}, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ̇ıËωӂ˚Ï.
Ç Ï‡ÚÂχÚËÍ ÒÛ˘ÂÒÚ‚Û˛Ú ‡ÁÌ˚ ÓÔ‰ÂÎÂÌËfl ÔÓÌflÚËfl ‚‡Î˛‡ˆËË. í‡Í,
̇ÔËÏÂ, ÙÛÌ͈Ëfl ν : → ∪ {∞} ̇Á˚‚‡ÂÚÒfl ‚‡Î˛‡ˆËÂÈ, ÂÒÎË ν( x ) ≥ 0, ν(0) = ∞,
ν( xy) = ν( x ) + ν( y) Ë ν( x + y) ≥ min{ν( x ), ν( y)} ‰Îfl ‚ÒÂı x, y ∈. LJβ‡ˆË˛ || ⋅ ||
ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ ËÁ ÙÛÌ͈ËË ν ÔÓ ÙÓÏÛΠ|| x || = α ν( x ) ‰Îfl ÌÂÍÓÚÓÓ„Ó ÙËÍÒË-
86
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
Ó‚‡ÌÌÓ„Ó 0 < α < 1 (ÒÏ. p-‡‰Ë˜ÂÒ͇fl ÏÂÚË͇, „Î. 12). LJβ‡ˆËfl äÛ¯‡Í‡ | ⋅ |Krs
Á‡‰‡ÂÚÒfl Í‡Í ÙÛÌ͈Ëfl | ⋅ |Krs : → , ڇ͇fl ˜ÚÓ | x |Krs ≥ 0, | x |Krs = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ
ÚÓ„‰‡, ÍÓ„‰‡ x = 0, | x |Krs = | x |Krs | y |Krs Ë | x + y |Krs ≤ C max{| x |Krs , | y |Krs} ‰Îfl ‚ÒÂı
x, y ∈ Ë ‰Îfl ÌÂÍÓÚÓÓÈ ÔÓÎÓÊËÚÂθÌÓÈ ÍÓÌÒÚ‡ÌÚ˚ ë, ̇Á˚‚‡ÂÏÓÈ ÍÓÌÒÚ‡ÌÚÓÈ
‚‡Î˛‡ˆËË. ÖÒÎË C ≥ 2, ÚÓ ÔÓÎÛ˜‡ÂÚÒfl Ó·˚˜ÌÓ ÓÔ‰ÂÎÂÌË ‚‡Î˛‡ˆËË || ⋅ ||, ÍÓÚÓÓÂ
·Û‰ÂÚ Ì‡ıËωӂ˚Ï, ÂÒÎË ë ≤ 1. Ç ˆÂÎÓÏ Î˛·‡fl ‚‡Î˛‡ˆËfl | ⋅ |Krs ˝Í‚Ë‚‡ÎÂÌÚ̇
ÌÂÍÓÚÓÓÈ ‚‡Î˛‡ˆËË || ⋅ ||, Ú.Â. | ⋅ |Krs ÔË ÌÂÍÓÚÓÓÏ p > 0. à ̇ÍÓ̈, ‰Îfl ÛÔÓfl‰Ó˜ÂÌÌÓÈ „ÛÔÔ˚ (G, ⋅, e, ≤), Ò̇·ÊÂÌÌÓÈ ÌÛÎÂÏ, ‚‡Î˛‡ˆËfl äÛη ÓÔ‰ÂÎflÂÚÒfl
Í‡Í ÙÛÌ͈Ëfl | ⋅ |: → G, ڇ͇fl ˜ÚÓ | x | = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0,
| xy | = | x | | y | Ë | x + y | ≤ max{| x |, | y |} ‰Îfl β·˚ı x, y ∈. ùÚÓ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ
ÓÔ‰ÂÎÂÌËfl ̇ıËωӂÓÈ ‚‡Î˛‡ˆËË || ⋅ || (ÒÏ. é·Ó·˘ÂÌ̇fl ÏÂÚË͇, „Î. 3).
p
åÂÚË͇ ÒÚÂÔÂÌÌÓ„Ó fl‰‡
èÛÒÚ¸ – ÔÓËÁ‚ÓθÌÓ ‡Î„·‡Ë˜ÂÒÍÓ ÔÓÎÂ Ë ÔÛÒÚ¸ ⟨ x −1 ⟩ – ÔÓΠÒÚÂÔÂÌÌ˚ı
fl‰Ó‚ ‚ˉ‡ w = α − m x m + ... + α 0 + α1 x + ..., α i ∈. èË Á‡‰‡ÌÌÓÏ l > 1 ̇ıËωӂ‡
‚‡Î˛‡ˆËfl || ⋅ || ̇ ⟨ x −1 ⟩ ÓÔ‰ÂÎflÂÚÒfl ͇Í
l m , ÂÒÎË w ≠ 0,
|| w || = 
0, ÂÒÎË w = 0.
åÂÚË͇ ÒÚÂÔÂÌÌÓ„Ó fl‰‡ ÂÒÚ¸ ÏÂÚË͇ ‚‡Î˛‡ˆËË || w − v || ̇ ⟨ x −1 ⟩.
ó‡ÒÚ¸ II
ÉÖéåÖíêàü à êÄëëíéüçàü
É·‚‡ 6
ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
ÉÂÓÏÂÚËfl ‚ÓÁÌËÍ· Í‡Í Ó·Î‡ÒÚ¸ Á̇ÌËÈ, Ò‚flÁ‡Ì̇fl Ò ‡Á΢Ì˚ÏË ÒÓÓÚÌÓ¯ÂÌËflÏË
‚ ÔÓÒÚ‡ÌÒÚ‚Â. ùÚÓ ·˚· Ӊ̇ ËÁ ‰‚Ûı ӷ·ÒÚÂÈ, Ô‰¯ÂÒÚ‚Ó‚‡‚¯Ëı ÒÓ‚ÂÏÂÌÌÓÈ
χÚÂχÚËÍÂ, ‚ÚÓ‡fl Á‡ÌËχ·Ҹ ËÁÛ˜ÂÌËÂÏ ˜ËÒÂÎ. Ç Ì‡ÒÚÓfl˘Â ‚ÂÏfl „ÂÓÏÂÚ˘ÂÒÍË ÍÓ̈ÂÔˆËË ‰ÓÒÚË„ÎË ‚ÂҸχ ‚˚ÒÓÍÓ„Ó ÛÓ‚Ìfl ‡·ÒÚ‡ÍÚÌÓÒÚË Ë ÒÎÓÊÌÓÒÚË
Ó·Ó·˘ÂÌËÈ.
6.1. ÉÖéÑÖáàóÖëäÄü ÉÖéåÖíêàü
Ç Ï‡ÚÂχÚËÍ ÔÓÌflÚË "„ÂÓ‰ÂÁ˘ÂÒÍËÈ" fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl "Ôflχfl
ÎËÌËfl" ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ËÒÍË‚ÎÂÌÌÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û. чÌÌ˚È ÚÂÏËÌ Á‡ËÏÒÚ‚Ó‚‡Ì
ËÁ „ÂÓ‰ÂÁËË, ̇ÛÍË, Á‡ÌËχ˛˘ÂÈÒfl ËÁÏÂÂÌËÂÏ ‡ÁÏÂ‡ Ë ÙÓÏ˚ áÂÏÎË.
èÛÒÚ¸ (ï, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. åÂÚ˘ÂÒ͇fl ÍË‚‡fl γ
ÂÒÚ¸ ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl γ : I → X, „‰Â I – ËÌÚÂ‚‡Î (Ú.Â. ÌÂÔÛÒÚÓ ҂flÁÌÓÂ
ÔÓ‰ÏÌÓÊÂÒÚ‚Ó) ‚ . ÖÒÎË γ fl‚ÎflÂÚÒfl r ‡Á ÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓÈ, ÚÓ Ó̇
̇Á˚‚‡ÂÚÒfl „ÛÎflÌÓÈ ÍË‚ÓÈ Í·ÒÒ‡ Cr; ÂÒÎË r = ∞, ÚÓ γ ̇Á˚‚‡ÂÚÒfl „·‰ÍÓÈ
ÍË‚ÓÈ.
ÇÓÓ·˘Â „Ó‚Ófl, ÍË‚‡fl ÎËÌËfl ÏÓÊÂÚ ÔÂÂÒÂ͇ڸ Ò‡ÏÛ Ò·fl. äË‚‡fl ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl ÔÓÒÚÓÈ ÍË‚ÓÈ (ËÎË ‰Û„ÓÈ, ÔÛÚÂÏ), ÂÒÎË Ó̇ Ì ÔÂÂÒÂ͇ÂÚ Ò‡ÏÛ Ò·fl,
Ú.Â. fl‚ÎflÂÚÒfl ËÌ˙ÂÍÚË‚ÌÓÈ. äË‚‡fl γ: [a, b] → X ̇Á˚‚‡ÂÚÒfl ÊÓ‰‡ÌÓ‚ÓÈ ÍË‚ÓÈ
(ËÎË ÔÓÒÚÓÈ Á‡ÏÍÌÛÚÓÈ ÍË‚ÓÈ), ÂÒÎË Ó̇ Ì ÔÂÂÒÂ͇ÂÚ Ò·fl Ë γ(‡) = γ(b).
ÑÎË̇ (ÍÓÚÓ‡fl ÏÓÊÂÚ ·˚Ú¸ ‡‚̇ ∞) l(γ) ÍË‚ÓÈ (γ: [a, b] → X ÓÔ‰ÂÎflÂÚÒfl ͇Í
n
sup
∑ d(γ (ti −1 ), γ (ti )),
„‰Â ‚ÂıÌflfl „‡Ì¸ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÍÓ̘Ì˚Ï ‡Á·ËÂÌËflÏ
i =1
a = t0 < t1 < ... < tn = b, n ∈ ÓÚÂÁ͇ [a, b]. äË‚‡fl ÍÓ̘ÌÓÈ ‰ÎËÌ˚ ̇Á˚‚‡ÂÚÒfl
ÒÔflÏÎflÂÏÓÈ. ÑÎfl β·ÓÈ „ÛÎflÌÓÈ ÍË‚ÓÈ γ: [a, b] → X Á‡‰‡‰ËÏ Ì‡ÚÛ‡Î¸Ì˚È
Ô‡‡ÏÂÚ s ÍË‚ÓÈ γ Í‡Í s = s(t ) = l( γ | [ a,t ] ), „‰Â l( γ | [ a,t ] ) ÂÒÚ¸ ‰ÎË̇ ˜‡ÒÚË γ,
ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ËÌÚÂ‚‡ÎÛ [a, t]. äË‚‡fl Ò Ú‡ÍÓÈ Ì‡ÚÛ‡Î¸ÌÓÈ Ô‡‡ÏÂÚËÁ‡ˆËÂÈ
γ = γ(s) ̇Á˚‚‡ÂÚÒfl ÍË‚ÓÈ Â‰ËÌ˘ÌÓÈ ÒÍÓÓÒÚË (ËÎË Ô‡‡ÏÂÚËÁÓ‚‡ÌÌÓÈ ‰ÎËÌÓÈ
‰Û„Ë, ÌÓÏËÓ‚‡ÌÌÓÈ); ÔË ‰‡ÌÌÓÈ Ô‡‡ÏÂÚËÁ‡ˆËË ‰Îfl β·˚ı t1 , t2 ∈ I ÔÓÎÛ˜‡ÂÏ
l( γ |[t1 , t 2 ] ) = | t2 − t1 | Ë l( γ ) = | b − a | .
ÑÎË̇ β·ÓÈ ÍË‚ÓÈ γ: [a, b] → X ‡‚̇ ÔÓ ÏÂ̸¯ÂÈ ÏÂ ‡ÒÒÚÓflÌ˲ ÏÂÊ‰Û ÂÂ
ÍÓ̈‚˚ÏË ÚӘ͇ÏË: l( γ ) ≥ d ( γ ( a), γ (b)). äË‚‡fl γ, ‰Îfl ÍÓÚÓÓÈ l( γ ) = d ( γ ( a), γ (b)),
̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ (ËÎË Í‡Ú˜‡È¯ËÏ ÔÛÚÂÏ) ÓÚ ı = γ(‡) ‰Ó Û = γ(b)
Ë Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í [x, y]. í‡ÍËÏ Ó·‡ÁÓÏ, „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ ÂÒÚ¸ Í‡Ú˜‡È¯ËÈ
ÔÛÚ¸ ÏÂÊ‰Û Â„Ó ÍÓ̈‚˚ÏË ÚӘ͇ÏË; ÓÌ fl‚ÎflÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËÂÏ [a, b]
‚ ï. Ç ˆÂÎÓÏ „ÂÓ‰ÂÁ˘ÂÒÍË ÓÚÂÁÍË ÏÓ„ÛÚ Ë Ì ÒÛ˘ÂÒÚ‚Ó‚‡Ú¸, ÍÓÏ Ú˂ˇθÌÓ„Ó
ÒÎÛ˜‡fl, ÍÓ„‰‡ ÓÚÂÁÓÍ ÒÓÒÚÓËÚ ÚÓθÍÓ ËÁ Ó‰ÌÓÈ ÚÓ˜ÍË. ÅÓΠÚÓ„Ó, „ÂÓ‰ÂÁ˘ÂÒÍËÈ
ÓÚÂÁÓÍ, ÒÓ‰ËÌfl˛˘ËÈ ‰‚ ÚÓ˜ÍË, Ì ӷflÁ‡ÚÂθÌÓ Â‰ËÌÒÚ‚ÂÌ.
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
89
ÉÂÓ‰ÂÁ˘ÂÒÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÍË‚‡fl, ÍÓÚÓ‡fl ·ÂÒÍÓ̘ÌÓ ‡ÒÔÓÒÚ‡ÌflÂÚÒfl ‚ Ó·Â
ÒÚÓÓÌ˚ Ë ÎÓ͇θÌÓ ‚‰ÂÚ Ò·fl Í‡Í ÓÚÂÁÓÍ, Ú.Â. ÎÓ͇θÌÓ ‚Ò˛‰Û fl‚ÎflÂÚÒfl ÏËÌËÏËÁ‡ÚÓÓÏ ‡ÒÒÚÓflÌËfl. íӘ̠„Ó‚Ófl, ÍË‚‡fl γ: → X ‚ ÂÒÚÂÒÚ‚ÂÌÌÓÈ Ô‡‡ÏÂÚËÁ‡ˆËË Ì‡Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍÓÈ, ÂÒÎË ‰Îfl β·Ó„Ó t ∈ ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡Í‡fl ÓÍÂÒÚÌÓÒÚ¸ U, ˜ÚÓ ‰Îfl β·˚ı t1 , t2 ∈ U ËÏÂÂÏ d ( γ (t1 ), γ (t2 )) = | t1 − t2 | . í‡ÍËÏ Ó·‡ÁÓÏ,
β·‡fl „ÂÓ‰ÂÁ˘ÂÒ͇fl ÂÒÚ¸ ÎÓ͇θÌÓ ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌË ‚ÒÂ„Ó ‚ ï. ÉÂÓ‰ÂÁ˘ÂÒÍÛ˛ ̇Á˚‚‡˛Ú ÏÂÚ˘ÂÒÍÓÈ ÔflÏÓÈ, ÂÒÎË ‡‚ÂÌÒÚ‚Ó d ( γ (t1 ), γ (t2 )) = | t1 − t2 |
‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı t1 , t 2 ∈ . í‡Í‡fl „ÂÓ‰ÂÁ˘ÂÒ͇fl fl‚ÎflÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏ
‚ÎÓÊÂÌËÂÏ ‚ÒÂÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔflÏÓÈ ‚ ï . ÉÂÓ‰ÂÁ˘ÂÒ͇fl ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl
ÏÂÚ˘ÂÒÍËÏ ·Óθ¯ËÏ ÍÛ„ÓÏ, ÂÒÎË Ó̇ fl‚ÎflÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËÂÏ
ÍÛ„‡ S1 (0, r ) ‚ ï. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â „ÂÓ‰ÂÁ˘ÂÒÍË ÏÓ„ÛÚ Ë Ì ÒÛ˘ÂÒÚ‚Ó‚‡Ú¸.
ÉÂÓ‰ÂÁ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
èÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ, ÂÒÎË
β·˚ ‰‚ ÚÓ˜ÍË ‚ ï ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚ „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ, Ú.Â. ‰Îfl
β·˚ı ‰‚Ûı ÚÓ˜ÂÍ x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ËÁÓÏÂÚËfl ÓÚÂÁ͇ [0, d ( x, y)] ‚ ï. ã˛·ÓÂ
ÔÓÎÌÓ ËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Ë Î˛·Ó ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó fl‚Îfl˛ÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
èÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ̇Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÂÒÎË Î˛·˚ ‰‚ ‰ÓÒÚ‡ÚÓ˜ÌÓ ·ÎËÁÍË ÚÓ˜ÍË ‚
ï ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚ „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ; ÓÌÓ ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl D-„ÂÓ‰ÂÁ˘ÂÒÍËÏ, ÂÒÎË Î˛·˚ ‰‚ ÚÓ˜ÍË Ì‡ ‡ÒÒÚÓflÌËË < D ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚
„ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ.
ÉÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
ÉÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌË (ËÎË ‡ÒÒÚÓflÌË Í‡Ú˜‡È¯Â„Ó ÔÛÚË) ÂÒÚ¸ ‰ÎË̇ „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÓÚÂÁ͇ (Ú.Â. Í‡Ú˜‡È¯Â„Ó ÔÛÚË) ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË.
àÌÚÂ̇θ̇fl ÏÂÚË͇
èÛÒÚ¸ (ï, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ‚ÒflÍË ‰‚Â
ÚÓ˜ÍË ÒÓ‰ËÌÂÌ˚ ÒÔflÏÎflÂÏÓÈ ÍË‚ÓÈ. íÓ„‰‡ ËÌÚÂ̇θ̇fl ÏÂÚË͇ (ËÎË ÔÓÓʉÂÌ̇fl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇) D ̇ ï Á‡‰‡ÂÚÒfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ‚ÒÂı ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ‰‚ ‰‡ÌÌ˚ ÚÓ˜ÍË x, y ∈ X.
åÂÚË͇ d ̇ ï ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ (ËÎË ÏÂÚËÍÓÈ ‰ÎËÌ˚), ÂÒÎË
Ó̇ ÒÓ‚Ô‡‰‡ÂÚ ÒÓ Ò‚ÓÂÈ ËÌÚÂ̇θÌÓÈ ÏÂÚËÍÓÈ D. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò
‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰ÎËÌ˚ (ËÎË ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÔÛÚÂÈ, ‚ÌÛÚÂÌÌËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ).
ÖÒÎË, ÍÓÏ ÚÓ„Ó, β·‡fl Ô‡‡ ÚÓ˜ÂÍ ı, Û ÏÓÊÂÚ ·˚Ú¸ ÒÓ‰ËÌÂ̇ ÍË‚ÓÈ ‰ÎËÌ˚
d(x, y), ÚÓ ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ d ̇Á˚‚‡ÂÚÒfl ÒÚÓ„Ó ‚ÌÛÚÂÌÌÂÈ, ‡ ÔÓÒÚ‡ÌÒÚ‚Ó
‰ÎËÌ˚ (ï, d) – „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
èÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰ÎËÌ˚ ÚÓ„‰‡ Ë
ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ‰Îfl β·˚ı ‰‚Ûı x, y ∈ X Ë Î˛·Ó„Ó ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl
1
ÚӘ͇ z ∈ X (ε-Ò‰ËÌ̇fl ÚӘ͇), ‰Îfl ÍÓÚÓÓÈ d ( x, z ), d ( y, z ) ≤ d ( x, y) + ε.
2
ã˛·Ó ÔÓÎÌÓ ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‰ÎËÌ˚ fl‚ÎflÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï
„ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
G-ÔÓÒÚ‡ÌÒÚ‚Ó
G-ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË ÔÓÒÚ‡ÌÒÚ‚ÓÏ „ÂÓ‰ÂÁ˘ÂÒÍËı) ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) Ò „ÂÓÏÂÚËÂÈ, ı‡‡ÍÚÂËÁÛÂÏÓÈ ÚÂÏ, ˜ÚÓ ‡Ò¯ËÂÌËfl „ÂÓ‰ÂÁË-
90
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
˜ÂÒÍËı, ÓÔ‰ÂÎflÂÏ˚ı Í‡Í ÎÓ͇θÌÓ Í‡Ú˜‡È¯Ë ÎËÌËË, fl‚Îfl˛ÚÒfl ‰ËÌÒÚ‚ÂÌÌ˚ÏË.
í‡Í‡fl „ÂÓÏÂÚËfl ÂÒÚ¸ Ó·Ó·˘ÂÌË „Ëθ·ÂÚÓ‚ÓÈ „ÂÓÏÂÚËË (ÒÏ. [Buse55]).
íӘ̠„Ó‚Ófl, G-ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏË ÛÒÎÓ‚ËflÏË:
1. èÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï (ËÎË ÍÓ̘ÌÓ ÍÓÏÔ‡ÍÚÌ˚Ï), Ú.Â. ‚Ò „Ó
ÏÂÚ˘ÂÒÍË ¯‡˚ ÍÓÏÔ‡ÍÚÌ˚.
2. éÌÓ fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÔÓ åÂÌ„ÂÛ, Ú.Â. ‰Îfl β·˚ı ‡Á΢Ì˚ı x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡Í‡fl ÚÂÚ¸fl ÚӘ͇ z ∈ X , z ≠ x, y, ˜ÚÓ d ( x, z ) + d ( z, y) = d ( x, y).
3. éÌÓ fl‚ÎflÂÚÒfl ÎÓ͇θÌÓ ‡Ò¯ËflÂÏ˚Ï, Ú.Â. ‰Îfl β·Ó„Ó a ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓÂ
r > 0 , ˜ÚÓ ‰Îfl β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ ı, Û ‚ ¯‡ Ç(a, r) ËÏÂÂÚÒfl ڇ͇fl ÚӘ͇ z,
ÓÚ΢‡˛˘‡flÒfl ÓÚ ı Ë Û, ˜ÚÓ d ( x, y) + d ( y, z ) = d ( x, z ).
4. éÌÓ fl‚ÎflÂÚÒfl ‡Ò¯ËflÂÏ˚Ï Â‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ, Ú.Â., ÂÒÎË ‚ Ô. 3 ‚˚¯Â ‰Îfl
‰‚Ûı ÚÓ˜ÂÍ z1 Ë z2 ËÏÂÂÚ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó d ( y, z1 ) = d ( y, z 2 ), ÚÓ z1 = z 2 .
ëÛ˘ÂÒÚ‚Ó‚‡ÌË „ÂÓ‰ÂÁ˘ÂÒÍËı ÓÚÂÁÍÓ‚ Ó·ÛÒÎÓ‚ÎË‚‡ÂÚÒfl ÍÓ̘ÌÓÈ ÍÓÏÔ‡ÍÚÌÓÒÚ¸˛ Ë ‚˚ÔÛÍÎÓÒÚ¸˛ åÂÌ„Â‡: β·˚ ‰‚ ÚÓ˜ÍË ÍÓ̘ÌÓ ÍÓÏÔ‡ÍÚÌÓ„Ó ‚˚ÔÛÍÎÓ„Ó ÔÓ åÂÌ„ÂÛ ÏÌÓÊÂÒÚ‚‡ ï ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚ „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ ‚ ï.
ëÛ˘ÂÒÚ‚Ó‚‡ÌË „ÂÓ‰ÂÁ˘ÂÒÍËı Ó·ÛÒÎÓ‚ÎÂÌÓ ‡ÍÒËÓÏÓÈ ÎÓ͇θÌÓÈ ÔÓ‰ÓÎʇÂÏÓÒÚË:
ÂÒÎË ÍÓ̘ÌÓ ÍÓÏÔ‡ÍÚÌÓ ‚˚ÔÛÍÎÓ ÔÓ åÂÌ„ÂÛ ÏÌÓÊÂÒÚ‚Ó ï fl‚ÎflÂÚÒfl ÎÓ͇θÌÓ
‡Ò¯ËflÂÏ˚Ï, ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ „ÂÓ‰ÂÁ˘ÂÒ͇fl, ÒÓ‰Âʇ˘‡fl ‰‡ÌÌ˚È „ÂÓ‰ÂÁ˘ÂÒÍËÈ
ÓÚÂÁÓÍ. ç‡ÍÓ̈, ‰ËÌÒÚ‚ÂÌÌÓÒÚ¸ ÔÓ‰ÓÎÊÂÌËfl Ó·ÂÒÔ˜˂‡ÂÚ ‰ÓÔÛ˘ÂÌË ‰ËÙÙÂÂ̈ˇθÌÓÈ „ÂÓÏÂÚËË, ˜ÚÓ ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ÓÔ‰ÂÎflÂÚ „ÂÓ‰ÂÁ˘ÂÒÍÛ˛
‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ.
ÇÒ ËχÌÓ‚˚ Ë ÙËÌÒÎÂÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ fl‚Îfl˛ÚÒfl G-ÔÓÒÚ‡ÌÒÚ‚‡ÏË.
é‰ÌÓÏÂÌÓ G-ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÏÂÚ˘ÂÒ͇fl Ôflχfl ÎËÌËfl ËÎË ÏÂÚ˘ÂÒÍËÈ
·Óθ¯ÓÈ ÍÛ„. ã˛·Ó ‰‚ÛÏÂÌÓ G-ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÚÓÔÓÎӄ˘ÂÒÍËÏ ÏÌÓ„ÓÓ·‡ÁËÂÏ.
ÇÒflÍÓ G-ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ıÓ‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, Ú.Â. ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚˚‰ÂÎÂÌÌ˚ı „ÂÓ‰ÂÁ˘ÂÒÍËı ÓÚÂÁÍÓ‚, Ú‡ÍËı ˜ÚÓ Î˛·˚ ‰‚Â
ÚÓ˜ÍË ÒÓ‰ËÌfl˛ÚÒfl ‰ËÌÒÚ‚ÂÌÌ˚Ï Ú‡ÍËÏ ÓÚÂÁÍÓÏ (ÒÏ. [BuPh87]).
ÑÂÁ‡„Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó
ÑÂÁ‡„Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó – G-ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d), ‚ ÍÓÚÓÓÏ Óθ „ÂÓ‰ÂÁ˘ÂÒÍËı
‚˚ÔÓÎÌfl˛Ú Ó·˚˜Ì˚ ÔflÏ˚Â. ùÚÓ Á̇˜ËÚ, ˜ÚÓ ï ÏÓÊÂÚ ·˚Ú¸ ÚÓÔÓÎӄ˘ÂÒÍË ÓÚÓ·‡ÊÂÌÓ ‚ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Pn Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ Í‡Ê‰‡fl „ÂÓ‰ÂÁ˘ÂÒ͇fl
ÔÓÒÚ‡ÌÒÚ‚‡ ï ÓÚÓ·‡Ê‡ÂÚÒfl ‚ ÔflÏÛ˛ ÎËÌ˲ ÔÓÒÚ‡ÌÒÚ‚‡ Pn . ã˛·Ó ï ,
ÓÚÓ·‡ÊÂÌÌÓ ‚ P n , ÎË·Ó ‰ÓÎÊÌÓ ÔÓÍ˚‚‡Ú¸ ‚Ò Pn (‚ Ú‡ÍÓÏ ÒÎÛ˜‡Â ‚ÒÂ
„ÂÓ‰ÂÁ˘ÂÒÍË ï fl‚Îfl˛ÚÒfl ÏÂÚ˘ÂÒÍËÏË ·Óθ¯ËÏË ÍÛ„‡ÏË Ó‰ÌÓÈ ‰ÎËÌ˚), ÎË·Ó
ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÓÚÍ˚ÚÓ ‚˚ÔÛÍÎÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ An .
èÓÒÚ‡ÌÒÚ‚Ó (ï, d) „ÂÓ‰ÂÁ˘ÂÒÍËı fl‚ÎflÂÚÒfl ‰ÂÁ‡„Ó‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÚÓ„‰‡ Ë
ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl:
1. ÉÂÓ‰ÂÁ˘ÂÒ͇fl, ÔÓıÓ‰fl˘‡fl ˜ÂÂÁ ‰‚ ‡Á΢Ì˚ ÚÓ˜ÍË, fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓÈ.
2. ÑÎfl ‡ÁÏÂÌÓÒÚË n = 2 Ó·Â ÚÂÓÂÏ˚ ÑÂÁ‡„‡ (Ôflχfl Ë Ó·‡Ú̇fl) ÒÔ‡‚‰ÎË‚˚,
‡ ‰Îfl ‡ÁÏÂÌÓÒÚË n > 2 β·˚ ÚË ÚÓ˜ÍË ËÁ ï ÎÂÊ‡Ú ‚ Ó‰ÌÓÈ ÔÎÓÒÍÓÒÚË.
ëÂ‰Ë ËχÌÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ‰ËÌÒÚ‚ÂÌÌ˚ÏË ‰ÂÁ‡„Ó‚˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË
fl‚Îfl˛ÚÒfl ‚ÍÎˉӂ˚, „ËÔÂ·Ó΢ÂÒÍËÂ Ë ˝ÎÎËÔÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. èËÏÂÓÏ
ÌÂËχÌÓ‚‡ ‰ÂÁ‡„Ó‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ ÒÎÛÊËÚ ÔÓÒÚ‡ÌÒÚ‚Ó åËÌÍÓ‚ÒÍÓ„Ó, ÍÓÚÓÓÂ
ÏÓÊÂÚ Ò˜ËÚ‡Ú¸Òfl ÔÓÚÓÚËÔÓÏ ‚ÒÂı ÌÂËχÌÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚, ‚Íβ˜‡fl ÙËÌÒÎÂÓ‚˚
ÔÓÒÚ‡ÌÒÚ‚‡.
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
91
G-ÔÓÒÚ‡ÌÒÚ‚Ó ˝ÎÎËÔÚ˘ÂÒÍÓ„Ó ÚËÔ‡
G-ÔÓÒÚ‡ÌÒÚ‚ÓÏ ˝ÎÎËÔÚ˘ÂÒÍÓ„Ó ÚËÔ‡ ̇Á˚‚‡ÂÚÒfl G-ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ
˜ÂÂÁ ‰‚ ÚÓ˜ÍË ÔÓıÓ‰ËÚ Â‰ËÌÒÚ‚ÂÌ̇fl „ÂÓ‰ÂÁ˘ÂÒ͇fl, Ë ‚Ò „ÂÓ‰ÂÁ˘ÂÒÍË –
ÏÂÚ˘ÂÒÍË ·Óθ¯Ë ÍÛ„Ë Ó‰Ë̇ÍÓ‚ÓÈ ‰ÎËÌ˚.
ä‡Ê‰Ó G-ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ËÏÂÂÚÒfl ‰ËÌÒÚ‚ÂÌ̇fl „ÂÓ‰ÂÁ˘ÂÒ͇fl, ÔÓıÓ‰fl˘‡fl ˜ÂÂÁ ͇ʉ˚ ‰‚ ‰‡ÌÌ˚ ÚÓ˜ÍË, fl‚ÎflÂÚÒfl ËÎË G-ÔÓÒÚ‡ÌÒÚ‚ÓÏ ˝ÎÎËÔÚ˘ÂÒÍÓ„Ó ÚËÔ‡, ËÎË ÔflÏ˚Ï G-ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
èflÏÓ G-ÔÓÒÚ‡ÌÒÚ‚Ó
èflÏ˚Ï G-ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl G-ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ‚ÓÁÏÓÊÌÓ
„ÎÓ·‡Î¸ÌÓ ÔÓ‰ÓÎÊÂÌË „ÂÓ‰ÂÁ˘ÂÒÍÓÈ Ú‡Í, ˜ÚÓ·˚ β·ÓÈ Â ÓÚÂÁÓÍ ÓÒÚ‡‚‡ÎÒfl
Í‡Ú˜‡È¯ËÏ ÔÛÚÂÏ. ÑÛ„ËÏË ÒÎÓ‚‡ÏË, ‰Îfl ‰‚Ûı β·˚ı x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌ˚È „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ, ÒÓ‰ËÌfl˛˘ËÈ ı Ë Û, Ë Â‰ËÌÒÚ‚ÂÌ̇fl ÏÂÚ˘ÂÒ͇fl
Ôflχfl, ÍÓÚÓÓÈ ı Ë Û ÔË̇‰ÎÂʇÚ.
ÇÒfl͇fl „ÂÓ‰ÂÁ˘ÂÒ͇fl ‚ ÔflÏÓÏ G-ÔÓÒÚ‡ÌÒÚ‚Â ÂÒÚ¸ ÏÂÚ˘ÂÒ͇fl Ôflχfl,
ÓÔ‰ÂÎÂÌ̇fl ‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ Î˛·˚ÏË ‰‚ÛÏfl  ÚӘ͇ÏË. ã˛·Ó ‰‚ÛÏÂÌÓÂ
ÔflÏÓ G-ÔÓÒÚ‡ÌÒÚ‚Ó „ÓÏÂÓÏÓÙÌÓ ÔÎÓÒÍÓÒÚË.
ÇÒ ӉÌÓÒ‚flÁÌ˚ ËχÌÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ ÌÂÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚ (‚Íβ˜‡fl ‚ÍÎË‰Ó‚Ó Ë „ËÔÂ·Ó΢ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡), „Ëθ·ÂÚÓ‚˚ „ÂÓÏÂÚËË Ë
ÔÓÒÚ‡ÌÒÚ‚‡ íÂÈıÏ˛ÎÎÂ‡ ÍÓÏÔ‡ÍÚÌ˚ı ËχÌÓ‚˚ı ÔÓ‚ÂıÌÓÒÚÂÈ ÚËÔ‡ Ó‰‡ g > 1
(‚ ÒÎÛ˜‡Â Ëı ÏÂÚËÁ‡ˆËË ÏÂÚËÍÓÈ íÂÈıÏ˛ÎÎÂ‡) fl‚Îfl˛ÚÒfl ÔflÏ˚ÏË G-ÔÓÒÚ‡ÌÒÚ‚‡ÏË.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó „ËÔÂ·Ó΢ÂÒÍÓ ÔÓ ÉÓÏÓ‚Û
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ̇Á˚‚‡ÂÚÒfl „ËÔÂ·Ó΢ÂÒÍËÏ ÔÓ ÉÓÏÓ‚Û, ÂÒÎË
ÓÌÓ fl‚ÎflÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ Ë ␦-„ËÔÂ·Ó΢ÂÒÍËÏ ‰Îfl ÌÂÍÓÚÓÓ„Ó δ ≥ 0.
ã˛·Ó ÔÓÎÌÓ ӉÌÓÒ‚flÁÌÓ ËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÒÂ͈ËÓÌÌÓÈ ÍË‚ËÁÌ˚ k ≤ –a 2
ln 3
ÂÒÚ¸ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó „ËÔÂ·Ó΢ÂÒÍÓ ÔÓ ÉÓÏÓ‚Û Ò δ =
. LJÊÌ˚Ï
a
Í·ÒÒÓÏ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ „ËÔÂ·Ó΢ÂÒÍÓ„Ó ÔÓ ÉÓÏÓ‚Û fl‚Îfl˛ÚÒfl
„ËÔÂ·Ó΢ÂÒÍË „ÛÔÔ˚, Ú.Â. „ÛÔÔ˚ Ò ÍÓ̘Ì˚Ï ˜ËÒÎÓÏ Ó·‡ÁÛ˛˘Ëı, ÒÎÓ‚‡̇fl
ÏÂÚË͇ ÍÓÚÓ˚ı fl‚ÎflÂÚÒfl δ-„ËÔÂ·Ó΢ÂÒÍÓÈ ‰Îfl ÌÂÍÓÚÓÓ„Ó δ ≥ 0. åÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ‰Â‚ÓÏ ‚ ÚÓ˜ÌÓÒÚË ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ –
ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó „ËÔÂ·Ó΢ÂÒÍÓ ÔÓ ÉÓÏÓ‚Û, Ò δ = 0.
ÉÂÓ‰ÂÁ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ·Û‰ÂÚ δ-„ËÔÂ·Ó΢ÂÒÍËÏ ÚÓ„‰‡
Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ 4δ-„ËÔÂ·Ó΢ÂÒÍÓ ÔÓ êËÔÒÛ, Ú.Â. ͇ʉ˚È ËÁ Â„Ó „ÂÓ‰ÂÁ˘ÂÒÍËı ÚÂÛ„ÓθÌËÍÓ‚ (ÒÓ‰ËÌÂÌË ÚÂı „ÂÓ‰ÂÁ˘ÂÒÍËı ÓÚÂÁÍÓ‚ [x, y], [x, z],
[y, z]) fl‚ÎflÂÚÒfl 4δ-ÚÓÌÍËÏ (ËÎË 4δ-Ò··˚Ï) ıÛ‰˚Ï: ͇ʉ‡fl ËÁ ÒÚÓÓÌ ÚÂÛ„ÓθÌË͇
̇ıÓ‰ËÚÒfl ‚ 4δ-ÓÍÂÒÚÌÓÒÚË ‰‚Ûı ‰Û„Ëı ÒÚÓÓÌ (4δ-ÓÍÂÒÚÌÓÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚‡
A ⊂ X ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó {b ∈ X : infa ∈A d (b, a) < 4δ}).
ä‡Ê‰Ó ëÄí(k) ÔÓÒÚ‡ÌÒÚ‚Ó Ò k < 0 fl‚ÎflÂÚÒfl „ËÔÂ·Ó΢ÂÒÍËÏ ÔÓ ÉÓÏÓ‚Û.
ä‡Ê‰Ó ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó n fl‚ÎflÂÚÒfl ëÄí(0) ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ë ·Û‰ÂÚ
„ËÔÂ·Ó΢ÂÒÍËÏ ÔÓ ÉÓÏÓ‚‡ ÚÓθÍÓ ‰Îfl n = 1.
ëÄí(k) ÔÓÒÚ‡ÌÒÚ‚Ó
èÛÒÚ¸ (ï, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. èÛÒÚ¸ å 2 – Ó‰ÌÓÒ‚flÁÌÓÂ
‰‚ÛÏÂÌÓ ËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚ k, Ú.Â. 2-ÒÙÂ‡ Sk2 Ò k > 0,
‚ÍÎˉӂ‡ ÔÎÓÒÍÓÒÚ¸ 2 Ò k = 0 ËÎË „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÎÓÒÍÓÒÚ¸ Hk2 Ò k < 0. èÛÒÚ¸ Dk
π
, ÂÒÎË k > 0, Ë Dk = ∞, ÂÒÎË k ≤ 0.
Ó·ÓÁ̇˜‡ÂÚ ‰Ë‡ÏÂÚ å2 , Ú.Â. Dk =
k
92
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
íÂÛ„ÓθÌËÍ í ‚ ï ÒÓÒÚÓËÚ ËÁ ÚÂı ÚÓ˜ÂÍ ‚ ï, ÒÓ‰ËÌÂÌÌ˚ı ÔÓÔ‡ÌÓ ÚÂÏfl
„ÂÓ‰ÂÁ˘ÂÒÍËÏË ÓÚÂÁ͇ÏË; ÓÚÂÁÍË ÔË ˝ÚÓÏ Ì‡Á˚‚‡˛ÚÒfl ÒÚÓÓ̇ÏË ÚÂÛ„ÓθÌË͇. ÑÎfl ÚÂÛ„ÓθÌË͇ T ⊂ X ÒÓÔÓÒÚ‡‚ËÏ˚Ï c í ÚÂÛ„ÓθÌËÍÓÏ ‚ å2 ·Û‰ÂÚ
ÚÂÛ„ÓθÌËÍ T' ⊂ M2 ‚ÏÂÒÚÂ Ò ÓÚÓ·‡ÊÂÌËÂÏ fT, ÍÓÚÓÓ ËÁÓÏÂÚ˘ÂÒÍË ÓÚÓ·‡Ê‡ÂÚ
Í‡Ê‰Û˛ ÒÚÓÓÌÛ ÚÂÛ„ÓθÌË͇ í ̇ ÒÚÓÓÌÛ í'. íÂÛ„ÓθÌËÍ í Û‰Ó‚ÎÂÚ‚ÓflÂÚ
ëÄí(k) ÌÂ‡‚ÂÌÒÚ‚Û ÉÓÏÓ‚‡ (ëÄí – ÔÂ‚˚ ·ÛÍ‚˚ Ù‡ÏËÎËÈ ä‡Ú‡Ì (Cartan),
ÄÎÂÍ҇̉Ó‚, íÓÔÓÌÓ„Ó‚), ÂÒÎË ‰Îfl ͇ʉ˚ı x, y ∈ T ËÏÂÂÚ ÏÂÒÚÓ ÌÂ‡‚ÂÌÒÚ‚Ó
d ( x, y) ≤ d M 2 ( fT ( x ), fT ( y)),
„‰Â fT – ÓÚÓ·‡ÊÂÌËÂ, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÒÓÔÓÒÚ‡‚ËÏÓÏÛ Ò í ÚÂÛ„ÓθÌËÍÛ ‚ å2 .
í‡ÍËÏ Ó·‡ÁÓÏ, „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÚÂÛ„ÓθÌËÍ í fl‚ÎflÂÚÒfl ÒÚÓθ Ê "ÚÓÌÍËÏ", Í‡Í Ë
ÒÓÔÓÒÚ‡‚ËÏ˚È ÚÂÛ„ÓθÌËÍ ‚ å2 .
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ÂÒÚ¸ ëÄí(k) ÔÓÒÚ‡ÌÒÚ‚Ó, ÂÒÎË ÓÌÓ – Dk -„ÂÓ‰ÂÁ˘ÂÒÍÓ (Ú.Â. β·˚ ‰‚ ÚÓ˜ÍË Ì‡ ‡ÒÒÚÓflÌËË < Dk ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚
„ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ) Ë ‚Ò ÚÂÛ„ÓθÌËÍË í Ò ÒÛÏÏÓÈ ÒÚÓÓÌ < 2Dk Û‰Ó‚ÎÂÚ‚Ófl˛Ú ëÄí(k) ÌÂ‡‚ÂÌÒÚ‚Û.
ã˛·Ó ëÄí(k1) ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ëÄí(k2) ÔÓÒÚ‡ÌÒÚ‚Ó, ÂÒÎË k1< k 2 . ã˛·ÓÂ
‰ÂÈÒÚ‚ËÚÂθÌÓ ‰ÂÂ‚Ó fl‚ÎflÂÚÒfl CÄí(–∞) ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ú.Â. fl‚ÎflÂÚÒfl ëÄí(k)
ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ÒÂı k ∈ .
èÓÒÚ‡ÌÒÚ‚Ó ÄÎÂÍ҇̉Ó‚‡ Ò ÍË‚ËÁÌÓÈ, Ó„‡Ì˘ÂÌÌÓÈ Ò‚ÂıÛ k (ËÎË ÎÓ͇θÌÓÂ
ëÄí(k ) ÔÓÒÚ‡ÌÒÚ‚ÓÏ), ÂÒÚ¸ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d), ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ÚӘ͇ p ∈ X ËÏÂÂÚ ÓÍÂÒÚÌÓÒÚ¸ U, Ú‡ÍÛ˛ ˜ÚÓ Î˛·˚ ‰‚ ÚÓ˜ÍË x, y ∈ U
ÒÓ‰ËÌfl˛ÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ Ë ëÄí(k) ÌÂ‡‚ÂÌÒÚ‚Ó ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı
x, y, z ∈ U. êËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË ÂÒÚ¸ ÎÓ͇θÌÓ ëÄí(k) ÔÓÒÚ‡ÌÒÚ‚Ó ÚÓ„‰‡ Ë
ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Â„Ó ÒÂ͈ËÓÌ̇fl ÍË‚ËÁ̇ Ì Ô‚ÓÒıÓ‰ËÚ k.
èÓÒÚ‡ÌÒÚ‚Ó ÄÎÂÍ҇̉Ó‚‡ Ò ÍË‚ËÁÌÓÈ, Ó„‡Ì˘ÂÌÌÓÈ ÒÌËÁÛ k – ÏÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d), ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ÚӘ͇ p ∈ X ËÏÂÂÚ ÓÍÂÒÚÌÓÒÚ¸ U, Ú‡ÍÛ˛
˜ÚÓ Î˛·˚ ‰‚ ÚÓ˜ÍË x, y ∈ U ÒÓ‰ËÌfl˛ÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ, Ë Ó·‡ÚÌÓÂ
ëÄí(k) ÌÂ‡‚ÂÌÒÚ‚Ó
d ( x, y) ≥ d M 2 ( fT ( x ), fT ( y)),
„‰Â fT ÂÒÚ¸ ÓÚÓ·‡ÊÂÌËÂ, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÒÓÔÓÒÚ‡‚ËÏÓÏÛ ‰Îfl í ÚÂÛ„ÓθÌËÍÛ ‚
å2 , ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y, z ∈ U.
Ñ‚‡ Ô˂‰ÂÌÌ˚ı ‚˚¯Â ÓÔ‰ÂÎÂÌËfl ‡Á΢‡˛ÚÒfl ÚÓθÍÓ Á̇ÍÓÏ (≤ ËÎË ≥)
‚˚‡ÊÂÌËfl d ( x, y) ≥ d M 2 ( fT ( x ), fT ( y)). ÖÒÎË k = 0, Û͇Á‡ÌÌ˚ ‚˚¯Â ÔÓÒÚ‡ÌÒÚ‚‡
̇Á˚‚‡˛ÚÒfl ÌÂÔÓÎÓÊËÚÂθÌÓ ËÒÍË‚ÎÂÌÌ˚ÏË Ë ÌÂÓÚˈ‡ÚÂθÌÓ ËÒÍË‚ÎÂÌÌ˚ÏË
ÏÂÚ˘ÂÒÍËÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ; ÓÌË Ú‡ÍÊ ‡Á΢‡˛ÚÒfl Á͇̇ÏË
(≤ ËÎË ≥, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ) ‚ ‚˚‡ÊÂÌËË
2 d 2 ( z, m( x, y)) − ( d 2 ( z, x ) + d 2 ( z, y) +
1 2
d ( x, y)),
2
„‰Â ‚ÌÓ‚¸ x, y, z fl‚Îfl˛ÚÒfl ÚÂÏfl β·˚ÏË ÚӘ͇ÏË ‚ ÓÍÂÒÚÌÓÒÚË U ‰Îfl Í‡Ê‰Ó„Ó p ∈
X Ë m(x, y) ÂÒÚ¸ Ò‰ËÌ̇fl ÚӘ͇ ÏÂÚ˘ÂÒÍÓ„Ó ËÌÚÂ‚‡Î‡ I(x, y).
Ç ëÄí(0) ÔÓÒÚ‡ÌÒڂ β·˚ ‰‚ ÚÓ˜ÍË ÒÓ‰ËÌÂÌ˚ ‰ËÌÒÚ‚ÂÌÌ˚Ï „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ Ë ‡ÒÒÚÓflÌË ÂÒÚ¸ ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl. ã˛·Ó ëÄí(0) ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÔÓ ÅÛÁÂχÌÛ Ë ÔÚÓÎÂÏ‚˚Ï (ÒÏ. „Î. 1), ‡ Ó·‡ÚÌÓÂ
Ì‚ÂÌÓ. íÓ Ê ҇ÏÓ ÒÔ‡‚‰ÎË‚Ó Ì‡ ÛÓ‚Ì ÎÓ͇θÌ˚ı Ò‚ÓÈÒÚ‚, ÌÓ ‚ ËχÌÓ‚ÓÏ
ÔÓÒÚ‡ÌÒÚ‚Â ‚Ò ÚË ÎÓ͇θÌ˚ı ÛÒÎÓ‚Ëfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ ÌÂÔÓÎÓÊËÚÂθÌÓÒÚË
ÒÂ͈ËÓÌÌÓÈ ÍË‚ËÁÌ˚. Ö‚ÍÎˉӂ˚ ÔÓÒÚ‡ÌÒÚ‚‡, „ËÔÂ·Ó΢ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡,
93
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
‚ÍÎˉӂ˚ ÔÓÒÚÓÂÌËfl Ë ‰Â‚¸fl fl‚Îfl˛ÚÒfl ëÄí(0) ÔÓÒÚ‡ÌÒÚ‚‡ÏË. èÓÎÌ˚Â
ëÄí(0) ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡˛ÚÒfl Ú‡ÍÊ ‡‰‡Ï‡Ó‚˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË.
É‡Ìˈ‡ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
ëÛ˘ÂÒÚ‚Û˛Ú ‡ÁÌ˚ ÔÓÌflÚËfl „‡Ìˈ˚ ∂ï ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d).
çËÊ ÔË‚Ó‰flÚÒfl Î˯¸ ÌÂÍÓÚÓ˚ ̇˷ÓΠӷ˘Â„Ó ı‡‡ÍÚÂ‡. é·˚˜ÌÓ, ÂÒÎË
(ï, d) fl‚ÎflÂÚÒfl ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌ˚Ï, ÚÓ X ∪ ∂X – Â„Ó ÍÓÏÔ‡ÍÚÌÓ ‡Ò¯ËÂÌËÂ.
1. à‰Â‡Î¸Ì‡fl „‡Ìˈ‡. èÛÒÚ¸ (ï, d) – „ÂÓ‰ÂÁ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‡
γ1 Ë γ 2 – ‰‚‡ ÏÂÚ˘ÂÒÍËı ÎÛ˜‡, Ú.Â. „ÂÓ‰ÂÁ˘ÂÒÍËÂ Ò ËÁÓÏÂÚËÂÈ ≥0 ‚ ï. ùÚË ÎÛ˜Ë
·Û‰ÛÚ Ì‡Á˚‚‡Ú¸Òfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË
(ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÏÂÚËÍ d) ÍÓ̘ÌÓ, Ú.Â. ÂÒÎË sup d ( γ 1 (t ), γ 2 (t )) < ∞. É‡Ìˈ‡ ‚
t ≥0
·ÂÒÍÓ̘ÌÓÒÚË (ËÎË Ë‰Â‡Î¸Ì‡fl „‡Ìˈ‡) ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d) ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ∂ ∞ X
˝Í‚Ë‚‡ÎÂÌÚÌ˚ı Í·ÒÒÓ‚ γ ∞ ‚ÒÂı ÏÂÚ˘ÂÒÍËı ÎÛ˜ÂÈ.
ÖÒÎË (ï, d) – ÔÓÎÌÓ ëÄí(0) ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ ÏÂÚË͇ íËÚÒ‡ (ËÎË ‡ÒËÏÔÚÓÚ˘ÂÒÍËÈ Û„ÓÎ ‡ÒıÓʉÂÌËfl) ̇ ∂ ∞ X Á‡‰‡ÂÚÒfl ͇Í
ρ
2 arcsin 
 2
1
d ( γ 1 (t ), γ 2 (t )). åÌÓÊÂÒÚ‚Ó ∂ ∞ X, Ò̇·ÊÂÌÌÓÂ
t
ÏÂÚËÍÓÈ íËÚÒ‡, ̇Á˚‚‡ÂÚÒfl „‡ÌˈÂÈ íËÚÒ‡ ÔÓÒÚ‡ÌÒÚ‚‡ ï.
ÖÒÎË ( X , d , x 0 ) – ÔÛÌÍÚËÓ‚‡ÌÌÓ ÔÓÎÌÓ ëÄí(-1) ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ„‰‡ ÏÂÚË͇
ÅÛ‰Ó̇ (Ò ·‡ÁÓ‚ÓÈ ÚÓ˜ÍÓÈ ı0 ) ̇ ∂ ∞ X ÓÔ‰ÂÎflÂÚÒfl ͇Í
‰Îfl ‚ÒÂı γ 1∞ , γ 2∞ ∈∂ ∞ X , „‰Â ρ = lim
t → +∞
e −( x. y)
‰Îfl β·˚ı x, y ∈∂ ∞ X , „‰Â (ı.Û) Ó·ÓÁ̇˜‡ÂÚ ÔÓËÁ‚‰ÂÌË ÉÓÏÓ‚‡ ( x. y) x 0 . ëÙÂ‡
‚ˉËÏÓÒÚË (X, d) ‚ ÚӘ͠x0 ∈ X ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ÏÂÚ˘ÂÒÍËı ÎÛ˜ÂÈ, ËÒıÓ‰fl˘Ëı ËÁ x 0 .
2. É‡Ìˈ‡ ÉÓÏÓ‚‡. ÖÒÎË Á‡‰‡ÌÓ ÔÛÌÍÚËÓ‚‡ÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
(X, d, x 0 ), ÚÓ Â„Ó „‡Ìˈ‡ ÉÓÏÓ‚‡ (Ó·Ó·˘ÂÌË ŇÍÎË Ë äÓÍÍẨÓÙ‡ ‚ 2005 „.
ÒÎÛ˜‡fl ÔÓÒÚ‡ÌÒÚ‚‡, „ËÔÂ·Ó΢ÂÒÍÓ„Ó ÔÓ ÉÓÏÓ‚Û) ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ∂ G X Í·ÒÒÓ‚
˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ ÉÓÏÓ‚‡. èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ x = ( xi ) ‚
ï ̇Á˚‚‡ÂÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ ÉÓÏÓ‚‡, ÂÒÎË ÔÓËÁ‚‰ÂÌË ÉÓÏÓ‚‡
( xi . x j ) x 0 → ∞ ÔË i, j → ∞. Ñ‚Â ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÉÓÏÓ‚‡ ı Ë Û Ì‡Á˚‚‡˛ÚÒfl
˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓ̘̇fl ˆÂÔ¸ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ ÉÓÏÓ‚‡
x k , 0 ≤ k ≤ k ′, Ú‡Í ˜ÚÓ x = x 0 , y = x k ′ Ë lim inf xik −1 . x kj = ∞ ‰Îfl 0 ≤ k ≤ k ′.
i, j →∞
(
)
Ç ÒÓ·ÒÚ‚ÂÌÌÓÏ „ÂÓ‰ÂÁ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â „ËÔÂ·Ó΢ÂÒÍÓÏ ÔÓ ÉÓÏÓ‚Û, (X, d)
ÒÙÂ‡ ‚ˉËÏÓÒÚË Ì Á‡‚ËÒËÚ ÓÚ ·‡ÁÓ‚ÓÈ ÚÓ˜ÍË x0 Ë fl‚ÎflÂÚÒfl ÂÒÚÂÒÚ‚ÂÌÌÓ ËÁÓÏÓÙÌÓÈ Ò‚ÓÂÈ „‡Ìˈ ÉÓÏÓ‚‡ ∂ G X , ÍÓÚÓ‡fl ÏÓÊÂÚ ·˚Ú¸ ÓÚÓʉÂÒÚ‚ÎÂ̇ Ò ∂ G X .
3. g-É‡Ìˈ‡. é·ÓÁ̇˜ËÏ ˜ÂÂÁ Xd ÏÂÚ˘ÂÒÍÓ ÔÓÔÓÎÌÂÌË (X, d) Ë, ‡ÒÒχÚË‚‡fl ï Í‡Í ÔÓ‰ÏÌÓÊÂÒÚ‚Ó Xd , Ó·ÓÁ̇˜ËÏ ‡ÁÌÓÒÚ¸ Xd \ X Í‡Í ∂Xd . èÛÒÚ¸
( X , l, x 0 ) – ÔÛÌÍÚËÓ‚‡ÌÌÓ ·ÂÒÍÓ̘ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‰ÎËÌ˚, Ú.Â. Â„Ó ÏÂÚË͇
ÒÓ‚Ô‡‰‡ÂÚ Ò ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ l ÔÓÒÚ‡ÌÒÚ‚‡ (X, d). Ç ÒÎÛ˜‡Â ËÁÏÂËÏÓÈ
94
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ÙÛÌ͈ËË g : ≥ 0 → ≥ 0 , g-„‡Ìˈ‡ ( X , d , x 0 ) (Ó·Ó·˘ÂÌË ŇÍÎË Ë äÓÍÍẨÓÙ‡ ‚
2005 „. ÒÙÂ˘ÂÒÍÓÈ „‡Ìˈ˚ Ë „‡Ìˈ˚ îÎÓȉ‡) ÂÒÚ¸ ∂ g X = ∂Xσ \ ∂Xl , „‰Â
∫
σ( x, y) = inf g( z )dl( z ) ‰Îfl ‚ÒÂı x, y ∈ X (Á‰ÂÒ¸ ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÏÂÚËγ
˜ÂÒÍËÏ ÓÚÂÁÍ‡Ï γ = [ x, y]).
4. É‡Ìˈ‡ ïÓ˜ÍËÒ‡. Ç ÒÎÛ˜‡Â ÔÛÌÍÚËÓ‚‡ÌÌÓ„Ó ÒÓ·ÒÚ‚ÂÌÌÓ ‚˚ÔÛÍÎÓ„Ó ÅÛÁÂχÌÛ
ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ( X , d , x 0 ) Â„Ó „‡ÌˈÂÈ ïÓ˜ÍËÒ‡ ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó
∂ H ( X , x 0 ) ËÁÓÏÂÚËÈ f : ≥ 0 → X Ò f (0) = x 0 . É‡Ìˈ˚ ∂ Hx 0 X Ë ∂ Hx1 X fl‚Îfl˛ÚÒfl
„ÓÏÂÓÏÓÙÌ˚ÏË ‰Îfl ‡Á΢Ì˚ı x 0 , x1 ∈ X . Ç ÔÓÒÚ‡ÌÒÚ‚Â, „ËÔÂ·Ó΢ÂÒÍÓÏ ÔÓ
ÉÓÏÓ‚Û, ∂ Hx 0 X „ÓÏÂÓÏÓÙÌÓ „‡Ìˈ ÉÓÏÓ‚‡ ∂ G X .
5. åÂÚ˘ÂÒ͇fl „‡Ìˈ‡. ÑÎfl ÔÛÌÍÚËÓ‚‡ÌÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
( X , d , x 0 ) Ë ÌÂÓ„‡Ì˘ÂÌÌÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ S ÏÌÓÊÂÒÚ‚‡ ≥0 ÎÛ˜ γ : S → X ̇Á˚‚‡ÂÚÒfl Ò··Ó „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÎÛ˜ÓÏ, ÂÒÎË ‰Îfl Í‡Ê‰Ó„Ó x ∈ X Ë Í‡Ê‰Ó„Ó ε > 0
ÒÛ˘ÂÒÚ‚ÛÂÚ ˆÂÎÓ ˜ËÒÎÓ N , Ú‡ÍÓ ˜ÚÓ ÌÂ‡‚ÂÌÒÚ‚‡ | d ( γ (t ), γ (0)) − t |< ε Ë
| d ( γ (t ), x ) − d ( γ ( s), x ) − (t − s) | < ε ‚˚ÔÓÎÌfl˛ÚÒfl ‰Îfl ‚ÒÂı s, t ∈ T Ò s, t ≥ N. èÛÒÚ¸
(X, d) – ÍÓÏÏÛÚ‡Ú˂̇fl ÛÌËÚ‡̇fl C*-‡Î„·ÓÈ Ò ÌÓÏÓÈ || ⋅ ||∞ , ÔÓÓʉ‡ÂÏÓÈ
(Ó„‡Ì˘ÂÌÌ˚ÏË, ÌÂÔÂ˚‚Ì˚ÏË) ÙÛÌ͈ËflÏË, ÍÓÚÓ˚ ӷ‡˘‡˛ÚÒfl ‚ ÌÛθ ̇ ï,
ÔÓÒÚÓflÌÌ˚ÏË ÙÛÌ͈ËflÏË Ë ÙÛÌ͈ËflÏË ‚ˉ‡ g y ( x ) = d ( x, x 0 ) − d ( x, y) (ÒÏ. ÓÔ‰ÂÎÂÌËfl ‚ ‡Á‰ÂΠ䂇ÌÚÓ‚Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó). åÂÚ˘ÂÒ͇fl „‡Ìˈ‡ êËÙÂÎfl ∂ R X ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ÂÒÚ¸ ‡ÁÌÓÒÚ¸ X d \ X , „‰Â Xd fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒÍËÏ
ÍÓÏÔ‡ÍÚÌ˚Ï ‡Ò¯ËÂÌËÂÏ (X, d), Ú.Â. χÍÒËχθÌ˚Ï Ë‰Â‡Î¸Ì˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ
(ÏÌÓÊÂÒÚ‚ÓÏ ˜ËÒÚ˚ı ÒÓÒÚÓflÌËÈ) ‰‡ÌÌÓÈ ë* -‡Î„·˚. êËÙÂθ ‰Ó͇Á‡Î, ˜ÚÓ ‰Îfl
ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ÒÓ Ò˜ÂÚÌÓÈ ·‡ÁÓÈ „‡Ìˈ‡ ∂R X
‚Íβ˜‡ÂÚ Ô‰ÂÎ˚ lim f ( γ (t )) ‰Îfl Í‡Ê‰Ó„Ó Ò··Ó„Ó „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÎÛ˜‡ γ Ë Í‡Ê‰ÓÈ
t →∞
ÙÛÌ͈ËË f ‚˚¯ÂÛ͇Á‡ÌÌÓÈ ë* -‡Î„·˚.
èÓÂÍÚË‚ÌÓ ÔÎÓÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ „ÂÓ‰ÂÁ˘ÂÒÍË Á‡‰‡Ì˚, ̇Á˚‚‡ÂÚÒfl ÔÓÂÍÚË‚ÌÓ ÔÎÓÒÍËÏ, ÂÒÎË ÓÌÓ ÎÓ͇θÌÓ ‰ÓÔÛÒ͇ÂÚ „ÂÓ‰ÂÁ˘ÂÒÍÓ (ËÎË ÔÓÂÍÚË‚ÌÓÂ)
ÓÚÓ·‡ÊÂÌËÂ, Ú.Â. ÓÚÓ·‡ÊÂÌËÂ, ÒÓı‡Ìfl˛˘Â „ÂÓ‰ÂÁ˘ÂÒÍËÂ, ‚ ÌÂÍÓÚÓÓÂ
‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (ÒÏ. ‚ÍÎˉӂ ‡Ì„ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‚ „Î. 1;
ÒıÓ‰Ì˚ ÚÂÏËÌ˚: ‡ÙÙËÌÌÓ ÔÎÓÒÍÓÂ, ÍÓÌÙÓÏÌÓ ÔÎÓÒÍÓÂ Ë Ú.Ô.).
êËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ÔÓÂÍÚË‚ÌÓ ÔÎÓÒÍËÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡
ÓÌÓ ËÏÂÂÚ ÔÓÒÚÓflÌÌÛ˛ (ÒÂ͈ËÓÌÌÛ˛) ÍË‚ËÁÌÛ.
6.2. èêéÖäíàÇçÄü ÉÖéåÖíêàü
èÓÂÍÚ˂̇fl „ÂÓÏÂÚËfl fl‚ÎflÂÚÒfl ˜‡ÒÚ¸˛ Ó·˘ÂÈ „ÂÓÏÂÚËË, ‡ÒÒχÚË‚‡˛˘ÂÈ
Ò‚ÓÈÒÚ‚‡ Ë ËÌ‚‡ˇÌÚ˚ „ÂÓÏÂÚ˘ÂÒÍËı ÙË„Û ÔÓ‰ ‚ÓÁ‰ÂÈÒÚ‚ËÂÏ ÓÔÂ‡ÚÓ‡
ÔÓÂÍÚËÓ‚‡ÌËfl. ÄÙÙËÌ̇fl „ÂÓÏÂÚËfl, „ÂÓÏÂÚËfl ÔÓ‰Ó·Ëfl (ËÎË ÏÂÚ˘ÂÒ͇fl
„ÂÓÏÂÚËfl) Ë Â‚ÍÎˉӂ‡ „ÂÓÏÂÚËfl fl‚Îfl˛ÚÒfl ˜‡ÒÚflÏË ÔÓÂÍÚË‚ÌÓÈ „ÂÓÏÂÚËË Ò
̇‡ÒÚ‡˛˘ÂÈ ÒÎÓÊÌÓÒÚ¸˛. éÒÌÓ‚Ì˚ÏË ËÌ‚‡ˇÌÚ‡ÏË ÔÓÂÍÚË‚ÌÓÈ, ‡ÙÙËÌÌÓÈ,
ÏÂÚ˘ÂÒÍÓÈ Ë Â‚ÍÎˉӂÓÈ „ÂÓÏÂÚËÈ fl‚Îfl˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‡Ì„‡ÏÓÌ˘ÂÒÍÓÂ
ÓÚÌÓ¯ÂÌËÂ, Ô‡‡ÎÎÂθÌÓÒÚ¸ (Ë ÓÚÌÓÒËÚÂθÌ˚ ‡ÒÒÚÓflÌËfl), Û„Î˚ (Ë ÓÚÌÓÒËÚÂθÌ˚Â
‡ÒÒÚÓflÌËfl), ‡·ÒÓβÚÌ˚ ‡ÒÒÚÓflÌËfl.
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
95
n-åÂÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Pn ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó Ó‰ÌÓÏÂÌ˚ı ‚ÂÍÚÓÌ˚ı ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ ‰‡ÌÌÓ„Ó (n + 1)-ÏÂÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ V ̇‰
ÔÓÎÂÏ . ŇÁÓ‚Ó ÔÓÒÚÓÂÌË Ô‰ÔÓ·„‡ÂÚ ÙÓÏËÓ‚‡ÌË ÏÌÓÊÂÒÚ‚‡ Í·ÒÒÓ‚
˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ÌÂÌÛ΂˚ı ‚ÂÍÚÓÓ‚ ‚ ÔÓÒÚ‡ÌÒÚ‚Â V ÔË Òӷβ‰ÂÌËË ÓÚÌÓ¯ÂÌËfl Ò͇ÎflÌÓÈ ÔÓÔÓˆËÓ̇θÌÓÒÚË. чÌ̇fl ˉÂfl ‚ÓÁ‚‡˘‡ÂÚ Ì‡Ò Í Ï‡ÚÂχÚ˘ÂÒÍÓÏÛ ÓÔËÒ‡Ì˲ ÔÂÒÔÂÍÚË‚˚. àÒÔÓθÁÓ‚‡ÌË ·‡ÁËÒ‡ ÔÓÒÚ‡ÌÒÚ‚‡ V ÔÓÁ‚ÓÎflÂÚ
‚‚ÂÒÚË Ó‰ÌÓÓ‰Ì˚ ÍÓÓ‰Ë̇Ú˚ ÚÓ˜ÍË ‚ Pn , ÍÓÚÓ˚ ӷ˚˜ÌÓ Á‡ÔËÒ˚‚‡˛ÚÒfl ͇Í
( x1 : x 2 : ... : x n : x n +1 ) – ‚ÂÍÚÓ ‰ÎËÌ˚ n + 1, ÓÚ΢Ì˚È ÓÚ (0 : 0 : 0 : ... : 0). Ñ‚‡
ÏÌÓÊÂÒÚ‚‡ Ò ÔÓÔÓˆËÓ̇θÌ˚ÏË ÍÓÓ‰Ë̇ڇÏË Ó·ÓÁ̇˜‡˛Ú Ó‰ÌÛ Ë ÚÛ Ê ÚÓ˜ÍÛ
ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. ã˛·‡fl ÚӘ͇ ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÍÓÚÓÛ˛ ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í ( x1 : x 2 : ... : x n : 0), ̇Á˚‚‡ÂÚÒfl ·ÂÒÍÓ̘ÌÓ Û‰‡ÎÂÌÌÓÈ ÚÓ˜ÍÓÈ. ó‡ÒÚ¸ ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Pn , Ì fl‚Îfl˛˘‡flÒfl "·ÂÒÍÓ̘ÌÓ Û‰‡ÎÂÌÌÓÈ", Ú.Â. ÏÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÍÓÚÓ˚ ÏÓ„ÛÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌ˚ Í‡Í ( x1 : x 2 : ... : x n : 1), ÂÒÚ¸ n-ÏÂÌÓ ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó A n .
ëËÏ‚ÓÎÓÏ Pn Ó·ÓÁ̇˜‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
‡ÁÏÂÌÓÒÚË n, Ú.Â. ÔÓÒÚ‡ÌÒÚ‚Ó Ó‰ÌÓÏÂÌ˚ı ‚ÂÍÚÓÌ˚ı ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ ÔÓÒÚ‡ÌÒÚ‚‡ n+1. ëËÏ‚ÓÎÓÏ Pn Ó·ÓÁ̇˜‡ÂÚÒfl ÍÓÏÔÎÂÍÒÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÍÓÏÔÎÂÍÒÌÓÈ ‡ÁÏÂÌÓÒÚË n. èÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Pn ËÏÂÂÚ ÂÒÚÂÒÚ‚ÂÌÌÛ˛ ÒÚÛÍÚÛÛ ÍÓÏÔ‡ÍÚÌÓ„Ó „·‰ÍÓ„Ó n-ÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl. Ö„Ó ÏÓÊÌÓ
‡ÒÒχÚË‚‡Ú¸ Í‡Í ÔÓÒÚ‡ÌÒÚ‚Ó ÔflÏ˚ı, ÔÓıÓ‰fl˘Ëı ˜ÂÂÁ ÌÛ΂ÓÈ ˝ÎÂÏÂÌÚ
ÔÓÒÚ‡ÌÒÚ‚‡ n+1 (Ú.Â. Í‡Í ÔÓÒÚ‡ÌÒÚ‚Ó ÎÛ˜ÂÈ). éÌÓ ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl
Í‡Í ÏÌÓÊÂÒÚ‚Ó n (Í‡Í ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó) ÒÓ‚ÏÂÒÚÌÓ Ò Â„Ó ·ÂÒÍÓ̘ÌÓ
Û‰‡ÎÂÌÌ˚ÏË ÚӘ͇ÏË. Ö„Ó ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Ú‡ÍÊÂ Í‡Í ÏÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ
n-ÏÂÌÓÈ ÒÙÂ˚ ‚ n+1, ÓÚÓʉÂÒÚ‚ÎÂÌÌ˚ı Ò ‰Ë‡ÏÂÚ‡Î¸ÌÓ ÔÓÚË‚ÓÔÓÎÓÊÌ˚ÏË
ÚӘ͇ÏË.
èÓÂÍÚË‚Ì˚ ÚÓ˜ÍË, ÔÓÂÍÚË‚Ì˚ ÔflÏ˚Â, ÔÓÂÍÚË‚Ì˚ ÔÎÓÒÍÓÒÚË,…, ÔÓÂÍÚË‚Ì˚ „ËÔÂÔÎÓÒÍÓÒÚË ÔÓÒÚ‡ÌÒÚ‚‡ Pn fl‚Îfl˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ó‰ÌÓÏÂÌ˚ÏË,
‰‚ÛÏÂÌ˚ÏË, ÚÂıÏÂÌ˚ÏË,…, n-ÏÂÌ˚ÏË ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË ÔÓÒÚ‡ÌÒÚ‚‡ V.
ã˛·˚ ‰‚ ÔÓÂÍÚË‚Ì˚ ÔflÏ˚ ̇ ÔÓÂÍÚË‚ÌÓÈ ÔÎÓÒÍÓÒÚË ËÏÂ˛Ú Ó‰ÌÛ Ë ÚÓθÍÓ
Ó‰ÌÛ Ó·˘Û˛ ÚÓ˜ÍÛ. èÓÂÍÚË‚ÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË (ËÎË ÍÓÎÎË̇ˆËfl, ÔÓÂÍÚË‚ÌÓÂ
ÒÓÓÚ‚ÂÚÒÚ‚ËÂ) ÂÒÚ¸ ·ËÂÍÚË‚ÌÓ ÓÚÓ·‡ÊÂÌË ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇ Ò·fl,
ÒÓı‡Ìfl˛˘Â ÍÓÎÎË̇ÌÓÒÚ¸ (Ò‚ÓÈÒÚ‚Ó ÚÓ˜ÂÍ ‡ÒÔÓ·„‡Ú¸Òfl ̇ Ó‰ÌÓÈ ÎËÌËË) ‚
Ó·ÓËı ̇Ô‡‚ÎÂÌËflı. ã˛·Ó ÔÓÂÍÚË‚ÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË ÂÒÚ¸ ÍÓÏÔÓÁˈËfl ‰‚Ûı
ÔÂÒÔÂÍÚË‚Ì˚ı ÔÓÂ͈ËÈ. èÓÂÍÚË‚Ì˚ ÔÂÓ·‡ÁÓ‚‡ÌËfl Ì ӷÂÒÔ˜˂‡˛Ú ÒÓı‡ÌÂÌË ‡ÁÏÂÓ‚ ËÎË Û„ÎÓ‚, Ӊ̇ÍÓ ÒÓı‡Ìfl˛Ú ÚËÔ (Ú.Â. ÚÓ˜ÍË ÓÒÚ‡˛ÚÒfl ÚӘ͇ÏË Ë
ÔflÏ˚ – ÔflÏ˚ÏË), Ë̈ˉÂÌÚÌÓÒÚ¸ (Ú.Â. ÔË̇‰ÎÂÊÌÓÒÚ¸ ÚÓ˜ÍË ÔflÏÓÈ) Ë
‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌËÂ. á‰ÂÒ¸ ‰Îfl ˜ÂÚ˚Âı ÍÓÎÎË̇Ì˚ı ÚÓ˜ÂÍ x, y, x, t ∈P n
( x − z )( y − t )
x−z
Ëı ‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌË Á‡‰‡ÂÚÒfl Í‡Í ( x, y, z, t ) =
, „‰Â
( y − z )( x − t )
x−t
f ( x) − f (z)
Ó·ÓÁ̇˜‡ÂÚ ˜‡ÒÚÌÓÂ
‰Îfl ÌÂÍÓÚÓÓÈ ‡ÙÙËÌÌÓÈ ·ËÂ͈ËË f ÔflÏÓÈ
f ( x ) − f (t )
lx , y , ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ ÚÓ˜ÍË ı Ë Û , ‚ . ÖÒÎË ËÏÂÂÚÒfl ˜ÂÚ˚ ÔÓÂÍÚË‚Ì˚Â
ÔflÏ˚ lx , ly , lz , lt , ÔÓıÓ‰fl˘Ë ˜ÂÂÁ ÚÓ˜ÍË x, y, z, t ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÍÓÚÓ˚ ÔÓıÓ‰flÚ ˜ÂÂÁ ‰‡ÌÌÛ˛ ÚÓ˜ÍÛ, Ëı ‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌËÂ, Á‡‰‡ÌÌÓ ‚˚‡ÊÂÌËÂÏ
sin(lx , lz )sin(ly , lt )
(lx , ly , lz , lt ) =
, ÒÓ‚Ô‡‰‡ÂÚ Ò ( x, y, z, t ). ÄÌ„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌËÂ
sin(ly , lz )sin(lx , lt )
96
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
( x − z )( y − t )
. éÌÓ
( y − z )( x − t )
·Û‰ÂÚ ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ˜ÂÚ˚ ˜ËÒ· fl‚Îfl˛ÚÒfl ËÎË
ÍÓÎÎË̇Ì˚ÏË ËÎË ÍÓˆËÍ΢Ì˚ÏË.
˜ÂÚ˚Âı ÍÓÏÔÎÂÍÒÌ˚ı ˜ËÒÂÎ x, y, z, t Á‡‰‡ÂÚÒfl Í‡Í ( x, y, z, t ) =
èÓÂÍÚ˂̇fl ÏÂÚË͇
ÑÎfl ‰‡ÌÌÓ„Ó ‚˚ÔÛÍÎÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ D ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ P n
ÔÓÂÍÚ˂̇fl ÏÂÚË͇ d ÂÒÚ¸ ÏÂÚË͇ ̇ D , ڇ͇fl ˜ÚÓ Í‡Ú˜‡È¯Ë ÔÛÚË ÔÓ
ÓÚÌÓ¯ÂÌ˲ Í ˝ÚÓÈ ÏÂÚËÍ fl‚Îfl˛ÚÒfl ˜‡ÒÚflÏË ÔÓÂÍÚË‚Ì˚ı ÔflÏ˚ı ËÎË Ò‡ÏËÏË
ÔÓÂÍÚË‚Ì˚ÏË ÔflÏ˚ÏË. è‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl:
1. D Ì fl‚ÎflÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ ÌË͇ÍÓÈ „ËÔÂÔÎÓÒÍÓÒÚË.
2. ÑÎfl β·˚ı ÚÂı ÌÂÍÓÎÎË̇Ì˚ı ÚÓ˜ÂÍ x, y, z ∈ D ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇
‚˚ÔÓÎÌflÂÚÒfl ‚ ÒÚÓ„ÓÏ ÒÏ˚ÒÎÂ: d ( x, y) < d ( x, z ) + d ( z, y).
3. ÖÒÎË ı Ë Û – ‡ÁÌ˚ ÚÓ˜ÍË ‚ D, ÚÓ ÔÂÂÒ˜ÂÌË ÔflÏÓÈ lx , y , ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ
ı Ë Û, Ò D ÂÒÚ¸ ÎË·Ó ‚Òfl Ôflχfl lx , y , Ó·‡ÁÛ˛˘‡fl ÏÂÚ˘ÂÒÍËÈ ·Óθ¯ÓÈ ÍÛ„, ÎË·Ó
ÔÓÎÛ˜ÂÌÓ ËÁ ÔÓÒ‰ÒÚ‚ÓÏ lx , y Û‰‡ÎÂÌËfl ÌÂÍÓÚÓÓ„Ó ÓÚÂÁ͇ (ÍÓÚÓ˚È ÏÓÊÂÚ ·˚Ú¸
҂‰ÂÌ Í ÚÓ˜ÍÂ) Ë Ó·‡ÁÛÂÚ ÏÂÚ˘ÂÒÍÛ˛ ÔflÏÛ˛.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (D, d) ̇Á˚‚‡ÂÚÒfl ÔÓÂÍÚË‚Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÒÏ. èÓÂÍÚË‚ÌÓ ÔÎÓÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó). èÓ·ÎÂχ ÓÔ‰ÂÎÂÌËfl ‚ÒÂı
ÔÓÂÍÚË‚Ì˚ı ÏÂÚËÍ fl‚ÎflÂÚÒfl ˜ÂÚ‚ÂÚÓÈ ÔÓ·ÎÂÏÓÈ ÉËθ·ÂÚ‡; Ó̇ ¯Â̇
ÚÓθÍÓ ‰Îfl ‡ÁÏÂÌÓÒÚË n = 2. àÏÂÌÌÓ, ÂÒÎË ËÏÂÂÚÒfl „·‰Í‡fl ÏÂ‡ ̇ ÔÓÒÚ‡ÌÒÚ‚Â
„ËÔÂÔÎÓÒÍÓÒÚÂÈ ‚ Pn , ÓÔ‰ÂÎËÏ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ÚӘ͇ÏË x, y ∈
Pn Í‡Í ÔÓÎÓ‚ËÌÛ ÏÂ˚ ‚ÒÂı „ËÔÂÔÎÓÒÍÓÒÚÂÈ, ÍÓÚÓ˚ ÔÂÂÒÂ͇˛Ú ÓÚÂÁÓÍ
ÔflÏÓÈ, ÒÓ‰ËÌfl˛˘ËÈ ı Ë Û. èÓÎÛ˜ÂÌ̇fl ÏÂÚË͇ ·Û‰ÂÚ ÔÓÂÍÚË‚ÌÓÈ – ˝ÚÓ ÍÓÌÒÚÛ͈Ëfl ÅÛÁÂχ̇ ÔÓÂÍÚË‚Ì˚ı ÏÂÚËÍ. ÑÎfl n = 2, Í‡Í ‰Ó͇Á‡ÌÓ ÄÏ·‡ˆÛÏflÌÓÏ
([Amba76]), ‚Ò ÔÓÂÍÚË‚Ì˚ ÏÂÚËÍË ÏÓ„ÛÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ˚ ËÁ ÍÓÌÒÚÛ͈ËË
ÅÛÁÂχ̇.
Ç ÔÓÂÍÚË‚ÌÓÏ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â Ó‰ÌÓ‚ÂÏÂÌÌÓ Ì ÏÓÊÂÚ ·˚Ú¸ ‰‚Ûı
‚ˉӂ ÔflÏ˚ı: ÓÌË ‚Ò ÎË·Ó ÏÂÚ˘ÂÒÍË ÔflÏ˚Â, ÎË·Ó ÏÂÚ˘ÂÒÍË ·Óθ¯ËÂ
ÍÛ„Ë Ó‰Ë̇ÍÓ‚ÓÈ ‰ÎËÌ˚ (ÚÂÓÂχ ɇÏÂÎfl). èÓÒÚ‡ÌÒÚ‚‡ ÔÂ‚Ó„Ó ‚ˉ‡ ̇Á˚‚‡˛ÚÒfl ÓÚÍ˚Ú˚ÏË. éÌË ÒÓ‚Ô‡‰‡˛Ú Ò ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡; „ÂÓÏÂÚËfl ÓÚÍ˚Ú˚ı ÔÓÂÍÚË‚Ì˚ı ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ ÂÒÚ¸ „Ëθ·ÂÚÓ‚‡ „ÂÓÏÂÚËfl. ÉËÔÂ·Ó΢ÂÒ͇fl „ÂÓÏÂÚËfl fl‚ÎflÂÚÒfl „Ëθ·ÂÚÓ‚ÓÈ „ÂÓÏÂÚËÂÈ, ‚ ÍÓÚÓÓÈ ÒÛ˘ÂÒÚ‚Û˛Ú ÓÚ‡ÊÂÌËfl ÓÚ ‚ÒÂı ÔflÏ˚ı. àÏÂÌÌÓ, ÏÌÓÊÂÒÚ‚Ó D
ËÏÂÂÚ „ËÔÂ·Ó΢ÂÒÍÛ˛ „ÂÓÏÂÚ˲ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl
‚ÌÛÚÂÌÌÓÒÚ¸˛ ˝ÎÎËÔÒÓˉ‡. ÉÂÓÏÂÚËfl ÓÚÍ˚Ú˚ı ÔÓÂÍÚË‚Ì˚ı ÔÓÒÚ‡ÌÒÚ‚,
ÏÌÓÊÂÒÚ‚‡ ÍÓÚÓ˚ı ÒÓ‚Ô‡‰‡˛Ú ÒÓ ‚ÒÂÏ ‡ÙÙËÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÂÒÚ¸ „ÂÓÏÂÚËfl
åËÌÍÓ‚ÒÍÓ„Ó. Ö‚ÍÎˉӂ‡ „ÂÓÏÂÚËfl – ˝ÚÓ „Ëθ·ÂÚÓ‚‡ „ÂÓÏÂÚËfl Ë „ÂÓÏÂÚËfl
åËÌÍÓ‚ÒÍÓ„Ó Ó‰ÌÓ‚ÂÏÂÌÌÓ. èÓÒÚ‡ÌÒÚ‚‡ ‚ÚÓÓ„Ó ‚ˉ‡ ̇Á˚‚‡˛ÚÒfl Á‡Í˚Ú˚ÏË;
ÓÌË ÒÓ‚Ô‡‰‡˛Ú ÒÓ ‚ÒÂÏ Pn . ùÎÎËÔÚ˘ÂÒ͇fl „ÂÓÏÂÚËfl – „ÂÓÏÂÚËfl ÔÓÂÍÚË‚ÌÓ„Ó
ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‚ÚÓÓ„Ó ‚ˉ‡.
èÓÂÍÚ˂̇fl ÏÂÚË͇ ÔÓÎÓÒ˚
èÓÂÍÚ˂̇fl ÏÂÚË͇ ÔÓÎÓÒ˚ ([BuKe53]) ÂÒÚ¸ ÔÓÂÍÚ˂̇fl ÏÂÚË͇ ̇ ÔÓÎÓÒÂ
π
π
St =  x ∈ R 2 : − < J2 < , ÓÔ‰ÂÎÂÌ̇fl ͇Í
J
J

( x1 − y1 )2 + ( x 2 + y2 )2 + | tg x 2 − tg y2 | .
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
97
ëΉÛÂÚ Ó·‡ÚËÚ¸ ‚ÌËχÌË ̇ ÚÓ, ˜ÚÓ St Ò Ó·˚˜ÌÓÈ Â‚ÍÎˉӂÓÈ ÏÂÚËÍÓÈ
( x1 − y1 )2 + ( x 2 − y2 )2 ÔÓÂÍÚË‚Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì fl‚ÎflÂÚÒfl.
èÓÂÍÚ˂̇fl ÏÂÚË͇ ÔÓÎÛÔÎÓÒÍÓÒÚË
èÓÂÍÚ˂̇fl ÏÂÚË͇ ÔÓÎÛÔÎÓÒÍÓÒÚË ([BuKe53]) ÂÒÚ¸ ÔÓÂÍÚ˂̇fl ÏÂÚË͇ ̇
2+ = {x ∈ 2 : x 2 > 0}, Á‡‰‡Ì̇fl ‚˚‡ÊÂÌËÂÏ
( x1 − y1 )2 + ( x 2 − y2 )2 +
1
1
.
−
x 2 y2
ÉËθ·ÂÚÓ‚‡ ÔÓÂÍÚ˂̇fl ÏÂÚË͇
ÑÎfl ‰‡ÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ç „Ëθ·ÂÚÓ‚ÓÈ ÔÓÂÍÚË‚ÌÓÈ ÏÂÚËÍÓÈ h ·Û‰ÂÚ ÔÓÎ̇fl
ÔÓÂÍÚ˂̇fl ÏÂÚË͇ ̇ ç. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ç ÒÓ‰ÂÊËÚ ÔÓÏËÏÓ ‰‚Ûı ÔÓËÁ‚ÓθÌ˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ ı Ë Û Ú‡ÍÊ ÚÓ˜ÍË z Ë t, ‰Îfl ÍÓÚÓ˚ı h( x, z ) + h( z, y) = h( x, y),
h( x, y) + h( y, t ) = h( x, t ), Ë fl‚ÎflÂÚÒfl „ÓÏÂÓÏÓÙÌ˚Ï ‚˚ÔÛÍÎÓÏÛ ÏÌÓÊÂÒÚ‚Û ‚ nÏÂÌÓÏ ‡ÙÙËÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â An , ÔË ˝ÚÓÏ „ÂÓ‰ÂÁ˘ÂÒÍË ‚ ç ÓÚÓ·‡Ê‡˛ÚÒfl ‚
ÔflÏ˚ ÔÓÒÚ‡ÌÒÚ‚‡ An . åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (H, h) ̇Á˚‚‡ÂÚÒfl „Ëθ·ÂÚÓ‚˚Ï ÔÓÂÍÚË‚Ì˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ‡ „ÂÓÏÂÚËfl „Ëθ·ÂÚ‡ ÔÓÂÍÚË‚ÌÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡˛ÚÒfl „Ëθ·ÂÚÓ‚ÓÈ „ÂÓÏÂÚËÂÈ.
îÓχθÌÓ, ÔÛÒÚ¸ D – ÌÂÔÛÒÚÓ ‚˚ÔÛÍÎÓ ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó ‚ An Ò „‡ÌˈÂÈ
∂D, Ì ÒÓ‰Âʇ˘ÂÈ ‰‚Ûı ÒÓ·ÒÚ‚ÂÌÌ˚ı ÍÓÏÔ·̇Ì˚ı, ÌÓ ÌÂÍÓÎÎË̇Ì˚ı ÓÚÂÁÍÓ‚
(Ó·˚˜ÌÓ „‡Ìˈ‡ D fl‚ÎflÂÚÒfl ÒÚÓ„Ó ‚˚ÔÛÍÎÓÈ Á‡ÏÍÌÛÚÓÈ ÍË‚ÓÈ, ‡ D – ÂÂ
‚ÌÛÚÂÌÌÓÒÚ¸˛). èÛÒÚ¸ x, y ∈ D ̇ıÓ‰flÚÒfl ̇ ÔflÏÓÈ, ÔÂÂÒÂ͇˛˘ÂÈ ∂D ‚ ÚӘ͇ı z Ë
t, ÔË ˝ÚÓÏ z ‡ÒÔÓÎÓÊÂ̇ ̇ ÒÚÓÓÌÂ Û Ë t – ̇ ÒÚÓÓÌ ı. Ç ˝ÚÓÏ ÒÎÛ˜‡Â „Ëθ·ÂÚÓ‚‡ ÏÂÚË͇ h ̇ D ÓÔ‰ÂÎflÂÚÒfl ͇Í
r
ln( x, y, z, t ),
2
„‰Â ( x, y, z, t ) – ‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌË x, y, z, t Ë r – ÙËÍÒËÓ‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (D, d) fl‚ÎflÂÚÒfl G-ÔflÏ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÖÒÎË D –
˝ÎÎËÔÒÓˉ, ÚÓ h – „ËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇, ÓÔ‰ÂÎfl˛˘‡fl „ËÔÂ·Ó΢ÂÒÍÛ˛
„ÂÓÏÂÚ˲ ̇ D. ç‡ Â‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ = {z ∈ : | z | < 1} ÏÂÚË͇ h ·Û‰ÂÚ ÒÓ‚Ô‡‰‡Ú¸ Ò ÏÂÚËÍÓÈ ä˝ÎË–äÎÂÈ̇–ÉËθ·ÂÚ‡. ÖÒÎË ∂D ÒÓ‰ÂÊËÚ ÍÓÏÔ·̇Ì˚Â, ÌÓ
ÌÂÍÓÎÎË̇Ì˚ ÓÚÂÁÍË, ÚÓ ÏÂÚË͇ ̇ D ÏÓÊÂÚ Á‡‰‡‚‡Ú¸Òfl ‚˚‡ÊÂÌËÂÏ
h( x, y) + d ( x, y), „‰Â d fl‚ÎflÂÚÒfl β·ÓÈ ÏÂÚËÍÓÈ åËÌÍÓ‚ÒÍÓ„Ó (Ó·˚˜ÌÓ Â‚ÍÎˉӂÓÈ
ÏÂÚËÍÓÈ).
åÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó
åÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó (ËÎË ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„Ó–ÉÂθ‰Â‡) ÂÒÚ¸ ÏÂÚË͇
ÌÓÏ˚ ÍÓ̘ÌÓÏÂÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ·‡Ì‡ıÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡.
îÓχθÌÓ, ÔÛÒÚ¸ n – n-ÏÂÌÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ä –
·Û‰ÂÚ ÒËÏÏÂÚ˘ÌÓ ‚˚ÔÛÍÎÓ ÚÂÎÓ ‚ n , Ú.Â. ÓÚÍ˚Ú‡fl ÓÍÂÒÚÌÓÒÚ¸ ÌÛÎfl, ÍÓÚÓ‡fl
fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌÓÈ, ‚˚ÔÛÍÎÓÈ Ë ÒËÏÏÂÚ˘ÌÓÈ (x ∈ K ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡,
ÍÓ„‰‡ –x ∈ K). íÓ„‰‡ ÙÛÌ͈ËÓ̇ΠåËÌÍÓ‚ÒÍÓ„Ó || ⋅ || K : n → [0, ∞), Á‡‰‡ÌÌ˚È ÙÓÏÛÎÓÈ
x
|| x || K = inf α > 0 :
∈∂K ,
α


98
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
fl‚ÎflÂÚÒfl ÌÓÏÓÈ Ì‡ n Ë ÏÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó m ÓÔ‰ÂÎflÂÚÒfl ‚˚‡ÊÂÌËÂÏ
|| x − y || K .
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( n , m ) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ åËÌÍÓ‚ÒÍÓ„Ó.
Ö„Ó ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í n-ÏÂÌÓ ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó An Ò ÏÂÚËÍÓÈ m, ‚
ÍÓÚÓÓÏ Óθ ‰ËÌ˘ÌÓ„Ó ¯‡‡ ‚˚ÔÓÎÌflÂÚ ‰‡ÌÌÓ ˆÂÌÚ‡Î¸ÌÓ ÒËÏÏÂÚ˘ÌÓÂ
‚˚ÔÛÍÎÓ ÚÂÎÓ. ÉÂÓÏÂÚËfl ÔÓÒÚ‡ÌÒÚ‚‡ åËÌÍÓ‚ÒÍÓ„Ó Ì‡Á˚‚‡ÂÚÒfl „ÂÓÏÂÚËÂÈ
åËÌÍÓ‚ÒÍÓ„Ó. ÑÎfl ÒÚÓ„Ó ‚˚ÔÛÍÎÓ„Ó ÒËÏÏÂÚ˘ÌÓ„Ó Ú· ÏÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó
fl‚ÎflÂÚÒfl ÔÓÂÍÚË‚ÌÓÈ ÏÂÚËÍÓÈ Ë (n, m) fl‚ÎflÂÚÒfl G-ÔflÏ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
ÉÂÓÏÂÚËfl åËÌÍÓ‚ÒÍÓ„Ó fl‚ÎflÂÚÒfl ‚ÍÎˉӂÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÂÂ
‰ËÌ˘̇fl ÒÙÂ‡ – ˝ÎÎËÔÒÓˉ.
åÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó m ÔÓÔÓˆËÓ̇θ̇ ‚ÍÎˉӂÓÈ ÏÂÚËÍ d E ̇ ͇ʉÓÈ
ÔflÏÓÈ l, Ú.Â. m( x, y) = φ(l )dE ( x, y). í‡ÍËÏ Ó·‡ÁÓÏ, ÏÂÚËÍÛ åËÌÍÓ‚ÒÍÓ„Ó ÏÓÊÌÓ
Ò˜ËÚ‡Ú¸ ÏÂÚËÍÓÈ, ÓÔ‰ÂÎflÂÏÓÈ ‚Ó ‚ÒÂÏ ‡ÙÙËÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â A n Ë Ó·Î‡‰‡˛ac
˘ÂÈ ÚÂÏ Ò‚ÓÈÒÚ‚ÓÏ, ˜ÚÓ ‡ÙÙËÌÌÓ ÓÚÌÓ¯ÂÌËÂ
β·˚ı ÚÂı ÍÓÎÎË̇Ì˚ı
ab
m( a, c)
ÚÓ˜ÂÍ a, b, c (ÒÏ. ‡Á‰. 6.3) ‡‚ÌÓ ÓÚÌÓ¯ÂÌ˲ Ëı ‡ÒÒÚÓflÌËÈ
.
m( a, b)
ÅÛÁÂχÌÓ‚‡ ÏÂÚË͇
ÅÛÁÂχÌÓ‚‡ ÏÂÚË͇ ([Buse55]) ÂÒÚ¸ ÏÂÚË͇ ̇ ‚¢ÂÒÚ‚ÂÌÌÓÏ n-ÏÂÌÓÏ ÔÓÂÍÚË‚ÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â Pn , Á‡‰‡Ì̇fl ‚˚‡ÊÂÌËÂÏ
n +1
n +1
xi
y
xi
y

min 
− i ⋅
− i
 i =1 || x || || y || i =1 || x || || y ||
∑
∑



‰Îfl β·˚ı x = ( x1 : ... : x n +1 ), y = ( y1 : ... : yn +1 ) ∈ P n , „‰Â || x ||=
n +1
∑ x12 .
i =1
î·„Ó‚‡fl ÏÂÚË͇
ÑÎfl ‰‡ÌÌÓ„Ó n-ÏÂÌÓ„Ó ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Pn Ù·„Ó‚ÓÈ ÏÂÚËÍÓÈ d
̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ Pn , Á‡‰‡Ì̇fl Ù·„ÓÏ, Ú.Â. ‡·ÒÓβÚÓÏ, ÒÓÒÚÓfl˘ËÏ ËÁ
ÒËÒÚÂÏ˚ m-ÔÎÓÒÍÓÒÚÂÈ αm, m = 0,..., n – 1, Ò αi–1 ÔË̇‰ÎÂʇ˘ÂÈ αi ‰Îfl ‚ÒÂı
i ∈{1,..., n − 1}. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (P n , d) ÒÓÍ‡˘ÂÌÌÓ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í Fn
Ë Ì‡Á˚‚‡ÂÚÒfl Ù·„Ó‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
ÖÒÎË ‰Îfl ÔÓÒÚ‡ÌÒÚ‚‡ Fn ‚˚·‡Ú¸ ‡ÙÙËÌÌÛ˛ ÒËÒÚÂÏÛ ÍÓÓ‰ËÌ‡Ú (x i)i Ú‡Í, ˜ÚÓ·˚
‚ÂÍÚÓ˚ ÔflÏ˚ı, ÔÓıÓ‰fl˘Ëı ˜ÂÂÁ (n – m – 1)-ÔÎÓÒÍÓÒÚ¸ α n − m −1 Á‡‰‡‚‡ÎËÒ¸
ÛÒÎÓ‚ËÂÏ x1 = ... = x m = 0, ÚÓ Ù·„Ó‚‡fl ÏÂÚË͇ d(x, y) ÏÂÊ‰Û ÚӘ͇ÏË x = ( x1 ,..., x n )
Ë y = ( y1 ,..., yn ) Á‡‰‡ÂÚÒfl ÔÓ ÙÓÏÛ·Ï
d ( x, y) = | x1 − y1 |, ÂÒÎË x1 ≠ y1 , d ( x, y) = | x 2 − y2 |, ÂÒÎË x1 = y1 ,
x 2 ≠ y2 ,..., d ( x, y) = | x k − yk |, ÂÒÎË x1 = y1 ,..., x k −1 = yk −1 , x k ≠ yk ,... .
èÓÂÍÚË‚ÌÓ ÓÔ‰ÂÎÂÌË ÏÂÚËÍË
èÓÂÍÚË‚ÌÓ ÓÔ‰ÂÎÂÌË ÏÂÚËÍË ÂÒÚ¸ ‚‚‰ÂÌË ‚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ı ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ÏÂÚËÍË Ú‡Í, ˜ÚÓ·˚ ˝ÚË ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ ÒÚ‡ÎË ËÁÓÏÓÙÌ˚ÏË
‚ÍÎˉӂ˚Ï, „ËÔÂ·Ó΢ÂÒÍËÏ ËÎË ˝ÎÎËÔÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚‡Ï.
99
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
ÑÎfl ÔÓÎÛ˜ÂÌËfl ‚ÍÎˉӂ‡ ÓÔ‰ÂÎÂÌËfl ÏÂÚËÍË ‚ Pn ÒΉÛÂÚ ‚˚‰ÂÎËÚ¸ ‚
‰‡ÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (n – 1)-ÏÂÌÛ˛ „ËÔÂÔÎÓÒÍÓÒÚ¸ π, ̇Á˚‚‡ÂÏÛ˛ ·ÂÒÍÓ̘ÌÓ
Û‰‡ÎÂÌÌÓÈ „ËÔÂÔÎÓÒÍÓÒÚ¸˛, Ë Á‡‰‡Ú¸ n Í‡Í ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÔÓÎÛ˜ÂÌÌÓ ÔÛÚÂÏ Û‰‡ÎÂÌËfl ËÁ ÌÂ„Ó ‰‡ÌÌÓÈ „ËÔÂÔÎÓÒÍÓÒÚË π. Ç ÚÂÏË̇ı Ó‰ÌÓÓ‰Ì˚ı ÍÓÓ‰ËÌ‡Ú π ‚Íβ˜‡ÂÚ ‚Ò ÚÓ˜ÍË ( x1 : ... : x n : 0), ‡ n – ‚ÒÂ
ÚÓ˜ÍË ( x1 : ... : x n : x n ) Ò xn ≠ 0. ëΉӂ‡ÚÂθÌÓ, Â„Ó ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ ͇Í
n = {x ∈ P n : x = ( x1 : ... : x n : 1)}. Ö‚ÍÎˉӂ‡ ÏÂÚË͇ d ̇ n Á‡‰‡ÂÚÒfl ͇Í
⟨ x − y, x − y ⟩ ,
n
„‰Â ‰Îfl β·˚ı x = ( x1 : ... : x n : 1), y = ( y1 : ... : yn : 1) ∈ n ËÏÂÂÏ ⟨ x, y ⟩ =
∑ xi yi .
i =1
ÑÎfl ÔÓÎÛ˜ÂÌËfl „ËÔÂ·Ó΢ÂÒÍÓ„Ó ÓÔ‰ÂÎÂÌËfl ÏÂÚËÍË Ì‡ Pn ‡ÒÒχÚË‚‡ÂÚÒfl
ÏÌÓÊÂÒÚ‚Ó D ‚ÌÛÚÂÌÌËı ÚÓ˜ÂÍ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ó‚‡Î¸ÌÓÈ „ËÔÂÔÓ‚ÂıÌÓÒÚË Ω
‚ÚÓÓ„Ó ÔÓfl‰Í‡ ‚ Pn . ÉËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇ dhyp ̇ D ÓÔ‰ÂÎflÂÚÒfl ‚˚‡ÊÂÌËÂÏ
r
ln( x, y, z, t ) ,
2
„‰Â z Ë t fl‚Îfl˛ÚÒfl ÚӘ͇ÏË ÔÂÂÒ˜ÂÌËfl ÔflÏÓÈ lx, y, ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ ÚÓ˜ÍË ı Ë Û, Ò
ÔÓ‚ÂıÌÓÒÚ¸˛ Ω, (x, y, z, t) ÂÒÚ¸ ‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌË ÚÓ˜ÂÍ x, y, z, t Ë r –
ÙËÍÒËÓ‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡. ÖÒÎË ‰Îfl β·˚ı x = ( x1 : ... : x n +1 ),
y = ( y1 : ... : yn +1 ) ∈ P n ÓÔ‰ÂÎÂÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ⟨ x, y ⟩ = − x1 y1 +
i +1
∑ xi , yi ,
i =1
ÚÓ „ËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â D = {x ∈ P : ⟨ x, x ⟩ < 0} ÏÓÊÂÚ ·˚Ú¸
Á‡ÔË҇̇ ͇Í
n
r arccosh
⟨ x, y ⟩
⟨ x, x ⟩, ⟨ y, y ⟩
,
„‰Â r – ÙËÍÒËÓ‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡ Ë arccosh Ó·ÓÁ̇˜‡ÂÚ ÌÂÓÚˈ‡ÚÂθÌ˚ ‚Â΢ËÌ˚ Ó·‡ÚÌÓ„Ó „ËÔÂ·Ó΢ÂÒÍÓ„Ó ÍÓÒËÌÛÒ‡.
ÑÎfl ÚÓ„Ó ˜ÚÓ·˚ ÔÓÎÛ˜ËÚ¸ ˝ÎÎËÔÚ˘ÂÒÍÓ ÓÔ‰ÂÎÂÌË ÏÂÚËÍË ‚ P n , ÒΉÛÂÚ
‡ÒÒÏÓÚÂÚ¸ ‰Îfl β·˚ı x = ( x1 : ... : x n +1 ), y = ( y1 : ... : yn +1 ) ∈ P n Ò͇ÎflÌÓ ÔÓËÁn
‚‰ÂÌË ⟨ x, y ⟩ =
∑ xi yi .
ùÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇ d ell ̇ Pn Á‡‰‡ÂÚÒfl ÚÂÔÂ¸ ‚˚-
i =1
‡ÊÂÌËÂÏ
r arccos
⟨ x, y ⟩
⟨ x, x ⟩, ⟨ y, y ⟩
,
„‰Â r – ÙËÍÒËÓ‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡, ‡ arccosh – Ó·‡ÚÌ˚È ÍÓÒËÌÛÒ,
ÓÔ‰ÂÎÂÌÌ˚È Ì‡ ÓÚÂÁÍ [0, π].
ÇÓ ‚ÒÂı ‡ÒÒÏÓÚÂÌÌ˚ı ÒÎÛ˜‡flı ÌÂÍÓÚÓ˚ „ËÔÂÔÓ‚ÂıÌÓÒÚË ‚ÚÓÓ„Ó ÔÓfl‰Í‡
ÓÒÚ‡˛ÚÒfl ËÌ‚‡ˇÌÚÌ˚ÏË ÓÚÌÓÒËÚÂθÌÓ ‰‚ËÊÂÌËÈ, Ú.Â. ÔÓÂÍÚË‚Ì˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ, ÒÓı‡Ìfl˛˘Ëı ‰‡ÌÌÛ˛ ÏÂÚËÍÛ. ùÚË „ËÔÂÔÓ‚ÂıÌÓÒÚË Ì‡Á˚‚‡˛ÚÒfl ‡·ÒÓ-
100
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
βڇÏË. ÑÎfl ÒÎÛ˜‡fl ‚ÍÎË‰Ó‚Ó„Ó ÓÔ‰ÂÎÂÌËfl ÏÂÚËÍË ‡·ÒÓβÚÓÏ fl‚ÎflÂÚÒfl
‚ÓÓ·‡Ê‡Âχfl (n – 2)-ÏÂ̇fl Ó‚‡Î¸Ì‡fl ÔÓ‚ÂıÌÓÒÚ¸ ‚ÚÓÓ„Ó ÔÓfl‰Í‡, ‡ ËÏÂÌÌÓ
‚˚ÓʉÂÌÌ˚È ‡·ÒÓÎ˛Ú x12 + ... + x n2 = 0, x n +1 = 0. ÑÎfl ÒÎÛ˜‡fl „ËÔÂ·Ó΢ÂÒÍÓ„Ó
ÓÔ‰ÂÎÂÌËfl ÏÂÚËÍË ‡·ÒÓÎ˛Ú ‚˚‡Ê‡ÂÚÒfl Í‡Í ‰ÂÈÒÚ‚ËÚÂθ̇fl (n – 1)-ÏÂ̇fl
Ó‚‡Î¸Ì‡fl „ËÔÂÔÓ‚ÂıÌÓÒÚ¸ ‚ÚÓÓ„Ó ÔÓfl‰Í‡, ‚ ÔÓÒÚÂȯÂÏ ÒÎÛ˜‡Â ‡·ÒÓβÚ
− x12 + x n2 + ... + x n2+1 = 0. ÑÎfl ÒÎÛ˜‡fl ˝ÎÎËÔÚ˘ÂÒÍÓ„Ó ÓÔ‰ÂÎÂÌËfl ÏÂÚËÍË ‡·ÒÓβÚÓÏ fl‚ÎflÂÚÒfl ‚ÓÓ·‡Ê‡Âχfl (n – 1)-ÏÂ̇fl Ó‚‡Î¸Ì‡fl „ËÔÂÔÓ‚ÂıÌÓÒÚ¸ ‚ÚÓÓ„Ó
ÔÓfl‰Í‡, ‡ ËÏÂÌÌÓ ‡·ÒÓÎ˛Ú x12 + ... + x n2+1 = 0.
6.3. ÄîîàççÄü ÉÖéåÖíêàü
n-åÂÌÓ ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ÔÓÎÂÏ ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó An (Ò ˝ÎÂÏÂÌÚ‡ÏË,
̇Á˚‚‡ÂÏ˚ÏË ÚӘ͇ÏË ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡), ÍÓÚÓÓÏÛ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ nÏÂÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó V ̇‰ (̇Á˚‚‡ÂÏÓ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ‡ÒÒÓˆËËÓ‚‡ÌÌ˚Ï Ò An ), Ú‡Í ˜ÚÓ ‰Îfl β·Ó„Ó a ∈ A n , A = a + V = {a + v : v ∈ V}. ÑÛ„ËÏË
→
ÒÎÓ‚‡ÏË, ÂÒÎË a = ( a1 ,..., an ), b = (b1 ,..., bn ) ∈ A n , ÚÓ ‚ÂÍÚÓ ab = (b1 − a1 ,..., bn − an )
ÔË̇‰ÎÂÊËÚ V. Ç ‡ÙÙËÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÏÓÊÌÓ ÒÍ·‰˚‚‡Ú¸ ‚ÂÍÚÓ Ò ÚÓ˜ÍÓÈ,
˜ÚÓ·˚ ÔÓÎÛ˜ËÚ¸ ‰Û„Û˛ ÚÓ˜ÍÛ, Ë ‚˚˜ËÚ‡Ú¸ ÚÓ˜ÍË ‰Îfl ÔÓÎÛ˜ÂÌËfl ‚ÂÍÚÓÓ‚, Ӊ̇ÍÓ
ÌÂθÁfl ÒÍ·‰˚‚‡Ú¸ ÚÓ˜ÍË, ÔÓÒÍÓθÍÛ ÓÚÒÛÚÒÚ‚ÛÂÚ ÌÛ΂ÓÈ ˝ÎÂÏÂÌÚ. ÖÒÎË ‰‡Ì˚
→
→
ÚÓ˜ÍË a, b, c, d ∈ An , Ú‡Í ˜ÚÓ c ≠ d, ‡ ‚ÂÍÚÓ˚ ab Ë cd fl‚Îfl˛ÚÒfl ÍÓÎÎË̇Ì˚ÏË, ÚÓ
→
→
Ò͇Îfl λ, Á‡‰‡‚‡ÂÏ˚È ÛÒÎÓ‚ËÂÏ ab = λ cd , ̇Á˚‚‡ÂÚÒfl ‡ÙÙËÌÌ˚Ï ÓÚÌÓ¯ÂÌËÂÏ ab Ë
ab
cd Ë Ó·ÓÁ̇˜‡ÂÚÒfl ͇Í
.
cd
ÄÙÙËÌÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË (ËÎË ‡ÙÙËÌÌÓÒÚ¸) ÂÒÚ¸ ·ËÂÍÚË‚ÌÓ ÓÚÓ·‡ÊÂÌË A n
̇ Ò·fl Ò ÒÓı‡ÌÂÌËÂÏ ÍÓÎÎË̇ÌÓÒÚË (Ú.Â. ‚Ò ̇ıÓ‰fl˘ËÂÒfl ̇ ÔflÏÓÈ ÚÓ˜ÍË
ÔÓ‰ÓÎʇ˛Ú ÓÒÚ‡‚‡Ú¸Òfl ̇ ÔflÏÓÈ Ë ÔÓÒΠÔÂÓ·‡ÁÓ‚‡ÌËfl) Ë ÓÚÌÓ¯ÂÌËfl ‡ÒÒÚÓflÌËÈ (̇ÔËÏÂ, Ò‰ËÌ̇fl ÚӘ͇ ÓÚÂÁ͇ ÓÒÚ‡ÂÚÒfl Ò‰ËÌÌÓÈ Ë ÔÓÒÎÂ
ÔÂÓ·‡ÁÓ‚‡ÌËfl). Ç ˝ÚÓÏ ÒÏ˚ÒΠÚÂÏËÌ ‡ÙÙËÌÌ˚È Û͇Á˚‚‡ÂÚ Ì‡ ÓÒÓ·˚È Í·ÒÒ
ÔÓÂÍÚË‚Ì˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ, ÍÓÚÓ˚ Ì ÔÂÂÏ¢‡˛Ú Ó·˙ÂÍÚ˚ ËÁ ‡ÙÙËÌÌÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ ̇ ·ÂÒÍÓ̘ÌÓ Û‰‡ÎÂÌÌÛ˛ ÔÎÓÒÍÓÒÚ¸ ËÎË Ì‡Ó·ÓÓÚ. ã˛·Ó ‡ÙÙËÌÌÓÂ
ÔÂÓ·‡ÁÓ‚‡ÌË ÂÒÚ¸ ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ‚‡˘ÂÌËÈ, Ô‡‡ÎÎÂθÌ˚ı ÔÂÂÌÓÒÓ‚, ÔÓ‰Ó·ËÈ Ë
Ò‰‚Ë„Ó‚. åÌÓÊÂÒÚ‚Ó ‚ÒÂı ‡ÙÙËÌÌ˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ An Ó·‡ÁÛÂÚ „ÛÔÔÛ Aff(An ),
̇Á˚‚‡ÂÏÛ˛ Ó·˘ÂÈ ‡ÙÙËÌÌÓÈ „ÛÔÔÓÈ ÔÓÒÚ‡ÌÒÚ‚‡ An . ä‡Ê‰˚È ˝ÎÂÏÂÌÚ f ∈
n
Aff(An ) ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌ ÙÓÏÛÎÓÈ f ( a) = b, bi =
∑ pij a j + c j , „‰Â (( pij )) –
j =1
Ó·‡ÚËχfl χÚˈ‡.
èÓ‰„ÛÔÔ‡ Aff(An ), ‚Íβ˜‡˛˘‡fl ‡ÙÙËÌÌ˚ ÔÂÓ·‡ÁÓ‚‡ÌËfl Ò det((pij)) = 1, ̇Á˚‚‡ÂÚÒfl ‡‚ÌÓ‡ÙÙËÌÌÓÈ „ÛÔÔÓÈ An . ꇂÌÓ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ‡ÙÙËÌÌÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó Ò ‡‚ÌÓ‡ÙÙËÌÌÓÈ „ÛÔÔÓÈ ÔÂÓ·‡ÁÓ‚‡ÌËÈ. îÛ̉‡ÏÂÌڇθÌ˚Â
ËÌ‚‡ˇÌÚ˚ ‡‚ÌÓ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ – Ó·˙ÂÏ˚ Ô‡‡ÎÎÂÎÂÔËÔ‰ӂ. Ç ‡‚ÌÓ‡ÙÙËÌÌÓÈ ÔÎÓÒÍÓÒÚË Ä 2 β·˚ ‰‚‡ ‚ÂÍÚÓ‡ v1 , v2 ËÏÂ˛Ú ËÌ‚‡ˇÌÚ | v1 × v2 |
(ÏÓ‰Ûθ Ëı ‚ÂÍÚÓÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl) – Ó·˙ÂÏ Ô‡‡ÎÎÂÎÓ„‡Ïχ, ÔÓÒÚÓÂÌÌÓ„Ó Ì‡
v1 Ë v 2 . ÖÒÎË ËÏÂÂÚÒfl „·‰Í‡fl ÍË‚‡fl γ = γ(t),  ‡ÙÙËÌÌ˚È Ô‡‡ÏÂÚ (ËÎË
‡‚ÌÓ‡ÙÙËÌ̇fl ‰ÎË̇ ‰Û„Ë) ÂÒÚ¸ ËÌ‚‡ˇÌÚÌ˚È Ô‡‡ÏÂÚ, Á‡‰‡‚‡ÂÏ˚È ÙÓÏÛÎÓÈ
101
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
t
s=
∫
d 2 γ d 3γ
×
̇Á˚‚‡ÂÚÒfl ‡‚ÌÓ‡ÙÙËÌÌÓÈ ÍË‚ËÁds 2 ds 3
| γ ′ × γ ′′ |1 / 3 dt. àÌ‚‡ˇÌÚ k =
t0
ÌÓÈ ÍË‚ÓÈ γ. èÂÂıÓ‰fl Í Ó·˘ÂÈ ‡ÙÙËÌÌÓÈ „ÛÔÔÂ, ‡ÒÒÏÓÚËÏ Â˘Â ‰‚‡ ËÌ‚‡1 dk
.
ˇÌÚ‡: ‡ÙÙËÌÌÛ˛ ‰ÎËÌÛ ‰Û„Ë σ = k 1 / 2 ds Ë ‡ÙÙËÌÌÛ˛ ÍË‚ËÁÌÛ k = 3 / 2
ds
k
n
ÑÎfl A , n > 2 ‡ÙÙËÌÌ˚È Ô‡‡ÏÂÚ (ËÎË ‡‚ÌÓ‡ÙÙËÌ̇fl ‰ÎË̇ ‰Û„Ë) ÍË‚ÓÈ
∫
t
γ = γ (t) Á‡‰‡ÂÚÒfl ÙÓÏÛÎÓÈ s =
∫
γ ′, γ ′′,..., γ ( n )
2 / n ( n +1)
dt, „‰Â ËÌ‚‡ˇÌÚ ( v1 ,..., vn )
t0
fl‚ÎflÂÚÒfl (ÓËÂÌÚËÓ‚‡ÌÌ˚Ï) Ó·˙ÂÏÓÏ, ÔÓÓʉÂÌÌ˚Ï ‚ÂÍÚÓ‡ÏË v1 ,..., vn , ‡‚Ì˚Ï
ÓÔ‰ÂÎËÚÂβ n × n χÚˈ˚, i-È ÒÚÓηˆ ÍÓÚÓÓÈ ÂÒÚ¸ ‚ÂÍÚÓ vi.
ÄÙÙËÌÌÓ ‡ÒÒÚÓflÌËÂ
ÑÎfl ‰‡ÌÌÓÈ ‡ÙÙËÌÌÓÈ ÔÎÓÒÍÓÒÚË A2  ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ (a, la ) ÒÓÒÚÓËÚ ËÁ
ÚÓ˜ÍË a ∈ A2 Ë ÔflÏÓÈ la ⊂ A 2 , ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ ÚÓ˜ÍÛ ‡.
ÄÙÙËÌÌÓ ‡ÒÒÚÓflÌË ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÎËÌÂÈÌ˚ı ˝ÎÂÏÂÌÚÓ‚
ÏÌÓÊÂÒÚ‚‡ A2 , Á‡‰‡ÌÌÓ ͇Í
2 f 1/ 3,
„‰Â ‰Îfl ‰‡ÌÌ˚ı ÎËÌÂÈÌ˚ı ˝ÎÂÏÂÌÚÓ‚ (a, l a ) Ë (b, lb ) ‚Â΢Ë̇ f ÂÒÚ¸ ÔÎÓ˘‡‰¸ ÚÂÛ„ÓθÌË͇ abc, ÂÒÎË Ò ÂÒÚ¸ ÚӘ͇ ÔÂÂÒ˜ÂÌËfl ÔflÏ˚ı la Ë lb . ÄÙÙËÌÌÓ ‡ÒÒÚÓflÌËÂ
ÏÂÊ‰Û (a, l a ) Ë (b, l b ) ÏÓÊÂÚ ·˚Ú¸ ËÌÚÂÔÂÚËÓ‚‡ÌÓ Í‡Í ‡ÙÙËÌ̇fl ‰ÎË̇ ‰Û„Ë
Ô‡‡·ÓÎ˚ ab, Ú‡ÍÓÈ ˜ÚÓ la Ë lb ͇҇˛ÚÒfl Ô‡‡·ÓÎ˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‚ ÚӘ͇ı a Ë b.
ÄÙÙËÌÌÓ ÔÒ‚‰Ó‡ÒÒÚÓflÌËÂ
èÛÒÚ¸ A2 – ‡‚ÌÓ‡ÙÙËÌ̇fl ÔÎÓÒÍÓÒÚ¸ Ë γ = γ ( s) – ÍË‚‡fl ‚ A2 , Á‡‰‡Ì̇fl ͇Í
ÙÛÌ͈Ëfl ‡ÙÙËÌÌÓ„Ó Ô‡‡ÏÂÚ‡ s. ÄÙÙËÌÌÓ ÔÒ‚‰Ó‡ÒÒÚÓflÌË dpaff ̇ A2 Á‡‰‡ÂÚÒfl
ÙÓÏÛÎÓÈ
→
dpaff ( a, b) = ab ×
dγ
,
ds
→
Ú.Â. ‡‚ÌÓ ÔÎÓ˘‡‰Ë ÔÓ‚ÂıÌÓÒÚË Ô‡‡ÎÎÂÎÓ„‡Ïχ, ÔÓÒÚÓÂÌÌÓ„Ó Ì‡ ‚ÂÍÚÓ‡ı ab Ë
dγ
dγ
, „‰Â b – ÔÓËÁ‚Óθ̇fl ÚӘ͇ ËÁ A2 , ‡ – ÚӘ͇ ̇ γ Ë
– ͇҇ÚÂθÌ˚È ‚ÂÍÚÓ Í
ds
ds
ÍË‚ÓÈ γ ‚ ÚӘ͠‡.
ÄÙÙËÌÌÓ ÔÒ‚‰Ó‡ÒÒÚÓflÌË ‰Îfl ‡‚ÌÓ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ A3 ÏÓÊÂÚ
·˚Ú¸ ÓÔ‰ÂÎÂÌÓ ÔÓ ˝ÚÓÈ Ê ÒıÂÏ ͇Í
 → dγ d 2 γ 
 ab, ds ,
 ,
ds 2 

„‰Â γ = γ ( s) – ÍË‚‡fl ‚ A 3 , ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÙÛÌ͈Ëfl ‡ÙÙËÌÌÓ„Ó Ô‡‡ÏÂÚ‡ s, b ∈
A3 , ‡ – ÚӘ͇ ÍË‚ÓÈ γ, ‡ ‚ÂÍÚÓ˚
dγ
d2γ
Ë
ÔÓÎÛ˜ÂÌ˚ ‚ ÚӘ͠‡.
ds
ds 2
102
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
 → dγ
d n −1 γ 
ÑÎfl An , n > 3 ËÏÂÂÏ dpaff ( a, b) =  ab,
,..., n −1  . èË ÔÓËÁ‚ÓθÌÓÈ Ô‡‡ds
ds 

ÏÂÚËÁ‡ˆËË γ = γ (t ) ÔÓÎÛ˜ËÏ dpaff ( a, b) =
→

ab, γ ′,..., γ ( n −1) ( γ ′,..., γ ( n −1) )


1− n / 1+ n
.
ÄÙÙËÌ̇fl ÏÂÚË͇
ÄÙÙËÌ̇fl ÏÂÚË͇ – ÏÂÚË͇ ̇ ÌÂ‡Á‚ÂÚ˚‚‡ÂÏÓÈ ÔÓ‚ÂıÌÓÒÚË r = r (u1 , u2 ) ‚
‡‚ÌÓ‡ÙÙËÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â A3 , Á‡‰‡Ì̇fl  ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ (( gij )) :
gij =
aij
det (( aij ))
1/ 4
,
„‰Â aij = (∂1r, ∂ 2 r, ∂ ij r ), i, j ∈{1, 2}.
6.4. çÖÖÇäãàÑéÇÄ ÉÖéåÖíêàü
íÂÏËÌÓÏ Ì‚ÍÎˉӂ‡ „ÂÓÏÂÚËfl ÓÔËÒ˚‚‡˛ÚÒfl Í‡Í „ËÔÂ·Ó΢ÂÒ͇fl „ÂÓÏÂÚËfl
(ËÎË „ÂÓÏÂÚËfl ãÓ·‡˜Â‚ÒÍÓ„Ó, „ÂÓÏÂÚËfl ãÓ·‡˜Â‚ÒÍÓ„Ó–ÅÓθflȖɇÛÒÒ‡), Ú‡Í Ë
˝ÎÎËÔÚ˘ÂÒ͇fl „ÂÓÏÂÚËfl (ËÌÓ„‰‡  ڇÍÊ ̇Á˚‚‡˛Ú ËχÌÓ‚ÓÈ „ÂÓÏÂÚËÂÈ),
ÍÓÚÓ˚ ÓÚ΢‡˛ÚÒfl ÓÚ Â‚ÍÎˉӂÓÈ (ËÎË Ô‡‡·Ó΢ÂÒÍÓÈ) „ÂÓÏÂÚËË. éÒÌÓ‚Ì˚Ï
‡Á΢ËÂÏ ÏÂÊ‰Û Â‚ÍÎˉӂÓÈ Ë Ì‚ÍÎˉӂÓÈ „ÂÓÏÂÚËflÏË fl‚ÎflÂÚÒfl ÔËÓ‰‡
Ô‡‡ÎÎÂθÌ˚ı ÔflÏ˚ı. Ç Â‚ÍÎˉӂÓÈ „ÂÓÏÂÚËË, ÂÒÎË Ï˚ ËÏÂÂÏ ÔflÏÛ˛ l Ë ÚÓ˜ÍÛ
‡, ÍÓÚÓ‡fl ÂÈ Ì ÔË̇‰ÎÂÊËÚ, ÚÓ Ï˚ ÏÓÊÂÏ ÔÓ‚ÂÒÚË ˜ÂÂÁ ˝ÚÛ ÚÓ˜ÍÛ ÚÓθÍÓ Ó‰ÌÛ
ÔflÏÛ˛, Ô‡‡ÎÎÂθÌÛ˛ l. Ç „ËÔÂ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË ÒÛ˘ÂÒÚ‚ÛÂÚ ·ÂÒÍÓ̘ÌÓÂ
ÏÌÓÊÂÒÚ‚Ó ÔflÏ˚ı, ÔÓıÓ‰fl˘Ëı ˜ÂÂÁ ÚÓ˜ÍÛ ‡ Ë Ô‡‡ÎÎÂθÌ˚ı l. Ç ˝ÎÎËÔÚ˘ÂÒÍÓÈ
„ÂÓÏÂÚËË Ô‡‡ÎÎÂθÌ˚ı ÔflÏ˚ı ‚ÓÓ·˘Â Ì ÒÛ˘ÂÒÚ‚ÛÂÚ.
ëÙÂ˘ÂÒ͇fl „ÂÓÏÂÚËfl Ú‡ÍÊ fl‚ÎflÂÚÒfl "Ì‚ÍÎˉӂÓÈ", Ӊ̇ÍÓ ‚ ÌÂÈ ÌÂ
‰ÂÈÒÚ‚ÛÂÚ ‡ÍÒËÓχ, ÛÚ‚Âʉ‡˛˘‡fl, ˜ÚÓ Î˛·˚ ‰‚ ÚÓ˜ÍË Á‡‰‡˛Ú ÚÓθÍÓ Ó‰ÌÛ
ÔflÏÛ˛.
ëÙÂ˘ÂÒ͇fl ÏÂÚË͇
n +1


èÛÒÚ¸ S n (0, r ) =  x ∈ n +1 :
xi2 = r 2  – ÒÙÂ‡ ‚ n +1 Ò ˆÂÌÚÓÏ 0 Ë ‡‰ËÛÒÓÏ


i =1
r > 0.
ëÙÂ˘ÂÒ͇fl ÏÂÚË͇ (ËÎË ÏÂÚË͇ ·Óθ¯Ó„Ó ÍÛ„‡) dsph ÂÒÚ¸ ÏÂÚË͇ ̇
S n (0, r ), ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑



r arccos 



n +1
∑ xi yi
i =1
r2



,



„‰Â arccos – ‡ÍÍÓÒËÌÛÒ Ì‡ ÓÚÂÁÍ [0, π]. ùÚÓ – ‰ÎË̇ ‰Û„Ë ·Óθ¯Ó„Ó ÍÛ„‡, ÔÓıÓ-
103
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
‰fl˘Â„Ó ˜ÂÂÁ ı Ë Û. àÒÔÓθÁÛfl Òڇ̉‡ÚÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ⟨ x, y ⟩ =
n +1
∑ xi yi
i =1
̇ n +1 , ÒÙÂ˘ÂÒÍÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í r arccos
⟨ x, y ⟩
⟨ x, x ⟩ ⟨ y, y ⟩
.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( S n (0, r ), dsph ) ̇Á˚‚‡ÂÚÒfl n-ÏÂÌ˚Ï ÒÙÂ˘ÂÒÍËÏ
ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ùÚÓ – ÔÓÒÚ‡ÌÒÚ‚Ó ÍË‚ËÁÌ˚ 1/r2 (r – ‡‰ËÛÒ ÍË‚ËÁÌ˚), ÍÓÚÓÓÂ
fl‚ÎflÂÚÒfl ÏÓ‰Âθ˛ n-ÏÂÌÓÈ ÒÙÂ˘ÂÒÍÓÈ „ÂÓÏÂÚËË. ÅÓθ¯Ë ÍÛ„Ë ÒÙÂ˚ – „Ó
„ÂÓ‰ÂÁ˘ÂÒÍËÂ, ‚Ò „ÂÓ‰ÂÁ˘ÂÒÍË fl‚Îfl˛ÚÒfl Á‡ÏÍÌÛÚ˚ÏË Ë ËÏÂ˛Ú Ó‰Ë̇ÍÓ‚Û˛
‰ÎËÌÛ (ÒÏ., ̇ÔËÏÂ, [Blum70]).
ùÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇
èÛÒÚ¸ Pn – ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ùÎÎËÔÚ˘ÂÒÍÓÈ ÏÂÚËÍÓÈ dell ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ Pn , ÓÔ‰ÂÎÂÌ̇fl ͇Í
r arccos
⟨ x, y ⟩
⟨ x, x ⟩ ⟨ y, y ⟩
,
‰Îfl β·˚ı x = ( x1 : ... : x n +1 ), y = ( y1 : ... : yn +1 ) ∈ P n , „‰Â ⟨ x, y ⟩ =
n +1
∑ xi yi , r – ÙËÍÒËi =1
Ó‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡ Ë arccos – ‡ÍÍÓÒËÌÛÒ Ì‡ ÓÚÂÁÍ [0, π].
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (P n , dell ) ̇Á˚‚‡ÂÚÒfl n-ÏÂÌ˚Ï ˝ÎÎËÔÚ˘ÂÒÍËÏ
ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ë Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÏÓ‰Âθ n-ÏÂÌÓÈ ˝ÎÎËÔÚ˘ÂÒÍÓÈ „ÂÓÏÂÚËË. éÌÓ fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÍË‚ËÁÌ˚ 1/r2 (r – ‡‰ËÛÒ ÍË‚ËÁÌ˚). èË r → ∞
ÏÂÚ˘ÂÒÍË ÙÓÏÛÎ˚ ˝ÎÎËÔÚ˘ÂÒÍÓÈ „ÂÓÏÂÚËË Ô‚‡˘‡˛ÚÒfl ‚ ÙÓÏÛÎ˚
‚ÍÎˉӂÓÈ „ÂÓÏÂÚËË (ËÎË ÒÚ‡ÌÓ‚flÚÒfl Î˯ÂÌÌ˚ÏË ÒÏ˚Ò·).
ÖÒÎË Pn ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó En (0, r), ÔÓÎÛ˜ÂÌÌÓ ËÁ ÒÙÂ˚
n +1


S n (0, r ) =  x ∈ n +1 :
xi2 = r 2  ‚ n +1 Ò ˆÂÌÚÓÏ 0 Ë ‡‰ËÛÒÓÏ r ÔÓÒ‰ÒÚ‚ÓÏ ÓÚÓÊ

i =1
‰ÂÒÚ‚ÎÂÌËfl ‰Ë‡ÏÂÚ‡Î¸ÌÓ ÔÓÚË‚ÓÔÓÎÓÊÌ˚ı ÚÓ˜ÂÍ, ÚÓ ˝ÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇ ̇
π
En (0, r) ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂ̇ Í‡Í dsph ( x, y), ÂÒÎË dsph ( x, y) ≤ r Ë Í‡Í
2
π
πr − dsph ( x, y), ÂÒÎË dsph ( x, y) > r, „‰Â dsph – ÒÙÂ˘ÂÒ͇fl ÏÂÚË͇ ̇ Sn(0, r). í‡ÍËÏ
2
Ó·‡ÁÓÏ, Ì ÒÛ˘ÂÒÚ‚ÛÂÚ ‰‚Ûı ÚÓ˜ÂÍ ÏÌÓÊÂÒÚ‚‡ En (0, r) ̇ ‡ÒÒÚÓflÌËË, Ô‚˚π
¯‡˛˘ÂÏ r. ùÎÎËÔÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó En (0, r)dell) ̇Á˚‚‡ÂÚÒfl ÒÙÂÓÈ èÛ‡Ì2
͇Â.
ÖÒÎË Pn ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó En ÔflÏ˚ı, ÔÓıÓ‰fl˘Ëı ˜ÂÂÁ ÌÛ΂ÓÈ
˝ÎÂÏÂÌÚ ‚ n +1 , ÚÓ ˝ÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇ ̇ En ÓÔ‰ÂÎflÂÚÒfl Í‡Í Û„ÓÎ ÏÂʉÛ
ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË.
n-åÂÌÓ ˝ÎÎËÔÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓÒÚÓflÌÌÓÈ ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚. ùÚÓ – ‰ËÌÒÚ‚ÂÌÌÓ ڇÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓÂ
ÚÓÔÓÎӄ˘ÂÒÍË ˝Í‚Ë‚‡ÎÂÌÚÌÓ ÔÓÂÍÚË‚ÌÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û (ÒÏ., ̇ÔËÏÂ, [Blum70],
[Buse55]).
∑
104
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ùÏËÚÓ‚‡ ˝ÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇
èÛÒÚ¸ Pn – n-ÏÂÌÓ ÍÓÏÔÎÂÍÒÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ùÏËÚÓ‚‡ ˝ÎÎËÔH
Ú˘ÂÒ͇fl ÏÂÚË͇ dell
(ÒÏ., ̇ÔËÏÂ, [Buse55]) ÂÒÚ¸ ÏÂÚË͇ ̇ Pn , ÓÔ‰ÂÎÂÌ̇fl
͇Í
⟨ x, y ⟩
r arccos
⟨ x, x ⟩ ⟨ y, y ⟩
‰Îfl β·˚ı x = ( x1 : ... : x n +1 ), y = ( y1 : ... : yn +1 ) ∈ P n , „‰Â ⟨ x, y ⟩ =
n +1
∑ xi yi , r – ÙËÍÒËi =1
Ó‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡ Ë arccos – ‡ÍÍÓÒËÌÛÒ Ì‡ ÓÚÂÁÍ [0, π].
H
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó P n , dell
̇Á˚‚‡ÂÚÒfl n-ÏÂÌ˚Ï ˝ÏËÚÓ‚˚Ï ˝ÎÎËÔ-
(
)
Ú˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÒÏ. åÂÚË͇ îÛ·ËÌË–òÚÛ‰Ë, „Î. 7).
åÂÚË͇ ˝ÎÎËÔÚ˘ÂÒÍÓÈ ÔÎÓÒÍÓÒÚË
åÂÚË͇ ˝ÎÎËÔÚ˘ÂÒÍÓÈ ÔÎÓÒÍÓÒÚË ÂÒÚ¸ ˝ÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇ ̇ ˝ÎÎËÔÚ˘ÂÒÍÓÈ ÔÎÓÒÍÓÒÚË P2 . ÖÒÎË P2 ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÒÙÂ‡ èÛ‡Ì͇ (Ú.Â. ÒÙÂ‡ ‚
3 Ò ÓÚÓʉÂÒÚ‚ÎÂÌÌ˚ÏË ‰Ë‡ÏÂÚ‡Î¸ÌÓ ÔÓÚË‚ÓÔÓÎÓÊÌ˚ÏË ÚӘ͇ÏË) ‰Ë‡ÏÂÚ‡ 1,
͇҇˛˘‡flÒfl ‡Ò¯ËÂÌÌÓÈ ÍÓÏÔÎÂÍÒÌÓÈ ÔÎÓÒÍÓÒÚË = ∪ {∞} ‚ ÚӘ͠z = 0, ÚÓ,
ÔË ÒÚÂÂÓ„‡Ù˘ÂÒÍÓÈ ÔÓÂ͈ËË Ò "ë‚ÂÌÓ„Ó ÔÓÎ˛Ò‡" (0,0,1), Ò ÓÚÓʉÂ1
ÒÚ‚ÎÂÌÌ˚ÏË ÚӘ͇ÏË z Ë − fl‚ÎflÂÚÒfl ÏÓ‰Âθ˛ ˝ÎÎËÔÚ˘ÂÒÍÓÈ ÔÎÓÒÍÓÒÚË Ë ÏÂÚz
Ë͇ dell ˝ÎÎËÔÚ˘ÂÒÍÓÈ ÔÎÓÒÍÓÒÚË Ì‡ ÌÂÈ ÓÔ‰ÂÎflÂÚÒfl Ò‚ÓËÏ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌ| dz |2
ÚÓÏ ds 2 =
.
(1+ | z |2 )2
èÒ‚‰Ó˝ÎÎËÔÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
èÒ‚‰Ó˝ÎÎËÔÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË (ËÎË ˝ÎÎËÔÚ˘ÂÒÍÓ ÔÒ‚‰Ó‡ÒÒÚÓflÌËÂ) dpell
ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ‡Ò¯ËÂÌÌÓÈ ÍÓÏÔÎÂÍÒÌÓÈ ÔÎÓÒÍÓÒÚË = ∪ {∞} Ò ÓÚÓʉÂ1
ÒÚ‚ÎÂÌÌ˚ÏË ÚӘ͇ÏË z Ë − , ÓÔ‰ÂÎÂÌÌÓ ͇Í
z
z−u
.
1 + zu
àÏÂÌÌÓ, dpell ( z, u) = tg dell ( z, u), „‰Â dpell – ÏÂÚË͇ ˝ÎÎËÔÚ˘ÂÒÍÓÈ ÔÎÓÒÍÓÒÚË.
ÉËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇
èÛÒÚ¸ P2 – n-ÏÂÌÓ ‚¢ÂÒÚ‚ÂÌÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë ÔÛÒÚ¸ ‰Îfl β·˚ı x = ( x1 : ... : x n +1 ), y = ( y1 : ... : yn +1 ) ∈ P n Á‡‰‡ÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ⟨x, y⟩ =
= − x1 y1 +
n +1
∑ xi yi .
i=2
ÉËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇ d h y p ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â H n = {x ∈P n :
: ⟨ x, x ⟩ < 0}, ÓÔ‰ÂÎÂÌ̇fl ͇Í
r arccosh
⟨ x, y ⟩
⟨ x, x ⟩ ⟨ y, y ⟩
,
105
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
„‰Â r – ÙËÍÒËÓ‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡ Ë arccosh Ó·ÓÁ̇˜‡ÂÚ ÌÂÓÚˈ‡ÚÂθÌ˚ ‚Â΢ËÌ˚ Ó·‡ÚÌÓ„Ó „ËÔÂ·Ó΢ÂÒÍÓ„Ó ÍÓÒËÌÛÒ‡. èË Ú‡ÍÓÏ ÔÓÒÚÓÂÌËË ÚÓ˜ÍË ÏÌÓÊÂÒÚ‚‡ H n ÏÓ„ÛÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í Ó‰ÌÓÏÂÌ˚ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡
ÔÒ‚‰Ó‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n,1 ‚ÌÛÚË ÍÓÌÛÒ‡ C = {x ∈ n,1 : ⟨ x, x ⟩ = 0}.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( H n , dhyp ) ̇Á˚‚‡ÂÚÒfl n-ÏÂÌ˚Ï „ËÔÂ·Ó΢ÂÒÍËÏ
ÔÓÒÚ‡ÌÒÚ‚ÓÏ. éÌÓ fl‚ÎflÂÚÒfl ÏÓ‰Âθ˛ n-ÏÂÌÓÈ „ËÔÂ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË,
ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÍË‚ËÁÌ˚ –1/r2 (r – ‡‰ËÛÒ ÍË‚ËÁÌ˚). èË Á‡ÏÂÌ r ̇ ir ‚ÒÂ
ÏÂÚ˘ÂÒÍË ÙÓÏÛÎ˚ „ËÔÂ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË ÔÂÂȉÛÚ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÂ
ÙÓÏÛÎ˚ ˝ÎÎËÔÚ˘ÂÒÍÓÈ „ÂÓÏÂÚËË. èË r → ∞ ÙÓÏÛÎ˚ ͇ʉÓÈ ËÁ ÒËÒÚÂÏ ‰‡˛Ú
ÙÓÏÛÎ˚ ‚ÍÎˉӂÓÈ „ÂÓÏÂÚËË (ËÎË ÒÚ‡ÌÓ‚flÚÒfl Î˯ÂÌÌ˚ÏË ÒÏ˚Ò·).
n


ÖÒÎË Hn ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó  x ∈ n :
xi2 < K , „‰Â ä > 1 – ÔÓ

i =1
ËÁ‚Óθ̇fl ÙËÍÒËÓ‚‡Ì̇fl ÍÓÌÒÚ‡ÌÚ‡, ÚÓ „ËÔÂ·Ó΢ÂÒÍÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ͇Í
r 1 + 1 − γ ( x, y)
,
ln
2 1 − 1 − γ ( x, y)
∑
„‰Â γ ( x, y) =

K −

n
∑
i =1

xi2   K −

n

∑ yi2 
i =1
2
Ë r – ÔÓÎÓÊËÚÂθÌÓ ˜ËÒÎÓ Ò tg
1
1
=
.
r
K


xi yi 
K −


i =1
ÖÒÎË Hn ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÔÓ‰ÏÌÓ„ÓÓ·‡ÁË (n + 1)-ÏÂÌÓ„Ó ÔÒ‚‰Ó‚ÍÎˉӂ‡
n
∑
ÔÓÒÚ‡ÌÒÚ‚‡ n,1 ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ ⟨ x, y ⟩ = − x1 y1 +
n +1
∑ xi yi
(ËÏÂÌÌÓ,
i=2
Í‡Í ‚ÂıÌËÈ ÎËÒÚ {x ∈ n,1 : ⟨ x, x ⟩ = −1, x1 > 0} ‰‚ÛıÔÓÎÓÒÚÌÓ„Ó „ËÔÂ·ÓÎÓˉ‡ ‚‡˘ÂÌËfl), ÚÓ „ËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇ ̇ Hn ÔÓÓʉ‡ÂÚÒfl ÔÒ‚‰ÓËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ n,1 (ÒÏ. åÂÚË͇ ãÓÂ̈‡, „Î. 26).
n-åÂÌÓ „ËÔÂ·Ó΢ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓÒÚÓflÌÌÓÈ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚. ùÚÓ Â‰ËÌÒÚ‚ÂÌÌÓ ڇÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓÂ
fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï Ë ÚÓÔÓÎӄ˘ÂÒÍË ˝Í‚Ë‚‡ÎÂÌÚÌ˚Ï Â‚ÍÎË‰Ó‚Û ÔÓÒÚ‡ÌÒÚ‚Û (ÒÏ.,
̇ÔËÏÂ, [Blum70], [Buse55]).
ùÏËÚÓ‚‡ „ËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇
èÛÒÚ¸ P n – n-ÏÂÌÓ ÍÓÏÔÎÂÍÒÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë ÔÛÒÚ¸ ‰Îfl
β·˚ı x = ( x1 : ... : x n +1 ), y = ( y1 : ... : yn +1 ) ∈ P n Á‡‰‡ÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌËÂ
⟨ x, y ⟩ = − x1 y1 +
n +1
∑ xi yi .
i=2
H
ùÏËÚÓ‚‡ „ËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇ dhyp
(ÒÏ., ̇ÔËÏÂ, [Buse55]) ÂÒÚ¸ ÏÂÚË͇
̇ ÏÌÓÊÂÒÚ‚Â H n = {x ∈ P n : ⟨ x, x ⟩ < 0}, Á‡‰‡‚‡Âχfl ͇Í
r arccosh
⟨ x, y ⟩
⟨ x, x ⟩ ⟨ y, y ⟩
,
106
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
„‰Â r – ÙËÍÒËÓ‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡ Ë arccosh Ó·ÓÁ̇˜‡ÂÚ ÌÂÓÚˈ‡ÚÂθÌ˚ ‚Â΢ËÌ˚ Ó·‡ÚÌÓ„Ó „ËÔÂ·Ó΢ÂÒÍÓ„Ó ÍÓÒËÌÛÒ‡.
H
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó H n , dhyp
̇Á˚‚‡ÂÚÒfl n-ÏÂÌ˚Ï ˝ÏËÚÓ‚˚Ï
(
)
„ËÔÂ·Ó΢ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
åÂÚË͇ èÛ‡Ì͇Â
åÂÚË͇ èÛ‡Ì͇ dP ÂÒÚ¸ „ËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇ ‰Îfl ÏÓ‰ÂÎË ‰ËÒ͇
èÛ‡Ì͇ (ËÎË ÏÓ‰ÂÎË ÍÓÌÙÓÏÌÓ„Ó ‰ËÒ͇) „ËÔÂ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË. Ç ‰‡ÌÌÓÈ
ÏÓ‰ÂÎË Í‡Ê‰‡fl ÚӘ͇ ‰ËÌ˘ÌÓ„Ó ‰ËÒ͇ ∆ = {z ∈ : | z | < 1} ̇Á˚‚‡ÂÚÒfl „ËÔÂ·Ó΢ÂÒÍÓÈ ÚÓ˜ÍÓÈ, Ò‡Ï ‰ËÒÍ ∆ – „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÎÓÒÍÓÒÚ¸˛, ‰Û„Ë ÓÍÛÊÌÓÒÚÂÈ (Ë
‰Ë‡ÏÂÚ˚) ‚ ∆, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ÓÚÓ„Ó̇θÌ˚ÏË Í ‡·ÒÓβÚÛ Ω = {z ∈ : | z | < 1},
̇Á˚‚‡˛ÚÒfl „ËÔÂ·Ó΢ÂÒÍËÏË ÔflÏ˚ÏË. ä‡Ê‰‡fl ÚӘ͇ ËÁ Ω ̇Á˚‚‡ÂÚÒfl ˉ‡θÌÓÈ ÚÓ˜ÍÓÈ. ì„ÎÓ‚˚ ËÁÏÂÂÌËfl ‚ ‰‡ÌÌÓÈ ÏÓ‰ÂÎË Ú‡ÍË ÊÂ, Í‡Í Ë ‚ „ËÔÂ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË. åÂÚË͇ èÛ‡Ì͇ ̇ ∆ Á‡‰‡ÂÚÒfl  ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 =
dz12 + dz 22
| dz | 2
=
(1 − | z |2 )2
1 − z12 − z 22
(
)
2
.
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË z Ë u ‰ËÒ͇ ∆ ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡ÌÓ Í‡Í
1 | 1 − zu | + | z − u |
|z−u|
ln
= arctgh
.
2 | 1 − zu | − | z − u |
| 1 − zu |
Ç ÚÂÏË̇ı ‡Ì„‡ÏÓÌ˘ÂÒÍÓ„Ó ÓÚÌÓ¯ÂÌËfl ÓÌÓ ‡‚ÌÓ
1
1 ( z ∗ − z ) (u * − u )
ln( z, u, z * , u* ) = ln *
,
2
2 ( z − u ) (u * − z )
„‰Â z * Ë u* fl‚Îfl˛ÚÒfl ÚӘ͇ÏË ÔÂÂÒ˜ÂÌËfl „ËÔÂ·Ó΢ÂÒÍÓÈ ÔflÏÓÈ ÎËÌËË,
ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ z Ë u, Ò Ω, z * ÒÓ ÒÚÓÓÌ˚ u Ë u* – ÒÓ ÒÚÓÓÌ˚ z.
Ç ÏÓ‰ÂÎË ÔÓÎÛÔÎÓÒÍÓÒÚË èÛ‡Ì͇ „ËÔÂ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË „ËÔÂ·Ó΢ÂÒ͇fl ÔÎÓÒÍÓÒÚ¸ ÂÒÚ¸ ‚ÂıÌflfl ÔÓÎÛÔÎÓÒÍÓÒÚ¸ H 2 = {z ∈ : z 2 > 0}, ‡ „ËÔÂ·Ó΢ÂÒÍËÂ
ÔflÏ˚ – ÔÓÎÛÓÍÛÊÌÓÒÚË Ë ÔÓÎÛÔflÏ˚Â, ÍÓÚÓ˚ ÓÚÓ„Ó̇θÌ˚ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ
ÓÒË. Ä·ÒÓÎ˛Ú (Ú.Â. ÏÌÓÊÂÒÚ‚Ó Ë‰Â‡Î¸Ì˚ı ÚÓ˜ÂÍ) ÂÒÚ¸ ‰ÂÈÒÚ‚ËÚÂθ̇fl ÓÒ¸ ‚ÏÂÒÚ Ò
·ÂÒÍÓ̘ÌÓ Û‰‡ÎÂÌÌÓÈ ÚÓ˜ÍÓÈ. ì„ÎÓ‚˚ ËÁÏÂÂÌËfl ‚ ‰‡ÌÌÓÈ ÏÓ‰ÂÎË Ú‡ÍË ÊÂ, ͇Í
Ë ‚ „ËÔÂ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ÏÂÚËÍË èÛ‡Ì͇ ̇ H 2
Á‡‰‡ÂÚÒfl ÔÓ ÙÓÏÛÎÂ
ds 2 =
| dz |2 dz12 + dz 22
=
.
( z )2
z 22
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË z, u ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡ÌÓ Í‡Í
1 |z−u |+|z−u|
|z−u|
ln
= arctgh
.
2 |z−u |−|z−u|
| z −u |
Ç ÚÂÏË̇ı ‡Ì„‡ÏÓÌ˘ÂÒÍÓ„Ó ÓÚÌÓ¯ÂÌËfl ÓÌÓ ‡‚ÌÓ
1
1 ( z ∗ − z ) (u * − u )
ln( z, u, z * , u* ) = ln *
,
2
2 ( z − u ) (u * − z )
107
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
„‰Â z * – ˉ‡θ̇fl ÚӘ͇ ÔÓÎÛÔflÏÓÈ, ËÒıÓ‰fl˘ÂÈ ËÁ z Ë ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ u, Ë u* –
ˉ‡θ̇fl ÚӘ͇ ÔÓÎÛÔflÏÓÈ, ËÒıÓ‰fl˘ÂÈ ËÁ u Ë ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ z.
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â „ËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇ ‚ β·ÓÈ Ó·Î‡ÒÚË D ⊂ , Ëϲ˘ÂÈ
ÔÓ Í‡ÈÌÂÈ ÏÂ ÚË „‡Ì˘Ì˚ ÚÓ˜ÍË, Á‡‰‡ÂÚÒfl Í‡Í ÔÓÓ·‡Á ÏÂÚËÍË èÛ‡Ì͇Â
̇ ∆ ÔË ÍÓÌÙÓÏÌÓÏ ÓÚÓ·‡ÊÂÌËË f : D → ∆. Ö ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ËÏÂÂÚ ÙÓÏÛ
ds 2 =
| f ′( z ) |2 | dz |2
.
(1 − | f ( z ) |2 )2
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË z Ë u ËÁ D ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌÓ Í‡Í
1 | 1 − f ( z ) f (u ) | + | f ( z ) − f (u ) |
.
ln
2 | 1 − f ( z ) f (u ) | − | f ( z ) − f (u ) |
èÒ‚‰Ó„ËÔÂ·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
èÒ‚‰Ó„ËÔÂ·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌË (ËÎË ‡ÒÒÚÓflÌË ÉÎËÒÓ̇, „ËÔÂ·Ó΢ÂÒÍÓÂ
ÔÒ‚‰Ó‡ÒÒÚÓflÌËÂ) dp hyp ÂÒÚ¸ ÏÂÚË͇ ̇ ‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ = {z ∈ : | z | < 1}, Á‡‰‡Ì̇fl ͇Í
z−u
.
1 − zu
àÏÂÌÌÓ, dphyp ( z, u) = tgh dP ( z, u), „‰Â dP – ÏÂÚË͇ èÛ‡Ì͇ ̇ ∆.
åÂÚË͇ ä˝ÎË–äÎÂÈ̇–ÉËθ·ÂÚ‡
åÂÚË͇ ä˝ÎË–äÎÂÈ̇–ÉËθ·ÂÚ‡ dCKH – „ËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇ ‰Îfl ÏÓ‰ÂÎË
äÎÂÈ̇ (ËÎË ÏÓ‰ÂÎË ÔÓÂÍÚË‚ÌÓ„Ó ‰ËÒ͇, ÏÓ‰ÂÎË ÅÂθÚ‡ÏË–äÎÂÈ̇) „ËÔÂ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË. Ç ˝ÚÓÈ ÏÓ‰ÂÎË „ËÔÂ·Ó΢ÂÒ͇fl ÔÎÓÒÍÓÒÚ¸ ‡ÎËÁÛÂÚÒfl ͇Í
‰ËÌ˘Ì˚È ‰ËÒÍ ∆ = {z ∈ : | z | < 1} Ë „ËÔÂ·Ó΢ÂÒÍË ÔflÏ˚ – Í‡Í ıÓ‰˚ ‰ËÒ͇ ∆.
ä‡Ê‰‡fl ÚӘ͇ ‡·ÒÓβڇ Ω = {z ∈ : | z | = 1} ̇Á˚‚‡ÂÚÒfl ˉ‡θÌÓÈ ÚÓ˜ÍÓÈ. ì„ÎÓ‚˚ ËÁÏÂÂÌËfl ‚ ‰‡ÌÌÓÈ ÏÓ‰ÂÎË ËÒ͇ÊÂÌ˚. åÂÚË͇ ä˝ÎË–äÎÂÈ̇–ÉËθ·ÂÚ‡ ̇ ∆
Á‡‰‡ÂÚÒfl  ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ (( gij )), i, j = 1, 2 :
g11 =
(
)
−z )
r 2 1 − z 22
(1 − z
2
1
2 2
2
, g12 =
r 2 z1z 2
(1 − z
2
1
−
)
2
z 22
, g22 =
(
)
−z )
r 2 1 − z12
(1 − z
2
1
2 2
2
,
„‰Â r – ÔÓËÁ‚Óθ̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚӘ͇ÏË z Ë u ËÁ
∆ ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡ÌÓ Í‡Í

1 − z1u1 − z 2 u2
r arccosh 
 1 − z 2 − z 2 1 − u2 − u2

1
2
1
2

,


„‰Â arccosh Ó·ÓÁ̇˜‡ÂÚ ÌÂÓÚˈ‡ÚÂθÌ˚ ‚Â΢ËÌ˚ Ó·‡ÚÌÓ„Ó „ËÔÂ·Ó΢ÂÒÍÓ„Ó
ÍÓÒËÌÛÒ‡.
åÂÚË͇ ÇÂÈÂ¯Ú‡ÒÒ‡
ÑÎfl ‰‡ÌÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó n-ÏÂÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ò͇ÎflÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl
( n , ⟨ , ⟩), n ≥ 2 ÏÂÚË͇ ÇÂÈÂ¯Ú‡ÒÒ‡ dW ÂÒÚ¸ ÏÂÚË͇ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
arccosh
(
)
1 + ⟨ x, x ⟩ 1 + ⟨ y, y ⟩ − ⟨ x, y ⟩ ,
108
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
„‰Â arccosh Ó·ÓÁ̇˜‡ÂÚ ÌÂÓÚˈ‡ÚÂθÌ˚ ‚Â΢ËÌ˚ Ó·‡ÚÌÓ„Ó „ËÔÂ·Ó΢ÂÒÍÓ„Ó
ÍÓÒËÌÛÒ‡.
á‰ÂÒ¸ x, 1 + ⟨ x, x ⟩ ∈ n ⊕ fl‚Îfl˛ÚÒfl ÍÓÓ‰Ë̇ڇÏË ÇÂÈÂ¯Ú‡ÒÒ‡ ÚÓ˜ÍË
(
)
x ∈ n Ë ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (n, dW) ÏÓÊÂÚ ·˚Ú¸ ÓÚÓʉÂÒÚ‚ÎÂÌÓ Ò ÏÓ‰Âθ˛
ÇÂÈÂ¯Ú‡ÒÒ‡ „ËÔÂ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË.
1 − ⟨ x, y ⟩
åÂÚË͇ ä˝ÎË–äÎÂÈ̇–ÉËθ·ÂÚ‡ dCKH ( x, y) = arccosh
̇
1 − ⟨ x, x ⟩ 1 − ⟨ y, y ⟩
ÓÚÍ˚ÚÓÏ ¯‡ B n = {x ∈ n : ⟨ x, x ⟩ < 1} ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜Â̇ ËÁ dW ÔÓÒ‰ÒÚ‚ÓÏ
‡‚ÂÌÒÚ‚‡ dCKH ( x, y) = dW (µ( x ), µ( y)), „‰Â µ : n → B n fl‚ÎflÂÚÒfl ÓÚÓ·‡ÊÂÌËÂÏ
x
ÇÂÈÂ¯Ú‡ÒÒ‡: µ( x ) =
.
1 − ⟨ x, x ⟩
䂇ÁË„ËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇
ÑÎfl ‰‡ÌÌÓÈ Ó·Î‡ÒÚË D ⊂ n , n ≥ 2 Í‚‡ÁË„ËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇
̇ D, Á‡‰‡‚‡Âχfl ͇Í
| dz |
,
γ ∈Γ ∫ ρ( z )
inf
γ
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ÏÌÓÊÂÒÚ‚Û Γ ‚ÒÂı ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ı Ë
Û ‚ D , ρ( z ) = inf || z − u ||2 – ‡ÒÒÚÓflÌË ÏÂÊ‰Û z Ë „‡ÌˈÂÈ ∂D , || ⋅ ||2 – ‚ÍÎˉӂ‡
u ∈∂D
ÌÓχ ̇ n. ùÚ‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ, „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û, ÂÒÎË
ӷ·ÒÚ¸ D – ‡‚ÌÓÏÂ̇fl, Ú.Â. ÒÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍË ÍÓÌÒÚ‡ÌÚ˚ ë, ë', ˜ÚÓ Í‡Ê‰‡fl Ô‡‡
ÚÓ˜ÂÍ x, y ∈ D ÏÓÊÂÚ ·˚Ú¸ ÒÓ‰ËÌÂ̇ ÒÔflÏÎflÂÏÓÈ ÍË‚ÓÈ γ ∈ D ‰ÎËÌ˚ l(γ), ÌÂ
Ô‚˚¯‡˛˘ÂÈ C | x − y |, Ë ÌÂ‡‚ÂÌÒÚ‚Ó min{l( γ ( x, z )), l( γ ( z, y))} ≤ C ′ρ( z ) ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı z ∈ γ.
ÑÎfl n = 2 „ËÔÂ·Ó΢ÂÒ͇fl ÏÂÚË͇ ̇ D ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì‡ ‚˚‡ÊÂÌËÂÏ
2 | f ′( z ) |
2 | dz |,
γ ∈Γ ∫ 1− | f ( z ) |
inf
γ
„‰Â f : D → ∆ ÂÒÚ¸ β·Ó ÍÓÌÙÓÏÌÓ ÓÚÓ·‡ÊÂÌË ӷ·ÒÚË D ̇ ‰ËÌ˘Ì˚È ‰ËÒÍ
∆ = {z ∈ : | z | < 1}. ÑÎfl n ≥ 3 ˝Ú‡ ÏÂÚË͇ ÓÔ‰ÂÎflÂÚÒfl ÚÓθÍÓ ‰Îfl ÔÓÎÛ„ËÔÂÔÎÓÒÍÓÒÚË H n Ë ‰Îfl ÓÚÍ˚ÚÓ„Ó Â‰ËÌ˘ÌÓ„Ó ¯‡‡ Bn Í‡Í ËÌÙËÏÛÏ ÔÓ ‚ÒÂÏ γ ∈ Γ
| dz |
2 | dz |
ËÌÚ„‡ÎÓ‚
Ë
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
zn
1− || z ||22
∫
γ
∫
γ
ÄÔÓÎÎÓÌÓ‚‡ ÏÂÚË͇
èÛÒÚ¸ D ⊂ n , D ≠ n – ӷ·ÒÚ¸, ڇ͇fl ˜ÚÓ Â ‰ÓÔÓÎÌÂÌË Ì ÒÓ‰ÂÊËÚÒfl ‚
„ËÔÂÔÎÓÒÍÓÒÚË ËÎË ÒÙÂÂ.
ÄÔÓÎÎÓÌÓ‚ÓÈ ÏÂÚËÍÓÈ (ËÎË ÏÂÚËÍÓÈ Å‡·ËΡ̇, [Barb35]) ̇Á˚‚‡ÂÚÒfl
ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl Ò ÔÓÏÓ˘¸˛ ‡Ì„‡ÏÓÌ˘ÂÒÍÓ„Ó ÓÚÌÓ¯ÂÌËfl ÒÎÂ‰Û˛˘ËÏ
109
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
Ó·‡ÁÓÏ:
sup ln
a, b ∈∂D
|| a − x ||2 || b − y ||2
,
|| a − y ||2 || b − x ||2
„‰Â ∂D – „‡Ìˈ‡ D Ë || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n.
чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û.
èÓÎÛ‡ÔÓÎÎÓÌÓ‚‡ ÏÂÚË͇
ÑÎfl ‰‡ÌÌÓÈ Ó·Î‡ÒÚË D ⊂ n , D ≠ n ÔÓÎÛ‡ÔÓÎÎÓÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl
ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl ͇Í
sup ln
a ∈∂D
|| a − y ||2
,
|| a − x ||2
„‰Â ∂D – „‡Ìˈ‡ D Ë || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n.
чÌ̇fl ÏÂÚË͇ ·Û‰ÂÚ „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ӷ·ÒÚ¸
D ËÏÂÂÚ ‚ˉ n \ {x}, Ú.Â. ËÏÂÂÚ ‚ÒÂ„Ó Ó‰ÌÛ „‡Ì˘ÌÛ˛ ÚÓ˜ÍÛ.
åÂÚË͇ ÉÂËÌ„‡
ÑÎfl ӷ·ÒÚË D ⊂ n , D ≠ n ÏÂÚË͇ ÉÂËÌ„‡ (ËÎË j̃ D -ÏÂÚË͇ ÓÚÌÓ¯ÂÌËfl
‡ÒÒÚÓflÌËÈ) ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl ͇Í
1   || x − y ||2 
ln 1 +

ρ( x ) 
2  
 || x − y ||2  
1 +
 ,
ρ( y)  

„‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë ρ( x ) = inf || x − u ||2 – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë „‡u ∈∂D
ÌˈÂÈ ∂D ӷ·ÒÚË D.
чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û.
åÂÚË͇ ÇÛÓËÌÂ̇
ÑÎfl ‰‡ÌÌÓÈ Ó·Î‡ÒÚË D ⊂ n , D ≠ n ÏÂÚË͇ ÇÛÓËÌÂ̇ (ËÎË jD-ÏÂÚË͇ ÓÚÌÓ¯ÂÌËfl ‡ÒÒÚÓflÌËÈ) ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl ͇Í


|| x − y ||2
ln 1 +
,
min{ρ( x ), ρ( y)}

„‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n ρ( x ) = inf || x − u ||2 – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë „‡u ∈∂D
ÌˈÂÈ ∂D ӷ·ÒÚË D.
чÌ̇fl ÏÂÚË͇ ·Û‰ÂÚ „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ӷ·ÒÚ¸
D ËÏÂÂÚ ‚ˉ n \ {x}, , Ú.Â. ËÏÂÂÚ ‚ÒÂ„Ó Ó‰ÌÛ „‡Ì˘ÌÛ˛ ÚÓ˜ÍÛ.
åÂÚË͇ îÂ‡Ì‰‡
ÑÎfl ‰‡ÌÌÓÈ Ó·Î‡ÒÚË D ⊂ n , D ≠ n ÏÂÚË͇ îÂ‡Ì‰‡ ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl ͇Í
inf
γ ∈Γ
|| a − b ||
2
| dz |,
∫ a,sup
b ∈∂D || z − a ||2 || z − b ||2
γ
110
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ÏÌÓÊÂÒÚ‚Û Γ ‚ÒÂı ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ı Ë
Û ‚ D, ∂D – „‡Ìˈf D Ë || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n.
чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û, ÂÒÎË D fl‚ÎflÂÚÒfl ‡‚ÌÓÏÂÌÓÈ, Ú.Â. ÒÛ˘ÂÒÚ‚Û˛Ú ÍÓÌÒÚ‡ÌÚ˚ C, C', Ú‡ÍË ˜ÚÓ Í‡Ê‰‡fl Ô‡‡ ÚÓ˜ÂÍ x, y ∈ D
ÏÓÊÂÚ ·˚Ú¸ ÒÓ‰ËÌÂ̇ ÒÔflÏÎflÂÏÓÈ ÍË‚ÓÈ γ ∈ D ‰ÎËÌ˚ l(γ), Ì Ô‚ÓÒıÓ‰fl˘ÂÈ C | x − y |, Ë ÌÂ‡‚ÂÌÒÚ‚Ó min{l( γ ( x, z )), l( γ ( z, y))} ≤ C ′ρ( z ) ËÏÂÂÚ ÏÂÒÚÓ ‰Îfl ‚ÒÂı
z ∈ γ.
åÂÚË͇ ëÂÈÚÂÌ‡ÌÚ‡
ÑÎfl ‰‡ÌÌÓÈ Ó·Î‡ÒÚË D ⊂ n , D ≠ n ÏÂÚË͇ ëÂÈÚÂÌ‡ÌÚ‡ (ËÎË ÏÂÚË͇ ‡Ì„‡ÏÓÌ˘ÂÒÍÓ„Ó ÓÚÌÓ¯ÂÌËfl) ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl ͇Í
 || a − x ||2 || b − y ||2 
sup ln 1 +
,
 || a − b ||2 || x − y ||2 
a, b ∈∂D
„‰Â ∂D – „‡Ìˈ‡ D Ë || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n.
чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û.
åÂÚË͇ ÏÓ‰ÛÎ˛Ò‡
èÛÒÚ¸ D ⊂ n , D ≠ n – ÌÂÍÓÚÓ‡fl ӷ·ÒÚ¸ Ò „‡ÌˈÂÈ ∂D, Ëϲ˘‡fl ÔÓÎÓÊËÚÂθÌÛ˛ ÂÏÍÓÒÚ¸.
åÂÚË͇ ÏÓ‰ÛÎ˛Ò‡ (ɇÎ, 1960) ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl ͇Í
inf M ( ∆(Cxy , ∂D, D)),
C xy
„‰Â å(Γ) fl‚ÎflÂÚÒfl ÍÓÌÙÓÏÌ˚Ï ÏÓ‰ÛβÒÓÏ ÒÂÏÂÈÒÚ‚‡ ÍË‚˚ı Γ Ë C xy ÂÒÚ¸ ÍÓÌÚËÌÛÛÏ, Ú‡ÍÓÈ ˜ÚÓ ‰Îfl ÌÂÍÓÚÓÓÈ ÍË‚ÓÈ γ : [0, 1] → D Ï˚ ËÏÂÂÏ ÒÎÂ‰Û˛˘ËÂ
Ò‚ÓÈÒÚ‚‡: Cxy = γ ([0, 1]), γ (0) = x Ë γ (1) = y (ÒÏ. ùÍÒÚÂχθ̇fl ÏÂÚË͇, „Î. 8).
чÌ̇fl ÏÂÚË͇ ·Û‰ÂÚ „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û, ÂÒÎË D – ÓÚÍ˚Ú˚È ¯‡
B n = {x ∈ n : ⟨ x, x ⟩ < 1} ËÎË Ó‰ÌÓÒ‚flÁ̇fl ӷ·ÒÚ¸ ‚ 2 .
ÇÚÓ‡fl ÏÂÚË͇ îÂ‡Ì‰‡
èÛÒÚ¸ D ⊂ n , D ≠ n – ӷ·ÒÚ¸, ڇ͇fl ˜ÚÓ | n \ {D} | ≥ 2. ÇÚÓÓÈ ÏÂÚËÍÓÈ
îÂ‡Ì‰‡ ·Û‰ÂÚ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl ͇Í


 CinfC M ( ∆(Cx , Cy , D)
 x, y

1 / 1− n
,
„‰Â å(Γ) fl‚ÎflÂÚÒfl ÍÓÌÙÓÏÌ˚Ï ÏÓ‰ÛβÒÓÏ ÒÂÏÂÈÒÚ‚‡ ÍË‚˚ı Γ Ë Cz (z = x, y) ÂÒÚ¸
ÍÓÌÚËÌÛÛÏ, Ú‡ÍÓÈ ˜ÚÓ ‰Îfl ÌÂÍÓÚÓÓÈ ÍË‚ÓÈ γ : [0, 1] → D Ï˚ ËÏÂÂÏ ÒÎÂ‰Û˛˘ËÂ
Ò‚ÓÈÒÚ‚‡: Cz = ([0, 1])), z ∈| γ z | Ë γ z (t ) → ∂D ÔË t → 1 (ÒÏ. ùÍÒÚÂχθ̇fl ÏÂÚË͇,
„Î. 8).
чÌ̇fl ÏÂÚË͇ ·Û‰ÂÚ „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û, ÂÒÎË D – ÓÚÍ˚Ú˚È ¯‡
n
B = {x ∈ n : ⟨ x, x ⟩ < 1} ËÎË Ó‰ÌÓÒ‚flÁ̇fl ӷ·ÒÚ¸ ‚ 2 .
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
111
è‡‡·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
è‡‡·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌË ÂÒÚ¸ ÏÂÚË͇ ̇ n+1, ‡ÒÒχÚË‚‡ÂÏÓÏ Í‡Í n × ,
ÓÔ‰ÂÎflÂχfl ͇Í
( x1 − y1 )2 + ... + ( x n − yn )2 + | t x − t y |1 / m ,
m ∈
‰Îfl β·˚ı n × .
èÓÒÚ‡ÌÒÚ‚Ó n × ÏÓÊÂÚ ËÌÚÂÔÂÚËÓ‚‡Ú¸Òfl Í‡Í ÏÌÓ„ÓÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl.
é·˚˜ÌÓ ËÒÔÓθÁÛÂÚÒfl Á̇˜ÂÌË m = 2. ëÛ˘ÂÒÚ‚Û˛Ú ÌÂÍÓÚÓ˚ ‚‡ˇÌÚ˚ Ô‡‡·Ó΢ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl, ̇ÔËÏÂ Ô‡‡·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
sup{| x1 − y1 |, | x 2 − y2 |1 / 2}
̇ 2 (ÒÏ. Ú‡ÍÊ åÂÚË͇ ÍÓ‚‡ êËÍχ̇, „Î. 19) ËÎË Ô‡‡·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
ÔÓÎÛÔÓÒÚ‡ÌÒÚ‚‡ ̇ 3+ = {x ∈ 3 : x1 ≥ 0}, Á‡‰‡‚‡ÂÏÓ ͇Í
| x1 − y1 | + | x 2 − y2 |
+
x1 + x 2 + | x 2 − y2
| x3 − y3 |.
É·‚‡ 7
êËχÌÓ‚˚ Ë ˝ÏËÚÓ‚˚ ÏÂÚËÍË
êËχÌÓ‚ÓÈ „ÂÓÏÂÚËÂÈ Ì‡Á˚‚‡ÂÚÒfl ÏÌÓ„ÓÏÂÌÓ ӷӷ˘ÂÌË ‚ÌÛÚÂÌÌÂÈ „ÂÓÏÂÚËË ‰‚ÛÏÂÌ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ Â‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ 2 . é̇ Á‡ÌËχÂÚÒfl ËÁÛ˜ÂÌËÂÏ ‚¢ÂÒÚ‚ÂÌÌ˚ı „·‰ÍËı ÏÌÓ„ÓÓ·‡ÁËÈ, Ò̇·ÊÂÌÌ˚ı ËχÌÓ‚˚ÏË ÏÂÚË͇ÏË,
Ú.Â. ÒÂÏÂÈÒÚ‚‡ÏË ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ÒËÏÏÂÚ˘Ì˚ı ·ËÎËÌÂÈÌ˚ı ÙÓÏ
((gij)) ̇ Ëı ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı, ÍÓÚÓ˚ „·‰ÍÓ ÏÂÌfl˛ÚÒfl ÓÚ ÚÓ˜ÍË Í
ÚÓ˜ÍÂ. ÉÂÓÏÂÚËfl Ú‡ÍËı (ËχÌÓ‚˚ı) ÏÌÓ„ÓÓ·‡ÁËÈ ·‡ÁËÛÂÚÒfl ̇ ÎËÌÂÈÌÓÏ
˝ÎÂÏÂÌÚ ds 2 =
gij dxi dx j . ë Â„Ó ÔÓÏÓ˘¸˛ ÓÔ‰ÂÎfl˛ÚÒfl, ‚ ˜‡ÒÚÌÓÒÚË, ÎÓ͇θÌ˚Â
∑
ij
ÔÓÌflÚËfl ۄ·, ‰ÎËÌ˚ ÍË‚˚ı Ë Ó·˙Âχ. àÁ ÌËı ÔÓÒ‰ÒÚ‚ÓÏ ËÌÚ„ËÓ‚‡ÌËfl ÏÓ„ÛÚ
·˚Ú¸ ÔÓÎÛ˜ÂÌ˚ ‰Û„ËÂ, „ÎÓ·‡Î¸Ì˚ ‚Â΢ËÌ˚. í‡Í, ‚Â΢Ë̇ ÏÓÊÂÚ ·˚Ú¸
‡ÒÒÏÓÚÂ̇ Í‡Í ‰ÎË̇ ‚ÂÍÚÓ‡ (dx1,..., dx n ); ‰ÎË̇ ‰Û„Ë ÍË‚ÓÈ γ ‚˚‡Ê‡ÂÚÒfl ÚÂÔÂ¸
͇Í
gij dxi dx j ;
∫ ∑
i, j
ÚÓ„‰‡ ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ËχÌÓ‚ÓÏ ÏÌÓ„ÓÓ·‡ÁËË
γ
Á‡‰‡ÂÚÒfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ‰‚ ‰‡ÌÌ˚ ÚÓ˜ÍË ÏÌÓ„ÓÓ·‡ÁËfl.
í‡ÍËÏ Ó·‡ÁÓÏ, ËχÌÓ‚‡ ÏÂÚË͇ Ì fl‚ÎflÂÚÒfl Ó·˚˜ÌÓÈ ÏÂÚËÍÓÈ, ÌÓ ÔÓÓʉ‡ÂÚ
Ó·˚˜ÌÛ˛ ÏÂÚËÍÛ, ËÏÂÌÌÓ, ‚ÌÛÚÂÌÌ˛˛ ÏÂÚËÍÛ, ÍÓÚÓÛ˛ ËÌÓ„‰‡ ̇Á˚‚‡˛Ú
ËχÌÓ‚˚Ï ‡ÒÒÚÓflÌËÂÏ, ̇ β·ÓÏ Ò‚flÁÌÓÏ ËχÌÓ‚ÓÏ ÏÌÓ„ÓÓ·‡ÁËË; ËχÌÓ‚‡
ÏÂÚË͇ fl‚ÎflÂÚÒfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏÓÈ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó ËχÌÓ‚‡
‡ÒÒÚÓflÌËfl.
Ç Í‡˜ÂÒÚ‚Â ÓÒÓ·˚ı ÒÎÛ˜‡Â‚ ËχÌÓ‚ÓÈ „ÂÓÏÂÚËË ‡ÒÒχÚË‚‡˛ÚÒfl ‰‚‡
Òڇ̉‡ÚÌ˚ı ÒÎÛ˜‡fl – ˝ÎÎËÔÚ˘ÂÒ͇fl „ÂÓÏÂÚËfl Ë „ËÔÂ·Ó΢ÂÒ͇fl „ÂÓÏÂÚËfl
Ì‚ÍÎˉӂÓÈ „ÂÓÏÂÚËË, ‡ Ú‡ÍÊ ҇χ ‚ÍÎˉӂ‡ „ÂÓÏÂÚËfl.
ÖÒÎË ·ËÎËÌÂÈÌ˚ ÙÓÏ˚ ((gij)) fl‚Îfl˛ÚÒfl Ì‚˚ÓʉÂÌÌ˚ÏË, ÌÓ ÌÂÓÔ‰ÂÎÂÌÌ˚ÏË, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ ÔÒ‚‰ÓËχÌÓ‚Û „ÂÓÏÂÚ˲. ÑÎfl ‡ÁÏÂÌÓÒÚË 4 (Ë Ò˄̇ÚÛ˚ (1, 3)) ڇ͇fl „ÂÓÏÂÚËfl fl‚ÎflÂÚÒfl ÓÒÌÓ‚Ì˚Ï Ó·˙ÂÍÚÓÏ Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË. ÖÒÎË ds = F( x1 ,..., x n , dx1 ,..., dx n ), „‰Â F – ‰ÂÈÒÚ‚ËÚÂθ̇fl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl, ÍÓÚÓÛ˛ ÌÂθÁfl Á‡‰‡Ú¸ Í‡Í Í‚‡‰‡ÚÌ˚È
ÍÓÂ̸ ËÁ ÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏ˚ (Í‡Í ˝ÚÓ ‰Â·ÂÚÒfl ‚ ËχÌÓ‚ÓÈ
„ÂÓÏÂÚËË), ÚÓ Ï˚ ÔÓÎÛ˜ËÏ ÙËÌÒÎÂÓ‚Û „ÂÓÏÂÚ˲, Ô‰ÒÚ‡‚Îfl˛˘Û˛ ÒÓ·ÓÈ Ó·Ó·˘ÂÌË ËχÌÓ‚ÓÈ „ÂÓÏÂÚËË.
ùÏËÚÓ‚‡ „ÂÓÏÂÚËfl Á‡ÌËχÂÚÒfl ËÁÛ˜ÂÌËÂÏ ÍÓÏÔÎÂÍÒÌ˚ı ÏÌÓ„ÓÓ·‡ÁËÈ,
Ò̇·ÊÂÌÌ˚ı ˝ÏËÚÓ‚˚ÏË ÏÂÚË͇ÏË, Ú.Â. ÒÂÏÂÈÒÚ‚‡ÏË ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ÒËÏÏÂÚ˘Ì˚ı ÒÂÒÍËÎËÌÂÈÌ˚ı ÙÓÏ Ì‡ Ëı ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı,
ÍÓÚÓ˚ „·‰ÍÓ ÏÂÌfl˛ÚÒfl ÓÚ ÚÓ˜ÍË Í ÚÓ˜ÍÂ. éÌË fl‚Îfl˛ÚÒfl ÍÓÏÔÎÂÍÒÌ˚Ï ‡Ì‡ÎÓ„ÓÏ
ËχÌÓ‚ÓÈ „ÂÓÏÂÚËË. éÒÓ·˚È Í·ÒÒ ˝ÏËÚÓ‚˚ı ÏÂÚËÍ Ó·‡ÁÛ˛Ú ÏÂÚËÍË
äÂıÎÂ‡, Ëϲ˘Ë Á‡ÏÍÌÛÚÛ˛ ÙÛ̉‡ÏÂÌڇθÌÛ˛ ÙÓÏÛ w. é·Ó·˘ÂÌË ˝ÏËÚÓ‚˚ı
ÏÂÚËÍ ‰‡ÂÚ Ì‡Ï ÍÓÏÔÎÂÍÒÌ˚ ÙËÌÒÎÂÓ‚˚ ÏÂÚËÍË, ÍÓÚÓ˚ ÌÂθÁfl ‚˚‡ÁËÚ¸
‚ ÚÂÏË̇ı ·ËÎËÌÂÈÌ˚ı ÒËÏÏÂÚ˘Ì˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ÒÂÒÍËÎËÌÂÈÌ˚ı ÙÓÏ.
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
113
7.1. êàåÄçéÇõ åÖíêàäà à éÅéÅôÖçàü
èÓËÁ‚ÓθÌÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ Ò „‡ÌˈÂÈ Mn ÂÒÚ¸
ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ÚӘ͇ ËÏÂÂÚ ÓÚÍ˚ÚÛ˛ ÓÍÂÒÚÌÓÒÚ¸,
„ÓÏÂÓÏÓÙÌÛ˛ ÎË·Ó ÓÚÍ˚ÚÓÏÛ ÔÓ‰ÏÌÓÊÂÒÚ‚Û n , ÎË·Ó ÓÚÍ˚ÚÓÏÛ ÔÓ‰ÏÌÓÊÂÒÚ‚Û
Á‡ÏÍÌÛÚÓ„Ó ÔÓÎÛÔÓÒÚ‡ÌÒÚ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ n. åÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ, Ëϲ˘Ëı
ÓÚÍ˚Ú˚ ÓÍÂÒÚÌÓÒÚË, „ÓÏÂÓÏÓÙÌ˚ n , ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ‚ÌÛÚÂÌÌËı
ÚÓ˜ÂÍ ÏÌÓ„ÓÓ·‡ÁËfl; ÓÌÓ ‚Ò„‰‡ fl‚ÎflÂÚÒfl ÌÂÔÛÒÚ˚Ï. ÑÓÔÓÎÌÂÌË ‚ÌÛÚÂÌÌ„Ó
ÏÌÓÊÂÒÚ‚‡ ÚÓ˜ÂÍ Ì‡Á˚‚‡ÂÚÒfl „‡ÌˈÂÈ ÏÌÓ„ÓÓ·‡ÁËfl Ë Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ (n – 1)ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ. ÖÒÎË „‡Ìˈ‡ ÏÌÓ„ÓÓ·‡ÁËfl Mn ÔÛÒÚ‡, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ
‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË ·ÂÁ „‡Ìˈ˚.
åÌÓ„ÓÓ·‡ÁË ·ÂÁ „‡Ìˈ˚ ̇Á˚‚‡ÂÚÒfl Á‡ÏÍÌÛÚ˚Ï, ÂÒÎË ÓÌÓ ÍÓÏÔ‡ÍÚÌÓ, Ë
ÓÚÍ˚Ú˚Ï – Ë̇˜Â.
éÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó Mn ‚ÏÂÒÚÂ Ò „ÓÏÂÓÏÓÙËÁÏÓÏ ÏÂÊ‰Û ‰‡ÌÌ˚Ï ÓÚÍ˚Ú˚Ï
ÏÌÓÊÂÒÚ‚ÓÏ Ë ÌÂÍÓÚÓ˚Ï ÓÚÍ˚Ú˚Ï ÏÌÓÊÂÒÚ‚ÓÏ ËÁ n ̇Á˚‚‡ÂÚÒfl ÍÓÓ‰Ë̇ÚÌÓÈ
͇ÚÓÈ. ëÂÏÂÈÒÚ‚Ó ÔÓÍ˚‚‡˛˘Ëı ÏÌÓÊÂÒÚ‚Ó Mn ͇Ú Ì‡Á˚‚‡ÂÚÒfl ‡Ú·ÒÓÏ Ì‡ Mn .
ÉÓÏÂÓÏÓÙËÁÏ˚ ‰‚Ûı ÔÂÂÍ˚‚‡˛˘ËıÒfl ͇Ú ‰‡˛Ú Ì‡Ï ÓÚÓ·‡ÊÂÌË ӉÌÓ„Ó
ÔÓ‰ÏÌÓÊÂÒÚ‚‡ n ‚ ÌÂÍÓ ‰Û„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚Ó n. ÖÒÎË ‚Ò ˝ÚË ÓÚÓ·‡ÊÂÌËfl
ÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏ˚, ÚÓ ÏÌÓÊÂÒÚ‚Ó Mn ̇Á˚‚‡ÂÚÒfl ‰ËÙÙÂÂ̈ËÛÂÏ˚Ï
ÏÌÓ„ÓÓ·‡ÁËÂÏ. ÖÒÎË ‚Ò ˝ÚË ÓÚÓ·‡ÊÂÌËfl fl‚Îfl˛ÚÒfl k ‡Á ÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏ˚ÏË, ÚÓ ÏÌÓ„ÓÓ·‡ÁË ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl C k ÏÌÓ„ÓÓ·‡ÁËÂÏ; ÂÒÎË ÓÌË
·ÂÒÍÓ̘ÌÓ ˜ËÒÎÓ ‡Á ‰ËÙÙÂÂ̈ËÛÂÏ˚, ÚÓ ÏÌÓ„ÓÓ·‡ÁË ̇Á˚‚‡ÂÚÒfl „·‰ÍËÏ
ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË C∞ ÏÌÓ„ÓÓ·‡ÁËÂÏ).
ÄÚÎ‡Ò ÏÌÓ„ÓÓ·‡ÁËfl ̇Á˚‚‡ÂÚÒfl ÓËÂÌÚËÓ‚‡ÌÌ˚Ï, ÂÒÎË ‚Ò ÍÓÓ‰Ë̇ÚÌ˚Â
ÔÂÓ·‡ÁÓ‚‡ÌËfl ÏÂÊ‰Û Í‡Ú‡ÏË fl‚Îfl˛ÚÒfl ÔÓÎÓÊËÚÂθÌ˚ÏË, Ú.Â. flÍÓ·Ë‡Ì ÍÓÓ‰Ë̇ÚÌ˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ͇Ú‡ÏË ÔÓÎÓÊËÚÂÎÂÌ ‚ β·ÓÈ
ÚÓ˜ÍÂ. éËÂÌÚËÛÂÏ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÏÌÓ„ÓÓ·‡ÁËÂ, ÍÓÚÓÓ ‰ÓÔÛÒ͇ÂÚ Ì‡Î˘Ë ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ‡Ú·҇.
åÌÓ„ÓÓ·‡ÁËfl ̇ÒÎÂ‰Û˛Ú ÏÌÓ„Ë ÎÓ͇θÌ˚ ҂ÓÈÒÚ‚‡ ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡.
Ç ˜‡ÒÚÌÓÒÚË, ÓÌË fl‚Îfl˛ÚÒfl ÎÓ͇θÌÓ ÔÛÚ¸-Ò‚flÁÌ˚ÏË, ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌ˚ÏË Ë
ÎÓ͇θÌÓ ÏÂÚËÁÛÂÏ˚ÏË. ã˛·Ó „·‰ÍÓ ËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË ËÁÓÏÂÚ˘ÂÒÍË
‚ÎÓÊËÏÓ (ç˝¯, 1956) ‚ ÌÂÍÓÚÓÓ ÍÓ̘ÌÓÏÂÌÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó.
ë ͇ʉÓÈ ÚÓ˜ÍÓÈ Ì‡ ‰ËÙÙÂÂ̈ËÛÂÏÓÏ ÏÌÓ„ÓÓ·‡ÁËË ‡ÒÒÓˆËËÓ‚‡Ì˚ ͇҇ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë ‰‚ÓÈÒÚ‚ÂÌÌÓ ÂÏÛ ÍÓ-͇҇ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó. îÓχθÌÓ, ÔÛÒÚ¸ Mn – ëÎ ÏÌÓ„ÓÓ·‡ÁËÂ, k ≥ 1, Ë  – ÌÂÍÓÚÓ‡fl ÚӘ͇ ËÁ Mn . ᇉ‡‰ËÏ
͇ÚÛ ϕ : U → n , „‰Â U – ÓÚÍ˚ÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ Mn , ÒÓ‰Âʇ˘ÂÂ
ÚÓ˜ÍÛ . è‰ÔÓÎÓÊËÏ, ˜ÚÓ ‰‚ ÍË‚˚ γ 1 : ( −1, 1) → M n Ë γ 2 : ( −1, 1) → M n ÒÓ
Á̇˜ÂÌËflÏË γ 1 (0) = γ 2 (0) = p Á‡‰‡Ì˚ Ú‡Í, ˜ÚÓ Ó·Â ‚Â΢ËÌ˚ ϕ ⋅ γ 1 Ë ϕ ⋅ γ 2 fl‚Îfl˛ÚÒfl
‰ËÙÙÂÂ̈ËÛÂÏ˚ÏË ‚ ÚӘ͠0. Ç ˝ÚÓÏ ÒÎÛ˜‡Â γ1 Ë γ2 ̇Á˚‚‡˛ÚÒfl ͇҇ÚÂθÌ˚ÏË ‚
ÚӘ͠0, ÂÒÎË Ó·˚˜Ì˚ ÔÓËÁ‚Ó‰Ì˚ ‰Îfl ϕ ⋅ γ 1 Ë ϕ ⋅ γ 2 ÒÓ‚Ô‡‰‡˛Ú ‚ 0:
(ϕ ⋅ γ 1 )′ (0) = (ϕ ⋅ γ 2 )′ (0). ÖÒÎË ÙÛÌ͈ËË ϕ ⋅ γ i : ( −1, 1) → n , i = 1, 2 Á‡‰‡Ì˚ Ò ÔÓÏÓ˘¸˛
n ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ÍÓÓ‰Ë̇ÚÌ˚ı ÙÛÌ͈ËÈ (ϕ ⋅ γ i )1 (t ),..., (ϕ ⋅ γ i ) n (t ), ÚÓ ‚˚¯ÂÛ͇Á‡Ì d (ϕ ⋅ γ i )1 (t )
d (ϕ ⋅ γ i ) n (t ) 
ÌÓ ÛÒÎÓ‚Ë ·Û‰ÂÚ ÓÁ̇˜‡Ú¸, ˜ÚÓ Ëı flÍӷˇÌ˚ 
,...,
 ÒÓ‚Ô‡dt
dt


‰‡˛Ú ‚ 0. ùÚÓ ÓÚÌÓ¯ÂÌË fl‚ÎflÂÚÒfl ÓÚÌÓ¯ÂÌËÂÏ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË, ‡ Í·ÒÒ
˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË γ'(0) ÍË‚ÓÈ γ ̇Á˚‚‡ÂÚÒfl ͇҇ÚÂθÌ˚Ï ‚ÂÍÚÓÓÏ ÏÌÓ„ÓÓ·‡ÁËfl
114
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
Mn ‚ ÚӘ͠ . ä‡Ò‡ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Tp (M n ) ÏÌÓ„ÓÓ·‡ÁËfl M n ‚ ÚӘ͠
ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ͇҇ÚÂθÌ˚ı ‚ÂÍÚÓÓ‚ ‚ ÚӘ͠. îÛÌ͈Ëfl
( dϕ ) p : Tp ( M n ) → n , Á‡‰‡‚‡Âχfl ÛÒÎÓ‚ËÂÏ ( dϕ ) p ( γ ′(0)) = (ϕ ⋅ γ )′ (0), fl‚ÎflÂÚÒfl ·ËÂÍÚË‚ÌÓÈ Ë ÏÓÊÂÚ ·˚Ú¸ ËÒÔÓθÁÓ‚‡Ì‡ ‰Îfl ÔÂÂÌÂÒÂÌËfl ÓÔÂ‡ˆËÈ ÎËÌÂÈÌÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ ËÁ n ̇ T p (M n ).
ÇÒ ͇҇ÚÂθÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ Tp(M n ), p ∈ Mn , "ÒÍÎÂÂÌÌ˚ ‚ÏÂÒÚÂ", Ó·‡ÁÛ˛Ú
͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË T(Mn ) ÏÌÓ„ÓÓ·‡ÁËfl Mn . ã˛·ÓÈ ˝ÎÂÏÂÌÚ ËÁ T(M n ) ÂÒÚ¸ Ô‡‡
(p , v ), „‰Â v ∈Tp ( M n ). ÖÒÎË ‰Îfl ÓÚÍ˚ÚÓÈ ÓÍÂÒÚÌÓÒÚË U ÚÓ˜ÍË  ÙÛÌ͈Ëfl
ϕ : U → fl‚ÎflÂÚÒfl ÍÓÓ‰Ë̇ÚÌÓÈ Í‡ÚÓÈ, ÚÓ ÔÓÓ·‡Á V ÓÍÂÒÚÌÓÒÚË U ‚ T(Mn )
‰ÓÔÛÒ͇ÂÚ ÓÚÓ·‡ÊÂÌË ψ : V → n × n , ÓÔ‰ÂÎflÂÏÓÂ Í‡Í ψ ( p, v) = (ϕ( p), dϕ( p)).
ùÚÓ ÓÔ‰ÂÎflÂÚ ÒÚÛÍÚÛÛ „·‰ÍÓ„Ó 2n-ÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl ̇ T(M n ). Ä̇Îӄ˘Ì˚Ï Ó·‡ÁÓÏ ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ ÍÓ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË T * ( M n ) ÏÌÓ„ÓÓ·‡ÁËfl
Mn , ËÒÔÓθÁÛfl ‰Îfl ˝ÚÓ„Ó ÍÓ͇҇ÚÂθÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ Tp* ( M n ), p ∈ M n .
ÇÂÍÚÓÌÓ ÔÓΠ̇ ÏÌÓ„ÓÓ·‡ÁËË Mn ÂÒÚ¸ Ò˜ÂÌËÂ Â„Ó Í‡Ò‡ÚÂθÌÓ„Ó ‡ÒÒÎÓÂÌËfl
T(Mn ), Ú.Â. „·‰Í‡fl ÙÛÌ͈Ëfl f : M n → T ( M n ), ÍÓÚÓ‡fl ͇ʉÓÈ ÚӘ͠p ∈ Mn ÒÚ‡‚ËÚ ‚
ÒÓÓÚ‚ÂÚÒÚ‚ËÂ ‚ÂÍÚÓ v ∈Tp ( M n ).
ë‚flÁ¸ (ËÎË ÍÓ‚‡ˇÌÚ̇fl ÔÓËÁ‚Ӊ̇fl) fl‚ÎflÂÚÒfl ÒÔÓÒÓ·ÓÏ ÓÔ‰ÂÎÂÌËfl ÔÓËÁ‚Ó‰ÌÓÈ ‚ÂÍÚÓÌÓ„Ó ÔÓÎfl ̇ ÏÌÓ„ÓÓ·‡ÁËË. îÓχθÌÓ, ÍÓ‚‡ˇÌÚ̇fl ÔÓËÁ‚Ӊ̇fl
∇ ‚ÂÍÚÓ‡ u (ÓÔ‰ÂÎÂÌÌÓ„Ó ‚ ÚӘ͠p ∈ Mn ) ‚ ̇Ô‡‚ÎÂÌËË ‚ÂÍÚÓ‡ v (ÓÔ‰ÂÎÂÌÌÓ„Ó ‚ ÚÓÈ Ê ÚӘ͠) ÂÒÚ¸ Ô‡‚ËÎÓ, ÍÓÚÓÓ Á‡‰‡ÂÚ ÚÂÚËÈ ‚ÂÍÚÓ ‚ ÚӘ͠,
̇Á˚‚‡ÂÏ˚È ∇ v u Ë Ó·Î‡‰‡˛˘ËÈ Ò‚ÓÈÒÚ‚‡ÏË ÔÓËÁ‚Ó‰ÌÓÈ. êËχÌÓ‚‡ ÏÂÚË͇
‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ ÓÔ‰ÂÎflÂÚ ÓÒÓ·Û˛ ÍÓ‚‡ˇÌÚÌÛ˛ ÔÓËÁ‚Ó‰ÌÛ˛, ̇Á˚‚‡ÂÏÛ˛ Ò‚flÁ¸˛ ã‚˖óË‚ËÚ‡. é̇ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ Ò‚flÁ¸ ∇ ·ÂÁ ÍÛ˜ÂÌËfl
͇҇ÚÂθÌÓ„Ó ‡ÒÒÎÓÂÌËfl, ÒÓı‡Ìfl˛˘Û˛ ‰‡ÌÌÛ˛ ËχÌÓ‚Û ÏÂÚËÍÛ.
êËχÌÓ‚ ÚÂÌÁÓ ÍË‚ËÁÌ˚ R fl‚ÎflÂÚÒfl Òڇ̉‡ÚÌ˚Ï ÒÔÓÒÓ·ÓÏ ‚˚‡ÊÂÌËfl ÍË‚ËÁÌ˚ ËχÌÓ‚˚ı ÏÌÓ„ÓÓ·‡ÁËÈ. êËχÌÓ‚ ÚÂÌÁÓ ÍË‚ËÁÌ˚ ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì ‚
ÚÂÏË̇ı Ò‚flÁË ã‚˖óË‚ËÚ‡ ∇ ÙÓÏÛÎÓÈ
R(u, v)w = ∇ u ∇ v w − ∇ v∇ u w − ∇[u, v]w,
„‰Â R(u, v) – ÎËÌÂÈÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË ͇҇ÚÂθÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl
∂
∂
Mn ; ÎËÌÂÈÌÓ ÔÓ Í‡Ê‰ÓÏÛ ‡„ÛÏÂÌÚÛ. ÖÒÎË Á̇˜ÂÌËfl u =
, v=
fl‚Îfl˛ÚÒfl
∂xi
∂x j
ÔÓÎflÏË ÍÓÓ‰Ë̇ÚÌ˚ı ‚ÂÍÚÓÓ‚, ÚÓ [u , v] = 0 Ë ÙÓÏÛÎÛ ÏÓÊÌÓ ÛÔÓÒÚËÚ¸:
R(u, v)w = ∇ u ∇ v w − ∇ v∇ w w, Ú.Â. ÚÂÌÁÓ ÍË‚ËÁÌ˚ ÒÎÛÊËÚ ÏÂÓÈ ‡ÌÚËÍÓÏÏÛÚ‡ÚË‚ÌÓÒÚË ÍÓ‚‡ˇÌÚÌÓÈ ÔÓËÁ‚Ó‰ÌÓÈ. ãËÌÂÈÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË w → R(u, v)w ̇Á˚‚‡˛Ú Ú‡ÍÊ ÔÂÓ·‡ÁÓ‚‡ÌËÂÏ ÍË‚ËÁÌ˚.
íÂÌÁÓ ÍË‚ËÁÌ˚ ê˘˜Ë (ËÎË ÍË‚ËÁ̇ ê˘˜Ë) Ric ÔÓÎÛ˜‡ÂÚÒfl Í‡Í ÒΉ ÔÓÎÌÓ„Ó
ÚÂÌÁÓ‡ ÍË‚ËÁÌ˚ R. ÑÎfl ÒÎÛ˜‡fl ËχÌÓ‚˚ı ÏÌÓ„ÓÓ·‡ÁËÈ Â„Ó ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í Î‡Ô·ÒË‡Ì ËχÌÓ‚‡ ÏÂÚ˘ÂÒÍÓ„Ó ÚÂÌÁÓ‡. íÂÌÁÓ ÍË‚ËÁÌ˚
ê˘˜Ë fl‚ÎflÂÚÒfl ÎËÌÂÈÌ˚Ï ÓÔÂ‡ÚÓÓÏ Ì‡ ͇҇ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ‚ ‰‡ÌÌÓÈ
ÚÓ˜ÍÂ. àÒÔÓθÁÛfl ÓÚÓÌÓÏËÓ‚‡ÌÌ˚È ·‡ÁËÒ (ei)i ‚ ͇҇ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â
T p (M n ), ÔÓÎÛ˜‡ÂÏ ÙÓÏÛÎÛ
Ric(u) =
∑ R(u, ei )ei .
i
115
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
êÂÁÛÎ¸Ú‡Ú Ì Á‡‚ËÒËÚ ÓÚ ‚˚·Ó‡ ÓÚÓÌÓÏËÓ‚‡ÌÌÓ„Ó ·‡ÁËÒ‡. 燘Ë̇fl Ò ‡ÁÏÂÌÓÒÚË 4, ÍË‚ËÁ̇ ê˘˜Ë ÛÊ Ì ÓÔËÒ˚‚‡ÂÚ ÚÂÌÁÓ ÍË‚ËÁÌ˚ ÔÓÎÌÓÒÚ¸˛.
ë͇Îfl ê˘˜Ë (ËÎË Ò͇Îfl̇fl ÍË‚ËÁ̇) Sc ËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl Mn fl‚ÎflÂÚÒfl
ÔÓÎÌ˚Ï ÒΉÓÏ ÚÂÌÁÓ‡ ÍË‚ËÁÌ˚; ËÒÔÓθÁÛfl ÓÚÓÌÓÏËÓ‚‡ÌÌ˚È ·‡ÁËÒ (ei)i ‚
ÚӘ͠p ∈ Mn , Ï˚ ÔÓÎÛ˜‡ÂÏ ‡‚ÂÌÒÚ‚Ó
Sc =
∑ ⟨ R(ei , e j )e j , ei ⟩ = ∑ ⟨Ric(ei ), ei ⟩.
i, j
i
ëÂ͈ËÓÌ̇fl ÍË‚ËÁ̇ K(σ) ËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl M n ÓÔ‰ÂÎflÂÚÒfl ͇Í
ÍË‚ËÁ̇ ɇÛÒÒ‡ σ-Ò˜ÂÌËfl ‚ ÚӘ͠p ∈ Mn . Ç ‰‡ÌÌÓÏ ÒÎÛ˜‡Â, ËÏÂfl 2-ÔÎÓÒÍÓÒÚ¸ σ ‚
͇҇ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â Tp(M n ), σ -Ò˜ÂÌË ÂÒÚ¸ ÎÓ͇θÌÓ ÓÔ‰ÂÎÂÌ̇fl ˜‡ÒÚ¸
ÔÓ‚ÂıÌÓÒÚË, ‰Îfl ÍÓÚÓÓÈ ÔÎÓÒÍÓÒÚ¸ σ fl‚ÎflÂÚÒfl ͇҇ÚÂθÌÓÈ ‚ ÚӘ͠, ÔÓÎÛ˜ÂÌÌÓÈ
ËÁ „ÂÓ‰ÂÁ˘ÂÒÍËı, ËÒıÓ‰fl˘Ëı ËÁ  ‚ ̇Ô‡‚ÎÂÌËflı Ó·‡Á‡ σ ÔË ˝ÍÒÔÓÌÂ̈ˇθÌÓÏ
ÓÚÓ·‡ÊÂÌËË.
åÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ
åÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ (ËÎË ÓÒÌÓ‚Ì˚Ï ÚÂÌÁÓÓÏ, ÙÛ̉‡ÏÂÌڇθÌ˚Ï ÚÂÌÁÓÓÏ) ̇Á˚‚‡ÂÚÒfl ÒËÏÏÂÚ˘Ì˚È ÚÂÌÁÓ ‡Ì„‡ 2, ËÒÔÓθÁÛÂÏ˚È ‰Îfl ËÁÏÂÂÌËfl
‡ÒÒÚÓflÌËÈ Ë Û„ÎÓ‚ ‚ ‚¢ÂÒÚ‚ÂÌÌÓÏ n-ÏÂÌÓÏ ‰ËÙÙÂÂ̈ËÛÂÏÓÏ ÏÌÓ„ÓÓ·‡ÁËË M n . èÓÒΠ‚˚·Ó‡ ÎÓ͇θÌÓÈ ÒËÒÚÂÏ˚ ÍÓÓ‰ËÌ‡Ú (xi)i ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ
‚ÓÁÌË͇ÂÚ Í‡Í ‰ÂÈÒÚ‚ËÚÂθ̇fl ÒËÏÏÂÚ˘̇fl (n × n) χÚˈ‡ ((gij)).
ᇉ‡ÌË ÏÂÚ˘ÂÒÍÓ„Ó ÚÂÌÁÓ‡ ̇ n-ÏÂÌÓÏ ‰ËÙÙÂÂ̈ËÛÂÏÓÏ ÏÌÓ„ÓÓ·‡ÁËË
Mn ÔÓÓʉ‡ÂÚ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË (Ú.Â. ÒËÏÏÂÚ˘ÌÛ˛ ·ËÎËÌÂÈÌÛ˛, Ӊ̇ÍÓ ‚
Ó·˘ÂÏ ÒÎÛ˜‡Â Ì fl‚Îfl˛˘Û˛Òfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ ÙÓÏÛ) ⟨ , ⟩ p ̇ ͇҇ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â T p (M n ) ‚ β·ÓÈ ÚӘ͠p ∈ Mn , Á‡‰‡‚‡ÂÏÓ ͇Í
⟨ x, y ⟩ p = g p ( x, y) =
∑ gij ( p) xi y j ,
i, j
„‰Â gij(p) – Á̇˜ÂÌË ÏÂÚ˘ÂÒÍÓ„Ó ÚÂÌÁÓ‡ ‚ ÚӘ͠p ∈ Mn , x = ( x1 ,..., x n ) Ë
y = ( y1 ,..., yn ) ∈ Tp ( M n ). ëÓ‚ÓÍÛÔÌÓÒÚ¸ ‚ÒÂı ˝ÚËı Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ g Ò ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ ((gij)). ÑÎË̇ ds ‚ÂÍÚÓ‡ ( dx1 ,..., dx n )
‚˚‡Ê‡ÂÚÒfl Í‚‡‰‡Ú˘ÌÓÈ ‰ËÙÙÂÂ̈ˇθÌÓÈ ÙÓÏÓÈ
ds 2 =
∑ gij dxi dx j .
i, j
ÍÓÚÓ‡fl ̇Á˚‚‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ (ËÎË ÔÂ‚ÓÈ ÙÛ̉‡ÏÂÌڇθÌÓÈ ÙÓÏÓÈ)
ÏÂÚËÍË g. ÑÎË̇ ÍË‚ÓÈ γ ‚˚‡Ê‡ÂÚÒfl ÙÓÏÛÎÓÈ
gij dxi dx j . Ç Ó·˘ÂÏ ÒÎÛ˜‡Â
∫ ∑
i, j
γ
Ó̇ ÏÓÊÂÚ ·˚Ú¸ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ, ˜ËÒÚÓ ÏÌËÏÓÈ ËÎË ÌÛ΂ÓÈ (ËÁÓÚÓÔ̇fl
ÍË‚‡fl).
ë˄̇ÚÛÓÈ ÏÂÚ˘ÂÒÍÓ„Ó ÚÂÌÁÓ‡ ̇Á˚‚‡ÂÚÒfl Ô‡‡ (p, q) ÔÓÎÓÊËÚÂθÌ˚ı () Ë
ÓÚˈ‡ÚÂθÌ˚ı (q) ÒÓ·ÒÚ‚ÂÌÌ˚ı Á̇˜ÂÌËÈ Ï‡Úˈ˚ ((gij)). ë˄̇ÚÛ‡ ̇Á˚‚‡ÂÚÒfl
ÌÂÓÔ‰ÂÎÂÌÌÓÈ, ÂÒÎË Á̇˜ÂÌËfl  Ë q fl‚Îfl˛ÚÒfl ÌÂÌÛ΂˚ÏË, Ë ÔÓÎÓÊËÚÂθÌÓ
ÓÔ‰ÂÎÂÌÌÓÈ, ÂÒÎË q = 0. ëÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ËχÌÓ‚‡ ÏÂÚË͇ – ÏÂÚË͇ g Ò ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ Ò˄̇ÚÛÓÈ (, 0), ‡ ÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ – ÏÂÚË͇ g Ò
ÌÂÓÔ‰ÂÎÂÌÌÓÈ Ò˄̇ÚÛÓÈ (p, q).
116
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ç‚˚ÓʉÂÌ̇fl ÏÂÚË͇
ç‚˚ÓʉÂÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ g Ò ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ ((gij)),
‰Îfl ÍÓÚÓÓ„Ó ÏÂÚ˘ÂÒÍËÈ ÓÔ‰ÂÎËÚÂθ det(( gij )) ≠ 0. ÇÒ ËχÌÓ‚˚ Ë ÔÒ‚‰ÓËχÌÓ‚˚ ÏÂÚËÍË fl‚Îfl˛ÚÒfl Ì‚˚ÓʉÂÌÌ˚ÏË.
Ç˚ÓʉÂÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ g Ò ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ ((gij)),
‰Îfl ÍÓÚÓÓ„Ó ÏÂÚ˘ÂÒÍËÈ Ô‰ÂÎËÚÂθ det(( gij )) = 0 (ÒÏ. èÓÎÛËχÌÓ‚‡ ÏÂÚË͇ Ë
èÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇). åÌÓ„ÓÓ·‡ÁËÂ Ò ‚˚ÓʉÂÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ËÁÓÚÓÔÌ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ.
Ñˇ„Ó̇θ̇fl ÏÂÚË͇
Ñˇ„Ó̇θÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ g Ò ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ ((gij)),
‰Îfl ÍÓÚÓÓ„Ó gij = 0 ÔË i ≠ j. Ö‚ÍÎˉӂ‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl ‰Ë‡„Ó̇θÌÓÈ ÏÂÚËÍÓÈ,
Ú‡Í Í‡Í Â ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ËÏÂÂÚ ‚ˉ gij = 1, gij = 0 ‰Îfl i ≠ j.
êËχÌÓ‚‡ ÏÂÚË͇
ê‡ÒÒÏÓÚËÏ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , ‚
ÍÓÚÓÓÏ Í‡Ê‰Ó ͇҇ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò̇·ÊÂÌÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ
(Ú.Â. ÒËÏÏÂÚ˘ÌÓÈ ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏÓÈ), „·‰ÍÓ
ËÁÏÂÌfl˛˘ËÏÒfl ÓÚ ÚÓ˜ÍË Í ÚÓ˜ÍÂ.
êËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ Mn fl‚ÎflÂÚÒfl ÒÂÏÂÈÒÚ‚Ó Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ ⟨ , ⟩ p ̇
͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı T p (M n ) – ÔÓ Ó‰ÌÓÏÛ ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË p ∈ Mn .
ä‡Ê‰Ó Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ⟨ , ⟩ p ÔÓÎÌÓÒÚ¸˛ Á‡‰‡ÂÚÒfl Ò͇ÎflÌ˚ÏË ÔÓËÁ‚‰ÂÌËflÏË ⟨ei , e j ⟩ p = gij ( p) ˝ÎÂÏÂÌÚÓ‚ e1 ,..., en Òڇ̉‡ÚÌÓ„Ó ·‡ÁËÒ‡ ‚ n , Ú.Â. ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÒËÏÏÂÚ˘ÌÓÈ Ë ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ n × n χÚˈÂÈ (( gij )) =
= (( gij ( p))), ̇Á˚‚‡ÂÏÓÈ ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ. àÏÂÌÌÓ, ⟨ x, y ⟩ p = = ∑ gij ( p) xi y j ,
i, j
„‰Â x = ( x1 ,..., x n ) Ë y = ( y1 ,..., yn ) ∈ Tp ( M ). É·‰Í‡fl ÙÛÌ͈Ëfl g ÔÓÎÌÓÒÚ¸˛
ÓÔ‰ÂÎflÂÚ ËχÌÓ‚Û ÏÂÚËÍÛ.
êËχÌÓ‚‡ ÏÂÚË͇ ̇ Mn Ì fl‚ÎflÂÚÒfl Ó·˚˜ÌÓÈ ÏÂÚËÍÓÈ Ì‡ Mn . é‰Ì‡ÍÓ ‰Îfl
Ò‚flÁÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl Mn ͇ʉ‡fl ËχÌÓ‚‡ ÏÂÚË͇ ̇ M n ÔÓÓʉ‡ÂÚ Ó·˚˜ÌÛ˛
ÏÂÚËÍÛ Ì‡ M n (ËÏÂÌÌÓ, ‚ÌÛÚÂÌÌ˛˛ ÏÂÚËÍÛ Ì‡ M n ): ‰Îfl β·˚ı ‰‚Ûı ÚÓ˜ÂÍ
p, q ∈ M n ËχÌÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË ÓÔ‰ÂÎÂÌÓ Í‡Í
n
1
inf
γ
∫
0
dγ dγ
,
dt dt
1/ 2
1
dt = inf
γ
gij
∫ ∑
i, j
0
dxi dx j
dt,
dt dt
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÒÔflÏÎflÂÏ˚Ï ÍË‚˚Ï γ : [0, 1] → M n , ÒÓ‰ËÌfl˛˘ËÏ
ÚÓ˜ÍË p Ë q.
êËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË ËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl
‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , Ò̇·ÊÂÌÌÓ ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. íÂÓËfl ËχÌÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚ÓÈ „ÂÓÏÂÚËÂÈ. èÓÒÚÂȯËÏ ÔËÏÂÓÏ ËχÌÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ fl‚Îfl˛ÚÒfl ‚ÍÎˉӂ˚
ÔÓÒÚ‡ÌÒÚ‚‡, „ËÔÂ·Ó΢ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡ Ë ˝ÎÎËÔÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡.
êËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl ÔÓÎÌ˚Ï, ÂÒÎË ÓÌÓ fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï
ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
117
äÓÌÙÓÏ̇fl ÏÂÚË͇
äÓÌÙÓÏÌÓÈ ÒÚÛÍÚÛÓÈ ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ V ̇Á˚‚‡ÂÚÒfl Í·ÒÒ ÔÓÔ‡ÌÓ
„ÓÏÓÚÂÚ˘Ì˚ı ‚ÍÎˉӂ˚ı ÏÂÚËÍ Ì‡ V. ã˛·‡fl ‚ÍÎˉӂ‡ ÏÂÚË͇ d E ̇ V Á‡‰‡ÂÚ
ÌÂÍÓÚÓÛ˛ ÍÓÌÙÓÏÌÛ˛ ÒÚÛÍÚÛÛ {λd E : λ > 0}.
äÓÌÙÓÏ̇fl ÒÚÛÍÚÛ‡ ÏÌÓ„ÓÓ·‡ÁËfl – ÔÓΠÍÓÌÙÓÏÌ˚ı ÒÚÛÍÚÛ ̇ ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı ËÎË, ˜ÚÓ ÚÓ ÊÂ, Í·ÒÒ ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ı ËχÌÓ‚˚ı ÏÂÚËÍ. Ñ‚Â ËχÌÓ‚˚ ÏÂÚËÍË g Ë h ̇ „·‰ÍÓÏ ÏÌÓ„ÓÓ·‡ÁËË M n
̇Á˚‚‡˛ÚÒfl ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ‰Îfl g = f ⋅ h ÌÂÍÓÚÓÓÈ ÔÓÎÓÊËÚÂθÌÓÈ ÙÛÌ͈ËË f ̇ Mn , ̇Á˚‚‡ÂÏÓÈ ÍÓÌÙÓÏÌ˚Ï Ù‡ÍÚÓÓÏ.
äÓÌÙÓÏ̇fl ÏÂÚË͇ – ËχÌÓ‚‡ ÏÂÚË͇, Ô‰ÒÚ‡‚Îfl˛˘‡fl ÍÓÌÙÓÏÌÛ˛ ÒÚÛÍÚÛÛ (ÒÏ. äÓÌÙÓÏÌÓ ËÌ‚‡ˇÌÚ̇fl ÏÂÚË͇, „Î. 8).
äÓÌÙÓÏÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
äÓÌÙÓÏÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË ËÌ‚ÂÒË‚Ì˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl
‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó n, ‡Ò¯ËÂÌÌÓÂ Ò ÔÓÏÓ˘¸˛ ˉ‡θÌÓÈ ÚÓ˜ÍË (ÚÓ˜ÍË ‚
·ÂÒÍÓ̘ÌÓÒÚË). èÓÒ‰ÒÚ‚ÓÏ ÍÓÌÙÓÏÌ˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ (Ú.Â. ÌÂÔÂ˚‚Ì˚ı
ÔÂÓ·‡ÁÓ‚‡ÌËÈ, ÒÓı‡Ìfl˛˘Ëı ÎÓ͇θÌ˚ ۄÎ˚) ˉ‡θ̇fl ÚӘ͇ ÏÓÊÂÚ ·˚Ú¸
ÔÂ‚‰Â̇ ‚ Ó·˚˜ÌÛ˛. ëΉӂ‡ÚÂθÌÓ, ‚ ÍÓÌÙÓÏÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÙÂ‡ Ë
ÔÎÓÒÍÓÒÚ¸ ÌÂ‡Á΢ËÏ˚: ÔÎÓÒÍÓÒÚ¸ – ˝ÚÓ ÒÙÂ‡, ÔÓıÓ‰fl˘‡fl ˜ÂÂÁ ˉ‡θÌÛ˛
ÚÓ˜ÍÛ.
äÓÌÙÓÏÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ ËÒÒÎÂ‰Û˛ÚÒfl ‚ ÍÓÌÙÓÏÌÓÈ „ÂÓÏÂÚËË (ËÎË „  ÓÏÂÚËË, ÒÓı‡Ìfl˛˘ÂÈ Û„Î˚, „ÂÓÏÂÚËË åfi·ËÛÒ‡, ËÌ‚ÂÒË‚ÌÓÈ „ÂÓÏÂÚËË), ÍÓÚÓ‡fl ËÁÛ˜‡ÂÚ Ò‚ÓÈÒÚ‚‡ ÙË„Û, ÓÒÚ‡˛˘ËıÒfl ËÌ‚‡ˇÌÚÌ˚ÏË ÔË ÍÓÌÙÓÏÌ˚ı ÔÂÓ·‡ÁÓ‚‡ÌËflı. ùÚÓ – ÏÌÓÊÂÒÚ‚Ó ÔÂÓ·‡ÁÓ‚‡ÌËÈ, ÓÚÓ·‡Ê‡˛˘Ëı ÒÙÂ˚ ‚ ÒÙÂ˚,
Ú.Â. ÔÓÓʉ‡ÂÏ˚ı ‚ÍÎˉӂ˚ÏË ÔÂÓ·‡ÁÓ‚‡ÌËflÏË ÒÓ‚ÏÂÒÚÌÓ Ò ËÌ‚ÂÒËflÏË, ÍÓÚÓr 2 xi
, „‰Â r – ‡‰ËÛÒ
˚ ‚ ÍÓÓ‰Ë̇ÚÌÓÈ ÙÓÏ fl‚Îfl˛ÚÒfl ÒÓÔflÊÂÌÌ˚ÏË Ò xi →
x 2j
∑
j
ËÌ‚ÂÒËË. àÌ‚ÂÒËfl ‚ ÒÙÂÛ ÒÚ‡ÌÓ‚ËÚÒfl ‡‚ÚÓÏÓÙËÁÏÓÏ Ò ÔÂËÓ‰ÓÏ 2. ã˛·ÓÈ Û„ÓÎ
ÔÂ‚ӉËÚÒfl ‚ ‡‚Ì˚È Û„ÓÎ.
Ñ‚ÛÏÂÌÓ ÍÓÌÙÓÏÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ËχÌÓ‚ÓÈ ÒÙÂÓÈ, ̇ ÍÓÚÓÓÈ
az + b
ÍÓÌÙÓÏÌ˚ ÔÂÓ·‡ÁÓ‚‡ÌËfl Á‡‰‡˛ÚÒfl ÔÂÓ·‡ÁÓ‚‡ÌËflÏË åfi·ËÛÒ‡ z →
,
cz + d
ad − bc ≠ 0.
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÍÓÌÙÓÏÌÓ ÓÚÓ·‡ÊÂÌË ÏÂÊ‰Û ‰‚ÛÏfl ËχÌÓ‚˚ÏË ÏÌÓ„ÓÓ·‡ÁËflÏË ÂÒÚ¸ Ú‡ÍÓÈ ‰ËÙÙÂÓÏÓÙËÁÏ ÏÂÊ‰Û ÌËÏË, ˜ÚÓ Ó·‡ÚÌ˚È Ó·‡Á ÏÂÚËÍË
ÒÚ‡ÌÓ‚ËÚÒfl ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚Ï ÔÓÓ·‡ÁÛ. äÓÌÙÓÏÌÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó – ˝ÚÓ ËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, ‰ÓÔÛÒ͇˛˘Â ÍÓÌÙÓÏÌÓ ÓÚÓ·‡ÊÂÌË ̇
ÌÂÍÓÚÓÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó.
Ç Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ÍÓÌÙÓÏÌ˚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ‡ÒÒχÚË‚‡˛ÚÒfl ̇ ÔÓÒÚ‡ÌÒÚ‚Â åËÌÍÓ‚ÒÍÓ„Ó 1 , 3, ‡Ò¯ËÂÌÌÓÏ ‰‚ÛÏfl ˉ‡θÌ˚ÏË
ÚӘ͇ÏË.
èÓÒÚ‡ÌÒÚ‚Ó ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚
èÓÒÚ‡ÌÒÚ‚ÓÏ ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Mn ,
‰Îfl ÍÓÚÓÓ„Ó ÒÂ͈ËÓÌ̇fl ÍË‚ËÁ̇ K (σ) fl‚ÎflÂÚÒfl ÔÓÒÚÓflÌÌÓÈ ‚Â΢ËÌÓÈ ‚Ó ‚ÒÂı
‰‚ÛÏÂÌ˚ı ̇Ô‡‚ÎÂÌËflı σ.
èÓÒÚ‡ÌÒÚ‚ÂÌ̇fl ÙÓχ – Ò‚flÁÌÓ ÔÓÎÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚.
èÎÓÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó – ÔÓÒÚ‡ÌÒÚ‚ÂÌ̇fl ÙÓχ ÌÛ΂ÓÈ ÍË‚ËÁÌ˚.
118
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
Ö‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Ë ÔÎÓÒÍËÈ ÚÓ fl‚Îfl˛ÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ÏË ÙÓχÏË
ÌÛ΂ÓÈ ÍË‚ËÁÌ˚ (Ú.Â. ÔÎÓÒÍËÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË), ÒÙÂ‡ – ÔÓÒÚ‡ÌÒÚ‚ÂÌ̇fl
ÙÓχ ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚, ‡ „ËÔÂ·Ó΢ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó – ÔÓÒÚ‡ÌÒÚ‚ÂÌ̇fl ÙÓχ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚.
é·Ó·˘ÂÌÌ˚ ËχÌÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡
é·Ó·˘ÂÌÌ˚Ï ËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
Ò ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ, ‰Îfl ÍË‚ËÁÌ˚ ÍÓÚÓÓ„Ó ÔËÌflÚ˚ ÓÔ‰ÂÎÂÌÌ˚Â
Ó„‡Ì˘ÂÌËfl. í‡ÍË ÔÓÒÚ‡ÌÒÚ‚‡ ‚Íβ˜‡˛Ú ‚ Ò·fl ÔÓÒÚ‡ÌÒÚ‚‡ Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌ˚, ËχÌÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ Ë Ú.Ô. é·Ó·˘ÂÌÌ˚ ËχÌÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ ÓÚ΢‡˛ÚÒfl ÓÚ ËχÌÓ‚˚ı Ì ÚÓθÍÓ ·Óθ¯ÂÈ Ó·Ó·˘ÂÌÌÓÒÚ¸˛, ÌÓ Ë ÚÂÏ,
˜ÚÓ ÓÌË ÓÔ‰ÂÎfl˛ÚÒfl Ë ËÒÒÎÂ‰Û˛ÚÒfl ÚÓθÍÓ Ì‡ ÓÒÌÓ‚Â Ëı ÏÂÚËÍË ·ÂÁ Û˜ÂÚ‡
ÍÓÓ‰Ë̇Ú.
èÓÒÚ‡ÌÒÚ‚Ó Ò Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌÓÈ (≤ k Ë ≥ k') fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌÌ˚Ï
ËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÍÓÚÓÓ ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ ÛÒÎÓ‚ËÂÏ: ‰Îfl
β·ÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË „ÂÓ‰ÂÁ˘ÂÒÍËı ÚÂÛ„ÓθÌËÍÓ‚ Tn, ÒÛʇ˛˘ËıÒfl ‚ ÚÓ˜ÍÛ,
ËÏÂ˛Ú ÏÂÒÚÓ ÌÂ‡‚ÂÌÒÚ‚‡
k ≥ lim
δ (Tn )
σ
( )
Tn0
≥ lim
δ (Tn )
( )
σ Tn0
≥ k ′,
„‰Â „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÚÂÛ„ÓθÌËÍ T = xyz fl‚ÎflÂÚÒfl ÚÓÈÍÓÈ „ÂÓ‰ÂÁ˘ÂÒÍËı ÓÚÂÁÍÓ‚
[x, y], [y, z], [z, x] (ÒÚÓÓÌ˚ ÚÂÛ„ÓθÌË͇ í), ÒÓ‰ËÌfl˛˘Ëı ÔÓÔ‡ÌÓ ÚË ‡Á΢Ì˚Â
ÚÓ˜ÍË x , y, z, ‚Â΢ËÌ˚ δ (T 0 ) = α + β + γ − π ‚˚‡Ê‡ÂÚ Û„ÎÓ‚ÓÈ ‰ÂÙÂÍÚ „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÚÂÛ„ÓθÌË͇ í Ë δ(T 0 ) – ÔÎÓ˘‡‰¸ ‚ÍÎˉӂ‡ ÚÂÛ„ÓθÌË͇ T0 ÒÓ
ÒÚÓÓ̇ÏË ÚÓÈ Ê ‰ÎËÌ˚. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â Ó„‡Ì˘ÂÌÌÓÈ
ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌ˚. í‡ÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
Ô‚‡˘‡ÂÚÒfl ‚ ËχÌÓ‚Ó, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ‰‚‡ ‰ÓÔÓÎÌËÚÂθÌ˚ı ÛÒÎÓ‚Ëfl:
ÎÓ͇θ̇fl ÍÓÏÔ‡ÍÚÌÓÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚‡ (˝ÚËÏ Ó·ÂÒÔ˜˂‡ÂÚÒfl ÎÓ͇θÌÓ ÒÛ˘ÂÒÚ‚Ó‚‡ÌË „ÂÓ‰ÂÁ˘ÂÒÍËı) Ë ÎÓ͇θÌÓ ‡Ò¯ËÂÌË „ÂÓ‰ÂÁ˘ÂÒÍËı. ÖÒÎË ÔË ˝ÚÓÏ
k = k', ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ò ÔÓÒÚÓflÌÌÓÈ
ÍË‚ËÁÌÓÈ k (ÒÏ. èÓÒÚ‡ÌÒÚ‚Ó „ÂÓ‰ÂÁ˘ÂÒÍËı, „Î. 6).
δ (Tn )
èÓÒÚ‡ÌÒÚ‚Ó ÍË‚ËÁÌ˚ ≤ k ÓÔ‰ÂÎflÂÚÒfl ÛÒÎÓ‚ËÂÏ lim
≤ k. Ç Ú‡ÍÓÏ
σ(Tn0 )
ÔÓÒÚ‡ÌÒڂ β·‡fl ÚӘ͇ ËÏÂÂÚ ÌÂÍÓÚÓÛ˛ ÓÍÂÒÚÌÓÒÚ¸, ‚ ÍÓÚÓÓÈ ÒÛÏχ
α + β + γ Û„ÎÓ‚ „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÚÂÛ„ÓθÌË͇ í Ì Ô‚˚¯‡ÂÚ ÒÛÏÏÛ α k + β k + γ k
Û„ÎÓ‚ ÚÂÛ„ÓθÌË͇ Tk ÒÓ ÒÚÓÓ̇ÏË ÚÓÈ Ê ‰ÎËÌ˚ ‚ ÔÓÒÚ‡ÌÒÚ‚Â ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚ k. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ Ú‡ÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl k-‚Ó„ÌÛÚÓÈ ÏÂÚËÍÓÈ.
δ (Tn )
èÓÒÚ‡ÌÒÚ‚Ó ÍË‚ËÁÌ˚ ≥ k ÓÔ‰ÂÎflÂÚÒfl ÛÒÎÓ‚ËÂÏ lim
≤ k. Ç Ú‡ÍÓÏ
σ(Tn0 )
ÔÓÒÚ‡ÌÒڂ β·‡fl ÚӘ͇ ËÏÂÂÚ ÌÂÍÓÚÓÛ˛ ÓÍÂÒÚÌÓÒÚ¸, ‚ ÍÓÚÓÓÈ
α + β + γ ≥ α k + β k + γ k ‰Îfl ÚÂÛ„ÓθÌËÍÓ‚ í Ë T k. ÇÌÛÚÂÌÌ˛˛ ÏÂÚËÍÛ Ú‡ÍÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡˛Ú K-‚Ó„ÌÛÚÓÈ ÏÂÚËÍÓÈ.
èÓÒÚ‡ÌÒÚ‚Ó ÄÎÂÍ҇̉Ó‚‡ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌÌ˚Ï ËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ
Ò Ó„‡Ì˘ÂÌÌÓÈ ‚ÂıÌÂÈ, ÌËÊÌÂÈ ËÎË ËÌÚ„‡Î¸ÌÓÈ ÍË‚ËÁÌÓÈ.
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
119
èÓÎ̇fl ËχÌÓ‚‡ ÏÂÚË͇
êËχÌÓ‚‡ ÏÂÚË͇ g ̇ ÏÌÓ„ÓÓ·‡ÁËË Mn ̇Á˚‚‡ÂÚÒfl ÔÓÎÌÓÈ, ÂÒÎË M n Ó·‡ÁÛÂÚ
ÔÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓ ÓÚÌÓ¯ÂÌ˲ Í g. ã˛·‡fl ËχÌÓ‚‡ ÏÂÚË͇ ̇
ÍÓÏÔ‡ÍÚÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË fl‚ÎflÂÚÒfl ÔÓÎÌÓÈ.
ê˘˜Ë-ÔÎÓÒ͇fl ÏÂÚË͇
ê˘˜Ë-ÔÎÓÒÍÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇, ÚÂÌÁÓ ÍË‚ËÁÌ˚
ÍÓÚÓÓÈ Ó·‡˘‡ÂÚÒfl ‚ ÌÛθ.
èÎÓÒÍÓ ÏÌÓ„ÓÓ·‡ÁË ê˘˜Ë Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ê˘˜Ë-ÔÎÓÒÍÓÈ ÏÂÚËÍÓÈ. èÎÓÒÍË ÏÌÓ„ÓÓ·‡ÁËfl ê˘˜Ë fl‚Îfl˛ÚÒfl ‚‡ÍÛÛÏÌ˚Ï ¯ÂÌËÂÏ Â‚ÍÎˉӂ‡ ı‡‡ÍÚÂËÒÚ˘ÂÒÍÓ„Ó ÔÓÎËÌÓχ Ë ÓÒÓ·˚ÏË ÒÎÛ˜‡flÏË ÏÌÓ„ÓÓ·‡ÁËÈ äÂıÎÂ‡–ùÈ̯ÚÂÈ̇. ä ‚‡ÊÌ˚Ï ÔÎÓÒÍËÏ ÏÌÓ„ÓÓ·‡ÁËflÏ ê˘˜Ë ÓÚÌÓÒflÚÒfl ÏÌÓ„ÓÓ·‡ÁËfl ä‡Î‡·Ë–üÛ Ë „ËÔÂÏÌÓ„ÓÓ·‡ÁËfl
äÂıÎÂ‡.
åÂÚË͇ éÒÒÂχ̇
åÂÚËÍÓÈ éÒÒÂχ̇ ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇, ‰Îfl ÍÓÚÓÓÈ ËχÌÓ‚
ÚÂÌÁÓ ÍË‚ËÁÌ˚ R fl‚ÎflÂÚÒfl ÓÒÒÂχÌÓ‚˚Ï. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÒÓ·ÒÚ‚ÂÌÌ˚ Á̇˜ÂÌËfl ÓÔÂ‡ÚÓ‡ üÍÓ·Ë ( x ) : y → R( y, x ) x ̇ ‰ËÌ˘ÌÓÈ ÒÙÂ Sn–1 ÔÓÒÚ‡ÌÒÚ‚‡
n ·Û‰ÛÚ ÔÓÒÚÓflÌÌ˚ÏË, Ú.Â. ÌÂÁ‡‚ËÒËÏ˚ÏË ÓÚ Â‰ËÌ˘Ì˚ı ‚ÂÍÚÓÓ‚ ı.
G-ËÌ‚‡ˇÌÚ̇fl ÏÂÚË͇
G-ËÌ‚‡ˇÌÚÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ g ̇ ‰ËÙÙÂÂ̈ËÛÂÏÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , ÍÓÚÓ‡fl Ì ËÁÏÂÌflÂÚÒfl ÔË Î˛·˚ı ÔÂÓ·‡ÁÓ‚‡ÌËflı
‰‡ÌÌÓÈ „ÛÔÔ˚ ãË (G, ⋅ , id ). ÉÛÔÔ‡ (G, ⋅ , id ) ̇Á˚‚‡ÂÚÒfl „ÛÔÔÓÈ ‰‚ËÊÂÌËÈ (ËÎË
„ÛÔÔÓÈ ËÁÓÏÂÚËÈ) ËχÌÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ (Mn , g).
åÂÚË͇ à‚‡ÌÓ‚‡–èÂÚÓ‚ÓÈ
èÛÒÚ¸ R – ËχÌÓ‚˚Ï ÚÂÌÁÓÓÏ ÍË‚ËÁÌ˚ ËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl Mn Ë {x, y} –
ÓÚÓ„Ó̇θÌ˚È ·‡ÁËÒ ÓËÂÌÚËÓ‚‡ÌÌÓÈ 2-ÔÎÓÒÍÓÒÚË π ‚ Í‡Ò‡ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â
T p (M n ).
åÂÚËÍÓÈ à‚‡ÌÓ‚‡–èÂÚÓ‚ÓÈ Ì‡Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ ̇ Mn , ‰Îfl ÍÓÚÓÓÈ
ÒÓ·ÒÚ‚ÂÌÌ˚ Á̇˜ÂÌËfl ‡ÌÚËÒËÏÏÂÚ˘ÌÓ„Ó ÓÔÂ‡ÚÓ‡ ÍË‚ËÁÌ˚
( π) = R( x, y)
([IvSt95]) Á‡‚ËÒflÚ ÚÓθÍÓ ÓÚ ÚÓ˜ÍË  ËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl Mn , ÌÓ Ì ÓÚ ÔÎÓÒÍÓÒÚË π.
åÂÚË͇ áÓη
åÂÚËÍÓÈ áÓη ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ ̇ „·‰ÍÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn ,
„ÂÓ‰ÂÁ˘ÂÒÍË ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl ÔÓÒÚ˚ÏË Á‡ÏÍÌÛÚ˚ÏË ÍË‚˚ÏË ‡‚ÌÓÈ
‰ÎËÌ˚. Ñ‚ÛÏÂ̇fl ÒÙÂ‡ S2 ‰ÓÔÛÒ͇ÂÚ ÏÌÓÊÂÒÚ‚Ó Ú‡ÍËı ÏÂÚËÍ, ÔÓÏËÏÓ Ó˜Â‚Ë‰Ì˚ı ÏÂÚËÍ ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚. Ç ÚÂÏË̇ı ˆËÎË̉˘ÂÒÍËı ÍÓÓ‰Ë̇Ú
( z, θ) ( z ∈[ −1, 1], θ ∈[0, 2 π]) ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ
ds 2 =
(1 + f ( z ))2 2
dz + (1 − z 2 )dθ 2
1 − z2
Á‡‰‡ÂÚ ÏÂÚËÍÛ áÓη ̇ ÒÙÂ S2 ‰Îfl β·ÓÈ „·‰ÍÓÈ Ì˜ÂÚÌÓÈ ÙÛÌ͈ËË
f : [ −1, 1] → ( −1, 1), ÍÓÚÓ‡fl Ó·‡˘‡ÂÚÒfl ‚ ÌÛθ ‚ ÍÓ̈‚˚ı ÚӘ͇ı ËÌÚÂ‚‡Î‡.
120
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ñËÍÎÓˉ‡Î¸Ì‡fl ÏÂÚË͇
ñËÍÎÓˉ‡Î¸Ì‡fl ÏÂÚË͇ – ˝ÚÓ ËχÌÓ‚‡ ÏÂÚË͇
2
+ = {x ∈ 2 : x1 ≥ 0}, Á‡‰‡‚‡Âχfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 =
̇
ÔÓÎÛÔÎÓÒÍÓÒÚË
dx12 + dx 22
.
2 x1
é̇ ̇Á˚‚‡ÂÚÒfl ˆËÍÎÓˉ‡Î¸ÌÓÈ, ÔÓÒÍÓθÍÛ Â „ÂÓ‰ÂÁ˘ÂÒÍË fl‚Îfl˛ÚÒfl ˆËÍÎÓ
ˉ‡Î¸Ì˚ÏË ÍË‚˚ÏË. ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ‡ÒÒÚÓflÌË d(x, y) ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË
x, y ∈ 2+ ˝Í‚Ë‚‡ÎÂÌÚÌÓ ‡ÒÒÚÓflÌ˲
ρ( x, y) =
| x1 − y1 | + | x 2 − y2 |
x1 + x 2 + | x 2 − y2
‚ ÚÓÏ ÒÏ˚ÒÎÂ, ˜ÚÓ d ≤ Cρ Ë ρ ≤ Cd ‰Îfl ÌÂÍÓÂÈ ÔÓÎÓÊËÚÂθÌÓÈ ÍÓÌÒÚ‡ÌÚ˚ ë.
åÂÚË͇ ÅÂ„Â‡
åÂÚËÍÓÈ ÅÂ„Â‡ ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ ̇ ÒÙÂ ÅÂ„Â‡ (Ú.Â. ÒʇÚÓÈ
‚ Ó‰ÌÓÏ Ì‡Ô‡‚ÎÂÌËË ÒÙÂ S3 ), Á‡‰‡‚‡Âχfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = dθ 2 + sin 2 θd φ 2 + cos 2 α( dψ + cos θd φ)2 ,
„‰Â α – ÍÓÌÒÚ‡ÌÚ‡, ‡ θ, φ, ψ – Û„Î˚ ùÈÎÂ‡.
åÂÚË͇ ä‡ÌÓ-ä‡‡ÚÂÓ‰ÓË
ê‡ÒÔ‰ÂÎÂÌË (ËÎË ÔÓÎflËÁ‡ˆËfl) ̇ M n ÂÒÚ¸ ÔÓ‰‡ÒÒÎÓÂÌË ͇҇ÚÂθÌÓ„Ó
‡ÒÒÎÓÂÌËfl T(M n ) ÏÌÓ„ÓÓ·‡ÁËfl Mn . èË Ì‡Î˘ËË ÔÓÎflËÁ‡ˆËË H(M n ) ‚ÂÍÚÓÌÓÂ
ÔÓΠ‚ H(Mn ) ̇Á˚‚‡ÂÚÒfl „ÓËÁÓÌڇθÌ˚Ï. äË‚‡fl γ ̇ M n ̇Á˚‚‡ÂÚÒfl
„ÓËÁÓÌڇθ
ÌÓÈ (ËÎË ‚˚‰ÂÎÂÌÌÓÈ, ‰ÓÔÛÒÚËÏÓÈ) ÔÓ ÓÚÌÓ¯ÂÌ˲ Í H(Mn ), ÂÒÎË γ ′(t ) ∈ Hγ ( t ) ( M n )
‰Îfl β·Ó„Ó t. ê‡ÒÔ‰ÂÎÂÌË H(M n ) ̇Á˚‚‡ÂÚÒfl ‡·ÒÓβÚÌÓ ÌÂËÌÚ„ËÛÂÏ˚Ï, ÂÒÎË
ÒÍÓ·ÍË ãË [...,[ H ( M n ), H ( M n )]] ÔÓÎflËÁ‡ˆËË H(M n ) ÔÂÂÍ˚‚‡˛Ú ͇҇ÚÂθÌÓÂ
‡ÒÒÎÓÂÌË T(M n ), Ú.Â. ‰Îfl ‚ÒÂı p ∈ Mn β·ÓÈ Í‡Ò‡ÚÂθÌ˚È ‚ÂÍÚÓ v ËÁ T p (M n ) ÏÓÊÂÚ
·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌ Í‡Í ÎËÌÂÈ̇fl ÍÓÏ·Ë̇ˆËfl ‚ÂÍÚÓÓ‚ ÒÎÂ‰Û˛˘Ëı ‚ˉӂ: u, [u, w],
[u, [w, t]], [u, [w, [t, s]]],... ∈ Tp(M n ), „‰Â ‚Ò ‚ÂÍÚÓÌ˚ ÔÓÎfl u, w, t, s,... fl‚Îfl˛ÚÒfl
„ÓËÁÓÌڇθÌ˚ÏË.
åÂÚËÍÓÈ ä‡ÌÓ–ä‡‡ÚÂÓ‰ÓË (ËÎË ë–ë ÏÂÚËÍÓÈ) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇
ÏÌÓ„ÓÓ·‡ÁËË Mn Ò ‡·ÒÓβÚÌÓ ÌÂËÌÚ„ËÛÂÏ˚Ï „ÓËÁÓÌڇθÌ˚Ï ‡ÒÔ‰ÂÎÂÌËÂÏ
H(Mn ), Á‡‰‡‚‡Âχfl ̇·ÓÓÏ gc ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı Ò͇ÎflÌ˚ı ÔÓËÁ
‚‰ÂÌËÈ Ì‡ H (Mn ). ê‡ÒÒÚÓflÌË dc(p, q) ÏÂÊ‰Û Î˛·˚ÏË ÚӘ͇ÏË p, q ∈ M n ÓÔÂ
‰ÂÎflÂÚÒfl Í‡Í ËÌÙËÏÛÏ gc-‰ÎËÌ „ÓËÁÓÌڇθÌ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ÚÓ˜ÍË p Ë q.
èÓ‰ËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË ÔÓÎflËÁÓ‚‡ÌÌ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ) ̇Á˚
‚‡ÂÚÒfl ÏÌÓ„ÓÓ·‡ÁË Mn , Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ ä‡ÌÓ–ä‡‡ÚÂÓ‰ÓË. éÌÓ fl‚ÎflÂÚÒfl
Ó·Ó·˘ÂÌËÂÏ ËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl. ÉÛ·Ó „Ó‚Ófl, ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ‚
ÔÓ‰ËχÌÓ‚ÓÏ ÏÌÓ„ÓÓ·‡ÁËË ÏÓÊÌÓ ÒΉӂ‡Ú¸ ÚÓθÍÓ ‚‰Óθ ÍË‚˚ı, fl‚Îfl˛˘ËıÒfl
͇҇ÚÂθÌ˚ÏË Í „ÓËÁÓÌڇθÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚‡Ï.
èÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇
ê‡ÒÒÏÓÚËÏ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , ‚
ÍÓÚÓÓÏ Í‡Ê‰Ó ͇҇ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Tp(M n ), p ∈ Mn Ò̇·ÊÂÌÓ „·‰ÍÓ ËÁÏÂ-
121
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
Ìfl˛˘ËÏÒfl ÓÚ ÚÓ˜ÍË Í ÚӘ͠Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ, ÍÓÚÓÓ fl‚ÎflÂÚÒfl
Ì‚˚ÓʉÂÌÌ˚Ï, ÌÓ ÌÂÓÔ‰ÂÎÂÌÌ˚Ï.
èÒ‚‰ÓËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ M n ̇Á˚‚‡ÂÚÒfl ÒÓ‚ÓÍÛÔÌÓÒÚ¸ Ò͇ÎflÌ˚ı ÔÓËÁ
‚‰ÂÌËÈ ⟨ , ⟩ p ̇ ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı Tp (M n ), p ∈ Mn , ÔÓ Ó‰ÌÓÏÛ ‰Îfl ͇ʉÓÈ
ÚÓ˜ÍË p ∈ Mn .
ä‡Ê‰Ó Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ⟨ , ⟩ p ÔÓÎÌÓÒÚ¸˛ ÓÔ‰ÂÎÂÌÓ Ò͇ÎflÌ˚ÏË ÔÓËÁ
‚‰ÂÌËflÏË ⟨ei , e j ⟩ p = gij ( p) ˝ÎÂÏÂÌÚÓ‚ e1 ,..., en Òڇ̉‡ÚÌÓ„Ó ·‡ÁËÒ‡ ‚ n, Ú.Â.
‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÒËÏÏÂÚ˘ÌÓÈ ÌÂÓÔ‰ÂÎÂÌÌÓÈ n × n χÚˈÂÈ (( gij )) = (( gij ( p))),
̇Á˚‚‡ÂÏÓÈ ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ (ÒÏ. êËχÌÓ‚‡ ÏÂÚË͇, „‰Â ÏÂÚ˘ÂÒÍËÈ
ÚÂÌÁÓ fl‚ÎflÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÒËÏÏÂÚ˘ÌÓÈ ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ n × n
χÚˈÂÈ). àÏÂÌÌÓ, ⟨ x, y ⟩ p =
gij ( p) xi y j , „‰Â x = ( x1 ,..., x n ) Ë y = ( y1 ,..., yn ) ∈
∑
i, j
∈Tp ( M ). É·‰Í‡fl ÙÛÌ͈Ëfl g ÔÓÎÌÓÒÚ¸˛ ÓÔ‰ÂÎflÂÚ ÔÒ‚‰ÓËχÌÓ‚Û ÏÂÚËÍÛ.
ÑÎË̇ ds ‚ÂÍÚÓ‡ ( dx1 ,..., dx n ) ‚˚‡Ê‡ÂÚÒfl Í‚‡‰‡Ú˘ÂÒÍÓÈ ‰ËÙÙÂÂ̈ˇθÌÓÈ
ÙÓÏÓÈ
n
ds 2 =
∑ gij dxi dx j .
i, j
ÑÎË̇
ÍË‚ÓÈ
γ : [0, 1] → M n
‚˚‡Ê‡ÂÚÒfl
ÙÓÏÛÎÓÈ
gij dxi dx j =
∫ ∑
i, j
γ
1
=
gij
∫ ∑
i, j
0
dxi dx j
dt. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â Ó̇ ÏÓÊÂÚ ·˚Ú¸ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ, ˜ËÒÚÓ
dt dt
ÏÌËÏÓÈ ËÎË ÌÛ΂ÓÈ (ËÁÓÚÓÔ̇fl ÍË‚‡fl).
èÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ ̇ M n fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ò ÙËÍÒËÓ‚‡ÌÌÓÈ, ÌÓ ÌÂÓÔ‰ÂÎÂÌÌÓÈ Ò˄̇ÚÛÓÈ (p, q), p + q = n. èÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl
Ì‚˚ÓʉÂÌÌÓÈ, Ú.Â.  ÏÂÚ˘ÂÒÍËÈ ÓÔ‰ÂÎËÚÂθ det(( gij )) ≠ 0. èÓ˝ÚÓÏÛ Ó̇
fl‚ÎflÂÚÒfl Ì‚˚ÓʉÂÌÌÓÈ ÌÂÓÔ‰ÂÎÂÌÌÓÈ ÏÂÚËÍÓÈ.
èÒ‚‰ÓËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË (ËÎË ÔÒ‚‰ÓËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó) – ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , Ò̇·ÊÂÌÌÓ ÔÒ‚‰ÓËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. íÂÓËfl ÔÒ‚‰ÓËχÌÓ˚ı ÔÓÒÚ‡ÌÒÚ‚ ̇Á˚‚‡ÂÚÒfl ÔÒ‚‰ÓËχÌÓ‚ÓÈ „ÂÓÏÂÚËÂÈ.
åÓ‰Âθ˛ ÔÒ‚‰ÓËχÌÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ Ò Ò˄̇ÚÛÓÈ (p, q) fl‚ÎflÂÚÒfl ÔÒ‚‰Ó‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó p, q , p + q = n – ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‚ÂÍÚÓÌÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó n, Ò̇·ÊÂÌÌÓ ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ ((g ij)) Ò Ò˄̇ÚÛÓÈ (p, q),
Á‡‰‡ÌÌ˚Ï Í‡Í g11 = ... = g pp = 1, g p +1, p +1 = ... = gnn = −1, gij = 0 ‰Îfl i ≠ j. ãËÌÂÈÌ˚È
˝ÎÂÏÂÌÚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl ͇Í
ds 2 = dx12 + ... + dx 2p − dx 2p +1 − ... − dx n2 .
ãÓÂ̈‚‡ ÏÂÚË͇
ãÓÂ̈‚‡ ÏÂÚË͇ (ËÎË ÏÂÚË͇ ãÓÂ̈‡) – ÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ Ò Ò˄̇ÚÛÓÈ (1, p).
ãÓÂ̈‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÎÓÂ̈‚ÓÈ
ÏÂÚËÍÓÈ. Ç Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ÔË̈ËÔˇθÌÓ Ô‰ÔÓÎÓÊÂÌËÂ, ˜ÚÓ
122
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ÔÓÒÚ‡ÌÒÚ‚Ó–‚ÂÏfl ÏÓÊÂÚ ÏÓ‰ÂÎËÓ‚‡Ú¸Òfl Í‡Í ÎÓÂÌˆÂ‚Ó ÏÌÓ„ÓÓ·‡ÁË Ò
Ò˄̇ÚÛÓÈ (1, 3). èÓÒÚ‡ÌÒÚ‚Ó åËÌÍÓ‚ÒÍÓ„Ó 1,3 Ò ÔÎÓÒÍÓÈ ÏÂÚËÍÓÈ åËÌÍÓ‚ÒÍÓ„Ó fl‚ÎflÂÚÒfl ÏÓ‰Âθ˛ ÎÓÂ̈‚‡ ÏÌÓ„ÓÓ·‡ÁËfl.
åÂÚË͇ éÒÒÂχ̇–ãÓÂ̈‡
åÂÚËÍÓÈ éÒÒÂχ̇–ãÓÂ̈‡ ̇Á˚‚‡ÂÚÒfl ÎÓÂ̈‚‡ ÏÂÚË͇, ‰Îfl ÍÓÚÓÓÈ
ÚÂÌÁÓ ËχÌÓ‚ÓÈ ÍË‚ËÁÌ˚ R fl‚ÎflÂÚÒfl ÓÒÒÂχÌÓ‚˚Ï. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÒÓ·ÒÚ‚ÂÌÌ˚ Á̇˜ÂÌËËfl ÓÔÂ‡ÚÓ‡ üÍÓ·Ë ( x ) : y → R( y, x ) x Ì Á‡‚ËÒflÚ ÓÚ Â‰ËÌ˘Ì˚ı
‚ÂÍÚÓÓ‚ ı.
ãÓÂÌˆÂ‚Ó ÏÌÓ„ÓÓ·‡ÁË ·Û‰ÂÚ ÓÒÒÂχÌÓ‚˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ
fl‚ÎflÂÚÒfl ÏÌÓ„ÓÓ·‡ÁËÂÏ ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚.
åÂÚË͇ ÅÎfl¯ÍÂ
åÂÚË͇ ÅÎfl¯Í ̇ Ì‚˚ÓʉÂÌÌÓÈ „ËÔÂÔÓ‚ÂıÌÓÒÚË ÂÒÚ¸ ÔÒ‚‰ÓËχÌÓ‚‡
ÏÂÚË͇, ‡ÒÒÓˆËËÓ‚‡Ì̇fl Ò ‡ÙÙËÌÌÓÈ ÌÓχθ˛ ‚ÎÓÊÂÌËfl φ : M n → n +1 , „‰Â Mn
fl‚ÎflÂÚÒfl n-ÏÂÌ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ, ‡ n+1 ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó.
èÓÎÛËχÌÓ‚‡ ÏÂÚË͇
èÓÎÛËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ n-ÏÂÌÓÏ ‰ËÙÙÂÂ̈ËÛÂÏÓÏ
ÏÌÓ„ÓÓ·‡ÁËË Mn ̇Á˚‚‡ÂÚÒfl ‚˚ÓʉÂÌ̇fl ËχÌÓ‚‡ ÏÂÚË͇, Ú.Â. ÒÓ‚ÓÍÛÔÌÓÒÚ¸
ÔÓÎÓÊËÚÂθÌÓ ÔÓÎÛÓÔ‰ÂÎÂÌÌ˚ı Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ ⟨ x, y ⟩ p =
gij ( p) xi y j
∑
i, j
̇ ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı T p (M n ), p ∈ M n ; ÏÂÚ˘ÂÒÍËÈ ÓÔ‰ÂÎËÚÂθ
det(( gij )) = 0.
èÓÎÛËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË ÔÓÎÛËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , Ò̇·ÊÂÌÌÓÂ
ÔÓÎÛËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ.
åÓ‰Âθ˛ ÔÓÎÛËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl fl‚ÎflÂÚÒfl ÔÓÎÛ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó
nd , d ≥ 1 (ËÌÓ„‰‡ Ó·ÓÁ̇˜‡ÂÏÓÂ Í‡Í nn − d ), Ú.Â. ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‚ÂÍÚÓÌÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó n, Ò̇·ÊÂÌÌÓ ÔÓÎÛËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂÍÓÚÓÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌËÂ, Ú‡ÍÓ ˜ÚÓ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Ì‡‰ÎÂʇ˘ËÏ Ó·‡ÁÓÏ ‚˚·‡ÌÌÓÏÛ ·‡ÁËÒÛ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ⟨ x, x ⟩ ‚ÂÍÚÓ‡ ̇
Ò·fl ·Û‰ÂÚ ËÏÂÚ¸ ‚ˉ ⟨ x, x ⟩ =
n−d
∑
xi2 . èË ˝ÚÓÏ d ≥ 1 ˜ËÒÎÓ Ì‡Á˚‚‡ÂÚÒfl ‰ÂÙÂÍÚÓÏ
i =1
(ËÎË ÔÓÎÓÊËÚÂθÌ˚Ï ‰ÂÙˈËÚÓÏ) ÔÓÒÚ‡ÌÒÚ‚‡.
åÂÚË͇ ÉÛ¯Ë̇
åÂÚËÍÓÈ ÉÛ¯Ë̇ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛËχÌÓ‚‡ ÏÂÚË͇ ̇ 2, Á‡‰‡‚‡Âχfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = dx12 +
δx 22
.
x12
èÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇
èÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ n-ÏÂÌÓÏ ‰ËÙÙÂÂ̈ËÛÂÏÓÏ
ÏÌÓ„ÓÓ·‡ÁËË M n – ‚˚ÓʉÂÌ̇fl ÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇, Ú.Â. ÒÓ‚ÓÍÛÔÌÓÒÚ¸
gij ( p) xi y j ̇
‚˚ÓʉÂÌÌ˚ı ÌÂÓÔ‰ÂÎÂÌÌ˚ı Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ x, y p =
∑
i, j
123
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı Tp ( M n ), p ∈ M n ; ÏÂÚ˘ÂÒÍËÈ ÓÔ‰ÂÎËÚÂθ det(gij) = 0.
àÏÂÌÌÓ, ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl ‚˚ÓʉÂÌÌÓÈ ÌÂÓÔ‰ÂÎÂÌÌÓÈ
ÏÂÚËÍÓÈ.
èÓÎÛÔÒ‚‰ÓËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn ,
Ò̇·ÊÂÌÌÓ ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ.
åÓ‰Âθ˛ ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl fl‚ÎflÂÚÒfl ÔÓÎÛÔÒ‚‰Ó‚ÍÎˉӂÓ
ÔÓÒÚ‡ÌÒÚ‚Ó ln1 ,..., lr , Ú.Â. ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
m1 ,..., m r −1
n, Ò̇·ÊÂÌÌÓ ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ r
Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ x, y a =
ε ia xia yia , „‰Â a = 1, ..., r, 0 = m0 < ... < mr = n, ia =
= m a–1 + 1, ..., ma, ε ia = ±1 Ë –1 ÒÂ‰Ë ˜ËÒÂÎ ε ia ‚ÒÚ˜‡ÂÚÒfl la ‡Á. èÓËÁ‚‰ÂÌËÂ
∑
x, y a ÓÔ‰ÂÎÂÌÓ ‰Îfl ÚÂı ‚ÂÍÚÓÓ‚, ‰Îfl ÍÓÚÓ˚ı ‚Ò ÍÓÓ‰Ë̇Ú˚ xi , i ≤ ma −1 ËÎË
i > ma + 1, ‡‚Ì˚ ÌÛβ. èÂ‚˚È Ò͇ÎflÌ˚È Í‚‡‰‡Ú ÔÓËÁ‚ÓθÌÓ„Ó ‚ÂÍÚÓ‡ ı
fl‚ÎflÂÚÒfl ‚˚ÓʉÂÌÌÓÈ Í‚‡‰‡Ú˘ÌÓÈ ÙÓÏÓÈ
x, x
1
=−
l1
∑
i =1
xi2 +
n−d
∑
x 2j . óËÒÎÓ
j = l1 +1
l1 ≥ 0 ̇Á˚‚‡ÂÚÒfl Ë̉ÂÍÒÓÏ, ‡ ˜ËÒÎÓ d = n – m1 – ‰ÂÙÂÍÚÓÏ ÔÓÒÚ‡ÌÒÚ‚‡. ÖÒÎË
l1 = ... = lr = 0, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ ÔÓÎÛ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. èÓÒÚ‡ÌÒÚ‚‡
nm Ë nk , l Ë Ì‡Á˚‚‡˛ÚÒfl Í‚‡ÁË‚ÍÎˉӂ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË.
èÓÎÛÔÒ‚‰ÓÌ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó
„ËÔÂÒÙÂ‡ ‚ ÔÓÒÚ‡ÌÒÚ‚Â ln1 ,..., lr
n
l1 ,..., l r
m1 ,..., m r −1
ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂÌÓ Í‡Í
Ò ÓÚÓʉÂÒÚ‚ÎÂÌÌ˚ÏË ‡ÌÚËÔÓ‰‡Î¸Ì˚ÏË ÚÓ˜-
m1 ,..., m r −1
͇ÏË. ÖÒÎË l1 = ... = lr, ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl ÔÓÎÛ˝ÎÎËÔÚ˘ÂÒÍËÏ
(ËÎË ÔÓÎÛÌ‚ÍÎˉӂ˚Ï) ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÖÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ , ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÛ„ËÔÂ·Ó΢ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
îËÌÒÎÂÓ‚‡ ÏÂÚË͇
ê‡ÒÒÏÓÚËÏ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË MN , ‚
ÍÓÚÓÓÏ Í‡Ê‰Ó ͇҇ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Tp(M n ), p ∈ Mn Ò̇·ÊÂÌÓ ·‡Ì‡ıÓ‚ÓÈ
ÌÓÏÓÈ || ⋅ ||, Ú‡ÍÓÈ ˜ÚÓ ·‡Ì‡ıÓ‚‡ ÌÓχ Í‡Í ÙÛÌ͈Ëfl ÔÓÁˈËË, fl‚ÎflÂÚÒfl „·‰ÍÓÈ Ë
χÚˈ‡ (gij),
gij = gij ( p, x ) =
1 ∂ 2 || x ||2
,
2 ∂xi ∂x j
fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ ‰Îfl β·Ó„Ó p ∈ Mn Ë Î˛·Ó„Ó x ∈ Tp (M n ).
îËÌÒÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ Mn ̇Á˚‚‡ÂÚÒfl ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ·‡Ì‡ıÓ‚˚ı ÌÓÏ || ⋅ || ̇
͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı T p Mn , ÔÓ Ó‰ÌÓÈ ‰Îfl Í‡Ê‰Ó„Ó p ∈ Mn . ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ
˝ÚÓÈ ÏÂÚËÍË ËÏÂÂÚ ÙÓÏÛ
ds 2 =
∑ gij dxi dx j .
i, j
îËÌÒÎÂÓ‚‡ ÏÂÚË͇ ÏÓÊÂÚ Á‡‰‡‚‡Ú¸Òfl Í‡Í ‰ÂÈÒÚ‚ËÚÂθ̇fl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl F(p, x) ÍÓÓ‰ËÌ‡Ú ÚÓ˜ÍË p ∈ Mn Ë ÍÓÏÔÓÌÂÌÚ ‚ÂÍÚÓ‡
124
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
x ∈ T p (M n ), ‰ÂÈÒÚ‚Û˛˘Â„Ó ‚ ÚӘ͠. îÛÌ͈Ëfl F(p, x) fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ Ó‰ÌÓÓ‰ÌÓÈ ÔÂ‚ÓÈ ÒÚÂÔÂÌË ‚ ı: F(p, λx) = λF(p, x) ‰Îfl Í‡Ê‰Ó„Ó λ > 0. á̇˜ÂÌËÂ
F(p, x) ËÌÚÂÔÂÚËÛÂÚÒfl Í‡Í ‰ÎË̇ ‚ÂÍÚÓ‡ ı. îËÌÒÎÂÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ
 1 ∂ 2 F 2 ( p, x ) 
n
ËÏÂÂÚ ÙÓÏÛ ( gij ) = 
 . ÑÎË̇ ÍË‚ÓÈ γ : [0, 1] → M Á‡‰‡ÂÚÒfl ͇Í
 2 ∂xi dx j 
1

dp 
∫ F p, dt  dt. ÑÎfl ͇ʉÓÈ ÙËÍÒËÓ‚‡ÌÌÓÈ ÚÓ˜ÍË  ÙËÌÒÎÂÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ‚
0
ÔÂÂÏÂÌÌ˚ı ı fl‚ÎflÂÚÒfl ËχÌÓ‚˚Ï.
îËÌÒÎÂÓ‚‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ËχÌÓ‚ÓÈ ÏÂÚËÍË, „‰Â Ó·˘Â ÓÔ‰ÂÎÂÌË ‰ÎËÌ˚ || x || ‚ÂÍÚÓ‡ x ∈ Tp ( M n ) Ì ӷflÁ‡ÚÂθÌÓ Á‡‰‡ÂÚÒfl ‚ ‚ˉ ͂‡‰‡ÚÌÓ„Ó
ÍÓÌfl ËÁ ÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏ˚, Í‡Í ˝ÚÓ ‰Â·ÂÚÒfl ‚ ËχÌÓ‚ÓÏ ÒÎÛ˜‡Â.
îËÌÒÎÂÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË (ËÎË ÙËÌÒÎÂÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó) – ˝ÚÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , Ò̇·ÊÂÌÌÓ ÙËÌÒÎÂÓ‚ÓÈ
ÏÂÚËÍÓÈ. íÂÓËfl ÙËÌÒÎÂÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚ÓÈ „ÂÓÏÂÚËÂÈ.
ê‡Á΢ˠÏÂÊ‰Û ËχÌÓ‚˚Ï Ë ÙËÌÒÎÂÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚‡ÏË ÒÓÒÚÓËÚ ‚ ÚÓÏ, ˜ÚÓ
ÔÂ‚Ó ÎÓ͇θÌÓ ‚‰ÂÚ Ò·fl Í‡Í Â‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, ‡ ‚ÚÓÓ – ͇Í
ÔÓÒÚ‡ÌÒÚ‚Ó åËÌÍÓ‚ÒÍÓ„Ó, ËÎË, ‡Ì‡ÎËÚ˘ÂÒÍË, ‚ ÚÓÏ, ˜ÚÓ ˝ÎÎËÔÒÓË‰Û ‚ ËχÌÓ‚ÓÏ ÒÎÛ˜‡Â ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÔÓËÁ‚Óθ̇fl ‚˚ÔÛÍ·fl ÔÓ‚ÂıÌÓÒÚ¸, ‚ ͇˜ÂÒÚ‚Â
ˆÂÌÚ‡ ÍÓÚÓÓÈ ‚ÁflÚÓ Ì‡˜‡ÎÓ ÍÓÓ‰Ë̇Ú.
é·Ó·˘ÂÌÌ˚Ï ÙËÌÒÎÂÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚Ó Ò ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ, ̇ ÍÓÚÓÛ˛ ̇Í·‰˚‚‡˛ÚÒfl ÓÔ‰ÂÎÂÌÌ˚ ӄ‡Ì˘ÂÌËfl ‚ ÓÚÌÓ¯ÂÌËË Ôӂ‰ÂÌËfl Í‡Ú˜‡È¯Ëı ÍË‚˚ı, Ú.Â. ÍË‚˚ı, ‰ÎËÌ˚ ÍÓÚÓ˚ı ‡‚Ì˚ ‡ÒÒÚÓflÌ˲ ÏÂÊ‰Û Ëı ÍÓ̘Ì˚ÏË ÚӘ͇ÏË. í‡ÍË ÔÓÒÚ‡ÌÒÚ‚‡ ‚Íβ˜‡˛Ú ‚ Ò·fl
ÔÓÒÚ‡ÌÒÚ‚‡ „ÂÓ‰ÂÁ˘ÂÒÍËı, ÙËÌÒÎÂÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ Ë Ú.Ô. é·Ó·˘ÂÌÌ˚ ÙËÌÒÎÂÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ ÓÚ΢‡˛ÚÒfl ÓÚ ÙËÌÒÎÂÓ‚˚ı Ì ÚÓθÍÓ ·Óθ¯ÂÈ ÒÚÂÔÂ̸˛
Ó·Ó·˘ÂÌËfl, ÌÓ Ë ÚÂÏ, ˜ÚÓ ÓÌË ÓÔ‰ÂÎfl˛ÚÒfl Ë ËÒÒÎÂ‰Û˛ÚÒfl Ò ÔÓÏÓ˘¸˛ ÏÂÚËÍË,
·ÂÁ ËÒÔÓθÁÓ‚‡ÌËfl ÍÓÓ‰Ë̇Ú.
åÂÚË͇ äÓÔËÌÓÈ
åÂÚËÍÓÈ äÓÔËÌÓÈ Ì‡Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ FKr ̇ ‚¢ÂÒÚ‚ÂÌÌÓÏ
n-ÏÂÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , Á‡‰‡‚‡Âχfl ͇Í
∑ gij xi x j
i, j
∑ bi ( p) xi
i
‰Îfl β·˚ı p ∈
Ëx ∈
b(p) = (bi(p)) – ‚ÂÍÚÓÌÓÂ ÔÓÎÂ.
Mn
Tp(M n ),
„‰Â (gij) – fl‚ÎflÂÚÒfl ËχÌÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓÓ Ë
åÂÚË͇ ê‡Ì‰ÂÒ‡
åÂÚË͇ ê‡Ì‰ÂÒ‡ – ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ FRa ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ n-ÏÂÌÓÏ
ÏÌÓ„ÓÓ·‡ÁËË Mn , Á‡‰‡‚‡Âχfl ͇Í
∑ gij xi x j + ∑ bi ( p) xi
i, j
i
‰Îfl β·˚ı p ∈ M n Ë x ∈ T p (M n ), „‰Â (gij) – ËχÌÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓÓ Ë b(p) =
= (bi(p)) – ‚ÂÍÚÓÌÓÂ ÔÓÎÂ.
125
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
åÂÚË͇ äÎÂÈ̇
åÂÚËÍÓÈ äÎÂÈ̇ ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ ̇ ÓÚÍ˚ÚÓÏ Â‰ËÌ˘ÌÓÏ ¯‡Â
n
B = {x ∈ n: || x ||2 < 1} ‚ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
(
|| y ||22 − || x ||22 || y ||22 −⟨ x, y ⟩ 2
1− || x
)
||22
‰Îfl β·˚ı x ∈ Bn Ë y ∈ T x(Bn ), „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë ⟨ , ⟩ – Ó·˚˜ÌÓÂ
Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n.
åÂÚË͇ îÛÌ͇
åÂÚËÍÓÈ îÛÌ͇ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ FRu ̇ ÓÚÍ˚ÚÓÏ Â‰ËÌ˘ÌÓÏ
¯‡ ‚ n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
(
)
|| y ||22 − || x ||22 || y ||22 −⟨ x, y ⟩ 2 + ⟨ x, y ⟩
1− || x
||22
‰Îfl β·˚ı x ∈ Bn Ë y ∈ T x(Bn ), „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë ⟨ , ⟩ – Ó·˚˜ÌÓÂ
Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n. ùÚÓ – ÔÓÂÍÚ˂̇fl ÏÂÚË͇.
åÂÚË͇ òÂ̇
ÑÎfl ‰‡ÌÌÓ„Ó ‚ÂÍÚÓ‡ a ∈ n , || a ||2 < 1 ÏÂÚËÍÓÈ òÂ̇ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡
ÏÂÚË͇ FSh ̇ ÓÚÍ˚ÚÓÏ Â‰ËÌ˘ÌÓÏ ¯‡ B n = {x ∈ n: || x ||2 < 1} ‚ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
(
)
|| y ||22 − || x ||22 || y ||22 −⟨ x, y ⟩ 2 + ⟨ x, y ⟩
1− || x
||22
+
⟨ a, y ⟩
1 + ⟨ a, x ⟩
‰Îfl β·˚ı x ∈ Bn Ë y ∈ T x(Bn ), „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë ⟨ , ⟩ – Ó·˚˜ÌÓÂ
Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n. ùÚÓ – ÔÓÂÍÚ˂̇fl ÏÂÚË͇. èË a = 1 Ó̇ Ô‚‡˘‡ÂÚÒfl ‚ ÏÂÚËÍÛ îÛÌ͇.
åÂÚË͇ ÅÂ‚‡Î¸‰‡
åÂÚËÍÓÈ ÅÂ‚‡Î¸‰‡ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ FBe ̇ ÓÚÍ˚ÚÓÏ Â‰ËÌ˘ÌÓÏ ¯‡ B n = {x ∈ n: || x ||2 < 1} ‚ n, Á‡‰‡‚‡Âχfl ͇Í
(
)
 || y ||2 − || x ||2 || y ||2 −⟨ x, y ⟩ 2 + ⟨ x, y ⟩
2
2
2


(1− || x || )
2 2
2
(
|| y ||22 − || x ||22 || y ||22 −⟨ x, y ⟩ 2
)
‰Îfl β·˚ı x ∈ Bn Ë y ∈ T x(Bn ), „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë ⟨ , ⟩ – Ó·˚˜ÌÓÂ
Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n. ùÚÓ – ÔÓÂÍÚ˂̇fl ÏÂÚË͇.
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ͇ʉ‡fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ ̇ ÏÌÓ„ÓÓ·‡ÁËË Mn ÔÓÓʉ‡ÂÚ
ÔÛθ‚ÂËÁ‡ˆË˛ (Ó·˚˜ÌÓ ӉÌÓÓ‰ÌÓ ‰ËÙÙÂÂ̈ˇθÌÓ Û‡‚ÌÂÌË ‚ÚÓÓ„Ó ÔÓ∂
∂
fl‰Í‡) yi
− 2G i
, ÍÓÚÓÓÈ ÓÔ‰ÂÎfl˛ÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÂ. îËÌÒÎÂÓ‚‡ ÏÂÚË͇
∂xi
∂yi
126
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ ÅÂ‚‡Î¸‰‡, ÂÒÎË ÍÓ˝ÙÙˈËÂÌÚ˚ ÔÛθ‚ÂËÁ‡ˆËË Gi = Gi(x, y)
1
fl‚Îfl˛ÚÒfl Í‚‡‰‡Ú˘Ì˚ÏË ÔÓ y ∈ Tx(Bn ) ‚ β·ÓÈ ÚӘ͠x ∈ M n , Ú.Â. G i = Γ jki ( x ) y i y k .
2
ä‡Ê‰‡fl ÏÂÚË͇ ÅÂ‚‡Î¸‰‡ ‡ÙÙËÌÌÓ ˝Í‚Ë‚‡ÎÂÌÚ̇ ÌÂÍÓÚÓÓÈ ËχÌÓ‚ÓÈ ÏÂÚËÍÂ.
åÂÚË͇ Ñۄ·҇
åÂÚËÍÓÈ Ñۄ·҇ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, ‰Îfl ÍÓÚÓÓÈ ÍÓ˝ÙÙˈËÂÌÚ˚ ÔÛθ‚ÂËÁ‡ˆËË Gi = Gi(x, y) ËÏÂ˛Ú ‚ˉ
Gi =
1 i
Γ jk ( x ) yi yk + P( x, y) yi .
2
ä‡Ê‰‡fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, ÍÓÚÓ‡fl ÔÓÂÍÚË‚ÌÓ ˝Í‚Ë‚‡ÎÂÌÚ̇ ÏÂÚËÍ ÅÂ‚‡Î¸‰‡, fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ñۄ·҇. ä‡Ê‰‡fl ËÁ‚ÂÒÚ̇fl ÏÂÚË͇ Ñۄ·҇ fl‚ÎflÂÚÒfl
(ÎÓ͇θÌÓ) ÔÓÂÍÚË‚ÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌÓÈ ÏÂÚËÍ ÅÂ‚‡Î¸‰‡.
åÂÚË͇ Å‡È‡ÌÚ‡
èÛÒÚ¸ α – Û„ÓÎ Ò | α | <
π
Ë ÔÛÒÚ¸ ‰Îfl β·˚ı x, y ∈ n
2
(
)
2
A = || y ||24 sin 2 2α + || y ||22 cos 2α + || x ||22 || y ||22 −⟨ x, y ⟩ 2 ,
B = || y ||24 cos 2α + || x ||22 || y ||22 −⟨ x, y ⟩ 2 ,
C = ⟨ x, y ⟩ sin 2α,
D = || y ||22 +2 || x ||22 cos 2α + 1.
íÓ„‰‡ (ÔÓÂÍÚË‚ÌÛ˛) ÙËÌÒÎÂÓ‚Û ÏÂÚËÍÛ F Ï˚ ÔÓÎÛ˜ËÏ Í‡Í
A + B  C2 C
+
+ .
 D
2D
D
ç‡ ‰‚ÛÏÂÌÓÈ Â‰ËÌ˘ÌÓÈ ÒÙÂ S2 Ó̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ Å‡È‡ÌÚ‡.
åÂÚË͇ 䇂‡„Û˜Ë
åÂÚËÍÓÈ ä‡‚‡„Û˜Ë Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ „·‰ÍÓÏ n-ÏÂÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn ,
Á‡‰‡‚‡Âχfl ˝ÎÂÏÂÌÚÓÏ ‰Û„Ë ds „ÛÎflÌÓÈ ÍË‚ÓÈ x = x (t ), t ∈[t0 , t1 ] Ë ‚˚‡ÊÂÌ̇fl
ÙÓÏÛÎÓÈ
 dx
dkx
ds = F  x, ,..., k  dt,
dt 
 dt
k
„‰Â ÏÂÚ˘ÂÒ͇fl ÙÛÌ͈Ëfl F Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎÓ‚ËflÏ ñÂÏÂÎÓ:
∑ sx (s) F(s)i = F,
x =1
d s xi
∂F
 s  ( s − r +1)i
F( s )i = 0, x ( s )i =
 x
s , F( s )i =
( s )i Ë r = 2, ..., k. ùÚËÏË ÛÒÎÓ‚ËflÏË
k


dt
∂
x
s=r
Ó·ÂÒÔ˜˂‡ÂÚÒfl ÌÂÁ‡‚ËÒËÏÓÒÚ¸ ˝ÎÂÏÂÌÚ‡ ‰Û„Ë ds ÓÚ Ô‡‡ÏÂÚËÁ‡ˆËË ÍË‚ÓÈ .x = x(t)
åÌÓ„ÓÓ·‡ÁË 䇂‡„Û˜Ë (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó ä‡‚‡„Û˜Ë) – ˝ÚÓ „·‰ÍÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ ä‡‚‡„Û˜Ë. éÌÓ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÙËÌÒÎÂÓ‚‡
ÏÌÓ„ÓÓ·‡ÁËfl.
k
∑
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
127
ëÛÔÂÏÂÚË͇ Ñ ÇËÚÚ‡
ëÛÔÂÏÂÚËÍÓÈ ÑÂ-ÇËÚÚ‡ (ËÎË ÒÛÔÂÏÂÚËÍÓÈ ìËÎÂ‡ – ÑÂ-ÇËÚÚ‡) G = (G ijkl)
̇Á˚‚‡ÂÚÒfl Ó·Ó·˘ÂÌË ËχÌÓ‚ÓÈ (ËÎË ÔÒ‚‰ÓËχÌÓ‚ÓÈ) ÏÂÚËÍË g = g(gij),
ËÒÔÓθÁÛÂÏÓÈ ‰Îfl ‚˚˜ËÒÎÂÌËfl ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÚӘ͇ÏË ‰‡ÌÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl,
̇ ÒÎÛ˜‡È ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÏÂÚË͇ÏË Ì‡ ˝ÚÓÏ ÏÌÓ„ÓÓ·‡ÁËË.
íӘ̠„Ó‚Ófl, ‰Îfl ‰‡ÌÌÓ„Ó Ò‚flÁÌÓ„Ó „·‰ÍÓ„Ó ÚÂıÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl M 3
‡ÒÒÏÓÚËÏ ÔÓÒÚ‡ÌÒÚ‚Ó (M 3 ) ‚ÒÂı ËχÌÓ‚˚ı (ËÎË ÔÒ‚‰ÓËχÌÓ‚˚ı) ÏÂÚËÍ Ì‡
Mn . à‰ÂÌÚËÙˈËÛfl ÚÓ˜ÍË (M3 ), Ò‚flÁ‡ÌÌÓ ‰ËÙÙÂÓÏÓÙËÁÏÓÏ M 3 , ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó Geom(M 3 ) 3-„ÂÓÏÂÚËÈ (Á‡‰‡ÌÌÓÈ ÚÓÔÓÎÓ„ËË), ÚӘ͇ÏË
ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl Í·ÒÒ˚ ‰ËÙÙÂÓÏÓÙÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ı ÏÂÚËÍ. èÓÒÚ‡ÌÒÚ‚Ó
Geom(M3 ) ̇Á˚‚‡ÂÚÒfl ÒÛÔÂÔÓÒÚ‡ÌÒÚ‚ÓÏ. éÌÓ Ë„‡ÂÚ ‚‡ÊÌÛ˛ Óθ ‚ ÌÂÍÓÚÓ˚ı
ÙÓÏÛÎËӂ͇ı Í‚‡ÌÚÓ‚ÓÈ „‡‚ËÚ‡ˆËË.
ëÛÔÂÏÂÚËÍÓÈ, Ú.Â. "ÏÂÚËÍÓÈ ÏÂÚËÍ", ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ (M3 ) (ËÎË Ì‡
Geom(M3 )), ËÒÔÓθÁÛÂχfl ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÏÂÚË͇ÏË Ì‡ M 3 (ËÎË
ÏÂÊ‰Û Ëı Í·ÒÒ‡ÏË ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË). ÖÒÎË ËÏÂÂÚÒfl ÏÂÚË͇ g = (gij)) ∈ (M3 ), ÚÓ
|| δg ||2 =
∫
d 3 xG ijkl ( x )δgij ( x )δgkl ( x ).
M3
„‰Â G ijkl – ‚Â΢Ë̇, Ó·‡Ú̇fl ÒÛÔÂÏÂÚËÍ Ñ‚ËÚÚ‡
Gijkl =
1
( gik g jl _ gil g jk − λgij gkl ).
2 det( gij )
ÇÂ΢Ë̇ λ Ô‡‡ÏÂÚËÁÛÂÚ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÂÚË͇ÏË (M 3 ) ‚ Ë ÏÓÊÂÚ ÔË2
ÌËχڸ β·˚ ‰ÂÈÒÚ‚ËÚÂθÌ˚ Á̇˜ÂÌËfl, ÍÓÏ λ = , ÔË ÍÓÚÓÓÏ ÒÛÔÂÏÂÚË͇
3
ÒÚ‡ÌÓ‚ËÚÒfl ÒËÌ„ÛÎflÌÓÈ.
ëÛÔÂÏÂÚË͇ ãÛ̉‡–ê‰ÊË
ëÛÔÂÏÂÚË͇ ãÛ̉‡–ê‰ÊË (ËÎË ÒËÏÔÎˈˇθ̇fl ÒÛÔÂÏÂÚË͇) fl‚ÎflÂÚÒfl
‡Ì‡ÎÓ„ÓÏ ÒÛÔÂÏÂÚËÍË ÑÂ-ÇËÚÚ‡ Ë ËÒÔÓθÁÛÂÚÒfl ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ÏÂʉÛ
ÒËÏÔÎˈˇθÌ˚ÏË 3-„ÂÓÏÂÚËflÏË ‚ ÒËÏÔÎˈˇθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÍÓÌÙË„Û‡ˆËÈ.
ÅÓΠÚÓ˜ÌÓ, ÂÒÎË ËÏÂÂÚÒfl Á‡ÏÍÌÛÚÓ ÒËÏÔÎˈˇθÌÓ ÚÂıÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË M3 , ÒÓÒÚÓfl˘Â ËÁ ÌÂÒÍÓθÍËı ÚÂÚ‡˝‰Ó‚ (Ú.Â. ÚÂıÏÂÌ˚ı ÒËÏÔÎÂÍÒÓ‚), ÚÓ
ÒËÏÔÎˈˇθ̇fl „ÂÓÏÂÚËfl ̇ M3 Á‡‰‡ÂÚÒfl ÔËÒ‚ÓÂÌËÂÏ Á̇˜ÂÌËÈ Í‚‡‰‡ÚÓ‚ ‰ÎËÌ
ÒÚÓÓÌ ˝ÎÂÏÂÌÚ‡ÏË ËÁ M3 Ë ‚˚‚‰ÂÌËÂÏ ‚Ó ‚ÌÛÚÂÌÌÓÒÚË Í‡Ê‰Ó„Ó ÚÂÚ‡˝‰‡
ÔÎÓÒÍÓÈ ËχÌÓ‚ÓÈ „ÂÓÏÂÚËË, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ˝ÚËÏ Á̇˜ÂÌËflÏ. 䂇‰‡Ú˚ ‰ÎËÌ
‰ÓÎÊÌ˚ ·˚Ú¸ ÔÓÎÓÊËÚÂθÌ˚ÏË Ë Û‰Ó‚ÎÂÚ‚ÓflÚ¸ ÌÂ‡‚ÂÌÒÚ‚‡Ï ÚÂÛ„ÓθÌË͇ Ë Ëı
‡Ì‡ÎÓ„‡Ï ‰Îfl ÚÂÚ‡˝‰Ó‚, Ú.Â. ‚Ò ͂‡‰‡Ú˚ ÏÂ (‰ÎËÌ, ÔÎÓ˘‡‰ÂÈ, Ó·˙ÂÏÓ‚) ‰ÓÎÊÌ˚
·˚Ú¸ ÌÂÓÚˈ‡ÚÂθÌ˚ÏË (ÒÏ. ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÚ‡˝‰‡, „Î. 3). åÌÓÊÂÒÚ‚Ó (M3 ) ‚ÒÂı
ÒËÏÔÎˈˇθÌ˚ı „ÂÓÏÂÚËÈ Ì‡ M3 ̇Á˚‚‡ÂÚÒfl ÒËÏÔÎˈˇθÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ
ÍÓÌÙË„Û‡ˆËÈ.
ëÛÔÂÏÂÚË͇ ãÛ̉‡–ê‰ÊË (Gmn) ̇ ÏÌÓÊÂÒÚ‚Â (M3 ) ÔÓÓʉ‡ÂÚÒfl ÒÛÔÂÏÂÚËÍÓÈ Ñ‚ËÚÚ‡ ̇ (M 3 ) Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ‰Îfl ËÁÓ·‡ÊÂÌËfl ÚÓ˜ÂÍ ‚ (M3 ) Ú‡ÍËı
ÏÂÚËÍ ‚ (M 3 ), ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ÍÛÒÓ˜ÌÓ ÔÎÓÒÍËÏË ‚ ÚÂÚ‡˝‰‡ı.
CÛÔÂÏÂÚËÍË ‚ ‰Ó͇Á‡ÚÂθÒÚ‚Â èÂÂθχ̇
è‰ÎÓÊÂÌ̇fl ì. íÂÒÚÓÌÓÏ „ËÔÓÚÂÁ‡ „ÂÓÏÂÚËÁ‡ˆËË Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ ÔÓÒÎÂ
‰‚Ûı ıÓÓ¯Ó ËÁ‚ÂÒÚÌ˚ı ‰ÂÍÓÏÔÓÁˈËÈ Î˛·Ó ÚÂıÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË ‰ÓÔÛÒ͇ÂÚ
128
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
‚ ͇˜ÂÒÚ‚Â ÓÒÚ‡ÚÓ˜Ì˚ı ÍÓÏÔÓÌÂÌÚ ÚÓθÍÓ Ó‰ÌÛ ËÁ ‚ÓÒ¸ÏË ÚÂÒÚÓÌÓ‚ÒÍËı ÏÓ‰ÂθÌ˚ı „ÂÓÏÂÚËÈ. ÖÒÎË ‰‡Ì̇fl „ËÔÓÚÂÁ‡ ‚Â̇, ÚÓ ÓÚÒ˛‰‡ ÒΉÛÂÚ ÒÔ‡‚‰ÎË‚ÓÒÚ¸
Á̇ÏÂÌËÚÓÈ „ËÔÓÚÂÁ˚ èÛ‡Ì͇ (1904) Ó ÚÓÏ, ˜ÚÓ Î˛·Ó ÚÂıÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ,
‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ÔÓÒÚ‡fl Á‡ÏÍÌÛÚ‡fl ÍË‚‡fl ÏÓÊÂÚ ·˚Ú¸ ÌÂÔÂ˚‚ÌÓ ‰ÂÙÓÏËÓ‚‡Ì‡ ‚ ÚÓ˜ÍÛ, „ÓÏÂÓÏÓÙÌÓ ÚÂıÏÂÌÓÈ ÒÙÂÂ.
Ç 2003 „. èÂÂÎ¸Ï‡Ì ‰‡Î ̇·ÓÒÓÍ ‰Ó͇Á‡ÚÂθÒÚ‚‡ „ËÔÓÚÂÁ˚ íÂÒÚÓ̇ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÌÂÍÓÈ ÒÛÔÂÏÂÚËÍË Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â ‚ÒÂı ËχÌÓ‚˚ı ÏÂÚËÍ ‰‡ÌÌÓ„Ó „·‰ÍÓ„Ó ÚÂıÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl. Ç ÔÓÚÓÍ ê˘˜Ë ‡ÒÒÚÓflÌËfl ÛÏÂ̸¯‡˛ÚÒfl ‚ ̇Ô‡‚ÎÂÌËË ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚, ÔÓÒÍÓθÍÛ ÏÂÚË͇ Á‡‚ËÒËχ ÓÚ
‚ÂÏÂÌË. åÓ‰ËÙË͇ˆËfl èÂÂθχ̇ Òڇ̉‡ÚÌÓ„Ó ÔÓÚÓ͇ ê˘˜Ë ÔÓÁ‚ÓÎË· ÒËÒÚÂχÚ˘ÂÒÍË Û‰‡ÎflÚ¸ ‚ÓÁÌË͇˛˘Ë ÒËÌ„ÛÎflÌÓÒÚË.
7.2. êàåÄçéÇõ åÖíêàäà Ç íÖéêàà àçîéêåÄñàà
èËÏÂÌËÚÂθÌÓ Í ÚÂÓËË ËÌÙÓχˆËË Ó·˚˜ÌÓ ËÒÔÓθÁÛ˛ÚÒfl ÒÔˆˇθÌ˚ ËχÌÓ‚˚ ÏÂÚËÍË, ÔÂ˜Â̸ ÍÓÚÓ˚ı Ô‰ÒÚ‡‚ÎÂÌ ÌËÊÂ.
àÌÙÓχˆËÓÌ̇fl ÏÂÚË͇ î˯Â‡
Ç ÒÚ‡ÚËÒÚËÍÂ, ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ Ë ËÌÙÓχˆËÓÌÌÓÈ „ÂÓÏÂÚËË ËÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍÓÈ î˯Â‡ (ËÎË ÏÂÚËÍÓÈ î˯Â‡, ÏÂÚËÍÓÈ ê‡Ó) ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ ‰Îfl ÒÚ‡ÚËÒÚ˘ÂÒÍÓ„Ó ‰ËÙÙÂÂ̈ˇθÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl (ÒÏ., ̇ÔËÏÂ, [Amar85], [Frie98]). Ç ˝ÚÓÏ ÒÎÛ˜‡Â ˜¸ ˉÂÚ Ó Ôˉ‡ÌËË Ò‚ÓÈÒÚ‚ ‰ËÙÙÂÂ̈ˇθÌÓÈ „ÂÓÏÂÚËË ÒÂÏÂÈÒÚ‚Û Í·ÒÒ˘ÂÒÍËı ÔÎÓÚÌÓÒÚÂÈ ‡ÒÔ‰ÂÎÂÌËfl ÚÂÓËË
‚ÂÓflÚÌÓÒÚÂÈ.
îÓχθÌÓ, ÔÛÒÚ¸ pθ = p( x, θ) – ÒÂÏÂÈÒÚ‚Ó ÔÎÓÚÌÓÒÚÂÈ, ÔÂÂÌÛÏÂÓ‚‡ÌÌ˚ı n
Ô‡‡ÏÂÚ‡ÏË θ = (θ1 ,..., θ n ), ÍÓÚÓ˚ ӷ‡ÁÛ˛Ú Ô‡‡ÏÂÚ˘ÂÒÍÓ ÏÌÓ„ÓÓ·‡ÁË ê.
àÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍÓÈ î˯Â‡ g = gθ ̇ ê ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇,
Á‡‰‡‚‡Âχfl ËÌÙÓχˆËÓÌÌÓÈ Ï‡ÚˈÂÈ î˯Â‡ ((I(θ) ij)), „‰Â
 ∂ ln pθ ∂ ln pθ 
I (θ)ij = θ = 
⋅
=
∂θ j 
 ∂θ i
∫
∂ ln p( x, θ) ∂ ln p( x, θ)
p( x, θ)dx.
∂θ i
∂θ j
ùÚÓ – ÒËÏÏÂÚ˘̇fl ·ËÎËÌÂÈ̇fl ÙÓχ, ÍÓÚÓ‡fl ‰‡ÂÚ Ì‡Ï Í·ÒÒ˘ÂÒÍÛ˛ ÏÂÛ
(ÏÂÛ ê‡Ó) ‰Îfl ÒÚ‡ÚËÒÚ˘ÂÒÍÓÈ ‡Á΢ËÏÓÒÚË Ô‡‡ÏÂÚÓ‚ ‡ÒÔ‰ÂÎÂÌËfl. èÓ·„‡fl
i( x, θ) = − ln p( x, θ), ÔÓÎÛ˜ËÏ ˝Í‚Ë‚‡ÎÂÌÚÌÓ ‚˚‡ÊÂÌËÂ
 ∂ 2 i( x , θ) 
I (θ)ij = θ 
=
 ∂θ i ∂θ j 
∫
∂ 2 i( x , θ)
p( x, θ)dx.
∂θ i ∂θ j
ÅÂÁ ËÒÔÓθÁÓ‚‡ÌËfl flÁ˚͇ ÍÓÓ‰Ë̇Ú, ÔÓÎÛ˜ËÏ
I (θ)(u, v) = θ [u(ln pθ ) ⋅ v(ln pθ )],
„‰Â u Ë v – ‚ÂÍÚÓ˚, ͇҇ÚÂθÌ˚Â Í Ô‡‡ÏÂÚ˘ÂÒÍÓÏÛ ÏÌÓ„ÓÓ·‡Á˲ ê, ‡
d
u(ln pθ ) = ln pθ + tu |t = 0 – ÔÓËÁ‚Ӊ̇fl ÓÚ ln pθ ÔÓ Ì‡Ô‡‚ÎÂÌ˲ u.
dt
åÌÓ„ÓÓ·‡ÁË ‡ÒÔ‰ÂÎÂÌËfl ÔÎÓÚÌÓÒÚÂÈ M fl‚ÎflÂÚÒfl Ó·‡ÁÓÏ Ô‡‡ÏÂÚ˘ÂÒÍÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl ê ÔË ÓÚÓ·‡ÊÂÌËË θ → pθ Ò ÌÂÍÓÚÓ˚ÏË ÛÒÎÓ‚ËflÏË
129
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
„ÛÎflÌÓÒÚË. ÇÂÍÚÓ u, ͇҇ÚÂθÌ˚È Í ‰‡ÌÌÓÏÛ ÏÌÓ„ÓÓ·‡Á˲, ËÏÂÂÚ ‚ˉ
d
u = ln pθ + tu |t = 0 , Ë ÏÂÚË͇ î˯Â‡ g = gp ̇ å, ÔÓÎÛ˜ÂÌ̇fl ËÁ ÏÂÚËÍË gθ ̇ ê,
dt
ÏÓÊÂÚ ·˚Ú¸ Á‡ÔË҇̇ ‚ ‚ˉÂ
u v
g p (u, v) = p  ⋅ .
 p p
åÂÚË͇ î˯Â‡ Ë ê‡Ó
n
èÛÒÚ¸ n = {p ∈ n :
∑
pi = 1, p > 0} – ÒËÏÔÎÂÍÒ ÒÚÓ„Ó ÔÓÎÓÊËÚÂθÌ˚ı ‚ÂÓ-
i =1
flÚÌÓÒÚÌ˚ı ‚ÂÍÚÓÓ‚. ùÎÂÏÂÌÚ p ∈ n fl‚ÎflÂÚÒfl ÔÎÓÚÌÓÒÚ¸˛ n-ÚӘ˜ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ {1, ..., n } Ò p(i ) = pi. ùÎÂÏÂÌÚ u ͇҇ÚÂθÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Tp ( n ) =
n
= {u ∈ n :
∑ ui = 0} ‚ ÚӘ͠p ∈ n ÂÒÚ¸ ÙÛÌ͈ËÂfl ̇ ÏÌÓÊÂÒÚ‚Â Ò {1, ..., n} Ò
i =1
u(i) = ui.
åÂÚË͇ î˯Â‡ ê‡Ó gp ̇ n fl‚ÎflÂÚÒfl ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ, ÓÔ‰ÂÎflÂÏÓÈ ‚˚‡ÊÂÌËÂÏ
n
g p (u, v) =
∑
i =1
ui vi
pi
‰Îfl β·˚ı u, v ∈ Tp ( n ), Ú.Â. fl‚ÎflÂÚÒfl ËÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍÓÈ î˯Â‡ ̇ n .
åÂÚË͇ î˯Â‡ – ê‡Ó fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓÈ (Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ÔÓÒÚÓflÌÌÓ„Ó ÏÌÓÊËÚÂÎfl) ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ n , ÒÛʇÂÏÓÈ ÔË ÒÚÓı‡ÒÚ˘ÂÒÍÓÏ ÓÚÓ·‡ÊÂÌËË
([Chen72]).
åÂÚË͇ î˯Â‡ – ê‡Ó ËÁÓÏÂÚ˘‡ (ÒÏ. ÓÚÓ·‡ÊÂÌË p → 2( p1 ,..., pn )) Òڇ̉‡ÚÌÓÈ ÏÂÚËÍ ̇ ÓÚÍ˚ÚÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚Â ÒÙÂ˚ ‡‰ËÛÒ‡ ‰‚‡ ‚ n . í‡ÍÓÂ
ÓÚÓʉÂÒÚ‚ÎÂÌË n ÔÓÁ‚ÓÎflÂÚ ÔÓÎÛ˜ËÚ¸ ̇ n „ÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ, ̇Á˚‚‡ÂÏÓ ‡ÒÒÚÓflÌËÂÏ î˯Â‡ (ËÎË ‡ÒÒÚÓflÌËÂÏ Åı‡ÚÚ‡˜‡¸fl 1), ÔÓÒ‰ÒÚ‚ÓÏ ÙÓÏÛÎ˚

2 arccos


∑ pi1 / 2 qi1 / 2  .
i
åÂÚË͇ î˯Â‡–ê‡Ó ÏÓÊÂÚ ·˚Ú¸ ‡Ò¯ËÂ̇ ̇ ÏÌÓÊÂÒÚ‚Ó n = {p ∈ n ,
pi > 0} ‚ÒÂı ÍÓ̘Ì˚ı ÒÚÓ„Ó ÔÓÎÓÊËÚÂθÌ˚ı ÏÂ ̇ ÏÌÓÊÂÒÚ‚Â {1, ..., n}. Ç ˝ÚÓÏ
ÒÎÛ˜‡Â „ÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ̇ n ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ͇Í

2

∑(
i
pi − qi
2
) 
1/ 2
‰Îfl β·˚ı p, q ∈ n (ÒÏ. åÂÚË͇ ïÂÎÎË̉ÊÂ‡, „Î. 14).
åÓÌÓÚÓÌ̇fl ÏÂÚË͇
èÛÒÚ¸ n ·Û‰ÂÚ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı n × n χÚˈ, ‡ ⊂ Mn –
ÏÌÓ„ÓÓ·‡ÁË ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı n × n χÚˈ. èÛÒÚ¸
130
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
⊂ , = {ρ ∈ : Tr ρ = 1} – ·Û‰ÂÚ ÏÌÓ„ÓÓ·‡ÁË ‚ÒÂı χÚˈ ÔÎÓÚÌÓÒÚË.
ä‡Ò‡ÚÂθÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ ÚӘ͠ρ ∈ fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚Ó
Tp () = {x ∈ Mn : x = x *}, Ú.Â. ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ˝ÏËÚÓ‚˚ı n × n χÚˈ. ä‡Ò‡ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Tρ() ‚ ÚӘ͠ρ ∈ ÂÒÚ¸ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó ·ÂÒÒΉӂ˚ı (Ú.Â.
Ëϲ˘Ëı ÌÛ΂ÓÈ ÒΉ) χÚˈ ‚ Tρ().
êËχÌÓ‚‡ ÏÂÚË͇ λ ̇ ̇Á˚‚‡ÂÚÒfl ÏÓÌÓÚÓÌÌÓÈ ÏÂÚËÍÓÈ, ÂÒÎË ÌÂ‡‚ÂÌÒÚ‚Ó
λ h(ρ) (h(u), h(u)) < λ ρ (u, u)
‚˚ÔÓÎÌflÂÚÒfl ‰Îfl β·˚ı ρ ∈ , β·˚ı u ∈ T ρ() Ë Î˛·˚ı ‚ÔÓÎÌ ÔÓÎÓÊËÚÂθÌ˚ı
ÒÓı‡Ìfl˛˘Ëı ÒΉ˚ ÓÚÓ·‡ÊÂÌËÈ h, ̇Á˚‚‡ÂÏ˚ı ÒÚÓı‡ÒÚ˘ÂÒÍËÏË ÓÚÓ·‡ÊÂÌËflÏË. Ç ‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË ([Petz96]), λ fl‚ÎflÂÚÒfl ÏÓÌÓÚÓÌÌÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ
ÚÓ„‰‡, ÍÓ„‰‡  ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í λ ρ (u, v) = Tr uJρ (u, u), „‰Â Jρ – ÓÔÂ‡ÚÓ ‚ˉ‡
1
. á‰ÂÒ¸ L ρ Ë Rρ – ΂˚È Ë Ô‡‚˚È ÓÔÂ‡ÚÓ˚ ÛÏÌÓÊÂÌËfl, ‡ f:
f ( Lρ / Rρ ) Rρ
(0, ∞ ) → – ÓÔÂ‡ÚÓ ÏÓÌÓÚÓÌÌÓÈ ÙÛÌ͈ËË, ÍÓÚÓ˚È ÒËÏÏÂÚ˘ÂÌ, Ú.Â.
f (t ) = tf (t −1 ), Ë ÌÓÏËÓ‚‡Ì, Ú.Â. f (1) = 1. Jρ ( v) = ρ −1v, ÂÒÎË v Ë ρ ÍÓÏÏÛÚËÛ˛Ú
ÏÂÊ‰Û ÒÓ·ÓÈ, Ú.Â. β·‡fl ÏÓÌÓÚÓÌ̇fl ÏÂÚË͇ ‡‚̇ ËÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍÂ
î˯Â‡ ̇ ÍÓÏÏÛÚ‡ÚË‚Ì˚ı ÔÓ‰ÏÌÓ„ÓÓ·‡ÁËflı. ëΉӂ‡ÚÂθÌÓ, ÏÓÌÓÚÓÌÌ˚ ÏÂÚËÍË fl‚Îfl˛ÚÒfl Ó·Ó·˘ÂÌËÂÏ ËÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍË î˯Â‡ ̇ Í·ÒÒ ÔÎÓÚÌÓÒÚÂÈ ‡ÒÔ‰ÂÎÂÌËfl (Í·ÒÒ˘ÂÒÍËÈ ËÎË ÍÓÏÏÛÚ‡ÚË‚Ì˚È ÒÎÛ˜‡È) ̇ Í·ÒÒ Ï‡Úˈ
ÔÎÓÚÌÓÒÚË (Í‚‡ÌÚÓ‚˚È ËÎË ÌÂÍÓÏÏÛÚ‡ÚË‚Ì˚È ÒÎÛ˜‡È), ÔËÏÂÌflÂÏ˚ı ‚ Í‚‡ÌÚÓ‚ÓÈ
ÒÚ‡ÚËÒÚËÍÂ Ë ÚÂÓËË ËÌÙÓχˆËË. àÏÂÌÌÓ fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÚÓ˜Ì˚ı
ÒÓÒÚÓflÌËÈ n-ÛÓ‚Ì‚ÓÈ Í‚‡ÌÚÓ‚ÓÈ ÒËÒÚÂÏ˚.
1
åÓÌÓÚÓÌÌÛ˛ ÏÂÚËÍÛ λ ρ (u, v Tr u
( v) ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Ë̇˜Â ͇Í
f ( Lρ / Rρ ) Rρ
Jρ =
λ ρ (u, v) = Tr uc( Lρ Rρ ) ( v), „‰Â ÙÛÌ͈Ëfl c( x, y) =
1
fl‚ÎflÂÚÒfl ÙÛÌ͈ËÂÈ åÓÓÁÓf ( x / y) y
‚‡–óÂ̈ӂ‡, ÓÚÌÓÒfl˘ÂÈÒfl Í λ.
åÂÚË͇ ÅÛÂÒ‡ fl‚ÎflÂÚÒfl ̇ËÏÂ̸¯ÂÈ ÏÓÌÓÚÓÌÌÓÈ ÏÂÚËÍÓÈ, ÔÓÎÛ˜ÂÌÌÓÈ ‰Îfl
1+ i
2
f (t ) =
(‰Îfl c( x, y) =
). Ç ˝ÚÓÏ ÒÎÛ˜‡Â Jρ ( v) = g, ρg + gρ = 2 v, ÂÒÚ¸ ÒËÏÏÂÚ2
x+y
˘̇fl ÎÓ„‡ËÙÏ˘ÂÒ͇fl ÔÓËÁ‚Ӊ̇fl.
åÂÚË͇ Ô‡‚ÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÔÓËÁ‚Ó‰ÌÓÈ fl‚ÎflÂÚÒfl ̇˷Óθ¯ÂÈ ÏÓÌÓÚÓÌ2t
x+y
ÌÓÈ ÏÂÚËÍÓÈ, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÙÛÌ͈ËË f (t ) =
(ÙÛÌ͈ËË c( x, y) =
). Ç
1+ t
2 xy
1
˝ÚÓÏ ÒÎÛ˜‡Â Jρ ( v) = (ρ −1v + vρ −1 ) – Ô‡‚‡fl ÎÓ„‡ËÙÏ˘ÂÒ͇fl ÔÓËÁ‚Ӊ̇fl.
2
x −1
åÂÚË͇ ÅÓ„Óβ·Ó‚‡–äÛ·Ó–åÓË ÔÓÎÛ˜‡ÂÚÒfl ÔË f ( x ) =
(ÔË c( x, y) =
ln x
∂2
ln x − ln y
Tr(ρ + su)ln(ρ + tv) |s, t = 0 .
=
). Ö ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í λ ρ (u, v) =
∂s∂t
x−y
åÂÚËÍË ÇË„ÌÂ‡–ü̇Ò–чÈÒÓ̇ λαρ fl‚Îfl˛ÚÒfl ÏÓÌÓÚÓÌÌ˚ÏË ‰Îfl α ∈ [–3,3].
ÑÎfl α = ±1 ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ ÅÓ„Óβ·Ó‚‡–äÛ·Ó–åÓË; ‰Îfl α = ±3 ÔÓÎÛ˜‡ÂÏ ÏÂÚ-
131
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
ËÍÛ Ô‡‚ÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÔÓËÁ‚Ó‰ÌÓÈ. ç‡ËÏÂ̸¯ÂÈ ‚ ÒÂÏÂÈÒÚ‚Â fl‚ÎflÂÚÒfl
ÏÂÚË͇ ÇË„ÌÂ‡–ü̇Ò–чÈÒÓ̇, ÔÓÎÛ˜ÂÌ̇fl ‰Îfl α = 0.
åÂÚË͇ ÅÛÂÒ‡
åÂÚË͇ ÅÛÂÒ‡ (ËÎË ÒÚ‡ÚËÒÚ˘ÂÒ͇fl ÏÂÚË͇) ÂÒÚ¸ ÏÓÌÓÚÓÌ̇fl ÏÂÚË͇ ̇
ÏÌÓ„ÓÓ·‡ÁËË ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı n × n χÚˈ,
Á‡‰‡‚‡Âχfl ‚˚‡ÊÂÌËÂÏ λ ρ (u, v) = Tr uJρ ( v), „‰Â Jρ ( v) = g, ρg + gρ = 2 v, ÂÒÚ¸
ÒËÏÏÂÚ˘̇fl ÎÓ„‡ËÙÏ˘ÂÒ͇fl ÔÓËÁ‚Ӊ̇fl. ùÚÓ Ì‡ËÏÂ̸¯‡fl ËÁ ÏÓÌÓÚÓÌÌ˚ı
ÏÂÚËÍ.
ÑÎfl β·˚ı ρ1 , ρ2 ∈ ‡ÒÒÚÓflÌË ÅÛÂÒ‡, Ú.Â. „ÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ, ÓÔ‰ÂÎflÂÏÓ ÏÂÚËÍÓÈ ÅÛÂÒ‡, ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌÓ Í‡Í
(
2 Tr ρ1 + Tr ρ2 − 2 Tr ρ11 / 2 ρ2 ρ11 / 2
)
1/ 2
.
ç‡ ÔÓ‰ÏÌÓ„ÓÓ·‡ÁËË = {ρ ∈ : Tr ρ = 1} χÚˈ ÔÎÓÚÌÓÒÚË ÓÌÓ ËÏÂÂÚ ÙÓÏÛ
(
2 arccos Tr ρ11 / 2 ρ12/ 2
)
1/ 2
.
åÂÚË͇ Ô‡‚ÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÔÓËÁ‚Ó‰ÌÓÈ
åÂÚË͇ Ô‡‚ÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÔÓËÁ‚Ó‰ÌÓÈ (ËÎË RLD-ÏÂÚË͇) ÂÒÚ¸ ÏÓÌÓÚÓÌ̇fl ÏÂÚË͇ ̇ ÏÌÓ„ÓÓ·‡ÁËË ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı n × n χÚˈ Á‡‰‡‚‡Âχfl Û‡‚ÌÂÌËÂÏ
λ ρ (u, v) = Tr uJρ ( v),
1 −1
(ρ v + vρ −1 ) – Ô‡‚‡fl ÎÓ„‡ËÙÏ˘ÂÒ͇fl ÔÓËÁ‚Ӊ̇fl. ùÚÓ – ̇˷Óθ3
¯‡fl ÏÓÌÓÚÓÌ̇fl ÏÂÚË͇.
„‰Â Jρ ( v) =
åÂÚË͇ ÅÓ„Óβ·Ó‚‡–äÛ·Ó–åÓË
åÂÚË͇ ÅÓ„Óβ·Ó‚‡-äÛ·Ó-åÓË (ËÎË Çäå-ÏÂÚË͇) ÂÒÚ¸ ÏÓÌÓÚÓÌ̇fl ÏÂÚË͇ ̇ ÏÌÓ„ÓÓ·‡ÁËË ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı n × n
χÚˈ, Á‡‰‡‚‡Âχfl Û‡‚ÌÂÌËÂÏ
λαρ (u, v) =
∂2
Tr fα (ρ + su) ln(ρ + tv) |s, t = 0 .
∂t∂s
åÂÚËÍË ÇË„ÌÂ‡–ü̇Ò–чÈÒÓ̇
åÂÚËÍË ÇË„ÌÂ‡–ü̇Ò–чÈÒÓ̇ (ËÎË WYD-ÏÂÚËÍË) Ó·‡ÁÛ˛Ú ÒÂÏÂÈÒÚ‚Ó
ÏÂÚËÍ Ì‡ ÏÌÓ„ÓÓ·‡ÁËË ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı χÚˈ, Á‡‰‡‚‡ÂÏ˚ı Û‡‚ÌÂÌËÂÏ
λαρ (u, v) =
1− α
∂2
Tr fα (ρ + tu) f− α (ρ + sv) |s, t = 0 .
∂t∂s
2
x 2 , ÂÒÎË α ≠ 1, Ë ln x, ÂÒÎË α = 1. ùÚË ÏÂÚËÍË ·Û‰ÛÚ ÏÓÌÓÚÓÌ1− α
Ì˚ÏË ‰Îfl α ∈ [–3,3]. ÑÎfl α = ±1 ÔÓÎÛ˜ËÏ ÏÂÚËÍÛ ÅÓ„Óβ·Ó‚‡–äÛ·Ó–åÓË, ‡ ‰Îfl
α = ±3 – ÏÂÚËÍÛ Ô‡‚ÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÔÓËÁ‚Ó‰ÌÓÈ.
„‰Â fα ( x ) =
132
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
åÂÚË͇ ÇË„ÌÂ‡–ü̇Ò (ËÎË WY-ÏÂÚË͇) λρ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÇË„ÌÂ‡–
ü̇Ò–чÈÒÓ̇ λ0ρ , ÔÓÎÛ˜ÂÌÌÓÈ ‰Îfl α = 0. Ö ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ͇Í
λ ρ (u, v) = 4 Tr u
(
Lρ + Rρ
) (v),
2
Ë Ó̇ fl‚ÎflÂÚÒfl ̇ËÏÂ̸¯ÂÈ ÏÂÚËÍÓÈ ÒÂÏÂÈÒÚ‚‡. ÑÎfl β·˚ı ρ1 , ρ2 ∈ „ÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ, Á‡‰‡‚‡ÂÏÓ WY-ÏÂÚËÍÓÈ, ·Û‰ÂÚ ËÏÂÚ¸ ‚ˉ
(
)
2 Tr ρ1 + Tr ρ2 − 2 Tr ρ11 / 2 ρ12/ 2 .
ç‡ ÔÓ‰ÏÌÓ„ÓÓ·‡ÁËË = {ρ ∈ : Tr ρ = 1} χÚˈ ÔÎÓÚÌÓÒÚË ÓÌÓ ·Û‰ÂÚ ‡‚ÌÓ
(
)
2 arccos Tr ρ11 / 2 ρ12/ 2 .
åÂÚË͇ äÓÌ̇
ÉÛ·Ó „Ó‚Ófl, ÏÂÚË͇ äÓÌ̇ – ˝ÚÓ Ó·Ó·˘ÂÌË (ËÁ ÔÓÒÚ‡ÌÒÚ‚‡ ‚ÒÂı ‚ÂÓflÚÌÓÒÚÌ˚ı ÏÂ ÏÌÓÊÂÒÚ‚‡ ï ̇ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓÒÚÓflÌËÈ Î˛·ÓÈ ÛÌËڇθÌÓÈ C-‡Î„·˚) ÏÂÚËÍË ä‡ÌÚÓӂ˘‡, å˝ÎÎÓÛÁ‡–åÓÌʇ–LJÒÒÂ¯ÚÂÈ̇, Á‡‰‡ÌÌÓÈ Í‡Í ÎËÔ¯ËˆÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÂ‡ÏË.
èÛÒÚ¸ Mn – „·‰ÍÓ n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ. èÛÒÚ¸ A = C ∞ ( M n ) – (ÍÓÏÏÛÌËÚ‡Ú˂̇fl) ‡Î„·‡ „·‰ÍËı ÍÓÏÔÎÂÍÒÌÓÁ̇˜Ì˚ı ÙÛÌ͈ËÈ Ì‡ M n , Ô‰ÒÚ‡‚ÎÂÌÌ˚ı
ÓÔÂ‡ÚÓ‡ÏË ÛÏÌÓÊÂÌËfl ̇ „Ëθ·ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â H = L2 ( M n , S ) Í‚‡‰‡Ú˘ÌÓ
ËÌÚ„ËÛÂÏ˚ı ÒÂ͈ËÈ ‡ÒÒÎÓÂÌËfl ÒÔËÌÓÓ‚ ̇ Mn : ( fξ)( p) = f ( p)ξ( p) ‰Îfl ‚ÒÂı f ∈ A
Ë ‚ÒÂı ξ ∈ H. èÛÒÚ¸ D – ÓÔÂ‡ÚÓ ÑË‡Í‡. èÛÒÚ¸ ÍÓÏÏÛÚ‡ÚÓ [D, f] ‰Îfl f ∈ A ÂÒÚ¸
ÛÏÌÓÊÂÌË äÎËÙÙÓ‰‡ ̇ „‡‰ËÂÌÚ ∇f, Ú‡ÍÓ ˜ÚÓ Â„Ó ÓÔÂ‡ÚÓ ÌÓÏ˚ || ⋅ || ‚ ç
Á‡‰‡ÂÚÒfl Í‡Í [ D, f ] = sup p ∈M n ∇f .
åÂÚËÍÓÈ äÓÌ̇ ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ M n , Á‡‰‡‚‡Âχfl ‚˚‡ÊÂÌËÂÏ
sup
f ∈Ai ||[ D, f ]||≤1
f ( p) − f (q ).
чÌÌÓ ÓÔ‰ÂÎÂÌË ÏÓÊÂÚ ·˚Ú¸ ÔËÏÂÌÂÌÓ Ú‡ÍÊÂ Í ‰ËÒÍÂÚÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚‡Ï
Ë ‰‡Ê ӷӷ˘ÂÌÓ Ì‡ "ÌÂÍÓÏÏÛÚ‡ÚË‚Ì˚ ÔÓÒÚ‡ÌÒÚ‚‡" (ÛÌËڇθÌ˚ C*-‡Î„·˚).
Ç ˜‡ÒÚÌÓÒÚË, ‰Îfl ÔÓϘÂÌÌÓ„Ó Ò‚flÁÌÓ„Ó ÎÓ͇θÌÓ ÍÓ̘ÌÓ„Ó „‡Ù‡ G = (V, E) Ò
ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ V = {v1, ..., vn, ...} ÏÂÚË͇ äÓÌ̇ Á‡‰‡ÂÚÒfl ͇Í
sup
||[ D, f ]||= || df ||≤1
∑
fv i − fv j
∑
2
‰Îfl β·˚ı vi , v j ∈ V , „‰Â  f =
fv i vi :
fv i < ∞  fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ÙÓ

χθÌ˚ı ÒÛÏÏ f, Ó·‡ÁÛ˛˘Ëı „Ëθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, Ë [ D, f ] ÓÔ‰ÂÎflÂÚÒfl
 deg( v1 )

( fv k − fv i )
Í‡Í [ D, f ] = sup
 k =1

∑
1/ 2
.
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
133
7.3. ùêåàíéÇõ åÖíêàäà à àïï éÅéÅôÖçàü
ÇÂÍÚÓÌ˚Ï ‡ÒÒÎÓÂÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ڇ͇fl „ÂÓÏÂÚ˘ÂÒ͇fl ÍÓÌÒÚÛ͈Ëfl, ‚ ÍÓÚÓÓÈ
͇ʉÓÈ ÚӘ͠ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ å ÒÚ‡‚ËÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ‚ÂÍÚÓÌÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó Ú‡Í, ˜ÚÓ ‚Ò ˝ÚË ‚ÂÍÚÓÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡, "ÒÍÎÂÂÌÌ˚ ‚ÏÂÒÚÂ",
Ó·‡ÁÛ˛Ú ‰Û„Ó ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ö. çÂÔÂ˚‚ÌÓ ÓÚÓ·‡ÊÂÌË π:
E → M ̇Á˚‚‡ÂÚÒfl ÔÓÂ͈ËÂÈ Ö Ì‡ å. ÑÎfl ͇ʉÓÈ ÚÓ˜ÍË p ∈ M ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó π –1(p) ̇Á˚‚‡ÂÚÒfl ˝ÎÂÏÂÌÚ‡ÌÓÈ ÌËÚ¸˛ ‚ÂÍÚÓÌÓ„Ó ‡ÒÒÎÓÂÌËfl. ÑÂÈÒÚ‚ËÚÂθÌ˚Ï (ÍÓÏÔÎÂÍÒÌ˚Ï) ‚ÂÍÚÓÌ˚Ï ‡ÒÒÎÓÂÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl Ú‡ÍÓ ‚ÂÍÚÓÌÓÂ
‡ÒÒÎÓÂÌË π: E → M, ˝ÎÂÏÂÌÚ‡Ì˚ ÌËÚË π –1(p), p ∈ M ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË (ÍÓÏÔÎÂÍÒÌ˚ÏË) ‚ÂÍÚÓÌ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË.
Ç ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË p ∈ M ˝ÎÂÏÂÌÚ‡̇fl ÌËÚ¸ π –1(p) ÎÓ͇θÌÓ ‚˚„Îfl‰ËÚ Í‡Í ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó n, Ú.Â. ËÏÂÂÚÒfl
ÓÚÍ˚Ú‡fl ÓÍÂÒÚÌÓÒÚ¸ U ÚÓ˜ÍË , ̇ÚÛ‡Î¸ÌÓ ˜ËÒÎÓ n Ë „ÓÏÂÓÏÓÙËÁÏ ϕ:
U × n → π −1 (U ), Ú‡ÍÓÈ ˜ÚÓ ‰Îfl ‚ÒÂı x ∈U , v ∈ n Ï˚ ÔÓÎÛ˜‡ÂÏ π(ϕ( x, v) = v,
Ë ÓÚÓ·‡ÊÂÌË v → ϕ( x, v) ‰‡ÂÚ Ì‡Ï ËÁÓÏÓÙËÁÏ ÏÂÊ‰Û n Ë π –1(x). åÌÓÊÂÒÚ‚Ó U
ÒÓ‚ÏÂÒÚÌÓ Ò ϕ ̇Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓÈ Ú˂ˇÎËÁ‡ˆËÂÈ ‡ÒÒÎÓÂÌËfl. ÖÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ
"„ÎÓ·‡Î¸Ì‡fl Ú˂ˇÎËÁ‡ˆËfl", ÚÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ ‚ÂÍÚÓÌÓ ‡ÒÒÎÓÂÌË ̇Á˚‚‡ÂÚÒfl
π : M × n → M Ú˂ˇθÌ˚Ï. Ä̇Îӄ˘Ì˚Ï Ó·‡ÁÓÏ ‚ ÍÓÏÔÎÂÍÒÌÓÏ ‚ÂÍÚÓÌÓÏ
‡ÒÒÎÓÂÌËË ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË p ∈ M ˝ÎÂÏÂÌÚ‡̇fl ÌËÚ¸ π –1(p) ÎÓ͇θÌÓ ‚˚„Îfl‰ËÚ
Í‡Í ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó n. éÒÌÓ‚Ì˚Ï ÔËÏÂÓÏ ÍÓÏÔÎÂÍÒÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó
‡ÒÒÎÓÂÌËfl fl‚ÎflÂÚÒfl Ú˂ˇθÌÓ ‡ÒÒÎÓÂÌË π : U × n → U , „‰Â U – ÓÚÍ˚ÚÓÂ
ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ k.
LJÊÌ˚ÏË ÓÒÓ·˚ÏË ÒÎÛ˜‡flÏË ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ‡ÒÒÎÓÂÌËfl fl‚Îfl˛ÚÒfl
͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË T (Mn ) Ë ÍÓ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË T* (M n ) ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó n-ÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl Mn = M n . LJÊÌ˚ÏË ÓÒÓ·˚ÏË ÒÎÛ˜‡flÏË ÍÓÏÔÎÂÍÒÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ‡ÒÒÎÓÂÌËfl fl‚Îfl˛ÚÒfl ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌËÂ Ë ÍÓ͇҇ÚÂθÌÓÂ
‡ÒÒÎÓÂÌË ÍÓÏÔÎÂÍÒÌÓ„Ó n-ÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl.
àÏÂÌÌÓ, ÍÓÏÔÎÂÍÒÌÓ n–ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË Mn fl‚ÎflÂÚÒfl ÚÓÔÓÎӄ˘ÂÒÍËÏ
ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ÚӘ͇ ӷ·‰‡ÂÚ ÓÍÂÒÚÌÓÒÚ¸˛, „ÓÏÂÓÏÓÙÌÓÈ
ÓÚÍ˚ÚÓÏÛ ÏÌÓÊÂÒÚ‚Û n-ÏÂÌÓ„Ó ÍÓÏÔÎÂÍÒÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ n, Ë
ËÏÂÂÚÒfl Ú‡ÍÓÈ ‡ÚÎ‡Ò Í‡Ú, ‚ ÍÓÚÓÓÏ ÒÏÂ̇ ÍÓÓ‰ËÌ‡Ú ÏÂÊ‰Û Í‡Ú‡ÏË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ‡Ì‡ÎËÚ˘ÂÒÍË. (äÓÏÔÎÂÍÒÌÓÂ) ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË T ( Mn ) ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl Mn ÂÒÚ¸ ‚ÂÍÚÓÌÓ ‡ÒÒÎÓÂÌË ‚ÒÂı (ÍÓÏÔÎÂÍÒÌ˚ı) ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚ Mn ‚ ͇ʉÓÈ ÚӘ͠p ∈ Mn . Ö„Ó ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ ͇Í
ÍÓÏÔÎÂÍÒËÙË͇ˆË˛ T ( Mn ) ⊗ = T ( M n ) ⊗ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó
͇҇ÚÂθÌÓ„Ó ‡ÒÒÎÓÂÌËfl, Ë ÓÌÓ ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl ÍÓÏÔÎÂÍÒËÙˈËÓ‚‡ÌÌ˚Ï Í‡Ò‡ÚÂθÌ˚Ï ‡ÒÒÎÓÂÌËÂÏ Mn . äÓÏÔÎÂÍÒËÙˈËÓ‚‡ÌÌÓ ÍÓ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌËÂ
Mn ÔÓÎÛ˜‡ÂÚÒfl ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ Í‡Í T * ( M n ) ⊗ . ã˛·Ó ÍÓÏÔÎÂÍÒÌÓ n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË Mn = M n ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÓÒÓ·˚È ÒÎÛ˜‡È ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó 2n-ÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl, Ò̇·ÊÂÌÌÓ„Ó ÍÓÏÔÎÂÍÒÌÓÈ ÒÚÛÍÚÛÓÈ Ì‡ ͇ʉÓÏ
͇҇ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â. äÓÏÔÎÂÍÒ̇fl ÒÚÛÍÚÛ‡ ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ
ÔÓÒÚ‡ÌÒÚ‚Â V fl‚ÎflÂÚÒfl ÒÚÛÍÚÛÓÈ ÍÓÏÔÎÂÍÒÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇ V,
ÍÓÚÓ‡fl ÒÓ‚ÏÂÒÚËχ Ò ÔÂ‚Ó̇˜‡Î¸ÌÓÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÒÚÛÍÚÛÓÈ. é̇ ÔÓÎÌÓÒÚ¸˛
134
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ÓÔ‰ÂÎflÂÚÒfl ÓÔÂ‡ÚÓÓÏ ÛÏÌÓÊÂÌËfl ̇ ˜ËÒÎÓ , Óθ ÍÓÚÓÓ„Ó ÏÓÊÂÚ ‚˚ÔÓÎÌflÚ¸
ÔÓËÁ‚ÓθÌÓ ÎËÌÂÈÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË J : V → V , J 2 = −id , „‰Â id ÂÒÚ¸ ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌËÂ.
ë‚flÁ¸ (ËÎË ÍÓ‚‡ˇÌÚ̇fl ÔÓËÁ‚Ӊ̇fl) fl‚ÎflÂÚÒfl ÒÔÓÒÓ·ÓÏ ÓÔ‰ÂÎÂÌË ÔÓËÁ‚Ó‰ÌÓÈ ‚ÂÍÚÓÌÓ„Ó ÔÓÎfl ‚‰Óθ ‰Û„Ó„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÎfl ‚ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË.
åÂÚ˘ÂÒÍÓÈ Ò‚flÁ¸˛ ̇Á˚‚‡ÂÚÒfl ÎËÌÂÈ̇fl Ò‚flÁ̸ ‚ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË π:
E → M, Ò̇·ÊÂÌÌÓÏ ·ËÎËÌÂÈÌÓÈ ÙÓÏÓÈ ‚ ˝ÎÂÏÂÌÚ‡Ì˚ı ÌËÚflı, ‰Îfl ÍÓÚÓÓÈ
Ô‡‡ÎÎÂθÌ˚È ÔÂÂÌÓÒ ‚‰Óθ ÔÓËÁ‚ÓθÌÓÈ ÍÛÒÓ˜ÌÓ „·‰ÍÓÈ ÍË‚ÓÈ ‚ å ÒÓı‡ÌflÂÚ
ÙÓÏÛ, Ú.Â. Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ‰‚Ûı ‚ÂÍÚÓÓ‚ Ì ËÁÏÂÌflÂÚÒfl ÔË Ô‡‡ÎÎÂθÌÓÏ
ÔÂÂÌÓÒÂ. ÑÎfl ÒÎÛ˜‡fl Ì‚˚ÓʉÂÌÌÓÈ ÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏ˚ ÏÂÚ˘ÂÒ͇fl Ò‚flÁ¸ ̇Á˚‚‡ÂÚÒfl ‚ÍÎˉӂÓÈ Ò‚flÁ¸˛. ÑÎfl ÒÎÛ˜‡fl Ì‚˚ÓʉÂÌÌÓÈ ‡ÌÚËÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏ˚ ÏÂÚ˘ÂÒ͇fl Ò‚flÁ¸ ̇Á˚‚‡ÂÚÒfl ÒËÏÔÎÂÍÚ˘ÂÒÍÓÈ
Ò‚flÁ¸˛.
åÂÚË͇ ‡ÒÒÎÓÂÌËfl
åÂÚËÍÓÈ ‡ÒÒÎÓÂÌËfl ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË.
ùÏËÚÓ‚‡ ÏÂÚË͇
ùÏËÚÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ ÍÓÏÔÎÂÍÒÌÓÏ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË π: E → M ̇Á˚‚‡ÂÚÒfl ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ˝ÏËÚÓ‚˚ı Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ (Ú.Â. ÔÓÎÓÊËÚÂθÌÓ
ÓÔ‰ÂÎÂÌÌ˚ı ÒËÏÏÂÚ˘Ì˚ı ÒÂÒÍËÎËÌÂÈÌ˚ı ÙÓÏ) ̇ ͇ʉÓÈ ˝ÎÂÏÂÌÚ‡ÌÓÈ ÌËÚË
E p = π −1 ( p), p ∈ M , ÍÓÚÓ˚ „·‰ÍÓ ÏÂÌfl˛ÚÒfl Ò ÚÓ˜ÍÓÈ  ‚ å. ã˛·Ó ÍÓÏÔÎÂÍÒÌÓÂ
‚ÂÍÚÓÌÓ ‡ÒÒÎÓÂÌË ËÏÂÂÚ ˝ÏËÚÓ‚Û ÏÂÚËÍÛ.
éÒÌÓ‚Ì˚Ï ÔËÏÂÓÏ ‚ÂÍÚÓÌÓ„Ó ‡ÒÒÎÓÂÌËfl fl‚ÎflÂÚÒfl Ú˂ˇθÌÓ ‡ÒÒÎÓÂÌËÂ
π : U × n → U , „‰Â U – ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó ‚ k. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ˝ÏËÚÓ‚Ó
Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n Ë, ÒΉӂ‡ÚÂθÌÓ, ˝ÏËÚÓ‚‡ ÏÂÚË͇ ̇ ‡ÒÒÎÓÂÌËË
π : U × n → U Á‡‰‡ÂÚÒfl ‚˚‡ÊÂÌËÂÏ
⟨u, v⟩ = u T Hv ,
„‰Â ç – ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl ˝ÏËÚÓ‚‡ χÚˈ‡, Ú.Â. ÍÓÏÔÎÂÍÒ̇fl n × n
χÚˈ‡, Óڂ˜‡˛˘‡fl ÛÒÎÓ‚ËflÏ H * = H T = H Ë v T Hv > 0 ‰Îfl ‚ÒÂı v ∈ n \ {0}.
n
Ç ÔÓÒÚÂȯÂÏ ÒÎÛ˜‡Â Ï˚ ÔÓÎÛ˜‡ÂÏ ⟨u, v⟩ =
∑ ui vi .
i =1
LJÊÌ˚Ï ÓÒÓ·˚Ï ÒÎÛ˜‡ÂÏ fl‚ÎflÂÚÒfl ˝ÏËÚÓ‚‡ ÏÂÚË͇ h ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , Ú.Â. ̇ ÍÓÏÔÎÂÍÒËÙˈËÓ‚‡ÌÌÓÏ Í‡Ò‡ÚÂθÌÓÏ ‡ÒÒÎÓÂÌËË T ( M n ) ⊗ ÏÌÓ„ÓÓ·‡ÁËfl M n . é̇ fl‚ÎflÂÚÒfl ˝ÏËÚÓ‚˚Ï ‡Ì‡ÎÓ„ÓÏ ËχÌÓ‚ÓÈ ÏÂÚËÍË. Ç ˝ÚÓÏ
ÒÎÛ˜‡Â h = g + iw, „‰Â  ‰ÂÈÒÚ‚ËÚÂθ̇fl ˜‡ÒÚ¸ g fl‚ÎflÂÚÒfl ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ, ‡ ÂÂ
ÏÌËχfl ˜‡ÒÚ¸ w – Ì‚˚ÓʉÂÌÌÓÈ ‡ÌÚËÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏÓÈ, ̇Á˚‚‡ÂÏÓÈ ÙÛ̉‡ÏÂÌڇθÌÓÈ ÙÓÏÓÈ. á‰ÂÒ¸ Ï˚ ËÏÂÂÏ Ë g(J(x), J(y)) = g(x, y), w(J(x),
J(y)) = w(x, y) Ë w(x, y) = g(x, J(y)), „‰Â ÓÔÂ‡ÚÓ J fl‚ÎflÂÚÒfl ÓÔÂ‡ÚÓÓÏ ÍÓÏÔÎÂÍÒÌÓÈ
ÒÚÛÍÚÛ˚ ̇ Mn , Í‡Í Ô‡‚ËÎÓ, J(x) = ix. ã˛·‡fl ËÁ ÙÓÏ g, w ÔÓÎÌÓÒÚ¸˛ ÓÔ‰ÂÎflÂÚ
h. íÂÏËÌ "˝ÏËÚÓ‚‡ ÏÂÚË͇" ÓÚÌÓÒËÚÒfl Ú‡ÍÊÂ Ë Í ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ËχÌÓ‚ÓÈ
ÏÂÚËÍ g, ÍÓÚÓ‡fl Ôˉ‡ÂÚ ÏÌÓ„ÓÓ·‡Á˲ ˝ÏËÚÓ‚Û Mn ÒÚÛÍÚÛÛ.
ç‡ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË ˝ÏËÚÓ‚Û ÏÂÚËÍÛ h ÏÓÊÌÓ ‚˚‡ÁËÚ¸ ‚ ÎÓ͇θÌ˚ı ÍÓÓ‰Ë̇ڇı ˜ÂÂÁ ˝ÏËÚÓ‚ ÒËÏÏÂÚ˘Ì˚È ÚÂÌÁÓ ((hij)):
h=
∑ hij dzi ⊗ dz j ,
i, j
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
135
„‰Â ((hij)) fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ ˝ÏËÚÓ‚ÓÈ Ï‡ÚˈÂÈ. íÓ„‰‡ ÒÓÓÚi
‚ÂÚÒÚ‚Û˛˘‡fl ÙÛ̉‡ÏÂÌڇθ̇fl ÙÓχ w ÔËÏÂÚ ‚ˉ w =
hij dz i ⊗ dz j .
2 i, j
∑
ùÏËÚÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË ˝ÏËÚÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl
ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ˝ÏËÚÓ‚ÓÈ ÏÂÚËÍÓÈ.
åÂÚË͇ äÂıÎÂ‡
åÂÚËÍÓÈ äÂıÎÂ‡ (ËÎË ÍÂıÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ) ̇Á˚‚‡ÂÚÒfl ˝ÏËÚÓ‚‡ ÏÂÚË͇
h = g + iw ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , ÙÛ̉‡ÏÂÌڇθ̇fl ÙÓχ w ÍÓÚÓÓÈ
fl‚ÎflÂÚÒfl Á‡ÏÍÌÛÚÓÈ, Ú.Â. Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ dw = 0. ä˝ÎÂÓ‚Ó ÏÌÓ„ÓÓ·‡ÁËÂ
fl‚ÎflÂÚÒfl ÍÓÏÔÎÂÍÒÌ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ, Ò̇·ÊÂÌÌ˚Ï Í˝ÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ.
ÖÒÎË h ‚˚‡ÊÂ̇ ‚ ÎÓ͇θÌ˚ı ÍÓÓ‰Ë̇ڇı, Ú.Â. h =
hij dz i ⊗ dz j , ÚÓ ÒÓÓÚ‚ÂÚ-
∑
i, j
i
ÒÚ‚Û˛˘Û˛ ÙÓÏÛ w ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í w =
2
∑ hij dzi ∧ dz j , „‰Â ∧ fl‚ÎflÂÚÒfl ‡Ìi, j
ÚËÒËÏÏÂÚ˘Ì˚Ï V-ÔÓËÁ‚‰ÂÌËÂÏ, Ú.Â. dx ∧ dy = –dy ∧ dx (ÒΉӂ‡ÚÂθÌÓ, dx ∧ dx =
= 0). àÏÂÌÌÓ, w fl‚ÎflÂÚÒfl ‰ËÙÙÂÂ̈ˇθÌÓÈ 2-ÙÓÏÓÈ Ì‡ M n , Ú.Â. ÚÂÌÁÓÓÏ
‚ÚÓÓ„Ó ÔÓfl‰Í‡, ‡ÌÚËÒËÏÏÂÚ˘Ì˚Ï ÓÚÌÓÒËÚÂθÌÓ ÔÂÂÒÚ‡ÌÓ‚ÍË Î˛·ÓÈ Ô‡˚
Ë̉ÂÍÒÓ‚: w =
fij hij dx i ∧ dx i , „‰Â fij ÂÒÚ¸ ÙÛÌ͈Ëfl ̇ Mn . Ç̯Ìflfl ÔÓËÁ‚Ӊ̇fl dw
∑
i, j
ÙÓÏ˚ w Á‡‰‡ÂÚÒfl Í‡Í dw =
∑∑
i, j
k
∂fij
dx k
dx k ∧ dxi ∧ dx k . ÖÒÎË dw = 0, ÚÓ w fl‚ÎflÂÚÒfl
ÒËÏÔÎÂÍÚ˘ÂÒÍÓÈ (Ú.Â. Á‡ÏÍÌÛÚÓÈ Ì‚˚ÓʉÂÌÌÓÈ) ‰ËÙÙÂÂ̈ˇθÌÓÈ 2-ÙÓÏÓÈ.
í‡ÍË ‰ËÙÙÂÂ̈ˇθÌ˚ 2-ÙÓÏ˚ ̇Á˚‚‡˛ÚÒfl ÙÓχÏË äÂıÎÂ‡.
íÂÏËÌ "ÏÂÚË͇ äÂıÎÂ‡" ÏÓÊÌÓ ÓÚÌÂÒÚË Ú‡ÍÊÂ Ë Í ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ËχÌÓ‚ÓÈ ÏÂÚËÍ g, ÍÓÚÓ‡fl Ôˉ‡ÂÚ ÏÌÓ„ÓÓ·‡Á˲ Mn ÍÂıÎÂÓ‚Û ÒÚÛÍÚÛÛ. íÓ„‰‡
ÏÌÓ„ÓÓ·‡ÁË äÂıÎÂ‡ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓÂ
ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ë Í˝ÎÂÓ‚ÓÈ ÙÓÏÓÈ Ì‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÏ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ
ÏÌÓ„ÓÓ·‡ÁËË.
åÂÚË͇ ïÂÒÒÂ
ÑÎfl „·‰ÍÓÈ ÙÛÌ͈ËË f ̇ ÓÚÍ˚ÚÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚Â ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÂÚË͇ ïÂÒÒ ÓÔ‰ÂÎflÂÚÒfl ͇Í
gij =
∂2 f
.
∂xi ∂x j
åÂÚËÍÛ ïÂÒÒ ̇Á˚‚‡˛Ú Ú‡ÍÊ ‡ÙÙËÌÌÓÈ ÏÂÚËÍÓÈ äÂıÎÂ‡, ÔÓÒÍÓθÍÛ
ÏÂÚË͇ äÂıÎÂ‡ ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË ËÏÂÂÚ ‡Ì‡Îӄ˘ÌÓ ÓÔËÒ‡ÌË ‚ˉ‡
∂2 f
.
∂z i ∂z j
åÂÚË͇ ä‡Î‡·Ë–üÓ
åÂÚËÍÓÈ ä‡Î‡·Ë–üÓ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ äÂıÎÂ‡, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ê˘˜ËÔÎÓÒÍÓÈ.
åÌÓ„ÓÓ·‡ÁË ä‡Î‡·Ë–üÓ (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó ä‡Î‡·Ë–üÓ) – Ó‰ÌÓÒ‚flÁÌÓ ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ ä‡Î‡·Ë–üÓ. Ö„Ó ÏÓÊÌÓ ‡ÒÒχÚ-
136
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
Ë‚‡Ú¸ Í‡Í 2n–ÏÂÌÓ (¯ÂÒÚËÏÂÌ˚È ÒÎÛ˜‡È Ô‰ÒÚ‡‚ÎflÂÚ ÓÒÓ·˚È ËÌÚÂÂÒ) „·‰ÍÓÂ
ÏÌÓ„ÓÓ·‡ÁËÂ Ò „ÛÔÔÓÈ „ÓÎÓÌÓÏËË (Ú.Â. ÏÌÓÊÂÒÚ‚ÓÏ ÎËÌÂÈÌ˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ Í‡Ò‡ÚÂθÌ˚ı ‚ÂÍÚÓÓ‚, ÔÓËÒÚÂ͇˛˘Ëı ËÁ Ô‡‡ÎÎÂθÌÓ„Ó ÔÂÂÌÓÒ‡ ‚‰Óθ Á‡ÏÍÌÛÚ˚ı
ÍÓÌÚÛÓ‚) ‚ ÒÔˆˇθÌÓÈ ÛÌËÚ‡ÌÓÈ „ÛÔÔÂ.
åÂÚË͇ äÂıÎÂ‡–ùÈ̯ÚÂÈ̇
åÂÚË͇ äÂıÎÂ‡–ùÈ̯ÚÂÈ̇ (ËÎË ÏÂÚË͇ ùÈ̯ÚÂÈ̇) – ÏÂÚË͇ äÂıÎÂ‡ ̇
ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , Û ÍÓÚÓÓÈ ÚÂÌÁÓ ÍË‚ËÁÌ˚ ê˘˜Ë ÔÓÔÓˆËÓ̇ÎÂÌ ÏÂÚ˘ÂÒÍÓÏÛ ÚÂÌÁÓÛ. ùÚ‡ ÔÓÔÓˆËÓ̇θÌÓÒÚ¸ fl‚ÎflÂÚÒfl ‡Ì‡ÎÓ„ÓÏ
Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‚ Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË.
åÌÓ„ÓÓ·‡ÁËÂÏ äÂıÎÂ‡–ùÈ̯ÚÂÈ̇ (ËÎË ÏÌÓ„ÓÓ·‡ÁËÂÏ ùÈ̯ÚÂÈ̇) ̇Á˚‚‡ÂÚÒfl ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ äÂıÎÂ‡–ùÈ̯ÚÂÈ̇.
Ç ˝ÚÓÏ ÒÎÛ˜‡Â ÚÂÌÁÓ ÍË‚ËÁÌ˚ ê˘˜Ë, ‡ÒÒχÚË‚‡ÂÏ˚È Í‡Í ÓÔÂ‡ÚÓ ̇ ͇҇ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â, fl‚ÎflÂÚÒfl ÛÏÌÓÊÂÌËÂÏ Ì‡ ÍÓÌÒÚ‡ÌÚÛ.
í‡Í‡fl ÏÂÚË͇ ÒÛ˘ÂÒÚ‚ÛÂÚ Ì‡ β·ÓÈ Ó·Î‡ÒÚË D ⊂ n , ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌÓÈ Ë ÔÒ‚‰Ó‚˚ÔÛÍÎÓÈ. Ö ÏÓÊÌÓ Á‡‰‡Ú¸ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 =
∑
i, j
∂ 2 u( z )
dzi dz j ,
∂z i ∂z j
 ∂2u 
2u
„‰Â u ÂÒÚ¸ ¯ÂÌË Í‡Â‚ÓÈ Á‡‰‡˜Ë: det 
 = e ̇ D, Ë Ì‡ u = ∞ ̇ ∂D.
∂
∂
z
z
 i j
åÂÚË͇ äÂıÎÂ‡–ùÈ̯ÚÂÈ̇ fl‚ÎflÂÚÒfl ÔÓÎÌÓÈ ÏÂÚËÍÓÈ. ç‡ Â‰ËÌ˘ÌÓÏ ‰ËÒÍÂ
∆ = {z ∈ : | z |< 1} Ó̇ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈ èÛ‡Ì͇Â.
åÂÚË͇ ïӉʇ
åÂÚË͇ ïӉʇ – ÏÂÚË͇ äÂıÎÂ‡, ÙÛ̉‡ÏÂÌڇθ̇fl ÙÓχ w ÍÓÚÓÓÈ ÓÔ‰ÂÎflÂÚ ËÌÚ„‡Î¸Ì˚È Í·ÒÒ ÍÓ„ÓÏÓÎÓ„ËÈ ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, ËÏÂÂÚ ËÌÚ„‡Î¸Ì˚Â
ÔÂËÓ‰˚.
åÌÓ„ÓÓ·‡ÁË ïӉʇ – ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ ïӉʇ. äÓÏÔ‡ÍÚÌÓ ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁË fl‚ÎflÂÚÒfl ÏÌÓ„ÓÓ·‡ÁËÂÏ ïӉʇ ÚÓ„‰‡
Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ ËÁÓÏÓÙÌÓ „·‰ÍÓÏÛ ‡Î„·‡Ë˜ÂÒÍÓÏÛ ÔÓ‰ÏÌÓ„ÓÓ·‡Á˲
ÌÂÍÓÚÓÓ„Ó ÍÓÏÔÎÂÍÒÌÓ„Ó ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡.
åÂÚË͇ îÛ·ËÌË–òÚÛ‰Ë
åÂÚË͇ îÛ·ËÌË–òÚÛ‰Ë – ÏÂÚË͇ äÂıÎÂ‡ ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÔÓÂÍÚË‚ÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â Pn , ÓÔ‰ÂÎflÂχfl ˜ÂÂÁ ˝ÏËÚÓ‚Ó Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ⟨ , ⟩‚ n+1.
é̇ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 =
⟨ x, x ⟩⟨ dx, dx ⟩ − ⟨ x, dx ⟩⟨ x , dx ⟩
.
⟨ x, x ⟩ 2
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË ( x1 : ... : x n +1 ), ( y1 : ... : yn +1 ) ∈P n , „‰Â x =
= (x1, ..., xn+1), y = (y1, ..., yn+1) ∈ Cn\{0}, ‡‚ÌÓ
arccos
⟨ x, y ⟩
⟨ x, x ⟩⟨ y, y ⟩
.
åÂÚË͇ îÛ·ËÌË–òÚÛ‰Ë fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ïӉʇ. èÓÒÚ‡ÌÒÚ‚Ó Pn , Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ îÛ·ËÌË–òÚÛ‰Ë, ̇Á˚‚‡ÂÚÒfl ˝ÏËÚÓ‚˚Ï ˝ÎÎËÔÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÒÏ. ùÏËÚÓ‚‡ ˝ÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇).
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
137
åÂÚË͇ ÅÂ„χ̇
åÂÚËÍÓÈ ÅÂ„χ̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ äÂıÎÂ‡ ̇ Ó„‡Ì˘ÂÌÌÓÈ Ó·Î‡ÒÚË
D ⊂ n , Á‡‰‡‚‡Âχfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 =
∑
i, j
∂ 2 ln K ( z, z )
dz i dz j ,
∂z i ∂z j
„‰Â K(z, u) fl‚ÎflÂÚÒfl ÙÛÌ͈ËÂÈ fl‰‡ ÅÂ„χ̇. åÂÚË͇ ÅÂ„χ̇ ËÌ‚‡ˇÌÚ̇ ÓÚÌÓÒËÚÂθÌÓ ‡‚ÚÓÏÓÙËÁÏÓ‚ ӷ·ÒÚË D; Ó̇ fl‚ÎflÂÚÒfl ÔÓÎÌÓÈ, ÂÒÎË Ó·Î‡ÒÚ¸ D Ó‰ÌÓӉ̇. ÑÎfl ‰ËÌ˘ÌÓ„Ó ‰ËÒ͇ ∆ = {z ∈ : | z |< 1} ÏÂÚË͇ ÅÂ„χ̇ ÒÓ‚Ô‡‰‡ÂÚ Ò
ÏÂÚËÍÓÈ èÛ‡Ì͇ (ÒÏ. Ú‡ÍÊ -ÏÂÚË͇ ÅÂ„χ̇, „Î. 13).
îÛÌ͈Ëfl fl‰‡ ÅÂ„χ̇ ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ‡ÒÒÏÓÚËÏ Ó·Î‡ÒÚ¸
D ⊂ n, ‚ ÍÓÚÓÓÈ ÒÛ˘ÂÒÚ‚Û˛Ú ‡Ì‡ÎËÚ˘ÂÒÍË ÙÛÌ͈ËË f ≠ 0 Í·ÒÒ‡ L 2 (D) ÔÓ
ÓÚÌÓ¯ÂÌ˲ Í Î·„ӂÓÈ ÏÂÂ; ÏÌÓÊÂÒÚ‚Ó ˝ÚËı ÙÛÌ͈ËÈ Ó·‡ÁÛÂÚ „Ëθ·ÂÚÓ‚Ó
ÔÓÒÚ‡ÌÒÚ‚Ó L2, a ( D) ⊂ L2 ( D) Ò ÓÚÓ„Ó̇θÌ˚Ï ·‡ÁËÒÓÏ (φi)i; ÙÛÌ͈Ëfl fl‰‡
ÅÂ„χ̇ ‚ ӷ·ÒÚË D × D ⊂ 2 n Á‡‰‡ÂÚÒfl Í‡Í K D ( z, u) =
∞
∑
φ i (u).
i =1
ÉËÔÂÍÂıÎÂÓ‚‡ ÏÂÚË͇
ÉËÔÂÍÂıÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ g ̇ 4n-ÏÂÌÓÏ ËχÌÓ‚ÓÏ ÏÌÓ„ÓÓ·‡ÁËË, ÒÓ‚ÏÂÒÚËχfl Ò Í‚‡ÚÂÌËÓÌÌÓÈ ÒÚÛÍÚÛÓÈ Ì‡ ͇҇ÚÂθÌÓÏ
‡ÒÒÎÓÂÌËË ÏÌÓ„ÓÓ·‡ÁËfl. àÏÂÌÌÓ, ÏÂÚË͇ g fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ äÂıÎÂ‡ ÔÓ
ÓÚÌÓ¯ÂÌ˲ Í ÚÂÏ ÒÚÛÍÚÛ‡Ï äÂıÎÂ‡ (I, wI , g), (J, wJ, g) Ë (K, wK , g), ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ÍÓÏÔÎÂÍÒÌ˚Ï ÒÚÛÍÚÛ‡Ï, Í‡Í ˝Ì‰ÓÏÓÙËÁÏ‡Ï Í‡Ò‡ÚÂθÌÓ„Ó ‡ÒÒÎÓÂÌËfl, ÍÓÚÓ˚ Óڂ˜‡˛Ú ÛÒÎÓ‚ËflÏ Í‚‡ÚÂÌËÓÌÌÓÈ ‚Á‡ËÏÓÒ‚flÁË
I 2 = J 2 = K 2 = IJK = − JIK = −1.
ÉËÔÂÍÂıÎÂÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ Ì‡Á˚‚‡ÂÚÒfl ËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ „ËÔÂÍÂıÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ. ùÚÓ – ÓÒÓ·˚È ÒÎÛ˜‡È ÏÌÓ„ÓÓ·‡ÁËfl äÂıÎÂ‡.
ÇÒ „ËÔÂÍÂıÎÂÓ‚˚ ÏÌÓ„ÓÓ·‡ÁËfl fl‚Îfl˛ÚÒfl ê˘˜Ë-ÔÎÓÒÍËÏË. äÓÏÔ‡ÍÚÌ˚ ˜ÂÚ˚ÂıÏÂÌ˚ „ËÔÂÍÂıÎÂÓ‚˚ ÏÌÓ„ÓÓ·‡ÁËfl ̇Á˚‚‡˛ÚÒfl K3-ÔÓ‚ÂıÌÓÒÚflÏË Ë ËÁÛ˜‡˛ÚÒfl ‚ ‡Î„·‡Ë˜ÂÒÍÓÈ „ÂÓÏÂÚËË.
åÂÚË͇ ä‡Î‡·Ë
åÂÚË͇ ä‡Î‡·Ë – „ËÔÂÍÂıÎÂÓ‚‡ ÏÂÚË͇ ̇ ÍÓ͇҇ÚÂθÌÓÏ ‡ÒÒÎÓÂÌËË
*
T (P n +1 ) ÍÓÏÔÎÂÍÒÌÓ„Ó ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ P n +1 . ÑÎfl n = 4k + 4 ˝Ú‡
ÏÂÚË͇ ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì‡ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 =
2
 2
dr 2
1 2
1 2
1 2
2
2
2
2
2
−4 2
r
(
r
)
λ
r
(
ν
ν
)
(
r
)(
σ
σ
)
(
r
)
+
1
−
+
+
+
−
1
+
+
+
1
+
1
2
1α
2α

2
2
1 − r −1 4
 1α 2 α

∑ ∑  ,


„‰Â  λ, ν1 , ν 2 , σ1α , σ 2 α ,
 Ò α, Ôӷ„‡˛˘ËÏ k Á̇˜ÂÌËÈ, fl‚Îfl˛ÚÒfl ΂ÓËÌ‚‡
1α 2 α 
ˇÌÚÌ˚ÏË 1-ÙÓχÏË (Ú.Â. ÎËÌÂÈÌ˚ÏË ‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË ÙÛÌ͈ËflÏË) ̇ ÒÏÂÊÌÓÏ
Í·ÒÒ SU(k + 2)/U(k). á‰ÂÒ¸ fl‚ÎflÂÚÒfl ÛÌËÚ‡ÌÓÈ „ÛÔÔÓÈ, ÒÓÒÚÓfl˘ÂÈ ËÁ ÍÓÏÔÎÂÍÒÌ˚ı k × k ÛÌËÚ‡Ì˚ı χÚˈ, ‡ SU(k) – ÒÔˆˇθÌÓÈ ÛÌËÚ‡ÌÓÈ „ÛÔÔÓÈ Ò
ÓÔ‰ÂÎËÚÂÎÂÏ 1.
ÑÎfl k = 0 ÏÂÚË͇ ä‡Î‡·Ë Ë ÏÂÚË͇ ùۄۘ˖ï˝ÌÒÓ̇ ÒÓ‚Ô‡‰‡˛Ú.
∑∑
138
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
åÂÚË͇ ëÚÂÌÁÂÎfl
åÂÚËÍÓÈ ëÚÂÌÁÂÎfl ̇Á˚‚‡ÂÚÒfl „ËÔÂÍÂıÎÂÓ‚‡ ÏÂÚË͇ ̇ ÍÓ͇҇ÚÂθÌÓÏ
‡ÒÒÎÓÂÌËË T*(Sn+1) ÒÙÂ˚ Sn+1.
SO(3)-ËÌ‚‡ˇÌÚ̇fl ÏÂÚË͇
SO(3)-ËÌ‚‡ˇÌÚÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl 4-ÏÂ̇fl „ËÔÂÍÂıÎÂÓ‚‡ ÏÂÚË͇ Ò
ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ, Á‡‰‡ÌÌ˚Ï ‚ ÙÓχÎËÁÏ ÅˇÌÍË-IX ͇Í
ds 2 = f 2 (t )dt 2 + σ 2 (t )σ12 + b 2 (t )σ 22 + c 2 (t )σ 32 ,
„‰Â ËÌ‚‡ˇÌÚÌ˚ 1-ÙÓÏ˚ σ1, σ2, σ3, ËÁ SO(3) ‚˚‡ÊÂÌ˚ ‚ ÚÂÏË̇ı Û„ÎÓ‚ ù
1
(cos ψdθ + sin θ sin ψdφ),
2
1
1
σ 3 = ( dψ + sonθdφ) Ë ÌÓχÎËÁ‡ˆËfl ‚˚·‡Ì‡ Ú‡Í, ˜ÚÓ σ1 ∧ σ j = ε ijk dσ k . äÓÓ2
2
‰Ë̇ÚÛ t ‚Ò„‰‡ ÏÓÊÌÓ ‚˚·‡Ú¸ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÔÂÂÔ‡‡ÏÂÚ1
ËÁ‡ˆËË Ú‡Í, ˜ÚÓ f (t ) = abc.
2
ÈÎÂ‡ θ,
ψ,
σ1 =
φ ͇Í
1
(sin ψdθ − sin θ cos ψdφ),
2
σ2 =
åÂÚË͇ ÄÚ¸fl–ïËÚ˜Ë̇
åÂÚË͇ ÄÚ¸fl–ïËÚ˜Ë̇ fl‚ÎflÂÚÒfl ÔÓÎÌÓÈ „ÛÎflÌÓÈ SO(3)-ËÌ‚‡ˇÌÚÌÓÈ ÏÂÚËÍÓÈ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
2


dk
1
2
2
2
2
2
2
ds = a 2 b 2 c 2 
2
2  + a ( k )σ1 + b ( k )σ 2 + c ( k )σ 3 ,
4
 k (1 − k ) K 
2
„‰Â a, b, c – ÙÛÌ͈ËË ÓÚ k, ab = –K(k)(E(k) – K(k)), bc = –K(k)(E(k) – (1 – k 2)K(k)),
ac = –K(k)(E(k) Ë K(k), E(k) – ÔÓÎÌ˚ ˝ÎÎËÔÚ˘ÂÒÍË ËÌÚ„‡Î˚ ÔÂ‚Ó„Ó Ë ‚ÚÓÓ„Ó
2 K (1 − k 2 )
Ó‰‡ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ò 0 < k < 1. äÓÓ‰Ë̇ڇ t Á‡‰‡ÂÚÒfl ÔÓ ÙÓÏÛΠt =
Ò
πK ( k )
ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ‡‰‰ËÚË‚ÌÓÈ ÔÓÒÚÓflÌÌÓÈ.
åÂÚË͇ í‡Û·‡-NUT
åÂÚËÍÓÈ í‡Û·‡-NUT ̇Á˚‚‡ÂÚÒfl ÔÓÎ̇fl „ÛÎfl̇fl S O(3)-ËÌ‚‡ˇÌÚ̇fl ÏÂÚË͇ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 =
r−m 2
1 r+m 2
dr + (r 2 − m 2 )(σ12 + σ 22 ) + 4 m 2
σ3 ,
r+m
4 r−m
„‰Â m – ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÈ ÏÓ‰ÛθÌ˚È Ô‡‡ÏÂÚ, ÍÓÓ‰Ë̇ڇ r Ò‚flÁ‡Ì‡ Ò t ÙÓÏÛÎÓÈ
1
r =m+
.
2 mt
åÂÚË͇ ùÛ„Û˜Ë Ë ï˝ÌÒÓ̇
åÂÚËÍÓÈ ùۄۘ˖ï˝ÌÒÓ̇ ̇Á˚‚‡ÂÚÒfl ÔÓÎ̇fl „ÛÎfl̇fl SO(3)-ËÌ‚‡ˇÌÚ̇fl
ÏÂÚË͇ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 =
 2
  a 4 2
dr 2
2
2
r
+
+
+
σ
σ
1
2

1 −  r   σ 3  ,
4
a

 

1−  
 r
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
139
„‰Â α – ÏÓ‰ÛθÌ˚È Ô‡‡ÏÂÚ, ÍÓÓ‰Ë̇ڇ r Ò‚flÁ‡Ì‡ Ò ÍÓÓ‰Ë̇ÚÓÈ t ÙÓÏÛÎÓÈ
r2 = a2 coth(a2 t).
åÂÚË͇ ùۄۘ˖ï˝ÌÒÓ̇ ÒÓ‚Ô‡‰‡ÂÚ Ò ˜ÂÚ˚ÂıÏÂÌÓÈ ÏÂÚËÍÓÈ ä‡Î‡·Ë.
äÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇
äÓÏÔÎÂÍÒÌÓÈ ÙËÌÒÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÛÌÂÔÂ˚‚̇fl Ò‚ÂıÛ
ÙÛÌ͈Ëfl F : T ( M * ) → + ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË M n Ò ‡Ì‡ÎËÚ˘ÂÒÍËÏ
͇҇ÚÂθÌ˚Ï ‡ÒÒÎÓÂÌËÂÏ T(M n ), Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÒÎÂ‰Û˛˘ËÏ ÛÒÎÓ‚ËflÏ:
(
(
1. F2 fl‚ÎflÂÚÒfl „·‰ÍÓÈ Ì‡ M n ,, „‰Â M n – ‰ÓÔÓÎÌÂÌË (‚ T(Mn )) ÌÛÎÂ‚Ó„Ó Ò˜ÂÌËfl.
2. F(p, x) > 0 ‰Îfl ‚ÒÂı Ë p ∈ Mn Ë .
x ∈ M pn .
3. F(p, λx) = |λ|F(p, x) ‰Îfl ‚ÒÂı p ∈ Mn , x ∈ Tp(M n ) Ë λ ∈ .
îÛÌ͈Ëfl G = F2 ÏÓÊÂÚ ·˚Ú¸ ÎÓ͇θÌÓ ‚˚‡ÊÂ̇ ‚ ÚÂÏË̇ı ÍÓÓ‰Ë̇Ú
(p1 , ..., pn , x1 , ..., xn); ÙËÌÒÎÂÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ÍÓÏÔÎÂÍÒÌÓÈ ÙËÌÒÎÂÓ‚ÓÈ
  1 ∂ 2 F 2 ∂x ∂  
i
ÏÂÚËÍË Á‡‰‡ÂÚÒfl χÚˈÂÈ ((Gij )) =  
  , ̇Á˚‚‡ÂÏÓÈ Ï‡ÚˈÂÈ ã‚Ë.
  2 ∂xi ∂x j  
ÖÒÎË Ï‡Úˈ‡ ((Gij)) fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ, ÚÓ ÍÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ F ̇Á˚‚‡ÂÚÒfl ÒÚÓ„Ó ÔÒ‚‰Ó‚˚ÔÛÍÎÓÈ.
èÓÎÛÏÂÚË͇, ÛÏÂ̸¯‡˛˘‡fl ‡ÒÒÚÓflÌËfl
èÛÒÚ¸ d – ÔÓÎÛÏÂÚË͇, Á‡‰‡Ì̇fl ̇ ÌÂÍÓÚÓÓÏ Í·ÒÒ ÍÓÏÔÎÂÍÒÌ˚ı ÏÌÓ„ÓÓ·‡ÁËÈ, ÒÓ‰Âʇ˘ÂÏ Â‰ËÌ˘Ì˚È ‰ËÒÍ ∆ = {z ∈ : | z |< 1}. é̇ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ, ÛÏÂ̸¯‡˛˘ÂÈ ‡ÒÒÚÓflÌËfl ‰Îfl ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ, ÂÒÎË ‰Îfl
β·Ó„Ó ‡Ì‡ÎËÚ˘ÂÒÍÓ„Ó ÓÚÓ·‡ÊÂÌËfl f : M1 → M2 , M1 , M2 ∈ ÌÂ‡‚ÂÌÒÚ‚Ó d(f(p),
f(q)) ≤ d(p, q) ÒÔ‡‚‰ÎË‚Ó ‰Îfl ‚ÒÂı p, q ∈ M1 (ÒÏ. åÂÚË͇ äÓ·‡È‡¯Ë, åÂÚË͇
ä‡‡ÚÂÓ‰ÓË, åÂÚË͇ ÇÛ).
åÂÚË͇ äÓ·‡È‡¯Ë
èÛÒÚ¸ D – ӷ·ÒÚ¸ ‚ n. èÛÒÚ¸ (∆, D) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ f: ∆ → D, „‰Â ∆ = {z ∈ |z| < 1} – ‰ËÌ˘Ì˚È ‰ËÒÍ.
åÂÚË͇ äÓ·‡È‡¯Ë (ËÎË ÏÂÚË͇ äÓ·‡È‡¯Ë – êÓȉÂ̇) FK ÂÒÚ¸ ÍÓÏÔÎÂÍÒ̇fl
ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, Á‡‰‡Ì̇fl ͇Í
FK ( z, u) = inf{α > 0 : ∃f ∈ ( ∆, D), f (0) = z, αf ′(0) = u}
‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n . é̇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÏÂÚËÍË èÛ‡Ì͇ ̇
ÏÌÓ„ÓÏÂÌ˚ ӷ·ÒÚË. FK ( z, u) ≥ FC ( z, u), „‰Â FC – ÏÂÚË͇ ä‡‡ÚÂÓ‰ÓË. ÖÒÎË D
u
d ( z, u)
‚˚ÔÛÍÎa Ë d ( z, u) = inf λ : z + ∈ D, ÂÒÎË | α |> λ , ÚÓ
≤ FK ( z, u) = FC ( z, u) ≤
α
2


≤ d ( z, u).
ÑÎfl ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl Mn ÔÓÎÛÏÂÚË͇ äÓ·‡È‡¯Ë Á‡‰‡ÂÚÒfl ͇Í
FK ( p, u) = inf{α > 0 : ∃f ∈ ( ∆, M n ), f (0) = p, αf ′(0) = u} ‰Îfl ‚ÒÂı p ∈ Mn Ë u ∈ T p (M n ).
FK(p, u) fl‚ÎflÂÚÒfl ÔÓÎÛÌÓÏÓÈ Í‡Ò‡ÚÂθÌÓ„Ó ‚ÂÍÚÓ‡ u, ̇Á˚‚‡ÂÏÓÈ ÔÓÎÛÌÓÏÓÈ
äÓ·‡È‡¯Ë. FK ·Û‰ÂÚ ÏÂÚËÍÓÈ, ÂÒÎË ÏÌÓ„ÓÓ·‡ÁË Mn ÚÛ„ÓÂ, Ú.Â. (∆, Mn ) fl‚ÎflÂÚÒfl
ÌÓχθÌ˚Ï ÒÂÏÂÈÒÚ‚ÓÏ.
140
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
èÓÎÛÏÂÚË͇ äÓ·‡È‡¯Ë fl‚ÎflÂÚÒfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏÓÈ Ú‡Í Ì‡Á˚‚‡ÂÏÓ„Ó
ÔÓÎÛ‡ÒÒÚÓflÌËfl äÓ·‡È‡¯Ë (ËÎË ÔÒ‚‰Ó‡ÒÒÚÓflÌËfl äÓ·‡È‡¯Ë) K M n ̇ Mn , ÍÓÚÓÓÂ
ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ. ÑÎfl Á‡‰‡ÌÌ˚ı p, q ∈ Mn ˆÂÔ¸ ‰ËÒÍÓ‚ α ÓÚ  ‰Ó q
ÂÒÚ¸ ÒÂÏÂÈÒÚ‚Ó ÚÓ˜ÂÍ p = p 0 , p1 ,..., p k = q ËÁ Mn , Ô‡ ÚÓ˜ÂÍ a1 , b1 ;...; a k , b k ‰ËÌ˘ÌÓ„Ó ‰ËÒ͇ ∆ Ë ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ f1, ..., fk ËÁ ∆ ‚ Mn , Ú‡ÍËı ˜ÚÓ
f j ( a j ) = p j −1 Ë f j (b j ) = p j ‰Îfl ‚ÒÂı j . ÑÎË̇ l(a) ˆÂÔË α ‡‚̇ d p ( a1 , b1 ) + ...
... + d p ( a k , b k ), „‰Â dp ÂÒÚ¸ ÏÂÚË͇ èÛ‡Ì͇Â. èÓÎÛ‡ÒÒÚÓflÌË äÓ·‡È‡¯Ë K M n ̇
Mn – ˝ÚÓ ÔÓÎÛÏÂÚË͇ ̇ Mn , Á‡‰‡Ì̇fl ͇Í
K M n ( p, q ) = inf l(α ),
α
„‰Â ËÌÙËÏÛÏ ‚ÁflÚ ÔÓ ‚ÒÂÏ ‰ÎËÌ‡Ï l(α) ˆÂÔÂÈ ‰ËÒÍÓ‚ α ÓÚ  ‰Ó q.
èÓÎÛ‡ÒÒÚÓflÌË äÓ·‡È‡¯Ë fl‚ÎflÂÚÒfl ÛÏÂ̸¯‡˛˘ËÏ ‡ÒÒÚÓflÌËfl ‰Îfl ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ. ùÚÓ Ì‡Ë·Óθ¯‡fl ËÁ ‚ÒÂı ÔÓÎÛÏÂÚËÍ Ì‡ M n , ÍÓÚÓ˚Â
fl‚Îfl˛ÚÒfl ÛÏÂ̸¯‡˛˘ËÏË ‡ÒÒÚÓflÌËfl ‰Îfl ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ ËÁ ∆ ‚
Mn , „‰Â ‡ÒÒÚÓflÌËfl ̇ ∆ ËÁÏÂfl˛ÚÒfl ‚ ÏÂÚËÍ èÛ‡Ì͇Â. K ∆ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈ
èÛ‡Ì͇Â, a K n ≡ 0.
åÌÓ„ÓÓ·‡ÁË ̇Á˚‚‡ÂÚÒfl „ËÔÂ·Ó΢ÂÒÍËÏ ÔÓ äÓ·‡È‡¯Ë, ÂÒÎË ÔÓÎÛ‡ÒÒÚÓflÌËÂ
äÓ·‡È‡¯Ë fl‚ÎflÂÚÒfl ̇ ÌÂÏ ÏÂÚËÍÓÈ. åÌÓ„ÓÓ·‡ÁË ·Û‰ÂÚ „ËÔÂ·Ó΢ÂÒÍËÏ ÔÓ
äÓ·‡È‡¯Ë ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ ·Ë„ÓÎÓÏÓÙÌÓ Ó„‡Ì˘ÂÌÌÓÈ Ó‰ÌÓÓ‰ÌÓÈ Ó·Î‡ÒÚË.
åÂÚË͇ äÓ·‡È‡¯Ë–ÅÛÁÂχ̇
èÓÎÛÏÂÚËÍÓÈ äÓ·‡È‡¯Ë–ÅÛÁÂχ̇ ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn ̇Á˚‚‡ÂÚÒfl ‰‚‡Ê‰˚ ‰‚ÓÈÒÚ‚ÂÌÌ˚È Ó·‡Á ÔÓÎÛÏÂÚËÍË äÓ·‡È‡¯Ë ̇ Mn . é̇ fl‚ÎflÂÚÒfl
ÏÂÚËÍÓÈ, ÂÒÎËMn – ÚÛ„Ó ÏÌÓ„ÓÓ·‡ÁËÂ.
åÂÚË͇ ä‡‡ÚÂÓ‰ÓË
èÛÒÚ¸ D ·Û‰ÂÚ Ó·Î‡ÒÚ¸ ‚ n, Ë (D, ∆) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ f: D → ∆, „‰Â ∆ = {z ∈ | z |< 1} – ‰ËÌ˘Ì˚È ‰ËÒÍ.
åÂÚËÍÓÈ ä‡‡ÚÂÓ‰ÓË Fë ̇Á˚‚‡ÂÚÒfl ÍÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, Á‡‰‡Ì̇fl ͇Í
FC ( z, u) = sup{ f ′( z )u : f ∈ ( D, ∆ )}
‰Îfl β·˚ı z ∈ D Ë u ∈ n. é̇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÏÂÚËÍË èÛ‡Ì͇ ̇ ÏÌÓ„ÓÏÂÌ˚ ӷ·ÒÚË. FC ( z, u) ≤ FK ( z, u), „‰Â FK – ÏÂÚË͇ äÓ·‡È‡¯Ë. ÖÒÎË D ‚˚ÔÛÍÎa Ë
u
d ( z, u)
d ( z, u) = inf λ : z + ∈ D, ÂÒÎË | α |> λ , ÚÓ
≤ FC ( z, u) = FK ( z, u) ≤ d ( z, u).
α
2


ÑÎfl ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl M n ÔÓÎÛÏÂÚË͇ ä‡‡ÚÂÓ‰ÓË FC ÓÔ‰ÂÎflÂÚÒfl
͇Í
{
}
FC ( p, u) = sup f ′( p)u : f ∈ ( M n , ∆ )
‰Îfl ‚ÒÂı p ∈ Mn Ë u ∈ Tp (M n ). FC fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ, ÂÒÎË Mn – ÚÛ„ÓÂ.
èÓÎÛ‡ÒÒÚÓflÌË ä‡‡ÚÂÓ‰ÓË (ËÎË ÔÒ‚‰Ó‡ÒÒÚÓflÌË ä‡‡ÚÂÓ‰ÓË) C M fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ Ì‡ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË M n , Á‡‰‡ÌÌÓÈ Í‡Í
{
}
CM n ( p, q ) = sup d P ( f ( p), f (q )) : f ∈ ( M n , ∆ ) ,
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
141
„‰Â dP – ÏÂÚË͇ èÛ‡Ì͇Â. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ËÌÚ„‡Î¸Ì‡fl ÔÓÎÛÏÂÚË͇ ‰Îfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏ˚ ÔÓÎÛÏÂÚËÍË ä‡‡ÚÂÓ‰ÓË fl‚ÎflÂÚÒfl ‚ÌÛÚÂÌÌÂÈ ‰Îfl ÔÓÎÛ‡ÒÒÚÓflÌËfl ä‡‡ÚÂÓ‰ÓË, ÌÓ Ì ÒÓ‚Ô‡‰‡ÂÚ Ò ÌËÏ.
èÓÎÛ‡ÒÒÚÓflÌË ä‡‡ÚÂÓ‰ÓË fl‚ÎflÂÚÒfl ÛÏÂ̸¯‡˛˘ËÏ ‡ÒÒÚÓflÌËfl ‰Îfl ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ. ùÚÓ Ì‡ËÏÂ̸¯‡fl ÔÓÎÛÏÂÚË͇, ÛÏÂ̸¯‡˛˘‡fl ‡ÒÒÚÓflÌËfl. ë∆ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈ èÛ‡Ì͇Â, ‡ CC n ≡ 0.
åÂÚË͇ ÄÁÛ͇‚˚
èÛÒÚ¸ D – ӷ·ÒÚ¸ ‚ C n . èÛÒÚ¸ g D ( z, u) = sup{ f (u) : f ∈ K D ( z )}, „‰Â K D(z) –
ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÎÓ„‡ËÙÏ˘ÂÒÍË ÔβËÒÛ·„‡ÏÓÌ˘ÂÒÍËı ÙÛÌ͈ËÈ f: D → [0,1),
Ú‡ÍËı ˜ÚÓ ÒÛ˘ÂÒÚ‚Û˛Ú M, r > 0 Ò F(u) ≤ M|| u – z ||2 ‰Îfl ‚ÒÂı u ∈ B( z, r ) ⊂ D : ; Á‰ÂÒ¸
{
}
|| ⋅ || – l2-ÌÓχ ̇ n, a B( z, r ) = x ∈ n : || z − x 2 ||2 < r .
åÂÚË͇ ÄÁÛ͇‚˚ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â, ÔÓÎÛÏÂÚË͇) F A ÂÒÚ¸ ÍÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡fl ÏÂÚË͇, ÓÔ‰ÂÎflÂχfl ͇Í
FA ( z, u) = lim sup
λ→0
1
gD ( z, z + λ )
|λ|
‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n. é̇ "ÎÂÊËÚ ÏÂʉÛ" ÏÂÚËÍÓÈ ä‡‡ÚÂÓ‰ÓË FC Ë ÏÂÚËÍÓÈ
äÓ·‡È‡¯Ë FK : FC ( z, u) ≤ FA ( z, u) ≤ FK ( z, u) ‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n. ÖÒÎË Ó·Î‡ÒÚ¸ D
‚˚ÔÛÍ·, ÚÓ ‚Ò ˝ÚË ÏÂÚËÍË ÒÓ‚Ô‡‰‡˛Ú.
åÂÚË͇ ÄÁÛ͇‚˚ fl‚ÎflÂÚÒfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏÓÈ Ú‡Í Ì‡Á˚‚‡ÂÏÓ„Ó ÔÓÎÛ‡ÒÒÚÓflÌËfl ÄÁÛ͇‚˚.
åÂÚË͇ ëË·ÓÌË
èÛÒÚ¸ D – ӷ·ÒÚ¸ ‚ ën . èÛÒÚ¸ KD(z) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÎÓ„‡ËÙÏ˘ÂÒÍË ÔβËÒÛ·„‡ÏÓÌ˘ÂÒÍËı ÙÛÌ͈ËÈ f : D → [0,1), Ú‡ÍËı ˜ÚÓ ÒÛ˘ÂÒÚ‚Û˛Ú M, r > 0 c
f (u) ≤ M || u − z ||2 ‰Îfl ‚ÒÂı u ∈ B( z, r ) ⊂ D; Á‰ÂÒ¸ || ⋅ || 2 – l2 -ÌÓχ ̇ n, a B( z, r ) =
{
}
2
( z ) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÙÛÌ͈ËÈ Í·ÒÒ‡ C 2 ‚
= x ∈ n : || z − x ||2 < r . èÛÒÚ¸ Cloc
ÌÂÍÓÚÓÓÈ ÓÚÍ˚ÚÓÈ ÓÍÂÒÚÌÓÒÚË ÚÓ˜ÍË z.
åÂÚË͇ ëË·ÓÌË (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â, ÔÓÎÛÏÂÚË͇) FS ÂÒÚ¸ ÍÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, Á‡‰‡‚‡Âχfl Û‡‚ÌÂÌËÂÏ
FS ( z, u) =
sup
2
(z )
f ∈K D (z ) ∩ Cloc
∑
i, j
∂2 f
( z )ui u j
∂z i ∂z j
‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n . é̇ "ÎÂÊËÚ ÏÂʉÛ" ÏÂÚËÍÓÈ ä‡‡ÚÂÓ‰ÓË FC Ë ÏÂÚËÍÓÈ
äÓ·‡È‡¯Ë FK : FC ( z, u) ≤ FS ( z, u) ≤ FA ( z, u) ≤ FK ( z, u) ‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n , „‰Â FA
ÂÒÚ¸ ÏÂÚË͇ ÄÁÛ͇‚˚. ÖÒÎË Ó·Î‡ÒÚ¸ D ‚˚ÔÛÍ·, ÚÓ ‚Ò ˝ÚË ÏÂÚËÍË ÒÓ‚Ô‡‰‡˛Ú.
åÂÚË͇ ëË·ÓÌË fl‚ÎflÂÚÒfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏÓÈ Ú‡Í Ì‡Á˚‚‡ÂÏÓ„Ó ÔÓÎÛ‡ÒÒÚÓflÌËfl ëË·ÓÌË.
åÂÚË͇ ÇÛ
åÂÚËÍÓÈ ÇÛ WM n ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÌÂÔÂ˚‚̇fl Ò‚ÂıÛ ˝ÏËÚÓ‚‡ ÏÂÚË͇ ̇
ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ÛÏÂ̸¯‡˛˘ÂÈ ‡ÒÒÚÓflÌËfl ‰Îfl
‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ. àÏÂÌÌÓ, ‰Îfl ‰‚Ûı n-ÏÂÌ˚ı ÍÓÏÔÎÂÍÒÌ˚ı ÏÌÓ„Ó-
142
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
Ó·‡ÁËÈ M1n Ë M2n Ë WM n ( f ( p), f (q ) ≤ nWM n ( p, q ) ÌÂ‡‚ÂÌÒÚ‚Ó ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl
2
1
‚ÒÂı p, q ∈ M1n .
àÌ‚‡ˇÌÚÌ˚ ÏÂÚËÍË, ‚Íβ˜‡fl ÏÂÚËÍË ä‡‡ÚÂÓ‰ÓË, äÓ·‡È‡¯Ë, ÅÂ„χ̇ Ë
äÂıÎÂ‡–ùÈ̯ÚÂÈ̇, Ë„‡˛Ú ‚‡ÊÌÛ˛ Óθ ‚ ÚÂÓËË ÍÓÏÔÎÂÍÒÌ˚ı ÙÛÌ͈ËÈ Ë
‚˚ÔÛÍÎÓÈ „ÂÓÏÂÚËË. åÂÚËÍË ä‡‡ÚÂÓ‰ÓË Ë äÓ·‡È‡¯Ë ÔËÏÂÌfl˛ÚÒfl ‚ ÓÒÌÓ‚ÌÓÏ
ËÁ-Á‡ Ò‚ÓÈÒÚ‚‡ ÛÏÂ̸¯ÂÌËfl ‡ÒÒÚÓflÌËfl, ÌÓ ÓÌË ÔÓ˜ÚË ÌËÍÓ„‰‡ Ì fl‚Îfl˛ÚÒfl ˝ÏËÚÓ‚˚ÏË ÏÂÚË͇ÏË. ë ‰Û„ÓÈ ÒÚÓÓÌ˚, ÏÂÚË͇ ÅÂ„χ̇ Ë ÏÂÚË͇ äÂıÎÂ‡–
ùÈ̯ÚÂÈ̇ fl‚Îfl˛ÚÒfl ˝ÏËÚÓ‚˚ÏË (·ÓΠÚÓ„Ó, ÏÂÚË͇ÏË äÂıÎÂ‡), Ӊ̇ÍÓ Ó·˚˜ÌÓ ÓÌË Ì fl‚Îfl˛ÚÒfl ÏÂÚË͇ÏË, ÛÏÂ̸¯‡˛˘ËÏË ‡ÒÒÚÓflÌËfl.
åÂÚË͇ íÂÈıÏ˛ÎÎÂ‡
êËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛ R ̇Á˚‚‡ÂÚÒfl Ó‰ÌÓÏÂÌÓ ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ.
Ñ‚Â ËχÌÓ‚˚ ÔÓ‚ÂıÌÓÒÚË R1 Ë R2 ̇Á˚‚‡˛ÚÒfl ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË
ÒÛ˘ÂÒÚ‚ÛÂÚ ·ËÂÍÚ˂̇fl ‡Ì‡ÎËÚ˘ÂÒ͇fl ÙÛÌ͈Ëfl (Ú.Â. ÍÓÌÙÓÏÌ˚È „ÓÏÂÓÏÓÙËÁÏ)
ËÁ R 1 ‚ R2 . íÓ˜ÌÂÂ, ‡ÒÒÏÓÚËÏ Á‡ÏÍÌÛÚÛ˛ ËχÌÓ‚Û ÔÓ‚ÂıÌÓÒÚ¸ R0 ‰‡ÌÌÓ„Ó
Ó‰‡ g ≥ 2. ÑÎfl Á‡ÏÍÌÛÚÓÈ ËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË R Ó‰‡ ÔÓÒÚÓËÏ Ô‡Û (R, f),
„‰Â f: R0 → R – „ÓÏÂÓÏÓÙËÁÏ. Ñ‚Â Ô‡˚ (R, f) Ë (R1 , f 1 ) ̇Á˚‚‡˛ÚÒfl ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÙÓÏÌ˚È „ÓÏÂÓÏÓÙËÁÏ h: R → R1 ,
Ú‡ÍÓÈ ˜ÚÓ ÓÚÓ·‡ÊÂÌË ( f1 ) −1 ⋅ h ⋅ f : R0 → R0 „ÓÏÓÚÓÔÌÓ ÚÓʉÂÒÚ‚ÂÌÌÓÏÛ ÓÚÓ·‡ÊÂÌ˲.
Ä·ÒÚ‡ÍÚ̇fl ËχÌÓ‚‡ ÔÓ‚ÂıÌÓÒÚ¸ R* = ( R, f )* – ˝ÚÓ Í·ÒÒ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË
‚ÒÂı ËχÌÓ‚˚ı ÔÓ‚ÂıÌÓÒÚÂÈ, ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ı R. åÌÓÊÂÒÚ‚Ó ‚ÒÂı
Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ íÂÈıÏ˛ÎÎÂ‡ T(R0 ) ÔÓ‚ÂıÌÓÒÚË R0 . ÑÎfl Á‡ÏÍÌÛÚ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ R0 ‰‡ÌÌÓ„Ó Ó‰‡ g ÔÓÒÚ‡ÌÒÚ‚‡ T(R0 )
fl‚Îfl˛ÚÒfl ËÁÓÏÂÚ˘ÂÒÍË ËÁÓÏÓÙÌ˚ÏË, ˜ÚÓ ÔÓÁ‚ÓÎflÂÚ „Ó‚ÓËÚ¸ Ó ÔÓÒÚ‡ÌÒÚ‚Â
íÂÈıÏ˛ÎÎÂ‡ Tg ÔÓÒÚ‡ÌÒÚ‚ Ó‰‡ g. T g ÂÒÚ¸ ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ. ÖÒÎË R 0
ÔÓÎÛ˜ÂÌÓ ËÁ ÍÓÏÔ‡ÍÚÌÓÈ ÔÓ‚ÂıÌÓÒÚË Ó‰‡ g ≥ 2 ÔÓÒ‰ÒÚ‚ÓÏ Û‰‡ÎÂÌËfl n ÚÓ˜ÂÍ, ÚÓ
ÍÓÏÔÎÂÍÒ̇fl ‡ÁÏÂÌÓÒÚ¸ T g ‡‚̇ 3g – 3 + n.
åÂÚË͇ íÂÈıÏ˛ÎÎÂ‡ – ˝ÚÓ ÏÂÚË͇ ̇ Tg , ÓÔ‰ÂÎÂÌ̇fl ͇Í
1
inf ln K (h)
2 h
‰Îfl β·˚ı R1* , R2* ∈ Tg , „‰Â h : R1 → R2 ÂÒÚ¸ Í‚‡ÁËÍÓÌÙÓÏÌ˚È „ÓÏÂÓÏÓÙËÁÏ,
„ÓÏÓÚÓÔ˘ÂÒÍËÈ ÚÓʉÂÒÚ‚ÂÌÌÓÏÛ ÓÚÓ·‡ÊÂÌ˲, ‡ K(h) – χÍÒËχθÌ ‡ÒÚflÊÂÌËÂ
‰Îfl h. àÏÂÌÌÓ, ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌÓ ˝ÍÒÚÂχθÌÓ ÓÚÓ·‡ÊÂÌËÂ, ̇Á˚‚‡ÂÏÓÂ
ÓÚÓ·‡ÊÂÌËÂÏ íÂÈıÏ˛ÎÎÂ‡, ÍÓÚÓÓ ÏËÌËÏËÁËÛÂÚ Ï‡ÍÒËχθÌÓ ‡ÒÚflÊÂÌËÂ
1
‰Îfl ‚ÒÂı Ú‡ÍËı h, Ë ‡ÒÒÚÓflÌË ÏÂÊ‰Û R1* Ë R2* ‡‚ÌÓ ln K , „‰Â ÍÓÌÒÚ‡ÌÚ‡ ä fl‚Îfl2
ÂÚÒfl ‡ÒÚflÊÂÌËÂÏ ÓÚÓ·‡ÊÂÌËfl íÂÈıÏ˛ÎÎÂ‡.
Ç ÚÂÏË̇ı ˝ÍÒÚÂχθÌÓÈ ‰ÎËÌ˚ ext R* ( γ ) ‡ÒÒÚÓflÌË ÏÂÊ‰Û R1* Ë R2* ÏÓÊÌÓ
Á‡ÔËÒ‡Ú¸ ͇Í
ext R* ( γ )
1
1
ln sup
,
2
γ ext R * ( γ )
2
„‰Â ÒÛÔÂÏÛÏ „‡Ì¸ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÔÓÒÚ˚Ï Á‡ÏÍÌÛÚ˚Ï ÍË‚˚Ï Ì‡ R0 .
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
143
èÓÒÚ‡ÌÒÚ‚Ó íÂÈıÏ˛ÎÎÂ‡ Tg Ò ÏÂÚËÍÓÈ íÂÈıÏ˛ÎÎÂ‡ ̇ ÌÂÏ fl‚ÎflÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (·ÓΠÚÓ„Ó, ÔflÏ˚Ï G-ÔÓÒÚ‡ÌÒÚ‚ÓÏ),
Ӊ̇ÍÓ ÓÌÓ Ì fl‚ÎflÂÚÒfl ÌË „ËÔÂ·Ó΢ÂÒÍËÏ ÔÓ ÉÓÏÓ‚Û, ÌË „ÎÓ·‡Î¸ÌÓ ÌÂÓÚˈ‡ÚÂθÌÓ ËÒÍË‚ÎÂÌÌ˚Ï ÔÓ ÅÛÁÂχÌÛ.
䂇ÁËÏÂÚË͇ íÂÒÚÓ̇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â íÂÈıÏ˛ÎÎÂ‡ Tg Á‡‰‡ÂÚÒfl ͇Í
1
inf ln || h ||Lip
2 h
‰Îfl β·˚ı R1* , R2* ∈ Tg , „‰Â h : R1 → R2 – Í‚‡ÁËÍÓÌÙÓÏÌ˚È „ÓÏÂÓÏÓÙËÁÏ, „ÓÏÓÚÓÔ˘ÂÒÍËÈ ÚÓʉÂÒÚ‚ÂÌÌÓÏÛ ÓÚÓ·‡ÊÂÌ˲, ‡ || ⋅ ||Lip – ÎËԯˈ‚‡ ÌÓχ ̇
ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÌ˙ÂÍÚË‚Ì˚ı ÙÛÌ͈ËÈ f : X → Y , Á‡‰‡‚‡Âχfl Í‡Í || f ||Lip =
dY ( f ( x ), f ( y))
= sup
.
d X ( x, y)
x , y ∈X , x ≠ y
èÓÒÚ‡ÌÒÚ‚Ó ÏÓ‰ÛÎÂÈ Rg ÍÓÌÙÓÏÌ˚ı Í·ÒÒÓ‚ ËχÌÓ‚˚ı ÔÓ‚ÂıÌÓÒÚÂÈ Ó‰‡
g ÔÓÎÛ˜‡ÂÚÒfl ÔÛÚÂÏ Ù‡ÍÚÓËÁ‡ˆËË T g ÌÂÍÓÚÓÓÈ Ò˜ÂÚÌÓÈ „ÛÔÔÓÈ Â„Ó ‡‚ÚÓÏÓÙËÁÏÓ‚, ̇Á˚‚‡ÂÏÓÈ ÏÓ‰ÛÎflÌÓÈ „ÛÔÔÓÈ. èËÏÂ‡ÏË ÏÂÚËÍ, Ò‚flÁ‡ÌÌ˚ı Ò
ÏÓ‰ÛÎflÏË Ë ÔÓÒÚ‡ÌÒÚ‚‡ÏË íÂÈıÏ˛ÎÎÂ‡, ÔÓÏËÏÓ ÏÂÚËÍË íÂÈıÏ˛ÎÎÂ‡, fl‚Îfl˛ÚÒfl ÏÂÚË͇ ÇÂÈÎfl-èÂÚÂÒÓ̇, ÏÂÚË͇ ä‚ËÎÂ̇, ÏÂÚË͇ ä‡‡ÚÂÓ‰ÓË, ÏÂÚË͇
äÓ·‡È‡¯Ë, ÏÂÚË͇ ÅÂ„χ̇, ÏÂÚË͇ óÂÌ üÌ åÓ͇, ÏÂÚË͇ å‡ÍÏÛÎÎÂ̇,
‡ÒËÏÔÚÓÚ˘ÂÒ͇fl ÏÂÚË͇ èÛ‡Ì͇Â, ÏÂÚË͇ ê˘˜Ë, ‚ÓÁÏÛ˘ÂÌ̇fl ÏÂÚË͇
ê˘˜Ë, VHS-ÏÂÚË͇.
åÂÚË͇ ÇÂÈÎfl–èÂÚÂÒÓ̇
åÂÚËÍÓÈ ÇÂÈÎfl–èÂÚÂÒÓ̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ äÂıÎÂ‡ ̇ ÔÓÒÚ‡ÌÒÚ‚Â
íÂÈıÏ˛ÎÎÂ‡ Tg,n ‡·ÒÚ‡ÍÚÌ˚ı ËχÌÓ‚˚ı ÔÓ‚ÂıÌÓÒÚÂÈ Ó‰‡ g Ò n ‡Á˚‚‡ÏË Ë
ÓÚˈ‡ÚÂθÌÓÈ ˝ÈÎÂÓ‚ÓÈ ı‡‡ÍÚÂËÒÚËÍÓÈ.
åÂÚË͇ LJÈÎfl–èÂÚÂÒÓ̇ fl‚ÎflÂÚÒfl „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û ÚÓ„‰‡ Ë
ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ (ÅÓÍ Ë î‡·, 2006) ÍÓÏÔÎÂÍÒ̇fl ‡ÁÏÂÌÓÒÚ¸ 3g – 3 + n ÔÓÒÚ‡ÌÒÚ‚‡ Tg,n Ì ·Óθ¯Â, ˜ÂÏ 2.
åÂÚË͇ ÉË··ÓÌÒ‡–å‡ÌÚÓ̇
åÂÚË͇ ÉË··ÓÌÒ‡–å‡ÌÚÓ̇ fl‚ÎflÂÚÒfl 4n-ÏÂÌÓÈ „ËÔÂÍÂıÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡
ÔÓÒÚ‡ÌÒÚ‚Â ÏÓ‰ÛÎÂÈ n-ÏÓÌÓÔÓÎÂÈ ÔË ‰ÓÔÛ˘ÂÌËË ËÁÓÏÂÚ˘ÂÒÍÓ„Ó ‰ÂÈÒÚ‚Ëfl
n-ÏÂÌÓ„Ó ÚÓ‡ í n . é̇ ÏÓÊÂÚ ·˚Ú¸ Ú‡ÍÊ ÓÔË҇̇ Ò ÔÓÏÓ˘¸˛ „ËÔÂÍÂıÎÂÓ‚ÓÈ
Ù‡ÍÚÓËÁ‡ˆËË ÔÎÓÒÍÓ„Ó Í‚‡ÚÂÌËÓÌÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡.
åÂÚË͇ á‡ÏÓÎÓ‰˜ËÍÓ‚‡
åÂÚËÍÓÈ á‡ÏÓÎÓ‰˜ËÍÓ‚‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â ÏÓ‰ÛÎÂÈ ‰‚ÛÏÂÌ˚ı ÍÓÌÙÓÏÌ˚ı ÚÂÓËÈ ÔÓÎfl.
åÂÚËÍË Ì‡ ‰ÂÚÂÏË̇ÌÚÌ˚ı ÔflÏ˚ı
èÛÒÚ¸ M n – n-ÏÂÌÓ ÍÓÏÔ‡ÍÚÌÓ „·‰ÍËÏ ÏÌÓ„ÓÓ·‡ÁËÂ, ‡ F – ÔÎÓÒÍÓ ‚ÂÍÚÓÌÓ ‡ÒÒÎÓÂÌË ̇ Mn . èÛÒÚ¸ H • ( M n , F ) = ⊗ in= 0 H i ( M n , F ) – ÍÓ„ÓÏÓÎÓ„Ëfl ‰Â ê‡Ï‡
ÏÌÓ„ÓÓ·‡ÁËfl Mn Ò ÍÓ˝ÙÙˈËÂÌÚ‡ÏË ËÁ F. ÑÎfl n-ÏÂÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
V Â„Ó ‰ÂÚÂÏË̇ÌÚ̇fl Ôflχfl det V ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‚ÂıÌflfl ‚̯Ìflfl ÒÚÂÔÂ̸ V,
Ú.Â. det V = ∧ n V . ÑÎfl ÍÓ̘ÌÓÏÂÌÓ„Ó „‡‰ÛËÓ‚‡ÌÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
V = ⊗ in= 0 Vi ‰ÂÚÂÏË̇ÌÚ̇fl Ôflχfl ÔÓÒÚ‡ÌÒÚ‚‡ V Á‡‰‡ÂÚÒfl Í‡Í ÚÂÌÁÓÌÓÂ
i
ÔÓËÁ‚‰ÂÌË det V = ⊗ in= 0 (det Vi )( −1) . ëΉӂ‡ÚÂθÌÓ, ‰ÂÚÂÏË̇ÌÚÌÛ˛ ÔflÏÛ˛
144
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
det H • ( M n , F ) ÍÓ„ÓÏÓÎÓ„ËË H • ( M n , F ) ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í det H • ( M n , F ) =
i
= ⊗ in= 0 (det H i ( M n , F ))( −1) .
åÂÚËÍÓÈ êÂȉÂÏÂÈÒÚÂa ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ H • ( M n , F ), ÓÔ‰ÂÎflÂχfl
Á‡‰‡ÌÌÓÈ „·‰ÍÓÈ Úˇ̄ÛÎflˆËÂÈ ÏÌÓ„ÓÓ·‡ÁËfl Mn Ë Í·ÒÒ˘ÂÒÍËÏ ÍÛ˜ÂÌËÂÏ
êÂȉÂÏÂÈÒÚÂ‡–î‡Ìˆ‡.
n
èÛÒÚ¸ g F Ë g T ( M ) – ·Û‰ÛÚ „·‰ÍË ÏÂÚËÍË Ì‡ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË F Ë Í‡Ò‡ÚÂθÌÓÏ ‡ÒÒÎÓÂÌËË T(Mn ) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ùÚË ÏÂÚËÍË ÔÓÓʉ‡˛Ú ͇ÌÓÌ˘Â*
n
ÒÍÛ˛ L2-ÏÂÚËÍÛ h H ( M , F ) ̇ H • ( M n , F ). åÂÚË͇ ê˝fl–ëËÌ„ÎÂ‡ ̇ det H • ( M n , F )
ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ Í‡Í ÔÓËÁ‚‰ÂÌË ÏÂÚËÍË, ÔÓÓʉÂÌÌÓÈ Ì‡ det H • ( M n , F )
•
n
ÏÂÚËÍÓÈ h H ( M , F ) , Ë ‡Ì‡ÎËÚ˘ÂÒÍÓ„Ó ÍÛ˜ÂÌËfl ê˝fl–ëËÌ„ÎÂ‡. åÂÚËÍÛ åËÎÌÓ‡
̇ det H • ( M n , F ) ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ‡Ì‡Îӄ˘Ì˚Ï ÒÔÓÒÓ·ÓÏ, ËÒÔÓθÁÛfl ‡Ì‡ÎËÚ˘ÂÒÍÓ ÍÛ˜ÂÌË åËÎÌÓ‡. ÖÒÎË g F ÔÎÓÒ͇fl, ÚÓ Ó·Â Ô˂‰ÂÌÌ˚ ‚˚¯Â ÏÂÚËÍË
ÒÓ‚Ô‡‰‡˛Ú Ò ÏÂÚËÍÓÈ êÂȉÂÏÂÈÒÚÂ‡. èËÏÂÌË‚ ÍÓ˝ÈÎÂÓ‚Û ÒÚÛÍÚÛÛ, ÏÓÊÌÓ
ÓÔ‰ÂÎËÚ¸ ÏÓ‰ËÙˈËÓ‚‡ÌÌÛ˛ ÏÂÚËÍÛ ê˝fl–ëËÌ„ÎÂ‡ ̇ det H • ( M n , F ).
åÂÚËÍÓÈ èÛ‡Ì͇–êÂȉÂÏÂÈÒÚÂa ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÍÓ„ÓÏÓÎӄ˘ÂÒÍÓÈ
‰ÂÚÂÏË̇ÌÚÌÓÈ ÔflÏÓÈ det H • ( M n , F ) Á‡ÏÍÌÛÚÓ„Ó Ò‚flÁÌÓ„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó Ì˜ÂÚÌÓÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl Mn . Ö ÏÓÊÌÓ ÔÓÒÚÓËÚ¸, ÍÓÏ·ËÌËÛfl ‰ÂÙÓχˆË˛
êÂȉÂÏÂÈÒÚÂ‡ Ò ‰‚ÓÈÒÚ‚ÂÌÌÓÒÚ¸˛ èÛ‡Ì͇Â. íÓ˜ÌÓ Ú‡Í Ê ÏÓÊÌÓ Á‡‰‡Ú¸ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË èÛ‡Ì͇–êÂȉÂÏÂÈÒÚÂ‡ ̇ det H • ( M n , F ), , ÍÓÚÓÓ ÔÓÎÌÓÒÚ¸˛
ÓÔ‰ÂÎflÂÚ ÏÂÚËÍÛ èÛ‡Ì͇–êÂȉÂÏÂÈÒÚÂa, ÌÓ ÒÓ‰ÂÊËÚ ‰ÓÔÓÎÌËÚÂθÌ˚È Á̇Í
ËÎË Ù‡ÁÓ‚Û˛ ËÌÙÓχˆË˛.
åÂÚËÍÓÈ ä‚ËÎÂ̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÔÓÓ·‡Á ÍÓ„ÓÏÓÎӄ˘ÂÒÍÓÈ ‰ÂÚÂÏË̇ÌÚÌÓÈ ÔflÏÓÈ ÍÓÏÔ‡ÍÚÌÓ„Ó ˝ÏËÚÓ‚‡ Ó‰ÌÓÏÂÌÓ„Ó ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl. Ö ÏÓÊÌÓ Á‡‰‡Ú¸ Í‡Í ÔÓËÁ‚‰ÂÌË L2-ÏÂÚËÍË Ë ‡Ì‡ÎËÚ˘ÂÒÍÓ„Ó ÍÛ˜ÂÌËfl
ê˝fl–ëËÌ„ÎÂ‡.
ëÛÔÂÏÂÚË͇ äÂıÎÂ‡
ëÛÔÂÏÂÚË͇ äÂıÎÂ‡ – Ó·Ó·˘ÂÌË ÏÂÚËÍË äÂıÎÂ‡ ̇ ÒÛÔÂÏÌÓ„ÓÓ·‡ÁËÂ.
ëÛÔÂÏÌÓ„ÓÓ·‡ÁË ÂÒÚ¸ Ó·Ó·˘ÂÌË ӷ˚˜ÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl Ò ËÒÔÓθÁÓ‚‡ÒÌËÂÏ
ÙÂÏËÓÌÌ˚ı, ‡ Ú‡ÍÊ ·ÓÁÓÌÌ˚ı ÍÓÓ‰Ë̇Ú. ÅÓÁÓÌÌ˚ ÍÓÓ‰Ë̇Ú˚ – Ó·˚˜Ì˚Â
˜ËÒ·, ‚ ÚÓ ‚ÂÏfl Í‡Í ÙÂÏËÓÌÌ˚ ÍÓÓ‰Ë̇Ú˚ fl‚Îfl˛ÚÒfl „‡ÒÒχÌÓ‚˚ÏË ˜ËÒ·ÏË.
åÂÚË͇ ïÓÙÂ‡
ëËÏÔÎÂÍÚ˘ÂÒÍËÏ ÏÌÓ„ÓÓ·‡ÁËÂÏ (Mn , w ), n = 2k ̇Á˚‚‡ÂÚÒfl „·‰ÍÓ ˜ÂÚÌÓÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË M n , Ò̇·ÊÂÌÌÓ ÒËÏÔÎÂÍÚ˘ÂÒÍÓÈ ÙÓÏÓÈ, Ú.Â. Á‡ÏÍÌÛÚÓÈ
Ì‚˚ÓʉÂÌÌÓÈ 2-ÙÓÏÓÈ w.
㇄‡ÌÊ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ Ì‡Á˚‚‡ÂÚÒfl k-ÏÂÌÓ „·‰ÍÓ ÔÓ‰ÏÌÓ„ÓÓ·‡ÁË Lk
ÒËÏÔÎÂÍÚ˘ÂÒÍÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl (Mn , w), n = 2k, Ú‡ÍÓ ˜ÚÓ ÙÓχ w ÚÓʉÂÒÚ‚ÂÌÌÓ
‡‚̇ ÌÛβ ̇ Lk, Ú.Â. ‰Îfl β·Ó„Ó p ∈ Lk Ë Î˛·˚ı x, y ∈ T p (L k) ËÏÂÂÏ w(x, y) = 0.
èÛÒÚ¸ L(Mn , ∆) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ·„‡ÌÊ‚˚ı ÔÓ‰ÏÌÓ„ÓÓ·‡ÁËÈ Á‡ÏÍÌÛÚÓ„Ó
ÒËÏÔÎÂÍÚ˘ÂÒÍÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl (M n , w ), ‰ËÙÙÂÓÏÓÙÌÓ„Ó ‰‡ÌÌÓÏÛ Î‡„‡ÌÊ‚Û
ÔÓ‰ÏÌÓ„ÓÓ·‡Á˲ ∆. É·‰ÍÓ ÒÂÏÂÈÒÚ‚Ó α = {Lt}t, t ∈ [0,1] ·„‡ÌÊ‚˚ı ÔÓ‰ÏÌÓ„Ó·‡ÁËÈ Lt ∈ L( M n , ∆ ) ̇Á˚‚‡ÂÚÒfl ÚÓ˜Ì˚Ï ÔÛÚÂÏ, ÒÓ‰ËÌfl˛˘ËÏ L 0 Ë L 1 , ÂÒÎË
ÒÛ˘ÂÒÚ‚ÛÂÚ „·‰ÍÓ ÓÚÓ·‡ÊÂÌËÂ Ψ : ∆ × [0, 1] → M n , Ú‡ÍÓ ˜ÚÓ ‰Îfl ͇ʉӄÓ
145
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
t ∈ [0,1] ËÏÂ˛Ú ÏÂÒÚÓ ÒÓÓÚÌÓ¯ÂÌËfl Ψ( ∆ × {t}) = Lt Ë Ψ ∗ w = dHt ∧ dt ‰Îfl ÌÂÍÓÚÓÓÈ
„·‰ÍÓÈ ÙÛÌ͈ËË H : ∆ × [0, 1] → . ÑÎË̇ ïÓÙÂ‡ l(α) ÚÓ˜ÌÓ„Ó ÔÛÚË α Á‡‰‡ÂÚÒfl ͇Í
1


l(α ) = max H ( p, t ) − min H ( p, t )dt.
p ∈∆
p ∈∆


0
∫
åÂÚË͇ ïÓÙÂ‡ ̇ ÏÌÓÊÂÒÚ‚Â L( M n , ∆ ) ÓÔ‰ÂÎflÂÚÒfl ͇Í
inf l(α )
α
‰Îfl β·˚ı L0 , L1 ∈ L( M n , ∆ ), „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÚÓ˜Ì˚Ï ÔÛÚflÏ Ì‡
L( M n , ∆ ), ÒÓ‰ËÌfl˛˘ËÏ L0 Ë L1 .
åÂÚËÍÛ ïÓÙÂ‡ ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ‡Ì‡Îӄ˘Ì˚Ï ÒÔÓÒÓ·ÓÏ Ì‡ „ÛÔÔÂ
Ham(Mn , w ) „‡ÏËθÚÓÌÓ‚˚ı ‰ËÙÙÂÓÏÓÙËÁÏÓ‚ Á‡ÏÍÌÛÚÓ„Ó ÒËÏÔÎÂÍÚ˘ÂÒÍÓ„Ó
ÏÌÓ„ÓÓ·‡ÁËfl (Mn , w), ˝ÎÂÏÂÌÚ˚ ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl ‡ÁÓ‚˚ÏË ÓÚÓ·‡ÊÂÌËflÏË
„‡ÏËθÚÓÌÓ‚˚ı ÔÓÚÓÍÓ‚ φ tH : ˝ÚÓ inf l(α ), „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ „·‰ÍËÏ
α
ÔÛÚflÏ α = {φ tH }, t ∈[0, 1], ÒÓ‰ËÌfl˛˘ËÏ φ Ë ψ.
åÂÚË͇ ë‡Ò‡Í¸fl̇
åÂÚË͇ ë‡Ò‡Í¸fl̇ – ÏÂÚË͇ ÔÓÎÓÊËÚÂθÌÓÈ Ò͇ÎflÌÓÈ ÍË‚ËÁÌ˚ ̇ ÍÓÌÚ‡ÍÚÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË, ÂÒÚÂÒÚ‚ÂÌÌÓ ‡‰‡ÔÚËÓ‚‡ÌÌÓÏ Í ÍÓÌÚ‡ÍÚÌÓÈ ÒÚÛÍÚÛÂ. äÓÌÚ‡ÍÚÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ åÂÚËÍÓÈ ë‡Ò‡Í¸fl̇, ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ë‡Ò‡Í¸fl̇ Ë fl‚ÎflÂÚÒfl ̘ÂÚÌÓÏÂÌ˚Ï ‡Ì‡ÎÓ„ÓÏ ÏÌÓ„ÓÓ·‡ÁËÈ äÂıÎÂ‡.
åÂÚË͇ ä‡ڇ̇
îÓχ äËÎÎËÌ„‡ (ËÎË ÙÓχ äËÎÎËÌ„‡–ä‡ڇ̇) ̇ ÍÓ̘ÌÓÏÂÌÓÈ ‡Î„· ãË
Ω ̇‰ ÔÓÎÂÏ ÂÒÚ¸ ÒËÏÏÂÚ˘̇fl ·ËÎËÌÂÈ̇fl ÙÓχ
B( x, y) = Tr( ad x ⋅ d y ),
„‰Â Tr Ó·ÓÁ̇˜‡ÂÚ ÒΉ ÎËÌÂÈÌÓ„Ó ÓÔÂ‡ÚÓ‡ Ë ad x fl‚ÎflÂÚÒfl Ó·‡ÁÓÏ ı ÔÓ‰
‰ÂÈÒÚ‚ËÂÏ ÒÓÔflÊÂÌÌÓ„Ó Ô‰ÒÚ‡‚ÎÂÌËfl Ω, Ú.Â. ÎËÌÂÈÌÓ„Ó ÓÔÂ‡ÚÓ‡ ̇ ‚ÂÍÚÓÌÓÏ
ÔÓÒÚ‡ÌÒÚ‚Â Ω, Á‡‰‡ÌÌÓ„Ó Ô‡‚ËÎÓÏ z → [ x, z ], „‰Â [,] – ÒÍÓ·ÍË ãË.
n
èÛÒÚ¸ e1, ..., en – ·‡ÁËÒ ‡Î„·˚ ãË Ω Ë [ei , e j ] =
∑ γ ijk ek , „‰Â γ ijk – ÒÓÓÚ‚ÂÚÒÚ‚Û˛k =1
˘Ë ÒÚÛÍÚÛÌ˚ ÔÓÒÚÓflÌÌ˚Â. íÓ„‰‡ ÙÓχ äËÎÎËÌ„‡ Á‡‰‡ÂÚÒfl ÔÓ ÙÓÏÛÎÂ
n
B( xi , x j ) = gij =
∑ γ ilk γ lik .
k , l =1
åÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ((g i j)) ̇Á˚‚‡ÂÚÒfl, ÓÒÓ·ÂÌÌÓ ‚ ÚÂÓÂÚ˘ÂÒÍÓÈ ÙËÁËÍÂ,
ÏÂÚËÍÓÈ ä‡ڇ̇.
É·‚‡ 8
ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı
8.1. éÅôàÖ åÖíêàäà çÄ èéÇÖêïçéëíüï
èÓ‚ÂıÌÓÒÚ¸ – ‰ÂÈÒÚ‚ËÚÂθÌÓ ‰‚ÛÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË M 2 , Ú.Â. ı‡ÛÒ‰ÓÙÓ‚Ó
ÔÓÒÚ‡ÌÒÚ‚Ó, ͇ʉ‡fl ÚӘ͇ ÍÓÚÓÓ„Ó Ó·Î‡‰‡ÂÚ ÓÍÂÒÚÌÓÒÚ¸˛, „ÓÏÂÓÏÓÙÌÓÈ ËÎË
ÔÎÓÒÍÓÒÚË 2 , ËÎË Á‡ÏÍÌÛÚÓÈ ÔÓÎÛÔÎÓÒÍÓÒÚË (ÒÏ. „Î. 7).
äÓÏÔ‡ÍÚ̇fl ÓËÂÌÚËÛÂχfl ÔÓ‚ÂıÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl Á‡ÏÍÌÛÚÓÈ, ÂÒÎË Ó̇ ÌÂ
ËÏÂÂÚ „‡Ìˈ˚, Ë ÔÓ‚ÂıÌÓÒÚ¸˛ Ò Í‡ÂÏ – Ë̇˜Â. ëÛ˘ÂÒÚ‚Û˛Ú Ë ÍÓÏÔ‡ÍÚÌ˚ ÌÂÓËÂÌÚËÛÂÏ˚ ÔÓ‚ÂıÌÓÒÚË (Á‡ÏÍÌÛÚ˚ ËÎË Ò Í‡ÂÏ); ÔÓÒÚÂȯÂÈ Ú‡ÍÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛ fl‚ÎflÂÚÒfl ÎËÒÚ åfi·ËÛÒ‡. çÂÍÓÏÔ‡ÍÚÌ˚ ÔÓ‚ÂıÌÓÒÚË ·ÂÁ „‡Ìˈ˚ ̇Á˚‚‡˛ÚÒfl ÓÚÍ˚Ú˚ÏË.
ã˛·‡fl Á‡ÏÍÌÛÚ‡fl Ò‚flÁ̇fl ÔÓ‚ÂıÌÓÒÚ¸ „ÓÏÂÓÏÓÙ̇ ÎË·Ó ÒÙÂÂ Ò g (ˆËÎË̉˘ÂÒÍËÏË) ͇ۘÏË ËÎË ÒÙÂÂ Ò g ÎÂÌÚ‡ÏË åfi·ËÛÒ‡ (Ú.Â. ÎÂÌÚ‡ÏË, ÒÍÛ˜ÂÌÌ˚ÏË
ÔÓ‰Ó·ÌÓ ÎËÒÚÛ åfi·ËÛÒ‡). Ç Ó·ÓËı ÒÎÛ˜‡flı ˜ËÒÎÓ g ̇Á˚‚‡ÂÚÒfl Ó‰ÓÏ ÔÓ‚ÂıÌÓÒÚË.
èË Ì‡Î˘ËË Û˜ÂÍ ÔÓ‚ÂıÌÓÒÚ¸ ÓËÂÌÚËÛÂχ Ë Ì‡Á˚‚ÂÚÒfl ÚÓÓÏ, ‰‚ÓÈÌ˚Ï
ÚÓÓÏ Ë ÚÓÈÌ˚Ï ÚÓÓÏ ‰Îfl g = 1, 2 Ë 3 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ÑÎfl ÒÎÛ˜‡fl ÎÂÌÚ åfi·ËÛÒ‡
ÔÓ‚ÂıÌÓÒÚ¸ ÌÂÓËÂÌÚËÛÂχ Ë Ì‡Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔÓÂÍÚË‚ÌÓÈ ÔÎÓÒÍÓÒÚ¸˛, ·ÛÚ˚ÎÍÓÈ äÎÂÈ̇ Ë ÔÓ‚ÂıÌÓÒÚ¸˛ ÑË͇ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‰Îfl g = 1, 2 Ë 3.
êÓ‰ ÔÓ‚ÂıÌÓÒÚË – ˝ÚÓ Ï‡ÍÒËχθÌÓ ˜ËÒÎÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÔÓÒÚ˚ı Á‡ÏÍÌÛÚ˚ı
ÍË‚˚ı, ÍÓÚÓ˚ ÏÓ„ÛÚ ·˚Ú¸ ‚˚ÂÁ‡Ì˚ ËÁ ÔÓ‚ÂıÌÓÒÚË ·ÂÁ ÔÓÚÂË Ò‚flÁÌÓÒÚË
(ÚÂÓÂχ ÊÓ‰‡ÌÓ‚ÓÈ ÍË‚ÓÈ ‰Îfl ÔÓ‚ÂıÌÓÒÚÂÈ).
ï‡‡ÍÚÂËÒÚË͇ ùÈÎÂ‡–èÛ‡Ì͇ ÔÓ‚ÂıÌÓÒÚË ‡‚ÌÓ (Ó‰Ë̇ÍÓ‚ÓÏÛ ‰Îfl ‚ÒÂı
ÏÌÓ„Ó„‡ÌÌ˚ı ‡ÁÎÓÊÂÌËÈ ‰‡ÌÌÓÈ ÔÓ‚ÂıÌÓÒÚË) ˜ËÒÎÛ χ = v – e + f, „‰Â v, e Ë
f – ÍÓ΢ÂÒÚ‚Ó ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‚Â¯ËÌ, ·Â Ë „‡ÌÂÈ ‡ÁÎÓÊÂÌËfl. ÖÒÎË ÔÓ‚ÂıÌÓÒÚ¸ ÓËÂÌÚËÛÂχ, ÚÓ ËÏÂÂÚ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó χ = 2 – 2g, ÂÒÎË ÌÂÚ, ÚÓ χ = 2 – g .
ä‡Ê‰‡fl ÔÓ‚ÂıÌÓÒÚ¸ Ò Í‡ÂÏ „ÓÏÂÓÏÓÙ̇ ÒÙÂÂ Ò ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ÍÓ΢ÂÒÚ‚ÓÏ
(ÌÂÔÂÂÒÂ͇˛˘ËıÒfl) ‰˚ (Ú.Â. ÚÓ„Ó, ˜ÚÓ ÓÒÚ‡ÂÚÒfl ÔÓÒΠۉ‡ÎÂÌËfl ÓÚÍ˚ÚÓ„Ó ‰ËÒ͇)
Ë Û˜ÂÍ ËÎË ÎÂÌÚ åfi·ËÛÒ‡. ÖÒÎË h – ÍÓ΢ÂÒÚ‚Ó ‰˚, ÚÓ ‰Îfl ÓËÂÌÚËÛÂÏÓÈ
ÔÓ‚ÂıÌÓÒÚË ‚˚ÔÓÎÌflÂÚÒfl ‡‚ÂÌÒÚ‚Ó χ = 2 – 2g – h, ‡ ‡‚ÂÌÒÚ‚Ó χ = 2 – g – h, ‰Îfl
ÌÂÓËÂÌÚËÛÂÏÓÈ.
óËÒÎÓÏ Ò‚flÁÌÓÒÚË ÔÓ‚ÂıÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ̇˷Óθ¯Â ˜ËÒÎÓ Á‡ÏÍÌÛÚ˚ı
Ò˜ÂÌËÈ, ÍÓÚÓ˚ ÏÓÊÌÓ ÔÓ‚ÂÒÚË ÔÓ ÔÓ‚ÂıÌÓÒÚË, Ì ‡Á‰ÂÎflfl  ̇ ‰‚Â Ë ·ÓÎÂÂ
˜‡ÒÚÂÈ. ùÚÓ ˜ËÒÎÓ ‡‚ÌÓ 3 – χ ‰Îfl Á‡ÏÍÌÛÚ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ Ë 2 – χ – ‰Îfl ÔÓ‚ÂıÌÓÒÚÂÈ Ò Í‡ÂÏ. èÓ‚ÂıÌÓÒÚ¸ Ò ˜ËÒÎÓÏ Ò‚flÁÌÓÒÚË 1, 2 Ë 3 ̇Á˚‚‡ÂÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ
Ó‰ÌÓÒ‚flÁÌÓÈ, ‰‚ÛÒ‚flÁÌÓÈ Ë ÚÂıÒ‚flÁÌÓÈ. ëÙÂ‡ fl‚ÎflÂÚÒfl Ó‰ÌÓÒ‚flÁÌÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛, ‡ ÚÓ – ÚÂıÒ‚flÁÌÓÈ.
èÓ‚ÂıÌÓÒÚ¸ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÒÓ·ÒÚ‚ÂÌÌÓÈ ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ ËÎË Í‡Í ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÛ˛ ÙË„ÛÛ. èÓ‚ÂıÌÓÒÚ¸ ‚ 3
̇Á˚‚‡ÂÚÒfl ÔÓÎÌÓÈ, ÂÒÎË ÓÌÓ Ó·‡ÁÛÂÚ ÔÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓ
ÓÚÌÓ¯ÂÌ˲ Í Ò‚ÓÂÈ ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÂ.
èÓ‚ÂıÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl ‰ËÙÙÂÂ̈ËÛÂÏÓÈ, „ÛÎflÌÓÈ ËÎË ‡Ì‡ÎËÚ˘ÂÒÍÓÈ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÂÒÎË ‚ ÓÍÂÒÚÌÓÒÚË Í‡Ê‰ÓÈ Â ÚÓ˜ÍË Ó̇ ÏÓÊÂÚ ·˚Ú¸
É·‚‡ 8. ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı 147
‚˚‡ÊÂ̇ ͇Í
r = r (u, v) = r ( x1 (u, v), x 2 (u, v), r3 (u, v)),
„‰Â ‡‰ËÛÒ-‚ÂÍÚÓ r = (u, v) fl‚ÎflÂÚÒfl ‰ËÙÙÂÂ̈ËÛÂÏ˚Ï, „ÛÎflÌ˚Ï
(Ú.Â. ‰ÓÒÚ‡ÚÓ˜ÌÓ ˜ËÒÎÓ ‡Á ‰ËÙÙÂÂ̈ËÛÂÏ˚Ï) ËÎË ‰ÂÈÒÚ‚ËÚÂθÌÓ ‡Ì‡ÎËÚ˘ÂÒÍËÏ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÔË ÚÓÏ ˜ÚÓ ‚ÂÍÚÓ-ÙÛÌ͈Ëfl Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲
ru × rv ≠ 0.
ã˛·‡fl „ÛÎfl̇fl ÔÓ‚ÂıÌÓÒÚ¸ ËÏÂÂÚ ‚ÌÛÚÂÌÌ˛˛ ÏÂÚËÍÛ Ò ÎËÌÂÈÌ˚Ï
˝ÎÂÏÂÌÚÓÏ (ËÎË ÔÂ‚ÓÈ ÙÛ̉‡ÏÂÌڇθÌÓÈ ÙÓÏÓÈ)
ds 2 = dr 2 = E(u, v)du 2 + 2 F(u, v)dudv + G(u, v)dv 2 ,
„‰Â E(u, v) = ⟨ ru , ru ⟩, F(u, v) = ⟨ ru , rv ⟩, G(u, v) = ⟨ rv , rv ⟩. ÑÎË̇ ÍË‚ÓÈ, ÓÔ‰ÂÎflÂÏÓÈ
̇ ÔÓ‚ÂıÌÓÒÚË ÔÓ ÙÓÏÛÎ‡Ï u = u(t ), v = v(t ), t ∈[0, 1] ‡‚̇
1
∫
Eu ′ 2 + 2 Fu ′v ′ + Gv ′ 2 dt ,
0
‡ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Î˛·˚ÏË ÚӘ͇ÏË p, q ∈ M2 Á‡‰‡ÂÚÒfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ‚ÒÂı
ÍË‚˚ı ̇ M2 , ÒÓ‰ËÌfl˛˘Ëı p Ë q. êËχÌÓ‚‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÂ‚ÓÈ
ÙÛ̉‡ÏÂÌڇθÌÓÈ ÙÓÏ˚ ÔÓ‚ÂıÌÓÒÚË.
èËÏÂÌËÚÂθÌÓ Í ÔÓ‚ÂıÌÓÒÚflÏ ‡ÒÒχÚË‚‡˛ÚÒfl ‰‚‡ ‚ˉ‡ ÍË‚ËÁÌ˚: „‡ÛÒÒÓ‚‡
ÍË‚ËÁ̇ Ë Ò‰Ìflfl ÍË‚ËÁ̇. ÑÎfl Ëı ‡Ò˜ÂÚ‡ ‚ Á‡‰‡ÌÌÓÈ ÚӘ͠ÔÓ‚ÂıÌÓÒÚË
‡ÒÒÏÓÚËÏ ÔÂÂÒ˜ÂÌË ÔÓ‚ÂıÌÓÒÚË ÔÎÓÒÍÓÒÚ¸˛, ÒÓ‰Âʇ˘ÂÈ ÙËÍÒËÓ‚‡ÌÌ˚È
ÌÓχθÌ˚È ‚ÂÍÚÓ, Ú.Â. ‚ÂÍÚÓ, ÔÂÔẨËÍÛÎflÌ˚È ÔÓ‚ÂıÌÓÒÚË ‚ ‰‡ÌÌÓÈ ÚÓ˜ÍÂ.
чÌÌÓ ÔÂÂÒ˜ÂÌË – ÔÎÓÒ͇fl ÍË‚‡fl. äË‚ËÁ̇ k ˝ÚÓÈ ÔÎÓÒÍÓÈ ÍË‚ÓÈ Ì‡Á˚‚‡ÂÚÒfl
ÌÓχθÌÓÈ ÍË‚ËÁÌÓÈ ÔÓ‚ÂıÌÓÒÚË ‚ Á‡‰‡ÌÌÓÈ ÚÓ˜ÍÂ. èË ËÁÏÂÌÂÌËË ÔÎÓÒÍÓÒÚË
ÌÓχθ̇fl ÍË‚ËÁ̇ k Ú‡ÍÊ ·Û‰ÂÚ ÏÂÌflÚ¸Òfl, Ë Ï˚ ÔÓÎÛ˜ËÏ ‰‚‡ ˝ÍÒÚÂχθÌ˚ı
Á̇˜ÂÌËfl – χÍÒËχθÌÛ˛ ÍË‚ËÁÌÛ k1 Ë ÏËÌËχθÌÛ˛ ÍË‚ËÁÌÛ k 2 , ̇Á˚‚‡ÂÏ˚Â
„·‚Ì˚ÏË ÍË‚ËÁ̇ÏË ÔÓ‚ÂıÌÓÒÚË. äË‚ËÁ̇ Ò˜ËÚ‡ÂÚÒfl ÔÓÎÓÊËÚÂθÌÓÈ, ÂÒÎË
ÍË‚‡fl ËÁ„Ë·‡ÂÚÒfl ‚ ÚÓÏ Ê ̇Ô‡‚ÎÂÌËË, ˜ÚÓ Ë ‚˚·‡Ì̇fl ÌÓχθ, Ë Ó Úˈ‡ÚÂθÌÓÈ – Ë̇˜Â. ɇÛÒÒÓ‚‡ ÍË‚ËÁ̇ ‡‚̇ K = k 1 k 2 (Ó̇ ÏÓÊÂÚ ·˚Ú¸
ÔÓÎÌÓÒÚ¸˛ Á‡‰‡Ì‡ ‚ ÚÂÏË̇ı ÔÂ‚ÓÈ ÙÛ̉‡ÏÂÌڇθÌÓÈ ÙÓÏ˚). ë‰Ìflfl ÍË‚ËÁ̇
1
H = ( k1 + k2 ).
2
åËÌËχθÌÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛ ̇Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸ ÒÓ Ò‰ÌÂÈ ÍË‚ËÁÌÓÈ,
‡‚ÌÓÈ ÌÛβ, ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, ÔÓ‚ÂıÌÓÒÚ¸ ÏËÌËχθÌÓÈ ÔÎÓ˘‡‰Ë ÔË Á‡‰‡ÌÌÓÏ
Í‡Â.
êËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛ ̇Á˚‚‡ÂÚÒfl Ó‰ÌÓÏÂÌÓ ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ
ËÎË ‰‚ÛÏÂÌÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ Ò ÍÓÏÔÎÂÍÒÌÓÈ ÒÚÛÍÚÛÓÈ, Ú.Â. Ú‡ÍÓÂ,
‚ ÍÓÚÓÓÏ ÎÓ͇θÌ˚ ÍÓÓ‰Ë̇Ú˚ ‚ ÓÍÂÒÚÌÓÒÚflı ÚÓ˜ÂÍ ÒÓÓÚÌÓÒflÚÒfl ˜ÂÂÁ
ÍÓÏÔÎÂÍÒÌ˚ ‡Ì‡ÎËÚ˘ÂÒÍË ÙÛÌ͈ËË. Ö ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í ‰ÂÙÓÏËÓ‚‡ÌÌ˚È ‚‡ˇÌÚ ÍÓÏÔÎÂÍÒÌÓÈ ÔÎÓÒÍÓÒÚË. ÇÒ ËχÌÓ‚˚ ÔÓ‚ÂıÌÓÒÚË fl‚Îfl˛ÚÒfl
ÓËÂÌÚËÛÂÏ˚ÏË. á‡ÏÍÌÛÚ˚ ËχÌÓ‚˚ ÔÓ‚ÂıÌÓÒÚË Ô‰ÒÚ‡‚Îfl˛Ú ÒÓ·ÓÈ „ÂÓÏÂÚ˘ÂÒÍË ÏÓ‰ÂÎË ÍÓÏÔÎÂÍÒÌ˚ı ‡Î„·‡Ë˜ÂÒÍËı ÍË‚˚ı. ä‡Ê‰Ó ҂flÁÌÓ ËχÌÓ‚Ó
ÔÓÒÚ‡ÌÒÚ‚Ó ÏÓÊÌÓ ÔÂÓ·‡ÁÓ‚‡Ú¸ ‚ ÔÓÎÌÓ ‰‚ÛÏÂÌÓ ËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË Ò
ÔÓÒÚÓflÌÌ˚Ï ‡‰ËÛÒÓÏ ÍË‚ËÁÌ˚, ‡‚Ì˚Ï 0,1 ËÎË 1. êËχÌÓ‚˚ ÔÓ‚ÂıÌÓÒÚË Ò
ÍË‚ËÁÌÓÈ –1 ̇Á˚‚‡˛ÚÒfl „ËÔÂ·Ó΢ÂÒÍËÏË, ͇ÌÓÌ˘ÂÒÍËÏ ÔËÏÂÓÏ Ú‡ÍËı ÔÓ‚ÂıÌÓÒÚÂÈ fl‚ÎflÂÚÒfl ‰ËÌ˘Ì˚È ‰ËÒÍ ∆ = {z ∈ : | z |< 1}. êËχÌÓ‚˚ ÔÓ‚ÂıÌÓÒÚË Ò
148
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ÌÛ΂ÓÈ ÍË‚ËÁÌÓÈ Ì‡Á˚‚‡˛ÚÒfl Ô‡‡·Ó΢ÂÒÍËÏË, ÚËÔÓ‚˚Ï ÔËÏÂÓÏ fl‚ÎflÂÚÒfl
ÔÎÓÒÍÓÒÚ¸ . êËχÌÓ‚˚ ÔÓ‚ÂıÌÓÒÚË Ò ‡‰ËÛÒÓÏ ÍË‚ËÁÌ˚ 1 ̇Á˚‚‡˛ÚÒfl ˝ÎÎËÔÚ˘ÂÒÍËÏË. íËÔÓ‚˚Ï ÔËÏÂÓÏ Ú‡ÍÓ‚˚ı fl‚ÎflÂÚÒfl ËχÌÓ‚‡ ÒÙÂ‡ ∪ {∞}.
ê„ÛÎfl̇fl ÏÂÚË͇
ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ÔÓ‚ÂıÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl „ÛÎflÌÓÈ, ÂÒÎË Â ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ c ÔÓÏÓ˘¸˛ ÎËÌÂÈÌÓ„Ó ˝ÎÂÏÂÌÚ‡
ds 2 = Edu 2 + 2 Fdudv + Gdv 2 ,
„‰Â ÍÓ˝ÙÙˈËÂÌÚ˚ ÙÓÏ˚ ds2 fl‚Îfl˛ÚÒfl „ÛÎflÌ˚ÏË ÙÛÌ͈ËflÏË.
ã˛·‡fl „ÛÎfl̇fl ÔÓ‚ÂıÌÓÒÚ¸, Á‡‰‡Ì̇fl ÙÓÏÛÎÓÈ r = r(u, v), ӷ·‰‡ÂÚ „ÛÎflÌÓÈ ÏÂÚËÍÓÈ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds2 , „‰Â E(u, v) = ⟨ ru , ru ⟩, F(u, v) = ⟨ ru , rv ⟩,
G(u, v) = ⟨ rv , rv ⟩.
Ä̇ÎËÚ˘ÂÒ͇fl ÏÂÚË͇
ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ÔÓ‚ÂıÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ‡Ì‡ÎËÚ˘ÂÒÍÓÈ, ÂÒÎË Ó̇ ÏÓÊÂÚ
·˚Ú¸ ÓÔ‰ÂÎÂ̇ Ò ÔÓÏÓ˘¸˛ ÎËÌÂÈÌÓ„Ó ˝ÎÂÏÂÌÚ‡
ds 2 = Edu 2 + 2 Fdudv + Gdv 2 .
„‰Â ÍÓ˝ÙÙˈËÂÌÚ˚ ÙÓÏ˚ ds2 fl‚Îfl˛ÚÒfl ‡Ì‡ÎËÚ˘ÂÒÍËÏË ÙÛÌ͈ËflÏË.
ã˛·‡fl ‡Ì‡ÎËÚ˘ÂÒ͇fl ÔÓ‚ÂıÌÓÒÚ¸, Á‡‰‡Ì̇fl ÙÓÏÛÎÓÈ r = r(u, v), ӷ·‰‡ÂÚ ‡Ì‡ÎËÚ˘ÂÒÍÓÈ ÏÂÚËÍÓÈ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ d s2 , „‰Â E(u, v) = ⟨ ru , ru ⟩, F(u, v) =
= ⟨ ru , rv ⟩, G(u, v) = ⟨ rv , rv ⟩.
åÂÚË͇ ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚
åÂÚË͇ ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚ – ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ÔÓ‚ÂıÌÓÒÚË ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚.
èÓ‚ÂıÌÓÒÚ¸˛ ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸ ‚ 3, ÍÓÚÓ‡fl
‚ ͇ʉÓÈ ÚӘ͠ӷ·‰‡ÂÚ ÔÓÎÓÊËÚÂθÌÓÈ „‡ÛÒÒÓ‚ÓÈ ÍË‚ËÁÌÓÈ.
åÂÚË͇ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚
åÂÚËÍÓÈ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ÔÓ‚ÂıÌÓÒÚË ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚.
èÓ‚ÂıÌÓÒÚ¸ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚ – ÔÓ‚ÂıÌÓÒÚ¸ ‚ 3 , ÍÓÚÓ‡fl ‚ ͇ʉÓÈ
ÚӘ͠ӷ·‰‡ÂÚ ÓÚˈ‡ÚÂθÌÓÈ „‡ÛÒÒÓ‚ÓÈ ÍË‚ËÁÌÓÈ. èÓ‚ÂıÌÓÒÚ¸ ÓÚˈ‡ÚÂθÌÓÈ
ÍË‚ËÁÌ˚ ÎÓ͇θÌÓ ËÏÂÂÚ Ò‰ÎӂˉÌÛ˛ (‚Ó„ÌÛÚÛ˛) ÒÚÛÍÚÛÛ. ÇÌÛÚÂÌÌflfl „ÂÓÏÂÚËfl ÔÓ‚ÂıÌÓÒÚË ÔÓÒÚÓflÌÌÓÈ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚ (‚ ˜‡ÒÚÌÓÒÚË, ÔÒ‚‰ÓÒÙÂ˚) ÎÓ͇θÌÓ ÒÓ‚Ô‡‰‡ÂÚ Ò „ÂÓÏÂÚËÂÈ ÔÎÓÒÍÓÒÚË ãÓ·‡˜Â‚ÒÍÓ„Ó. Ç 3 ÌÂ
ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓ‚ÂıÌÓÒÚË, ‚ÌÛÚÂÌÌflfl „ÂÓÏÂÚËfl ÍÓÚÓÓÈ ÔÓÎÌÓÒÚ¸˛ ÒÓ‚Ô‡‰‡ÂÚ Ò
„ÂÓÏÂÚËÂÈ ÔÎÓÒÍÓÒÚË ãÓ·‡˜Â‚ÒÍÓ„Ó (Ú.Â. ÔÓÎÌÓÈ „ÛÎflÌÓÈ ÔÓ‚ÂıÌÓÒÚË Ò ÔÓÒÚÓflÌÌÓÈ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌÓÈ).
åÂÚË͇ ÌÂÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚
åÂÚËÍÓÈ ÌÂÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ Ò‰ÎӂˉÌÓÈ ÔÓ‚ÂıÌÓÒÚË.
ë‰Îӂˉ̇fl ÔÓ‚ÂıÌÓÒÚ¸ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓ‚ÂıÌÓÒÚË ÓÚˈ‡ÚÂθÌÓÈ
ÍË‚ËÁÌ˚: ‰‚‡Ê‰˚ ÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂχfl ÔÓ‚ÂıÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl Ò‰ÎӂˉÌÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ‚ ͇ʉÓÈ ÚӘ͠ÔÓ‚ÂıÌÓÒÚË Â „‡ÛÒÒÓ‚‡
ÍË‚ËÁ̇ fl‚ÎflÂÚÒfl ÌÂÔÓÎÓÊËÚÂθÌÓÈ. í‡ÍË ÔÓ‚ÂıÌÓÒÚË ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ ͇Í
‡ÌÚËÔÓ‰˚ ‚˚ÔÛÍÎ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ, Ӊ̇ÍÓ ÓÌË Ì ӷ‡ÁÛ˛Ú Ú‡ÍÓ„Ó ÂÒÚÂÒÚ‚ÂÌÌÓ„Ó
Í·ÒÒ‡, Í‡Í ‚˚ÔÛÍÎ˚ ÔÓ‚ÂıÌÓÒÚË.
É·‚‡ 8. ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı 149
åÂÚË͇ ÌÂÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚
åÂÚËÍÓÈ ÌÂÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ‚˚ÔÛÍÎÓÈ ÔÓ‚ÂıÌÓÒÚË.
Ç˚ÔÛÍ·fl ÔÓ‚ÂıÌÓÒÚ¸ – ˝ÚÓ Ó·Î‡ÒÚ¸ (Ú.Â. Ò‚flÁÌÓ ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó) ̇
„‡Ìˈ ‚˚ÔÛÍÎÓ„Ó Ú· ‚ 3 (‚ ÌÂÍÓÚÓÓÏ ÒÏ˚ÒΠ˝ÚÓ ‡ÌÚËÔÓ‰ Ò‰ÎӂˉÌÓÈ ÔÓ‚ÂıÌÓÒÚË). ÇÒfl „‡Ìˈ‡ ‚˚ÔÛÍÎÓ„Ó Ú· ̇Á˚‚‡ÂÚÒfl ÔÓÎÌÓÈ ‚˚ÔÛÍÎÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛. ÖÒÎË ÚÂÎÓ ÍÓ̘ÌÓ (Ó„‡Ì˘ÂÌÓ), ÚÓ ÔÓÎ̇fl ‚˚ÔÛÍ·fl ÔÓ‚ÂıÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl Á‡ÏÍÌÛÚÓÈ. à̇˜Â Ó̇ ̇Á˚‚‡ÂÚÒfl ·ÂÒÍÓ̘ÌÓÈ (·ÂÒÍÓ̘̇fl ‚˚ÔÛÍ·fl
ÔÓ‚ÂıÌÓÒÚ¸ „ÓÏÂÓÏÓÙ̇ ÔÎÓÒÍÓÒÚË ËÎË ˆËÎË̉Û ÍÛ„ÎÓ„Ó Ò˜ÂÌËfl).
ã˛·‡fl ‚˚ÔÛÍ·fl ÔÓ‚ÂıÌÓÒÚ¸ M 2 ‚ 3 fl‚ÎflÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸˛ Ó„‡Ì˘ÂÌÌÓÈ
ÍË‚ËÁÌ˚. èÓÎ̇fl „‡ÛÒÒÓ‚‡ ÍË‚ËÁ̇ w( A) =
∫ ∫ K ( x )dσ( x )
ÏÌÓÊÂÒÚ‚‡ A ⊂ M 2
A
‚Ò„‰‡ ÌÂÓÚˈ‡ÚÂθ̇ (Á‰ÂÒ¸ σ( ⋅ ) – ÔÎÓ˘‡‰¸, ‡ ä(ı) – „‡ÛÒÒÓ‚‡ ÍË‚ËÁ̇ å 2 ‚
ÚӘ͠ı), Ú.Â. ‚˚ÔÛÍ·fl ÔÓ‚ÂıÌÓÒÚ¸ ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÔÓ‚ÂıÌÓÒÚ¸
ÌÂÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚.
ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ‚˚ÔÛÍÎÓÈ ÔÓ‚ÂıÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ‚˚ÔÛÍÎÓÈ ÏÂÚËÍÓÈ
(Ì ÒΉÛÂÚ ÔÛÚ‡Ú¸ Ò ÏÂÚ˘ÂÒÍÓÈ ‚˚ÔÛÍÎÓÒÚ¸˛, ÒÏ. „Î. 1) ÔËÏÂÌËÚÂθÌÓ Í ÚÂÓËË
ÔÓ‚ÂıÌÓÒÚÂÈ, Ú.Â. Ó̇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ ‚˚ÔÛÍÎÓÒÚË: ÒÛÏχ Û„ÎÓ‚ β·Ó„Ó
ÚÂÛ„ÓθÌË͇, ÒÚÓÓÌ˚ ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl Í‡Ú˜‡È¯ËÏË ÍË‚˚ÏË, Ì ÏÂ̸¯Â,
˜ÂÏ π.
åÂÚË͇ Ò ‡Î¸ÚÂ̇ÚË‚ÌÓÈ ÍË‚ËÁÌÓÈ
åÂÚËÍÓÈ Ò ‡Î¸ÚÂ̇ÚË‚ÌÓÈ ÍË‚ËÁÌÓÈ Ì‡Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÔÓ‚ÂıÌÓÒÚË Ò ‡Î¸ÚÂ̇ÚË‚ÌÓÈ (ÔÓÎÓÊËÚÂθÌÓÈ ËÎË ÓÚˈ‡ÚÂθÌÓÈ) „‡ÛÒÒÓ‚ÓÈ ÍË‚ËÁÌÓÈ.
èÎÓÒ͇fl ÏÂÚË͇
èÎÓÒ͇fl ÏÂÚË͇ – ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ‡Á‚ÂÚ˚‚‡ÂÏÓÈ ÔÓ‚ÂıÌÓÒÚË,
Ú.Â. ÔÓ‚ÂıÌÓÒÚË, ̇ ÍÓÚÓÓÈ „‡ÛÒÒÓ‚‡ ÍË‚ËÁ̇ ‚Ò˛‰Û ‡‚̇ ÌÛβ.
åÂÚË͇ Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌ˚
åÂÚËÍÓÈ Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ρ ̇ ÔÓ‚ÂıÌÓÒÚË Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌ˚.
èÓ‚ÂıÌÓÒÚ¸ M 2 Ò ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸˛ Ó„‡Ì˘ÂÌÌÓÈ
ÍË‚ËÁÌ˚, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ Ú‡ÍËı ËχÌÓ‚˚ı ÏÂÚËÍ ρn, Á‡‰‡ÌÌ˚ı ̇ M2 , ˜ÚÓ ‰Îfl β·Ó„Ó ÍÓÏÔ‡ÍÚÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ A ⊂ M2 ËÏÂÂÚ ÏÂÒÚÓ ÛÒÎÓ‚ËÂ
‡‚ÌÓÏÂÌÓÈ ÒıÓ‰ËÏÓÒÚË ρn → ρ, Ë ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ | wn | ( A) fl‚ÎflÂÚÒfl
Ó„‡Ì˘ÂÌÌÓÈ, „‰Â | wn | ( A) =
∫ ∫ K ( x )dσ( x ) –
ÚÓڇθ̇fl ‡·ÒÓβÚ̇fl ÍË‚ËÁ̇
A
ÏÂÚËÍË ρn (Á‰ÂÒ¸ ä(ı) – „‡ÛÒÒÓ‚‡ ÍË‚ËÁ̇ ÔÓ‚ÂıÌÓÒÚË M2 ‚ ÚӘ͠ı, a σ(⋅) –
ÔÎÓ˘‡‰¸).
⌳-ÏÂÚË͇
⌳-ÏÂÚËÍÓÈ (ËÎË ÏÂÚËÍÓÈ ÚËÔ‡ Λ) ̇Á˚‚‡ÂÚÒfl ÔÓÎ̇fl ÏÂÚË͇ ̇ ÔÓ‚ÂıÌÓÒÚË
Ò ÍË‚ËÁÌÓÈ, Ó„‡Ì˘ÂÌÌÓÈ Ò‚ÂıÛ ÓÚˈ‡ÚÂθÌÓÈ ÍÓÌÒÚ‡ÌÚÓÈ.
Λ-ÏÂÚË͇ Ì ËÏÂÂÚ ‚ÎÓÊÂÌËÈ ‚ 3 . ùÚÓ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ Í·ÒÒ˘ÂÒÍÓ„Ó
ÂÁÛθڇڇ ÉËθ·ÂÚ‡ (1901): ‚ 3 Ì ÒÛ˘ÂÒÚ‚ÛÂÚ Í‡ÍËı-ÎË·Ó „ÛÎflÌ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ ÔÓÒÚÓflÌÌÓÈ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚ (Ú.Â. ÔÓ‚ÂıÌÓÒÚÂÈ, ‚ÌÛÚÂÌÌflfl
„ÂÓÏÂÚËfl ÍÓÚÓ˚ı ÔÓÎÌÓÒÚ¸˛ ÒÓ‚Ô‡‰‡ÂÚ Ò „ÂÓÏÂÚËÂÈ ÔÎÓÒÍÓÒÚË ãÓ·‡˜Â‚ÒÍÓ„Ó).
150
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
(h, ⌬)-ÏÂÚË͇
(h, ⌬)-ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÔÓ‚ÂıÌÓÒÚË Ò Ï‰ÎÂÌÌÓ ËÁÏÂÌfl˛˘ÂÈÒfl
ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌÓÈ.
èÓÎ̇fl (h, ∆)-ÏÂÚË͇ Ì ‰ÓÔÛÒ͇ÂÚ „ÛÎflÌ˚ı ËÁÓÏÂÚ˘ÂÒÍËı ‚ÎÓÊÂÌËÈ ‚
ÚÂıÏÂÌÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (ÒÏ. Λ-ÏÂÚË͇).
G-‡ÒÒÚÓflÌËÂ
ë‚flÁÌÓ ÏÌÓÊÂÒÚ‚Ó G ÚÓ˜ÂÍ Ì‡ ÔÓ‚ÂıÌÓÒÚË M 2 ̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ
„ËÓÌÓÏ, ÂÒÎË ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË x ∈ G ÒÛ˘ÂÒÚ‚ÛÂÚ ‰ËÒÍ B(x, r) Ò ˆÂÌÚÓÏ ‚ ı, Ú‡ÍÓÈ
˜ÚÓ BG = G ∩ B( x, r ) ËÏÂÂÚ Ó‰ÌÛ ËÁ ÒÎÂ‰Û˛˘Ëı ÙÓÏ: BG = B( x, r ) (x – „ÛÎfl̇fl
‚ÌÛÚÂÌÌflfl ÚӘ͇ G); BG – ÔÓÎÛ‰ËÒÍ B(x, r) (x – „ÛÎfl̇fl „‡Ì˘̇fl ÚӘ͇ G);
BG – ÒÂÍÚÓ B(x, r), Ì fl‚Îfl˛˘ËÈÒfl ÔÓÎÛ‰ËÒÍÓÏ (x – Û„ÎÓ‚‡fl ÚӘ͇ G); BG ÒÓÒÚÓËÚ
ËÁ ÍÓ̘ÌÓ„Ó ˜ËÒ· ÒÂÍÚÓÓ‚ B(x, r), ÍÓÚÓ˚ Ì ËÏÂ˛Ú ËÌ˚ı Ó·˘Ëı ÚÓ˜ÂÍ, ÍÓÏ ı
(x – ÛÁÎÓ‚‡fl ÚӘ͇ G).
G-‡ÒÒÚÓflÌË ÏÂÊ‰Û Î˛·˚ÏË ÚӘ͇ÏË ı Ë y ∈ G ÓÔ‰ÂÎflÂÚÒfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ
‚ÒÂı ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ı Ë y ∈ G Ë ÔÓÎÌÓÒÚ¸˛ ÔË̇‰ÎÂʇ˘Ëı G.
äÓÌÙÓÏÌÓ ËÌ‚‡ˇÌÚ̇fl ÏÂÚË͇
èÛÒÚ¸ R – ËχÌÓ‚‡ ÔÓ‚ÂıÌÓÒÚ¸. ãÓ͇θÌ˚È Ô‡‡ÏÂÚ (ËÎË ÎÓ͇θÌ˚È ÛÌËÙÓÏËÁËÛ˛˘ËÈ Ô‡‡ÏÂÚ, ÎÓ͇θÌ˚È ÛÌËÙÓÏËÁ‡ÚÓ) fl‚ÎflÂÚÒfl ÍÓÏÔÎÂÍÒÌÓÈ ÔÂÂÏÂÌÌÓÈ z, ‡ÒÒχÚË‚‡ÂÏÓÈ Í‡Í ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl z p 0 = φ p 0 ( p) ÚÓ˜ÍË p ∈ R,
ÍÓÚÓ‡fl Á‡‰‡Ì‡ ‚Ò˛‰Û ‚ ÌÂÍÓÚÓÓÈ ÓÍÂÒÚÌÓÒÚË (Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÓÍÂÒÚÌÓÒÚË)
V(p0 ) ÚÓ˜ÍË p0 ∈ R Ë ÍÓÚÓ‡fl ‡ÎËÁÛÂÚ „ÓÏÂÓÏÓÙÌÓ ÓÚÓ·‡ÊÂÌË (Ô‡‡ÏÂÚ˘ÂÒÍÓ ÓÚÓ·‡ÊÂÌËÂ) V(p0 ) ̇ ‰ËÒÍ (Ô‡‡ÏÂÚ˘ÂÒÍËÈ ‰ËÒÍ) ∆( p0 ) =
= {z ∈ : | z |< r ( p0 )}, „‰Â φ p 0 ( p0 ) = 0. èÓ‰ ‰ÂÈÒÚ‚ËÂÏ Ô‡‡ÏÂÚ˘ÂÒÍÓ„Ó ÓÚÓ·‡ÊÂÌËfl β·‡fl ÚӘ˜̇fl ÙÛÌ͈Ëfl g(p), ÓÔ‰ÂÎflÂχfl ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÓÍÂÒÚÌÓÒÚË
V(p0 ), ÒÚ‡ÌÓ‚ËÚÒfl ÙÛÌ͈ËÂÈ ÎÓ͇θÌÓ„Ó Ô‡‡ÏÂÚ‡ z : g( p) = g(φ −p10 ( z )) = G( z ).
äÓÌÙÓÏÌÓ ËÌ‚‡ˇÌÚÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ‰ËÙÙÂÂ̈ˇΠρ( z ) | dz | ̇
ËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË R, ÍÓÚÓ˚È ËÌ‚‡ˇÌÚÂÌ ÓÚÌÓÒËÚÂθÌÓ ‚˚·Ó‡ ÎÓ͇θÌÓ„Ó
Ô‡‡ÏÂÚ‡ z. í‡ÍËÏ Ó·‡ÁÓÏ, ͇ʉÓÏÛ ÎÓ͇θÌÓÏÛ Ô‡‡ÏÂÚÛ z ( z : U → ) ÒÚ‡‚ËÚÒfl
‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ÙÛÌ͈Ëfl ρz : z (U ) → [0, ∞] Ú‡Í, ˜ÚÓ ‰Îfl β·˚ı ÎÓ͇θÌ˚ı Ô‡‡ÏÂÚÓ‚ z1 Ë z2 ËÏÂÂÏ
ρz 2 ( z 2 ( p))
ρz1 ( z1 ( p))
=
dz1 ( p)
‰Îfl β·˚ı p ∈U1 ∩ U1 ∩ U2 .
dz 2 ( p )
ä‡Ê‰˚È ÎËÌÂÈÌ˚È ‰ËÙÙÂÂ̈ˇΠλ( z )dz Ë Í‡Ê‰˚È Í‚‡‰‡Ú˘Ì˚È ‰ËÙÙÂÂÌ1/ 2
ˆË‡Î Q( z )dz 2 ÔÓÓʉ‡˛Ú ÍÓÌÙÓÏÌÓ ËÌ‚‡ˇÌÚÌ˚ ÏÂÚËÍË λ( z ) dz Ë Q( z )
dz
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ (ÒÏ. Q-ÏÂÚË͇).
Q-ÏÂÚË͇
1/ 2
Q-ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÍÓÌÙÓÏÌÓ ËÌ‚‡ˇÌÚ̇fl ÏÂÚË͇ ρ( z ) dz = Q( z ) dz
̇ ËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË R, Á‡‰‡‚‡Âχfl ˜ÂÂÁ Í‚‡‰‡Ú˘Ì˚È ‰ËÙÙÂÂ̈ˇÎ
Q(z)dz.
䂇‰‡Ú˘Ì˚È ‰ËÙÙÂÂ̈ˇΠQ(z)dz2 – ÌÂÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ Ì‡ ËχÌÓ‚ÓÈ
ÔÓ‚ÂıÌÓÒÚË R, ÍÓÚÓ˚È ËÌ‚‡ˇÌÚÂÌ ÓÚÌÓÒËÚÂθÌÓ Í ‚˚·Ó‡ ÎÓ͇θÌÓ„Ó Ô‡‡ÏÂÚ‡ z. í‡ÍËÏ Ó·‡ÁÓÏ, ͇ʉÓÏÛ ÎÓ͇θÌÓÏÛ Ô‡‡ÏÂÚÛ z ( z : U → ) ÒÚ‡‚ËÚÒfl ‚
É·‚‡ 8. ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı 151
ÒÓÓÚ‚ÂÚÒÚ‚Ë ÙÛÌ͈Ëfl Qz : (U ) → ڇ͇fl, ˜ÚÓ ‰Îfl β·˚ı ÎÓ͇θÌ˚ı Ô‡‡ÏÂÚÓ‚
z1 Ë z2 ËÏÂÂÏ
 dz ( p ) 
= 1 
Qz1 ( z1 ( p))  dz 2 ( p) 
Qz 2 ( z 2 ( p))
2
‰Îfl β·˚ı p ∈U1 ∩ U2 .
ùÍÒÚÂχθ̇fl ÏÂÚË͇
ùÍÒÚÂχθÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÍÓÌÙÓÏÌÓ ËÌ‚‡ˇÌÚ̇fl ÏÂÚË͇ ‚ Á‡‰‡˜Â ÏÓ‰ÛÎ˛Ò‡ ‰Îfl ÒÂÏÂÈÒÚ‚‡ Γ ÎÓ͇θÌÓ ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı ̇ ËχÌÓ‚ÓÈ
ÔÓ‚ÂıÌÓÒÚË R, ÍÓÚÓ‡fl ‡ÎËÁÛÂÚ ËÌÙËÏÛÏ ‚ ÓÔ‰ÂÎÂÌËË ÏÓ‰ÛÎ˛Ò‡ å(Γ).
îÓχθÌÓ, ÔÛÒÚ¸ Γ – ÒÂÏÂÈÒÚ‚Ó ÎÓ͇θÌÓ ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı ̇ ËχÌÓ‚ÓÈ
ÔÓ‚ÂıÌÓÒÚË R Ë ÔÛÒÚ¸ ê – ÌÂÔÛÒÚÓÈ Í·ÒÒ ÍÓÌÙÓÏÌÓ ËÌ‚‡ˇÌÚÌ˚ı ÏÂÚËÍ
ρ( z ) dz ̇ R, Ú‡ÍËı ˜ÚÓ ρ(z) fl‚ÎflÂÚÒfl Í‚‡‰‡Ú˘ÌÓ ËÌÚ„ËÛÂÏÓÈ ‚ z-ÔÎÓÒÍÓÒÚË ‰Îfl
Í‡Ê‰Ó„Ó ÎÓ͇θÌÓ„Ó Ô‡‡ÏÂÚ‡ z, ‡ ËÌÚ„‡Î˚
Aρ ( R) =
∫ ∫ ρ (z )dxdy
2
∫
Ë Lρ (Γ ) = inf ρ( z ) dz
γ ∈Γ
R
y
Ì fl‚Îfl˛ÚÒfl Ó‰ÌÓ‚ÂÏÂÌÌÓ ‡‚Ì˚ÏË 0 ËÎË ∞ (ÔÓ‰‡ÁÛÏ‚‡ÂÚÒfl, ˜ÚÓ Í‡Ê‰˚È ËÁ
‚˚¯ÂÔ˂‰ÂÌÌ˚ı ËÌÚ„‡ÎÓ‚ – ˝ÚÓ ËÌÚ„‡Î ã·„‡). åÓ‰ÛÎ˛Ò ÒÂÏÂÈÒÚ‚‡ ÍË‚˚ı
Γ ÓÔ‰ÂÎflÂÚÒfl ͇Í
M (Γ ) = inf
ρ ∈P
Aρ ( R)
( Lρ (Γ ))2
.
ùÍÒÚÂχθ̇fl ‰ÎË̇ ÒÂÏÂÈÒÚ‚‡ ÍË‚˚ı Γ ‡‚̇ sup
ρ ∈P
( Lρ (U ))2
Aρ ( R)
, Ú.Â. fl‚ÎflÂÚÒfl
‚Â΢ËÌÓÈ, Ó·‡ÚÌÓÈ å(Γ).
ᇉ‡˜‡ ÏÓ‰ÛÎ˛Ò‡ ‰Îfl Γ ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ÔÛÒÚ¸ PL – ÔӉͷÒÒ
/ ÖÒÎË , ÚÓ ÏÓ‰ÛP, Ú‡ÍÓÈ ˜ÚÓ ‰Îfl β·˚ı ρ ∈ ( z ) dz ∈ PL Ë Î˛·ÓÈ γ ∈ Γ ËÏÂÂÏ PL ≠ 0,
Î˛Ò å(Γ) ÒÂÏÂÈÒÚ‚‡ Γ ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡Ì Í‡Í M (Γ ) = inf Aρ ( R). ä‡Ê‰‡fl ÏÂÚË͇
ρ ∈PL
ËÁ PL ̇Á˚‚‡ÂÚÒfl ‰ÓÔÛÒÚËÏÓÈ ÏÂÚËÍÓÈ ‰Îfl Á‡‰‡˜Ë ÏÓ‰ÛÎ˛Ò‡ ̇ Γ. ÖÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ
ρ*, ‰Îfl ÍÓÚÓÓÈ
M (Γ ) = inf Aρ ( R) = Aρ* ( R),
ρ ∈PL
ÏÂÚË͇ ρ* dz ̇Á˚‚‡ÂÚÒfl ˝ÍÒÚÂχθÌÓÈ ÏÂÚËÍÓÈ ‰Îfl Á‡‰‡˜Ë ÏÓ‰ÛÎ˛Ò‡ ̇ Γ.
åÂÚË͇ ÔÓ‚ÂıÌÓÒÚË î¯Â
èÛÒÚ¸ (X, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, å2 – ÍÓÏÔ‡ÍÚÌÓ ‰‚ÛÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, f – ÌÂÔÂ˚‚ÌÓ ÓÚÓ·‡ÊÂÌË f: M 2 → X, ̇Á˚‚‡ÂÏÓÂ
Ô‡‡ÏÂÚËÁÓ‚‡ÌÌÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛, ‡ σ: M 2 → M2 – „ÓÏÂÓÏÓÙËÁÏ M2 ̇ Ò·fl.
Ñ‚Â Ô‡‡ÏÂÚËÁËÓ‚‡ÌÌ˚ı ÔÓ‚ÂıÌÓÒÚË f1 Ë f2 ̇Á˚‚‡˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË
inf max d ( f1 ( p), f2 (σ( p)) = 0, „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï „ÓÏÂÓσ ρ ∈M 2
ÏÓÙËÁÏ‡Ï σ . ä·ÒÒ f* Ô‡‡ÏÂÚËÁËÓ‚‡ÌÌ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ, ˝Í‚Ë‚‡ÎÂÌÚÌ˚ı f,
152
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
̇Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸˛ î¯Â. ùÚÓ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl ÔÓ‚ÂıÌÓÒÚË
‚ ‚ÍÎˉӂÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ‰Îfl ÒÎÛ˜‡fl ÔÓËÁ‚ÓθÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
(X, d).
åÂÚËÍÓÈ ÔÓ‚ÂıÌÓÒÚË î¯ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓ‚ÂıÌÓÒÚÂÈ î¯Â, ÓÔ‰ÂÎflÂχfl ͇Í
inf max d ( f1 ( p), f2 (σ( p)))
σ ρ ∈M 2
‰Îfl β·˚ı ÔÓ‚ÂıÌÓÒÚÂÈ î¯ f1* Ë f2* , „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï „ÓÏÂÓÏÓÙËÁÏ‡Ï σ (ÒÏ. åÂÚË͇ î¯Â).
8.2. ÇçìíêÖççàÖ åÖíêàäà çÄ èéÇÖêïçéëíüï
Ç ‰‡ÌÌÓÏ ‡Á‰ÂΠÔÂ˜ËÒÎÂÌ˚ ‚ÌÛÚÂÌÌË ÏÂÚËÍË, ÓÔ‰ÂÎflÂÏ˚ Ëı ÎËÌÂÈÌ˚ÏË
˝ÎÂÏÂÌÚ‡ÏË (ÍÓÚÓ˚ ‚ ‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË, fl‚Îfl˛ÚÒfl ‰‚ÛÏÂÌ˚ÏË ËχÌÓ‚˚ÏË
ÏÂÚË͇ÏË) ‰Îfl ÌÂÍÓÚÓ˚ı ËÁ·‡ÌÌ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ.
åÂÚË͇ Í‚‡‰ËÍË
䂇‰ËÍÓÈ (ËÎË Í‚‡‰‡Ú˘ÌÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛, ÔÓ‚ÂıÌÓÒÚ¸˛ ‚ÚÓÓ„Ó ÔÓfl‰Í‡)
̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ ‚ 3, ÍÓÓ‰Ë̇Ú˚ ÍÓÚÓ˚ı ‚ ‰Â͇ÚÓ‚ÓÈ ÒËÒÚÂÏÂ
ÍÓÓ‰ËÌ‡Ú Û‰Ó‚ÎÂÚ‚Ófl˛Ú ‡Î„·‡Ë˜ÂÒÍÓÏÛ Û‡‚ÌÂÌ˲ ‚ÚÓÓÈ ÒÚÂÔÂÌË. ëÛ˘ÂÒÚ‚ÛÂÚ 17 Í·ÒÒÓ‚ Ú‡ÍËı ÔÓ‚ÂıÌÓÒÚÂÈ, ‚ ÚÓÏ ˜ËÒΠ˝ÎÎËÔÒÓˉ˚, Ó‰ÌÓÔÓÎÓÒÚÌ˚ Ë
‰‚ÛıÔÓÎÓÒÚÌ˚ „ËÔÂ·ÓÎÓˉ˚, ˝ÎÎËÔÚ˘ÂÒÍË ԇ‡·ÓÎÓˉ˚, „ËÔÂ·Ó΢ÂÒÍË ԇ‡·ÓÎÓˉ˚, ˝ÎÎËÔÚ˘ÂÒÍËÂ, „ËÔÂ·Ó΢ÂÒÍËÂ Ë Ô‡‡·Ó΢ÂÒÍË ˆËÎË̉˚ Ë ÍÓÌ˘ÂÒÍË ÔÓ‚ÂıÌÓÒÚË.
ñËÎË̉, ̇ÔËÏÂ, ÏÓÊÂÚ ·˚Ú¸ ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏ Á‡‰‡Ì Ò ÔÓÏÓ˘¸˛
ÒÎÂ‰Û˛˘Ëı Û‡‚ÌÂÌËÈ:
x1 (u, v) = a cos v, x 2 (u, v) = a sin v, x3 (u, v) = u.
ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÌÂÏ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = du 2 + a 2 dv 2 .
ùÎÎËÔÚ˘ÂÒÍËÈ ÍÓÌÛÒ (Ú.Â. ÍÓÌÛÒ Ò ˝ÎÎËÔÚ˘ÂÒÍËÏ Ò˜ÂÌËÂÏ) ÓÔ‰ÂÎflÂÚÒfl ‚
Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏ ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË:
x1 (u, v) = a
h−u
h−u
cos v, x 2 (u, v) = b
sin v, x3 (u, v) = u,
h
h
„‰Â h – ‚˚ÒÓÚ‡, ‡ – ·Óθ¯‡fl ÔÓÎÛÓÒ¸ Ë b – χ·fl ÔÓÎÛÓÒ¸ ÍÓÌÛÒ‡. ÇÌÛÚÂÌÌflfl
ÏÂÚË͇ ̇ ÍÓÌÛÒ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 =
h 2 + a 2 cos 2 v + b 2 sin 2 v 2
( a 2 − b 2 )(h − u) cos v sin v
du + s
dudv +
2
h
h2
+
(h − u)2 ( a 2 sin 2 v + b 2 cos 2 v) 2
dv .
h2
åÂÚË͇ ÒÙÂ˚
ëÙÂ‡ fl‚ÎflÂÚÒfl Í‚‡‰ËÍÓÈ, ÍÓÓ‰Ë̇Ú˚ ÍÓÚÓÓÈ ‚ ‰Â͇ÚÓ‚ÓÈ ÒËÒÚÂÏ ‚˚‡ÊÂÌ˚ Û‡‚ÌÂÌËÂÏ (x1 – a)2 + (x 2 – b)2 + (x 3 – c)2 = r2 , „‰Â ÚӘ͇ (a, b, c) – ˆÂÌÚ ÒÙÂ˚,
‡ r > 0 –  ‡‰ËÛÒ. ëÙÂ‡ ‡‰ËÛÒ‡ r Ò ˆÂÌÚÓÏ ‚ ̇˜‡Î ÍÓÓ‰ËÌ‡Ú ÏÓÊÂÚ ·˚Ú¸
É·‚‡ 8. ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı 153
Á‡‰‡Ì‡ ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏ ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË:
x1 (θ, φ) = r sin θ cos φ, x 2 (θ, φ) = r sin θ sin φ, x3 (θ, φ) = r cos φ,
„‰Â ‡ÁËÏÛڇθÌ˚È Û„ÓÎ φ ∈ [0, 2π] Ë ÔÓÎflÌ˚È Û„ÓÎ θ ∈ [0, π]. ÇÌÛÚÂÌÌflfl ÏÂÚË͇
̇ ÒÙÂ (ËÏÂÌÌÓ, ‰‚ÛÏÂ̇fl ÒÙÂ˘ÂÒ͇fl ÏÂÚË͇) Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = r 2 dθ + r 2 sin 2 θdφ 2 .
ëÙÂ‡ ‡‰ËÛÒa r ËÏÂÂÚ ÔÓÒÚÓflÌÌÛ˛ ÔÓÎÓÊËÚÂθÌÛ˛ „‡ÛÒÒÓ‚Û ÍË‚ËÁÌÛ, ‡‚ÌÛ˛ r.
åÂÚË͇ ˝ÎÎËÔÒÓˉ‡
ùÎÎËÔÒÓˉ – Í‚‡‰Ë͇, Á‡‰‡Ì̇fl ‰Â͇ÚÓ‚˚Ï Û‡‚ÌÂÌËÂÏ
x12 x 22 x32
+
+
= 1, ËÎË
a2 b2 c2
ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏÂ:
x1 (θ, φ) = a cos φ sin θ, x 2 (θ, φ) = b sin φ sin θ, x3 (θ, φ) = c cos θ,
„‰Â ‡ÁËÏÛڇθÌ˚È Û„ÓÎ φ ∈ [0, 2π] Ë ÔÓÎflÌ˚È Û„ÓÎ θ ∈ [0, π] ÇÌÛÚÂÌÌflfl ÏÂÚË͇
̇ ˝ÎÎËÔÒÓˉ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = (b 2 cos 2 φ + a 2 sin 2 φ)sin 2 θdφ 2 + (b 2 − a 2 ) cos φ sin φ cos θ sin θdθdφ +
+ (( a 2 cos 2 φ + b 2 sin 2 φ) cos 2 θ + c 2 sin 2 θ)dθ 2 .
åÂÚË͇ ÒÙÂÓˉ‡
ëÙÂÓˉÓÏ Ì‡Á˚‚‡ÂÚÒfl ˝ÎÎËÔÒÓˉ Ò ‰‚ÛÏfl Ó‰Ë̇ÍÓ‚˚ÏË ÔÓ ‰ÎËÌ ÓÒflÏË. éÌ
fl‚ÎflÂÚÒfl Ú‡ÍÊ ÔÓ‚ÂıÌÓÒÚ¸˛ ‚‡˘ÂÌËfl, Á‡‰‡ÌÌÓÈ ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏÂ
ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË:
x1 (u, v) = a sin v cos u, x 2 (u, v) = a sin v sin u, x3 (u, v) = c cos v,
„‰Â 0 ≤ u ≤ 2π Ë 0 ≤ v < π. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÒÙÂÓˉ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï
˝ÎÂÏÂÌÚÓÏ
1
ds 2 = a 2 sin 2 vdu 2 + a 2 + c 2 + ( a 2 − c 2 ) cos(2 v) dv 2 .
2
(
)
åÂÚË͇ „ËÔÂ·ÓÎÓˉ‡
ÉËÔÂ·ÓÎÓˉ – Í‚‡‰Ë͇, ÍÓÚÓ‡fl ÏÓÊÂÚ ·˚Ú¸ Ó‰ÌÓ- ËÎË ‰ÛıÔÓÎÓÒÚÌÓÈ. é‰ÌÓÔÓÎÓÒÚÌ˚Ï „ËÔÂ·ÓÎÓˉÓÏ Ì‡Á˚‚‡ÂÚÒfl Ó·‡ÁÛÂχfl ‚‡˘ÂÌËÂÏ „ËÔÂ·ÓÎ˚ ÓÚÌÓÒËÚÂθÌÓ ÔÂÔẨËÍÛÎfl‡, ‰ÂÎfl˘Â„Ó ÔÓÔÓÎ‡Ï ÎËÌ˲ ÏÂÊ‰Û ÙÓÍÛÒ‡ÏË, ‡ ‰‚ÛıÔÓÎÓÒÚÌÓÈ „ËÔÂ·ÓÎÓˉ – ˝ÚÓ ÔÓ‚ÂıÌÓÒÚ¸, Ó·‡ÁÛÂχfl ‚‡˘ÂÌËÂÏ „ËÔÂ·ÓÎ˚
ÓÚÌÓÒËÚÂθÌÓ ÎËÌËË, ÒÓ‰ËÌfl˛˘ÂÈ ÙÓÍÛÒ˚. é‰ÌÓÔÓÎÓÒÚÌÓÈ „ËÔÂ·ÓÎÓˉ, ÓËÂÌÚËx2 x2 x2
Ó‚‡ÌÌ˚È ÔÓ ÓÒË ı3 , Á‡‰‡ÂÚÒfl ‰Â͇ÚÓ‚˚Ï Û‡‚ÌÂÌËÂÏ 12 + 22 − 32 = 1 ËÎË ÒÎÂ‰Û˛a
b
c
˘ËÏË Û‡‚ÌÂÌËflÏË ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏÂ:
x1 (u, v) = a 1 + u 2 cos v, x 2 (u, v) = a 1 + u 2 sin v, x3 (u, v) = cu,
„‰Â v ∈ [0,
˝ÎÂÏÂÌÚÓÏ
2π]. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ „ËÔÂ·ÓÎÓˉ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï

a 2u 2  2
2 2
2
ds 2 =  c 2 + 2
 du + a (u + 1)dv .
u + 1

154
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
åÂÚË͇ ÔÓ‚ÂıÌÓÒÚË ‚‡˘ÂÌËfl
èÓ‚ÂıÌÓÒÚ¸˛ ‚‡˘ÂÌËfl ̇Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸, Ó·‡ÁÛÂχfl ‚‡˘ÂÌËÂÏ ‰‚ÛÏÂÌÓÈ ÍË‚ÓÈ ÓÚÌÓÒËÚÂθÌÓ ÌÂÍÓÚÓÓÈ ÓÒË. Ö ÏÓÊÌÓ Á‡‰‡Ú¸ ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ
ÙÓÏÂ Ò ÔÓÏÓ˘¸˛ ÒÎÂ‰Û˛˘Ëı Û‡‚ÌÂÌËÈ:
x1 (u, v) = φ( v) cos u, x 2 (u, v) = φ( v)sin u, x3 (u, v) = ψ ( v).
ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÌÂÈ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÓÏ
ds 2 = φ 2 du 2 + (φ 2 + ψ 2 )dv 2 .
åÂÚË͇ ÔÒ‚‰ÓÒÙÂ˚
èÒ‚‰ÓÒÙÂÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÓ‚Ë̇ ÔÓ‚ÂıÌÓÒÚË ‚‡˘ÂÌËfl, Ó·‡ÁÛÂÏÓÈ ‚‡˘ÂÌËÂÏ Ú‡ÍÚËÒ˚ ÓÚÌÓÒËÚÂθÌÓ Â ‡ÒËÏÔÚÓÚ˚. é̇ Á‡‰‡ÂÚÒfl ÒÎÂ‰Û˛˘ËÏË
Û‡‚ÌÂÌËflÏË ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏÂ:
x1 (u, v) = sech u cos v, x 2 (u, v) = sech u sin v, x3 (u, v) = u − tgh u,
„‰Â u ≥ 0 Ë 0 ≤ v < 2π.
ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÌÂÈ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌÏ ˝ÎÂÏÂÌÚÓÏ
ds 2 = tgh 2 udu 2 + sich 2 udv 2 .
èÒ‚‰ÓÒÙÂ‡ ËÏÂÂÚ ÔÓÒÚÓflÌÌÛ˛ ÓÚˈ‡ÚÂθÌÛ˛ „‡ÛÒÒÓ‚Û ÍË‚ËÁÌÛ, ‡‚ÌÛ˛ –1, Ë
‚ ˝ÚÓÏ ÒÏ˚ÒΠfl‚ÎflÂÚÒfl ‡Ì‡ÎÓ„ÓÏ ÒÙÂ˚ Ò ÔÓÒÚÓflÌÌÓÈ ÔÓÎÓÊËÚÂθÌÓÈ „‡ÛÒÒÓ‚ÓÈ
ÍË‚ËÁÌÓÈ.
åÂÚË͇ ÚÓ‡
íÓ fl‚ÎflÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸˛, Ëϲ˘ÂÈ ÚËÔ 1. ÄÁËÏÛڇθÌÓ ÒËÏÏÂÚ˘Ì˚È
2
ÓÚÌÓÒËÚÂθÌÓ ÓÒË x3 ÚÓ Á‡‰‡ÂÚÒfl ‰Â͇ÚÓ‚˚Ï Û‡‚ÌÂÌËÂÏ  c − x12 + x 22  + x32 = a 2
ËÎË ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏÂ:
x1 (u, v) = (c + a cos v) cos u, x 2 (u, v) = (c + a cos v)sin u, x3 (u, v) = a sin v,
„‰Â c > a Ë u, v ∈ [0, 2π]. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÚÓ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï
˝ÎÂÏÂÌÚÓÏ
ds 2 = (c + a cos v)2 du + a 2 dv 2 .
åÂÚË͇ ‚ËÌÚÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË
ÇËÌÚÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛ (ËÎË ÔÓ‚ÂıÌÓÒÚ¸˛ ‚ËÌÚÓ‚Ó„Ó ‰‚ËÊÂÌËfl) ̇Á˚‚‡ÂÚÒfl
ÔÓ‚ÂıÌÓÒÚ¸, ÓÔËÒ˚‚‡Âχfl ÔÎÓÒÍÓÈ ÍË‚ÓÈ γ, ÍÓÚÓ‡fl, ‚‡˘‡flÒ¸ Ò ÔÓÒÚÓflÌÌÓÈ
ÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ ÓÒË, Ó‰ÌÓ‚ÂÏÂÌÌÓ ‰‚ËÊÂÚÒfl ‚‰Óθ ÌÂÂ Ò ‡‚ÌÓÏÂÌÓÈ
ÒÍÓÓÒÚ¸˛. ÖÒÎË γ ̇ıÓ‰ËÚÒfl ‚ ÔÎÓÒÍÓÒÚË ÓÒË ‚‡˘ÂÌËfl x3 Ë ÓÔ‰ÂÎÂ̇ Û‡‚ÌÂÌËÂÏ
x3 = f(u), ÚÓ ÔÓÁˈËÓÌÌ˚È ‚ÂÍÚÓ ‚ËÌÚÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË ·Û‰ÂÚ ‡‚ÂÌ
r = (u cos v, usonv, f (u) = hv), h = const,
Ë ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÌÂÈ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = (1 + f 2 )du 2 + 2 hf ′dudv + (u 2 + h 2 )dv 2 .
ÖÒÎË f = const, ÚÓ ÔÓÎÛ˜‡ÂÏ „ÂÎËÍÓˉ; ÂÒÎË h = 0, ÚÓ ÔÓÎÛ˜‡ÂÏ ÔÓ‚ÂıÌÓÒÚ¸
‚‡˘ÂÌËfl.
É·‚‡ 8. ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı 155
åÂÚË͇ ÔÓ‚ÂıÌÓÒÚË ä‡Ú‡Î‡Ì‡
èÓ‚ÂıÌÓÒÚ¸˛ ä‡Ú‡Î‡Ì‡ ̇Á˚‚‡ÂÚÒfl ÏËÌËχθ̇fl ÔÓ‚ÂıÌÓÒÚ¸, ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏ Á‡‰‡‚‡Âχfl ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË:
u
v
x1 (u, v) = u − sin u cosh v, x 2 (u, v) = 1 − cos u cosh v, x3 (u, v) = 4 sin  sinh  .
 2
 2
ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÌÂÈ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
v
v
ds 2 = 2 cosh 2   (cosh v − cos u)du 2 + 2 cosh 2   (cosh v − cos u)dv 2 .
 2
 2
åÂÚË͇ Ó·ÂÁ¸flÌ¸Â„Ó Ò‰·
é·ÂÁ¸fl̸ËÏ Ò‰ÎÓÏ Ì‡Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸, Á‡‰‡‚‡Âχfl ‰Â͇ÚÓ‚˚Ï Û‡‚ÌÂÌËÂÏ x3 = x1 ( x12 − 3 x 22 ) ËÎË ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏÂ:
x1 (u, v) = u, x 2 (u, v) = v, x3 (u, v) = u 3 − 3uv 2 .
èÓ Ú‡ÍÓÈ ÔÓ‚ÂıÌÓÒÚË Ó·ÂÁ¸fl̇ Ïӄ· ·˚ ÔÂ‰‚Ë„‡Ú¸Òfl, ÓÔË‡flÒ¸ Ó‰ÌÓ‚ÂÏÂÌÌÓ ÌÓ„‡ÏË Ë ı‚ÓÒÚÓÏ. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ Ú‡ÍÓÈ ÔÓ‚ÂıÌÓÒÚË Á‡‰‡ÂÚÒfl
ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = (1 + ( su 2 − 3v 2 )2 du 2 − 2(18uv(u 2 − v 2 ))dudv + (1 + 36u 2 v 2 )dv 2 ).
8.3. êÄëëíéüçü çÄ ì áãÄï
ìÁÎÓÏ Ì‡Á˚‚‡ÂÚÒfl Á‡ÏÍÌÛÚ‡fl Ò‡ÏÓÌÂÔÂÂÒÂ͇˛˘‡flÒfl ÍË‚‡fl, ‚ÎÓÊËχfl ‚ S3 . í˂ˇθÌ˚Ï ÛÁÎÓÏ (ËÎË ÌÂÁ‡ÛÁÎÂÌÌÓÒÚ¸˛) é ̇Á˚‚‡ÂÚÒfl Á‡ÏÍÌÛÚ˚È ÌÂÁ‡ÛÁÎÂÌÌ˚È
ÍÓÌÚÛ. é·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl ÛÁ· fl‚ÎflÂÚÒfl ÔÓÌflÚË Á‚Â̇. á‚ÂÌÓ Ô‰ÒÚ‡‚ÎflÂÚ
ÒÓ·ÓÈ ÏÌÓÊÂÒÚ‚Ó ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÛÁÎÓ‚. ä‡Ê‰ÓÏÛ Á‚ÂÌÛ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Â„Ó
ÔÓ‚ÂıÌÓÒÚ¸ áÂÈÙÂÚ‡, Ú.Â. ÍÓÏÔ‡ÍÚ̇fl ÓËÂÌÚËÛÂχfl ÔÓ‚ÂıÌÓÒÚ¸ Ò ‰‡ÌÌ˚Ï
Á‚ÂÌÓÏ ‚ ͇˜ÂÒÚ‚Â „‡Ìˈ˚. Ñ‚‡ ÛÁ· (Á‚Â̇) ̇Á˚‚‡˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË
ÏÓÊÌÓ Ô·‚ÌÓ ÔÂÂÈÚË ÓÚ Ó‰ÌÓ„Ó Í ‰Û„ÓÏÛ. îÓχθÌÓ, Á‚ÂÌÓ Á‡‰‡ÂÚÒfl ͇Í
„·‰ÍÓ ӉÌÓÏÂÌÓ ÔÓ‰ÏÌÓ„ÓÓ·‡ÁË 3-ÒÙÂ˚ S3 ; ÛÁÂÎ – ˝ÚÓ Á‚ÂÌÓ, ÒÓÒÚfl˘Â ËÁ
Ó‰ÌÓÈ ÍÓÏÔÓÌÂÌÚ˚; Á‚Â̸fl L1 Ë L2 ̇Á˚‚‡˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ
ÒÓı‡Ìfl˛˘ËÈ ÓËÂÌÚ‡ˆË˛ „ÓÏÂÓÏÓÙËÁÏ f: S3 → S3, Ú‡ÍÓÈ ˜ÚÓ f(L 1 ) = L 2 .
ÇÒ˛ ËÌÙÓχˆË˛ Ó· ÛÁΠÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸, ËÒÔÓθÁÛfl ‰Ë‡„‡ÏÏ˚ ÛÁ· –
Ú‡ÍÓÈ ÔÓÂ͈ËË ÛÁ· ̇ ÔÎÓÒÍÓÒÚ¸, ˜ÚÓ Ì ·ÓΠ˜ÂÏ ‰‚ ÚÓ˜ÍË ÛÁ· ÔÓˆËÛ˛ÚÒfl
‚ Ó‰ÌÛ Ë ÚÛ Ê ÚÓ˜ÍÛ Ì‡ ÔÎÓÒÍÓÒÚË Ë ‚ ͇ʉÓÈ Ú‡ÍÓÈ ÚӘ͠Û͇Á‡ÌÓ, ͇͇fl ËÁ ÎËÌËÈ
fl‚ÎflÂÚÒfl ·ÎËʇȯÂÈ Í ÔÎÓÒÍÓÒÚË, Ó·˚˜ÌÓ ÔÓÒ‰ÒÚ‚ÓÏ Û‰‡ÎÂÌËfl ˜‡ÒÚË ÌËÊÌÂÈ
ÎËÌËË. Ñ‚Â ‡Á΢Ì˚ ‰Ë‡„‡ÏÏ˚ ÏÓ„ÛÚ Ô‰ÒÚ‡‚ÎflÚ¸ Ó‰ËÌ Ë ÚÓÚ Ê ÛÁÂÎ.
á̇˜ËÚÂθ̇fl ˜‡ÒÚ¸ ÚÂÓËË ÛÁÎÓ‚ ÔÓÒ‚fl˘Â̇ ‚˚flÒÌÂÌ˲ ÓÚ‚ÂÚ‡ ̇ ‚ÓÔÓÒ, ÍÓ„‰‡
‰‚ ‰Ë‡„‡ÏÏ˚ ÓÔËÒ˚‚‡˛Ú Ó‰ËÌ Ë ÚÓÚ Ê ÛÁÂÎ.
ê‡ÒÔÛÚ˚‚‡ÌË ÛÁÎÓ‚ fl‚ÎflÂÚÒfl ÓÔÂ‡ˆËÂÈ, ËÁÏÂÌfl˛˘ÂÈ ÔÓÎÓÊÂÌË ÔÂÂÒÂ͇˛˘ËıÒfl ÎËÌËÈ ÓÚÌÓÒËÚÂθÌÓ ‰Û„ ‰Û„‡ (Ò‚ÂıÛ ËÎË ÒÌËÁÛ) ‚ ‰‚ÓÈÌÓÈ ÚÓ˜ÍÂ
‰‡ÌÌÓÈ ‰Ë‡„‡ÏÏ˚. ê‡ÒÔÛÚ˚‚‡˛˘Â ˜ËÒÎÓ ÛÁ· ä fl‚ÎflÂÚÒfl ÏËÌËχθÌ˚Ï ˜ËÒÎÓÏ
˝ÎÂÏÂÌÚ‡Ì˚ı ÓÔÂ‡ˆËÈ ÔÓ ‡ÒÔÛÚ˚‚‡Ì˲ ÛÁÎÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ô‚‡˘ÂÌËfl
‰Ë‡„‡ÏÏ˚ ÛÁ· ä ‚ ‰Ë‡„‡ÏÏÛ Ú˂ˇθÌÓ„Ó ÛÁ·, „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ
‰Ë‡„‡ÏÏ‡Ï ÛÁ· ä. ÉÛ·Ó „Ó‚Ófl, ‡ÒÔÛÚ˚‚‡˛˘Â ˜ËÒÎÓ ÂÒÚ¸ ̇ËÏÂ̸¯Â ÍÓ΢ÂÒÚ‚Ó ÔÓÚ‡ÒÍË‚‡ÌËÈ ÛÁ· ä ˜ÂÂÁ Ò‡ÏÓ„Ó Ò·fl, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl „Ó
‡ÒÔÛÚ˚‚‡ÌËfl.
156
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
#-‡ÒÔÛÚ˚‚‡˛˘‡fl ÓÔÂ‡ˆËfl ‰Ë‡„‡ÏÏ˚ ÛÁ· ä fl‚ÎflÂÚÒfl ‡Ì‡ÎÓ„ÓÏ ‡ÒÔÛÚ˚‚‡˛˘ÂÈ ÓÔÂ‡ˆËË ‰Îfl #-˜‡ÒÚË ‰Ë‡„‡ÏÏ˚, ÒÓÒÚÓfl˘ÂÈ ËÁ ‰‚Ûı Ô‡ Ô‡‡ÎÎÂθÌ˚ı
ÎËÌËÈ, ËÁ ÍÓÚÓ˚ı Ӊ̇ Ô‡‡ ÔË ÔÂÂÒ˜ÂÌËË ÔÓıÓ‰ËÚ Ì‡‰ ‰Û„ÓÈ. í‡ÍËÏ Ó·‡ÁÓÏ, ‡ÒÔÛÚ˚‚‡˛˘Â ‰ÂÈÒÚ‚Ë ËÁÏÂÌflÂÚ ÔÓÎÓÊÂÌË ÔÂÂÒÂ͇˛˘ËıÒfl ÎËÌËÈ ÔÓ
‚˚ÒÓÚ ‚ ͇ʉÓÈ ËÁ ‚Â¯ËÌ ÔÓÎÛ˜ÂÌÌÓ„Ó ˜ÂÚ˚ÂıÛ„ÓθÌË͇.
ÉÓ‰ËÂ‚Ó ‡ÒÒÚÓflÌËÂ
ÉÓ‰ËÂ‚Ó ‡ÒÒÚÓflÌË – ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÛÁÎÓ‚, ÓÔ‰ÂÎflÂχfl ‰Îfl
‰‡ÌÌ˚ı ÛÁÎÓ‚ ä Ë K Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ‡ÒÔÛÚ˚‚‡˛˘Ëı ÓÔÂ‡ˆËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ô‚‡˘ÂÌËfl ‰Ë‡„‡ÏÏ˚ ÛÁ· ä ‚ ‰Ë‡„‡ÏÏÛ ÛÁ· K, „‰Â ÏËÌËÏÛÏ
·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‰Ë‡„‡ÏÏ‡Ï ÛÁ· ä, ËÁ ÍÓÚÓ˚ı ÏÓÊÌÓ ÔÂÂÈÚË Í ‰Ë‡„‡ÏÏ‡Ï ÛÁ·
K. ê‡ÒÔÛÚ˚‚‡˛˘Â ˜ËÒÎÓ ‰Ë‡„‡ÏÏ˚ ۄ· ä ‡‚ÌÓ „Ó‰ËÂ‚Û ‡ÒÒÚÓflÌ˲ ÏÂÊ‰Û ä
Ë Ú˂ˇθÌ˚Ï ÛÁÎÓÏ é.
èÛÒÚ¸ rK – ÛÁÎÂÎ, ÔÓÎÛ˜ÂÌÌ˚È ËÁ ä Í‡Í Â„Ó ÁÂ͇θÌÓ ÓÚ‡ÊÂÌËÂ Ë ÔÛÒÚ¸ –ä –
ÔÓÚË‚ÓÔÓÎÓÊÌÓ ÓËÂÌÚËÓ‚‡ÌÌ˚È ÛÁÎÂÎ. ê‡ÒÒÚÓflÌËÂÏ ÔÓÎÓÊËÚÂθÌÓÈ ÂÙÎÂÍÒËË
Re f+(K) ̇Á˚‚‡ÂÚÒfl „Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ä Ë rK. ê‡ÒÒÚÓflÌËÂÏ ÓÚˈ‡ÚÂθÌÓÈ ÂÙÎÂÍÒËË Re f– (K) ̇Á˚‚‡ÂÚÒfl „Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ä Ë –r K.
àÌ‚ÂÒË‚Ì˚Ï ‡ÒÒÚÓflÌËÂÏ Inv (K) ̇Á˚‚‡ÂÚÒfl „Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ä Ë –ä.
ÉÓ‰ËÂ‚Ó ‡ÒÒÚÓflÌË – ÒÎÛ˜‡È Î = 1 ëk -‡ÒÒÚÓflÌËfl, ÍÓÚÓÓ ‡‚ÌÓ ÏËÌËχθÌÓÏÛ ˜ËÒÎÛ ë k-ıÓ‰Ó‚, Ì·ıÓ‰ËÏÓÏÛ ‰Îfl Ú‡ÌÒÙÓÏËÓ‚‡ÌËfl ä ‚ K; ËÓ Ë
ÉÛÒ‡Ó‚ ‰Ó͇Á‡ÎË, ˜ÚÓ ‰Îfl k > 1˜ËÒÎÓ ÓÔÂ‡ˆËÈ ·Û‰ÂÚ ÍÓ̘Ì˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ
ÚÓ„‰‡, ÍÓ„‰‡ Ó·‡ ÛÁ· ËÏÂ˛Ú Ó‰ÌË Ë Ú Ê ËÌ‚‡ˇÌÚ˚ LJÒË肇 ÔÓfl‰Í‡ ÏÂÌ k.
ë1 -ıÓ‰ – ˝ÚÓ Ó‰ÌÓÍ‡ÚÌÓ ËÁÏÂÌÂÌË ÔÂÂÒ˜ÂÌËfl. ë2 -ıÓ‰ (ËÎË ‰Âθڇ-ıÓ‰) – ˝ÚÓ
Ó‰ÌÓ‚ÂÏÂÌÌÓ ËÁÏÂÌÂÌË ÔÂÂÒ˜ÂÌËÈ ‰Îfl ÚÂı ÔÓÒÚ˚ı ‰Û„, ÙÓÏËÛ˛˘Ëı
ÚÂÛ„ÓθÌËÍ. ë2 - Ë ë3 -‡ÒÒÚÓflÌËfl ̇Á˚‚‡˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‰Âθڇ ‡ÒÒÚÓflÌËÂÏ
Ë ‡ÒÒÚÓflÌËÂÏ Á‡ˆÂÔÎÂÌËfl.
#-„Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌËÂ
#-„Ó‰Ë‚˚Ï ‡ÒÒÚÓflÌËÂÏ (ÒÏ., ̇ÔËÏÂ, [Mura85]) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÛÁÎÓ‚, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl ÛÁÎÓ‚ ä Ë K Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ #-‡ÒÔÛÚ˚‚‡˛˘Ëı ÓÔÂ‡ˆËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÂıÓ‰‡ ÓÚ ‰Ë‡„‡ÏÏ˚ ÛÁ· ä Í
‰Ë‡„‡ÏÏ ÛÁ· K, „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‰Ë‡„‡ÏÏ‡Ï ÛÁ· ä, ÍÓÚÓ˚Â
ÔÂÓ·‡ÁÛ˛ÚÒfl ‚ ‰Ë‡„‡ÏÏ˚ ÛÁ· K.
èÛÒÚ¸ rK – ÛÁÂÎ, ÔÓÎÛ˜ÂÌÌ˚È ËÁ ä Í‡Í Â„Ó ÁÂ͇θÌÓ ÓÚ‡ÊÂÌËÂ Ë ÔÛÒÚ¸ –ä –
ÔÓÚË‚ÓÔÓÎÓÊÌÓ ÓËÂÌÚËÓ‚‡ÌÌ˚È ÛÁÎÂÎ. ê‡ÒÒÚÓflÌËÂÏ ÔÓÎÓÊËÚÂθÌÓÈ #-ÂÙÎÂÍÒËË Re f+# ( K ) ̇Á˚‚‡ÂÚÒfl #-„Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ä Ë r K. ê‡ÒÒÚÓflÌËÂÏ
ÓÚˈ‡ÚÂθÌÓÈ #-ÂÙÎÂÍÒËË Re f # (K) ̇Á˚‚‡ÂÚÒfl #-„Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌË ÏÂʉÛ
ä Ë –rK; #-ËÌ‚ÂÒË‚Ì˚Ï ‡ÒÒÚÓflÌËÂÏ Inv(K) fl‚ÎflÂÚÒfl #-„Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌË ÏÂʉÛ
ä Ë –ä.
É·‚‡ 9
ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı, ÍÓÌÛÒ‡ı
Ë ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı
9.1. êÄëëíéüçàÖ çÄ Çõèìäãõï íÖãÄï
Ç˚ÔÛÍÎ˚Ï ÚÂÎÓÏ ‚ n-ÏÂÌÓÏ Â‚ÍÎˉӂÓÏ ÔÓÒÚ‡ÌÒÚ‚Â N ̇Á˚‚‡ÂÚÒfl ÍÓÏÔ‡ÍÚÌÓÂ
‚˚ÔÛÍÎÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ‚ N . éÌÓ Ì‡Á˚‚‡ÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï, ÂÒÎË ËÏÂÂÚ ÌÂÔÛÒÚÛ˛
‚ÌÛÚÂÌÌÓÒÚ¸. é·ÓÁ̇˜ËÏ ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÒÂı ‚˚ÔÛÍÎ˚ı ÚÂÎ ‚ N ˜ÂÂÁ ä, Ë ÔÛÒÚ¸ Kp
·Û‰ÂÚ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‚ÒÂı ÒÓ·ÒÚ‚ÂÌÌ˚ı ‚˚ÔÛÍÎ˚ı ÚÂÎ.
ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (K, d) ̇ ä ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‚˚ÔÛÍÎ˚ı ÚÂÎ. åÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡ ‚˚ÔÛÍÎ˚ı ÚÂÎ, ‚ ˜‡ÒÚÌÓÒÚË
ÏÂÚËÁ‡ˆËfl ÔÓÒ‰ÒÚ‚ÓÏ ı‡ÛÒ‰ÓÙÓ‚ÓÈ ÏÂÚËÍË ËÎË ÏÂÚËÍË ÒËÏÏÂÚ˘ÂÒÍÓÈ
‡ÁÌÓÒÚË, fl‚Îfl˛ÚÒfl ÓÒÌÓ‚ÓÔÓ·„‡˛˘ËÏË ˝ÎÂÏÂÌÚ‡ÏË ‡Ì‡ÎËÁ‡ ‚ ‚˚ÔÛÍÎÓÈ „ÂÓÏÂÚËË (ÒÏ., ̇ÔËÏÂ, [Grub93]).
ÑÎfl C, D ∈ K\{∅} ÒÎÓÊÂÌË åËÌÍÓ‚ÒÍÓ„Ó Ë ÛÏÌÓÊÂÌË åËÌÍÓ‚ÒÍÓ„Ó Ì‡
ÌÂÓÚˈ‡ÚÂθÌ˚È Ò͇Îfl ÓÔ‰ÂÎfl˛ÚÒfl Í‡Í ë + D = {x + y: x ∈ C, y ∈ D} Ë αC =
= {αx: xC}, α ≥ 0 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. Ä·Â΂‡ ÔÓÎÛ„ÛÔÔ‡ (K, +), Ò̇·ÊÂÌ̇fl
ÓÔÂ‡ÚÓ‡ÏË ÛÏÌÓÊÂÌËfl ̇ ÌÂÓÚˈ‡ÚÂθÌ˚È Ò͇Îfl, ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl ͇Í
‚˚ÔÛÍÎ˚È ÍÓÌÛÒ.
éÔÓ̇fl ÙÛÌ͈Ëfl hC: Sn–1 → ‰Îfl ë ∈ K Á‡‰‡ÂÚÒfl Í‡Í hC (u) = sup{⟨u, x ⟩ : x ∈ C}
‰Îfl β·Ó„Ó u ∈ Sn–1, „‰Â Sn–1 – (n – 1)-ÏÂ̇fl ‰ËÌ˘̇fl ÒÙÂ‡ ‚ n Ë ⟨,⟩ – Ò͇ÎflÌÓÂ
ÔÓËÁ‚‰ÂÌË ̇ n .
ÑÎfl ÏÌÓÊÂÒÚ‚‡ X ⊂ n Â„Ó ‚˚ÔÛÍ·fl Ó·ÓÎӘ͇, conv(X) ÓÔ‰ÂÎflÂÚÒfl ͇Í
ÏËÌËχθÌÓ ‚˚ÔÛÍÎÓ ÏÌÓÊÂÒÚ‚Ó, ÍÓÚÓÓÏÛ ï ÔË̇‰ÎÂÊËÚ.
éÚÍÎÓÌÂÌË ÔÎÓ˘‡‰Ë
éÚÍÎÓÌÂÌË ÔÎÓ˘‡‰Ë (ËÎË ˝Ú‡ÎÓÌ̇fl ÏÂÚË͇) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â
K p ‚ 2 (Ú.Â. ̇ ÏÌÓÊÂÒÚ‚Â ÔÎÓÒÍËı ‚˚ÔÛÍÎ˚ı ‰ËÒÍÓ‚), ÓÔ‰ÂÎÂÌÌÓÈ Í‡Í
A(C∆D),
„‰Â A( ⋅ ) – ÔÎÓ˘‡‰¸ Ë ∆ – ÒËÏÏÂÚ˘ÂÒ͇fl ‡ÁÌÓÒÚ¸. ÖÒÎË ë ⊂ D, ÚÓ ‚˚‡ÊÂÌËÂ
ÔËÌËχÂÚ ‚ˉ A(D) – A(C).
éÚÍÓÌÂÌË ÔÂËÏÂÚ‡
éÚÍÎÓÌÂÌË ÔÂËÏÂÚ‡ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ Lp ‚ 2, Á‡‰‡ÌÌÓÈ Í‡Í
2 p(con v(C ∪ D)) − p(C ) − p( D),
„‰Â p( ⋅ ) – ÔÂËÏÂÚ. ÑÎfl ÒÎÛ˜‡fl ë ⊂ D ÓÌÓ ‡‚ÌÓ p(D) – p(C).
åÂÚË͇ Ò‰ÌÂÈ ¯ËËÌ˚
åÂÚËÍÓÈ Ò‰ÌÂÈ ¯ËËÌ˚ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ Kp ‚ 2, Á‡‰‡Ì̇fl ͇Í
2W (conv(C ∪ D)) − W (C ) – W ( D),
„‰Â W( ⋅ ) – Ò‰Ìflfl ¯ËË̇: W(C) = p(C)/π, ÂÒÎË – ÔÂËÏÂÚ.
158
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
åÂÚË͇ èÓÏÔÂÈ˛–ï‡ÛÒ‰ÓÙ‡–ÅÎfl¯ÍÂ
åÂÚËÍÓÈ èÓÏÔÂÈ˛–ï‡ÛÒ‰ÓÙ‡–ÅÎfl¯Í (ËÎË ı‡ÛÒ‰ÓÙÓ‚ÓÈ ÏÂÚËÍÓÈ) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ä, Á‡‰‡Ì̇fl ͇Í


max sup inf || y − y ||2 sup inf || x − y ||2 ,
y ∈D x ∈C
 x ∈C y ∈D

„‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ 2.
ç‡ flÁ˚Í ÓÔÓÌ˚ı ÙÛÌ͈ËÈ, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÒÎÓÊÂÌËfl åËÌÍÓ‚ÒÍÓ„Ó, Ó̇ ËÏÂÂÚ ‚ˉ
sup hC (u) − hD (u) = hC − hD
u ∈S
n −1
∞
{
}
= inf λ ≥ 0 : C ⊂ D + λB n , D ⊂ C + λB n ,
„‰Â B n – ‰ËÌ˘Ì˚È ¯‡ ÔÓÒÚ‡ÌÒÚ‚‡ n .
чÌÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸, ËÒÔÓθÁÛfl β·Û˛ ÌÓÏÛ Ì‡ n ‚ÏÂÒÚÓ
‚ÍÎˉӂÓÈ. é·Ó·˘‡fl, ÏÓÊÌÓ Ò͇Á‡Ú¸, ˜ÚÓ Ó̇ Á‡‰‡ÂÚÒfl ‰Îfl ÔÓÒÚ‡ÌÒÚ‚‡ Ó„‡Ì˘ÂÌÌ˚ı Á‡ÏÍÌÛÚ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÔÓËÁ‚ÓθÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡.
åÂÚË͇ èÓÏÔÂÈ˛–ù„„ÎÂÒÚÓ̇
åÂÚËÍÓÈ èÓÏÔÂÈ˛–ù„„ÎÂÒÚÓ̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ä, Á‡‰‡Ì̇fl ͇Í
sup inf x − y
x ∈C y ∈D
2
+ sup inf x − y 2 ,
y ∈D x ∈C
„‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ 2.
ç‡ flÁ˚Í ÓÔÓÌ˚ı ÙÛÌ͈ËÈ, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÒÎÓÊÂÌËfl åËÌÍÓ‚ÒÍÓ„Ó, Ó̇ ËÏÂÂÚ ‚ˉ




max 0, sup (hC (u) − hD (u)) + max 0, sup (hD (u) − hC (u)) =
 u ∈S n−1

 u ∈S n−1

{
}
{
}
= inf λ ≥ 0 : C ⊂ D + λB n + inf λ ≥ 0 : D ⊂ C + λB n ,
„‰Â B n – ‰ËÌ˘Ì˚È ¯‡ ÔÓÒÚ‡ÌÒÚ‚‡ n .
чÌÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸, ËÒÔÓθÁÛfl β·Û˛ ÌÓÏÛ Ì‡ n ‚ÏÂÒÚÓ Â‚ÍÎˉӂÓÈ. é·Ó·˘‡fl, ÏÓÊÌÓ Ò͇Á‡Ú¸, ˜ÚÓ Ó̇ Á‡‰‡ÂÚÒfl ‰Îfl ÔÓÒÚ‡ÌÒÚ‚‡ Ó„‡Ì˘ÂÌÌ˚ı Á‡ÏÍÌÛÚ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÔÓËÁ‚ÓθÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡.
åÂÚË͇ å‡Íäβ‡–ÇËÚ‡ÎÂ
ÑÎfl 1 ≤  ≤ ∞, ÏÂÚËÍÓÈ å‡Íäβ‡–ÇËڇΠ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ä, ÓÔ‰ÂÎÂÌ̇fl ͇Í


p
hC (u) − hD (u) dσ(u)

 n−1

S

∫
1/ p
= hC − hD p .
åÂÚË͇ îÎÓˇ̇
åÂÚË͇ îÎÓˇ̇ ˝ÚÓ ÏÂÚË͇ ̇ ä, Á‡‰‡Ì̇fl ͇Í
∫
S
n −1
hC (u) − hD (u) dσ(u) = hC − hD 1 .
É·‚‡ 9. ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı, ÍÓÌÛÒ‡ı Ë ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı
159
é̇ ÏÓÊÂÚ ·˚Ú¸ ‚˚‡ÊÂ̇ ‚ ÙÓÏ 2S(conv(C ∪ D)) – S(C) – S(D) ‰Îfl n = 2 (ÒÏ.
éÚÍÎÓÌÂÌË ÔÂËÏÂÚ‡);  ÏÓÊÌÓ Ú‡ÍÊ ‚˚‡ÁËÚ¸ ‚ ÙÓÏ nkn(2W(conv(C ∪ D)) –
W(C) – W(D) ‰Îfl n ≥ 2 (ÒÏ. åÂÚË͇ Ò‰ÌÂÈ ¯ËËÌ˚). á‰ÂÒ¸ S( ⋅ ) – ÔÎÓ˘‡‰¸ ÔÓ‚ÂıÌÓÒÚË, kn – Ó·˙ÂÏ Â‰ËÌ˘ÌÓ„Ó ¯‡‡ B n ‚ n Ë W( ⋅ ) – Ò‰Ìflfl ¯ËË̇:
1
W (C ) =
(hC (u) + hC (– u))dσ(u).
nkn n−1
∫
S
ê‡ÒÒÚÓflÌË ëÓ·Ó΂‡
ê‡ÒÒÚÓflÌË ëÓ·Ó΂‡ – ÏÂÚË͇ ̇ ä, ÓÔ‰ÂÎÂÌ̇fl ͇Í
hC − hD
w
,
„‰Â || ⋅ ||w – 1-ÌÓχ ëÓ·Ó΂‡ ̇ ÏÌÓÊÂÒÚ‚Â CS n−1 ‚ÒÂı ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ Ì‡
‰ËÌ˘ÌÓÈ ÒÙÂ S n–1 ÔÓÒÚ‡ÌÒÚ‚‡ n .
1-ÌÓχ ëÓ·Ó΂‡ Á‡‰‡ÂÚÒfl Í‡Í f
‚‰ÂÌË ̇ CS n−1 , Á‡‰‡ÌÌÓ ͇Í
⟨ f , g⟩ w =
∫
w
= ⟨ f , f ⟩1w/ 2 , „‰Â ⟨ , ⟩w – Ò͇ÎflÌÓ ÔÓËÁ-
( fg + ∇ s ( f , g))dw0 , w0 =
S n −1
1
w,
n ⋅ kn
∇ s ( f , g) = ⟨grad s f , grad s g⟩, ⟨ , ⟩ – Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n Ë grads – „‡‰ËÂÌÚ
̇ Sn–1 (ÒÏ. [ArWe92]).
åÂÚË͇ òÂÔ‡‰‡
åÂÚËÍÓÈ òÂÔ‡‰‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ä, Á‡‰‡Ì̇fl ͇Í
ln(1 + 2 inf{λ ≥ 0 : C ⊂ D + λ( D − D), D ⊂ C + λ(C − C )}).
åÂÚË͇ çËÍÓ‰Ëχ
åÂÚË͇ çËÍÓ‰Ëχ (ËÎË ÏÂÚË͇ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ
̇ ä, Á‡‰‡ÌÌÓÈ Í‡Í
V(C∆D),
„‰Â V( ⋅ ) – Ó·˙ÂÏ (Ú.Â. η„ӂ‡ n-ÏÂ̇fl ÏÂ‡) Ë ∆ – ÒËÏÏÂÚ˘ÂÒ͇fl ‡ÁÌÓÒÚ¸. ÑÎfl
n = 2 ÔÓÎÛ˜‡ÂÏ ÓÚÍÎÓÌÂÌË ÔÎÓ˘‡‰Ë.
åÂÚË͇ òÚÂÈÌ„‡ÛÒ‡
åÂÚË͇ òÚÂÈÌ„‡ÛÁ‡ (ËÎË Ó‰ÌÓӉ̇fl ÏÂÚË͇ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË ‡ÒÒÚÓflÌË òÚÂÈÌ„‡ÛÒ‡) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ Kp, Á‡‰‡ÌÌÓÈ Í‡Í
V (C∆D)
,
V (C ∪ D)
d∆ (C, D)
, „‰Â d∆ ÂÒÚ¸ ÏÂÚË͇ çËÍÓV (C ∪ D)
‰Ëχ. ùÚ‡ ÏÂÚË͇ Ó„‡Ì˘Â̇; Ó̇ ‡ÙÙËÌÌÓ ËÌ‚‡ˇÌÚ̇, ‚ ÚÓ ‚ÂÏfl Í‡Í ÏÂÚË͇
çËÍÓ‰Ëχ ËÌ‚‡ˇÌÚ̇ ÚÓθÍÓ ÓÚÌÓÒËÚÂθÌÓ ÒÓı‡Ìfl˛˘Ëı Ó·˙ÂÏ ‡ÙÙËÌÌ˚ı
ÔÂÓ·‡ÁÓ‚‡ÌËÈ.
„‰Â V( ⋅ ) – Ó·˙ÂÏ. í‡ÍËÏ Ó·‡ÁÓÏ, Ó̇ ‡‚̇
160
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ê‡ÒÒÚÓflÌË ù„„ÎÂÒÚÓ̇
ê‡ÒÒÚÓflÌËÂÏ ù„„ÎÂÒÚÓ̇ (ËÎË ÒËÏÏÂÚ˘ÂÒÍËÏ ÓÚÍÎÓÌÂÌËÂÏ ÔÎÓ˘‡‰Ë ÔÓ‚ÂıÌÓÒÚË) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ K p , ÓÔ‰ÂÎflÂÏÓ ͇Í
S(C ∪ D) – S(C ∩ D),
„‰Â S( ⋅ ) – ÔÎÓ˘‡‰¸ ÔÓ‚ÂıÌÓÒÚË. чÌÌÓ ‡ÒÒÚÓflÌË ÏÂÚËÍÓÈ Ì fl‚ÎflÂÚÒfl.
åÂÚË͇ ÄÒÔÎÛ̉‡
åÂÚËÍÓÈ ÄÒÔÎÛ̉‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â K p /≈ Í·ÒÒÓ‚ ‡ÙÙËÌÌÓÈ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ‚ K p , ÓÔ‰ÂÎflÂχfl ͇Í
ln inf{λ ≥ 1 : ∃T : n → n ‡ÙÙËÌ̇, x ∈ n , C ⊂ T ( D) ⊂ λC + x},
‰Îfl β·˚ı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË Ë Ò Ô‰ÒÚ‡‚ËÚÂÎflÏË ë* Ë D * ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
åÂÚË͇ å‡Í·ÂÚ‡
åÂÚË͇ å‡Í·ÂÚ‡ – ÏÂÚË͇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â K p /≈ Í·ÒÒÓ‚ ‡ÙÙËÌÌÓÈ
˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ‚ Kp , ÓÔ‰ÂÎflÂχfl ͇Í
ln inf{|det T ⋅ P|: ∃T, P: n → n „ÛÎflÌÓ ‡ÙÙËÌÌÓÂ, C ⊂ T(D), D ⊂ P(C)}
‰Îfl β·˚ı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ë* Ë D* Ò Ô‰ÒÚ‡‚ËÚÂÎflÏË ë Ë D, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
Ö ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Ú‡Í ÊÂ, ͇Í
ln δ1 (C, D) + ln δ1 ( D, C ),
 V (T ( D))

; C ⊂ T ( D) Ë í ÂÒÚ¸ „ÛÎflÌÓ ‡ÙÙËÌÌÓ ÓÚÓ·‡ÊÂÌËÂ
„‰Â δ1 (C, D) = inf 
T  V (C )

n ̇ Ò·fl.
åÂÚË͇ Ň̇ı‡–å‡ÁÛ‡
åÂÚËÍÓÈ Å‡Ì‡ı‡–å‡ÁÛ‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â K p /≈ Í·ÒÒÓ‚
˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ÒÓ·ÒÚ‚ÂÌÌ˚ı ˆÂÌÚ‡Î¸ÌÓ-ÒËÏÏÂÚ˘Ì˚ı ‚˚ÔÛÍÎ˚ı ÚÂÎ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÎËÌÂÈÌ˚Ï ÔÂÓ·‡ÁÓ‚‡ÌËflÏ, ÓÔ‰ÂÎflÂχfl ͇Í
ln inf{λ ≥ 1: ∃T: n → n ÎËÌÂÈÌÓÂ, C ⊂ T(D) ⊂ λC)}
‰Îfl β·˚ı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ë* Ë D* Ë Ò Ô‰ÒÚ‡‚ËÚÂÎflÏË ë Ë D ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
ùÚ‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl ÓÒÓ·˚Ï ÒÎÛ˜‡ÂÏ ‡ÒÒÚÓflÌËfl Ň̇ı‡–å‡ÁÛ‡ ÏÂÊ‰Û n-ÏÂÌ˚ÏË ÌÓÏËÓ‚‡ÌÌ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË.
ê‡Á‰ÂÎfl˛˘Â ‡ÒÒÚÓflÌËÂ
ê‡Á‰ÂÎfl˛˘Â ‡ÒÒÚÓflÌË ÂÒÚ¸ ÏËÌËχθÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl
ÌÂÔÂÂÒÂ͇˛˘ËÏËÒfl ‚˚ÔÛÍÎ˚ÏË Ú·ÏË C Ë D ‚ n (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â, ‡ÒÒÚÓflÌËÂ
ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ÌÂÔÂÂÒÂ͇˛˘ËÏËÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË
n ): inf x − y 2 : x ∈ C, y ∈ D ; ÔË ˝ÚÓÏ sup x − y 2 : x ∈ C, y ∈ D ̇Á˚‚‡ÂÚÒfl ÔÂÂÍ˚‚‡˛˘ËÏ ‡ÒÒÚÓflÌËÂÏ.
{
}
{
}
ê‡ÒÒÚÓflÌË „ÎÛ·ËÌ˚ ÔÓÌËÍÌÓ‚ÂÌËfl
ê‡ÒÒÚÓflÌË „ÎÛ·ËÌ˚ ÔÓÌËÍÌÓ‚ÂÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ‚Á‡ËÏÌÓ ÔÓÌË͇˛˘ËÏË
‚˚ÔÛÍÎ˚ÏË Ú·ÏË C Ë D ‚ n (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â, ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ‚Á‡ËÏÌÓ
É·‚‡ 9. ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı, ÍÓÌÛÒ‡ı Ë ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı
161
ÔÓÌË͇˛˘ËÏË ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË ÏÌÓÊÂÒÚ‚‡ n ) ÂÒÚ¸ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌËÂ
ÔÂÂÌÓÒ‡ Ó‰ÌÓ„Ó Ú· ÓÚÌÓÒËÚÂθÌÓ ‰Û„Ó„Ó Ú‡Í, ˜ÚÓ·˚ ‚ÌÛÚÂÌÌÓÒÚË C Ë D ÒÚ‡ÎË
ÌÂÔÂÂÒÂ͇˛˘ËÏËÒfl:
min{|| t ||2 : interior (C + t ) ∩ D = 0/ }.
ùÚÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÂÒÚÂÒÚ‚ÂÌÌ˚Ï Ó·Ó˘ÂÌÌÓÏ Â‚ÍÎˉӂ‡ ‡Á‰ÂÎfl˛˘Â„Ó
‡ÒÒÚÓflÌËfl ‰Îfl ÌÂÔÂÂÒÂ͇˛˘ËıÒfl Ó·˙ÂÍÚÓ‚ ̇ ÒÎÛ˜‡È ÔÂÂÍ˚‚‡˛˘ËıÒfl Ó·˙ÂÍÚÓ‚. чÌÌÓ ‡ÒÒÚÓflÌË ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ Í‡Í inf{d(C, D + x): x ∈ n} ËÎË
infsd(C, s(D)), „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÔÓ‰Ó·ËflÏ s: n → n ËÎË…, „‰Â d – Ӊ̇
ËÁ Û͇Á‡ÌÌ˚ı ‚˚¯Â ÏÂÚËÍ.
ê‡ÒÒÚÓflÌË ÔÓfl‰Í‡ ÓÒÚ‡
ÑÎfl ‚˚ÔÛÍÎ˚ı ÏÌÓ„Ó„‡ÌÌËÍÓ‚ ‡ÒÒÚÓflÌË ÔÓfl‰Í‡ ÓÒÚ‡ (ÒÏ. ÔÓ‰Ó·ÌÂÂ
[GiOn96]) ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‚Â΢Ë̇ ̇ ÍÓÚÓÛ˛ Ó·˙ÂÍÚ˚ ‰ÓÎÊÌ˚ Û‚Â΢ËÚ¸Òfl ÓÚÌÓÒËÚÂθÌÓ Ëı ̇˜‡Î¸ÌÓ„Ó ‡ÁÏÂ‡ ‰Ó ÏÓÏÂÌÚ‡ ÒÓÔËÍÓÒÌÓ‚ÂÌËfl
ÔÓ‚ÂıÌÓÒÚflÏË.
ê‡ÁÌÓÒÚ¸ åËÌÍÓ‚ÒÍÓ„Ó
ê‡ÁÌÓÒÚ¸ åËÌÍÓ‚ÒÍÓ„Ó Ì‡ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÍÓÏÔ‡ÍÚÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚, ‚ ˜‡ÒÚÌÓÒÚË Ì‡ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÒÍÛθÔÚÛÌ˚ı Ó·˙ÂÍÚÓ‚ (ËÎË Ó·˙ÂÍÚÓ‚ ÔÓËÁ‚ÓθÌÓÈ
ÙÓÏ˚) ‚ 3 , ÓÔ‰ÂÎflÂÚÒfl ͇Í
A – B = {x – y: x ∈ A, y ∈ B}.
ÖÒÎË Ò˜ËÚ‡Ú¸ Ç Ò‚Ó·Ó‰ÌÓ ÔÂÂÏ¢‡˛˘ËÏÒfl Ë Ëϲ˘ËÏ ÔÓÒÚÓflÌÌÛ˛ ÓËÂÌÚ‡ˆË² Ó·˙ÂÍÚÓÏ, ÚÓ ‡ÁÌÓÒÚ¸˛ åËÌÍÓ‚ÒÍÓ„Ó fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚Ó, ÍÓÚÓÓ ÒÓ‰ÂÊËÚ ‚Ò ÔÂÂÌÓÒ˚ Ç, ‚ÎÂÍÛ˘Ë ÔÂÂÒ˜ÂÌËÂ Ò Ä. ÅÎËʇȯ‡fl ÚӘ͇ ÓÚ „‡Ìˈ˚
‡ÁÌÓÒÚË åËÌÍÓ‚ÒÍÓ„Ó ∂(A – B) ‰Ó ̇˜‡Î‡ ÍÓÓ‰ËÌ‡Ú ‰‡ÂÚ ‡Á‰ÂÎfl˛˘Â ‡ÒÒÚÓflÌËÂ
ÏÂÊ‰Û Ä Ë Ç. ÖÒÎË Ó·‡ Ó·˙ÂÍÚ‡ ÔÂÂÒÂ͇˛ÚÒfl, ÚÓ Ì‡˜‡ÎÓ ÍÓÓ‰ËÌ‡Ú ÎÂÊËÚ ‚ÌÛÚË
‡ÁÌÓÒÚË åËÌÍÓ‚ÒÍÓ„Ó Ë ÔÓÎÛ˜ÂÌÌÓ ‡ÒÒÚÓflÌË ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ ͇Í
‡ÒÒÚÓflÌË „ÎÛ·ËÌ˚ ÔÓÌËÍÌÓ‚ÂÌËfl.
å‡ÍÒËχθÌÓ ‡ÒÒÚÓflÌË ÏÌÓ„ÓÛ„ÓθÌË͇
å‡ÍÒËχθÌÓ ‡ÒÒÚÓflÌË ÏÌÓ„ÓÛ„ÓθÌË͇ – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ‚˚ÔÛÍÎ˚ÏË ÏÌÓ„ÓÛ„ÓθÌË͇ÏË P = (p1 , ..., pn ) Ë Q = (q1 , ..., qn ), ÓÔ‰ÂÎflÂÏÓ ͇Í
max pi − q j ,
i, j
2
i ∈{1,..., n}, j ∈{1,..., m}.
„‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ.
ê‡ÒÒÚÓflÌË ÉÂ̇̉Â‡
èÛÒÚ¸ P = (p1 , ..., pn ) Ë Q = (q1 , ..., qn ) – ‰‚‡ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ‚˚ÔÛÍÎ˚ı ÏÌÓ„ÓÛ„ÓθÌË͇ Ë l(pi, q j), l(pm, q l), – ‰‚ ÔÂÂÒÂ͇˛˘ËÂÒfl ÍËÚ˘ÂÒÍË ÓÔÓÌ˚ ÎËÌËË
‰Îfl P Ë Q. íÓ„‰‡ ‡ÒÒÚÓflÌË ÉÂ̇̉Â‡ ÏÂÊ‰Û P Ë Q ÓÔ‰ÂÎËÚÒfl ͇Í
|| pi − q j ||2 + || pm − ql ||2 − Σ( pi , pm ) − Σ( g j , gl ),
„‰Â ||⋅||2 – ‚ÍÎˉӂ‡ ÌÓχ Ë Σ(pi, pm) – ÒÛÏχ ‰ÎËÌ ·Â ÎÓχÌÓÈ pi,..., pm.
á‰ÂÒ¸ P = (p1 ,..., pn ) – ‚˚ÔÛÍÎ˚È ÏÌÓ„ÓÛ„ÓθÌËÍ Ò ‚Â¯Ë̇ÏË ‚ Òڇ̉‡ÚÌÓÈ
ÙÓÏÂ, Ú.Â. ‚Â¯ËÌ˚ Û͇Á˚‚‡˛ÚÒfl ‚ ÒËÒÚÂÏ ‰Â͇ÚÓ‚˚ı ÍÓÓ‰ËÌ‡Ú ‚ ̇Ô‡‚ÎÂÌËË
ÔÓ ˜‡ÒÓ‚ÓÈ ÒÚÂÎÍÂ Ë ÔË ˝ÚÓÏ ÌÂÚ ÚÂı ÔÓÒΉӂ‡ÚÂθÌ˚ı ÍÓÎÎË̇Ì˚ı ‚Â¯ËÌ.
èflχfl l fl‚ÎflÂÚÒfl ÓÔÓÌÓÈ ÔflÏÓÈ ‰Îfl ê, ÂÒÎË ÏÌÓÊÂÒÚ‚Ó ‚ÌÛÚÂÌÌËı ÚÓ˜ÂÍ ê
162
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ÔÓÎÌÓÒÚ¸˛ ÎÂÊËÚ ÔÓ Ó‰ÌÛ ÒÚÓÓÌÛ ÓÚ l. ÖÒÎË ËϲÚÒfl ‰‚‡ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl
ÏÌÓ„ÓÛ„ÓθÌË͇ ê Ë Q, ÚÓ Ôflχfl l(pi, qj) ·Û‰ÂÚ ÍËÚ˘ÂÒÍÓÈ ÓÔÓÌÓÈ ÔflÏÓÈ, ÂÒÎË
Ó̇ fl‚ÎflÂÚÒfl ÓÔÓÌÓÈ ÔflÏÓÈ ‰Îfl ê ‚ pi, ÓÔÓÌÓÈ ÔflÏÓÈ ‰Îfl Q ‚ qj, ÔË ˝ÚÓÏ ê Ë Q
ÎÂÊ‡Ú ÔÓ ‡ÁÌ˚ ÒÚÓÓÌ˚ ÓÚ l(pi, qj).
9.2. êÄëëíéüçàü çÄ äéçìëÄï
Ç˚ÔÛÍÎ˚Ï ÍÓÌÛÒÓÏ ë ‚ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V ̇Á˚‚‡ÂÚÒfl
ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ë ÏÌÓÊÂÒÚ‚‡ V, Ú‡ÍÓ ˜ÚÓ C + C ⊂ C, λC ⊂ C ‰Îfl β·Ó„Ó λ ≥ 0 Ë
C ∩ (–C) = {0}. äÓÌÛÒ ë ÔÓÓʉ‡ÂÚ ˜‡ÒÚ˘Ì˚È ÔÓfl‰ÓÍ Ì‡ V ÔÓ Á‡ÍÓÌÛ
xp
− y ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ y – x ∈ C.
èÓfl‰ÓÍ p
− ÔÓ‰˜ËÌflÂÚÒfl ‚ÂÍÚÓÌÓÈ ÒÚÛÍÚÛ V, Ú.Â., ÂÒÎË x p
−y Ë z p
− u, ÚÓ
p
p
p
x + z − y + u, Ë ÂÒÎË x − y, ÚÓ λx − λy, λ ∈ , λ ≥ 0. ùÎÂÏÂÌÚ˚ x, y ∈ V ̇Á˚‚‡˛ÚÒfl
Ò‡‚ÌËÚÂθÌ˚ÏË, ÚÓ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í x ~ y, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ÔÓÎÓÊËÚÂθÌ˚Â
‰ÂÈÒÚ‚ËÚÂθÌ˚ ˜ËÒ· α Ë β, Ú‡ÍË ˜ÚÓ αy p
−xp
− βy. ë‡‚ÌËÏÓÒÚ¸ fl‚ÎflÂÚÒfl ÓÚÌÓ¯ÂÌËÂÏ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË:  Í·ÒÒ˚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË (ÔË̇‰ÎÂʇ˘Ë ë ËÎË –ë)
̇Á˚‚‡˛ÚÒfl ˜‡ÒÚflÏË (ËÎË ÍÓÏÔÓÌÂÌÚ‡ÏË, ÒÓÒÚ‡‚Ì˚ÏË ˜‡ÒÚflÏË).
ÑÎfl ‚˚ÔÛÍÎÓ„Ó ÍÓÌÛÒ‡ ë ÔÓ‰ÏÌÓÊÂÒÚ‚Ó S = {x ∈ C: T(x) = 1}, „‰Â T: V → ÂÒÚ¸
ÌÂÍÓÚÓ˚È ÔÓÎÓÊËÚÂθÌ˚È ÎËÌÂÈÌ˚È ÙÛÌ͈ËÓ̇Î, ̇Á˚‚‡ÂÚÒfl ÔÓÔÂ˜Ì˚Ï
Ò˜ÂÌËÂÏ ÍÓÌÛÒ‡ ë.
Ç˚ÔÛÍÎ˚È ÍÓÌÛÒ ë ̇Á˚‚‡ÂÚÒfl ÔÓ˜ÚË ‡ıËωӂ˚Ï, ÂÒÎË Á‡Ï˚͇ÌËÂ Â„Ó ÒÛÊÂÌËfl ̇ β·Ó ‰‚ÛÏÂÌÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó Ú‡ÍÊ fl‚ÎflÂÚÒfl ÍÓÌÛÒÓÏ.
íÓÏÒÓÌÓ‚Ò͇fl ÏÂÚË͇ ˜‡ÒÚÂÈ
èÛÒÚ¸ ë – ‚˚ÔÛÍÎ˚È ÍÓÌÛÒ ‚ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V. íÓÏÒÓÌÓ‚Ò͇fl ÏÂÚË͇ ˜‡ÒÚÂÈ Ì‡ ˜‡ÒÚË K ⊂ C\{0} Á‡‰‡ÂÚÒfl ͇Í
ln max{m(x, y), m(y, x)}
‰Îfl β·˚ı x, y ∈ K, „‰Â m(x, y) = inf{λ ∈ : y p
− λx}.
ÖÒÎË ÍÓÌÛÒ ë ÔÓ˜ÚË ‡ıËωӂ, ÚÓ ˜‡ÒÚ¸ ä, Ò̇·ÊÂÌ̇fl ÚÓÏÒÓÌÓ‚ÒÍÓÈ ÏÂÚËÍÓÈ
˜‡ÒÚÂÈ, fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÖÒÎË ÍÓÌÛÒ ë ÍÓ̘ÌÓÏÂÂÌ,
ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ ıÓ‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, Ú.Â. ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ËÏÂÂÚÒfl ‚˚‰ÂÎÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó „ÂÓ‰ÂÁ˘ÂÒÍËı, Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı ÓÔ‰ÂÎÂÌÌ˚Ï ‡ÍÒËÓχÏ. èÓÎÓÊËÚÂθÌ˚È ÍÓÌÛÒ n+ = {( x1 , …, x n ) : xi ≥ 0 ‰Îfl 1 ≤ i < n,
Ò̇·ÊÂÌÌ˚È íÓÏÒÓÌÓ‚ÓÒÍÓÈ ÏÂÚËÍÓÈ ˜‡ÒÚÂÈ, ËÁÓÏÂÚ˘ÂÌ ÌÓÏËÓ‚‡ÌÌÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û, ÍÓÚÓÓ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÔÎÓÒÍÓÂ.
ÖÒÎË ‚ÁflÚ¸ Á‡ÏÍÌÛÚ˚È ÍÓÌÛÒ ë ‚ n Ò ÌÂÔÛÒÚÓÈ ‚ÌÛÚÂÌÌÓÒÚ¸˛, ÚÓ ‚ÌÛÚÂÌÌÓÒÚ¸
ÍÓÌÛÒ‡ intC ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË Mn . ÖÒÎË ‰Îfl β·Ó„Ó Í‡Ò‡ÚÂθÌÓ„Ó ‚ÂÍÚÓ‡ v ∈ Tp(M n ), p ∈ M n Á‡‰‡Ì‡ ÌÓχ || v ||Tp = inf{α > 0 :
n
− αp p
−vp
− αp}, ÚÓ ‰ÎËÌa β·ÓÈ ÍÛÒÓ˜ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓÈ ÍË‚ÓÈ γ: [0, 1] → M
1
ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡ÌÓ Í‡Í l( γ ) =
∫
0
|| γ ′(t ) ||Tγ ( t ) dt, a ‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë Û ·Û‰ÂÚ
‡‚ÌÓ infγl(γ), „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ Ú‡ÍËÏ ÍË‚˚Ï γ Ò γ(0) = ı Ë γ(1) = Û.
É·‚‡ 9. ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı, ÍÓÌÛÒ‡ı Ë ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı
163
ÉËθ·ÂÚÓ‚‡ ÔÓÂÍÚ˂̇fl ÔÓÎÛÏÂÚË͇
ÑÎfl ‚˚ÔÛÍÎÓ„Ó ÍÓÌÛÒ‡ ë ‚ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V „Ëθ·ÂÚÓ‚‡ ÔÓÂÍÚ˂̇fl ÔÓÎÛÏÂÚË͇ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ̇ C\{0}, Á‡‰‡‚‡Âχfl ͇Í
ln(m(x, y) ⋅ m(y, x))
‰Îfl β·˚ı x, y ∈ C\{0}, „‰Â m( x, y) = inf{λ ∈ : y p
− λx}. . é̇ ‡‚̇ 0 ÚÓ„‰‡ Ë ÚÓθÍÓ
ÚÓ„‰‡, ÍÓ„‰‡ x = λy ‰Îfl ÌÂÍÓÚÓ˚ı λ > 0, Ë ÒÚ‡ÌÓ‚ËÚÒfl ÏÂÚËÍÓÈ Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â
ÎÛ˜ÂÈ ÍÓÌÛÒ‡.
ÖÒÎË ÍÓÌÛÒ ë ÍÓ̘ÌÓÏÂÂÌ, ‡ S fl‚ÎflÂÚÒfl ÔÓÔÂ˜Ì˚Ï Ò˜ÂÌËÂÏ ë (‚ ˜‡ÒÚÌÓÒÚË,
S = {x ∈ C: ||x|| = 1}, „‰Â ||⋅|| – ÌÓχ ̇ V), ÚÓ ‰Îfl β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ S
‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË ‡‚ÌÓ |ln(x, y, z, t)|, „‰Â z, t – ÚÓ˜ÍË ÔÂÂÒ˜ÂÌËfl ÎËÌËË lx,y Ò
„‡ÌˈÂÈ S Ë (x, y, z, t) – ‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌË ÚÓ˜ÂÍ x, y, z, t.
ÖÒÎË ÍÓÌÛÒ ë ÔÓ˜ÚË ‡ıËωӂ Ë ÍÓ̘ÌÓÏÂÂÌ, ÚÓ Í‡Ê‰‡fl ˜‡ÒÚ¸ ÍÓÌÛÒ‡ ë
fl‚ÎflÂÚÒfl ıÓ‰Ó‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÓÚÌÓÒËÚÂθÌÓ „Ëθ·ÂÚÓ‚ÓÈ ÔÓÂÍÚË‚ÌÓÈ
ÏÂÚËÍË. äÓÌÛÒ ãÓÂ̈‡ {(t, x1 , …, x n ) ∈ n +1 : t 2 > x12 + ... + x n2}, Ò̇·ÊÂÌÌ˚È „Ëθ·ÂÚÓ‚ÓÈ ÔÓÂÍÚË‚ÌÓÈ ÏÂÚËÍÓÈ, ËÁÓÏÂÚ˘ÂÌ n-ÏÂÌÓÏÛ „ËÔÂ·Ó΢ÂÒÍÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û. èÓÎÓÊËÚÂθÌ˚È ÍÓÌÛÒ n+ = {( x1 , … x n ) : xi ≥ 0 ‰Îfl 1 ≤ i ≤ n, Ò̇·ÊÂÌÌ˚È „Ëθ·ÂÚÓ‚ÓÈ ÔÓÂÍÚË‚ÌÓÈ ÏÂÚËÍÓÈ, ËÁÓÏÂÚ˘ÂÌ ÌÓÏËÓ‚‡ÌÌÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û, ÍÓÚÓÓ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÔÎÓÒÍÓÂ.
ÖÒÎË ‚ÁflÚ¸ Á‡ÏÍÌÛÚ˚È ÍÓÌÛÒ ë ‚ n Ò ÌÂÔÛÒÚÓÈ ‚ÌÛÚÂÌÌÓÒÚ¸˛, ÚÓ ‚ÌÛÚÂÌÌÓÒÚ¸
ÍÓÌÛÒ‡ intC ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË Mn . ÖÒÎË ‰Îfl β·Ó„Ó
͇҇ÚÂθÌÓ„Ó ‚ÂÍÚÓ‡ v ∈ T p (M n ) Á‡‰‡Ì‡ ÔÓÎÛÌÓχ || v || Hp = m( p, v) − m( v, p), ÚÓ
‰ÎËÌa β·ÓÈ ÍÛÒÓ˜ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓÈ ÍË‚ÓÈ γ : [0, 1] → M n ‡‚̇
1
l( γ ) =
∫
|| γ ′(t ) ||γH( t ) dt, a ‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë Û ‡‚ÌÓ infγl(γ), „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl
0
ÔÓ ‚ÒÂÏ Ú‡ÍËÏ ÍË‚˚Ï γ Ò γ(0) = ı Ë γ(1) = Û.
åÂÚË͇ ÅÛ¯ÂÎfl
ÇÓÁ¸ÏÂÏ ‚˚ÔÛÍÎ˚È ÍÓÌÛÒ ë ‚ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V. åÂÚn


| xi | = 1 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ β·ÓÏ
Ë͇ ÅÛ¯ÂÎfl ̇ ÏÌÓÊÂÒÚ‚Â S =  x ∈ C :


i =1
ÔÓÔÂ˜ÌÓÏ Ò˜ÂÌËË ÍÓÌÛÒ‡ ë) Á‡‰‡ÂÚÒfl ͇Í
∑
1 − m( x, y) ⋅ m( y, x )
1 + m( x, y) ⋅ m( y, x )
‰Îfl β·˚ı x, y ∈ S , „‰Â m( x, y) = inf{λ ∈ : y p
− λx}. àÏÂÌÌÓ, Ó̇ ‡‚̇
1
tg h  h( x, y) , „‰Â h – „Ëθ·ÂÚÓ‚‡ ÔÓÂÍÚ˂̇fl ÔÓÎÛÏÂÚË͇.
2

k-ÓËÂÌÚËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌËÂ
ëËÏÔÎˈˇθÌ˚È ÍÓÌÛÒ ë ‚ n ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÔÂÂÒ˜ÂÌË n (ÓÚÍ˚Ú˚ı ËÎË
Á‡ÏÍÌÛÚ˚ı) ÔÓÎÛÔÓÒÚ‡ÌÒÚ‚, ͇ʉ‡fl ËÁ ÓÔÓÌ˚ı ÔÎÓÒÍÓÒÚÂÈ ÍÓÚÓ˚ı ÔÓıÓ‰ËÚ
˜ÂÂÁ ̇˜‡ÎÓ ÍÓÓ‰Ë̇Ú. ÑÎfl β·Ó„Ó ÏÌÓÊÂÒÚ‚‡ ï, ÒÓÒÚÓfl˘Â„Ó ËÁ n ÚÓ˜ÂÍ Ì‡
‰ËÌ˘ÌÓÈ ÒÙÂÂ, ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌ˚È ÒËÏÔÎˈˇθÌ˚È ÍÓÌÛÒ ë, ÒÓ‰Âʇ˘ËÈ
‚Ò ˝ÚË ÚÓ˜ÍË. éÒË ÍÓÌÛÒ‡ ë – n ÎÛ˜ÂÈ, „‰Â ͇ʉ˚È ÎÛ˜ ËÒıÓ‰ËÚ ËÁ ̇˜‡Î‡ ÍÓÓ‰ËÌ‡Ú Ë ÒÓ‰ÂÊËÚ Ó‰ÌÛ ËÁ ÚÓ˜ÂÍ ÏÌÓÊÂÒÚ‚‡ ï.
164
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ÑÎfl ‡Á·ËÂÌËfl {C1,..., Ck} ÔÓÒÚ‡ÌÒÚ‚‡ n ̇ ÏÌÓÊÂÒÚ‚Ó ÒËÏÔÎˈˇθÌ˚ı ÍÓÌÛÒÓ‚ C 1 ,..., Ck k-ÓËÂÌÚËÓ‚‡ÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ n, Á‡‰‡Ì̇fl ͇Í
dk(x – y)
‰Îfl ‚ÒÂı x, y ∈ n, „‰Â ‰Îfl β·Ó„Ó x ∈ Ci Á̇˜ÂÌË dk(x) ÂÒÚ¸ ‰ÎË̇ ̇ËÍ‡Ú˜‡È¯Â„Ó
ÔÛÚË ÓÚ Ì‡˜‡Î‡ ÍÓÓ‰ËÌ‡Ú ‰Ó ÚÓ˜ÍË ı ÔË ÔÂÂÏ¢ÂÌËË ÚÓθÍÓ ÔÓ Ì‡Ô‡‚ÎÂÌËflÏ,
Ô‡‡ÎÎÂθÌ˚Ï ÓÒflÏ ÍÓÌÛÒ‡ ë.
åÂÚËÍË ÍÓÌÛÒ‡
äÓÌÛÒÓÏ Con(X, d) ̇‰ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (X, d) ̇Á˚‚‡ÂÚÒfl Ù‡ÍÚÓÔÓËÁ‚‰ÂÌË X × ≥0 , ÔÓÎÛ˜ÂÌÌÓ ÓÚÓʉÂÒÚ‚ÎÂÌËÂÏ ‚ÒÂı ÚÓ˜ÂÍ ÌËÚË X × {0}.
íӘ͇, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÌÓÊÂÒÚ‚Û X × {0}, ̇Á˚‚‡ÂÚÒfl ‚Â¯ËÌÓÈ ÍÓÌÛÒ‡.
åÂÚË͇ ‚ÍÎˉӂ‡ ÍÓÌÛÒ‡ – ÏÂÚË͇ ̇ Con(X), Á‡‰‡Ì̇fl ‰Îfl β·˚ı (x, y),
(y, s) ∈ Con(X, d) ͇Í
t 2 + s 2 − 2ts cos(min{d ( x, y), π}).
äÓÌÛÒ Con(X, d) Ò ˝ÚÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ‚ÍÎˉӂ˚Ï ÍÓÌÛÒÓÏ Ì‡‰ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (X, d).
ÖÒÎË (X, d) – ÍÓÏÔ‡ÍÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‰Ë‡ÏÂÚ‡ <2, ÚÓ ÏÂÚËÍÓÈ
ä‡ÍÛÒ‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ Con(X, d), ÓÔ‰ÂÎflÂχfl ‰Îfl β·˚ı (x, y) ,
(y, s) ∈ Con(X, d) ͇Í
min{s, t}d(x, y) + | t – s |.
äÓÌÛÒ Con(X, d) Ò ÏÂÚËÍÓÈ ä‡ÍÛÒ‡ ‰ÓÔÛÒ͇ÂÚ ÒÛ˘ÂÒÚ‚Ó‚‡ÌË ‰ËÌÒÚ‚ÂÌÌÓÈ
Ò‰ËÌÌÓÈ ÚÓ˜ÍË ‰Îfl ͇ʉÓÈ Ô‡˚ Â„Ó ÚÓ˜ÂÍ, ÂÒÎË (X, d) ӷ·‰‡ÂÚ Ú‡ÍËÏ Ò‚ÓÈÒÚ‚ÓÏ.
ÖÒÎË M n fl‚ÎflÂÚcfl ÏÌÓ„ÓÓ·‡ÁËÂÏ Ò (ÔÒ‚‰Ó)ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ g, ÚÓ ÏÓÊÌÓ
1
‡ÒÒχÚË‚‡Ú¸ ÏÂÚËÍÛ dr2 + r 2 g (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÂÚËÍÛ dr 2 + r 2 g, k ≠ 0) ̇
k
Con(Mn ) = Mn × >0.
åÂÚË͇ ‚Á‚ÂÒË
ëÙÂ˘ÂÒÍËÈ ÍÓÌÛÒ (ËÎË ‚Á‚ÂÒ¸) Σ(X) ̇‰ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (X, d) ÂÒÚ¸
Ù‡ÍÚÓ-ÔÓËÁ‚‰ÂÌË X × [0, a], ÔÓÎÛ˜ÂÌÌÓ ÓÚÓʉÂÒÚ‚ÎÂÌËÂÏ ‚ÒÂı ÚÓ˜ÂÍ ÌËÚÂÈ
X × {0} Ë X × {a}.
ÖÒÎË (X, d) fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰ÎËÌ˚ c ‰Ë‡ÏÂÚÓÏ diam(X) ≤ π Ë a = π, ÚÓ
ÏÂÚËÍÓÈ ‚Á‚ÂÒË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ Σ(X), Á‡‰‡Ì̇fl ‰Îfl β·˚ı (x, y), y, s) ∈ Σ(X)
͇Í
arccos(costcoss + sintsinscosd(x, y)).
9.3. êÄëëíéüçàü çÄ ëàåèãàñàÄãúçõï äéåèãÖäëÄï
r-åÂÌ˚È ÒËÏÔÎÂÍÒ (ËÎË „ÂÓÏÂÚ˘ÂÒÍËÈ ÒËÏÔÎÂÍÒ, „ËÔÂÚÂÚ‡˝‰) Ô‰ÒÚ‡‚ÎflÂÚ
ÒÓ·ÓÈ ‚˚ÔÛÍÎÛ˛ Ó·ÓÎÓ˜ÍÛ r + 1 ÚÓ˜ÂÍ ËÁ n, ÍÓÚÓ˚ Ì ÔË̇‰ÎÂÊ‡Ú ÌË͇ÍÓÈ
(r – 1)-ÔÎÓÒÍÓÒÚË. ëËÏÔÎÂÍÒ ÔÓÎÛ˜ËÎ Ò‚Ó ̇Á‚‡ÌË ÔÓÚÓÏÛ, ˜ÚÓ Ó·ÓÁ̇˜‡ÂÚ ÔÓÒÚÂȯËÈ ‚ÓÁÏÓÊÌ˚È ‚˚ÔÛÍÎ˚È ÏÌÓ„Ó„‡ÌÌËÍ ‚ β·ÓÏ Á‡‰‡ÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â.
r (r + 1)
É‡Ìˈ‡ r-ÒËÏÔÎÂÍÒ‡ ËÏÂÂÚ r + 1 0-„‡ÌÂÈ (‚Â¯ËÌ ÏÌÓ„Ó„‡ÌÌË͇),
12
165
É·‚‡ 9. ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı, ÍÓÌÛÒ‡ı Ë ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı
 r + 1
 r
„‡ÌÂÈ (·Â ÏÌÓ„Ó„‡ÌÌË͇) Ë 
 i-„‡ÌÂÈ, „‰Â   – ·ËÌÓÏˇθÌ˚È ÍÓ˝Ù i + 1
 i
ÙˈËÂÌÚ. ÇÏÂÒÚËÏÓÒÚ¸ (Ú.Â. ÏÌÓ„ÓÏÂÌ˚È Ó·˙eÏ) ÒËÏÔÎÂÍÒ‡ ÏÓÊÂÚ ·˚Ú¸ ‚˚˜ËÒÎÂ̇ Ò ÔÓÏÓ˘¸˛ ÓÔ‰ÂÎËÚÂÎfl ä˝ÎË–åÂÌ„Â‡. è‡‚ËθÌ˚È r-ÏÂÌ˚È ÒËÏÔÎÂÍÒ
Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í αr.
ÉÛ·Ó „Ó‚Ófl, „ÂÓÏÂÚ˘ÂÒÍËÈ ÒËÏÔÎˈˇθÌ˚È ÍÓÏÔÎÂÍÒ – ÔÓÒÚ‡ÌÒÚ‚Ó Ò
Úˇ̄ÛÎflˆËÂÈ, Ú.Â. ‡Á·ËÂÌËÂÏ Â„Ó Ì‡ Á‡ÏÍÌÛÚ˚ ÒËÏÔÎÂÍÒ˚ Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ
β·˚ ‰‚‡ ÒËÏÔÎÂÍÒ‡ ÎË·Ó ‚ÓÓ·˘Â Ì ÔÂÂÒÂ͇˛ÚÒfl, ÎË·Ó ÔÂÂÒÂ͇˛ÚÒfl ÔÓ Ó·˘ÂÈ
„‡ÌË.
Ä·ÒÚ‡ÍÚÌ˚È ÒËÏÔÎˈˇθÌ˚È ÍÓÏÔÎÂÍÒ S – ÏÌÓÊÂÒÚ‚Ó Ò ˝ÎÂÏÂÌÚ‡ÏË, ̇Á˚‚‡ÂÏ˚ÏË ‚Â¯Ë̇ÏË, ‚ ÍÓÚÓ˚ı ‚˚‰ÂÎÂÌÓ ÒÂÏÂÈÒÚ‚Ó ÌÂÔÛÒÚ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚, ̇Á˚‚‡ÂÏ˚ı ÒËÏÔÎÂÍÒ‡ÏË, Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ Í‡Ê‰Ó ÌÂÔÛÒÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÒËÏÔÎÂÍÒ‡ s fl‚ÎflÂÚÒfl ÒËÏÔÎÂÍÒÓÏ, ̇Á˚‚‡ÂÏ˚Ï „‡Ì¸˛ s, Ë Í‡Ê‰Ó ӉÌÓ˝ÎÂÏÂÌÚÌÓÂ
ÔÓ‰ÏÌÓÊÂÒÚ‚Ó fl‚ÎflÂÚÒfl ÒËÏÔÎÂÍÒÓÏ. ëËÏÔÎÂÍÒ Ì‡Á˚‚‡ÂÚÒfl i-ÏÂÌ˚Ï, ÂÒÎË ÒÓÒÚÓËÚ
ËÁ i + 1 ‚Â¯ËÌ. ê‡ÁÏÂÌÓÒÚ¸˛ S fl‚ÎflÂÚÒfl χÍÒËχθ̇fl ‡ÁÏÂÌÓÒÚ¸ Â„Ó ÒËÏÔÎÂÍÒÓ‚. ÑÎfl Í‡Ê‰Ó„Ó ÒËÏÔÎˈˇθÌÓ„Ó ÍÓÏÔÎÂÍÒ‡ S ÒÛ˘ÂÒÚ‚ÛÂÚ Úˇ̄ÛÎflˆËfl ÏÌÓ„Ó„‡ÌÌË͇, ‰Îfl ÍÓÚÓÓÈ S fl‚ÎflÂÚÒfl ÒËÏÔÎˈˇθÌ˚Ï ÍÓÏÔÎÂÍÒÓÏ. í‡ÍÓÈ „ÂÓÏÂÚ˘ÂÒÍËÈ ÒËÏÔÎˈˇθÌ˚È ÍÓÏÔÎÂÍÒ Ó·ÓÁ̇˜‡ÂÚÒfl GS Ë Ì‡Á˚‚‡ÂÚÒfl „ÂÓÏÂÚ˘ÂÒÍÓÈ ‡ÎËÁ‡ˆËÂÈ S.
ëËÏÔÎˈˇθ̇fl ÏÂÚË͇
èÛÒÚ¸ S – ‡·ÒÚ‡ÍÚÌ˚È ÒËÏÔÎˈˇθÌ˚È ÍÓÏÔÎÂÍÒ Ë GS – „ÂÓÏÂÚ˘ÂÒÍËÈ ÒËÏÔÎˈˇθÌ˚È ÍÓÏÔÎÂÍÒ, fl‚Îfl˛˘ËÈÒfl „ÂÓÏÂÚ˘ÂÒÍÓÈ ‡ÎËÁ‡ˆËÂÈ S. íÓ˜ÍË GS
ÏÓÊÌÓ ÓÚÓʉÂÒÚ‚ËÚ¸ Ò ÙÛÌ͈ËflÏË α: S → [0, 1], ‰Îfl ÍÓÚÓ˚ı ÏÌÓÊÂÒÚ‚Ó
{x ∈ S: α(x) ≠ 0} fl‚ÎflÂÚÒfl ÒËÏÔÎÂÍÒÓÏ ‚ S Ë
α( x ) = 1. óËÒÎÓ α(x) ̇Á˚‚‡ÂÚÒfl ı-È
∑
x ∈S
·‡ˈÂÌÚ˘ÂÒÍÓÈ ÍÓÓ‰Ë̇ÚÓÈ α.
ëËÏÔÎˈˇθ̇fl ÏÂÚË͇ – ÏÂÚË͇, Á‡‰‡Ì̇fl ̇ GS ͇Í
∑
(α( x ) − β( x ))2 .
x ∈S
åÌÓ„Ó„‡Ì̇fl ÏÂÚË͇
åÌÓ„Ó„‡ÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ Ò‚flÁÌÓ„Ó „ÂÓÏÂÚ˘ÂÒÍÓ„Ó ÒËÏÔÎˈˇθÌÓ„Ó ÍÓÏÔÎÂÍÒ‡ ‚ n, ‚ ÍÓÚÓÓÏ ÓÚÓʉÂÒÚ‚ÎÂÌÌ˚ „‡Ìˈ˚
ËÁÓÏÂÚ˘Ì˚ àÏÂÌÌÓ, Ó̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ‚ÒÂı ÎÓχÌ˚ı ÎËÌËÈ,
ÒÓ‰ËÌfl˛˘Ëı ÚÓ˜ÍË ı Ë Û Ú‡Í, ˜ÚÓ Í‡Ê‰Ó ËÁ Á‚Â̸‚ ÔË̇‰ÎÂÊËÚ Ó‰ÌÓÏÛ ËÁ
ÒËÏÔÎÂÍÒÓ‚.
èËÏÂÓÏ ÏÌÓ„Ó„‡ÌÌÓÈ ÏÂÚËÍË fl‚ÎflÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÔÓ‚ÂıÌÓÒÚË
ÏÌÓ„Ó„‡ÌÌË͇ ‚ n . åÌÓ„Ó„‡ÌÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ ̇ ÍÓÏÔÎÂÍÒÂ
ÒËÏÔÎÂÍÒÓ‚ ‚ ÔÓÒÚ‡ÌÒÚ‚Â ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÌÓ„Ó„‡ÌÌ˚Â
ÏÂÚËÍË ‡ÒÒχÚË‚‡˛ÚÒfl ‰Îfl ÍÓÏÔÎÂÍÒÓ‚, fl‚Îfl˛˘ËıÒfl ÏÌÓ„ÓÓ·‡ÁËflÏË ËÎË ÏÌÓ„ÓÓ·‡ÁËflÏË Ò Í‡ÂÏ.
åÂÚË͇ ÔÓÎË˝‰‡Î¸Ì˚ı ˆÂÔÂÈ
m
r-åÂ̇fl ÔÓÎË˝‰‡Î¸Ì‡fl ˆÂÔ¸ Ä ‚ n Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ‚˚‡ÊÂÌËÂÏ
∑ ditir ,
i =1
„‰Â ‰Îfl β·Ó„Ó i ‚Â΢Ë̇ tir fl‚ÎflÂÚÒfl r-ÏÂÌ˚Ï ÒËÏÔÎÂÍÒÓÏ ‚ n . É‡ÌˈÂÈ ˆÂÔË
166
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
fl‚ÎflÂÚÒfl ÎËÌÂÈ̇fl ÍÓÏ·Ë̇ˆËfl „‡Ìˈ ÒËÏÔÎÂÍÒÓ‚ ˆÂÔË. É‡ÌˈÂÈ r-ÏÂÌÓÈ ÔÓÎË˝‰‡Î¸ÌÓÈ ˆÂÔË fl‚ÎflÂÚÒfl (r – 1)-ÏÂ̇fl ˆÂÔ¸.
åÂÚËÍÓÈ ÔÓÎË˝‰‡Î¸Ì˚ı ˆÂÔÂÈ fl‚ÎflÂÚÒfl ÏÂÚË͇ ÌÓÏ˚
|| A – B ||
̇ ÏÌÓÊÂÒÚ‚Â Cr( n ) ‚ÒÂı r-ÏÂÌ˚ı ÔÓÎË˝‰‡Î¸Ì˚ı ˆÂÔÂÈ. Ç Í‡˜ÂÒÚ‚Â ÌÓÏ˚ ̇
C r( n ) ÏÓÊÂÚ ·˚Ú¸ ÔËÌflÚ‡.
m
1. å‡ÒÒ‡ ÔÓÎË˝‰‡Î¸ÌÓÈ ˆÂÔË, Ú.Â. | A |=
∑
| di | | tir |, „‰Â | t r | – Ó·˙ÂÏ Á‚Â̇ tir .
i =1
2. ÅÂÏÓθ̇fl ÌÓχ ÔÓÎË˝‰‡Î¸ÌÓÈ ˆÂÔË, Ú.Â. | A |b = inf D {| A − ∂D | + | D |}, „‰Â
| D | – χÒÒ‡ D , ∂D – „‡Ìˈ‡ D Ë ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ (r + 1)-ÏÂÌ˚Ï
ÔÓÎË˝‰‡Î¸Ì˚Ï ˆÂÔflÏ; ÔÓÔÓÎÌÂÌË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (Crb (n ), | ⋅ |b ) ·ÂÏÓθÌÓÈ ÌÓÏÓÈ fl‚ÎflÂÚÒfl ÒÂÔ‡‡·ÂθÌ˚Ï ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ó·ÓÁ̇˜‡ÂÏ˚Ï Í‡Í Crb (n ), Â„Ó ˝ÎÂÏÂÌÚ˚ ËÁ‚ÂÒÚÌ˚ Í‡Í r-ÏÂÌ˚ ·ÂÏÓθÌ˚ ÔÎÓÒÍË ˆÂÔË.
3. ÑËÂÁ̇fl ÌÓχ ÔÓÎË˝‰‡Î¸ÌÓÈ ˆÂÔË, Ú.Â.


b
| A | = inf 




m
∑
i =1
| di | | tir | | vi |
r +1
m
+
∑ di Tv tir
i =1
i
b
,



„‰Â | A | b – ·ÂÏÓθ̇fl ÌÓχ Ä Ë ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ Ò‰‚Ë„‡Ï v (Á‰ÂÒ¸ Tytr –
Á‚ÂÌÓ, ÔÓÎÛ˜ÂÌÌÓ ÔÂÂÏ¢ÂÌËÂÏ tr ̇ ‚ÂÍÚÓ v ‰ÎËÌ˚ | v |); ÔÓÔÓÎÌÂÌË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (Cr (n ),| ⋅ | # ) ‰ËÂÁÌÓÈ ÌÓÏÓÈ fl‚ÎflÂÚÒfl ÒÂÔ‡‡·ÂθÌ˚Ï ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ó·ÓÁ̇˜‡ÂÏ˚Ï Í‡Í Cr# (n ), Â„Ó ˝ÎÂÏÂÌÚ˚ ̇Á˚‚‡˛ÚÒfl
r-ÏÂÌ˚ÏË ‰ËÂÁÌ˚ÏË ÔÎÓÒÍËÏË ˆÂÔflÏË. ÅÂÏÓθ̇fl ˆÂÔ¸ ÍÓ̘ÌÓÈ Ï‡ÒÒ˚ fl‚ÎflÂÚÒfl
‰ËÂÁÌÓÈ. ÖÒÎË r = 0, ÚÓ | A |b =| A | # .
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓÎË˝‰‡Î¸Ì˚ı ÍÓˆÂÔÂÈ (Ú.Â. ÎËÌÂÈÌ˚ı ÙÛÌ͈ËÈ
ÔÓÎË˝‰‡Î¸Ì˚ı ˆÂÔÂÈ) ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡ÌÓ ‡Ì‡Îӄ˘Ì˚Ï ÒÔÓÒÓ·ÓÏ. Ç Í‡˜ÂÒÚ‚Â
ÌÓÏ˚ ÔÓÎË˝‰‡Î¸ÌÓÈ ÍÓˆÂÔË ï ÏÓÊÂÚ ·˚Ú¸ ÔËÌflÚ‡:
1. äÓχÒÒ‡ ÔÓÎË˝‰‡Î¸ÌÓÈ ÍÓˆÂÔË, Ú.Â. | X(A) , „‰Â ï(Ä) – Á̇˜ÂÌË ÍÓˆÂÔË ï ̇
ˆÂÔË Ä.
2. ÅÂÏÓθ̇fl ÍÓÌÓχ ÔÓÎË˝‰‡Î¸ÌÓÈ ÍÓˆÂÔË, Ú.Â. | X |b = sup| A| b =1{X ( A) | .
3. ÑËÂÁ̇fl ÍÓÌÓχ ÔÓÎË˝‰‡Î¸ÌÓÈ ÍÓˆÂÔË, Ú.Â. | X | # = sup| A| # =1 | X ( A) | .
ó‡ÒÚ¸ III
êÄëëíéüçàü
Ç äãÄëëàóÖëäéâ åÄíÖåÄíàäÖ
É·‚‡ 10
ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
10.1. åÖíêàäà çÄ ÉêìèèÄï
ÉÛÔÔÓÈ (G, ⋅, e) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó G Ò ·Ë̇ÌÓÈ ÓÔÂ‡ˆËÂÈ ⋅, ÍÓÚÓ‡fl ̇Á˚‚‡ÂÚÒfl „ÛÔÔÓ‚ÓÈ ÓÔÂ‡ˆËÂÈ, ÒÓ‚ÏÂÒÚÌÓ Û‰Ó‚ÎÂÚ‚Ófl˛˘Ë ˜ÂÚ˚ÂÏ ÙÛ̉‡ÏÂÌڇθÌ˚Ï Ò‚ÓÈÒÚ‚‡Ï Á‡Ï˚͇ÌËfl (x ⋅ y ∈ G ‰Îfl β·˚ı x, y ∈ G), ‡ÒÒӈˇÚË‚ÌÓÒÚË
(x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z ‰Îfl β·˚ı x, y, z ∈ G), ÒÛ˘ÂÒÚ‚Ó‚‡ÌËfl ‰ËÌ˘ÌÓ„Ó ˝ÎÂÏÂÌÚ‡
(x ⋅ e = e ⋅ x = x ‰Îfl β·Ó„Ó x ∈ G ) Ë ÒÛ˘ÂÒÚ‚Ó‚‡ÌËfl Ó·‡ÚÌÓ„Ó ˝ÎÂÏÂÌÚ‡ (‰Îfl
β·Ó„Ó x ∈ G ÒÛ˘ÂÒÚ‚ÛÂÚ x–1 ∈ G, Ú‡ÍÓÈ ˜ÚÓ x ⋅ x–1 = x–1 ⋅ x = e). Ç ‡‰‰ËÚË‚ÌÓÈ ÙÓÏÂ
Á‡ÔËÒË „ÛÔÔ‡ (G, +, 0) fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ G Ò Ú‡ÍÓÈ ·Ë̇ÌÓÈ ÓÔÂ‡ˆËÂÈ +, ˜ÚÓ
ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: x + y ∈ G ‰Îfl β·˚ı x, y ∈ G , x + (y + z) =
= (x + y) + z ‰Îfl β·˚ı x, y, z ∈ G, x + 0 = 0 + x ‰Îfl β·Ó„Ó x ∈ G, ‰Îfl β·Ó„Ó x ∈ G
ÒÛ˘ÂÒÚ‚ÛÂÚ –x ∈ G, Ú‡ÍÓÈ ˜ÚÓ x + (–x) = (–x) + x = 0. ÉÛÔÔ‡ (G, ⋅, e) ̇Á˚‚‡ÂÚÒfl
ÍÓ̘ÌÓÈ, ÂÒÎË ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó G. ÉÛÔÔ‡ (G, ⋅, e) ̇Á˚‚‡ÂÚÒfl ‡·Â΂ÓÈ, ÂÒÎË
Ó̇ ÍÓÏÏÛÚ‡Ú˂̇, Ú.Â. ‡‚ÂÌÒÚ‚Ó x ⋅ y = y ⋅ x ÒÔ‡‚‰ÎË‚Ó ‰Îfl β·˚ı x, y ∈ G.
åÌÓ„Ë ËÁ ‡ÒÒχÚË‚‡ÂÏ˚ı ‚ ‰‡ÌÌÓÏ ‡Á‰ÂΠÏÂÚËÍ fl‚Îfl˛ÚÒfl ÏÂÚËÍÓÈ
ÌÓÏ˚ „ÛÔÔ˚ ̇ „ÛÔÔ (G, ⋅, e), Á‡‰‡ÌÌÓÈ Í‡Í
|| x ⋅ y–1 ||
–1
(ËÎË, ËÌÓ„‰‡, Í‡Í || y ⋅ x ||), „‰Â || ⋅ || – ÌÓχ „ÛÔÔ˚, Ú.Â. ÙÛÌ͈Ëfl || ⋅ ||: G → , ڇ͇fl
˜ÚÓ ‰Îfl β·˚ı x, y ∈ G ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡:
1) || x || ≥ 0, Ò || x || = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = e;
2) || x || = || x–1 ||;
3) || x ⋅ y || ≤ || x || + | y || (ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇).
Ç ‡‰‰ËÚË‚ÌÓÈ ÙÓÏ Á‡ÔËÒË ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ „ÛÔÔ (G, +, 0) ÓÔ‰ÂÎflÂÚÒfl Í‡Í || x + (–y) || = || x – y || ËÎË ËÌÓ„‰‡ Í‡Í || (–y) + x ||.
èÓÒÚÂȯËÏ ÔËÏÂÓÏ ÏÂÚËÍË ÌÓÏ˚ „ÛÔÔ˚ fl‚ÎflÂÚÒfl ·ËËÌ‚‡ˇÌÚ̇fl ÛθÚ‡ÏÂÚË͇ (ËÌÓ„‰‡  ̇Á˚‚‡˛Ú ı˝ÏÏËÌ„Ó‚ÓÈ ÏÂÚËÍÓÈ) || x ⋅ y–1 ||H, „‰Â || x ||H = 1
‰Îfl x ≠ e Ë || e ||H = 0.
ÅËËÌ‚‡ˇÌÚ̇fl ÏÂÚË͇
åÂÚË͇ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â – ÔÓÎÛÏÂÚË͇) d ̇ „ÛÔÔ (G , ⋅ , e) ̇Á˚‚‡ÂÚÒfl
·ËËÌ‚‡ˇÌÚÌÓÈ, ÂÒÎË ‡‚ÂÌÒÚ‚Ó
d(x, y) = d(x ⋅ z, y ⋅ z) = d(z ⋅ x, z ⋅ y)
ÒÔ‡‚‰ÎË‚Ó ‰Îfl β·˚ı x, y, z ∈ G (ÒÏ. àÌ‚‡ˇÌÚ̇fl ÏÂÚË͇ ÔÂÂÌÓÒ‡). ã˛·‡fl
ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ ‡·Â΂ÓÈ „ÛÔÔ fl‚ÎflÂÚÒfl ·Ë‚‡ˇÌÚÌÓÈ.
åÂÚË͇ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â – ÔÓÎÛÏÂÚË͇) d ̇ „ÛÔÔ (G, ⋅, e) ̇Á˚‚‡ÂÚÒfl Ô‡‚ÓËÌ‚‡ˇÌÚÌÓÈ, ÂÒÎË ‡‚ÂÌÒÚ‚Ó d(x, y) = d (z ⋅ x , z ⋅ y) ÒÔ‡‚‰ÎË‚Ó ‰Îfl β·˚ı
x, y, z ∈ G, Ú.Â. ÓÔÂ‡ˆËfl Ô‡‚Ó„Ó ÛÏÌÓÊÂÌËfl ̇ ˝ÎÂÏÂÌÚ z fl‚ÎflÂÚÒfl ‰‚ËÊÂÌËÂÏ
ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (G, d). ã˛·‡fl ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚, ÓÔ‰ÂÎflÂχfl
Í‡Í || x ⋅ y–1 ||, fl‚ÎflÂÚÒfl Ô‡‚ÓËÌ‚‡ˇÌÚÌÓÈ.
169
É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
åÂÚË͇ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â – ÔÓÎÛÏÂÚË͇) d ̇ „ÛÔÔ (G, ⋅, e) ̇Á˚‚‡ÂÚÒfl ΂ÓËÌ‚‡ˇÌÚÌÓÈ, ÂÒÎË ‡‚ÂÌÒÚ‚Ó d(x, y) = d (z ⋅ x , z ⋅ y) ÒÔ‡‚‰ÎË‚Ó ‰Îfl β·˚ı
x, y, z ∈ G, Ú.Â. ÓÔÂ‡ˆËfl ÎÂ‚Ó„Ó ÛÏÌÓÊÂÌËfl ̇ ˝ÎÂÏÂÌÚ z fl‚ÎflÂÚÒfl ‰‚ËÊÂÌËÂÏ
ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (G, d). ã˛·‡fl ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚, ÓÔ‰ÂÎflÂχfl
Í‡Í || y ⋅ x–1 ||, fl‚ÎflÂÚÒfl ΂ÓËÌ‚‡ˇÌÚÌÓÈ.
ã˛·‡fl Ô‡‚Ó‚‡ˇÌÚ̇fl, ‡‚ÌÓ Í‡Í Ë Î‚ÓËÌ‚‡ˇÌÚ̇fl, ‚ ˜‡ÒÚÌÓÒÚË, β·‡fl
·ËËÌ‚‡ˇÌÚ̇fl ÏÂÚË͇ d ̇ G fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÌÓÏ˚ „ÛÔÔ˚, ÔÓÒÍÓθÍÛ
ÌÓÏÛ „ÛÔÔ˚ ̇ G ÏÓÊÌÓ Á‡‰‡Ú¸ Í‡Í || x || = d(x, 0).
èÓÎÓÊËÚÂθÌÓ Ó‰ÌÓӉ̇fl ÏÂÚË͇
åÂÚË͇ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â – ‡ÒÒÚÓflÌËÂ) d ̇ ‡·Â΂ÓÈ „ÛÔÔ (G, +, 0) ̇Á˚‚‡ÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ Ó‰ÌÓÓ‰ÌÓÈ, ÂÒÎË ‡‚ÂÌÒÚ‚Ó
d(mx, my) = md(x, y)
ÒÔ‡‚‰ÎË‚Ó ‰Îfl ‚ÒÂı x, y ∈ G Ë ‚ÒÂı m ∈ , „‰Â mx – ÒÛÏχ m ˝ÎÂÏÂÌÚÓ‚, ͇ʉ˚È ËÁ
ÍÓÚÓ˚ı ‡‚ÂÌ ı.
ÑËÒÍÂÚ̇fl ÔÂÂÌÓÒ‡ ÏÂÚË͇
åÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â – ÔÓÎÛÏÂÚË͇ ÔÓÎÛÌÓÏ˚ „ÛÔÔ˚) ̇
„ÛÔÔ (G , ⋅ , e) ̇Á˚‚‡ÂÚÒfl ‰ËÒÍÂÚÌÓÈ ÏÂÚËÍÓÈ ÔÂÂÌÓÒ‡, ÂÒÎË ‡ÒÒÚÓflÌËfl
ÔÂÂÌÓÒ‡ (ËÎË ˜ËÒ· ÔÂÂÌÓÒ‡)
|| x n ||
n →∞
n
τ G ( x ) = lim
˝ÎÂÏÂÌÚÓ‚ ı ·ÂÁ ÍÛ˜ÂÌËfl (Ú.Â. Ú‡ÍËı, ˜ÚÓ xn ≠ e ‰Îfl β·Ó„Ó n ∈ ) ÔÓ ÓÚÌÓ¯ÂÌ˲ Í
˝ÚÓÈ ÏÂÚËÍ fl‚Îfl˛ÚÒfl ÓÚ‰ÂÎÂÌÌ˚ÏË ÓÚ ÌÛÎfl.
ÖÒÎË ˜ËÒ· τ G(x) fl‚Îfl˛ÚÒfl ÌÂÌÛ΂˚ÏË, ÚÓ Ú‡Í‡fl ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚
̇Á˚‚‡ÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌÓÈ ÏÂÚËÍÓÈ ÔÂÂÌÓÒ‡.
ëÎÓ‚‡̇fl ÏÂÚË͇
èÛÒÚ¸ (G, ⋅, e) – ÍÓ̘ÌÓ ÔÓÓʉÂÌ̇fl „ÛÔÔ‡ Ò ÏÌÓÊÂÒÚ‚ÓÏ Ä ÔÓÓʉ‡˛˘Ëı
˝ÎÂÏÂÌÚÓ‚. ëÎÓ‚‡̇fl ‰ÎË̇ wWA ( x ) ˝ÎÂÏÂÌÚ‡ x ∈ G\{e} ÓÔ‰ÂÎflÂÚÒfl ͇Í
wWA ( x ) = inf{r : x = a1a1 ...arar , ai ∈ A, ei ∈{±1}},
Ë wWA (e) = 0.
ëÎÓ‚‡̇fl ÏÂÚË͇ dWA , ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÌÓÊÂÒÚ‚Û Ä, ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚
„ÛÔÔ˚ ̇ G, ÓÔ‰ÂÎflÂχfl ͇Í
wWA ( x ⋅ y −1 ),
í‡Í Í‡Í ÒÎÓ‚‡̇fl ‰ÎË̇ wWA fl‚ÎflÂÚÒfl ÌÓÏÓÈ „ÛÔÔ˚ ̇ G, ÚÓ dWA Ô‡‚ÓËÌ‚‡ˇÌÚ̇. àÌÓ„‰‡ Ó̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í wWA ( y −1 ⋅ x ), Ë ÚÓ„‰‡ Ó̇ ÒÚ‡ÌÓ‚ËÚÒfl ΂ÓËÌ‚‡ˇÌÚÌÓÈ. àÏÂÌÌÓ, dWA – ˝ÚÓ Ï‡ÍÒËχθ̇fl ÏÂÚË͇ ̇ G, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl
Ô‡‚Ó‚‡ˇÌÚÌÓÈ Ë Ó·Î‡‰‡ÂÚ ÚÂÏ Ò‚ÓÈÒÚ‚ÓÏ, ˜ÚÓ ‡ÒÒÚÓflÌË ÓÚ Î˛·Ó„Ó ˝ÎÂÏÂÌÚ‡ ËÁ
Ä ËÎË ËÁ Ä–1 ‰Ó ‰ËÌ˘ÌÓ„Ó ˝ÎÂÏÂÌÚ‡  ‡‚ÌÓ Â‰ËÌˈÂ.
ÖÒÎË Ä Ë Ç – ‰‚‡ ÍÓ̘Ì˚ı ÏÌÓÊÂÒÚ‚‡ ÔÓÓʉ‡˛˘Ëı ˝ÎÂÏÂÌÚÓ‚ „ÛÔÔ˚ (G, ⋅, e),
ÚÓ ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌË ÏÂÊ‰Û ÏÂÚ˘ÂÒÍËÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË (G, dWA ) Ë
170
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
(G, dWB ) fl‚ÎflÂÚÒfl Í‚‡ÁËËÁÓÏÂÚËÂÈ, Ú.Â. ÒÎÓ‚‡̇fl ÏÂÚË͇ ‰ËÌÒÚ‚ÂÌa Ò ÚÓ˜ÌÓÒÚ¸˛
‰Ó Í‚‡ÁËËÁÓÏÂÚËË.
ëÎÓ‚‡̇fl ÏÂÚË͇ – ÏÂÚË͇ ÔÛÚË „‡Ù‡ ä˝ÎË É „ÛÔÔ˚ (G, ⋅, e), ÔÓÒÚÓÂÌÌÓ„Ó
ÓÚÌÓÒËÚÂθÌÓ Ä. àÏÂÌÌÓ, É fl‚ÎflÂÚÒfl „‡ÙÓÏ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ G, ‚ ÍÓÚÓÓÏ
‰‚ ‚Â¯ËÌ˚ ı Ë y ∈ G ÒÓ‰ËÌÂÌ˚ ·ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ y = aεx, ε = ±1,
a ∈ A.
ÇÁ‚¯ÂÌ̇fl ÒÎÓ‚‡̇fl ÏÂÚË͇
èÛÒÚ¸ (G, ⋅, e) – ÍÓ̘ÌÓ ÔÓÓʉÂÌ̇fl „ÛÔÔ‡ Ò ÏÌÓÊÂÒÚ‚ÓÏ Ä ÔÓÓʉ‡˛˘Ëı
˝ÎÂÏÂÌÚÓ‚. ÖÒÎË ËÏÂÂÚÒfl Ó„‡Ì˘ÂÌ̇fl ‚ÂÒÓ‚‡fl ÙÛÌ͈Ëfl w: A → (0, ∞ ), ÚÓ
A
‚Á‚¯ÂÌ̇fl ÒÎÓ‚‡̇fl ‰ÎË̇ wWW
( x ) ˝ÎÂÏÂÌÚ‡ x ∈ G\{e} ÓÔ‰ÂÎflÂÚÒfl ͇Í
 t

A
wWW
( x ) = inf 
w( ai ), t ∈ : x = a1e1 ...atet , ai ∈ A, ei ∈{±1} ,
 i =1

∑
A
Ë wWW
(e) = 0.
A
, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl Ä, ÂÒÚ¸ ÏÂÚË͇
ÇÁ‚¯ÂÌ̇fl ÒÎÓ‚‡̇fl ÏÂÚË͇ dWW
ÌÓÏ˚ „ÛÔÔ˚ ̇ G, ÓÔ‰ÂÎÂÌ̇fl ͇Í
A
( x ⋅ y −1 ).
wWW
A
èÓÒÍÓθÍÛ ‚Á‚¯ÂÌ̇fl ÒÎÓ‚‡̇fl ‰ÎË̇ wWW
fl‚ÎflÂÚÒfl ÌÓÏÓÈ „ÛÔÔ˚ ̇ G, ÚÓ
A
A
dWW
·Û‰ÂÚ Ô‡‚ÓËÌ‚‡ˇÌÚÌÓÈ. àÌÓ„‰‡ Ó̇ Á‡‰‡ÂÚÒfl Í‡Í wWW
( y −1 ⋅ x ) Ë ‚ ˝ÚÓÏ
ÒÎÛ˜‡Â Ó̇ fl‚ÎflÂÚÒfl ΂ÓËÌ‚‡ˇÌÚÌÓÈ.
A
åÂÚË͇ dWW
fl‚ÎflÂÚÒfl ÒÛÔÂÏÛÏÓÏ ÔÓÎÛÏÂÚËÍ d ̇ G, ӷ·‰‡˛˘Ëı Ò‚ÓÈÒÚ‚ÓÏ
d(e, a) ≤ w(a) ‰Îfl β·Ó„Ó a ∈ A.
A
åÂÚË͇ dWW
fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÛÔÓ˘ÂÌÌÓ„Ó ÔÛÚË, Ë Í‡Ê‰‡fl Ô‡‚ÓËÌ‚‡ˇÌÚ̇fl ÏÂÚË͇ ÛÔÓ˘ÂÌÌÓ„Ó ÔÛÚË fl‚ÎflÂÚÒfl ‚ÂÒÓ‚ÓÈ ÒÎÓ‚‡ÌÓÈ ÏÂÚËÍÓÈ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó „Û·ÓÈ ËÁÓÏÂÚËË.
A
åÂÚË͇ dWW
fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÔÛÚË ‚Á‚¯ÂÌÌÓ„Ó „‡Ù‡ ä˝ÎË ÉW „ÛÔÔ˚
(G, ⋅, e), ÔÓÒÚÓÂÌÌÓ„Ó ÓÚÌÓÒËÚÂθÌÓ Ä. àÏÂÌÌÓ, ÉW fl‚ÎflÂÚÒfl ‚Á‚¯ÂÌÌ˚Ï „‡ÙÓÏ Ò
ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ G, ‚ ÍÓÚÓÓÏ ‰‚ ‚Â¯ËÌ˚ ı Ë y ∈ G ÒÓ‰ËÌÂÌ˚ ·ÓÏ Ò
‚ÂÒÓÏ w(a) ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ y = aεx, ε = ±1, a ∈ A.
åÂÚË͇ ËÌÚÂ‚‡Î¸ÌÓÈ ÌÓÏ˚
åÂÚË͇ ËÌÚÂ‚‡Î¸ÌÓÈ ÌÓÏ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ ÍÓ̘ÌÓÈ „ÛÔÔÂ
(G, ⋅, e), ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x ⋅ y–1 || int,
„‰Â || ⋅ ||int – ËÌÚÂ‚‡Î¸Ì‡fl ÌÓχ ̇ G, Ú.Â. ڇ͇fl ÌÓχ „ÛÔÔ˚, ˜ÚÓ Á̇˜ÂÌËfl || ⋅ ||int
Ó·‡ÁÛ˛Ú ÏÌÓÊÂÒÚ‚Ó ÔÓÒΉӂ‡ÚÂθÌ˚ı ˆÂÎ˚ı ˜ËÒÂÎ, ̇˜Ë̇fl Ò 0.
ä‡Ê‰ÓÈ ËÌÚÂ‚‡Î¸ÌÓÈ ÌÓÏ || ⋅ ||int ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÛÔÓfl‰Ó˜ÂÌÌÓ ‡Á·ËÂÌËÂ
{B0 ,..., Bm} ÏÌÓÊÂÒÚ‚‡ G Ò Bi = {x ∈ G: || x ||int = i} (ÒÏ. ‡ÒÒÚÓflÌË ò‡χ–äÓ¯Â͇,
„Î. 16). çÓχ ï˝ÏÏËÌ„‡ Ë ÌÓχ ãË fl‚Îfl˛ÚÒfl ÓÒÓ·˚ÏË ÒÎÛ˜‡flÏË ËÌÚÂ‚‡Î¸ÌÓÈ
ÌÓÏ˚. é·Ó·˘ÂÌ̇fl ÌÓχ ãË – ËÌÚÂ‚‡Î¸Ì‡fl ÌÓχ, ‰Îfl ÍÓÚÓÓÈ Í‡Ê‰˚È Í·ÒÒ
ËÏÂÂÚ ÙÓÏÛ Bi = {a, a –1}.
171
É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
ë-ÏÂÚË͇
ë-ÏÂÚË͇ d – ÏÂÚË͇ ̇ „ÛÔÔ (G , ⋅ , e), Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÒÎÂ‰Û˛˘ËÏ
ÛÒÎÓ‚ËflÏ:
1) Á̇˜ÂÌËfl d Ó·‡ÁÛ˛Ú ÏÌÓÊÂÒÚ‚Ó ÔÓÒΉӂ‡ÚÂθÌ˚ı ˆÂÎ˚ı ˜ËÒÂÎ, ̇˜Ë̇fl Ò 0;
2) ͇‰Ë̇θÌÓ ˜ËÒÎÓ ÒÙÂ˚ S(x, r) = {y ∈ G: d(x, y) = r} Ì Á‡‚ËÒËÚ ÓÚ ‚˚·Ó‡
x ∈ G.
ëÎÓ‚‡̇fl ÏÂÚË͇, ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ Ë ÏÂÚË͇ ãË fl‚Îfl˛ÚÒfl ë-ÏÂÚË͇ÏË.
ã˛·‡fl ÏÂÚË͇ ËÌÚÂ‚‡Î¸ÌÓÈ ÌÓÏ˚ ÂÒÚ¸ ë-ÏÂÚË͇.
åÂÚË͇ ÌÓÏ˚ ÔÓfl‰Í‡
èÛÒÚ¸ (G, ⋅, e) – ÍÓ̘̇fl ‡·Â΂‡ „ÛÔÔ‡. èÛÒÚ¸ ord(x) – ÔÓfl‰ÓÍ ˝ÎÂÏÂÌÚ‡ x ∈ G,
Ú.Â. ̇ËÏÂ̸¯Â ÔÓÎÓÊËÚÂθÌÓ ˆÂÎÓ ˜ËÒÎÓ n, Ú‡ÍÓ ˜ÚÓ xn = e. íÓ„‰‡ ÙÛÌ͈Ëfl
|| ⋅ ||ord: G → , ÓÔ‰ÂÎÂÌ̇fl Í‡Í || ⋅ ||ord = lnord(x), fl‚ÎflÂÚÒfl ÌÓÏÓÈ „ÛÔÔ˚ ̇ G Ë
̇Á˚‚‡ÂÚÒfl ÌÓÏÓÈ ÔÓfl‰Í‡.
åÂÚË͇ ÌÓÏ˚ ÔÓfl‰Í‡ – ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ G, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x ⋅ y–1 || ord.
åÂÚË͇ ÌÓÏ˚ ÏÓÌÓÏÓÙËÁχ
èÛÒÚ¸ (G , +, 0) – „ÛÔÔa Ë (H , ⋅, e ) – „ÛÔÔa Ò ÌÓÏÓÈ „ÛÔÔ˚ || ⋅ ||H. èÛÒÚ¸ f:
G → H – ÏÓÌÓÏÓÙËÁÏ „ÛÔÔ G Ë H, Ú.Â. ËÌ˙ÂÍÚ˂̇fl ÙÛÌ͈Ëfl, ڇ͇fl ˜ÚÓ f(x + y) =
= f(x) ⋅ f(y ) ‰Îfl ‚ÒÂı x, y ∈ G . íÓ„‰‡ ÙÛÌ͈Ëfl || ⋅ ||Gf : G → , Á‡‰‡Ì̇fl ͇Í
|| x ||Gf =|| f ( x ) || H , fl‚ÎflÂÚÒfl ÌÓÏÓÈ „ÛÔÔ˚ ̇ G Ë Ì‡Á˚‚‡ÂÚÒfl ÌÓÏÓÈ ÏÓÌÓÏÓÙËÁχ.
åÂÚË͇ ÌÓÏ˚ ÏÓÌÓÏÓÙËÁχ – ÏÂÚËÍa ÌÓÏ˚ „ÛÔÔ˚ ̇ G, ÓÔ‰ÂÎflÂχfl ͇Í
|| x − y ||Gf .
åÂÚË͇ ÌÓÏ˚ ÔÓËÁ‚‰ÂÌËfl
èÛÒÚ¸ (G, +, 0) – „ÛÔÔa Ò ÌÓÏÓÈ „ÛÔÔ˚ || ⋅ ||G Ë (H , ⋅, e ) – „ÛÔÔa Ò ÌÓÏÓÈ
„ÛÔÔ˚ || ⋅ ||H. èÛÒÚ¸ G × H = {α = (x, y): x ∈ G, y ∈ H} – ‰Â͇ÚÓ‚Ó ÔÓËÁ‚‰ÂÌËÂ
G Ë H , Ë ÔÛÒÚ¸ (x, y) ⋅ (x, t) = (x + z, y ⋅ t). íÓ„‰‡ ÙÛÌ͈Ëfl || ⋅ ||G×H: G × H → ,
ÓÔ‰ÂÎÂÌ̇fl Í‡Í || α ||G × H =|| ( x, y) ||G × H =|| x ||G + || y || H , , ÂÒÚ¸ ÌÓχ „ÛÔÔ˚ ̇ G × H,
̇Á˚‚‡Âχfl ÌÓÏÓÈ ÔÓËÁ‚‰ÂÌËfl.
åÂÚË͇ ÌÓÏ˚ ÔÓËÁ‚‰ÂÌËfl ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| α ⋅ β −1 ||G × F .
ç‡ ‰Â͇ÚÓ‚ÓÏ ÔÓËÁ‚‰ÂÌËË G × H ‰‚Ûı ÍÓ̘Ì˚ı „ÛÔÔ Ò ËÌÚÂ‚‡Î¸Ì˚ÏË
int
ÌÓχÏË || ⋅ ||Gint Ë || ⋅ ||int
H ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì‡ ËÌÚÂ‚‡Î¸Ì‡fl ÌÓχ || ⋅ ||G × H . àÏÂÌÌÓ,
|| α ||Gint× H =|| ( x, y ||Gint× H =|| x ||G +( m + 1) || y || H , „‰Â m = max a ∈G || a ||Gint .
åÂÚË͇ Ù‡ÍÚÓ-ÌÓÏ˚
èÛÒÚ¸ (G, ⋅, e) – „ÛÔÔa Ò ÌÓÏÓÈ „ÛÔÔ˚ || ⋅ ||G Ë (H, ⋅, e) – ÌÓχθ̇fl ÔÓ‰„ÛÔÔ‡
„ÛÔÔ˚ (G, ⋅, e), xN = N x ‰Îfl β·˚ı x ∈ G. èÛÒÚ¸ (G/N, ⋅, eN) – Ù‡ÍÚÓ-„ÛÔÔ‡
„ÛÔÔ˚ G, Ú.Â. G/N = {xN: x ∈ G: Ò xN = {x ⋅ a: a ∈ N} Ë xN ⋅ yN = xyN. íÓ„‰‡ ÙÛÌ͈Ëfl
|| ⋅ ||G / N : G / N → , Á‡‰‡Ì̇fl Í‡Í || xN ||G / N = min || xa || X , – ÌÓÏa „ÛÔÔ˚ G/N ̇ Ë
a ∈N
̇Á˚‚‡Âχfl Ù‡ÍÚÓ-ÌÓÏÓÈ.
172
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
åÂÚË͇ Ù‡ÍÚÓ-ÌÓÏ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ G/N, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| xN ⋅ ( yN ) −1 ||G / N =|| xy −1 N ||G / N .
ÖÒÎË G = Ò ÌÓÏÓÈ, ‡‚ÌÓÈ ‡·ÒÓβÚÌÓÏÛ Á̇˜ÂÌ˲, Ë N = m , m ∈ , ÚÓ
Ù‡ÍÚÓ-ÌÓχ ̇ /m = m ÒÓ‚Ô‡‰‡ÂÚ Ò ÌÓÏÓÈ ãË.
ÖÒÎË ÏÂÚË͇ d ̇ „ÛÔÔ (G, ⋅, e) Ô‡‚ÓËÌ‚‡ˇÌÚÌa, ÚÓ ‰Îfl β·ÓÈ ÌÓχθÌÓÈ
ÔÓ‰„ÛÔÔ˚ (N, ⋅, e) „ÛÔÔ˚ (G , ⋅, e) ÏÂÚË͇ d ÔÓÓʉ‡ÂÚ Ô‡‚ÓËÌ‚‡ˇÌÚÌÛ˛
ÏÂÚËÍÛ (ËÏÂÌÌÓ, ı‡ÛÒ‰ÓÙÓ‚Û ÏÂÚËÍÛ) d* ̇ G/N ÔÓ Á‡ÍÓÌÛ


d ∗ ( xN , yN ) = max max min d ( a, b), max min d ( a, b) .
a ∈xN b ∈yN

b ∈yN a ∈xN
ê‡ÒÒÚÓflÌË ÍÓÏÏÛÚËÓ‚‡ÌËfl
èÛÒÚ¸ (G, ⋅, e) – ÍÓ̘̇fl ̇·Â΂‡ „ÛÔÔ‡. èÛÒÚ¸ Z(G) = {c ∈ G: x ⋅ c = c ⋅ x ‰Îfl
β·Ó„Ó z ∈ G} – ˆÂÌÚ G. É‡Ù ÍÓÏÏÛÚËÓ‚‡ÌËfl „ÛÔÔ˚ G ÓÔ‰ÂÎflÂÚÒfl Í‡Í „‡Ù
Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ G, ‚ ÍÓÚÓÓÏ ‡Á΢Ì˚ ˝ÎÂÏÂÌÚ˚ x, y ∈ G ÒÓ‰ËÌÂÌ˚
·ÓÏ ‚ÒflÍËÈ ‡Á, ÍÓ„‰‡ ÓÌË ÍÓÏÏÛÚËÛ˛Ú, Ú.Â. x ⋅ y = y ⋅ x. é˜Â‚ˉÌÓ, ˜ÚÓ Î˛·˚Â
‰‚‡ ‡Á΢Ì˚ı ˝ÎÂÏÂÌÚ‡ x, y ∈ G, ÍÓÚÓ˚ Ì ÍÓÏÏÛÚËÛ˛Ú, ‚ ‰‡ÌÌÓÏ „‡ÙÂ
ÒÓ‰ËÌÂÌ˚ ÔÛÚÂÏ x, c, y, „‰Â Ò – β·ÓÈ ˝ÎÂÏÂÌÚ ËÁ Z(G) (̇ÔËÏÂ, Â). èÛÚ¸ x = x1,
x2,..., x k = y ‚ „‡Ù ÍÓÏÏÛÚËÓ‚‡ÌËfl ̇Á˚‚‡ÂÚÒfl (x – y)N – ÔÛÚÂÏ, ÂÒÎË xi ∉ Z(G) ‰Îfl
β·Ó„Ó i ∈ {1,…, k}. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ˝ÎÂÏÂÌÚ˚ x, y ∈ G \Z(G) ̇Á˚‚‡˛ÚÒfl
N-ÒÓ‰ËÌÂÌÌ˚ÏË.
ê‡ÒÒÚÓflÌËÂÏ ÍÓÏÏÛÚËÓ‚‡ÌËfl (ÒÏ. [DeHu98]) d ̇Á˚‚‡ÂÚÒfl ‡Ò¯ËÂÌÌÓ ‡ÒÒÚÓflÌË ̇ G, Ú‡ÍÓ ˜ÚÓ ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl:
1) d(x, x) = 0;
2) d(x, x) = 1, ÂÒÎË x ≠ y Ë x ⋅ y = y ⋅ x;
3) d(x, x) fl‚ÎflÂÚÒfl ÏËÌËχθÌÓÈ ‰ÎËÌÓÈ (x – y)N-ÔÛÚË ‰Îfl β·˚ı N-ÒÓ‰ËÌÂÌÌ˚ı
˝ÎÂÏÂÌÚÓ‚ ı Ë y ∈ G\Z(G);
4) d(x, x) = ∞, ÂÒÎË x, y ∈ G\Z(G) Ì ÒÓ‰ËÌÂÌ˚ ÌË͇ÍËÏ N-ÔÛÚÂÏ.
åÓ‰ÛÎflÌÓ ‡ÒÒÚÓflÌËÂ
èÛÒÚ¸ (m, +, 0), m ≥ 2 – ÍÓ̘̇fl ˆËÍ΢ÂÒ͇fl „ÛÔÔ‡ Ë r ∈ , r ≥ 2. åÓ‰ÛÎflÌ˚È
r-‚ÂÒ wr (x) ˝ÎÂÏÂÌÚ‡ x ∈ m = {0, 1,…, m} ÓÔ‰ÂÎflÂÚÒfl Í‡Í w r(x) = min{w r(x),
w r(m – x)}, „‰Â wr(x) – ‡ËÙÏÂÚ˘ÂÒÍËÈ r-‚ÂÒ ˆÂÎÓ„Ó ˜ËÒ· ı. á̇˜ÂÌË w r(x) ÏÓÊÌÓ
ÔÓÎÛ˜ËÚ¸ Í‡Í ˜ËÒÎÓ ÌÂÌÛ΂˚ı ÍÓ˝ÙÙˈËÂÌÚÓ‚ ‚ Ó·Ó·˘ÂÌÌÓÈ ÌÂÒÏÂÊÌÓÈ ÙÓÏÂ
x = en r n + … + e1r + e0 Ò ei = , | ei |< r, | ei + ei +1 |< r Ë | ei |<| ei +1 |, ÂÒÎË ei ei +1 < 0
(ÒÏ. ÏÂÚË͇ ‡ËÙÏÂÚ˘ÂÒÍÓÈ r-ÌÓÏ˚, „Î. 12).
åÓ‰ÛÎflÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ m, ÓÔ‰ÂÎÂÌÌÓ ͇Í
w r(x – y).
åÓ‰ÛÎflÌÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‰Îfl w r(m) = 1, w r(m) = 2 Ë ‰Îfl
ÌÂÍÓÚÓ˚ı ÓÒÓ·˚ı ÒÎÛ˜‡Â‚ Ò wr(m) = 3 ËÎË 4. Ç ˜‡ÒÚÌÓÒÚË, ÓÌÓ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ
‰Îfl m = r n ËÎË m = rn – 1; ÂÒÎË r = 2, ÚÓ ÓÌÓ ·Û‰ÂÚ ÏÂÚËÍÓÈ Ë ‰Îfl m = 2n + 1
(ÒÏ., ̇ÔËÏÂ, [Ernv85]).
ç‡Ë·ÓΠÔÓÔÛÎflÌÓÈ ÏÂÚËÍÓÈ Ì‡ m fl‚ÎflÂÚÒfl ÏÂÚË͇ ãË, ÓÔ‰ÂÎflÂχfl ͇Í
|| x − y || Lee , „‰Â || x || Lee = min{x, m − x} – ÌÓχ ãË ˝ÎÂÏÂÌÚa x ∈ m.
åÂÚË͇ G-ÌÓÏ˚
ê‡ÒÒÏÓÚËÏ ÍÓ̘ÌÓ ÔÓΠFp n ‰Îfl ÔÓÒÚÓ„Ó ˜ËÒ·  Ë Ì‡ÚÛ‡Î¸ÌÓ„Ó ˜ËÒ· n.
173
É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
ÑÎfl ‰‡ÌÌÓ„Ó ÍÓÏÔ‡ÍÚÌÓ„Ó ‚˚ÔÛÍÎÓ„Ó ˆÂÌÚ‡Î¸ÌÓÒËÏÏÂÚ˘ÌÓ„Ó Ú· G ‚ ÓÔ‰ÂÎËÏ G-ÌÓÏÛ ˝ÎÂÏÂÌÚ‡ x ∈ Fp n Í‡Í || x ||G = inf{µ ≥ 0 : x ∈ p n + µG}.
n
åÂÚË͇ G-ÌÓÏ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ Fp n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x ⋅ y −1 ||G .
åÂÚË͇ ÌÓÏ˚ ÔÂÂÒÚ‡ÌÓ‚ÓÍ
ÇÓÁ¸ÏÂÏ ÍÓ̘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d). åÂÚËÍÓÈ ÌÓÏ˚ ÔÂÂÒÚ‡ÌÓ‚ÓÍ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ „ÛÔÔ (SymX , ⋅, id) ‚ÒÂı ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÏÌÓÊÂÒÚ‚‡ X (id – ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌËÂ), ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| f ⋅ g −1 ||Sym ,
„‰Â ÌÓχ „ÛÔÔ˚ || ⋅ ||Sym ̇ Sym X Á‡‰‡ÂÚÒfl Í‡Í || f ||Sym = max d ( x, f ( x )).
x ∈X
åÂÚË͇ ‰‚ËÊÂÌËÈ
èÛÒÚ¸ (X, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë p ∈ X – ÙËÍÒËÓ‚‡ÌÌ˚È
˝ÎÂÏÂÌÚ ËÁ ï.
åÂÚËÍÓÈ ‰‚ËÊÂÌËÈ (ÒÏ. [Buse55]) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ „ÛÔÔ (Ω, ⋅, id) ‚ÒÂı
‰‚ËÊÂÌËÈ ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) (id – ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌËÂ), ÓÔ‰ÂÎÂÌ̇fl ͇Í
sup d ( f ( x ), g( x )) ⋅ e − d ( p, x )
x ∈X
‰Îfl β·˚ı f, g ∈ Ω (ÒÏ. ÅÛÁÂχÌÓ‚‡ ÏÂÚË͇ ÏÌÓÊÂÒÚ‚, „Î. 3). ÖÒÎË ÔÓÒÚ‡ÌÒÚ‚Ó
(X, d) Ó„‡Ì˘ÂÌÓ, ÚÓ ÔÓ‰Ó·ÌÛ˛ ÏÂÚËÍÛ Ì‡ Ω ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ͇Í
sup d ( f ( x ), g( x )).
x ∈X
ÑÎfl ÔÓÎÛÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ÔÓÎÛÏÂÚËÍÛ ‰‚ËÊÂÌËÈ Ì‡ (Ω, ⋅, id)
ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ͇Í
d(f(p), g(p)).
èÓÎÛÏÂÚË͇ Ó·˘ÂÈ ÎËÌÂÈÌÓÈ „ÛÔÔ˚
èÛÒÚ¸ – ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌӠ̉ËÒÍÂÚÌÓ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÎÂ. èÛÒÚ¸
( , ⋅ ) , n ≥ 2 – ÌÓÏËÓ‚‡ÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ . èÛÒÚ¸ || ⋅ || –
n
n
ÓÔÂ‡ÚÓ̇fl ÌÓχ, ‡ÒÒÓˆËËÓ‚‡Ì̇fl Ò ÌÓÏËÓ‚‡ÌÌ˚Ï ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ
( , ⋅ ) , Ë ÔÛÒÚ¸ GL(n, ) – Ó·˘‡fl ÎËÌÂÈ̇fl „ÛÔÔ‡ ̇‰ . íÓ„‰‡ ÙÛÌ͈Ëfl | ⋅ |
n
op:
n
GL(n, ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í | g |op = sup{| ln || g |||, | ln || g −1 |||}, fl‚ÎflÂÚÒfl ÔÓÎÛÌÓÏÓÈ
̇ GL(n, ).
èÓÎÛÏÂÚË͇ Ó·˘ÂÈ ÎËÌÂÈÌÓÈ „ÛÔÔ˚ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ̇ „ÛÔÔ GL(n , ),
Á‡‰‡Ì̇fl ͇Í
| g ⋅ h −1 |op .
é̇ fl‚ÎflÂÚÒfl Ô‡‚ÓËÌ‚‡ˇÌÚÌÓÈ ÔÓÎÛÏÂÚËÍÓÈ, ÍÓÚÓ‡fl ‰ËÌÒÚ‚ÂÌ̇ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó „Û·ÓÈ ËÁÓÏÂÚËË, ÔÓÒÍÓθÍÛ Î˛·˚ ‰‚ ÌÓÏ˚ ̇ fl‚Îfl˛ÚÒfl ·ËÎËÔ¯ËˆÂ‚Ó ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË.
174
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
èÓÎÛÏÂÚË͇ Ó·Ó·˘ÂÌÌÓ„Ó ÚÓ‡
èÛÒÚ¸ (T, ⋅, e) – Ó·Ó·˘ÂÌÌ˚È ÚÓ, Ú.Â. ÚÓÔÓÎӄ˘ÂÒ͇fl „ÛÔÔ‡, ÍÓÚÓ‡fl ËÁÓÏÓÙ̇ ÔflÏÓÏÛ ÔÓËÁ‚‰ÂÌ˲ n ÏÛθÚËÔÎË͇ÚË‚Ì˚ı „ÛÔÔ i∗ ÎÓ͇θÌÓ ÍÓχÍÚÌ˚ı
̉ËÒÍÂÚÌ˚ı ÚÓÔÓÎӄ˘ÂÒÍËı ÔÓÎÂÈ i. íÓ„‰‡ ÒÛ˘ÂÒÚ‚ÛÂÚ ÒÓ·ÒÚ‚ÂÌÌ˚È ÌÂÔÂ˚‚Ì˚È „ÓÏÓÏÓÙÏËÁÏ v: T → n , ËÏÂÌÌÓ, v(x 1 ,…, x n ) = (v1 (x n )), „‰Â v1 : i∗ → fl‚Îfl˛ÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚ÏË ÌÂÔÂ˚‚Ì˚ÏË „ÓÏÓÏÓÙËÁχÏË ËÁ i∗ ‚ ‡‰‰ËÚË‚ÌÛ˛
„ÛÔÔÛ , Á‡‰‡ÌÌ˚ÏË Í‡Í ÎÓ„‡ËÙÏ ‚‡Î˛‡ˆËË. ÇÒflÍËÈ ‰Û„ÓÈ ÒÓ·ÒÚ‚ÂÌÌ˚È ÌÂÔÂ˚‚Ì˚È „ÓÏÓÏÓÙËÁÏ v⬘: T → n ËÏÂÂÚ ‚ˉ v⬘ = α ⋅ v Ò α ∈ GL(n, ). ÖÒÎË || ⋅ || fl‚ÎflÂÚÒfl ÌÓÏÓÈ Ì‡ n, ÚÓ ÔÓÎÛ˜‡ÂÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Û˛ ÔÓÎÛÌÓÏÛ || x ||T =|| v( x ) || ̇ T.
èÓÎÛÏÂÚË͇ Ó·Ó·˘ÂÌÌÓ„Ó ÚÓ‡ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ̇ „ÛÔÔ (T, ⋅, e ), ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| xy −1 ||T = || v( xy −1 ) || = || v( x ) − v( y) || .
åÂÚË͇ ÉÂÈÁÂÌ·Â„‡
èÛÒÚ¸ (H, ⋅, e) – ÔÂ‚‡fl „ÂÈÁÂÌ·Â„Ó‚‡ „ÛÔÔ‡, Ú.Â. „ÛÔÔ‡ ̇ ÏÌÓÊÂÒÚ‚Â H = ⊗ Ò „ÛÔÔÓ‚˚Ï Á‡ÍÓÌÓÏ x ⋅ y = ( z, t ) ⋅ (u, s) = ( z + u, t + s + 2( zu )) Ë Â‰ËÌ˘Ì˚Ï ˝ÎÂÏÂÌÚÓÏ e = (0, 0). èÛÒÚ¸ | ⋅ |Heis – „ÂÈÁÂÌ·Â„Ó‚‡ ÌÓχ ̇ ç, ÓÔ‰ÂÎÂÌ̇fl ͇Í
| x |Heis = | ( z, t ) |Heis = (| z |4 +t 2 )1 / 4 .
åÂÚË͇ ÉÂÈÁÂÌ·Â„‡ (ËÎË ÏÂÚË͇ ¯‡·ÎÓ̇, ÏÂÚË͇ äÓ‡Ì¸Ë) dHeis ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ ç, ÓÔ‰ÂÎÂÌ̇fl ͇Í
| x −1 ⋅ y | H .
ÑÛ„‡fl ÂÒÚÂÒÚ‚ÂÌ̇fl ÏÂÚË͇ ̇ (H, ⋅, e) – ÏÂÚË͇ ä‡ÌÓ–ä‡‡ÚÂÓ‰ÓË (ËÎË ë-ë
ÏÂÚË͇, ÍÓÌÚÓθ̇fl ÏÂÚË͇) d C , ÓÔ‰ÂÎflÂχfl Í‡Í ‚ÌÛÚÂÌÌflfl ÏÂÚË͇
Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ „ÓËÁÓÌڇθÌ˚ı ‚ÂÍÚÓÌ˚ı ÔÓÎÂÈ Ì‡ ç. åÂÚËÍË dHeis Ë dC
1
fl‚Îfl˛ÚÒfl ·ËÎËÔ¯ËˆÂ‚Ó ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË; ËÏÂÌÌÓ,
dHeis ( x, y) ≤ dC ( x, y) ≤
π
≤ dHeis ( x, y).
åÂÚËÍÛ ÉÂÈÁÂÌ·Â„‡ ÏÓÊÌÓ Á‡‰‡Ú¸ ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ Ì‡ β·ÓÈ „ÂÈÁÂÌ·Â„Ó‚ÓÈ „ÛÔÔ (H n , ⋅, e) Ò Hn = n ⊗ .
åÂÚË͇ ÏÂÊ‰Û ËÌÚÂ‚‡Î‡ÏË
èÛÒÚ¸ G – ÏÌÓÊÂÒÚ‚Ó ËÌÚÂ‚‡ÎÓ‚ [a, b] ËÁ . åÌÓÊÂÒÚ‚Ó G Ó·‡ÁÛÂÚ ÔÓÎÛ„ÛÔÔ˚
(G, +) Ë (G , ⋅) ÓÚÌÓÒËÚÂθÌÓ ÒÎÓÊÂÌËfl I + J = {x + y: x ∈ I, y ∈ J} Ë ÛÏÌÓÊÂÌËfl
I ⋅ J = {x ⋅ y: x ∈ I, y ∈ J} ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
åÂÚË͇ ÏÂÊ‰Û ËÌÚÂ‚‡Î‡ÏË – ÏÂÚË͇ ̇ G, Á‡‰‡Ì̇fl Í‡Í max{| I |, | J |} ‰Îfl
‚ÒÂı I, J ∈ G, „‰Â ‰Îfl I = [a, b] ËÏÂÂÏ | I | = | a − b | .
èÓÎÛÏÂÚË͇ ÍÓθˆ‡
èÛÒÚ¸ (A, +, ⋅) – Ù‡ÍÚÓˇθÌÓ ÍÓθˆÓ, Ú.Â. ÍÓθˆÓÏ, ‚ ÍÓÚÓÓÏ ‡ÁÎÓÊÂÌË ̇
ÏÌÓÊËÚÂÎË Â‰ËÌÒÚ‚ÂÌÌÓ. èÓÎÛÏÂÚËÍÓÈ ÍÓθˆ‡ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â A\{0}, ÓÔ‰ÂÎflÂχfl ͇Í
l.c.m.( x, y)
ln
,
g.c.d .( x, y)
„‰Â l.c.m.(x, y) – ̇ËÏÂ̸¯Â ӷ˘Â Í‡ÚÌÓÂ Ë g.c.d.(x, y) – ̇˷Óθ¯ËÈ Ó·˘ËÈ
‰ÂÎËÚÂθ ˝ÎÂÏÂÌÚÓ‚ x, y ∈ A\{0}.
É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
175
10.2. åÖíêàäà çÄ ÅàçÄêçõï éíçéòÖçàüï
ÅË̇ÌÓ ÓÚÌÓ¯ÂÌË R ̇ ÏÌÓÊÂÒÚ‚Â ï fl‚ÎflÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ X × X. éÌÓ
Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÏÌÓÊÂÒÚ‚Ó ‰Û„ Ó„‡Ù‡ (X, R) Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ ï.
ÅË̇ÌÓ ÓÚÌÓ¯ÂÌË R, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÒËÏÏÂÚ˘Ì˚Ï (ÂÒÎË (x, y) ∈ R, ÚÓ
(y, x) ∈ R), ÂÙÎÂÍÒË‚Ì˚Ï (‚Ò x, x) ∈ R Ë Ú‡ÌÁËÚË‚Ì˚Ï (ÂÒÎË (x, y), (y, z) ∈ R, ÚÓ
(x, z) ∈ R), ̇Á˚‚‡ÂÚÒfl ÓÚÌÓ¯ÂÌËÂÏ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ËÎË ‡Á·ËÂÌËÂÏ (ï ̇ Í·ÒÒ˚
˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË). ã˛·‡fl q-‡̇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ x = (x1,…, x n ), q ≥ 2 (Ú.Â.
0 ≤ xi ≤ q – 1 ‰Îfl 1 ≤ i ≤ n) ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡Á·ËÂÌ˲ {B0 ,…, bq–1} ÏÌÓÊÂÒÚ‚‡
V, = {1,…, n}, „‰Â Bj = {1 ≤ i ≤ n: xi = j} – Í·ÒÒ˚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË.
ÅË̇ÌÓ ÓÚÌÓ¯ÂÌË R, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ‡ÌÚËÒËÏÏÂÚ˘Ì˚Ï (ÂÒÎË (x, y), (y, x)
∈ R, ÚÓ x = y), ÂÙÎÂÍÒË‚Ì˚Ï Ë Ú‡ÌÁËÚË‚Ì˚Ï, ̇Á˚‚‡ÂÚÒfl ˜‡ÒÚ˘Ì˚Ï ÔÓfl‰ÍÓÏ,
‡ Ô‡‡ (X, R) ̇Á˚‚‡ÂÚÒfl ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ. ó‡ÒÚ˘Ì˚È ÔÓfl‰ÓÍ R ̇ X Ú‡ÍÊ ӷÓÁ̇˜‡ÂÚÒfl Í‡Í p
− Ò xp
− y ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡
p
(x, y) ∈ R. èÓfl‰ÓÍ − ̇Á˚‚‡ÂÚÒfl ÎËÌÂÈÌ˚Ï, ÂÒÎË Î˛·˚ ‰‚‡ ˝ÎÂÏÂÌÚ‡ x, y ∈ X
Ò‡‚ÌËÏ˚, Ú.Â. x p
− y ËÎË y p
− x.
ó‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ( L, p
− ) ̇Á˚‚‡ÂÚÒfl ¯ÂÚÍÓÈ, ÂÒÎË Í‡Ê‰˚Â
‰‚‡ ˝ÎÂÏÂÌÚ‡ x, y ∈ L ӷ·‰‡˛Ú Ó·˙‰ËÌÂÌËÂÏ x ∨ y Ë ÔÂÂÒ˜ÂÌËÂÏ x ∧ y. ÇÒÂ
‡Á·ËÂÌËfl ï Ó·‡ÁÛ˛Ú ¯ÂÚÍÛ ËÁÏÂθ˜ÂÌ˲; Ó̇ fl‚ÎflÂÚÒfl ÔÓ‰¯ÂÚÍÓÈ ¯ÂÚÍË
(ÔÓ ‚Íβ˜ÂÌ˲) ‚ÒÂı ·Ë̇Ì˚ı ÓÚÌÓ¯ÂÌËÈ.
ê‡ÒÒÚÓflÌË äÂÏÂÌË
ê‡ÒÒÚÓflÌË äÂÏÂÌË ÏÂÊ‰Û ·Ë̇Ì˚ÏË ÓÚÌÓ¯ÂÌËflÏË R1 Ë R2 ̇ ÏÌÓÊÂÒÚ‚Â ï
ÂÒÚ¸ ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ | R1∆R2 | . . éÌÓ ‚ 2 ‡Á‡ Ô‚˚¯‡ÂÚ ÏËÌËχθÌÓ ˜ËÒÎÓ
ËÌ‚ÂÒËÈ Ô‡ ÒÏÂÊÌ˚ı ˝ÎÂÏÂÌÚÓ‚ ËÁ ï, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl ÔÓÎÛ˜ÂÌËfl R2 ËÁ R1 .
ÖÒÎË R1 , R2 fl‚Îfl˛ÚÒfl ‡Á·ËÂÌËflÏË, ÚÓ ‡ÒÒÚÓflÌË äÂÏÂÌË ÒÓ‚Ô‡‰‡ÂÚ Ò ‡ÒÒÚÓfl| R ∆R |
ÌËÂÏ åËÍË̇–óÂÌÓ„Ó Ë 1 − 1 2 fl‚ÎflÂÚÒfl Ë̉ÂÍÒÓÏ ê˝Ì‰‡.
n(n − 1)
ÖÒÎË ·Ë̇Ì˚ ÓÚÌÓ¯ÂÌËfl R1 , R2 fl‚Îfl˛ÚÒfl ÎËÌÂÈÌ˚ÏË ÔÓfl‰Í‡ÏË (ËÎË ‡ÌÊËÓ‚‡ÌËflÏË, ÔÂÂÒÚ‡Ìӂ͇ÏË) ̇ ÏÌÓÊÂÒÚ‚Â ï, ÚÓ ‡ÒÒÚÓflÌË äÂÏÂÌË ÒÓ‚Ô‡‰‡ÂÚ Ò
ÏÂÚËÍÓÈ ËÌ‚ÂÒËË Ì‡ ÔÂÂÒÚ‡Ìӂ͇ı.
ê‡ÒÒÚÓflÌË Ñ‡Ô‡Î‡–äÂÔÍË ÏÂÊ‰Û ‡Á΢Ì˚ÏË Í‚‡ÁË„ÛÔÔ‡ÏË (X, +) Ë (X, ⋅)
ÓÔ‰ÂÎflÂÚÒfl Í‡Í | {( x, y) : x + y ≠ x ⋅ y} | .
åÂÚËÍË ÏÂÊ‰Û ‡Á·ËÂÌËflÏË
èÛÒÚ¸ ï – ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó Ò ˜ËÒÎÓÏ ˝ÎÂÏÂÌÚÓ‚ n = | X | Ë ÔÛÒÚ¸ Ä, Ç – ÌÂÔÛÒÚ˚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÏÌÓÊÂÒÚ‚‡ ï. èÛÒÚ¸ P X – ÏÌÓÊÂÒÚ‚Ó ‡Á·ËÂÌËÈ ï Ë P,
Q ∈ P X . èÛÒÚ¸ B1 ,…, B q – ·ÎÓÍË ‡Á·ËÂÌËfl ê, Ú.Â. ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl
ÏÌÓÊÂÒÚ‚‡, Ú‡ÍË ˜ÚÓ X = B1 ∪ …∪ Bq , q ≥ 2. èÛÒÚ¸ P ∨ Q ÂÒÚ¸ Ó·˙‰ËÌÂÌË ê Ë Q,
‡ P ∨ Q – ÔÂÂÒ˜ÂÌË ê Ë Q ‚ ¯ÂÚÍ ‡Á·ËÂÌËÈ ÏÌÓÊÂÒÚ‚‡ ï.
ê‡ÒÒÏÓÚËÏ ÒÎÂ‰Û˛˘Ë ÓÔÂ‡ˆËË ‰‡ÍÚËÓ‚‡ÌËfl ̇ ‡Á·ËÂÌËflı:
– ÔÓÔÓÎÌÂÌË ÔÂÓ·‡ÁÛÂÚ ‡Á·ËÂÌË ê ÏÌÓÊÂÒÚ‚‡ A\}B} ‚ ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡
Ä ÎË·Ó ‚Íβ˜ÂÌËÂÏ Ó·˙ÂÍÚÓ‚ ËÁ Ç ‚ ÌÂÍÓÚÓ˚È ·ÎÓÍ, ÎË·Ó ‚Íβ˜ÂÌËÂÏ Ò‡ÏÓ„Ó Ç ‚
͇˜ÂÒÚ‚Â ÌÓ‚Ó„Ó ·ÎÓ͇;
– Û‰‡ÎÂÌË ÔÂÓ·‡ÁÛÂÚ ‡Á·ËÂÌË ê ÏÌÓÊÂÒÚ‚‡ Ä ‚ ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡ A\{B}
ÔÓÒ‰ÒÚ‚ÓÏ Û‰‡ÎÂÌËfl Ó·˙ÂÍÚÓ‚ ËÁ Ç ËÁ Í‡Ê‰Ó„Ó ÒÓ‰Âʇ˘Â„Ó Ëı ·ÎÓ͇;
– ‰ÂÎÂÌË ÔÂÓ·‡ÁÛÂÚ Ó‰ÌÓ ‡Á·ËÂÌËÂ ê ‚ ‰Û„Ó ÔÓÒ‰ÒÚ‚ÓÏ Ó‰ÌÓ‚ÂÏÂÌÌÓ„Ó
Û‰‡ÎÂÌËfl Ç ËÁ Bi („‰Â B ⊂ Bi, B ≠ Bi) Ë ‰Ó·‡‚ÎÂÌËfl Ç Í‡Í ÌÓ‚Ó„Ó ·ÎÓ͇;
176
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
– Ó·˙‰ËÌÂÌË ÔÂÓ·‡ÁÛÂÚ Ó‰ÌÓ ‡Á·ËÂÌËÂ ê ‚ ‰Û„Ó ÔÓÒ‰ÒÚ‚ÓÏ Ó‰ÌÓ‚ÂÏÂÌÌÓ„Ó Û‰‡ÎÂÌËfl Ç ËÁ Bi („‰Â B = Bi) Ë ‰Ó·‡‚ÎÂÌËfl Ç ‚ Bj („‰Â j ≠ i);
– ÔÂÂÌÓÒ ÔÂÓ·‡ÁÛÂÚ Ó‰ÌÓ ‡Á·ËÂÌËÂ ê ‚ ‰Û„Ó ÔÓÒ‰ÒÚ‚ÓÏ Ó‰ÌÓ‚ÂÏÂÌÌÓ„Ó
Û‰‡ÎÂÌËfl Ç ËÁ Bi („‰Â B ⊂ Bi) Ë ‰Ó·‡‚ÎÂÌËfl Ç ‚ Bj („‰Â j ≠ i).
éÔ‰ÂÎËÏ (ÒÏ., ̇ÔËÏÂ, [Day81]) ÔËÏÂÌËÚÂθÌÓ Í ‚˚¯ÂÛ͇Á‡ÌÌ˚Ï ÓÔÂ‡ˆËflÏ ÒÎÂ‰Û˛˘Ë ÏÂÚËÍË ‰‡ÍÚËÓ‚‡ÌËfl ̇ PX:
1) ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ÔÓÔÓÎÌÂÌËÈ Ë Û‰‡ÎÂÌËÈ Â‰ËÌ˘Ì˚ı Ó·˙ÂÍÚÓ‚,
ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ê ‚ Q;
2) ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ‰ÂÎÂÌËÈ, Ó·˙‰ËÌÂÌËÈ Ë ÔÂÂÌÓÒÓ‚ ‰ËÌ˘Ì˚ı
Ó·˙ÂÍÚÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ê ‚ Q;
3) ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ‰ÂÎÂÌËÈ, Ó·˙‰ËÌÂÌËÈ Ë ÔÂÂÌÓÒÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı
‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ê ‚ Q;
4) ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ‰ÂÎÂÌËÈ Ë Ó·˙‰ËÌÂÌËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ê ‚ Q; ËÏÂÌÌÓ, ÓÌÓ ‡‚ÌÓ | P | + | Q | −2 | P ∨ Q |;
5) σ( P) + σ(Q) − 2σ( P ∧ Q), , „‰Â σ( P) =
| Pi | (| Pi | −1);
∑
Pu ∈P
6) e( P) + σ(Q) − 2e( P ∧ Q), „‰Â e( P) = log 2 n +
∑
Pi ∈P
| Pi |
|P |
log 2 i .
n
n
ê‡ÒÒÚÓflÌË êÂ̸ ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ ˝ÎÂÏÂÌÚÓ‚, ÍÓÚÓ˚ ÌÂÓ·ıÓ‰ËÏÓ
ÔÂÂÏÂÒÚËÚ¸ ÏÂÊ‰Û ·ÎÓ͇ÏË ‡Á·ËÂÌËfl ê Ò ÚÂÏ, ˜ÚÓ·˚ ÔÂÓ·‡ÁÓ‚‡Ú¸ Â„Ó ‚ Q
(ÒÏ. ê‡ÒÒÚÓflÌË ·Ûθ‰ÓÁÂ‡, „Î. 21 Ë ‚˚¯ÂÛ͇Á‡ÌÌÛ˛ ÏÂÚËÍÛ 2).
10.3. åÖíêàäà êÖòÖíéä
ÇÓÁ¸ÏÂÏ ˜‡ÒÚÓÚÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ( L, p
− ). èÂÂÒ˜ÂÌË (ËÎË ËÌÙËÏÛÏ)
x ∧ y (ÂÒÎË yj ÒÛ˘ÂÒÚ‚ÛÂÚ) ‰‚Ûı ˝ÎÂÏÂÌÚÓ‚ ı Ë Û fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌ˚Ï ˝ÎÂÏÂÌÚÓÏ,
Û‰Ó‚ÎÂÚ‚Ófl˛˘ËÏ ÛÒÎӂ˲ x ∧ y p
− x, y Ë z p
− x ∧ y, ÂÒÎË z p
− x, y. Ä̇Îӄ˘Ì˚Ï
Ó·‡ÁÓÏ Ó·˙‰ËÌÂÌË (ËÎË ÒÛÔÂÏÛÏ) x ∨ y (ÂÒÎË ÓÌÓ ÒÛ˘ÂÒÚ‚ÛÂÚ) fl‚ÎflÂÚÒfl
‰ËÌÒÚ‚ÂÌÌ˚Ï ˝ÎÂÏÂÌÚÓÏ, Ú‡ÍËÏ ˜ÚÓ x, y p
−x∨y Ë x∨yp
− z, ÂÒÎË x, y p
− z.
p
ó‡ÒÚÓÚÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÒÚ‚Ó ( L, − ) ̇Á˚‚‡ÂÚÒfl ¯ÂÚÍÓÈ, ÂÒÎË Í‡Ê‰˚Â
‰‚‡ ˝ÎÂÏÂÌÚ‡ x, y ∈ L ËÏÂ˛Ú Ó·˙‰ËÌÂÌË x ∨ y Ë ÔÂÂÒ˜ÂÌË x ∧ y. ó‡ÒÚÓÚÌÓ
ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ( L, p
− ) ̇Á˚‚‡ÂÚÒfl ÔÓÎÛ¯ÂÚÍÓÈ ÔÂÂÒ˜ÂÌËfl (ËÎË
ÌËÊÌÂÈ ÔÓÎÛ¯ÂÚÍÓÈ), ÂÒÎË Á‡‰‡Ì‡ ÚÓθÍÓ ÓÔÂ‡ˆËfl ÔÂÂÒ˜ÂÌËfl. ó‡ÒÚ˘ÌÓ
ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ( L, p
− ) ̇Á˚‚‡ÂÚÒfl ÔÓÎÛ¯ÂÚÍÓÈ Ó·˙‰ËÌÂÌËfl (ËÎË
‚ÂıÌÂÈ ÔÓÎÛ¯ÂÚÍÓÈ), ÂÒÎË Á‡‰‡Ì‡ ÚÓθÍÓ ÓÔÂ‡ˆËfl Ó·˙‰ËÌÂÌËfl.
ê¯ÂÚ͇ = ( L, p
− , ∨, ∧) ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÓ‰ÛÎflÌÓÈ ¯ÂÚÍÓÈ (ËÎË ÔÓÎۉ‰ÂÍË̉ӂÓÈ ¯ÂÚÍÓÈ), ÂÒÎË ÓÚÌÓ¯ÂÌË ÏÓ‰ÛÎflÌÓÒÚË ıåÛ ÒËÏÏÂÚ˘ÌÓ:
ıåÛ ‚ΘÂÚ Ûåı ‰Îfl ‚ÒÂı x, y ∈ L. éÚÌÓ¯ÂÌË ÏÓ‰ÛÎflÌÓÒÚË Á‰ÂÒ¸ ÓÔ‰ÂÎflÂÚÒfl
ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ‰‚‡ ˝ÎÂÏÂÌÚ‡ ı Ë Û Ò˜ËÚ‡˛ÚÒfl ÏÓ‰ÛÎflÌÓÈ Ô‡ÓÈ, ˜ÚÓ
Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í ıåÛ, ÂÒÎË x ∧ ( y ∨ z ) = ( x ∧ y) ∨ z ‰Îfl β·˚ı z p
− x. ê¯ÂÚ͇ ,
‚ ÍÓÚÓÓÈ Í‡Ê‰‡fl Ô‡‡ ˝ÎÂÏÂÌÚÓ‚ fl‚ÎflÂÚÒfl ÏÓ‰ÛÎflÌÓÈ, ̇Á˚‚‡ÂÚÒfl ÏÓ‰ÛÎflÌÓÈ
¯ÂÚÍÓÈ (ËÎË ‰Â‰ÂÍË̉ӂÓÈ ¯ÂÚÍÓÈ). ê¯ÂÚ͇ fl‚ÎflÂÚÒfl ÏÓ‰ÛÎflÌÓÈ ÚÓ„‰‡
Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ‰ÂÈÒÚ‚ÛÂÚ Á‡ÍÓÌ ÏÓ‰ÛÎflÌÓÒÚË: ÂÒÎË z p
− x, ÚÓ
x ∧ ( y ∨ z ) = ( x ∧ y) ∨ z ‰Îfl β·Ó„Ó y. ê¯ÂÚ͇ ̇Á˚‚‡ÂÚÒfl ‰ËÒÚË·ÛÚË‚ÌÓÈ, ÂÒÎË
x ∧ ( y ∨ z ) = ( x ∧ y) ∨ ( x ∧ z ) ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y, z ∈ L.
177
É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
ÑÎfl ‰‡ÌÌÓÈ ¯ÂÚÍË ÙÛÌ͈Ëfl v: L → ≥0, Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÛÒÎӂ˲
v( x ∨ y) + v( x ∧ y) ≤ v( x ) + v( y) ‰Îfl ‚ÒÂı x, y ∈ L, ̇Á˚‚‡ÂÚÒfl ÒÛ·‚‡Î˛‡ˆËÂÈ Ì‡ .
ëÛ·‚‡Î˛‡ˆËfl v ̇Á˚‚‡ÂÚÒfl ËÁÓÚÓÌÌÓÈ, ÂÒÎË v(x) ≤ v(y) ‚ÒflÍËÈ ‡Á, ÍÓ„‰‡ , x p
− y, Ë
,
x
≠
y.
̇Á˚‚‡ÂÚÒfl ÔÓÎÓÊËÚÂθÌÓÈ, ÂÒÎË v(x) < v(y) ‚ÒflÍËÈ ‡Á, ÍÓ„‰‡ x p
y
−
ëÛ·‚‡Î˛‡ˆËfl v ̇Á˚‚‡ÂÚÒfl ‚‡Î˛‡ˆËÂÈ, ÂÒÎË Ó̇ ËÁÓÚÓÌ̇ Ë ‡‚ÂÌÒÚ‚Ó
v( x ∨ y) + v( x ∧ y) = v( x ) + v( y) ÒÔ‡‚‰ÎË‚Ó ‰Îfl ‚ÒÂı x, y ∈ L. ñÂÎÓ˜ËÒÎÂÌÌÓÂ
‚‡Î˛‡ˆËfl ̇Á˚‚‡ÂÚÒfl ‚˚ÒÓÚÓÈ (ËÎË ‰ÎËÌÓÈ) ¯ÂÚÍË .
åÂÚË͇ ‚‡Î˛‡ˆËË ¯ÂÚÍË
èÛÒÚ¸ = ( L, p
− , ∨, ∧) – ¯ÂÚÍf Ë v – ËÁÓÚÓÌ̇fl ÒÛ·‚‡Î˛‡ˆËfl ̇ . èÓÎÛÏÂÚË͇ ÒÛ·‚‡Î˛‡ˆËË ¯ÂÚÍË d v ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
2v( x ∨ y) − v( x ) − v( y).
(é̇ ÏÓÊÂÚ ·˚Ú¸ Ú‡ÍÊ Á‡‰‡Ì‡ ̇ ÌÂÍÓÚÓ˚ı ÔÓÎÛ¯ÂÚ͇ı). ÖÒÎË v fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓÈ ÒÛ·‚‡Î˛‡ˆËÂÈ Ì‡ , ÚÓ ÔÓÎÛ˜ËÏ ÏÂÚËÍÛ, ÍÓÚÓ‡fl ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ ÒÛ·‚‡Î˛‡ˆËË ¯ÂÚÍË. ÖÒÎË v – ‚‡Î˛‡ˆËfl, ÚÓ d v ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ͇Í
v( x ∨) − v( x ∧ y) = v( x ) + v( y) − 2 v( x ∧ y);
‚ ˝ÚÓÏ ÒÎÛ˜‡Â d s ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ ‚‡Î˛‡ˆËË ÖÒÎË v fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓÈ ‚‡Î˛‡ˆËÂÈ Ì‡ , ÚÓ ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ, ̇Á˚‚‡ÂÏÛ˛ ÏÂÚËÍÓÈ ‚‡Î˛‡ˆËË
¯ÂÚÍË.
ÖÒÎË = (ÏÌÓÊÂÒÚ‚Ó Ì‡ÚÛ‡Î¸Ì˚ı ˜ËÒÂÎ), x ∨ y = l.c.m.( x, y) (̇ËÏÂ̸¯ÂÂ
Ó·˘Â Í‡ÚÌÓÂ), x ∧ y = g.c.d .( x, y) (̇˷Óθ¯ËÈ Ó·˘ËÈ ‰ÂÎËÚÂθ) Ë ÔÓÎÓÊËÚÂθ̇fl
l.c.m.( x, y)
. чÌÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ Ó·Ó·˘ËÚ¸
‚‡Î˛‡ˆËfl v(x) = lnx, ÚÓ d v ( x, y) = ln
g.c.d .( x, y)
̇ β·Ó هÍÚÓˇθÌÓ ÍÓθˆÓ (Ú.Â. ÍÓθˆÓ Ò Â‰ËÌÒÚ‚ÂÌÌÓÈ Ù‡ÍÚÓËÁ‡ˆËÂÈ),
Ò̇·ÊÂÌÌÓ ÔÓÎÓÊËÚÂθÌÓÈ ‚‡Î˛‡ˆËÂÈ v, Ú‡ÍÓÈ ˜ÚÓ v(x) ≥ 0 Ò ‡‚ÂÌÒÚ‚ÓÏ ÚÓθÍÓ
‰Îfl ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ Â‰ËÌˈ˚ ÍÓθˆ‡ Ë v(xy) = v(x) + v(y).
åÂÚË͇ ÍÓ̘Ì˚ı ÔÓ‰„ÛÔÔ
èÛÒÚ¸ (G, ⋅, e) – „ÛÔÔa Ë = (L, ⊂ , ∩) – ÌËÊÌflfl ÔÓÎÛ¯ÂÚ͇ ‚ÒÂı ÍÓ̘Ì˚ı
ÔÓ‰„ÛÔÔ „ÛÔÔ˚ (G, ⋅, e) Ò ÔÂÂÒ˜ÂÌËÂÏ X ∩ Y Ë ‚‡Î˛‡ˆËÂÈ v( X ) = ln | X | .
åÂÚË͇ ÍÓ̘Ì˚ı ÔÓ‰„ÛÔÔ ÂÒÚ¸ ÏÂÚË͇ ‚‡Î˛‡ˆËË Ì‡ , ÓÔ‰ÂÎflÂχfl ͇Í
v( X ) + v(Y ) − 2 v( X ∧ Y ) = ln
| X ||Y |
.
(| X ∩ Y |)2
ë͇Îfl̇fl Ë ‚ÂÍÚÓ̇fl ÏÂÚËÍË
èÛÒÚ¸ = (L, ≤ , max, min) – ¯ÂÚ͇ Ò Ó·˙‰ËÌÂÌËÂÏ max{x, y} Ë min{x, y}
ÔÂÂÒ˜ÂÌËÂÏ Ì‡ ÏÌÓÊÂÒÚ‚Â L ⊂ [0, ∞), Ëϲ˘ËÏ Á‡‰‡ÌÌÓ ˜ËÒÎÓ ‡ Í‡Í Ì‡Ë·Óθ¯ËÈ
˝ÎÂÏÂÌÚ Ë Á‡ÏÍÌÛÚÓ ÓÚÌÓÒËÚÂθÌÓ ÓÚˈ‡ÌËfl, Ú.Â. ‰Îfl β·Ó„Ó x ∈ L ËÏÂÂÏ
x = a − x ∈ L.
ë͇Îfl̇fl ÏÂÚË͇ d ̇ L Á‡‰‡ÂÚÒfl ‰Îfl x ≠ y ͇Í
d ( x, y) = max{min{x, y}, min{x , y}}.
178
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ë͇Îfl̇fl ÏÂÚË͇ d* ̇ L∗ = L ∪ {∗}, ÓÔ‰ÂÎflÂÚÒfl ‰Îfl x ≠ y ͇Í
ÂÒÎË
x , y ∈ L,
 d ( x, y),

d ∗ ( x, y) = max{x , x}, ÂÒÎË y = ∗, x ≠ ∗,
max{y, y}, ÂÒÎË x = ∗, y ≠ ∗.

ÑÎfl ‰‡ÌÌÓÈ ÌÓÏ˚ || ⋅ || ̇ n , n ≥ 2 ‚ÂÍÚÓ̇fl ÏÂÚË͇ ̇ Ln Á‡‰‡ÂÚÒfl ͇Í
|| ( d ( x1 , y1 ), …, d ( x n , yn )) ||
Ë ‚ÂÍÚÓ̇fl ÏÂÚË͇ ̇ (L*)n Á‡‰‡ÂÚÒfl ͇Í
|| ( d ∗ ( x1 , y1 ), …, d ∗ ( x n , yn )) || .
ÇÂÍÚÓ̇fl ÏÂÚË͇ ̇ Ln2 = {0, 1}n Ò l1 -ÌÓÏÓÈ Ì‡ n ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ
1
m − 2 n
, …,
, 1 Ò
î¯–çËÍÓ‰Ëχ–ÄÓÌÁfl̇. ÇÂÍÚÓ̇fl ÏÂÚË͇ ̇ Lnm = 0,
m −1 
 m −1
l1 -ÌÓÏÓÈ Ì‡ n ̇Á˚‚‡ÂÚÒfl m-Á̇˜ÌÓÈ ÏÂÚËÍÓÈ ë„‡Ó. ÇÂÍÚÓ̇fl ÏÂÚË͇ ̇
[0, 1]n Ò l1 -ÌÓÏÓÈ Ì‡ n ̇Á˚‚‡ÂÚÒfl ̘ÂÚÍÓ ÓÔ‰ÂÎÂÌÌÓÈ ÏÂÚËÍÓÈ ë„‡Ó. ÖÒÎË
L ÂÒÚ¸ Lm ËÎË [0, 1] Ë x = (x1 ,…, xn, x n+1,…, xn+r), y = ( y1 , …, yn , ∗, …, ∗), „‰Â * ÒÚÓËÚ Ì‡ r
ÏÂÒÚ‡ı, ÚÓ ‚ÂÍÚÓ̇fl ÏÂÚË͇ ÏÂÊ‰Û ı Ë Û fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ë„‡Ó (ÒÏ., ̇ÔËÏÂ, [CSY01]).
åÂÚËÍË Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â êËÒÒ‡
èÓÒÚ‡ÌÒÚ‚Ó êËÒÒ‡ (ËÎË ‚ÂÍÚÓ̇fl ¯ÂÚ͇) ÂÒÚ¸ ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (VRi , p
− ), ‚ ÍÓÚÓÓÏ ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘ËÂ
ÛÒÎÓ‚Ëfl:
1) ÒÚÛÍÚÛ‡ ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ë ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌ̇fl ÒÚÛÍÚÛ‡
ÒÓ‚ÏÂÒÚËÏ˚: ËÁ x p
− y ÒΉÛÂÚ, ˜ÚÓ x + z p
− y + z, ‡ ËÁ x f 0, λ ∈ , λ > 0 ÒΉÛÂÚ, ˜ÚÓ
λx f 0;
2) ‰Îfl β·˚ı ‰‚Ûı ˝ÎÂÏÂÌÚÓ‚ x, y ∈ V Ri ÒÛ˘ÂÒÚ‚ÛÂÚ Ó·˙‰ËÌÂÌË x ∨ y ∈ VRi
(‚ ˜‡ÒÚÌÓÒÚË, ÒÛ˘ÂÒÚ‚ÛÂÚ Ó·˙‰ËÌÂÌËÂ Ë ÔÂÂÒ˜ÂÌË β·Ó„Ó ÍÓ̘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡
˝ÎÂÏÂÌÚÓ‚ ̇ VRi ).
åÂÚË͇ ÌÓÏ˚ êËÒÒ‡ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ VRi , Á‡‰‡Ì̇fl ͇Í
|| x − y ||Ri ,
„‰Â || ⋅ ||Ri – ÌÓχ êËÒÒ‡, Ú.Â. ÌÓχ ̇ VRi , ڇ͇fl ˜ÚÓ ‰Îfl β·˚ı x, y ∈ V Ri ËÁ
ÌÂ‡‚ÂÌÒÚ‚‡ | x | ≤ | y |, „‰Â | x | = ( − x ) ∨ ( x ) ÒΉÛÂÚ ÌÂ‡‚ÂÌÒÚ‚Ó || x ||Ri ≤ || y ||Ri .
èÓÒÚ‡ÌÒÚ‚Ó ((VRi , || ⋅ ||Ri ) ̇Á˚‚‡ÂÚÒfl ÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ êËÒÒ‡.
Ç ÒÎÛ˜‡Â ÔÓÎÌÓÚ˚ ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl ·‡Ì‡ıÓ‚ÓÈ ¯ÂÚÍÓÈ. ÇÒ ÌÓÏ˚ êËÒÒ‡ ̇
·‡Ì‡ıÓ‚ÓÈ ¯ÂÚÍ ˝Í‚Ë‚‡ÎÂÌÚÌ˚.
ùÎÂÏÂÌÚ e ∈ VRi+ = {x ∈ VRi : x f 0} ̇Á˚‚‡ÂÚÒfl ÒËθÌÓÈ Â‰ËÌˈÂÈ ‰Îfl VRi , ÂÒÎË ‰Îfl
Í‡Ê‰Ó„Ó x ∈ VRi ÒÛ˘ÂÒÚ‚ÛÂÚ λ ∈ , Ú‡ÍÓ ˜ÚÓ | x | p
− λe . ÖÒÎË ÔÓÒÚ‡ÌÒÚ‚Ó êËÒÒ‡ V Ri
ËÏÂÂÚ ÒËθÌÛ˛ ‰ËÌËˆÛ Â, ÚÓ || x || = inf{λ ∈ : | x | p
− λe} fl‚ÎflÂÚÒfl ÌÓÏÓÈ êËÒÒ‡ Ë Ì‡
VRi ÔÓÎÛ˜ËÏ ÏÂÚËÍÛ ÌÓÏ˚ êËÒÒ‡
inf{λ ∈ : | x − y | p
− λe}.
É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
179
ë··ÓÈ Â‰ËÌˈÂÈ ‰Îfl VRi fl‚ÎflÂÚÒfl ˝ÎÂÏÂÌÚ Â ËÁ VRi+ , Ú‡ÍÓÈ ˜ÚÓ e∧ | x | = 0 ‚ΘÂÚ
x = 0. èÓÒÚ‡ÌÒÚ‚Ó êËÒÒ‡ VRi ̇Á˚‚‡ÂÚÒfl ‡ıËωӂ˚Ï, ÂÒÎË ‰Îfl β·˚ı ‰‚Ûı
x, y ∈ VRi+ ÒÛ˘ÂÒÚ‚ÛÂÚ Ì‡ÚÛ‡Î¸ÌÓ ˜ËÒÎÓ n, Ú‡ÍÓ ˜ÚÓ nx p
− y. ꇂÌÓÏÂ̇fl ÏÂÚË͇
̇ ‡ıËωӂÓÏ ÔÓÒÚ‡ÌÒÚ‚Â êËÒÒ‡ ÒÓ Ò··ÓÈ Â‰ËÌˈÂÈ Â ÓÔ‰ÂÎflÂÚÒfl ͇Í
inf{λ ∈ : | x − y | ∧e p
− λe}.
ê‡ÒÒÚÓflÌË „‡ÎÂÂË ‰Îfl Ù·„Ó‚
èÛÒÚ¸ – ¯ÂÚÍa. ñÂÔ¸ ë ‚ ÂÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ L, ÍÓÚÓÓÂ
fl‚ÎflÂÚÒfl ÎËÌÂÈÌÓ ÛÔÓfl‰Ó˜ÂÌÌ˚Ï, Ú.Â. β·˚ ‰‚‡ ˝ÎÂÏÂÌÚ‡ ËÁ ë Ò‡‚ÌËÏ˚ ÏÂʉÛ
ÒÓ·ÓÈ. î·„ÓÏ Ì‡Á˚‚‡ÂÚÒfl ˆÂÔ¸ ‚ , ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl χÍÒËχθÌÓÈ ÓÚÌÓÒËÚÂθÌÓ
‚Íβ˜ÂÌ˲. ÖÒÎË fl‚ÎflÂÚÒfl ÔÓÎÛÏÓ‰ÛÎflÌÓÈ ¯ÂÚÍÓÈ, ÒÓ‰Âʇ˘ÂÈ ÍÓ̘Ì˚È
Ù·„, ÚÓ ËÏÂÂÚ Â‰ËÌÒÚ‚ÂÌÌ˚È ÏËÌËχθÌ˚È Ë Â‰ËÌÒÚ‚ÂÌÌ˚È Ï‡ÍÒËχθÌ˚È
˝ÎÂÏÂÌÚ, Ë Î˛·˚ ‰‚‡ Ù·„‡ C, D ‚ ËÏÂ˛Ú Ó‰Ë̇ÍÓ‚Ó ͇‰Ë̇θÌÓ ˜ËÒÎÓ n + 1.
íÓ„‰‡ n – ˝ÚÓ ‚˚ÒÓÚ‡ ¯ÂÚÍË . Ñ‚‡ Ù·„‡ ë, D ‚ ̇Á˚‚‡˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË
ÓÌË ÒÓ‚Ô‡‰‡˛Ú ËÎË D ÒÓ‰ÂÊËÚ ÚÓθÍÓ Ó‰ËÌ ˝ÎÂÏÂÌÚ ‚Ì ë. ɇÎÂÂÂÈ ÓÚ ë Í D
‰ÎËÌ˚ m ̇Á˚‚‡ÂÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ Ù·„Ó‚ C = C 0 , C 1 ,…, Cm = D, ڇ͇fl ˜ÚÓ
C i–1 Ë Ci fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË ‰Îfl i = 1,…, m.
ê‡ÒÒÚÓflÌË „‡ÎÂÂË ‰Îfl Ù·„Ó‚ (ÒÏ. [Abel91]) ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı
Ù·„Ó‚ ÔÓÎÛÏÓ‰ÛÎflÌÓÈ ¯ÂÚÍË ÍÓ̘ÌÓÈ ‚˚ÒÓÚ˚, ÓÔ‰ÂÎflÂÏÓÂ Í‡Í ÏËÌËÏÛÏ
‰ÎËÌ „‡ÎÂÂÈ ËÁ ë Í D. éÌÓ ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡ÌÓ Í‡Í
| C ∨ D | − | C | = | C ∨ D | − | D |,
„‰Â C ∨ D = {c ∨ d : c ∈ C, d ∈ D} fl‚ÎflÂÚÒfl ‚ÂıÌÂÈ ÔÓ‰ÔÓÎÛ¯ÂÚÍÓÈ, ÔÓÓʉÂÌÌÓÈ
ë Ë D.
ê‡ÒÒÚÓflÌË „‡ÎÂÂË ‰Îfl Ù·„Ó‚ ÏÂÚÓÍ fl‚ÎflÂÚÒfl ÒÔˆˇθÌ˚Ï ÒÎÛ˜‡ÂÏ ÏÂÚËÍË
„‡ÎÂÂË (‰Îfl ÒËÒÚÂÏ˚ ͇ÏÂ, ÒÓÒÚÓfl˘ÂÈ ËÁ Ù·„Ó‚).
É·‚‡ 11
êÄëëíéüçàü çÄ ëíêéäÄï
à èÖêÖëíÄçéÇäÄï
ÄÎÙ‡‚ËÚ – ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó , | | ≥ 2, ˝ÎÂÏÂÌÚ˚ ÍÓÚÓÓ„Ó Ì‡Á˚‚‡˛ÚÒfl
·ÛÍ‚‡ÏË (ËÎË ÒËÏ‚Ó·ÏË). ëÚÓ͇ (ËÎË ÒÎÓ‚Ó) ÂÒÚ¸ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ·ÛÍ‚ ̇‰
‰‡ÌÌ˚Ï ÍÓ̘Ì˚Ï ‡ÎÙ‡‚ËÚÓÏ . åÌÓÊÂÒÚ‚Ó ‚ÒÂı ÍÓ̘Ì˚ı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ
̇‰ ‡ÎÙ‡‚ËÚÓÏ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í W().
èÓ‰ÒÚÓ͇ (ËÎË Ù‡ÍÚÓ, ˆÂÔӘ͇, ·ÎÓÍ) ÒÚÓÍË x = x 1 ,…, x n – β·‡fl ÂÂ
ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÒÏÂÌÌ˚ı ˝ÎÂÏÂÌÚÓ‚ xixi+1...xk Ò 1 ≤ i ≤ k ≤ n . èÂÙËÍÒÓÏ
ÒÚÓÍË x 1 ...xn fl‚ÎflÂÚÒfl β·‡fl  ÔÓ‰ÒÚÓ͇, ̇˜Ë̇˛˘‡flÒfl Ò x1; ÒÛÙÙËÍÒ – β·‡fl
 ÔÓ‰ÒÚÓ͇, Á‡Í‡Ì˜Ë‚‡˛˘Ë‡flÒfl ̇ x n . ÖÒÎË ÒÚÓ͇ fl‚ÎflÂÚÒfl ˜‡ÒÚ¸˛ ÚÂÍÒÚ‡,
ÚÓ ‡Á‰ÂÎËÚÂθÌ˚ Á̇ÍË (ÔÓ·ÂÎ, ÚӘ͇, Á‡ÔflÚ‡fl Ë Ú.Ô.) ‰Ó·‡‚Îfl˛ÚÒfl Í ‡ÎÙ‡‚ËÚÛ .
ÇÂÍÚÓ – β·‡fl ÍÓ̘̇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ËÁ ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂÎ, Ú.Â.
ÍÓ̘̇fl ÒÚÓ͇ ̇‰ ·ÂÒÍÓ̘Ì˚Ï ‡ÎÙ‡‚ËÚÓÏ . ÇÂÍÚÓÓÏ ˜‡ÒÚÓÚ (ËÎË
‰ËÒÍÂÚÌ˚Ï ‡ÒÔ‰ÂÎÂÌËÂÏ ‚ÂÓflÚÌÓÒÚÂÈ) fl‚ÎflÂÚÒfl β·‡fl ÒÚÓ͇ x1...xn ÒÓ ‚ÒÂÏË
n
xi ≥ 0 Ë
∑
xi = 1. èÂÂÒÚ‡Ìӂ͇ (ËÎË ‡ÌÊËÓ‚‡ÌËÂ) – β·‡fl ÒÚÓ͇ x1...xn,
i =1
‚ ÍÓÚÓÓÈ ‚Ò x i – ‡Á΢Ì˚ ˜ËÒ· ÏÌÓÊÂÒÚ‚‡ {1,…, n}.
éÔÂ‡ˆËÂÈ ‰‡ÍÚËÓ‚‡ÌËfl ̇Á˚‚‡ÂÚÒfl β·‡fl ÓÔÂ‡ˆËfl ̇ ÒÚÓ͇ı, Ú.Â.
ÒËÏÏÂÚ˘ÌÓ ·Ë̇ÌÓ ÓÚÌÓ¯ÂÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ‡ÒÒχÚË‚‡ÂÏ˚ı ÒÚÓÍ.
ÖÒÎË ËÏÂÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ÓÔÂ‡ˆËÈ ‰‡ÍÚËÓ‚‡ÌËfl = {O1,…, Om}, ÚÓ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl (ËÎË Â‰ËÌ˘̇fl ˆÂ̇ ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl) ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ ÓÔÂ‡ˆËÈ ‰‡ÍÚËÓ‚‡ÌËfl
ËÁ , ÚÂ·Û˛˘ËıÒfl ‰Îfl ÚÓ„Ó, ˜ÚÓ·˚ ÔÓÎÛ˜ËÚ¸ Û ËÁ ı. ùÚÓ ÏÂÚË͇ ÔÛÚË „‡Ù‡ ÒÓ
ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ W(), „‰Â ıÛ fl‚ÎflÂÚÒfl ·ÓÏ, ÂÒÎË Û ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ ËÁ
ı ÔÓÒ‰ÒÚ‚ÓÏ Ó‰ÌÓÈ ËÁ ÓÔÂ‡ˆËÈ ÏÌÓÊÂÒÚ‚‡ . Ç ÌÂÍÓÚÓ˚ı ÔËÎÓÊÂÌËflı ͇ʉÓÏÛ ÚËÔÛ ÓÔÂ‡ˆËÈ ‰‡ÍÚËÓ‚‡ÌËfl ÒÚ‡‚ËÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ÙÛÌ͈Ëfl ˆÂÌ˚; ÚÓ„‰‡
‡ÒÒÚÓflÌËÂÏ ‰‡ÍÚËÓ‚‡ÌËfl fl‚ÎflÂÚÒfl ÏËÌËχθ̇fl Ó·˘‡fl ˆÂ̇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı
‚ Û. ÖÒÎË Á‡‰‡ÌÓ ÏÌÓÊÂÒÚ‚Ó ÓÔÂ‡ˆËÈ ‰‡ÍÚËÓ‚‡ÌËfl ̇ ÒÚÓ͇ı, ÚÓ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ÓÊÂÂÎËÈ ÏÂÊ‰Û ˆËÍ΢ÂÒÍËÏË ÒÚÓ͇ÏË ı Ë Û
ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ ÓÔÂ‡ˆËÈ ‰‡ÍÚËÓ‚‡ÌËfl ËÁ , ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÓÎÛ˜ÂÌËfl Û ËÁ ı, ÏËÌËÏËÁËÓ‚‡ÌÌÓ ÔÓ ‚ÒÂÏ ‚‡˘ÂÌËflÏ ı.
éÒÌÓ‚Ì˚ÏË ÓÔÂ‡ˆËflÏË ‰‡ÍÚËÓ‚‡ÌËfl ̇ ÒÚÓ͇ı fl‚Îfl˛ÚÒfl:
– ‚ÒÚ‡‚Û‰ (‚ÒÚ‡‚͇-Û‰‡ÎÂÌËÂ) ÒËÏ‚Ó·;
– Á‡ÏÂ̇ ÒËÏ‚Ó·;
– Ò‚ÓÔ ÒËÏ‚ÓÎÓ‚, Ú.Â. Ò‰‚Ë„ ÒËÏ‚Ó· ̇ Ó‰ÌÛ ÔÓÁËˆË˛ ‚Ô‡‚Ó ËÎË ‚ÎÂ‚Ó (˜ÚÓ
ÔÂÂÒÚ‡‚ÎflÂÚ ÒÏÂÊÌ˚ ÒËÏ‚ÓÎ˚);
– ÔÂÂÏ¢ÂÌË ÔÓ‰ÒÚÓÍË, Ú.Â. ÔÂÓ·‡ÁÓ‚‡ÌËÂ, Ò͇ÊÂÏ, ÒÚÓÍË x = x1…xn ‚
ÒÚÓÍÛ x1 … xi −1 x j … x k −1 xi … x j −1 x k … x n ;
– ÍÓÔËÓ‚‡ÌË ÔÓ‰ÒÚÓÍË, Ú.Â. ÔÂÓ·‡ÁÓ‚‡ÌËÂ, Ò͇ÊÂÏ, x = x 1 …xn ‚
x1 … xi −1 x j … x k −1 xi … x n ;
É·‚‡ 11. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ë ÔÂÂÒÚ‡Ìӂ͇ı
181
– ‡ÌÚËÍÓÔËÓ‚‡ÌË ÔÓ‰ÒÚÓÍË, Ú.Â. Û‰‡ÎÂÌË ÔÓ‰ÒÚÓÍË Ò ÒÓı‡ÌÂÌËÂÏ ‚ ÒÚÓÍÂ
ÂÂ ÍÓÔËË.
çËÊ ÔË‚Ó‰flÚÒfl ÓÒÌÓ‚Ì˚ ‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı. é‰Ì‡ÍÓ ÌÂÍÓÚÓ˚ ‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ô‰ÒÚ‡‚ÎÂÌ˚ ‚ „·‚‡ı 15, 21 Ë 23, „‰Â ÓÌË ·ÓΠÛÏÂÒÚÌ˚, Ò
Û˜ÂÚÓÏ ÌÂÓ·ıÓ‰ËÏÓ„Ó ÛÓ‚Ìfl Ó·Ó·˘ÂÌËfl ËÎË ÒÔˆˇÎËÁ‡ˆËË.
11.1. êÄëëíéüçàü çÄ ëíêéäÄï éÅôÖÉé ÇàÑÄ
åÂÚË͇ ã‚Â̯ÚÂÈ̇
åÂÚË͇ ã‚Â̯ÚÂÈ̇ (ËÎË Ú‡ÒÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡, ÏÂÚË͇ ï˝ÏÏËÌ„‡ Ò ÔÓÔÛÒ͇ÏË, ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ÒËÏ‚ÓÎÓ‚) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‰‡ÍÚËÓ‚‡ÌËfl ̇ W(), ÍÓÚÓ‡fl ÔÓÎÛ˜Â̇ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔÂ‡ˆËË
Á‡ÏÂÌ˚ ÒËÏ‚ÓÎÓ‚ ËÎË Ëı ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl.
åÂÚË͇ ã‚Â̯ÚÂÈ̇ ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y = y1 …yn ‡‚̇
min{dH(x * , y*)},
„‰Â x * , y* – ÒÚÓÍË ‰ÎËÌ˚ k, k ≥ max{m, n} ̇‰ ‡ÎÙ‡‚ËÚÓÏ = ∪{∗}, Ú‡ÍË ˜ÚÓ
ÔÓÒΠۉ‡ÎÂÌËfl ‚ÒÂı ÌÓ‚˚ı ÒËÏ‚ÓÎÓ‚ ∗ ÒÚÓÍË x * Ë y* Ô‚‡˘‡˛ÚÒfl ‚ ı Ë Û
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. á‰ÂÒ¸ ÔÓÔÛÒÍ ÓÁ̇˜‡ÂÚ ÌÓ‚˚È ÒËÏ‚ÓÎ ∗ Ë x*, y* – Ú‡ÒÓ‚‡ÌËfl
ÒÚÓÍ ı Ë Û ÒÓ ÒÚÓ͇ÏË, ‚Íβ˜‡˛˘ËÏË ÚÓθÍÓ ∗.
åÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl Ò ÔÂÂÏ¢ÂÌËflÏË
åÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl Ò ÔÂÂÏ¢ÂÌËflÏË ÂÒÚ¸ ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇
W() ([Corm03]), ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÔÂÂÏ¢ÂÌËfl ÔÓ‰ÒÚÓÍ Ë
‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl.
åÂÚË͇ ÛÔÎÓÚÌÂÌÌÓ„Ó ‰‡ÍÚËÓ‚‡ÌËfl
åÂÚË͇ ÛÔÎÓÚÌÂÌÌÓ„Ó ‰‡ÍÚËÓ‚‡ÌËfl ÂÒÚ¸ ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ W()
([Corm03]), ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔÂ‡ˆËË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl
(‚ÒÚ‡‚Û‰), ÒËÏ‚Ó· ÍÓÔËÓ‚‡ÌËfl ÔÓ‰ÒÚÓÍË ‡ÌÚËÍÓÔËÓ‚‡ÌËfl ÔÓ‰ÒÚÓÍË.
åÂÚË͇ ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl
åÂÚË͇ ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl ÂÒÚ¸ ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ W(), ÔÓÎÛ˜ÂÌ̇fl
‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔÂ‡ˆË˛ ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl.
ùÚÓ – ‡Ì‡ÎÓ„ ı˝ÏÏËÌ„Ó‚‡ ‡ÒÒÚÓflÌËfl | X∆Y | ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË ï Ë Y . ÑÎfl
ÒÚÓÍ x = x 1 …xm Ë y = y 1 …yn Ó̇ ‡‚̇ m + n – 2LCS(x, y), „‰Â ÔÓ‰Ó·ÌÓÒÚ¸ LCS(x, y), –
‰ÎË̇ Ò‡ÏÓÈ ‰ÎËÌÌÓÈ Ó·˘ÂÈ ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ‰Îfl ı Ë Û.
ê‡ÒÒÚÓflÌË هÍÚÓ‡ ̇ W() ÓÔ‰ÂÎflÂÚÒfl Í‡Í m + n – 2LCS(x, y), „‰Â ÔÓ‰Ó·ÌÓÒÚ¸
LCS(x, y) – ‰ÎË̇ Ò‡ÏÓÈ ‰ÎËÌÌÓÈ Ó·˘ÂÈ ÔÓ‰ÒÚÓÍË (Ù‡ÍÚÓ‡) ‰Îfl ı Ë Û.
åÂÚË͇ Ò‚ÓÔ‡
åÂÚË͇ Ò‚ÓÔ‡ – ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ W(), ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔÂ‡ˆË˛ Ò‚ÓÔ‡ ÒËÏ‚ÓÎÓ‚.
åÂÚË͇ ÏÛθÚËÏÌÓÊÂÒÚ‚‡
åÂÚËÍÓÈ ÏÛθÚËÏÌÓÊÂÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ W(), ÓÔ‰ÂÎflÂχfl ͇Í
max{| X – Y |, | Y – X |}
‰Îfl β·˚ı ÒÚÓÍ ı Ë Û, „‰Â ï , Y – ÏÛθÚËÏÌÓÊÂÒÚ‚‡ ÒËÏ‚ÓÎÓ‚ ÒÚÓÍ ı, Û,
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
182
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
åÂÚË͇ χÍËÓ‚ÓÍË
åÂÚËÍÓÈ Ï‡ÍËÓ‚ÍË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ W() ([EhHa88]), ÓÔ‰ÂÎÂÌ̇fl ͇Í
ln 2 ((diff( y, x ) + 1) (diff( y, x ) + 1))
‰Îfl β·˚ı ÒÚÓÍ x = x1…xm Ë y = y 1 …yn, „‰Â diff(x, y) – ÏËÌËχθÌ˚È ‡ÁÏÂ | M |
ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ⊂ {1,…, m}, Ú‡ÍÓ„Ó ˜ÚÓ Î˛·‡fl ÔÓ‰ÒÚÓ͇ ı, Ì ÒÓ‰Âʇ˘‡fl x i Ò
i ∈ M, fl‚ÎflÂÚÒfl ÔÓ‰ÒÚÓÍÓÈ Û.
ÑÛ„ÓÈ ÏÂÚËÍÓÈ, ÓÔ‰ÂÎÂÌÌÓÈ ‚ [EhHa88], fl‚ÎflÂÚÒfl
ln2 (diff(x, y) + diff(y, x) + 1).
ê‡ÒÒÚÓflÌË ÔÂÓ·‡ÁÓ‚‡ÌËfl
ê‡ÒÒÚÓflÌËÂÏ ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl Ò ˆÂÌÓÈ Ì‡
W() (LJÂ Ë ‰., 1999), ÔÓÎÛ˜ÂÌÌÓ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔÂ‡ˆËË ÍÓÔËÓ‚‡ÌËfl, ‡ÌÚËÍÓÔËÓ‚‡ÌËfl Ë ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl ÔÓ‰ÒÚÓÍ. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û fl‚ÎflÂÚÒfl ÏËÌËχθÌÓÈ ˆÂÌÓÈ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı ‚ Û ÔÓÒ‰ÒÚ‚ÓÏ ˝ÚËı
ÓÔÂ‡ˆËÈ, „‰Â ˆÂ̇ ͇ʉÓÈ ÓÔÂ‡ˆËË – ‰ÎË̇  ÓÔËÒ‡ÌËfl. í‡Í, ̇ÔËÏÂ, ‰Îfl
ÓÔËÒ‡ÌËfl ÍÓÔËÓ‚‡ÌËfl ÌÂÓ·ıÓ‰ËÏ ·Ë̇Ì˚È ÍÓ‰, ÚÓ˜ÌÓ ÓÔ‰ÂÎfl˛˘ËÈ ÚËÔ
ÓÔÂ‡ˆËË, ÒÏ¢ÂÌË ÏÂÒÚÓÔÓÎÓÊÂÌËfl ÔÓ‰ÒÚÓÍ ÓÚÌÓÒËÚÂθÌÓ ‰Û„ ‰Û„‡ ‚ ı Ë Û Ë
‰ÎËÌÛ Ò‡ÏÓÈ ÔÓ‰ÒÚÓÍË. äÓ‰ÓÏ ‚ÒÚ‡‚ÍË ‰ÓÎÊÂÌ ÓÔ‰ÂÎflÚ¸ ÚËÔ ÓÔÂ‡ˆËË, ‰ÎËÌÛ
ÔÓ‰ÒÚÓÍË Ë ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÔÓ‰ÒÚÓÍË.
ê‡ÒÒÚÓflÌË ÌÓχÎËÓ‚‡ÌÌÓÈ ËÌÙÓχˆËË
ê‡ÒÒÚÓflÌË ÌÓχÎËÁÓ‚‡ÌÌÓÈ ËÌÙÓχˆËË d ÂÒÚ¸ ÒËÏÏÂÚ˘̇fl ÙÛÌ͈Ëfl ̇
W({0, 1}) ([LCLM04]), Á‡‰‡Ì̇fl ͇Í
max{K ( x | y ∗ ), K ( y | x ∗ )}
max{K ( x ), K ( y)}
‰Îfl ͇ʉ˚ı ‰‚Ûı ·Ë̇Ì˚ı ÒÚÓÍ ı Ë Û. á‰ÂÒ¸ ‰Îfl ·Ë̇Ì˚ı ÒÚÓÍ u Ë v, u* fl‚ÎflÂÚÒfl
Í‡Ú˜‡È¯ÂÈ ·Ë̇ÌÓÈ ÔÓ„‡ÏÏÓÈ ‰Îfl ‚˚˜ËÒÎÂÌËfl u ̇ ÔÓ‰ıÓ‰fl˘ÂÈ, Ú.Â. ËÒÔÓθÁÛ˛˘ÂÈ í¸˛ËÌ„-ÔÓÎÌ˚È flÁ˚Í ùÇå, ÒÎÓÊÌÓÒÚ¸ ÔÓ äÓÎÏÓ„ÓÓ‚Û (ËÎË ‡Î„ÓËÚÏ˘ÂÒ͇fl ˝ÌÚÓÔËfl) K(u) ÂÒÚ¸ ‰ÎË̇ u* (ÓÍÓ̘‡ÚÂθÌÓ ÒʇÚ˚È ‚‡ˇÌÚ u ) Ë
K (u | v) – ‰ÎË̇ Í‡Ú˜‡È¯ÂÈ ÔÓ„‡ÏÏ˚ ‚˚˜ËÒÎÂÌËfl u, ÂÒÎË v ‰‡ÌÓ Í‡Í ‚ÒÔÓÏÓ„‡ÚÂθÌ˚È ‚‚Ó‰.
îÛÌ͈Ëfl d(x, y) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ÌÂÁ̇˜ËÚÂθÌÓ„Ó ÓÒÚ‡ÚÓ˜ÌÓ„Ó
˜ÎÂ̇: d(x, x) = O((K(x))–1) Ë d(x, z) – d(y, z) = O((max{K(x), K(y), K(z)}) –1) (Ò‡‚ÌËÚÂ
d(x, y) Ò ÏÂÚËÍÓÈ ËÌÙÓχˆËË (ËÎË ÏÂÚËÍÓÈ ˝ÌÚÓÔËË) H ( X | Y ) + H (Y | X ) ÏÂʉÛ
ÒÚÓı‡ÒÚ˘ÂÒÍËÏË ËÒÚÓ˜ÌË͇ÏË ï Ë Y).
çÓχÎËÁÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË ÒʇÚËfl – ˝ÚÓ ‡ÒÒÚÓflÌËÂ Ì W({0, 1})‡ ([LCLM04],
[BGLVZ98]), Á‡‰‡ÌÌÓ ͇Í
C( xy) − min{C( x ), C( y)}
max{C( x ), C( y)}
‰Îfl β·˚ı ·Ë̇Ì˚ı ÒÚÓÍ ı Ë Û, „‰Â C(x), C(y) Ë C(xy) ÓÁ̇˜‡˛Ú ‡ÁÏÂ ÒʇÚ˚ı
(Ò ÔÓÏÓ˘¸˛ ÙËÍÒËÓ‚‡ÌÌÓ„Ó ÍÓÏÔÂÒÒÓ‡ ë, Ú‡ÍÓ„Ó Í‡Í gzip, bzip2 ËÎË PPMZ)
ÒÚÓÍ ı, Û Ë Ëı ÒÓ˜ÎÂÌÂÌËfl ıÛ. чÌÌÓ ‡ÒÒÚÓflÌË Ì fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ. ùÚÓ –
‡ÔÔÓÍÒËχˆËfl ‡ÒÒÚÓflÌËfl ÌÓχÎËÁÓ‚‡ÌÌÓÈ ËÌÙÓχˆËË. èÓ‰Ó·ÌÓ ‡ÒÒÚÓflÌËÂ
C( xy)
1
− .
ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡ÌÓ Í‡Í
C( x ) + C( y ) 2
É·‚‡ 11. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ë ÔÂÂÒÚ‡Ìӂ͇ı
183
èÓ‰Ó·ÌÓÒÚ¸ ùÌÚÓÌË–ï‡ÏÏÂ‡
èÓ‰Ó·ÌÓÒÚ¸ ùÌÚÓÌË–ï‡ÏÏÂ‡ ÏÂÊ‰Û ·Ë̇ÌÓÈ ÒÚÓÍÓÈ x = x1…xn Ë ÏÌÓÊÂÒÚ‚ÓÏ Y ·Ë̇Ì˚ı ÒÚÓÍ y = y1…yn ÂÒÚ¸ χÍÒËχθÌÓ ˜ËÒÎÓ m, Ú‡ÍÓ ˜ÚÓ ‰Îfl ͇ʉӄÓ
m-ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ÏÌÓÊÂÒÚ‚‡ {1,…, n} ÔÓ‰ÒÚÓ͇ ÒÚÓÍË ı, ÒÓ‰Âʇ˘‡fl ÚÓθÍÓ xi
Ò i ∈ M, fl‚ÎflÂÚÒfl ÔÓ‰ÒÚÓÍÓÈ ÌÂÍÓÚÓÓÈ ÒÚÓÍË y ∈ Y, ÒÓ‰Âʇ˘ÂÈ ÚÓθÍÓ yi Ò i ∈ M.
èÓ‰Ó·ÌÓÒÚ¸ ÑʇÓ
ÑÎfl ÒÚÓÍ x = x1…xm Ë y = y1…yn ̇ÁÓ‚ÂÏ ÒËÏ‚ÓÎ x i Ó·˘ËÏ Ò Û, ÂÒÎË xi = yi, „‰Â
min( m, n)
|i− j|≤
. èÛÒÚ¸ x ′ = x1′ … x m′ – ‚Ò ÒËÏ‚ÓÎ˚ ÒÚÓÍË ı, Ó·˘ËÂ Ò Û (‚ ÚÓÏ ÊÂ
2
ÔÓfl‰ÍÂ, Í‡Í ÓÌË ÒÎÂ‰Û˛Ú ‚ ı), Ë ÔÛÒÚ¸ y ′ = y1′ … yn′ – ‡Ì‡Îӄ˘̇fl ÒÚÓ͇ ‰Îfl Û.
èÓ‰Ó·ÌÓÒÚ¸ ÑʇÓ Jaro(x, y) ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Í
1  m ′ n ′ | {1 ≤ i ≤ min{m ′, n ′} : xi′ = yi′} | 
+ +

.

3 m n
min{m ′, n ′}
ùÚ‡ Ë ÔÓÒÎÂ‰Û˛˘Ë ‰‚ ÔÓ‰Ó·ÌÓÒÚË ËÒÔÓθÁÛ˛ÚÒfl Ò‚flÁË ‰ÓÍÛÏÂÌÚ‡ˆËË.
èÓ‰Ó·ÌÓÒÚ¸ ÑʇÓ–ìËÌÍÎÂ‡
èÓ‰Ó·ÌÓÒÚ¸ ÑʇÓìËÌÍÎÂ‡ ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Í
max{4, LCP( x, y)}
Jaro( x, y) +
(1 − Jaro( x, y)),
10
„‰Â Jaro(x, y) – ÔÓ‰Ó·ÌÓÒÚ¸ ÑʇÓ Ë LCP(x, y) – ‰ÎË̇ Ò‡ÏÓ„Ó ·Óθ¯Ó„Ó Ó·˘Â„Ó
ÔÂÙËÍÒ‡ ‰Îfl ı Ë Û.
èÓ‰Ó·ÌÓÒÚ¸ q-„‡ÏÏ˚
èÓ‰Ó·ÌÓÒÚ¸ q-„‡ÏÏ˚ ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Í
q( x, y) + q( y, x )
,
2
„‰Â q(x, y) – ˜ËÒÎÓ ÔÓ‰ÒÚÓÍ ‰ÎËÌ˚ q ‚ ÒÚÓÍ Û, ÍÓÚÓ˚ ڇÍÊ ÔÓfl‚Îfl˛ÚÒfl ͇Í
ÔÓ‰ÒÚÓÍË ‚ ı, ‰ÂÎÂÌÌÓ ̇ ÍÓ΢ÂÒÚ‚Ó ‚ÒÂı ÔÓ‰ÒÚÓÍ ‰ÎËÌ˚ q ‚ Û.
ùÚ‡ ÔÓ‰Ó·ÌÓÒÚ¸ fl‚ÎflÂÚÒfl ÔËÏÂÓÏ ÔÓ‰Ó·ÌÓÒÚÂÈ Ì‡ ÓÒÌӂ χÍÂÓ‚, Ú.Â.
Ú‡ÍËı, Í ÍÓÚÓ˚Ï ÔËÏÂÌËÏÓ ÓÔ‰ÂÎÂÌË χÍÂÓ‚ (ËÁ·‡ÌÌ˚ı ÔÓ‰ÒÚÓÍ ËÎË
ÒÎÓ‚). á‰ÂÒ¸ χÍÂ˚ – ˝ÚÓ q-„‡ÏÏ˚, Ú.Â. ÔÓ‰ÒÚÓÍË ‰ÎËÌ˚ q. èËÏÂÓÏ ‰Û„Ëı
ÔÓ‰Ó·ÌÓÒÚÂÈ Ì‡ ÓÒÌӂ χÍÂÓ‚ ̇ ÒÚÓ͇ı, ËÒÔÓθÁÛÂÏ˚ı ‚ Ò‚flÁË ‰ÓÍÛÏÂÌÚ‡ˆËË,
fl‚Îfl˛ÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸ Ó·˙‰ËÌÂÌËfl ܇Í͇‰‡ Ë TF-IDF (‚‡ˇÌÚ ÔÓ‰Ó·ÌÓÒÚË
ÍÓÒËÌÛÒ‡). íËÔÓ‚ÓÈ ÏÂÚËÍÓÈ, ÓÒÌÓ‚‡ÌÌÓÈ Ì‡ ÒÎÓ‚‡ ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë y
fl‚ÎflÂÚÒfl | D(x)∆D(y) |, „‰Â D(z) Ó·ÓÁ̇˜‡ÂÚ ÔÓÎÌ˚È ÒÎÓ‚‡¸ ÒÚÓÍË z, Ú.Â. ÏÌÓÊÂÒÚ‚Ó
‚ÒÂı ÂÂ ÔÓ‰ÒÚÓÍ.
åÂÚË͇ ÔÂÙËÍÒ–ï˝ÏÏËÌ„‡
åÂÚË͇ ÔÂÙËÍÒ–ï˝ÏÏËÌ„‡ ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y = y1…yn
ÓÔ‰ÂÎflÂÚÒfl ͇Í
(max{m, n} – min{m, n}) + |{1 ≤ i ≤ min{m, n}: xi ≠ yi}|.
ÇÁ‚¯ÂÌÌÓ ê‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡
ÇÁ‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡ dwH(x, y) ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y =
= y 1 …yn ÓÔ‰ÂÎflÂÚÒfl ͇Í
m
∑ d( xi , yi ).
i =1
184
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ç˜ÂÚÍÓ ‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡
ÖÒÎË ( , d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ Ì˜ÂÚÍËÏ ‡ÒÒÚÓflÌËÂÏ ï˝ÏÏËÌ„‡ ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y = y1…ym ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂ
‰‡ÍÚËÓ‚‡ÌËfl Ò ˆÂÌÓÈ Ì‡ W(), ÔÓÎÛ˜ÂÌÌÓ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔÂ‡ˆËË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl, ͇ʉ‡fl Ò ÙËÍÒËÓ‚‡ÌÌÓÈ ˆÂÌÓÈ q > 0, Ë Ò‰‚Ë„Ó‚ ÒËÏ‚ÓÎÓ‚ (Ú.Â. ÔÂÂÏ¢ÂÌË ӉÌÓÒËÏ‚ÓθÌ˚ı ÔÓ‰ÒÚÓÍ), „‰Â ˆÂ̇ Á‡ÏÂÌ˚ i ̇ j ÂÒÚ¸
ÙÛÌ͈Ëfl f(| i – j |). ùÚÓ ‡ÒÒÚÓflÌË – ÏËÌËχθ̇fl Ó·˘‡fl ˆÂ̇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı
‚ Û Ò ÔÓÏÓ˘¸˛ Û͇Á‡ÌÌ˚ı ÓÔÂ‡ˆËÈ. ÅÛͯÚÂÈÌ, äÎÂÈÌ Ë ê‡ËÚ‡, ÍÓÚÓ˚ ‚ 2001 „.
‚‚ÂÎË ˝ÚÓ ‡ÒÒÚÓflÌË ‰Îfl ÔÓˆÂÒÒÓ‚ ‚˚·ÓÍË ËÌÙÓχˆËË, ‰Ó͇Á‡ÎË, ˜ÚÓ
ÓÌÓ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ, ÂÒÎË f – ÏÓÌÓÚÓÌÌÓ ‚ÓÁ‡ÒÚ‡˛˘‡fl ‚Ó„ÌÛÚ‡fl ÙÛÌ͈Ëfl
̇ ÏÌÓÊÂÒÚ‚Â ˆÂÎ˚ı ˜ËÒÂÎ, ÍÓÚÓ‡fl Ó·‡˘‡ÂÚÒfl ‚ ÌÛθ ÚÓθÍÓ ‚ ÚӘ͠0. ëÎÛ˜‡È f(| i – j |) = C| i – j |, „‰Â C > 0 – ÍÓÌÒÚ‡ÌÚ‡ Ë | i – j | – Ò‰‚Ë„ ‚Ó ‚ÂÏÂÌË,
ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÒÚÓflÌ˲ ÇËÍÚÓ‡–èÛÔÛ‡ ‰Îfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ‚ÒÔÎÂÒÍÓ‚
(ÒÏ. „Î. 23).
Ç 2003 „. ê‡ÎÂÒÍÛ Ô‰ÎÓÊËÎ ‰Îfl ‚˚·ÓÍË Ó·‡ÁÓ‚ ¢ ӉÌÓ Ì˜ÂÚÍÓÂ
‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡ ̇ m. ê‡ÒÒÚÓflÌË ê‡ÎÂÒÍÛ ÏÂÊ‰Û ‰‚ÛÏfl ÒÚÓ͇ÏË x = x1 …xm
Ë y = y1…ym ÂÒÚ¸ ̘ÂÚÍÓ ͇‰Ë̇θÌÓ ˜ËÒÎÓ ‡ÁÌÓÒÚÌÓ„Ó Ì˜ÂÚÍÓ„Ó ÏÌÓÊÂÒÚ‚‡
Dα(x, y) („‰Â α – Ô‡‡ÏÂÚ) Ò ÙÛÌ͈ËÂÈ ÔË̇‰ÎÂÊÌÓÒÚË
2
µ i = 1 − e − α ( x i − yi ) , 1 ≤ i ≤ m.
íÓ˜ÌÓ ÍÓ‰Ë̇θÌÓ ˜ËÒÎÓ Ì˜ÂÚÍÓ„Ó ÏÌÓÊÂÒÚ‚‡ D α(x, y), ‡ÔÔÓÍÒËÏËÛ˛˘ÂÂ
1
Â„Ó Ì˜ÂÚÍÓ ͇‰Ë̇θÌÓ ˜ËÒÎÓ ‡‚ÌÓ 1 ≤ i ≤ m : µ i >  .
2

åÂÚË͇ çˉÎχ̇–ÇÛ̯‡–ëÂÎÎÂÒ‡
ÖÒÎË ( , d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ ÏÂÚËÍÓÈ çˉÎχ̇–ÇÛ̯‡–
ëÂÎÎÂÒ‡ (ËÎË ‡ÒÒÚÓflÌËÂÏ ã‚Â̯ÚÂÈ̇ Ò ˆÂÌÓÈ, ÏÂÚËÍÓÈ Ó·˘Â„Ó ÒÓ‚Ï¢ÂÌËfl)
̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl Ò ˆÂÌÓÈ Ì‡ W() ([NeWu70]), ÔÓÎÛ˜ÂÌ̇fl ‰Îfl
, ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔÂ‡ˆËË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl, ͇ʉ‡fl ÔÓÒÚÓflÌÌÓÈ ˆÂÌ˚ q > 0
Ë Á‡ÏÂÌ˚ ÒËÏ‚ÓÎÓ‚, „‰Â d(i, j) fl‚ÎflÂÚÒfl ˆÂÌÓÈ Á‡ÏÂ̇ i ̇ j. чÌ̇fl ÏÂÚË͇ ÂÒÚ¸
ÏËÌËχθ̇fl Ó·˘‡fl ˆÂ̇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı ‚ Û Ò ÔËÏÂÌÂÌËÂÏ ˝ÚËı ÓÔÂ‡ˆËÈ.
ùÍ‚Ë‚‡ÎÂÌÚÌÓ, Ó̇ ‡‚̇
min{dwH(x * , y*)},
„‰Â x*, y* – ÒÚÓÍË ‰ÎËÌ˚ k, k ≥ max{m, n} ̇‰ ‡ÎÙ‡‚ËÚÓÏ ∗ = ∪{∗}, Ú‡ÍË ˜ÚÓ
ÔÓÒΠۉ‡ÎÂÌËfl ‚ÒÂı ÌÓ‚˚ı ÒËÏ‚ÓÎÓ‚ ∗ ÒÚÓÍË x * Ë y* ÒÓÍ‡˘‡˛ÚÒfl ‰Ó ı Ë Û
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. á‰ÂÒ¸ dwH(x * , y*) ÂÒÚ¸ ‚Á‚¯ÂÌÌÓ ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌË ÏÂʉÛ
x* Ë y * Ò ‚ÂÒÓÏ d ( xi∗ , yi∗ ) = q (Ú.Â. ÓÔÂ‡ˆËÂÈ ‰‡ÍÚËÓ‚‡ÌËfl fl‚ÎflÂÚÒfl ‚ÒÚ‡‚͇ۉ‡ÎÂÌËÂ), ÂÒÎË Ó‰Ì‡ ËÁ xi∗ , yi∗ fl‚ÎflÂÚÒfl ∗ Ë d ( xi∗ , yi∗ ) = d (i, j ), Ë̇˜Â.
ê‡ÒÒÚÓflÌË ÉÓÚÓ–ëÏËÚ‡–ìÓÚÂχ̇ (ËÎË ‡ÒÒÚÓflÌË ÒÚÓÍË Ò ‡ÙÙËÌÌ˚ÏË
ÔÓÔÛÒ͇ÏË) fl‚ÎflÂÚÒfl ·ÓΠÒÔˆˇÎËÁËÓ‚‡ÌÌÓÈ ÏÂÚËÍÓÈ Ò ˆÂÌÓÈ (ÒÏ. [Goto82]).
é̇ ÓÚ·‡Ò˚‚‡ÂÚ ÌÂÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ˜‡ÒÚË ‚ ̇˜‡ÎÂ Ë ÍÓ̈ ÒÚÓÍ ı Ë Û Ë ‚‚Ó‰ËÚ
‰‚ ˆÂÌ˚ ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl Ó‰ÌÛ ‰Îfl ËÌˈËËÓ‚‡ÌËfl ‡ÙÙËÌÌÓ„Ó ÔÓÔÛÒ͇ (ÌÂÔÂ˚‚Ì˚È ·ÎÓÍ ÓÔÂ‡ˆËÈ ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl) Ë ‰Û„Û˛ (ÏÂ̸¯Û˛) ‰Îfl ‡Ò¯ËÂÌËfl
ÔÓÔÛÒ͇.
185
É·‚‡ 11. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ë ÔÂÂÒÚ‡Ìӂ͇ı
åÂÚË͇ å‡ÚË̇
åÂÚË͇ å‡ÚË̇ da ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y = y1 …yn ÓÔ‰ÂÎflÂÚÒfl ͇Í
| 2 −m − 2 −n | +
max{m, n}
∑
t =1
at
sup | k ( z, x ) − k ( z, y) |,
| |t z
„‰Â z – β·‡fl ÒÚÓ͇ ‰ÎËÌ˚ t, k(z, x) – fl‰Ó å‡ÚË̇ ([MaSt99]) χÍÓ‚ÒÍÓÈ ˆÂÔË
M = {Mt }t∞= 0 , Ë ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ a ∈{a = {ai}t∞= 0 : at > 0,
∞
∑ at < ∞ – Ô‡‡ÏÂÚ‡.
t =1
åÂÚË͇ Å˝‡
åÂÚËÍÓÈ Å˝‡ ̇Á˚‚‡ÂÚÒfl ÛθÚ‡ÏÂÚË͇ ÏÂÊ‰Û ÍÓ̘Ì˚ÏË ËÎË ·ÂÒÍÓ̘Ì˚ÏË ÒÚÓ͇ÏË x = x 1 …xm... Ë y = y1…yn..., ÓÔ‰ÂÎflÂχfl ‰Îfl x ≠ y ͇Í
1
,
1 + LGCP( x, y)
„‰Â LCP(x, y) – ‰ÎË̇ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó Ó·˘Â„Ó ÔÂÙËÍÒ‡ ÒÚÓÍ ı Ë Û.
é·Ó·˘ÂÌ̇fl ÏÂÚË͇ ä‡ÌÚÓ‡
é·Ó·˘ÂÌÌÓÈ ÏÂÚËÍÓÈ ä‡ÌÚÓ‡ ̇Á˚‚‡ÂÚÒfl ÛθÚ‡ÏÂÚË͇ ÏÂÊ‰Û ·ÂÒÍÓ̘Ì˚ÏË ÒÚÓ͇ÏË x = x1…xm... Ë y = y1…yn..., ÓÔ‰ÂÎflÂχfl ‰Îfl x ≠ y ͇Í
aLCP(x,y) ,
„‰Â ‡ – ÙËÍÒËÓ‚‡ÌÌÓ ˜ËÒÎÓ ËÁ ËÌÚÂ‚‡Î‡ (0,1), ‡ LCP(x, y) – ‰ÎË̇ Ò‡ÏÓ„Ó
‰ÎËÌÌÓ„Ó ÔÂÙËÍÒ‡ ÒÚÓÍ ı Ë Û.
1
чÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï. ÑÎfl ÒÎÛ˜‡fl a =
2
1
ÏÂÚË͇ LCP( x , y ) ‡ÒÒχÚË‚‡Î‡Ò¸ ̇ Í·ÒÒ˘ÂÒÍÓÏ Ù‡ÍڇΠ(ÒÏ. „Î. 1) ‰Îfl [0,1] –
2
ÏÌÓÊÂÒÚ‚Â ä‡ÌÚÓ‡ (ÒÏ. åÂÚË͇ ä‡ÌÚÓ‡, „Î. 18).
åÂÚË͇ ÑÛÌ͇̇
ê‡ÒÒÏÓÚËÏ ÏÌÓÊÂÒÚ‚Ó ï ‚ÒÂı ÒÚÓ„Ó ‚ÓÁ‡ÒÚ‡˛˘Ëı ·ÂÒÍÓ̘Ì˚ı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ x = {xn}n ÔÓÎÓÊËÚÂθÌ˚ı ˆÂÎ˚ı ˜ËÒÂÎ. éÔ‰ÂÎËÏ N(n, x) Í‡Í ˜ËÒÎÓ
˝ÎÂÏÂÌÚÓ‚ ‚ x = {x n }n , ÍÓÚÓ˚ ÏÂ̸¯Â n , Ë δ(x) Í‡Í ÔÎÓÚÌÓÒÚ¸ ı, Ú.Â.
N (n, x )
δ( x ) = lim
. èÛÒÚ¸ Y – ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï, ÒÓÒÚÓfl˘Â ËÁ ‚ÒÂı ÔÓÒΉӂ‡n →∞
n
ÚÂθÌÓÒÚÂÈ x = {xn }n , ‰Îfl ÍÓÚÓ˚ı δ(x) < ∞.
åÂÚËÍÓÈ ÑÛÌ͇̇ fl‚ÎflÂÚÒfl ÏÂÚË͇ ̇ Y, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl x ≠ y ͇Í
1
+ | δ( x ) − δ( y) |,
1 + LCP( x, y)
„‰Â LCP(x, y) – ‰ÎË̇ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó Ó·˘Â„Ó ÔÂÙËÍÒ‡ ÒÚÓÍ ı Ë Û. åÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÑÛÌ͇̇.
186
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
11.2. êÄëëíéüçàü çÄ èÖêÖëíÄçéÇäÄï
èÂÂÒÚ‡ÌÓ‚ÍÓÈ (ËÎË ‡ÌÊËÓ‚‡ÌËÂÏ) ̇Á˚‚‡ÂÚÒfl β·‡fl ÒÚÓ͇ x1…xn, „‰Â xi –
‡Á΢Ì˚ ˜ËÒ· ÏÌÓÊÂÒÚ‚‡ {1…, n}; ÔÂÂÒÚ‡Ìӂ͇ ÒÓ Á̇ÍÓÏ – β·‡fl ÒÚÓ͇
x1…xn, „‰Â | xi | – ‡Á΢Ì˚ ˜ËÒ· ËÁ ÏÌÓÊÂÒÚ‚‡ {1…, n}. é·ÓÁ̇˜ËÏ ˜ÂÂÁ
(Symn , ⋅, id) „ÛÔÔÛ ‚ÒÂı ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÏÌÓÊÂÒÚ‚‡ {1…, n}, „‰Â id – ÚÓʉÂÒÚ‚ÂÌÌÓÂ
ÓÚÓ·‡ÊÂÌËÂ. ëÛÊÂÌË ̇ ÏÌÓÊÂÒÚ‚Ó Sym n (‚ÒÂı n-ÔÂÂÒÚ‡ÌÓ‚Ó˜Ì˚ı ‚ÂÍÚÓÓ‚)
β·ÓÈ ÏÂÚËÍË Ì‡ n fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ Symn ; ÓÒÌÓ‚Ì˚Ï ÔËÏÂÓÏ ÒÎÛÊËÚ
1/ p
 n

lp -ÏÂÚË͇ 
| xi − yi | p  , p ≥ 1.
 i =1

éÒÌÓ‚Ì˚ÏË ÓÔÂ‡ˆËflÏË ‰‡ÍÚËÓ‚‡ÌËfl ̇ ÔÂÂÒÚ‡Ìӂ͇ı fl‚Îfl˛ÚÒfl:
• í‡ÌÒÔÓÁˈËfl ·ÎÓ͇, Ú.Â. ÔÂÂÏ¢ÂÌË ÔÓ‰ÒÚÓÍË.
• èÂÂÏ¢ÂÌË ÒËÏ‚Ó·, Ú.Â. Ú‡ÌÒÔÓÁˈËfl ·ÎÓ͇, ÒÓÒÚÓfl˘Â„Ó ËÁ Ó‰ÌÓ„Ó
ÒËÏ‚Ó·.
• ë‚ÓÔ ÒËÏ‚ÓÎÓ‚, Ú.Â. ÔÂÂÒÚ‡Ìӂ͇ ÏÂÒÚ‡ÏË ‰‚Ûı ÒÓÒ‰ÌËı ÒËÏ‚ÓÎÓ‚.
• é·ÏÂÌ ÒËÏ‚ÓÎÓ‚, Ú. ÔÂÂÒÚ‡Ìӂ͇ ÏÂÒÚ‡ÏË Î˛·˚ı ‰‚Ûı ÒËÏ‚ÓÎÓ‚ (‚ ÚÂÓËË
„ÛÔÔ ˝ÚÓ Ì‡Á˚‚‡ÂÚÒfl Ú‡ÌÒÔÓÁˈËÂÈ).
• é‰ÌÓÛÓ‚Ì‚˚È Ó·ÏÂÌ ÒËÏ‚ÓÎÓ‚, Ú.Â. Ó·ÏÂÌ ÒËÏ‚ÓÎÓ‚ xi Ë xj, i < j, Ú‡ÍËı ˜ÚÓ ‰Îfl
β·Ó„Ó k Ò i < k < j ‚˚ÔÓÎÌflÂÚÒfl ÎË·Ó min{xi, xj} > xk, ÎË·Ó xk > max{xi, xj}.
• ê‚ÂÒËfl ·ÎÓ͇, Ú.Â. ÔÂÓ·‡ÁÓ‚‡ÌËÂ, Ò͇ÊÂÏ, ÔÂÂÒÚ‡ÌÓ‚ÍË x = x1…xn ‚
ÔÂÂÒÚ‡ÌÓ‚ÍÛ x1 … xi −1 X j X j−1 … Xi +1 X i x j +1 … x n (Ú‡Í, Ò‚ÓÔ – ˝ÚÓ ‚ÂÒËfl ·ÎÓ͇,
ÒÓÒÚÓfl˘Â„Ó ÚÓθÍÓ ËÁ ‰‚Ûı ÒËÏ‚ÓÎÓ‚).
• ê‚ÂÒËfl ÒÓ Á̇ÍÓÏ, Ú.Â. ‚ÂÒËfl ‚ ÔÂÂÒÚ‡ÌÓ‚ÍÂ, ÒÓ Á̇ÍÓÏ, Ò ÔÓÒÎÂ‰Û˛˘ËÏ
ÛÏÌÓÊÂÌËÂÏ Ì‡ –1 ‚ÒÂı ÒËÏ‚ÓÎÓ‚ ‚ÂÒËÓ‚‡ÌÌÓ„Ó ·ÎÓ͇.
çËÊ ÔÂ˜ËÒÎÂÌ˚ ̇˷ÓΠÛÔÓÚ·ÎflÂÏ˚ ÏÂÚËÍË ‰‡ÍÚËÓ‚‡ÌËfl Ë ‰Û„ËÂ
ÏÂÚËÍË Ì‡ ÏÌÓÊÂÒÚ‚Â Sym n .
∑
ï˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ ̇ ÔÂÂÒÚ‡Ìӂ͇ı
ï˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ ̇ ÔÂÂÒÚ‡Ìӂ͇ı dH ÂÒÚ¸ ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ Symn ,
ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔÂ‡ˆËË Á‡ÏÂÌ˚ ÒËÏ‚ÓÎÓ‚. ùÚÓ –
·ËËÌ‚‡ˇÌÚ̇fl ÏÂÚË͇. èË ˝ÚÓÏ n–dH(x, y) – ˜ËÒÎÓ ÙËÍÒËÓ‚‡ÌÌ˚ı ÚÓ˜ÂÍ
ÔÂÂÒÚ‡ÌÓ‚ÍË xy–1.
-‡ÒÒÚÓflÌË ëÔËχ̇
-‡ÒÒÚÓflÌË ëÔËχ̇ – ˝ÚÓ Â‚ÍÎˉӂ‡ ÏÂÚË͇ ̇ Sym n :
n
∑
( xi − yi )2
i =1
(ÒÏ. äÓÂÎflˆËfl -‡Ì„‡ ëÔËχ̇, „Î. 17)
ê‡ÒÒÚÓflÌË χүڇ·ÌÓÈ ÎËÌÂÈÍË ëÔËχ̇
ê‡ÒÒÚÓflÌË χүڇ·ÌÓÈ ÎËÌÂÈÍË ëÔËχ̇ – ˝ÚÓ l1 -ÏÂÚË͇ ̇ Sym n :
n
∑
| xi − yi |
i =1
(ÒÏ. èÓ‰Ó·ÌÓÒÚ¸ χүڇ·ÌÓÈ ÎËÌÂÈÍË ëÔËχ̇, „Î. 17).
é·‡ ‡ÒÒÚÓflÌËfl ëÔËχ̇ ·ËËÌ‚‡ˇÌÚÌ˚.
É·‚‡ 11. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ë ÔÂÂÒÚ‡Ìӂ͇ı
187
-‡ÒÒÚÓflÌË äẨ‡Î·
-‡ÒÒÚÓflÌË äẨ‡Î· (ËÎË ÏÂÚË͇ ËÌ‚ÂÒËË, ÏÂÚË͇ Ò‚ÓÔ‡ ÔÂÂÒÚ‡ÌÓ‚ÓÍ) I
fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‰‡ÍÚËÓ‚‡ÌËfl ̇ Symn , ÔÓÎÛ˜ÂÌÌÓÈ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó
ÚÓθÍÓ Ò‚ÓÔ˚ ÒËÏ‚ÓÎÓ‚.
Ç ÚÂÏË̇ı ÚÂÓËË „ÛÔÔ, I(x, y) – ˜ËÒÎÓ ÒÏÂÊÌ˚ı Ú‡ÌÒÔÓÁˈËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı
‰Îfl ÔÓÎÛ˜ÂÌËfl ı ËÁ Û. äÓÏ ÚÓ„Ó, I(x, y) ÂÒÚ¸ ˜ËÒÎÓ ÓÚÌÓÒËÚÂθÌ˚ı ËÌ‚ÂÒËÈ ı Ë Û,
Ú.Â. Ô‡ (i, j), 1 ≤ i < j ≤ n Ò ( xi − x j ) ( yi − y j ) < 0 (ÒÏ. äÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ ‡Ì„‡ äẨ‡Î·, „Î. 17).
Ç [BCFS97] Ú‡ÍÊ Ô˂‰ÂÌ˚ ÒÎÂ‰Û˛˘Ë ÏÂÚËÍË, Ò‚flÁ‡ÌÌ˚Â Ò ÏÂÚËÍÓÈ I(x, y):
1) min ( I ( x, z ) + I ( z −1 , y −1 ));
z ∈Sym n
2) max I ( zx, zy);
z ∈Sym n
3) min I ( zx, zy) = T ( x, y), „‰Â í – ÏÂÚË͇ ä˝ÎË;
z ∈Sym n
4) åÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl, ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ Ó‰ÌÓÛÓ‚Ì‚˚È Ó·ÏÂÌ ÒËÏ‚ÓÎÓ‚.
èÓÎÛÏÂÚË͇ чÌËÂÎÒ‡–ÉËθ·Ó
èÓÎÛÏÂÚË͇ чÌËÂθ҇–ÉËθ·Ó ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ̇ Sym n , ÓÔ‰ÂÎÂÌ̇fl ‰Îfl
β·˚ı x, y ∈ Sym n Í‡Í ˜ËÒÎÓ ÚÓÂÍ (i, j, k), 1 ≤ i < j < k ≤ n , Ú‡ÍËı ˜ÚÓ (xi, xj, xk) ÌÂ
fl‚ÎflÂÚÒfl ˆËÍ΢ÂÒÍËÏ Ò‰‚Ë„ÓÏ (y i, y j, y k); Ó̇ ‡‚̇ ÌÛβ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡,
ÍÓ„‰‡ ı – ˆËÍ΢ÂÒÍËÈ Ò‰‚Ë„ Û (ÒÏ. [Monj98]).
åÂÚË͇ ä˝ÎË
åÂÚË͇ ä˝ÎË í ÂÒÚ¸ ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ Symn , ÔÓÎÛ˜ÂÌ̇fl ‰Îfl ,
‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ Ó·ÏÂÌ ÒËÏ‚ÓÎÓ‚.
Ç ÚÂÏË̇ı ÚÂÓËË „ÛÔÔ, T (x, y) ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ Ú‡ÌÒÔÓÁˈËÈ,
ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÚÓ„Ó, ˜ÚÓ·˚ ÔÓÎÛ˜ËÚ¸ ı ËÁ Û. èË ˝ÚÓÏ n–T(x, y) – ˜ËÒÎÓ ˆËÍÎÓ‚ ‚
ÔÂÂÒÚ‡ÌÓ‚Í xy–1. åÂÚË͇ í fl‚ÎflÂÚÒfl ·ËËÌ‚‡ˇÌÚÌÓÈ.
åÂÚË͇ ì·χ
åÂÚË͇ ì·χ (ËÎË ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ÔÂÂÒÚ‡ÌÓ‚ÓÍ) U – ÏÂÚË͇
‰‡ÍÚËÓ‚‡ÌËfl ̇ Symn , ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔÂ‡ˆËË
ÔÂÂÏ¢ÂÌËfl ÒËÏ‚ÓÎÓ‚.
ùÍ‚Ë‚‡ÎÂÌÚÌÓ, Ó̇ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‰‡ÍÚËÓ‚‡ÌËfl, ÔÓÎÛ˜ÂÌÌÓÈ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔÂ‡ˆËË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl. èË ˝ÚÓÏ n–U(x, y) = LCS(x, y) =
= LIS(xy–1), „‰Â LCS(x, y) – ‰ÎË̇ Ò‡ÏÓÈ ‰ÎËÌÌÓÈ Ó·˘ÂÈ ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚË (ÌÂ
Ó·flÁ‡ÚÂθÌÓ ÔÓ‰ÒÚÓÍË) ı Ë Û, ÚÓ„‰‡ Í‡Í LIS(z) – ‰ÎË̇ Ò‡ÏÓÈ ‰ÎËÌÌÓÈ ‚ÓÁ‡ÒÚ‡˛˘ÂÈ ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÔÂÂÒÚ‡ÌÓ‚ÍË z ∈ Symn .
ùÚ‡ ÏÂÚË͇ Ë ‚Ò ¯ÂÒÚ¸ Ô‰˚‰Û˘Ëı ÏÂÚËÍ fl‚Îfl˛ÚÒfl Ô‡‚ÓËÌ‚‡ˇÌÚÌ˚ÏË.
åÂÚË͇ ‚ÂÒËË
åÂÚË͇ ‚ÂÒËË – ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ Symn , ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔÂ‡ˆËË ‚ÂÒËË ·ÎÓÍÓ‚.
åÂÚË͇ ‚ÂÒËË ÒÓ Á̇ÍÓÏ
åÂÚË͇ ‚ÂÒËË ÒÓ Á̇ÍÓÏ (ÔÓ ë‡ÌÍÓÙÙÛ, 1989) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‰‡ÍÚËÓ‚‡ÌËfl ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı 2nn ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÒÓ Á̇ÍÓÏ ÏÌÓÊÂÒÚ‚‡ {1,…, n},
ÔÓÎÛ˜ÂÌÌÓÈ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔÂ‡ˆËË ‚ÂÒËË ÒÓ Á̇ÍÓÏ. ùÚ‡
ÏÂÚË͇ ÔËÏÂÌflÂÚÒfl ‚ ·ËÓÎÓ„ËË, „‰Â ÔÂÂÒÚ‡ÌÓ‚ÍË ÒÓ Á̇ÍÓÏ Ô‰ÒÚ‡‚Îfl˛Ú
188
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
Ó‰ÌÓıÓÏÓÒÓÏÌ˚È „ÂÌÓÏ, ‡ÒÒχÚË‚‡ÂÏ˚È Í‡Í ÔÂÂÒÚ‡ÌÓ‚ÍÛ „ÂÌÓ‚ (‚‰Óθ
ıÓÏÓÒÓÏ), ͇ʉ‡fl ËÁ ÍÓÚÓ˚ı ËÏÂÂÚ Ì‡Ô‡‚ÎÂÌË (Ú.Â. ÁÌ‡Í "+" ËÎË "–").
åÂÚË͇ ˆÂÔÓ˜ÍË
åÂÚË͇ ˆÂÔÓ˜ÍË (ËÎË ÏÂÚË͇ ÔÂ„ÛÔÔËÓ‚ÍË) ÂÒÚ¸ ÏÂÚË͇ ̇ Sym n
([Page65]), ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ Symn Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÏËÌÛÒ 1
ˆÂÔÓ˜ÂÍ (ÔÓ‰ÒÚÓÍ) y1′ , …, yt′ ÒÚÓÍË Û, Ú‡ÍËı ˜ÚÓ ı ÏÓÊÂÚ ·˚Ú¸ ÒÚÓ͇ ËÁ ÌËı, Ú.Â.
x = y1′ , …, yt′.
ãÂÍÒËÍÓ„‡Ù˘ÂÒ͇fl ÏÂÚË͇
ãÂÍÒËÍÓ„‡Ù˘ÂÒ͇fl ÏÂÚË͇ – ˝ÚÓ ÏÂÚË͇ ̇ Symn , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| N(x) – N(y) |,
„‰Â N(x) – ÔÓfl‰ÍÓ‚Ó ˜ËÒÎÓ ÔÓÁˈËË (ËÁ 1,…, n!), Á‡ÌËχÂÏÓÈ ÔÂÂÒÚ‡ÌÓ‚ÍÓÈ ı ‚
ÎÂÍÒËÍÓ„‡Ù˘ÂÒÍÓÏ ÛÔÓfl‰Ó˜ÂÌËË ÏÌÓÊÂÒÚ‚‡ Symn.
Ç ÎÂÍÒËÍÓ„‡Ù˘ÂÒÍÓÏ ÛÔÓfl‰Ó˜ÂÌËË ÏÌÓÊÂÒÚ‚‡ Symn Ï˚ ËÏÂÂÏ x = x1 … xn p
p y = y1 … yn , ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ Ë̉ÂÍÒ 1 ≤ i ≤ n, Ú‡ÍÓÈ ˜ÚÓ x1 = x1,…, xi– 1 = yi–1,
ÌÓ x i < yi.
åÂÚË͇ ÔÂÂÒÚ‡ÌÓ‚ÓÍ î¯Â
åÂÚË͇ ÔÂÂÒÚ‡ÌÓ‚ÓÍ î¯ ÂÒÚ¸ ÏÂÚË͇ ÔÓËÁ‚‰ÂÌËfl î¯ ̇ ÏÌÓÊÂÒÚ‚Â
Sym∞ ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÔÓÎÓÊËÚÂθÌ˚ı ˆÂÎ˚ı ˜ËÒÂÎ, ÓÔ‰ÂÎflÂχfl ͇Í
∞
∑
i =1
1 | xi − yi |
.
2 i 1+ | xi − yi |
É·‚‡ 12
ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı
12.1. êÄëëíéüçàü çÄ óàëãÄï
Ç ˝ÚÓÈ „·‚ ‡ÒÒχÚË‚‡˛ÚÒfl ÌÂÍÓÚÓ˚ ̇˷ÓΠ‚‡ÊÌ˚ ÏÂÚËÍË Ì‡ Í·ÒÒ˘ÂÒÍËı ˜ËÒÎÓ‚˚ı ÒËÒÚÂχı: ÔÓÎÛÍÓθˆÂ ̇ÚÛ‡Î¸Ì˚ı ˜ËÒÂÎ, ÍÓθˆÂ ˆÂÎ˚ı
˜ËÒÂÎ, ‡ Ú‡ÍÊ ÔÓÎflı , Ë ‡ˆËÓ̇θÌ˚ı, ‰ÂÈÒÚ‚ËÚÂθÌ˚ı Ë ÍÓÏÔÎÂÍÒÌ˚ı
˜ËÒÂÎ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ê‡ÒÒχÚË‚‡ÂÚÒfl Ú‡ÍÊ ‡Î„·‡ Í‚‡ÚÂÌËÓÌÓ‚.
åÂÚËÍË Ì‡ ̇ÚÛ‡Î¸Ì˚ı ˜ËÒ·ı
ëÛ˘ÂÒÚ‚ÛÂÚ ÌÂÒÍÓθÍÓ ıÓÓ¯Ó ËÁ‚ÂÒÚÌ˚ı ÏÂÚËÍ Ì‡ ÏÌÓÊÂÒڂ ̇ÚÛ‡Î¸Ì˚ı
˜ËÒÂÎ:
1. | n–m |; ÒÛÊÂÌË ̇ÚÛ‡Î¸ÌÓÈ ÏÂÚËÍË (ËÁ ) ̇ .
2. p–α , „‰Â α – ̇˷Óθ¯‡fl ÒÚÂÔÂ̸ ‰‡ÌÌÓ„Ó ÔÓÒÚÓ„Ó ˜ËÒ· , ‰ÂÎfl˘‡fl m–n ‰Îfl
m ≠ n (Ë ‡‚̇fl 0 ‰Îfl m = n); ÒÛÊÂÌË -‡‰Ë˜ÂÒÍÓÈ ÏÂÚËÍË (ËÁ ) ̇ .
l.c.m.( m, n)
3. ln
; ÔËÏÂ ÏÂÚËÍË ‚‡Î˛‡ˆËË ¯ÂÚÍË.
g.c.d .( m, n)
4. w r(n – m), „‰Â wr(n) – ‡ËÙÏÂÚ˘ÂÒÍËÈ r-‚ÂÒ ˜ËÒ· n; ÒÛÊÂÌË ÏÂÚËÍË ‡ËÙÏÂÚ˘ÂÒÍÓÈ r-ÌÓÏ˚ (ËÁ ) ̇ .
|n−m|
5.
(ÒÏ. å-ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇, „Î. 19)
mn
1
‰Îfl m ≠ n (Ë ‡‚̇fl 0 ‰Îfl m = n); ÏÂÚË͇ ëÂÔËÌÒÍÓ„Ó.
6. 1 +
m+n
ÅÓθ¯ËÌÒÚ‚Ó ˝ÚËı ÏÂÚËÍ Ì‡ ÏÓ„ÛÚ ·˚Ú¸ ‡ÒÔÓÒÚ‡ÌÂÌ˚ ̇ . ÅÓΠÚÓ„Ó,
β·Û˛ ËÁ ‚˚¯ÂÔÂ˜ËÒÎÂÌÌ˚ı ÏÂÚËÍ ÏÓÊÌÓ ËÒÔÓθÁÓ‚‡Ú¸ ‰Îfl ÒÎÛ˜‡fl ÔÓËÁ‚ÓθÌÓ„Ó Ò˜ÂÚÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ï. ç‡ÔËÏÂ, ÏÂÚËÍÛ ëÂÔËÌÒÍÓ„Ó ÓÔ‰ÂÎfl˛Ú
1
Ó·˚˜ÌÓ Ì‡ ÔÓËÁ‚ÓθÌÓÏ Ò˜ÂÚÌÓÏ ÏÌÓÊÂÒÚ‚Â X = {xn: n ∈ } Í‡Í 1 +
‰Îfl ‚ÒÂı
m+n
x, xn ∈ X Ò m ≠ n (Ë Í‡Í 0, Ë̇˜Â).
åÂÚË͇ ‡ËÙÏÂÚ˘ÂÒÍÓÈ r-ÌÓÏ˚
èÛÒÚ¸ r ∈ , r ≥ 2. èÂÓ·‡ÁÓ‚‡ÌÌÓÈ r-‡ÌÓÈ ÙÓÏÓÈ ˆÂÎÓ„Ó ˜ËÒ· ı ̇Á˚‚‡ÂÚÒfl
Ô‰ÒÚ‡‚ÎÂÌËÂ
x = en r n + ⋅⋅⋅ + e1r + e0 ,
„‰Â e i ∈ Ë | ei | < r ‰Îfl ‚ÒÂı i = 0,…, n. r-Ä̇fl ÙÓχ ̇Á˚‚‡ÂÚÒfl ÏËÌËχθÌÓÈ,
ÂÒÎË ˜ËÒÎÓ Â ÌÂÌÛ΂˚ı ÍÓ˝ÙÙˈËÂÌÚÓ‚ ÏËÌËχθÌÓ. åËÌËχθ̇fl ÙÓχ ÌÂ
fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓÈ ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â. é‰Ì‡ÍÓ ÂÒÎË ÍÓ˝ÙÙˈËÂÌÚ˚ ei, 0 ≤ i ≤ n – 1,
Û‰Ó‚ÎÂÚ‚Ófl˛Ú ÛÒÎÓ‚ËflÏ | ei + ei +1 | < r Ë | ei + ei +1 | <| ei +1 |, ÂÒÎË eiei+1 < 0, ÚÓ ‚˚¯ÂÛ͇Á‡Ì̇fl ÙÓχ fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓÈ Ë ÏËÌËχθÌÓÈ; Ó̇ ̇Á˚‚‡ÂÚÒfl Ó·Ó·˘ÂÌÌÓÈ ÌÂÒÏÂÊÌÓÈ ÙÓÏÓÈ. ÄËÙÏÂÚ˘ÂÒÍËÈ r-‚ÂÒ wr(x) ˆÂÎÓ„Ó ˜ËÒ· ı ÂÒÚ¸
190
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ÍÓ΢ÂÒÚ‚Ó ÌÂÌÛ΂˚ı ÍÓ˝ÙÙˈËÂÌÚÓ‚ ‚ ÏËÌËχθÌÓÈ r-ÙÓÏ ˜ËÒ· ı, ‚ ˜‡ÒÚÌÓÒÚË ‚ Ó·Ó·˘ÂÌÌÓÈ ÌÂÒÏÂÊÌÓÈ ÙÓÏÂ.
åÂÚË͇ ‡ËÙÏÂÚ˘ÂÒ͇fl r-ÌÓÏ˚ (ÒÏ., ̇ÔËÏÂ, [Ernv85]) ÂÒÚ¸ ÏÂÚË͇ ̇ ,
ÓÔ‰ÂÎÂÌ̇fl ͇Í
w r(x – y).
-ĉ˘ÂÒ͇fl ÏÂÚË͇
èÛÒÚ¸  – ÔÓÒÚÓ ˜ËÒÎÓ. ã˛·Ó ÌÂÌÛ΂Ӡ‡ˆËÓ̇θÌÓ ˜ËÒÎÓ ı ÏÓÊÂÚ ·˚Ú¸
c
Ô‰ÒÚ‡‚ÎÂÌÓ Í‡Í x = p α , „‰Â Ò Ë d – ˆÂÎ˚ ˜ËÒ·, ‚Á‡ËÏÌÓ-ÔÓÒÚ˚Â Ò  , Ë α –
d
ˆÂÎÓ ˜ËÒÎÓ, ÓÔ‰ÂÎÂÌÌÓ ‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ. -ĉ˘ÂÒ͇fl ÌÓχ ˜ËÒ· ı
ÓÔ‰ÂÎflÂÚÒfl Í‡Í | x | p = p −α . äÓÏ ÚÓ„Ó, Ï˚ Ò˜ËÚ‡ÂÏ, ˜ÚÓ | 0 | p = 0.
-ĉ˘ÂÒÍÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ ̇ ÏÌÓÊÂÒÚ‚Â
‡ˆËÓ̇θÌ˚ı ˜ËÒÂÎ, ÓÔ‰ÂÎÂÌ̇fl ͇Í
| x − y |p .
чÌ̇fl ÏÂÚË͇ ÎÂÊËÚ ‚ ÓÒÌÓ‚Â ÔÓÒÚÓÂÌËfl ‡Î„·˚  -‡‰Ë˜ÂÒÍËı ˜ËÒÂÎ.
àÏÂÌÌÓ, ÔÓÔÓÎÌÂÌË äÓ¯Ë ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ( , | x − y | p ) ‰‡ÂÚ ÔÓΠp
-‡‰Ë˜ÂÒÍËı ˜ËÒÂÎ, ÚÓ˜ÌÓ Ú‡Í ÊÂ Í‡Í ÔÓÔÓÎÌÂÌË äÓ¯Ë ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
( , | x − y |) Ò Ì‡ÚÛ‡Î¸ÌÓÈ ÏÂÚËÍÓÈ | x − y | ‰‡ÂÚ ÔÓΠ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂÎ.
ç‡ÚÛ‡Î¸Ì‡fl ÏÂÚË͇
ç‡ÚÛ‡Î¸ÌÓÈ ÏÂÚËÍÓÈ (ËÎË ÏÂÚËÍÓÈ ‡·ÒÓβÚÌÓ„Ó Á̇˜ÂÌËfl) ̇Á˚‚‡ÂÚÒfl
ÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl ͇Í
 y − x, ÂÒÎË x − y < 0,
|x−y|= 
 x − y, ÂÒÎË x − y ≥ 0.
ç‡ ‚Ò lp-ÏÂÚËÍË ÒÓ‚Ô‡‰‡˛Ú Ò ÌÂÈ. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (, | x − y |)
̇Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔflÏÓÈ (ËÎË Â‚ÍÎˉӂÓÈ ÔflÏÓÈ).
ëÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓ„Ó ‰Û„Ëı ÔÓÎÂÁÌ˚ı ÏÂÚËÍ Ì‡ . Ç ˜‡ÒÚÌÓÒÚË, ‰Îfl ‰‡ÌÌÓ„Ó
0 < α < 1 Ó·Ó·˘ÂÌ̇fl ÏÂÚË͇ ‡·ÒÓβÚÌÓ„Ó Á̇˜ÂÌËfl ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
| x − y |α .
åÂÚË͇ ÌÛÎÂ‚Ó„Ó ÓÚÍÎÓÌÂÌËfl
åÂÚËÍÓÈ ÌÛÎÂ‚Ó„Ó ÓÚÍÎÓÌÂÌËfl ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl ͇Í
1+ | x − y |,
ÂÒÎË Ó‰ÌÓ Ë ÚÓθÍÓ Ó‰ÌÓ ËÁ ˜ËÒÂÎ ı Ë Û fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌ˚Ï, Ë Í‡Í
|x−y|
Ë̇˜Â, „‰Â | x − y | – ̇ÚÛ‡Î¸Ì‡fl ÏÂÚË͇ (ÒÏ., ̇ÔËÏÂ, [Gile87]).
䂇ÁËÔÓÎÛÏÂÚË͇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔÓÎÛÔflÏÓÈ
䂇ÁËÔÓÎÛÏÂÚË͇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔÓÎÛÔflÏÓÈ Á‡‰‡ÂÚÒfl ̇ ÔÓÎÛÔflÏÓÈ >0 ͇Í
max 0, ln

y
.
x
É·‚‡ 12. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı
191
ê‡Ò¯ËÂÌ̇fl ÏÂÚË͇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔflÏÓÈ
ê‡Ò¯ËÂÌÌÓÈ ÏÂÚËÍÓÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔflÏÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ∪ {+∞} ∪ {–∞}. éÒÌÓ‚Ì˚Ï ÔËÏÂÓÏ (ÒÏ., ‚ ˜‡ÒÚÌÓÒÚË, [Cops68]) Ú‡ÍÓÈ
ÏÂÚËÍË fl‚ÎflÂÚÒfl
| f ( x ) − f ( y) |,
x
‰Îfl x ∈ , f(+∞) = 1 Ë f(–∞) = –1. ÑÛ„‡fl ˜‡ÒÚÓ ËÒÔÓθÁÛÂχfl ÏÂÚ1+ | x |
Ë͇ ̇ ∪ {+∞} ∪ {–∞} Á‡‰‡ÂÚÒfl ͇Í
| arctgx – arctgy |,
„‰Â f ( x ) =
„‰Â −
1
1
1
π < arctg x < π ‰Îfl –∞ < x < ∞ Ë arctg( ±∞) = ± π.
2
2
2
åÂÚË͇ ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÓ‰ÛÎfl
åÂÚËÍÓÈ ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÓ‰ÛÎfl fl‚ÎflÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ÍÓÏÔÎÂÍÒÌ˚ı
˜ËÒÂÎ, ÓÔ‰ÂÎflÂχfl ͇Í
| z – u |,
„‰Â ‰Îfl β·Ó„Ó z ∈ ‰ÂÈÒÚ‚ËÚÂθÌÓ ˜ËÒÎÓ | z |=| z1 + z 2 i | = z12 + z 22 fl‚ÎflÂÚÒfl „Ó
ÍÓÏÔÎÂÍÒÌ˚Ï ÏÓ‰ÛÎÂÏ. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (, | z − u |) ̇Á˚‚‡ÂÚÒfl ÍÓÏÔÎÂÍÒÌÓÈ ÔÎÓÒÍÓÒÚ¸˛ (ËÎË ÔÎÓÒÍÓÒÚ¸˛ Ä„‡Ì‡). Ç Í‡˜ÂÒÚ‚Â ÔËÏÂ‡ ‰Û„Ëı ÔÓÎÂÁÌ˚ı ÏÂÚËÍ Ì‡ ÏÓÊÌÓ ÔË‚ÂÒÚË ÏÂÚËÍÛ ÅËÚ‡ÌÒÍÓÈ ÊÂÎÂÁÌÓÈ ‰ÓÓ„Ë,
ÓÔ‰ÂÎflÂÏÛ˛ ͇Í
| z |+| u |
‰Îfl z ≠ u (Ë ‡‚ÌÛ˛ 0, Ë̇˜Â); -ÓÚÌÓÒËÚÂθÌÛ˛ ÏÂÚËÍÛ, 1 ≤ p ≤ ∞ (ÒÏ. (p, q)ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇, „Î. 19), ÓÔ‰ÂÎflÂÏÛ˛ ͇Í
|z−u|
(| z | + | u | p )1 / p
p
‰Îfl | z | + | u | ≠ 0 (Ë ‡‚ÌÛ˛ 0, Ë̇˜Â); ‰Îfl p = 0 ÔÓÎÛ˜‡ÂÏ ÓÚÌÓÒËÚÂθÌÛ˛ ÏÂÚËÍÛ,
Á‡‰‡‚‡ÂÏÛ˛ ‰Îfl | z | + | u | ≠ 0 ͇Í
|z−u|
.
max{| z |, | u |}
ïÓ‰‡Î¸Ì‡fl ÏÂÚË͇
ïÓ‰‡Î¸Ì‡fl ÏÂÚË͇ d χ ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â = ∪ {∞}, ÓÔ‰ÂÎÂÌ̇fl ͇Í
dχ ( z, u) =
2|z−u|
1+ | z |2 1+ | u |2
‰Îfl ‚ÒÂı z, u ∈ Ë Í‡Í
dχ ( z, ∞) =
2
1+ | z |2
‰Îfl ‚ÒÂı z ∈ (ÒÏ. å-ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇, „Î. 19). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
192
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
( , dχ ) ̇Á˚‚‡ÂÚÒfl ‡Ò¯ËÂÌÌÓÈ ÍÓÏÔÎÂÍÒÌÓÈ ÔÎÓÒÍÓÒÚ¸˛. é̇ „ÓÏÂÓÏÓÙ̇ Ë
ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚ̇ ËχÌÓ‚ÓÈ ÒÙÂÂ.
àÏÂÌÌÓ, ËχÌÓ‚‡ ÒÙÂ‡ – ˝ÚÓ ÒÙÂ‡ ‚ ‚ÍÎˉӂÓÏ ÔÓÒÚ‡ÌÒÚ‚Â 3 , ‡ÒÒχÚË‚‡Âχfl Í‡Í ÏÂÚ˘ÂÒÍÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó 3 , ̇ ÍÓÚÓÛ˛ ‚ ÒÚÂÂÓ„‡Ù˘ÂÒÍÓÈ ÔÓÂ͈ËË ‚Á‡ËÏÌÓ-Ó‰ÌÓÁ̇˜ÌÓ ÓÚÓ·‡Ê‡ÂÚÒfl ‡Ò¯ËÂÌ̇fl ÍÓÏÔÎÂÍÒ̇fl
ÔÎÓÒÍÓÒÚ¸. Ö‰ËÌ˘ÌÛ˛ ÒÙÂÛ S 2 = {( x1 , x 2 , x3 ) ∈ 3 : x12 + x 22 + x32 = 1} ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ËχÌÓ‚Û ÒÙÂÛ, ‡ ÔÎÓÒÍÓÒÚ¸ ÏÓÊÌÓ ÓÚÓʉÂÒÚ‚ËÚ¸ Ò ÔÎÓÒÍÓÒÚ¸˛
x3 = 0 Ú‡Í, ˜ÚÓ Â ‰ÂÈÒÚ‚ËÚÂθ̇fl ÓÒ¸ ÒÓ‚Ô‡‰‡ÂÚ Ò x1-ÓÒ¸˛, ‡ ÏÌËχfl ÓÒ¸ – Ò x2-ÓÒ¸˛.
èË ÒÚÂÂÓ„‡Ù˘ÂÒÍÓÈ ÔÓÂ͈ËË Í‡Ê‰‡fl ÚӘ͇ z ∈ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÚÓ˜ÍÂ
(x 1 , x2, x3) ∈ S 2 , ÍÓÚÓ‡fl ÔÓÎÛ˜Â̇ Í‡Í ÚӘ͇ ÔÂÂÒ˜ÂÌËfl ÎÛ˜‡, Ôӂ‰ÂÌÌÓ„Ó ËÁ
"Ò‚ÂÌÓ„Ó ÔÓÎ˛Ò‡" (0, 0, 1) ÒÙÂ˚ ‚ ÚÓ˜ÍÛ z ÒÙÂ˚ S2 ; "Ò‚ÂÌ˚È ÔÓβÒ"
ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ·ÂÒÍÓ̘ÌÓ Û‰‡ÎÂÌÌÓÈ ÚÓ˜ÍÂ. ïÓ‰‡Î¸ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl
ÚӘ͇ÏË p, q ∈ S2 ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ëı ÔÓÓ·‡Á‡ÏË z, u ∈.
ïÓ‰‡Î¸Ì‡fl ÏÂÚË͇ ÏÓÊÂÚ ·˚Ú¸ ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ ÓÔ‰ÂÎÂ̇ ̇
n
= n ∪ {∞}. àÏÂÌÌÓ ‰Îfl β·˚ı
dχ ( x, y) =
2 || x − y ||2
1 + || x ||22 1 + || y ||22
Ë ‰Îfl β·Ó„Ó x ∈ n
dχ ( x, ∞) =
2
1 + || x ||22
,
„‰Â || ⋅ ||2 – Ó·˚˜Ì‡fl ‚ÍÎˉӂ‡ ÌÓχ ̇ n. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (n, dχ) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ åfi·ËÛÒ‡. ùÚÓ ÔÚÓÎÂÏÂÂ‚Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
(ÒÏ. èÚÓÎÂÏ‚‡ ÏÂÚË͇, „Î.1).
ÖÒÎË Á‡‰‡Ì˚ α > 0, β ≥ 0, p ≥ 1, ÚÓ Ó·Ó·˘ÂÌÌÓÈ ıÓ‰‡Î¸ÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl
ÏÂÚË͇ ̇ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ ( n , || ⋅ ||2 ) Ë ‰‡Ê ̇ β·ÓÏ ÔÚÓÎÂÏ‚ÓÏ
ÔÓÒÚ‡ÌÒÚ‚Â (V , || ⋅ ||)), ÓÔ‰ÂÎÂÌ̇fl ͇Í
|z−u|
.
(α + β | z | ) ⋅ (α + β | u | p )1 / p
p 1/ p
é̇ ΄ÍÓ Ó·Ó·˘‡ÂÚÒfl Ë Ì‡ ÒÎÛ˜‡È ( n ).
䂇ÚÂÌËÓÌ̇fl ÏÂÚË͇
䂇ÚÂÌËÓÌ˚ – ˝ÎÂÏÂÌÚ˚ ÌÂÍÓÏÏÛÚ‡ÚË‚ÌÓÈ ‡Î„·˚ Ò ‰ÂÎÂÌËÂÏ Ì‡‰ ÔÓÎÂÏ ,
„ÂÓÏÂÚ˘ÂÒÍË ‡ÎËÁÛÂÏ˚ ‚ ˜ÂÚ˚ÂıÏÂÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ([Hami66]). 䂇ÚÂÌËÓÌ ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ‚ ÙÓÏ q = q1 + q2 i + q3 j + q4 k , qi ∈ , „‰Â Í‚‡ÚÂÌËÓÌ˚ i, j Ë
k ̇Á˚‚‡˛ÚÒfl ÓÒÌÓ‚Ì˚ÏË Â‰ËÌˈ‡ÏË Ë Û‰Ó‚ÎÂÚ‚Ófl˛Ú ÒÎÂ‰Û˛˘ËÏ ÒÓÓÚÌÓ¯ÂÌËflÏ,
ËÁ‚ÂÒÚÌ˚Ï Í‡Í Ô‡‚Ë· ɇÏËθÚÓ̇: i2 = j2 = k2 = –1 Ë ij = –ji = k.
çÓχ || q || Í‚‡ÚÂÌËÓ̇ q = q1 + q2 i + q3j + q3k ∈ ÓÔ‰ÂÎflÂÚÒfl ͇Í
|| q ||= qq = q12 + q22 + q32 + q42 ,
q = q1 − q2 i − q3 j − q4 k.
䂇ÚÂÌËÓÌ̇fl ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı Í‚‡ÚÂÌËÓÌÓ‚, ÓÔ‰ÂÎflÂÏÓÈ Í‡Í || x − y || .
193
É·‚‡ 12. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı
12.2. êÄëëíéüçàü çÄ åçéÉéóãÖçÄï
åÌÓ„Ó˜ÎÂÌ – ‚˚‡ÊÂÌËÂ, fl‚Îfl˛˘ÂÂÒfl ÒÛÏÏÓÈ ÒÚÂÔÂÌÂÈ Ó‰ÌÓÈ ËÎË ÌÂÒÍÓθÍËı
ÔÂÂÏÂÌÌ˚ı, ÛÏÌÓÊÂÌÌ˚ı ̇ ÍÓ˝ÙÙˈËÂÌÚ˚. åÌÓ„Ó˜ÎÂÌ ÓÚ Ó‰ÌÓÈ ÔÂÂÏÂÌÌÓÈ Ò
‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË (ÍÓÏÔÎÂÍÒÌ˚ÏË) ÍÓ˝ÙÙˈËÂÌÚ‡ÏË Á‡‰‡ÂÚÒfl Í‡Í P = P( z ) =
n
=
∑ ak z k ,
ak ∈ ( ak ∈ ). åÌÓÊÂÒÚ‚Ó ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı)
k =0
ÏÌÓ„Ó˜ÎÂÌÓ‚ Ó·‡ÁÛ˛Ú ÍÓθˆÓ (, +, ⋅, 0). éÌÓ fl‚ÎflÂÚÒfl Ú‡ÍÊ ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡‰ (̇‰ ).
åÂÚË͇ ÌÓÏ˚ ÏÌÓ„Ó˜ÎÂ̇
åÂÚË͇ ÌÓÏ˚ ÏÌÓ„Ó˜ÎÂ̇ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ÏÌÓ„Ó˜ÎÂÌÓ‚, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| P – Q ||,
„‰Â || ⋅ || – ÌÓχ ÏÌÓ„Ó˜ÎÂ̇, Ú.Â. ڇ͇fl ÙÛÌ͈Ëfl || ⋅ ||: → , ˜ÚÓ ‰Îfl ‚ÒÂı P, Q ∈ Ë
β·Ó„Ó Ò͇Îfl‡ k ËÏÂÂÏ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡:
1) || P || ≥ 0 Ò || P || = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ P = 0;
2) || kP || = | k | || P ||;
3) || P + Q || ≤ || P || + || Q || (ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇).
ÑÎfl ÏÌÓÊÂÒÚ‚‡ Ó·˚˜ÌÓ ËÒÔÓθÁÛ˛ÚÒfl ÌÂÒÍÓθÍÓ Í·ÒÒÓ‚ ÌÓÏ. lp -ÌÓχ
n
∑ ak z k ÓÔ‰ÂÎflÂÚÒfl ͇Í
(1 ≤ p ≤ ∞) ÏÌÓ„Ó˜ÎÂ̇ P( z ) =
k =0
 n

|| P || p = 
| ak | p 
 k =0

∑
n
‰‡‚‡fl ÓÒÓ·˚ ÒÎÛ˜‡Ë || P ||1 =
∑
1/ p
,
n
| ak |, || P ||2 =
k =0
∑
| ak | 2
Ë || P ||∞ = max | ak | .
k =0
0≤k ≤n
á̇˜ÂÌË || P ||∞ ̇Á˚‚‡ÂÚÒfl ‚˚ÒÓÚÓÈ ÏÌÓ„Ó˜ÎÂ̇. Lp -ÌÓχ (1 ≤ p ≤ ∞) ÏÌÓ„Ó˜ÎÂ̇
n
P( z ) =
∑ ak z k ÓÔ‰ÂÎflÂÚÒfl ͇Í
k =0
P
Lp
2π
‰‡‚‡fl ÓÒÓ·˚ ÒÎÛ˜‡Ë
L
L1
=
∫
0
 2π
dθ 
| P(e iθ ) | p
=


2 π 
0
1/ p
∫
dθ
| P(e ) |
, P
2π
,
2π
iθ
L2
=
∫
0
| P(e iθ ) |
dθ
Ë
2π
P
L∞
=
= sup | P( z ) | .
|z | = 1
åÂÚË͇ ÅÓÏ·¸ÂË
åÂÚË͇ ÅÓÏ·¸ÂË (ËÎË ÒÍӷӘ̇fl ÏÂÚË͇ ÏÌÓ„Ó˜ÎÂ̇) ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚
ÏÌÓ„Ó˜ÎÂ̇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ÏÌÓ„Ó˜ÎÂÌÓ‚,
194
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ÓÔ‰ÂÎÂÌ̇fl ͇Í
[P – Q]p ,
n
„‰Â [⋅]p , 0 ≤ p ≤ ∞, ÂÒÚ¸ -ÌÓχ ÅÓÏ·¸ÂË. ÑÎfl ÏÌÓ„Ó˜ÎÂ̇ P( z ) =
∑ ak z k Ó̇ Á‡‰‡-
k =0
ÂÚÒfl ͇Í
 n  n 1− p

[ P] p = 
| ak | p 
 
 k = 0  k

∑
1/ p
,
 n
„‰Â   – ·ËÌÓÏˇθÌ˚È ÍÓ˝ÙÙˈËÂÌÚ.
 k
12.3. êÄëëíéüçàü çÄ åÄíêàñÄï
m × n χÚˈ‡ A = ((aij)) ̇‰ ÔÓÎÂÏ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ Ú‡·ÎˈÛ, ÒÓÒÚÓfl˘Û˛ ËÁ m
ÒÚÓÍ Ë n ÒÚÓηˆÓ‚ Ò ˝ÎÂÏÂÌÚ‡ÏË aij ËÁ ÔÓÎfl . åÌÓÊÂÒÚ‚Ó ‚ÒÂı m × n χÚˈ Ò
‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË (ÍÓÏÔÎÂÍÒÌ˚ÏË) ˝ÎÂÏÂÌÚ‡ÏË Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í Mm,n. éÌÓ Ó·‡ÁÛÂÚ „ÛÔÔÛ (M m,n, +, 0m,n), „‰Â ((aij)) + ((bij)) = ((aij + bij)), ‡ χÚˈ‡ 0m,n ≡ 0, Ú.Â. ‚Ò ÂÂ
˝ÎÂÏÂÌÚ˚ ‡‚Ì˚ 0. éÌÓ fl‚ÎflÂÚÒfl Ú‡ÍÊ mn-ÏÂÌ˚Ï ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡‰
(̇‰ ). í‡ÌÒÔÓÌËÓ‚‡ÌÌÓÈ Ï‡ÚˈÂÈ ‰Îfl χÚˈ˚ A = ((aij)) ∈ Mm,n ̇Á˚‚‡ÂÚÒfl
χÚˈ‡ AT = ((aij)) ∈ M n , m . ëÓÔflÊÂÌÌÓÈ Ú‡ÌÒÔÓÌËÓ‚‡ÌÌÓÈ Ï‡ÚˈÂÈ (ËÎË
ÔËÒÓ‰ËÌÂÌÌÓÈ Ï‡ÚˈÂÈ) ‰Îfl χÚˈ˚ A = ((a i j)) ∈ M m,n ̇Á˚‚‡ÂÚÒfl χÚˈ‡
A∗ = (( aij )) ∈ Mn, m .
å‡Úˈ‡ ̇Á˚‚‡ÂÚÒfl Í‚‡‰‡ÚÌÓÈ Ï‡ÚˈÂÈ, ÂÒÎË m = n. åÌÓÊÂÒÚ‚Ó ‚ÒÂı Í‚‡‰‡ÚÌ˚ı n × n χÚˈ Ò ‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË (ÍÓÏÔÎÂÍÒÌ˚ÏË) ˝ÎÂÏÂÌÚ‡ÏË Ó·ÓÁ̇˜‡ÂÚÒfl
Í‡Í M n . éÌÓ Ó·‡ÁÛÂÚ ÍÓθˆÓ (Mn , +, 0), „‰Â + Ë 0n ÓÔ‰ÂÎfl˛ÚÒfl Í‡Í Û͇Á‡ÌÓ ‚˚¯Â,
 n

‡ (( aij )) ⋅ ((bij )) =  
aik bkj   . éÌÓ fl‚ÎflÂÚÒfl Ú‡ÍÊ n2 -ÏÂÌ˚Ï ‚ÂÍÚÓÌ˚Ï ÔÓ
  k =1
ÒÚ‡ÌÒÚ‚ÓÏ Ì‡‰ (̇‰ ). å‡Úˈ‡ A = ((aij)) ∈ M n ̇Á˚‚‡ÂÚÒfl ÒËÏÏÂÚ˘ÌÓÈ, ÂÒÎË
aij = a j i ‰Îfl ‚ÒÂı i, j ∈ {1,…, n}, Ú.Â., ÂÒÎË A = A T. ëÔˆˇθÌ˚Ï ÒÎÛ˜‡ÂÏ ÚËÔ˚
Í‚‡‰‡ÚÌ˚ı n × n χÚˈ fl‚ÎflÂÚÒfl ‰ËÌ˘̇fl χÚˈ‡ 1n = ((c ij)) Ò cii = 1 Ë cij = 0,
i ≠ j. ìÌËÚ‡̇fl χÚˈ‡ U = ((u ij)) ÂÒÚ¸ Í‚‡‰‡Ú̇fl χÚˈ‡, ÓÔ‰ÂÎÂÌ̇fl ͇Í
U –1 = U*, „‰Â U –1 – Ó·‡Ú̇fl χÚˈ‡ ‰Îfl U, Ú.Â. U ⋅ U –1 = 1n . éÚÓ„Ó̇θÌÓÈ
χÚˈÂÈ Ì‡Á˚‚‡ÂÚÒfl χÚˈ‡ A ∈ Mm,n, ڇ͇fl ˜ÚÓ A* A = 1 n .
ÖÒÎË ‰Îfl χÚˈ˚ A ∈ Mn ÒÛ˘ÂÒÚ‚ÛÂÚ ‚ÂÍÚÓ ı, Ú‡ÍÓÈ ˜ÚÓ Ax = λx ‰Îfl ÌÂÍÓÚÓÓ„Ó
Ò͇Îfl‡ λ, ÚÓ λ ̇Á˚‚‡ÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï Á̇˜ÂÌËÂÏ Ï‡Úˈ˚ Ä, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ÒÓ·ÒÚ‚ÂÌÌÓÏÛ ‚ÂÍÚÓÛ ı. ÑÎfl ÍÓÏÔÎÂÍÒÌÓÈ Ï‡Úˈ˚ A ∈ Mm,n,  ÒËÌ„ÛÎflÌ˚Â
Á̇˜ÂÌËfl s i(A) ÓÔ‰ÂÎfl˛ÚÒfl Í‡Í Í‚‡‰‡ÚÌ˚ ÍÓÌË ÒÓ·ÒÚ‚ÂÌÌ˚ı Á̇˜ÂÌËÈ Ï‡Úˈ˚
A* A, „‰Â A* – ÒÓÔflÊÂÌ̇fl Ú‡ÌÒÔÓÌËÓ‚‡Ì̇fl χÚˈ‡ ‰Îfl Ä. éÌË fl‚Îfl˛ÚÒfl
ÌÂÓÚˈ‡ÚÂθÌ˚ÏË ‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË ˜ËÒ·ÏË, Ô˘ÂÏ s 1 (A) ≥ s2 (A) ≥ … .
∑
åÂÚË͇ ÌÓÏ˚ χÚˈ˚
åÂÚËÍÓÈ ÌÓÏ˚ χÚˈ˚ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ ̇ ÏÌÓÊÂÒÚ‚Â Mm,n ‚ÒÂı
‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) m × n χÚˈ, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| A – B ||,
É·‚‡ 12. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı
195
„‰Â || ⋅ || – ÌÓχ χÚˈ˚, Ú.Â. ڇ͇fl ÙÛÌ͈Ëfl || ⋅ ||: M m , n → , ˜ÚÓ ‰Îfl ‚ÒÂı
A, B ∈ Mm,n Ë ‰Îfl β·Ó„Ó Ò͇Îfl‡ k ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡:
1) || A || ≥ 0 Ò || A || = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ A = 0m,n;
2) || kA || k | || A ||;
3) || A + B || ≤ || A || + || B || (ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇).
ÇÒ ÏÂÚËÍË ÌÓÏ˚ χÚˈ˚ ̇ M m,n ˝Í‚Ë‚‡ÎÂÌÚÌ˚. çÓχ χÚˈ˚ || ⋅ || ̇
ÏÌÓÊÂÒÚ‚Â M n ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) Í‚‡‰‡ÚÌ˚ı n × n χÚˈ
̇Á˚‚‡ÂÚÒfl ÒÛ·ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ, ÂÒÎË Ó̇ ÒÓ‚ÏÂÒÚËχ Ò ÛÏÌÓÊÂÌËÂÏ Ï‡Úˈ,
Ú.Â. || AB || ≤ || A || ⋅ || B || ‰Îfl ‚ÒÂı A, B ∈ Mn . åÌÓÊÂÒÚ‚Ó Mn Ò ÒÛ·ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ
ÌÓÏÓÈ fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚ÓÈ ‡Î„·ÓÈ.
èÓÒÚÂȯËÏ ÔËÏÂÓÏ ÏÂÚËÍË ÌÓÏ˚ χÚˈ˚ fl‚ÎflÂÚÒfl ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇
̇ Mm,n (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ ÏÌÓÊÂÒÚ‚Â Mm,n() ‚ÒÂı χÚˈ m × n Ò ˝ÎÂÏÂÌÚ‡ÏË ËÁ
ÔÓÎfl ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í || A – B ||H, „‰Â || A || H – ÌÓχ ï˝ÏÏËÌ„‡ χÚˈ˚
A ∈ Mm,n, Ú.Â. ˜ËÒÎÓ ÌÂÌÛ΂˚ı ˝ÎÂÏÂÌÚÓ‚ χÚˈ˚ Ä.
åÂÚË͇ ÂÒÚÂÒÚ‚ÂÌÌÓÈ ÌÓÏ˚
åÂÚË͇ ÂÒÚÂÒÚ‚ÂÌÌÓÈ ÌÓÏ˚ (ËÎË Ë̉ۈËÓ‚‡Ì̇fl ÏÂÚË͇ ÌÓÏ˚, ÔÓ‰˜ËÌÂÌ̇fl ÏÂÚË͇ ÌÓÏ˚) ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ ÏÌÓÊÂÒÚ‚Â Mn ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı
(ÍÓÏÔÎÂÍÒÌ˚ı) Í‚‡‰‡ÚÌ˚ı n × n χÚˈ, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| A – B ||nat,
„‰Â || ⋅ ||nat – ÂÒÚÂÒÚ‚ÂÌ̇fl ÌÓχ ̇ M n . ÖÒÚÂÒÚ‚ÂÌ̇fl ÌÓχ || ⋅ ||nat ̇ Mn ,
ÔÓÓʉÂÌ̇fl ÌÓÏÓÈ ‚ÂÍÚÓ‡ || x ||^ x ∈ n (x ∈ n), ÂÒÚ¸ ÒÛ·ÏÛθÚËÔÎË͇Ú˂̇fl
ÌÓχ χÚˈ˚, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| Ax ||
= sup || Ax ||= sup || Ax || .
|| x || ≠ 0 || x ||
|| x || =1
|| x || ≤1
|| A |nat = sup
ç‡ÚÛ‡Î¸ÌÛ˛ ÏÂÚËÍÛ ÌÓÏ˚ ÏÓÊÌÓ Á‡‰‡Ú¸ ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ Ì‡
ÏÌÓÊÂÒÚ‚Â M m,n ‚ÒÂı m × n ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) χÚˈ: ÂÒÎË Á‡‰‡Ì˚
ÌÓÏ˚ ‚ÂÍÚÓ‡ ⋅ m ̇ m Ë ⋅ n ̇ n , ÂÒÚÂÒÚ‚ÂÌ̇fl ÌÓχ || A ||nat χÚˈ˚ A
∈ Mm,n, ÔÓÓʉÂÌ̇fl ÌÓχÏË ⋅
Í‡Í || A ||nat = sup
x n =1
Ax
m
m
⋅
Ë
n
, ÂÒÚ¸ ÌÓχ χÚˈ˚, ÓÔ‰ÂÎÂÌ̇fl
.
åÂÚË͇ -ÌÓÏ˚ χÚˈ˚
åÂÚË͇ -ÌÓÏ˚ χÚˈ˚ ̇Á˚‚‡ÂÚÒfl ̇ÚÛ‡Î¸Ì‡fl ÏÂÚË͇ ÌÓÏ˚ ̇ Mn ,
ÓÔ‰ÂÎÂÌ̇fl ͇Í
p
|| A − B ||nat
,
p
„‰Â || ⋅ ||nat
– -ÌÓχ χÚˈ˚, Ú.Â. ÂÒÚÂÒÚ‚ÂÌ̇fl ÌÓχ, ÔÓÓʉÂÌ̇fl lp -ÌÓÏÓÈ
‚ÂÍÚÓ‡, 1 ≤ p ≤ ∞:
p
|| A ||nat
= max || Ax || p ,
|| x || p =1
„‰Â
 n

|| x || p = 
| xi | p 
 i =1

∑
1/ p
.
196
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
å‡ÍÒËχθÌÓÈ ‡·ÒÓβÚÌÓÈ ÏÂÚËÍÓÈ ÒÚÓηˆÓ‚ (ÚÓ˜ÌÂÂ, χÍÒËχθÌÓÈ ÏÂÚËÍÓÈ ÌÓÏ˚ ‡·ÒÓβÚÌ˚ı ÒÛÏÏ ÔÓ ÒÚÓηˆ‡Ï) fl‚ÎflÂÚÒfl ÏÂÚË͇ 1-ÌÓÏ˚ χÚˈ˚
|| A − B ||1nat ̇ M n . 1-çÓχ χÚˈ˚ || ⋅ ||1nat , , ÔÓÓʉÂÌ̇fl l1 -ÌÓÏÓÈ ‚ÂÍÚÓ‡, ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ χÍÒËχθÌÓÈ ÌÓÏÓÈ ‡·ÒÓβÚÌ˚ı ÒÛÏÏ ÔÓ ÒÚÓηˆ‡Ï.
ÑÎfl χÚˈ˚ A = ((aij)) ∈ Mn  ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ͇Í
n
|| A ||1nat = max
1≤ j ≤ n
∑
| aij | .
i =1
å‡ÍÒËχθÌÓÈ ‡·ÒÓβÚÌÓÈ ÏÂÚËÍÓÈ ÒÚÓÍ (ÚÓ˜ÌÂÂ, χÍÒËχθÌÓÈ ÏÂÚËÍÓÈ
ÌÓÏ˚ ‡·ÒÓβÚÌ˚ı ÒÛÏÏ ÔÓ ÒÚÓ͇Ï) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ -ÌÓÏ˚ χÚˈ˚
|| A − B ||∞nat ̇ M n . ∞-çÓχ χÚˈ˚ || ⋅ ||∞nat , ÔÓÓʉÂÌ̇fl l ∞-ÌÓÏÓÈ ‚ÂÍÚÓ‡,
̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ χÍÒËχθÌÓÈ ÌÓÏÓÈ ‡·ÒÓβÚÌ˚ı ÒÛÏÏ ÔÓ ÒÚÓ͇Ï. ÑÎfl
χÚˈ˚ A = ((aij)) ∈ Mn  ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ͇Í
|| A ||∞nat = max
1≤ j ≤ n
n
∑
| aij | .
j =1
åÂÚË͇ ÒÔÂÍÚ‡Î¸ÌÓÈ ÌÓÏ˚ – ˝ÚÓ ÏÂÚË͇ 2-ÌÓÏ˚ χÚˈ˚ || A − B ||2nat ̇ M n .
ÑÎfl χÚˈ˚ A = ((aij)) ∈ Mn  ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ͇Í
|| A ||sp = (χÍÒËχθÌÓ ÒÓ·ÒÚ‚ÂÌÌÓ Á̇˜ÂÌË A* A)1/2,
„‰Â χÚˈ‡ A∗ = (( aij ) ∈ Mn fl‚ÎflÂÚÒfl ÒÓÔflÊÂÌÌÓÈ Ú‡ÌÒÔÓÌËÓ‚‡ÌÌÓÈ Ï‡ÚˈÂÈ
χÚˈ˚ Ä (ÒÏ. åÂÚË͇ ÌÓÏ˚ äË î‡Ì‡, „Î. 14).
åÂÚË͇ ÌÓÏ˚ îÓ·ÂÌËÛÒ‡
åÂÚË͇ ÌÓÏ˚ îÓ·ÂÌËÛÒ‡ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ χÚˈ˚ ̇ Mm,n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| A – B ||Fr,
„‰Â || ⋅ ||Fr – ÌÓχ îÓ·ÂÌËÛÒ‡. ÑÎfl χÚˈ˚ A = ((aij)) ∈ Mm,n Ó̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
m
n
∑∑
|| A ||Fr =
i =1
| aij |2 .
j =1
é̇ ‡‚̇ Ú‡ÍÊ ͂‡‰‡ÚÌÓÏÛ ÍÓÌ˛ ËÁ ÒΉ‡ χÚˈ˚ A* A, „‰Â χÚˈ‡
A = (( a ji )) fl‚ÎflÂÚÒfl ÒÓÔflÊÂÌÌÓÈ Ú‡ÌÒÔÓÌËÓ‚‡ÌÌÓÈ Ï‡ÚˈÂÈ ‰Îfl χÚˈ˚ Ä
ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, Í‚‡‰‡ÚÌÓÏÛ ÍÓÌ˛ ËÁ ÒÛÏÏ˚ ÒÓ·ÒÚ‚ÂÌÌ˚ı Á̇˜ÂÌËÈ λ i χÚ∗
ˈ˚ A* A: || A ||Fr = Tr ( A∗ A) =
min{m, n}
∑
λ i (ÒÏ. åÂÚË͇ ÌÓÏ˚ ò‡ÚÂ̇, „Î. 13). ùÚ‡
i =1
ÌÓχ ÔÓÓʉÂ̇ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â Mm,n, ÌÓ Ì fl‚ÎflÂÚÒfl
ÒÛ·ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ ‰Îfl m = n.
åÂÚË͇ (c, p)-ÌÓÏ˚
èÛÒÚ¸ k ∈ , k ≤ min{m, n}, c ∈ k, c 1 ≥ c 2 ≥ ⋅⋅⋅ ≥ ck > 0 Ë 1 ≤ p < ∞. åÂÚË͇ (c, p)ÌÓÏ˚ – ˝ÚÓ ÏÂÚË͇ ÌÓÏ˚ χÚˈ˚ ̇ M m,n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| A − B ||(kc, p ) ,
197
É·‚‡ 12. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı
„‰Â || ⋅ ||(kc, p ) (c, p)-ÌÓχ ̇ M m,n. ÑÎfl χÚˈ˚ A ∈ Mm,n Ó̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
||
A ||(kc, p ) =
 k

ci sip ( A)

 i =1

∑
1/ p
,
„‰Â s1 (A) ≥ s2 (A) ≥ ⋅⋅⋅ ≥ sk(A) – ÔÂ‚˚ k ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ Ï‡Úˈ˚ Ä. ÖÒÎË p = 1,
ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ Ò-ÌÓÏÛ. ÖÒÎË, ·ÓΠÚÓ„Ó, c1 = ⋅⋅⋅ = c k = 1, ÚÓ ËÏÂÂÏ k-ÌÓÏÛ
äË î‡Ì‡.
åÂÚË͇ ÌÓÏ˚ äË î‡Ì‡
ÑÎfl k ∈ , k ≤ min{m, n} ÏÂÚËÍÓÈ ÌÓÏ˚ äË î‡Ì‡ fl‚ÎflÂÚÒfl ÏÂÚË͇ ÌÓÏ˚
χÚˈ˚ ̇ Mm,n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
k
|| A − B ||KF
,
k
„‰Â || ⋅ ||KF
– k-ÌÓχ äË î‡Ì‡ ̇ M m,n. ÑÎfl χÚˈ˚ A ∈ M m,n Ó̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
ÒÛÏχ  ÔÂ‚˚ı k ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ:
k
k
=
|| A ||KF
∑ si ( A).
i =1
ÑÎfl k = 1 Ï˚ ÔÓÎÛ˜‡ÂÏ ÒÔÂÍÚ‡Î¸ÌÛ˛ ÌÓÏÛ. ÑÎfl k = min{m, n} ËÏÂÂÏ ÒÎÂ‰Ó‚Û˛
ÌÓÏÛ.
åÂÚË͇ ÌÓÏ˚ ò‡ÚÂ̇
ÖÒÎË ‰‡ÌÓ 1 ≤ p < ∞, ÚÓ ÏÂÚË͇ ÌÓÏ˚ ò‡ÚÂ̇ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ χÚˈ˚ ̇
Mm,n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
p
|| A − B ||Sch
,
p
„‰Â || ⋅ ||Sch
– -ÌÓχ ò‡ÚÂ̇ ̇ Mm,n. ÑÎfl χÚˈ˚ A ∈ M m,n Ó̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
ÍÓÂ̸ -È ÒÚÂÔÂÌË ËÁ ÒÛÏÏ˚ -ı ÒÚÂÔÂÌÂÈ ‚ÒÂı  ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ:
||
p
A ||Sch
=
 min{m, n} p 
si ( A)

 i =1

∑
1/ p
.
ÑÎfl p = 2 Ï˚ ÔÓÎÛ˜‡ÂÏ ÌÓÏÛ îÓ·ÂÌËÛÒ‡, ‡ ‰Îfl p = 1 – ÒÎÂ‰Ó‚Û˛ ÌÓÏÛ.
åÂÚË͇ ÒΉӂÓÈ ÌÓÏ˚
åÂÚËÍÓÈ ÒΉӂÓÈ ÌÓÏ˚ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ χÚˈ˚ ̇ Mm,n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÒÛÏχ ‚ÒÂı  ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ:
|| A – B ||tr,
„‰Â || ⋅ ||tr – ÒΉӂ‡fl ÌÓχ ̇ M m,n. ÑÎfl χÚˈ˚ A ∈ M m,n Ó̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
ÒÛÏχ ‚ÒÂı  ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ:
min{m, n}
|| A ||tr =
∑
i =1
si ( A).
198
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
åÂÚË͇ êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇
èÛÒÚ¸ M m,n( q ) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı m × n χÚˈ Ò ˝ÎÂÏÂÌÚ‡ÏË ËÁ ÍÓ̘ÌÓ„Ó ÔÓÎfl
q . çÓχ êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇ || ⋅ ||RT ̇ Mm,n( q ) ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ÂÒÎË m = 1 Ë a = (ξ1 , ξ2 ,…, ξn ) ∈ M 1,n( q ), ÚÓ || 01,n || RT = 0 Ë || a || RT = max{i|ξi ≠ 0}
‰Îfl a ≠ 01,n; ÂÒÎË A = (a 1 ,…, a m)T ∈ M m,n( q ), a j ∈ M1,n( q ), 1 ≤ j ≤ m , ÚÓ
m
|| A ||RT =
∑
|| a j ||RT .
j =1
åÂÚËÍÓÈ êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇ ([RoTs96]) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚
χÚˈ˚ (̇ Ò‡ÏÓÏ ‰ÂΠÛθÚ‡ÏÂÚË͇) ̇ Mm,n( q ), ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| A – B ||RT.
ì„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË
ê‡ÒÒÏÓÚËÏ „‡ÒÒχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó G(m, n) ‚ÒÂı n-ÏÂÌ˚ı ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚
‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ m; ÓÌÓ fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ
‡ÁÏÂÌÓÒÚË n(m–n).
ÖÒÎË ËϲÚÒfl ‰‚‡ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ A, B ∈ G ( m, n), ÚÓ „·‚Ì˚ ۄÎ˚
π
≥ θ1 ≥ ⋅⋅⋅ ≥ θ n ≥ 0 ÏÂÊ‰Û ÌËÏË ÓÔ‰ÂÎfl˛ÚÒfl (‰Îfl k = 1,…, n) Ë̉ÛÍÚË‚ÌÓ Í‡Í
2
cos θ k = max max x T y = ( x k )T y k ,
x ∈A y ∈B
ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl || x ||2 =|| y ||2 = 1, x T x i = 0, y T y i = 0 ‰Îfl 1 ≤ i ≤ k – 1, „‰Â
|| ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ. É·‚Ì˚ ۄÎ˚ ÏÓ„ÛÚ Á‡‰‡‚‡Ú¸Òfl Ú‡ÍÊ ˜ÂÂÁ ÓÚÓÌÓÏËÓ‚‡ÌÌ˚ χÚˈ˚ Q A Ë Q B, ̇ ÍÓÚÓ˚ ̇ÚflÌÛÚ˚ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ Ä Ë Ç
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ: ËÏÂÌÌÓ n ÛÔÓfl‰Ó˜ÂÌÌ˚ı ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ Ï‡Úˈ˚
QAQB ∈ Mn ÏÓ„ÛÚ ·˚Ú¸ Á‡‰‡Ì˚ Í‡Í cosθ1,…, cosθn.
ÉÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ä Ë Ç ÓÔ‰ÂÎflÂÚÒfl (ÔÓ
ÇÓÌ„Û, 1967) ͇Í
n
2
∑ θi2 .
i =1
ê‡ÒÒÚÓflÌË å‡ÚË̇ ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ä Ë Ç Á‡‰‡ÂÚÒfl ͇Í
n
ln
∏
i =1
1
.
cos 2 θ i
ÖÒÎË ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ Ô‰ÒÚ‡‚Îfl˛Ú ‡‚ÚÓ„ÂÒÒË‚Ì˚ ÏÓ‰ÂÎË, ÚÓ ‡ÒÒÚÓflÌËÂ
å‡ÚË̇ ÏÓÊÂÚ ‚˚‡Ê‡Ú¸Òfl ÔÓÒ‰ÒÚ‚ÓÏ ÍÂÔÒÚ‡ ‡‚ÚÓÍÓÂÎflˆËÓÌÌÓÈ ÙÛÌ͈ËË
˝ÚËı ÏÓ‰ÂÎÂÈ (ÒÏ. äÂÔÒÚ‡Î¸ÌÓ ‡ÒÒÚÓflÌË å‡ÚË̇, „Î. 21).
ê‡ÒÒÚÓflÌË ÄÁËÏÓ‚‡ ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ä Ë Ç Á‡‰‡ÂÚÒfl ͇Í
θ1 .
éÌÓ ÏÓÊÂÚ ·˚Ú¸ ‚˚‡ÊÂÌÓ Ú‡ÍÊ ˜ÂÂÁ ÙËÌÒÎÂÓ‚Û ÏÂÚËÍÛ Ì‡ ÏÌÓ„ÓÓ·‡ÁËË
G(m, n).
ê‡ÒÒÚÓflÌË ÔÓÔÛÒ͇ ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ä Ë Ç ÓÔ‰ÂÎflÂÚÒfl ͇Í
sinθ1.
É·‚‡ 12. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı
199
éÌÓ ÏÓÊÂÚ ‚˚‡Ê‡Ú¸Òfl Ú‡ÍÊ ‚ ÚÂÏË̇ı ÓÚÓ„Ó̇θÌ˚ı ÓÔÂ‡ÚÓÓ‚ ÔÓÂÍÚËÓ‚‡ÌËfl Í‡Í l2-ÌÓχ ‡ÁÌÓÒÚË ÓÔÂ‡ÚÓÓ‚ ÔÓÂÍÚËÓ‚‡ÌËfl ̇ Ä Ë Ç ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. åÌÓ„Ë ‚‡ˇˆËË ˝ÚÓ„Ó ‡ÒÒÚÓflÌËfl ÔËÏÂÌfl˛ÚÒfl ‚ ÚÂÓËË ÛÔ‡‚ÎÂÌËfl
(ÒÏ. åÂÚË͇ ÔÓÔÛÒ͇, „Î. 18).
ê‡ÒÒÚÓflÌË îÓ·ÂÌËÛÒ‡ ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ä Ë Ç ÓÔ‰ÂÎflÂÚÒfl ͇Í
n
2
∑
sin 2 θ i .
i =1
éÌÓ ÏÓÊÂÚ ·˚Ú¸ ‚˚‡ÊÂÌÓ Ú‡ÍÊ ‚ ÚÂÏË̇ı ÓÚÓ„Ó̇θÌ˚ı ÓÔÂ‡ÚÓÓ‚ ÔÓÂÍÚËÓ‚‡ÌËfl Í‡Í ÌÓχ îÓ·ÂÌËÛÒ‡ ‡ÁÌÓÒÚË ÓÔÂ‡ÚÓÓ‚ ÔÓÂÍÚËÓ‚‡ÌËfl ̇ Ä Ë Ç
n
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. Ä̇Îӄ˘ÌÓ ‡ÒÒÚÓflÌËÂ
∑
sin 2 θ i ̇Á˚‚‡ÂÚÒfl ıÓ‰‡Î¸Ì˚Ï
i =1
‡ÒÒÚÓflÌËÂÏ.
èÓÎÛÏÂÚËÍË Ì‡ ÒıÓ‰ÒÚ‚‡ı
ëÎÂ‰Û˛˘Ë ‰‚ ÔÓÎÛÏÂÚËÍË ÓÔ‰ÂÎfl˛ÚÒfl ‰Îfl β·˚ı ‰‚Ûı ÒıÓ‰ÒÚ‚ d 1 Ë d2 ̇
‰‡ÌÌÓÏ ÍÓ̘ÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ï (·ÓΠÚÓ„Ó, ‰Îfl β·˚ı ‰‚Ûı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı
ÒËÏÏÂÚ˘Ì˚ı χÚˈ).
èÓÎÛÏÂÚË͇ ãÂχ̇ (ÒÏ. ‡ÒÒÚÓflÌË äẨ‡Î· ̇ ÔÂÂÒÚ‡Ìӂ͇ı, „Î. 11)
ÓÔ‰ÂÎflÂÚÒfl ͇Í
| {({x, y},{u, v}) : ( d1 ( x, y) − d1 (u, v)) ( d2 ( x, y) − d2 (u, v)) < 0} |
,
2
 | X | + 1


 2 
„‰Â ({x, y}, {u, v}) – β·‡fl Ô‡‡ ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ı Ô‡ {x, y}, {u, v} ˝ÎÂÏÂÌÚÓ‚ x, y, u,
v ËÁ ï.
èÓÎÛÏÂÚË͇ ä‡ÛÙχ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
| {({x, y},{u, v}) : ( d1 ( x, y) − d1 (u, v)) )d2 ( x, y) − d2 (u, v)) < 0} |
.
| {({x, y},{u, v}) : ( d1 ( x, y) − d1 (u, v)) ( d2 ( x, y) − d2 (u, v)) ≠ 0} |
É·‚‡ 13
ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
îÛÌ͈ËÓ̇θÌ˚È ‡Ì‡ÎËÁ fl‚ÎflÂÚÒfl ӷ·ÒÚ¸˛ χÚÂχÚËÍË, ÍÓÚÓ‡fl Á‡ÌËχÂÚÒfl
ËÁÛ˜ÂÌËÂÏ ÙÛÌ͈ËÓ̇θÌ˚ı ÔÓÒÚ‡ÌÒÚ‚. í‡ÍÓ ËÒÔÓθÁÓ‚‡ÌË ÒÎÓ‚‡ ÙÛÌ͈ËÓ̇θÌ˚È ÔÓËÒıÓ‰ËÚ ÓÚ ‚‡ˇˆËÓÌÌÓ„Ó ËÒ˜ËÒÎÂÌËfl, „‰Â ‡ÒÒχÚË‚‡˛ÚÒfl ÙÛÌ͈ËË,
‡„ÛÏÂÌÚÓÏ ÍÓÚÓ˚ı fl‚ÎflÂÚÒfl ÙÛÌ͈Ëfl. ç‡ ÒÓ‚ÂÏÂÌÌÓÏ ˝Ú‡Ô Ô‰ÏÂÚÓÏ
ÙÛÌ͈ËÓ̇θÌÓ„Ó ‡Ì‡ÎËÁ‡ Ò˜ËÚ‡ÂÚÒfl ËÁÛ˜ÂÌË ÔÓÎÌ˚ı ÌÓÏËÓ‚‡ÌÌ˚ı ‚ÂÍÚÓÌ˚ı
ÔÓÒÚ‡ÌÒÚ‚, Ú.Â. ·‡Ì‡ıÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚. ÑÎfl β·Ó„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ·
ÔËÏÂÓÏ ·‡Ì‡ıÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ fl‚ÎflÂÚÒfl Lp -ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÒÂı ËÁÏÂËÏ˚ı ÔÓ
ãÂ·Â„Û ÙÛÌ͈ËÈ, -fl ÒÚÂÔÂ̸ ‡·ÒÓβÚÌÓ„Ó Á̇˜ÂÌËfl ÍÓÚÓ˚ı ËÏÂÂÚ ÍÓ̘Ì˚È
ËÌÚ„‡Î. ÉËθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ‚ ÍÓÚÓÓÏ ÌÓχ ÔÓÎÛ˜Â̇ ËÁ Ò͇ÎflÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl. èÓÏËÏÓ ˝ÚÓ„Ó, ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁ ËÒÒÎÂ‰Û˛ÚÒfl ÌÂÔÂ˚‚Ì˚ ÎËÌÂÈÌ˚ ÓÔÂ‡ÚÓ˚, ÓÔ‰ÂÎflÂÏ˚Â
̇ ·‡Ì‡ıÓ‚˚ı Ë „Ëθ·ÂÚÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı.
13.1. åÖíêàäà çÄ îìçäñàéçÄãúçõï èêéëíêÄçëíÇÄï
èÛÒÚ¸ I ⊂ – ÓÚÍ˚Ú˚È ËÌÚÂ‚‡Î (Ú.Â. ÌÂÔÛÒÚÓ ҂flÁÌÓ ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó)
‚ . ÑÂÈÒÚ‚ËÚÂθ̇fl ÙÛÌ͈Ëfl f : I → ̇Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓ ‡Ì‡ÎËÚ˘ÂÒÍÓÈ
̇ I, ÂÒÎË Ó̇ ‡ÁÎÓÊËχ ‚ fl‰ íÂÈÎÓ‡ ‚ ÓÚÍ˚ÚÓÈ ÓÍÂÒÚÌÓÒÚË U x 0 ͇ʉÓÈ
∞
f (n) ( x0 )
( x − x 0 ) n ‰Îfl β·Ó„Ó x ∈ U x 0 . èÛÒÚ¸ D ⊂ –
n
!
n=0
ӷ·ÒÚ¸ (Ú.Â. ‚˚ÔÛÍÎÓ ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó) ‚ . äÓÏÔÎÂÍÒ̇fl ÙÛÌ͈Ëfl
f : I → ̇Á˚‚‡ÂÚÒfl ÍÓÏÔÎÂÍÒÌÓ ‡Ì‡ÎËÚ˘ÂÒÍÓÈ (ËÎË ÔÓÒÚÓ ‡Ì‡ÎËÚ˘ÂÒÍÓÈ) ̇ D,
ÂÒÎË Ó̇ ‡ÁÎÓÊËχ ‚ fl‰ íÂÈÎÓ‡ ‚ ÓÚÍ˚ÚÓÈ ÓÍÂÒÚÌÓÒÚË Í‡Ê‰ÓÈ ÚÓ˜ÍË
z0 ∈ D. äÓÏÔÎÂÍÒ̇fl ÙÛÌ͈Ëfl f fl‚ÎflÂÚÒfl ‡Ì‡ÎËÚ˘ÂÒÍÓÈ Ì‡ D ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡,
ÍÓ„‰‡ Ó̇ „ÓÎÓÏÓÙ̇ ̇ D, Ú.Â. ӷ·‰‡ÂÚ ÍÓÏÔÎÂÍÒÌÓÈ ÔÓËÁ‚Ó‰ÌÓÈ
f (z ) − f (z0 )
f ′( z 0 ) = lim
‚ ͇ʉÓÈ ÚӘ͠z0 ∈ D.
z →z0
z − z0
ÚÓ˜ÍË x0 ∈ I : f(x ) =
∑
àÌÚ„‡Î¸Ì‡fl ÏÂÚË͇
àÌÚ„‡Î¸ÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl L1 -ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â C [a, b] ‚ÒÂı
ÌÂÔÂ˚‚Ì˚ı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ÙÛÌ͈ËÈ Ì‡ ‰‡ÌÌÓÏ ÓÚÂÁÍ [a, b],
ÓÔ‰ÂÎÂÌ̇fl ͇Í
b
∫
| f ( x ) − g( x ) | dx.
a
ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓÍ‡˘ÂÌÌÓ Á‡ÔËÒ˚‚‡ÂÚÒfl ͇Í
1
C[ a, b ] Ë fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
201
É·‚‡ 13. ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ‰Îfl β·Ó„Ó ÍÓÏÔ‡ÍÚÌÓ„Ó (ËÎË Ò˜ÂÚÌÓ ÍÓÏÔ‡ÍÚÌÓ„Ó) ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ï ËÌÚ„‡Î¸ÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ Á‡‰‡Ú¸ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı
ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ f : X → () ͇Í
∫
| f ( x ) − g( x ) | dx.
X
ꇂÌÓÏÂ̇fl ÏÂÚË͇
ꇂÌÓÏÂ̇fl ÏÂÚË͇ (ËÎË sup-ÏÂÚË͇) ÂÒÚ¸ L-ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â C [a, b]
‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ Ì‡ ‰‡ÌÌÓÏ ÓÚÂÁÍÂ
[a, b], ÓÔ‰ÂÎÂÌ̇fl ͇Í
sup | f ( x ) − g( x ) | .
x ∈[ a, b ]
ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓÍ‡˘ÂÌÌÓ Á‡ÔËÒ˚‚‡ÂÚÒfl ͇Í
Ë fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
C[∞a, b ]
é·Ó·˘ÂÌËÂÏ C[∞a, b ] fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚Ó ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ C(X), Ú.Â.
ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÌÂÔÂ˚‚Ì˚ı (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â,
Ó„‡Ì˘ÂÌÌ˚ı) ÙÛÌ͈ËÈ f : X → ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ï Ò L ∞-ÏÂÚËÍÓÈ
sup | f ( x ) − g( x ) | .
x ∈X
ÑÎfl ÒÎÛ˜‡fl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ C(X, Y) ÌÂÔÂ˚‚Ì˚ı (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â
Ó„‡Ì˘ÂÌÌ˚ı) ÙÛÌ͈ËÈ f : X → Y ËÁ Ó‰ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÍÓÏÔ‡ÍÚ‡ (X, d X) ‚ ‰Û„ÓÈ
(X, d Y) sup-ÏÂÚË͇ ÏÂÊ‰Û ‰‚ÛÏfl ÙÛÌ͈ËflÏË f, g ∈ C(X, Y) ÓÔ‰ÂÎflÂÚÒfl ͇Í
sup dY ( f ( x ), g( x )). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó C[∞a, b ] Ë ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
x ∈X
C[1a, b ] fl‚Îfl˛ÚÒfl ‚‡ÊÌÂȯËÏË ÒÎÛ˜‡flÏË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ C[pa, b ] , 1 ≤ p ≤ ∞
b

̇ ÏÌÓÊÂÒÚ‚Â C[a, b] Ò L p -ÏÂÚËÍÓÈ  | f ( x ) − g( x ) | p dx 


a

fl‚ÎflÂÚÒfl ÔËÏÂÓÏ L p -ÔÓÒÚ‡ÌÒÚ‚‡.
∫
1/ p
. èÓÒÚ‡ÌÒÚ‚Ó C[pa, b ]
ê‡ÒÒÚÓflÌË ÒÓ·‡ÍÓ‚Ó‰‡
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ‡ÒÒÚÓflÌËÂÏ ÒÓ·‡ÍÓ‚Ó‰‡ ̇Á˚‡‚ÂÚÒfl
ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÙÛÌ͈ËÈ f : [0, 1] → X, ÓÔ‰ÂÎÂÌ̇fl ͇Í
inf sup d ( f (t ), g(σ(t )),
σ t ∈[ 0,1]
„‰Â σ: [0, 1] → [0, 1] ÂÒÚ¸ ÌÂÔÂ˚‚̇fl ÏÓÌÓÚÓÌÌÓ ‚ÓÁ‡ÒÚ‡˛˘‡fl ÙÛÌ͈Ëfl, ڇ͇fl
˜ÚÓ σ(0) = 0, σ(1) = 1. чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ˜‡ÒÚÌ˚Ï ÒÎÛ˜‡ÂÏ ÏÂÚËÍË î¯Â.
èËÏÂÌflÂÚÒfl ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÍË‚˚ÏË.
åÂÚË͇ ÅÓ‡
èÛÒÚ¸ – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÏÂÚËÍÓÈ ρ. çÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl
f : → ̇Á˚‚‡ÂÚÒfl ÔÓ˜ÚË ÔÂËӉ˘ÂÒÍÓÈ, ÂÒÎË ‰Îfl Í‡Ê‰Ó„Ó ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ
l = l(ε) > 0, Ú‡ÍÓ ˜ÚÓ Í‡Ê‰˚È ËÌÚÂ‚‡Î [t0, t0 + l(ε)] ÒÓ‰ÂÊËÚ ÔÓ ÏÂ̸¯ÂÈ ÏÂ ӉÌÓ
˜ËÒÎÓ τ, ‰Îfl ÍÓÚÓÓ„Ó ρ(f(t), f(t + τ)) < ε, –∞ < t < +∞.
åÂÚËÍÓÈ ÅÓ‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ || f – g || ̇ ÏÌÓÊÂÒÚ‚Â Äê ‚ÒÂı ÔÓ˜ÚË
ÔÂËӉ˘ÂÒÍËı ÙÛÌ͈ËÈ, Á‡‰‡Ì̇fl ÌÓÏÓÈ
|| f || = sup | f (t ) | .
−∞< t < +∞
202
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
íÂÏ Ò‡Ï˚Ï ÔÓÒÚ‡ÌÒÚ‚Ó Äê Ô‚‡˘‡ÂÚÒfl ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. çÂÍÓÚÓ˚ ӷӷ˘ÂÌËfl ÔÓ˜ÚË ÔÂËӉ˘ÂÒÍËı ÙÛÌ͈ËÈ ·˚ÎË ÔÓÎÛ˜ÂÌ˚ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ
‰Û„Ëı ÌÓÏ; ÒÏ. ê‡ÒÒÚÓflÌË ëÚÂÔ‡ÌÓ‚‡, ê‡ÒÒÚÓflÌË ǽÈÎfl, ê‡ÒÒÚÓflÌË ÅÂÒËÍӂ˘‡
Ë åÂÚËÍÛ ÅÓıÌÂ‡.
ê‡ÒÒÚÓflÌË ëÚÂÔ‡ÌÓ‚‡
ê‡ÒÒÚÓflÌË ëÚÂÔ‡ÌÓ‚‡ – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÁÏÂËÏ˚ı ÙÛÌ͈ËÈ
f : → Ò ÒÛÏÏËÛÂÏÓÈ -È ÒÚÂÔÂ̸˛ ̇ ͇ʉÓÏ Ó„‡Ì˘ÂÌÌÓÏ ËÌÚ„‡ÎÂ,
ÓÔ‰ÂÎÂÌÌÓ ͇Í
 1 x +l

sup
| f ( x ) − g( x ) | p dx 


x ∈  l

x
1/ p
∫
.
ê‡ÒÒÚÓflÌË ÇÂÈÎfl – ‡ÒÒÚÓflÌË ̇ ÚÓÏ Ê ÏÌÓÊÂÒÚ‚Â, Á‡‰‡ÌÌÓ ͇Í
 1 x +l

lim sup 
| f ( x ) − g( x ) | p dx 

l →∞ x ∈  l
 x

1/ p
∫
.
ùÚËÏ ‡ÒÒÚÓflÌËflÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Ó·Ó·˘ÂÌÌ˚ ÔÓ˜ÚË ÔÂËӉ˘ÂÒÍË ÙÛÌ͈ËË
ëÚÂÔ‡ÌÓ‚‡ Ë Ç˝ÈÎfl.
ê‡ÒÒÚÓflÌË ÅÂÒËÍӂ˘‡
ê‡ÒÒÚÓflÌËÂÏ ÅÂÒËÍӂ˘‡ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÁÏÂËÏ˚ı
ÙÛÌ͈ËÈ f : → Ò ÒÛÏÏËÛÂÏÓÈ -È ÒÚÂÔÂ̸˛ ̇ ͇ʉÓÏ Ó„‡Ì˘ÂÌÌÓÏ
ËÌÚ„‡ÎÂ, ÓÔ‰ÂÎÂÌÌÓ ͇Í

1
 lim
 T →∞ 2T
T
∫
−T

| f ( x ) − g( x ) | dx 

p
1/ p
.
ùÚËÏ ‡ÒÒÚÓflÌËflÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Ó·Ó·˘ÂÌÌ˚ ÔÓ˜ÚË ÔÂËӉ˘ÂÒÍË ÙÛÌ͈ËË
ÅÂÒËÍӂ˘‡.
• åÂÚË͇ ÅÓıÌÂ‡
ÑÎfl ÔÓÒÚ‡ÌÒÚ‚‡ Ò ÏÂÓÈ (Ω, , µ) ·‡Ì‡ıÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ (V, || ⋅ ||V) Ë 1 ≤ p ≤ ∞
ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÅÓıÌÂ‡ (ËÎË ÔÓÒÚ‡ÌÒÚ‚ÓÏ ã·„‡–ÅÓıÌÂ‡) ̇Á˚‚‡ÂÚÒfl
ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÏÂËÏ˚ı ÙÛÌ͈ËÈ f : Ω → V, Ú‡ÍËı ˜ÚÓ || f || L p ( Ω, V ) < ∞. á‰ÂÒ¸


ÌÓχ ÅÓıÌÂ‡ | f || L p ( Ω, V ) ÓÔ‰ÂÎflÂÚÒfl Í‡Í  || f (ω ) ||Vp dµ(ω )
Ω

Í‡Í essω ∈Ω || f (ω ) ||V . ‰Îfl p = ∞.
∫
1/ p
‰Îfl 1 ≤ p < ∞ Ë
-ÏÂÚË͇ ÅÂ„χ̇
èË ‰‡ÌÌÓÏ 1 ≤ p ≤ ∞ ÔÛÒÚ¸ L p (∆ ) – Lp-ÔÓÒÚ‡ÌÒÚ‚Ó Î·„ӂ˚ı ËÁÏÂËÏ˚ı


ÙÛÌ͈ËÈ f ̇ ‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ = {z ∈ :| z |< 1} c || f || p =  | f ( z ) | p µ( dz )
∆

∫
1/ p
< ∞.
èÓÒÚ‡ÌÒÚ‚ÓÏ ÅÂ„χ̇ Lap ( ∆ ) ̇Á˚‚‡ÂÚÒfl ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓÒÚ‡ÌÒÚ‚‡
L p (∆), ÒÓÒÚÓfl˘Â ËÁ ‡Ì‡ÎËÚ˘ÂÒÍËı ÙÛÌ͈ËÈ, Ë -ÏÂÚËÍÓÈ ÅÂ„χ̇ ̇Á˚‚‡ÂÚÒfl
203
É·‚‡ 13. ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
Lp -ÏÂÚË͇ Lap ( ∆ ) (ÒÏ. åÂÚË͇ ÅÂ„χ̇, „Î. 7). ã˛·Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÅÂ„χ̇
fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
åÂÚË͇ ÅÎÓı‡
èÓÒÚ‡ÌÒÚ‚Ó ÅÎÓı‡ Ç Ì‡ ‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ = {z ∈ : | z | < 1} ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó
‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÙÛÌ͈ËÈ f ̇ ∆, Ú‡ÍËı ˜ÚÓ || f ||B = sup(1− | z |2 ) | f ′( z ) | < ∞.
z ∈∆
èË ËÒÔÓθÁÓ‚‡ÌËË ÔÓÎÌÓÈ ÔÓÎÛÌÓÏ˚ || ⋅ ||B ÌÓχ ̇ Ç Á‡‰‡ÂÚÒfl ͇Í
|| f || = | f (0) | + || f ||B .
åÂÚËÍÓÈ ÅÎÓı‡ ̇Á˚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ || f – g || ̇ Ç; Ó̇ Ô‚‡˘‡ÂÚ Ç ‚
·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó.
åÂÚË͇ ÅÂÒÓ‚‡
ÖÒÎË 1 < p < ∞ , ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÅÂÒÓ‚‡ B p ̇ ‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ ] {z ∈
∈ : | z | < 1} ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ‡Ì‡ÎËÚ˘ÂÒÍËı ÙÛÌ͈ËÈ f ‚ ∆ , Ú‡ÍËı ˜ÚÓ
1/ p


µ( dz )
|| f || B p =  (1− | z |2 ) p | f ′( z ) | p dλ( z ) , „‰Â dλ( z ) =
– ËÌ‚‡ˇÌÚ̇fl ÏÂ‡
(
1
−
| z |2 ) 2
∆

åfi·ËÛÒ‡ ̇ ∆. èË ËÒÔÓθÁÓ‚‡ÌËË ÔÓÎÌÓÈ ÔÓÎÛÌÓÏ˚ || ⋅ || B p ÌÓχ Bp ̇ Á‡‰‡ÂÚÒfl
∫
͇Í
|| f || = | f (0)+ || f || B p .
åÂÚË͇ ÅÂÒÓ‚‡ – ÏÂÚË͇ ÌÓÏ˚ || f – g || ̇ Bp . é̇ Ô‚‡˘‡ÂÚ Bp ‚ ·‡Ì‡ıÓ‚Ó
ÔÓÒÚ‡ÌÒÚ‚Ó.
åÌÓÊÂÒÚ‚Ó B2 fl‚ÎflÂÚÒfl Í·ÒÒ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÑËËıΠ‡Ì‡ÎËÚ˘ÂÒÍËı
̇ ÙÛÌ͈ËÈ ∆ Ò Í‚‡‰‡Ú˘ÌÓ ËÌÚ„ËÛÂÏÓÈ ÔÓËÁ‚Ó‰ÌÓÈ, Ò̇·ÊÂÌÌsÏ ÏÂÚËÍÓÈ
ÑËËıÎÂ. èÓÒÚ‡ÌÒÚ‚Ó ÅÎÓı‡ Ç ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í B∞.
åÂÚË͇ ï‡‰Ë
ÖÒÎË 1 ≤ p < ∞ , ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó ï‡‰Ë Hp(∆) ÂÒÚ¸ Í·ÒÒ ÙÛÌ͈ËÈ, ‡Ì‡ÎËÚ˘ÂÒÍËı ̇ ‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ = {z ∈ : | z | < 1} Ë Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı ÒÎÂ‰Û˛˘ËÏ
ÛÒÎÓ‚ËflÏ ÓÒÚ‡ ‰Îfl ÌÓÏ˚ ï‡‰Ë || ⋅ || H p :

 1 2π
|| f || H p ( ∆ ) = sup 
| f (re iθ ) | p dθ


0 < r <1 2π

0
∫
1/ p
< ∞.
åÂÚË͇ ï‡‰Ë – ÏÂÚË͇ ÌÓÏ˚ || f − g || H p ( ∆ ) ̇ Hp(∆). é̇ Ô‚‡˘‡ÂÚ Hp(∆) ‚
·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó.
Ç ÍÓÏÔÎÂÍÒÌÓÏ ‡Ì‡ÎËÁ ÔÓÒÚ‡ÌÒÚ‚‡ ï‡‰Ë fl‚Îfl˛ÚÒfl ‡Ì‡ÎÓ„‡ÏË L p -ÔÓÒÚ‡ÌÒÚ‚
ÙÛÌ͈ËÓ̇θÌÓ„Ó ‡Ì‡ÎËÁ‡. í‡ÍË ÔÓÒÚ‡ÌÒÚ‚‡ ËÒÔÓθÁÛ˛ÚÒfl Í‡Í ‚ Ò‡ÏÓÏ
χÚÂχÚ˘ÂÒÍÓÏ ‡Ì‡ÎËÁÂ, Ú‡Í Ë ‚ ÚÂÓËË ‡ÒÒÂflÌËfl Ë ÚÂÓËË ÛÔ‡‚ÎÂÌËfl (ÒÏ. „Î. 18).
åÂÚË͇ ˜‡ÒÚË
åÂÚËÍÓÈ ˜‡ÒÚË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ӷ·ÒÚË D ‚ 2, Á‡‰‡Ì̇fl ͇Í
 f ( x) 
sup ln

+
 f ( y) 
f ∈H
204
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
‰Îfl β·˚ı x, y ∈ 2 , „‰Â H + – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÔÓÎÓÊËÚÂθÌ˚ı „‡ÏÓÌ˘ÂÒÍËı
ÙÛÌ͈ËÈ Ì‡ ӷ·ÒÚË D.
Ñ‚‡Ê‰˚ ‰ËÙÙÂÂ̈ËÛÂχfl ‰ÂÈÒÚ‚ËÚÂθ̇fl ÙÛÌ͈Ëfl f : D → ̇Á˚‚‡ÂÚÒfl
∂2 f ∂2 f
„‡ÏÓÌ˘ÂÒÍÓÈ Ì‡ D, ÂÒÎË Â ·Ô·ÒË‡Ì ∆f = 2 + 2 Ó·‡˘‡ÂÚÒfl ‚ ÌÛθ ̇ D.
∂x1 ∂x 2
åÂÚË͇ é΢‡
èÛÒÚ¸ M(u) – ˜ÂÚ̇fl ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔÂÂÏÂÌÌÓÈ, ÍÓÚÓ‡fl
‚ÓÁ‡ÒÚ‡ÂÚ ‰Îfl ÔÓÎÓÊËÚÂθÌÓ„Ó u Ë lim u −1 M (u) = lim u( M (u)) −1 = 0. Ç ˝ÚÓÏ ÒÎÛ˜‡Â
u→ 0
u →∞
ÙÛÌ͈Ëfl p(v) = M'(v) Ì ۷˚‚‡ÂÚ Ì‡ [0, ∞), p(0) = lim p( v) = 0 Ë p(v) > 0 ÔË v > 0.
v→ 0
|u |
ÖÒÎË Á‡‰‡Ú¸ M (u) =
∫
|u |
p( v)dv Ë N (u) =
0
∫
p −1 ( v)dv, ÚÓ ÔÓÎÛ˜‡ÂÏ Ô‡Û (M (u), N(u))
0
‰ÓÔÓÎÌËÚÂθÌ˚ı ÙÛÌ͈ËÈ.
èÛÒÚ¸ (M(u), N(u)) ·Û‰ÂÚ Ô‡‡ ‰ÓÔÓÎÌËÚÂθÌ˚ı ÒÓÔflÊÂÌÌ˚ı ÙÛÌ͈ËÈ Ë ÔÛÒÚ¸
G – Ó„‡Ì˘ÂÌÌÓ Á‡ÏÍÌÛÚÓ ÏÌÓÊÂÒÚ‚Ó ‚ Ú. èÓÒÚ‡ÌÒÚ‚Ó é΢‡ L∗M (G) ÂÒÚ¸
ÏÌÓÊÂÒÚ‚Ó ËÁÏÂËÏ˚ı ÔÓ ãÂ·Â„Û ÙÛÌ͈ËÈ f ̇ G, Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı ÒÎÂ‰Û˛˘ÂÏÛ
ÛÒÎӂ˲ ‚ÓÁ‡ÒÚ‡ÌËfl ‰Îfl ÌÓÏ˚ é΢‡ || f || M:


|| f || M = sup  f (t )g(t )dt : N ( g(t ))dt ≤ 1 < ∞.
G

G
∫
∫
åÂÚË͇ é΢‡ – ÏÂÚË͇ ÌÓÏ˚ || f – g || M ̇ L∗M (G). é̇ Ô‚‡˘‡ÂÚ L∗M (G). ‚
·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ([Orli32]).
ÖÒÎË M(u) = up , 1 < p < ∞, ÚÓ L∗M (G). ÒÓ‚Ô‡‰‡ÂÚ Ò ÔÓÒÚ‡ÌÒÚ‚ÓÏ Lp(G) Ë Lp-ÌÓχ
|| f ||p ÒÓ‚Ô‡‰‡ÂÚ Ò || f ||M Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó Ò͇ÎflÌÓ„Ó ÏÌÓÊËÚÂÎfl. çÓχ é΢‡
˝Í‚Ë‚‡ÎÂÌÚ̇ ÌÓÏ ã˛ÍÒÂÏ·Û„‡ || f ||M ≤ || f ||M ≤ 2|| f ||(M) .
åÂÚË͇ é΢‡–ãÓÂ̈‡
èÛÒÚ¸ w : (0, ∞) →(0, ∞) – Ì‚ÓÁ‡ÒÚ‡˛˘‡fl ÙÛÌ͈Ëfl. èÛÒÚ¸ M : [0, ∞) → [0, ∞) –
ÌÂÛ·˚‚‡˛˘‡fl Ë ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl Ò M(0) = 0 Ë ÔÛÒÚ¸ G – Ó„‡Ì˘ÂÌÌÓ Á‡ÏÍÌÛÚÓÂ
ÏÌÓÊÂÒÚ‚Ó ‚ n.
èÓÒÚ‡ÌÒÚ‚ÓÏ é΢‡–ãÓÂ̈‡ L w, M(G) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÏÂËÏ˚ı ÔÓ ãÂ·Â„Û ÙÛÌ͈ËÈ f ̇ G, Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı ÒÎÂ‰Û˛˘ÂÏÛ ÛÒÎӂ˲
‚ÓÁ‡ÒÚ‡ÌËfl ‰Îfl ÌÓÏ˚ é΢‡–ãÓÂ̈‡ || f || w, M:
∞


 f * ( x) 
1
|| f ||w, M = inf λ > 0 : w( x ) M 
dx
≤
 < ∞,

 λ 
0


∫
„‰Â f * ( x ) = sup{t : µ(| f | ≥ t ) ≥ x} – Ì‚ÓÁ‡ÒÚ‡˛˘‡fl ÔÂÂÒÚ‡Ìӂ͇ f.
åÂÚË͇ é΢‡–ãÓÂ̈‡ – ÏÂÚË͇ ÌÓÏ˚ ̇ || f – g ||w, M ̇ L w, M(G). é̇
Ô‚‡˘‡ÂÚ Lw, M(G) ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó.
èÓÒÚ‡ÌÒÚ‚Ó é΢‡–ãÓÂ̈‡ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÒÚ‡ÌÒÚ‚‡ é΢‡
*
LM (G) (ÒÏ. åÂÚË͇ é΢‡) Ë ÔÓÒÚ‡ÌÒÚ‚‡ ãÓÂ̈‡ L w, M(G), 1 ≤ q < ∞ ‚ÒÂı
ËÁÏÂËÏ˚ı ÔÓ ãÂ·Â„Û ÙÛÌ͈ËÈ f ̇ G, Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı ÒÎÂ‰Û˛˘ÂÏÛ ÛÒÎӂ˲
205
É·‚‡ 13. ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
‚ÓÁ‡ÒÚ‡ÌËfl ‰Îfl ÌÓÏ˚ ãÓÂ̈‡ || f ||w, q:
∞

|| f ||w, q =  w( x )( f * ( x )) q 


0

1/ q
∫
< ∞.
åÂÚË͇ ÉÂθ‰Â‡
èÛÒÚ¸ Lα(G) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ f, Á‡‰‡ÌÌ˚ı
̇ ÔÓ‰ÏÌÓÊÂÒÚ‚Â G ÏÌÓÊÂÒÚ‚‡ n Ë Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı ÛÒÎӂ˲ ÉÂθ‰Â‡ ̇ G.
îÛÌ͈Ëfl f Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ ÉÂθ‰Â‡ ‚ ÚӘ͠y ∈ G Ò Ë̉ÂÍÒÓÏ (ËÎË
ÔÓfl‰ÍÓÏ) α (0 < α ≤ 1) Ë Ò ÍÓ˝ÙÙˈËÂÌÚÓÏ A(y), ÂÒÎË | f(x) – f(y) | ≤ A(y) | x – y |α ‰Îfl
‚ÒÂı x ∈ G, ‰ÓÒÚ‡ÚÓ˜ÌÓ ·ÎËÁÍËı Í Û. ÖÒÎË A = sup( A( y)) < ∞, ÚÓ ÛÒÎÓ‚Ë ÉÂθ‰Â‡
y ∈G
̇Á˚‚‡ÂÚÒfl ‡‚ÌÓÏÂÌ˚Ï Ì‡ G Ë Ä Ì‡Á˚‚‡ÂÚÒfl ÍÓ˝ÙÙˈËÂÌÚÓÏ ÉÂθ‰Â‡ ‰Îfl G.
| f ( x ) − f ( y) |
ÇÂ΢Ë̇ | f |α = sup
, 0 ≤ α ≤ 1 ̇Á˚‚‡ÂÚÒfl α-ÔÓÎÛÌÓÏÓÈ ÉÂθ‰Â‡
| x − y |α
x , y ∈G
‰Îfl f Ë ÌÓχ ÉÂθ‰Â‡ ‰Îfl f ÓÔ‰ÂÎflÂÚÒfl ͇Í
|| f || Lα ( G ) = sup | f ( x )+ | f |α .
x ∈G
åÂÚË͇ ÉÂθ‰Â‡ – ÏÂÚË͇ ÌÓÏ˚ || f − g || Lα ( G ) ̇ L α(G). é̇ Ô‚‡˘‡ÂÚ
L α(G) ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó.
åÂÚË͇ ëÓ·Ó΂‡
èÓÒÚ‡ÌÒÚ‚Ó ëÓ·Ó΂‡ W k, p ÂÒÚ¸ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó L p -ÔÓÒÚ‡ÌÒÚ‚‡, Ú‡ÍË ˜ÚÓ
f Ë Â ÔÓËÁ‚Ó‰Ì˚ ‰Ó ÔÓfl‰Í‡ k ӷ·‰‡˛Ú ÍÓ̘ÌÓÈ Lp -ÌÓÏÓÈ. îÓχθÌÓ, ËÏÂfl
ÔÓ‰ÏÌÓÊÂÒÚ‚Ó G ÏÌÓÊÂÒÚ‚‡ n, ÓÔ‰ÂÎËÏ
W k , p = W k , p (G) = { f ∈ L p (G) : f (i ) ∈ L p (G), 1 ≤ i ≤ k},
„‰Â f (i ) = ∂ αx11 …∂ αx nn , α1 + … + α n = i, Ë ÔÓËÁ‚Ó‰Ì˚ ·ÂÛÚÒfl ‚ Ò··ÓÏ ÒÏ˚ÒÎÂ.
çÓχ ëÓ·Ó΂‡ ̇ Wk, p ÓÔ‰ÂÎflÂÚÒfl ͇Í
k
|| f ||k , p =
∑
|| f (i ) || p .
i=0
èË ˝ÚÓÏ ‰ÓÒÚ‡ÚÓ˜ÌÓ ËÒÔÓθÁÓ‚‡Ú¸ ÚÓθÍÓ ÔÂ‚ÓÂ Ë ÔÓÒΉÌ ˜ËÒ· ÔÓÒΉӂ‡ÚÂθÌÓÒÚË, Ú.Â. ÌÓχ, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || f ||k , p = || f || p + || f ( k ) || p , ˝Í‚Ë‚‡ÎÂÌÚ̇
‚˚¯ÂÔ˂‰ÂÌÌÓÈ ÌÓÏÂ. ÑÎfl p = ∞ ÌÓχ ëÓ·Ó΂‡ ‡‚̇ ÒÛ˘ÂÒÚ‚ÂÌÌÓÏÛ
ÒÛÔÂÏÛÏÛ ‰Îfl | f | : || f ||k , ∞ = ess sup | f ( x ) |, Ú.Â. fl‚ÎflÂÚÒfl ËÌÙËÏÛÏÓÏ ‚ÒÂı ˜ËÒÂÎ
x ∈G
a ∈ , ‰Îfl ÍÓÚÓ˚ı ÌÂ‡‚ÂÌÒÚ‚Ó | f(x) | > a ‚˚ÔÓÎÌflÂÚÒfl ̇ ÏÌÓÊÂÒÚ‚Â ÏÂ˚ ÌÛθ.
åÂÚË͇ ëÓ·Ó΂‡ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ || f – g ||k, p ̇ Wk, p; Ó̇ Ô‚‡˘‡ÂÚ Wk, p ‚
·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó.
èÓÒÚ‡ÌÒÚ‚Ó ëÓ·Ó΂‡ Wk, 2 Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í Hk. éÌÓ fl‚ÎflÂÚÒfl „Ëθ·Âk
ÚÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl Ò͇ÎflÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl ⟨ f , g⟩ k =
∑
i =1
k
=
∑∫
i =1
G
f (i ) g (i ) µ( dω ).
⟨ f (i ) , g (i ) ⟩ L2 =
206
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
èÓÒÚ‡ÌÒÚ‚‡ ëÓ·Ó΂‡ – ÒÓ‚ÂÏÂÌÌ˚ ‡Ì‡ÎÓ„Ë ÔÓÒÚ‡ÌÒÚ‚‡ C 1 (ÙÛÌ͈ËÈ Ò
ÌÂÔÂ˚‚Ì˚ÏË ÔÓËÁ‚Ó‰Ì˚ÏË) ‰Îfl ¯ÂÌËfl ‰ËÙÙÂÂ̈ˇθÌ˚ı Û‡‚ÌÂÌËÈ ‚
˜‡ÒÚÌ˚ı ÔÓËÁ‚Ó‰Ì˚ı.
• åÂÚËÍË ÔÓÒÚ‡ÌÒÚ‚‡ ÔÂÂÏÂÌÌÓÈ ˝ÍÒÔÓÌÂÌÚ˚
èÛÒÚ¸ G – ÌÂÔÛÒÚÓ ÓÚÍ˚ÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ n Ë ÔÛÒÚ¸ p : G →
→ [1, ∞) – ËÁÏÂËχfl Ó„‡Ì˘ÂÌ̇fl ÙÛÌ͈Ëfl, ̇Á˚‚‡Âχfl ÔÂÂÏÂÌÌÓÈ ˝ÍÒÔÓÌÂÌÚÓÈ. èÓÒÚ‡ÌÒÚ‚Ó ã·„‡ ÔÂÂÏÂÌÌÓÈ ˝ÍÒÔÓÌÂÌÚ˚ Lp( ⋅ )(G) ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı
ËÁÏÂËÏ˚ı ÙÛÌ͈ËÈ f : G → , ‰Îfl ÍÓÚÓ˚ı ÏÓ‰ÛÎfl ρ p(⋅) ( f ) =
∫
| f ( x ) | p( x ) dx
G
ÍÓ̘ÂÌ. çÓχ ã˛ÍÒÂÏ·Û„‡ ̇ ˝ÚÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÓÔ‰ÂÎflÂÚÒfl ͇Í
|| f || p(⋅) = inf{λ > 0 : ρ p(⋅) ( f / λ ) ≤ 1}.
åÂÚË͇ η„ӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ ÔÂÂÏÂÌÌÓÈ ˝ÍÒÔÓÌÂÌÚ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚
|| f – g ||p( ⋅ ) ̇ L p( ⋅ )(G).
èÓÒÚ‡ÌÒÚ‚Ó ëÓ·Ó΂‡ ÔÂÂÏÂÌÌÓÈ ˝ÍÒÔÓÌÂÌÚ˚ W 1, p( ⋅ )(G) ÂÒÚ¸ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó Lp( ⋅ )(G), ÒÓÒÚÓfl˘Â ËÁ ÙÛÌ͈ËÈ f, ‡ÒÔ‰ÂÎËÚÂθÌ˚È „‡‰ËÂÌÚ ÍÓÚÓ˚ı
ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓ˜ÚË ‚Ò˛‰Û Ë Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ | ∇f | ∈ Lp( ⋅ )(G). çÓχ
|| f ||1, p(⋅) = || f || p(⋅) + || ∇f || p(⋅)
Ô‚‡˘‡ÂÚ W1, p( ⋅ )(G) ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. åÂÚË͇ ÔÓÒÚ‡ÌÒÚ‚‡ ëÓ·Ó΂‡
ÔÂÂÏÂÌÌÓÈ ˝ÍÒÔÓÌÂÌÚ˚ ÂÒÚ¸ ÏÂÚËÍÓÈ ÌÓÏ˚ || f – p ||1, p( ⋅ ) ̇ W 1, p( ⋅ ).
åÂÚË͇ ò‚‡ˆ‡
èÓÒÚ‡ÌÒÚ‚Ó ò‚‡ˆ‡ (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó ·˚ÒÚÓ Û·˚‚‡˛˘Ëı ÙÛÌ͈ËÈ) S(n)
ÂÒÚ¸ Í·ÒÒ ÙÛÌ͈ËÈ ò‚‡ˆ‡, Ú.Â. ·ÂÒÍÓ̘ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏ˚ı ÙÛÌ͈ËÈ
f : n → , ÍÓÚÓ˚ ۷˚‚‡˛Ú ̇ ·ÂÒÍÓ̘ÌÓÒÚË, Ú‡Í ÊÂ Í‡Í ‚Ò Ëı ÔÓËÁ‚Ó‰Ì˚Â,
·˚ÒÚÂÂ, ˜ÂÏ Î˛·‡fl Ó·‡Ú̇fl ÒÚÂÔÂ̸ ı. íÓ˜ÌÂÂ, f fl‚ÎflÂÚÒfl ÙÛÌ͈ËÂÈ ò‚‡ˆ‡, ÂÒÎË
ËÏÂÂÚ ÏÂÒÚÓ ÒÎÂ‰Û˛˘Â ÛÒÎÓ‚Ë ‚ÓÁ‡ÒÚ‡ÌËfl:
|| f ||α,β = sup x1β1 … x nβ n
x ∈ n
∂ α1 +…+ α n f ( x1 , …, x n )
∂x1α1 …∂x nα n
<∞
‰Îfl β·˚ı ÌÂÓÚˈ‡ÚÂθÌ˚ı ˆÂÎÓ˜ËÒÎÂÌÌ˚ı ‚ÂÍÚÓÓ‚ α Ë β. ëÂÏÂÈÒÚ‚Ó ÔÓÎÛÌÓÏ
|| ⋅ ||αβ ÓÔ‰ÂÎflÂÚ ÎÓ͇θÌÓ ‚˚ÔÛÍÎÛ˛ ÚÓÔÓÎӄ˲ ÔÓÒÚ‡ÌÒÚ‚‡ S( n ), ÍÓÚÓÓÂ
fl‚ÎflÂÚÒfl ÏÂÚËÁÛÂÏ˚Ï Ë ÔÓÎÌ˚Ï.
åÂÚË͇ ò‚‡ˆ‡ – ÏÂÚË͇ ̇ S(n), ÍÓÚÓ‡fl ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜Â̇ Ò ÔÓÏÓ˘¸˛
‰‡ÌÌÓÈ ÚÓÔÓÎÓ„ËË (ÒÏ. C˜ÂÚÌÓ ÌÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó, „Î. 2).
ëÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡ S( n ) fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚Ó
î¯ ‚ ÒÏ˚ÒΠÙÛÌ͈ËÓ̇θÌÓ„Ó ‡Ì‡ÎËÁ‡, Ú.Â. ÎÓ͇θÌÓ ‚˚ÔÛÍÎÓ F-ÔÓÒÚ‡ÌÒÚ‚Ó.
䂇ÁË‡ÒÒÚÓflÌË Å„χ̇
èÛÒÚ¸ G ⊂ n – Á‡ÏÍÌÛÚÓ ÏÌÓÊÂÒÚ‚Ó Ò ÌÂÔÛÒÚÓÈ ‚ÌÛÚÂÌÌÓÒÚ¸˛ G0 Ë ÔÛÒÚ¸ f –
ÙÛÌ͈Ëfl Å„χ̇ Ò ÁÓÌÓÈ G.
䂇ÁË‡ÒÒÚÓflÌË Å„χ̇ Df : G × G0 → ≥0 ÓÔ‰ÂÎflÂÚÒfl ͇Í
D f ( x, y) = f ( x ) − f ( y) − ⟨∇f ( y), x − y ⟩,
É·‚‡ 13. ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
207
 ∂f
∂f 
„‰Â ∇f = 
, …,
 . D f(x, y) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y, Df(x, y) +
∂
x
∂
xn 
 1
+ Df(y, z) – D f(x, z) = ⟨∇f(z) – ∇f(y), x – y⟩ ÌÓ ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â Df Ì ۉӂÎÂÚ‚ÓflÂÚ
ÌÂ‡‚ÂÌÒÚ‚Û ÚÂÛ„ÓθÌË͇ Ë Ì fl‚ÎflÂÚÒfl ÒËÏÏÂÚ˘Ì˚Ï.
ÑÂÈÒÚ‚ËÚÂθ̇fl ÙÛÌ͈Ëfl f, ˝ÙÙÂÍÚ˂̇fl ӷ·ÒÚ¸ ÍÓÚÓÓÈ ÒÓ‰ÂÊËÚ G, ̇Á˚‚‡ÂÚÒfl ÙÛÌ͈ËÂÈ Å„χ̇ Ò ÁÓÌÓÈ G, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl:
1) f ÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂχ ̇ G;
2) f ÒÚÓ„Ó ‚˚ÔÛÍ· Ë ÌÂÔÂ˚‚̇ ̇ G;
3) ‰Îfl ‚ÒÂı δ ∈ ÌÂÔÓÎÌ˚ ÏÌÓÊÂÒÚ‚‡ ˜‡ÒÚ˘ÌÓ ÛÓ‚Ìfl É(x, δ) = {y ∈
∈ G0 : Df(x, y) ≤ δ} fl‚Îfl˛ÚÒfl Ó„‡Ì˘ÂÌÌ˚ÏË ‰Îfl ‚ÒÂı x ∈ G;
4) ÂÒÎË {yn}n ⊂ G0 ÒıÓ‰ËÚÒfl Í y * , ÚÓ Df(y * , yn) ÒıÓ‰ËÚÒfl Í 0;
5) ÂÒÎË {x n}n G Ë {yn}n G 0 – Ú‡ÍË ÔÓÒΉӂ‡ÚÂθÌÓÒÚË, ˜ÚÓ {y n }n Ó„‡Ì˘Â̇,
lim = y ∗ Ë lim D f ( x n , yn ) = 0, ÚÓ lim x n = y ∗ .
n → yn
n →∞
n →∞
ÖÒÎË G = n, ÚÓ ‰ÓÒÚ‡ÚÓ˜ÌÓ ÛÒÎÓ‚Ë ‰Îfl ÒÚÓ„Ó ‚˚ÔÛÍÎÓÈ ÙÛÌ͈ËË ·˚Ú¸
f ( x)
ÙÛÌ͈ËÂÈ Å„χ̇ ÔËÌËχÂÚ ‚ˉ: lim
= ∞.
|| x || →∞ || x ||
13.2. åÖíêàäà çÄ ãàçÖâçõï éèÖêÄíéêÄï
ãËÌÂÈÌ˚Ï ÓÔÂ‡ÚÓÓÏ Ì‡Á˚‚‡ÂÚÒfl ÙÛÌ͈Ëfl T : V → W ÏÂÊ‰Û ‰‚ÛÏfl ‚ÂÍÚÓÌ˚ÏË
ÔÓÒÚ‡ÌÒÚ‚‡ÏË V, W ̇‰ ÔÓÎÂÏ , ÍÓÚÓ‡fl ÒÓ‚ÏÂÒÚËχ Ò Ëı ÎËÌÂÈÌ˚ÏË ÒÚÛÍÚÛ‡ÏË, Ú.Â. ‰Îfl β·˚ı x, y ∈ V Ë Î˛·Ó„Ó Ò͇Îfl‡ k ∈ ËÏÂÂÚ ÏÂÒÚÓ ÒÎÂ‰Û˛˘ËÂ
Ò‚ÓÈÒÚ‚‡: T(x + y) = T(x) + T(y) Ë T(kx) = kT(x).
åÂÚË͇ ÓÔÂ‡ÚÓÌÓÈ ÌÓÏ˚
ê‡ÒÒÏÓÚËÏ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÎËÌÂÈÌ˚ı ÓÔÂ‡ÚÓÓ‚ ËÁ ÌÓÏËÓ‚‡ÌÌÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ (V, || ⋅ ||V) ̇ ÌÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (W, || ⋅ ||W). éÔÂ‡ÚÓ̇fl
ÌÓχ || T || ÎËÌÂÈÌÓ„Ó ÓÔÂ‡ÚÓ‡ T : V → W ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ì‡Ë·Óθ¯ÂÂ
Á̇˜ÂÌËÂ, ̇ ÍÓÚÓÓ í ‡ÒÚfl„Ë‚‡ÂÚ ˝ÎÂÏÂÌÚ˚ ËÁ V, Ú.Â.
|| T ( v) ||W
= sup || T ( v) ||W = sup || T ( v) ||W .
|| v|| V ≠ 0 || v ||V
|| v|| V =1
|| v|| V ≤ 0
|| T || = sup
ãËÌÂÈÌ˚È ÓÔÂ‡ÚÓ T : V → W ËÁ ÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ V ‚ ÌÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó W ̇Á˚‚‡ÂÚÒfl Ó„‡Ì˘ÂÌÌ˚Ï, ÂÒÎË ÓÔÂ‡ÚÓ̇fl ÌÓχ
ÍÓ̘̇. ÑÎfl ÌÓÏËÓ‚‡ÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚ ÎËÌÂÈÌ˚È ÓÔÂ‡ÚÓ fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌ ÌÂÔÂ˚‚ÂÌ.
åÂÚËÍÓÈ ÓÔÂ‡ÚÓÌÓÈ ÌÓÏ˚ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ ̇ ÏÌÓÊÂÒÚ‚Â B(V, W)
‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı ÎËÌÂÈÌ˚ı ÓÔÂ‡ÚÓÓ‚ ËÁ V ‚ W, ÍÓÚÓ‡fl ÓÔ‰ÂÎflÂÚÒfl ͇Í
|| T – P ||.
èÓÒÚ‡ÌÒÚ‚Ó (B(V, W)) || ⋅ ||) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ó„‡Ì˘ÂÌÌ˚ı ÎËÌÂÈÌ˚ı
ÓÔÂ‡ÚÓÓ‚. чÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï, ÂÒÎË Ú‡ÍÓ‚˚Ï
fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚Ó W. ÖÒÎË ÔÓÒÚ‡ÌÒÚ‚Ó V = W ÔÓÎÌÓÂ, ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó
B(V, V) ÂÒÚ¸ ·‡Ì‡ıÓ‚‡ ‡Î„·‡, ÔÓÒÍÓθÍÛ ÓÔÂ‡ÚÓ̇fl ÌÓχ fl‚ÎflÂÚÒfl ÒÛ·ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ ÌÓÏÓÈ.
208
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ãËÌÂÈÌ˚È ÓÔÂ‡ÚÓ T : V → W ËÁ ·‡Ì‡ıÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ V ‚ ‰Û„Ó ·‡Ì‡ıÓ‚Ó
ÔÓÒÚ‡ÌÒÚ‚Ó W ̇Á˚‚‡ÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï, ÂÒÎË ÓÚÓ·‡ÊÂÌË β·Ó„Ó Ó„‡Ì˘ÂÌÌÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÏÌÓÊÂÒÚ‚‡ V – ÓÚÌÓÒËÚÂθÌÓ ÍÓÏÔ‡ÍÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ W. ã˛·ÓÈ ÍÓÏÔ‡ÍÚÌ˚È ÓÔÂ‡ÚÓ fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌ˚Ï (Ë, ÒΉӂ‡ÚÂθÌÓ,
ÌÂÔÂ˚‚Ì˚Ï). èÓÒÚ‡ÌÒÚ‚Ó (K(V, W), || ⋅ ||) ̇ ÏÌÓÊÂÒÚ‚Â K(V, W) ‚ÒÂı ÍÓÏÔ‡ÍÚÌ˚ı ÓÔÂ‡ÚÓÓ‚ ËÁ V ‚ W Ò ÓÔÂ‡ÚÓÌÓÈ ÌÓÏÓÈ || ⋅ || ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ
ÍÓÏÔ‡ÍÚÌ˚ı ÓÔÂ‡ÚÓÓ‚.
åÂÚË͇ fl‰ÂÌÓÈ ÌÓÏ˚
èÛÒÚ¸ B(V, W) – ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı ÎËÌÂÈÌ˚ı ÓÔÂ‡ÚÓÓ‚, ÓÚÓ·‡Ê‡˛˘Ëı ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (V, || ⋅ ||V ) ‚ ‰Û„Ó ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó
(W, || ⋅ ||W). é·ÓÁ̇˜ËÏ ·‡Ì‡ıÓ‚Ó ‰‚ÓÈÒÚ‚ÂÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‰Îfl V Í‡Í V' Ë
Á̇˜ÂÌË ÙÛÌ͈ËÓ̇· x' ∈ V' ‚ ÚӘ͠x ∈ V Í‡Í ⟨x, x'⟩. ãËÌÂÈÌ˚È ÓÔÂ‡ÚÓ T ∈
∈ B(V, W) ̇Á˚‚‡ÂÚÒfl fl‰ÂÌ˚Ï ÓÔÂ‡ÚÓÓÏ, ÂÒÎË Â„Ó ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ ‚ ‚ˉÂ
x a T ( x) =
∞
∑
⟨ x, xi′⟩ yi , „‰Â {xi′}i Ë {yi}i fl‚Îfl˛ÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ‚ V' Ë W
i =1
∞
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, Ú‡ÍËÏË ˜ÚÓ
∑
i =1
|| xi′ ||V ′ || yi ||W < ∞. чÌÌÓ Ô‰ÒÚ‡‚ÎÂÌË ̇Á˚-
‚‡ÂÚÒfl fl‰ÂÌ˚Ï Ë ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í Ô‰ÒÚ‡‚ÎÂÌËÂ í ‚ ‚ˉ ÒÛÏÏ˚
ÓÔÂ‡ÚÓÓ‚ ‡Ì„‡ 1 (Ú.Â. Ò Ó‰ÌÓÏÂÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ Á̇˜ÂÌËÈ). ü‰Â̇fl ÌÓχ
ÓÔÂ‡ÚÓ‡ í ÓÔ‰ÂÎflÂÚÒfl ͇Í
|| T || ÔËÒ = inf
∞
∑
i =1
|| xi′ ||V ′ || yi ||W ,
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï fl‰ÂÌ˚Ï Ô‰ÒÚ‡‚ÎÂÌËflÏ í.
åÂÚË͇ fl‰ÂÌÓÈ ÌÓÏ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ || T – P || ÔËÒ Ì‡ ÏÌÓÊÂÒÚ‚Â N(V, W)
‚ÒÂı fl‰ÂÌ˚ı ÓÔÂ‡ÚÓÓ‚, ÓÚÓ·‡Ê‡˛˘Ëı V ‚ W. èÓÒÚ‡ÌÒÚ‚Ó (N(V, W), || ⋅ ||ÔËÒ)
̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ fl‰ÂÌ˚ı ÓÔÂ‡ÚÓÓ‚ Ë fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
ü‰ÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÎÓ͇θÌÓ ‚˚ÔÛÍÎÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‰Îfl
ÍÓÚÓÓ„Ó ‚Ò ÌÂÔÂ˚‚Ì˚ ÎËÌÂÈÌ˚ ÙÛÌ͈ËË Ì‡ ÔÓËÁ‚ÓθÌÓÏ ·‡Ì‡ıÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â – fl‰ÂÌ˚ ÓÔÂ‡ÚÓ˚. ü‰ÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÚÓËÚÒfl Í‡Í ÔÓÂÍÚË‚Ì˚È
Ô‰ÂÎ „Ëθ·ÂÚÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ H α Ò Ú‡ÍËÏ Ò‚ÓÈÒÚ‚ÓÏ, ˜ÚÓ ‰Îfl Í‡Ê‰Ó„Ó α ∈ I
ÏÓÊÌÓ Ì‡ÈÚË β ∈ I, Ú‡ÍÓ ˜ÚÓ H β ⊂ H α Ë ÓÔÂ‡ÚÓ ‚ÎÓÊÂÌËfl Hβ x → x ∈ H α
fl‚ÎflÂÚÒfl ÓÔÂ‡ÚÓÓÏ ÉËθ·ÂÚ‡-òÏˉڇ. çÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl fl‰ÂÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ ÍÓ̘ÌÓÏÂÌÓ.
åÂÚË͇ ÍÓ̘ÌÓÈ fl‰ÂÌÓÈ ÌÓÏ˚
èÛÒÚ¸ F(V, W) – ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÒÂı ÎËÌÂÈÌ˚ı ÓÔÂ‡ÚÓÓ‚ ÍÓ̘ÌÓ„Ó ‡Ì„‡
(Ú.Â. Ò ÍÓ̘ÌÓÏÂÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ Á̇˜ÂÌËÈ), ÓÚÓ·‡Ê‡˛˘Ëı ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (V, || ⋅ ||V) ‚ ‰Û„Ó ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (W, || ⋅ ||W). ãËÌÂÈÌ˚È ÓÔÂ‡ÚÓ
n
T ∈ F(V, W) ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ ‚ ‚ˉ x a T ( x ) =
∑
⟨ x, xi′⟩ yi , „‰Â {xi′}i Ë {yi}i
i =1
fl‚Îfl˛ÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ËÁ V' (·‡Ì‡ıÓ‚‡ ‰‚ÓÈÒÚ‚ÂÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‰Îfl
V) Ë W ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ‡ ⟨x, x'⟩ – Á̇˜ÂÌËÂÏ ÙÛÌ͈ËÓ̇· x' ∈ V' ̇ ‚ÂÍÚÓ x ∈ V.
209
É·‚‡ 13. ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
äÓ̘̇fl fl‰Â̇fl ÌÓχ í ÓÔ‰ÂÎflÂÚÒfl ͇Í
n
|| T || f
ÔËÒ = inf
∑
i =1
|| xi′ ||V ′ || yi ||W ,
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï ÍÓ̘Ì˚Ï Ô‰ÒÚ‡‚ÎÂÌËflÏ í .
åÂÚË͇ ÍÓ̘ÌÓÈ fl‰ÂÌÓÈ ÌÓÏ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ || T – P ||f ÔËÒ Ì‡ ÏÌÓÊÂÒÚ‚Â F( V, W). èÓÒÚ‡ÌÒÚ‚Ó F(V, W), || ⋅ ||f ÔËÒ) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ
fl‰ÂÌ˚ı ÓÔÂ‡ÚÓÓ‚ ÍÓ̘ÌÓ„Ó ‡Ì„‡. éÌÓ fl‚ÎflÂÚÒfl ÔÎÓÚÌ˚Ï ÎËÌÂÈÌ˚Ï
ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚‡ fl‰ÂÌ˚ı ÓÔÂ‡ÚÓÓ‚ N( V, W).
(
åÂÚË͇ ÌÓÏ˚ ÉËθ·ÂÚ‡–òÏˉڇ
ê‡ÒÒÏÓÚËÏ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÎËÌÂÈÌ˚ı ÓÔÂ‡ÚÓÓ‚ ËÁ „Ëθ·ÂÚÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡
H1 ,|| ⋅ || H1 ‚ „Ëθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó H2 ,|| ⋅ || H 2 . çÓχ ÉËθ·ÂÚ‡–òÏˉڇ
)
(
)
|| T ||HS ÎËÌÂÈÌÓ„Ó ÓÔÂ‡ÚÓ‡ T : H1 →H2 Á‡‰‡ÂÚÒfl ͇Í


|| T ||HS = 
|| T (eα ) ||2H 2 
 α ∈I

∑
1/ 2
,
„‰Â (e α ) α ∈ I – ÓÚÓ„ÓÌÓÏËÓ‚‡ÌÌ˚È ·‡ÁËÒ ‚ ç1 . ãËÌÂÈÌ˚È ÓÔÂ‡ÚÓ T : H 1 → H2
̇Á˚‚‡ÂÚÒfl ÓÔÂ‡ÚÓÓÏ ÉËθ·ÂÚ‡–òÏˉڇ, ÂÒÎË || T ||2HS < ∞.
åÂÚË͇ ÌÓÏ˚ ÉËθ·ÂÚ‡–òÏˉڇ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ || T – P ||HS ̇ ÏÌÓÊÂÒÚ‚Â S(H1, H2) ‚ÒÂı ÓÔÂ‡ÚÓÓ‚ ÉËθ·ÂÚ‡–òÏˉڇ ËÁ H1 ‚ H2.
ÑÎfl H1 = H2 = H ‡Î„·‡ S(H, H) = S(H) Ò ÌÓÏÓÈ ÉËθ·ÂÚ‡–òÏˉڇ fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚ÓÈ ‡Î„·ÓÈ. é̇ ÒÓ‰ÂÊËÚ Í‡Í ÔÎÓÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÓÔÂ‡ÚÓ˚ ÍÓ̘ÌÓ„Ó ‡Ì„‡ Ë ÔË̇‰ÎÂÊËÚ ÔÓÒÚ‡ÌÒÚ‚Û K(H) ÍÓÏÔ‡ÍÚÌ˚ı ÓÔÂ‡ÚÓÓ‚. ë͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ⟨, ⟩HS ̇ S(H ) ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ë ⟨T, P⟩ HS =
/2
=
⟨T (eα ), P(eα )⟩ Ë || T ||HS = ⟨T , T ⟩1HS
. ëΉӂ‡ÚÂθÌÓ, S(H) fl‚ÎflÂÚÒfl „Ëθ·ÂÚÓ-
∑
α ∈l
‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÌÂÁ‡‚ËÒËÏÓ ÓÚ ‚˚·Ó‡ ·‡ÁËÒ‡ (eα)α ∈ l).
åÂÚË͇ ÌÓÏ˚ ÓÔÂ‡ÚÓÓ‚ ÒÓ ÒΉÓÏ
ÑÎfl „Ëθ·ÂÚÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ ç ÌÓχ ÓÔÂ‡ÚÓÓ‚ ÒÓ ÒΉÓÏ ‰Îfl ÎËÌÂÈÌÓ„Ó
ÓÔÂ‡ÚÓ‡ T : H → H Á‡‰‡ÂÚÒfl ͇Í
|| T ||tc =
∑
⟨| T | (eα ), eα ⟩,
α ∈I
„‰Â | T | – ‡·ÒÓβÚÌÓ Á̇˜ÂÌËÂ í ‚ ·‡Ì‡ıÓ‚ÓÈ ‡Î„· B(X) ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı
ÓÔÂ‡ÚÓÓ‚ ËÁ ç ‚ Ò·fl, ‡ (eα)α ∈ l – ÓÚÓ„ÓÌÓÏËÓ‚‡ÌÌ˚È ·‡ÁËÒ ‚ ç. éÔÂ‡ÚÓ
T : H → H ̇Á˚‚‡ÂÚÒfl ÓÔÂ‡ÚÓÓ‚ ÒÓ ÒΉÓÏ, ÂÒÎË || T ||tc < ∞. ã˛·ÓÈ Ú‡ÍÓÈ
ÓÔÂ‡ÚÓ fl‚ÎflÂÚÒfl ÔÓËÁ‚‰ÂÌËÂÏ ‰‚Ûı ÓÔÂ‡ÚÓÓ‚ ÉËθ·ÂÚ‡–òÏˉڇ.
åÂÚË͇ ÌÓÏ˚ ÓÔÂ‡ÚÓÓ‚ ÒÓ ÒΉÓÏ – ÏÂÚË͇ ÌÓÏ˚ || T – P ||tc ̇ ÏÌÓÊÂÒÚ‚Â
L(H) ‚ÒÂı ÓÔÂ‡ÚÓÓ‚ ÒÓ ÒΉÓÏ ËÁ ç ‚ Ò·fl. åÌÓÊÂÒÚ‚Ó L(H) Ò ÌÓÏÓÈ || ⋅ ||tc
Ó·‡ÁÛÂÚ ·‡Ì‡ıÓ‚Û ‡Î„·Û, ÍÓÚÓ‡fl ÒÓ‰ÂÊËÚÒfl ‚ ‡Î„· K(H) (‚ÒÂı ÍÓÏÔ‡ÍÚÌ˚ı
ÓÔÂ‡ÚÓÓ‚ ËÁ ç ‚ Ò·fl), Ë ÒÓ‰ÂÊËÚ ‡Î„·Û S(H) (‚ÒÂı ÓÔÂ‡ÚÓÓ‚ ÉËθ·ÂÚ‡–
òÏˉڇ ËÁ ç ‚ Ò·fl).
åÂÚË͇ ÌÓÏ˚ -Í·ÒÒ‡ ò‡ÚÂ̇
ÇÓÁ¸ÏÂÏ 1 ≤ p < ∞. ÑÎfl ÒÂÔ‡‡·ÂθÌÓ„Ó „Ëθ·ÂÚÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ ç ÌÓχ
210
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
-Í·ÒÒ‡ ò‡ÚÂ̇ ÍÓÏÔ‡ÍÚÌÓ„Ó ÎËÌÂÈÌÓ„Ó ÓÔÂ‡ÚÓ‡ T : H → H ÓÔ‰ÂÎflÂÚÒfl ͇Í
|| T
p
||Sch
=



∑
n

| sn | 

1/ p
p
,
„‰Â {sn}n – ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ ÓÔÂ‡ÚÓ‡ í. äÓÏÔ‡ÍÚÌ˚È
p
ÓÔÂ‡ÚÓ T : H → H ̇Á˚‚‡ÂÚÒfl ÓÔÂ‡ÚÓÓÏ -Í·ÒÒ‡ ò‡ÚÂ̇, ÂÒÎË || T ||Sch
< ∞.
p
åÂÚËÍÓÈ ÌÓÏ˚ -Í·ÒÒ‡ ò‡ÚÚ Â̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ || T − P ||Sch
̇
ÏÌÓÊÂÒÚ‚Â Sp (H) ‚ÒÂı ÓÔÂ‡ÚÓÓ‚ -Í·ÒÒ‡ ò‡ÚÂ̇ ËÁ ç ̇ Ò·fl. åÌÓÊÂÒÚ‚Ó Sp(H) Ò
p
ÌÓÏÓÈ || ⋅ ||Sch
Ó·‡ÁÛÂÚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. S1 (H) fl‚ÎflÂÚÒfl Í·ÒÒÓÏ ÓÔÂ‡ÚÓÓ‚ ÒÓ ÒΉÓÏ ‰Îfl ç Ë S 2(H) fl‚ÎflÂÚÒfl Í·ÒÒÓÏ ÓÔÂ‡ÚÓÓ‚ ÉËθ·ÂÚ‡–òÏˉڇ
‰Îfl ç (ÒÏ. Ú‡ÍÊ åÂÚË͇ ÌÓÏ˚ ò‡ÚÂ̇, „Î. 12).
çÂÔÂ˚‚ÌÓ ‰‚ÓÈÒÚ‚ÂÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
èÛÒÚ¸ (V, || ⋅ ||) – ÌÓÏËÓ‚‡ÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó. èÛÒÚ¸ V' – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÌÂÔÂ˚‚Ì˚ı ÎËÌÂÈÌ˚ı ÙÛÌ͈ËÓ̇ÎÓ‚ í ËÁ V ‚ ÓÒÌÓ‚ÌÓ ÔÓΠ( ËÎË ) Ë
ÔÛÒÚ¸ || ⋅ ||' – ÓÔÂ‡ÚÓ̇fl ÌÓχ ̇ V', ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| T ||′= sup | T ( x ) | .
|| x ||≤1
èÓÒÚ‡ÌÒÚ‚Ó (V', || ⋅ ||') fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÍÓÚÓÓ ̇Á˚‚‡ÂÚÒfl
ÌÂÔÂ˚‚Ì˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË ·‡Ì‡ıÓ‚˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï
ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ÔÓÒÚ‡ÌÒÚ‚‡ (V, || ⋅ ||).
í‡Í, ÌÂÔÂ˚‚Ì˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ l pn (l p∞ ) fl‚ÎflÂÚÒfl lqn (lq∞ ) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. é·‡ ÌÂÔÂ˚‚Ì˚ı ‰‚ÓÈÒÚ‚ÂÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ ‰Îfl ·‡Ì‡ıÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ë (ÒÓÒÚÓfl˘Â„Ó ËÁ ‚ÒÂı ÒıÓ‰fl˘ËıÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ Ò l-ÏÂÚËÍÓÈ) Ë C 0 (ÒÓÒÚÓfl˘Â„Ó ËÁ ‚ÒÂı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ (Ò
l-ÏÂÚËÍÓÈ), ÒıÓ‰fl˘ËıÒfl Í ÌÛβ) ÂÒÚÂÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ ÓÚÓʉÂÒÚ‚Îfl˛ÚÒfl Ò l1∞ .
èÓÒÚÓflÌ̇fl ‡ÒÒÚÓflÌËfl ÓÔÂ‡ÚÓÓÌÓÈ ‡Î„·˚
èÛÒÚ¸ – ÓÔÂ‡ÚÓ̇fl ‡Î„·‡ ÒÓ‰Âʇ˘‡flÒfl ‚ B(H) – ÏÌÓÊÂÒÚ‚e ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı ÓÔÂ‡ÚÓÓ‚ ̇ „Ëθ·ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ç. ÑÎfl β·Ó„Ó ÓÔÂ‡ÚÓ‡ T ∈
∈ B(H) ÔÛÒÚ¸ β(T, A) = sup{|| P⊥ TP||; P – ÔÓÂ͈Ëfl Ë P ⊥ P = (0)}. èÛÒÚ¸ dist(T, ) ÂÒÚ¸
‡ÒÒÚÓflÌË ÏÂÊ‰Û ÓÔÂ‡ÚÓÓÏ í Ë ‡Î„·ÓÈ , Ú.Â. ̇ËÏÂ̸¯‡fl ÌÓχ ÓÔÂ‡ÚÓ‡
T – A, „‰Â Ä Ôӷ„‡ÂÚ . ç‡ËÏÂ̸¯‡fl ÔÓÎÓÊËÚÂθ̇fl ÔÓÒÚÓflÌ̇fl ë (ÂÒÎË Ó̇
ÒÛ˘ÂÒÚ‚ÛÂÚ) ڇ͇fl ˜ÚÓ ‰Îfl β·Ó„Ó ÓÔÂ‡ÚÓ‡ T ∈ B(H) ‚˚ÔÓÎÌflÂÚÒfl ÌÂ‡‚ÂÌÒÚ‚Ó
dist(T, ) ≤ C(T, ),
̇Á˚‚‡ÂÚÒfl ÔÓÒÚÓflÌÌÓÈ ‡ÒÒÚÓflÌËfl ‰Îfl ‡Î„·˚ .
É·‚‡ 14
ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ
èÓÒÚ‡ÌÒÚ‚ÓÏ ‚ÂÓflÚÌÓÒÚÂÈ Ì‡Á˚‚‡ÂÚÒfl ËÁÏÂËÏÓ ÔÓÒÚ‡ÌÒÚ‚Ó (Ω, , P),
„‰Â ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÏÂËÏ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ Ω, ‡ P – ÏÂ‡ ̇ Ò P(Ω) = 1. åÌÓÊÂÒÚ‚Ó Ω ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‚˚·ÓÓÍ. ùÎÂÏÂÌÚ a ∈ ̇Á˚‚‡ÂÚÒfl ÒÓ·˚ÚËÂÏ, ‚ ˜‡ÒÚÌÓÒÚË, ˝ÎÂÏÂÌÚ‡ÌÓ ÒÓ·˚ÚË – ˝ÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ Ω , ÒÓ‰Âʇ˘Â ÚÓθÍÓ Ó‰ËÌ ˝ÎÂÏÂÌÚ; P(a) ̇Á˚‚‡ÂÚÒfl
‚ÂÓflÚÌÓÒÚ¸˛ ÒÓ·˚ÚËfl ‡. åÂ‡ ê ̇ ̇Á˚‚‡ÂÚÒfl ‚ÂÓflÚÌÓÒÚÌÓÈ ÏÂÓÈ, ËÎË
Á‡ÍÓÌÓÏ ‡ÒÔ‰ÂÎÂÌËfl (‚ÂÓflÚÌÓÒÚÂÈ), ËÎË ÔÓÒÚÓ ‡ÒÔ‰ÂÎÂÌËÂÏ (‚ÂÓflÚÌÓÒÚÂÈ).
ëÎÛ˜‡È̇fl ‚Â΢Ë̇ ï ÂÒÚ¸ ËÁÏÂËχfl ÙÛÌ͈Ëfl ËÁ ÔÓÒÚ‡ÌÒÚ‚‡ ‚ÂÓflÚÌÓÒÚÂÈ
(Ω, , P ) ‚ ËÁÏÂËÏÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ̇Á˚‚‡ÂÏÓ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÒÓÒÚÓflÌËÈ
‚ÓÁÏÓÊÌ˚ı Á̇˜ÂÌËÈ ÔÂÂÏÂÌÌÓÈ; Ó·˚˜ÌÓ ·ÂÛÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌ˚ ˜ËÒ· Ò ·ÓÂ΂ÓÈ α-‡Î„·ÓÈ, Ú‡Í ˜ÚÓ X : Ω → . åÌÓÊÂÒÚ‚Ó Á̇˜ÂÌËÈ χ ÒÎÛ˜‡ÈÌÓÈ ‚Â΢ËÌ˚
ï ̇Á˚‚‡ÂÚÒfl ÌÂÒÛ˘ËÏ ÏÌÓÊÂÒÚ‚ÓÏ ‡ÒÔ‰ÂÎÂÌËfl ê; ˝ÎÂÏÂÌÚ x ∈ χ ̇Á˚‚‡ÂÚÒfl
ÒÓÒÚÓflÌËÂÏ.
á‡ÍÓÌ ‡ÒÔ‰ÂÎÂÌËfl ÏÓÊÌÓ Â‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ ÓÔËÒ‡Ú¸ ˜ÂÂÁ ÍÛÏÛÎflÚË‚ÌÛ˛ ÙÛÌÍˆË˛ ‡ÒÔ‰ÂÎÂÌËfl (CDF, ÙÛÌÍˆË˛ ‡ÒÔ‰ÂÎÂÌËfl, ÍÛÏÛÎflÚË‚ÌÛ˛
ÙÛÌÍˆË˛ ÔÎÓÚÌÓÒÚË) F(x), ÍÓÚÓ‡fl ÔÓ͇Á˚‚‡ÂÚ ‚ÂÓflÚÌÓÒÚ¸ ÚÓ„Ó, ˜ÚÓ ÒÎÛ˜‡È̇fl
‚Â΢Ë̇ ï ÔËÌËχÂÚ Á̇˜ÂÌË Ì ·Óθ¯Â, ˜ÂÏ ı: F (x) = P (X ≤ x) = P (ω ∈
∈ Ω: X(ω) < x).
í‡ÍËÏ Ó·‡ÁÓÏ, β·‡fl ÒÎÛ˜‡È̇fl ‚Â΢Ë̇ ï ÔÓÓʉ‡ÂÚ Ú‡ÍÓ ‡ÒÔ‰ÂÎÂÌËÂ
‚ÂÓflÚÌÓÒÚÂÈ, ÍÓÚÓ˚Ï ËÌÚÂ‚‡ÎÛ [a, b] ÒÚ‡‚ËÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ‚ÂÓflÚÌÓÒÚ¸
P(a ≤ X ≤ b) = P(ω ∈ Ω: a ≤ X(ω) ≤ b), Ú.Â. ‚ÂÓflÚÌÓÒÚ¸, ˜ÚÓ ‚Â΢Ë̇ ï ·Û‰ÂÚ ËÏÂÚ¸
Á̇˜ÂÌË ‚ ËÌÚÂ‚‡Î [a, b].
ê‡ÒÔ‰ÂÎÂÌË ̇Á˚‚‡ÂÚÒfl ‰ËÒÍÂÚÌ˚Ï, ÂÒÎË F(x) ÒÓÒÚÓËÚ ËÁ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÍÓ̘Ì˚ı Ò͇˜ÍÓ‚ ÔË xi; ‡ÒÔ‰ÂÎÂÌË ̇Á˚‚‡ÂÚÒfl ÌÂÔÂ˚‚Ì˚Ï, ÂÒÎË F(x)
ÌÂÔÂ˚‚̇. å˚ ‡ÒÒχÚË‚‡ÂÏ (Í‡Í ‚ ·Óθ¯ËÌÒÚ‚Â ÔËÎÓÊÂÌËÈ) ÚÓθÍÓ ‰ËÒÍÂÚÌ˚ ËÎË ‡·ÒÓβÚÌÓ ÌÂÔÂ˚‚Ì˚ ‡ÒÔ‰ÂÎÂÌËfl, Ú.Â. ÙÛÌ͈Ëfl ‡ÒÔ‰ÂÎÂÌËfl
F : → fl‚ÎflÂÚÒfl ‡·ÒÓβÚÌÓ ÌÂÔÂ˚‚ÌÓÈ. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ‰Îfl Í‡Ê‰Ó„Ó ˜ËÒ·
ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ ˜ËÒÎÓ δ > 0, ˜ÚÓ ‰Îfl β·ÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÔÓÔ‡ÌÓ
ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ËÌÚÂ‚‡ÎÓ‚ [xk, yk ], 1 ≤ k ≤ n ÌÂ‡‚ÂÌÒÚ‚Ó
( yk − x k ) < δ
∑
‚ΘÂÚ ÌÂ‡‚ÂÌÒÚ‚Ó
∑
1≤ k ≤ n
| F( yk ) − F( x k ) | < ε.
1≤ k ≤ n
á‡ÍÓÌ ‡ÒÔ‰ÂÎÂÌËfl ÏÓÊÂÚ ·˚Ú¸ Ú‡ÍÊ ‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ ÓÔ‰ÂÎÂÌ
˜ÂÂÁ ÔÎÓÚÌÓÒÚ¸ ‡ÒÔ‰ÂÎÂÌËfl ‚ÂÓflÚÌÓÒÚÂÈ (PDF, ÙÛÌÍˆË˛ ÔÎÓÚÌÓÒÚË,
ÙÛÌÍˆË˛ ‚ÂÓflÚÌÓÒÚË)  (ı) ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÒÎÛ˜‡ÈÌÓÈ ‚Â΢ËÌ˚. ÑÎfl
‡·ÒÓβÚÌÓ ÌÂÔÂ˚‚ÌÓ„Ó ‡ÒÔ‰ÂÎÂÌËfl ÙÛÌ͈Ëfl ‡ÒÔ‰ÂÎÂÌËfl fl‚ÎflÂÚÒfl ÔÓ˜ÚË
‚Ò˛‰Û ‰ËÙÙÂÂ̈ËÛÂÏÓÈ Ë ÙÛÌ͈Ëfl ÔÎÓÚÌÓÒÚË ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÔÓËÁ‚Ӊ̇fl
212
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
x
p(x) = F'(x) ÙÛÌ͈ËË ‡ÒÔ‰ÂÎÂÌËfl; ÒΉӂ‡ÚÂθÌÓ, F( x ) = P( X ≤ x ) =
∫
p(t )dt Ë
−∞
b
∫
p(t )dt = P( a ≤ X ≤ b). ÑÎfl ÒÎÛ˜‡fl ‰ËÒÍÂÚÌÓ„Ó ‡ÒÔ‰ÂÎÂÌËfl ÙÛÌ͈Ëfl ÔÎÓÚÌÓÒÚË
a
(ÔÎÓÚÌÓÒÚË ÒÎÛ˜‡ÈÌÓÈ ‚Â΢ËÌ˚ ï) ÓÔ‰ÂÎflÂÚÒfl Í‡Í Â Á̇˜ÂÌËfl p( xi ) = P( X = x ),
Ú‡Í ˜ÚÓ F( x ) =
∑
p( xi ). Ç ÔÓÚË‚ÓÔÓÎÓÊÌÓÒÚ¸ ˝ÚÓÏÛ Í‡Ê‰Ó ˝ÎÂÏÂÌÚ‡ÌÓÂ
xi ≤ x
ÒÓ·˚ÚË ËÏÂÂÚ ‚ ÌÂÔÂ˚‚ÌÓÏ ÒÎÛ˜‡Â ‚ÂÓflÚÌÓÒÚ¸ ÌÓθ.
ëÎÛ˜‡È̇fl ‚Â΢Ë̇ ï ÔËÏÂÌflÂÚÒfl ‰Îfl "ÔÂÂÌÓÒ‡" ÏÂ˚ ê ̇ Ω ̇ ÏÂÛ dF ̇
. ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÂÓflÚÌÓÒÚÂÈ fl‚ÎflÂÚÒfl ÚÂıÌ˘ÂÒÍËÏ ËÌÒÚÛÏÂÌÚÓÏ, ÔËÏÂÌÂÌË ÍÓÚÓÓ„Ó Ó·ÂÒÔ˜˂‡ÂÚ ÒÛ˘ÂÒÚ‚Ó‚‡ÌË ÒÎÛ˜‡ÈÌ˚ı ‚Â΢ËÌ,
‡ ËÌÓ„‰‡ ËÒÔÓθÁÛÂÚÒfl Ë ‰Îfl Ëı ÔÓÒÚÓÂÌËfl.
Ç ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ ÏÂÚËÍË ÏÂÊ‰Û ‡ÒÔ‰ÂÎÂÌËflÏË Ì‡Á˚‚‡˛ÚÒfl ÔÓÒÚ˚ÏË
ÏÂÚË͇ÏË, ‡ ÏÂÚËÍË ÏÂÊ‰Û ÒÎÛ˜‡ÈÌ˚ÏË ‚Â΢Ë̇ÏË Ì‡Á˚‚‡˛ÚÒfl ÒÎÓÊÌ˚ÏË
ÏÂÚË͇ÏË [Rach91]. ÑÎfl ÔÓÒÚÓÚ˚ Ï˚ ·Û‰ÂÏ Ó·˚˜ÌÓ ‡ÒÒχÚË‚‡Ú¸ ‰ËÒÍÂÚÌ˚È ‚‡ˇÌÚ ÏÂÚËÍ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ, Ӊ̇ÍÓ ·Óθ¯ËÌÒÚ‚Ó ËÁ ÌËı ÓÔ‰ÂÎfl˛ÚÒfl ̇ β·ÓÏ ËÁÏÂËÏÓÏ ÔÓÒÚ‡ÌÒÚ‚Â. ÑÎfl ‚ÂÓflÚÌÓÒÚÌÓÈ ÏÂÚËÍË d ÛÒÎÓ‚Ë P(X = Y) = 1 ‚˚ÔÓÎÌflÂÚÒfl ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d(X, Y) = 0. ÇÓ ÏÌÓ„Ëı
ÒÎÛ˜‡flı ̇ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓflÌËÈ χ Á‡‰‡ÂÚÒfl ÌÂÍÓÚÓÓ ·‡ÁÓ‚Ó ‡ÒÒÚÓflÌË Ë
‡ÒÒχÚË‚‡ÂÏÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl Â„Ó ÎËÙÚËÌ„ÓÏ Ì‡ ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÒÔ‰ÂÎÂÌËÈ.
Ç ÒÚ‡ÚËÒÚËÍ ÏÌÓ„Ë ËÁ Û͇Á‡ÌÌ˚ı ÌËÊ ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ‡ÒÔ‰ÂÎÂÌËflÏË
P1 Ë P2 ÔËÏÂÌfl˛ÚÒfl Í‡Í ÏÂ˚ ÒÚÂÔÂÌË Òӄ·ÒËfl ÏÂÊ‰Û ÓˆÂÌË‚‡ÂÏ˚Ï (P2 ) Ë
ÚÂÓÂÚ˘ÂÒÍËÏ (P1 ) ‡ÒÔ‰ÂÎÂÌËflÏË.
чΠÔÓ ÚÂÍÒÚÛ ÒËÏ‚ÓÎÓÏ [X] Ó·ÓÁ̇˜‡ÂÚÒfl χÚÂχÚ˘ÂÒÍÓ ÓÊˉ‡ÌË (ËÎË
Ò‰Ì Á̇˜ÂÌËÂ) ÒÎÛ˜‡ÈÌÓÈ ‚Â΢ËÌ˚ ï: ‚ ‰ËÒÍÂÚÌÓÏ ÒÎÛ˜‡Â [X] =
xp( x ),
∑
x
a ‰Îfl ÌÂÔÂ˚‚ÌÓ„Ó ÒÎÛ˜‡fl [ X ] =
∫
xp( x )dx. ÑËÒÔÂÒËÂÈ ï ̇Á˚‚‡ÂÚÒfl ‚Â΢Ë̇
[X – [X]) 2 ]. àÒÔÓθÁÛ˛ÚÒfl Ú‡ÍÊ ӷÓÁ̇˜ÂÌËfl p X = p(x) = P(X = x), FX = F(x) =
= P(X ≤ x), p(x, y) = P(X = x, Y = y).
14.1. êÄëëíéüçàü çÄ ëãìóÄâçõï ÇÖãàóàçÄï
ÇÒ ‡ÒÒÚÓflÌËfl ‚ ‰‡ÌÌÓÏ ‡Á‰ÂΠÓÔ‰ÂÎfl˛ÚÒfl ̇ ÏÌÓÊÂÒÚ‚Â Z ‚ÒÂı ÒÎÛ˜‡ÈÌ˚ı
‚Â΢ËÌ Ò Ó‰ÌËÏ Ë ÚÂÏ Ê ÌÂÒÛ˘ËÏ ÏÌÓÊÂÒÚ‚ÓÏ χ; Á‰ÂÒ¸ X, Y ∈ Z.
Lp -ÏÂÚË͇ ÏÂÊ‰Û ‚Â΢Ë̇ÏË
Lp -ÏÂÚË͇ ÏÂÊ‰Û ‚Â΢Ë̇ÏË ÂÒÚ¸ ÏÂÚË͇ ̇ Z c χ ⊂ Ë [| Z | p ] < ∞ ‰Îfl ‚ÒÂı
Z ∈ , ÓÔ‰ÂÎÂÌ̇fl ͇Í
( [| X − Y | ])
p
1/ p


=
| x − y | p p( x, y)



 ( x , y ) ∈χ × χ
∑
1/ p
.
É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ 213
ÑÎfl p = 1, 2 Ë ∞ Ó̇ ̇Á˚‚‡ÂÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ËÌÊÂÌÂÌÓÈ ÏÂÚËÍÓÈ, Ò‰ÌÂÍ‚‡‰‡Ú˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ë ‡ÒÒÚÓflÌËÂÏ ÒÛ˘ÂÒÚ‚ÂÌÌÓ„Ó ÒÛÔÂÏÛχ ÏÂʉÛ
ÔÂÂÏÂÌÌ˚ÏË.
à̉Ë͇ÚÓ̇fl ÏÂÚË͇
à̉Ë͇ÚÓ̇fl ÏÂÚË͇ – ÏÂÚË͇ ̇ Z, ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑
[1X ≠ Y ] =
1x ≠ y p( x, y) =
( x , y ) ∈χ × χ
∑
p( x, y).
( x , y ) ∈χ × χ, x ≠ y
(ÒÏ. ï˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇, „Î. 1).
ä ÏÂÚË͇ äË î‡Ì‡
ä ÏÂÚË͇ äË î‡Ì‡ ÂÒÚ¸ ÏÂÚË͇ ä ̇ Z, ÓÔ‰ÂÎÂÌ̇fl ͇Í
inf{ε > 0 : P(| X − Y |> ε ) < ε}.
ùÚÓ fl‚ÎflÂÚÒfl ÒÎÛ˜‡ÂÏ d(x, y) = | X – Y | ‚ÂÓflÚÌÓÒÚÌÓ„Ó ‡ÒÒÚÓflÌËfl.
K * ÏÂÚË͇ äË î‡Ì‡
K * ÏÂÚË͇ äË î‡Ì‡ ÂÒÚ¸ ÏÂÚË͇ K * ̇ Z, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|x−y|
 | X −Y |  =
p( x, y).
1+ | X − Y | 
1+ | x − y |
( x , y ) ∈χ × χ
∑
ÇÂÓflÚÌÓÒÚÌÓ ‡ÒÒÚÓflÌËÂ
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ , d) ‚ÂÓflÚÌÓÒÚÌÓ ‡ÒÒÚÓflÌË ̇ Z
ÓÔ‰ÂÎflÂÚÒfl ͇Í
inf{ε : P( d ( X , Y ) > ε ) < ε}.
14.2. êÄëëíéüçàü çÄ áÄäéçÄï êÄëèêÖÑÖãÖçàü
ÇÒ ‡ÒÒÚÓflÌËfl ‚ ‰‡ÌÌÓÏ ‡Á‰ÂΠÓÔ‰ÂÎfl˛ÚÒfl ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı Á‡ÍÓÌÓ‚
‡ÒÔ‰ÂÎÂÌËfl Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ÒÎÛ˜‡ÈÌ˚ ‚Â΢ËÌ˚ ËϲÚ
Ó‰Ë̇ÍÓ‚Ó ÏÌÓÊÂÒÚ‚Ó Á̇˜ÂÌËÈ χ; Á‰ÂÒ¸ P1 , P2 ∈ .
Lp -ÏÂÚË͇ ÏÂÊ‰Û ÔÎÓÚÌÓÒÚflÏË
Lp -ÏÂÚË͇ ÏÂÊ‰Û ÔÎÓÚÌÓÒÚflÏË ÂÒÚ¸ ÏÂÚË͇ ̇ (‰Îfl Ò˜ÂÚÌÓ„Ó χ), ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·Ó„ p > 0 ͇Í



∑
x

| p1 ( x ) − p2 ( x ) | p ) min(1,1 / p )  .

ÑÎfl p = 1  ÔÓÎÓ‚Ë̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ ÔÓÎÌÓÈ ‚‡ˇˆËË (ËÎË ËÁÏÂÌflÂÏ˚Ï
‡ÒÒÚÓflÌËÂÏ, ‡ÒÒÚÓflÌËÂÏ ÒΉ‡). íӘ˜̇fl ÏÂÚË͇ sup | p1 ( x ) − p2 ( x ) | ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ p = ∞.
x
214
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
èÓÎÛÏÂÚË͇ å‡ı‡Î‡ÌÓ·ËÒ‡
èÓÎÛÏÂÚË͇ å‡ı‡Î‡ÌÓ·ËÒ‡ (ËÎË Í‚‡‰‡Ú˘ÌÓ ‡ÒÒÚÓflÌËÂ, Í‚‡‰‡Ú˘̇fl
ÏÂÚË͇) ÂÒÚ¸ ÔÓÎÛÏÂÚË͇fl ̇ (‰Îfl χ ⊂ n), ÓÔ‰ÂÎflÂχfl ͇Í
(
P1 [ X ] −
P2 [ X ])
T
A −1 (
P1 [ X ] −
P2 [ X ])
‰Îfl ‰‡ÌÌÓÈ ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎeÌÌÓÈ Ï‡Úˈ˚ Ä.
àÌÊÂÌÂ̇fl ÔÓÎÛÏÂÚË͇
àÌÊÂÌÂÌÓÈ ÔÓÎÛÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ (‰Îfl χ ⊂ ), ÓÔ‰ÂÎÂÌ̇fl ͇Í
|
P1 [ X ] −
P2 [ X ] |
=
∑
x ( p1 ( x ) − p2 ( x )) .
x
åÂÚË͇ Ó„‡Ì˘ÂÌËfl ÔÓÚÂË ÔÓfl‰Í‡ m
åÂÚË͇ Ó„‡Ì˘ÂÌËfl ÔÓÚÂË ÔÓfl‰Í‡ m ÂÒÚ¸ ÏÂÚËÍÓÈ Ì‡ (‰Îfl χ ⊂ ), ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑
t ∈
sup
x ≥t
( x − t )m
( p1 ( x ) − p2 ( x )).
m!
åÂÚË͇ äÓÎÏÓ„ÓÓ‚‡–ëÏËÌÓ‚‡
åÂÚËÍÓÈ äÓÎÏÓ„ÓÓ‚‡–ëÏËÌÓ‚‡ (ËÎË ÏÂÚËÍÓÈ äÓÎÏÓ„ÓÓ‚‡, ‡‚ÌÓÏÂÌÓÈ
ÏÂÚËÍÓÈ) fl‚ÎflÂÚÒfl ÏÂÚË͇ ̇ (‰Îfl χ ⊂ ), ÓÔ‰ÂÎÂÌ̇fl ͇Í
sup | P1 ( X ≤ x ) − P2 ( X ≤ x ) | .
t ∈
ê‡ÒÒÚÓflÌË äÛËÔÂ‡ ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
sup( P1 ( X ≤ x ) − P2 ( X ≤ x )) + sup( P2 ( X ≤ x ) − P1 ( X ≤ x ))
x ∈
x ∈
(ÒÏ. åÂÚË͇ èÓÏÔÂÈ˛–ù„„ÎÂÒÚÓ̇, „Î. 9).
ê‡ÒÒÚÓflÌË Ä̉ÂÒÓ̇–чÎËÌ„‡ ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
| P1 ( X ≤ x ) − P2 ( X ≤ x )
.
x ∈ ln P1 ( X ≤ x )(1 − P1 ( X ≤ x ))
sup
ê‡ÒÒÚÓflÌË äÌÍӂ˘‡–Ñ‡ıÏ˚ ÓÔ‰ÂÎflÂÚÒfl ͇Í
sup( P1 ( X ≤ x ) − P2 ( X ≤ x )) ln
x ∈
+ sup( P2 ( X ≤ x ) − P1 ( X ≤ x )) ln
x ∈
1
+
P1 ( X ≤ x )(1 − P1 ( X ≤ x ))
1
.
P1 ( X ≤ x )(1 − P1 ( X ≤ x ))
íË ‚˚¯ÂÔ˂‰ÂÌÌ˚ı ‡ÒÒÚÓflÌËfl ËÒÔÓθÁÛ˛ÚÒfl ‚ ÒÚ‡ÚËÒÚËÍ ‚ ͇˜ÂÒÚ‚Â ÒÚÂÔÂÌË Òӄ·ÒËfl, ÓÒÓ·ÂÌÌÓ ‰Îfl ‡Ò˜ÂÚ‡ ËÒÍÓ‚ÓÈ ÒÚÓËÏÓÒÚË ‚ ÙË̇ÌÒÓ‚ÓÈ ÒÙÂÂ.
É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ 215
ê‡ÒÒÚÓflÌË ä‡ÏÂ‡–ÙÓÌ åËÁÂÒ‡
ê‡ÒÒÚÓflÌË ä‡ÏÂ‡–ÙÓÌ åËÁÂÒ‡ ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ (‰Îfl χ ⊂ ), ÓÔ‰ÂÎÂÌÌÓ ͇Í
+∞
∫
( P1 ( X ≤ x ) − P2 ( X ≤ x ))2 dx.
−∞
éÌÓ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ Í‚‡‰‡Ú L 2 -ÏÂÚËÍË ÏÂÊ‰Û ÍÛÏÛÎflÚË‚Ì˚ÏË ÙÛÌ͈ËflÏË
ÔÎÓÚÌÓÒÚË.
åÂÚË͇ ã‚Ë
åÂÚË͇ ãÂ‚Ë – ÏÂÚË͇ ̇ (ÚÓθÍÓ ‰Îfl χ ⊂ ), ÓÔ‰ÂÎÂÌ̇fl ͇Í
inf{ε < 0 : P1 ( X ≤ x − ε ) − ε ≤ P2 ( X ≤ x ) ≤ P1 ( X ≤ x + ε ) + ε
‰Îfl β·Ó„Ó x ∈ }
é̇ fl‚ÎflÂÚÒfl ÒÔˆˇθÌ˚Ï ÒÎÛ˜‡ÂÏ ÏÂÚËÍË èÓıÓÓ‚‡ ‰Îfl (χ, d) = (, | x – y |).
åÂÚË͇ èÓıÓÓ‚‡
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ, d) ÏÂÚË͇ èÓıÓÓ‚‡ ̇ ÓÔ‰ÂÎflÂÚ0
Òfl ͇Í
inf{ε > 0 : P1 ( X ∈ B) ≤ P2 ( X ∈ B ε ) + ε Ë P2 ( X ∈ B) ≤ P1 ( X ∈ B ε ) + ε},
„‰Â Ç – β·Ó ·ÓÂ΂ÒÍÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ χ, ‡ B ε = {x : d ( x, y) < ε,
y ∈ B}.
ùÚÓ Ì‡ËÏÂ̸¯Â (ÔÓ ‚ÒÂÏ ÒÓ‚ÏÂÒÚÌ˚Ï ‡ÒÔ‰ÂÎÂÌËflÏ Ô‡ (X, Y) ÒÎÛ˜‡ÈÌ˚ı ‚Â΢ËÌ ï, Y, Ú‡ÍËı ˜ÚÓ Ëı χ„Ë̇θÌ˚ÂÏË ‡ÒÔ‰ÂÎÂÌËflÏË fl‚Îfl˛ÚÒfl P1
Ë P 2 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ) ‚ÂÓflÚÌÓÒÚÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÎÛ˜‡ÈÌ˚ÏË ‚Â΢Ë̇ÏË
ï Ë Y.
åÂÚË͇ ч‰ÎË
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ, d) ÏÂÚË͇ ч‰ÎË Ì‡ ÓÔ‰ÂÎflÂÚÒfl ͇Í
sup |
f ∈F
P1 [ f ( X )] −
P2 [ f ( X )] |
= sup
∑
f ∈F x ∈χ
f ( x )( p1 ( x ) − p2 ( x )) .
„‰Â F = { f : χ → , || f ||∞ + Lip d ( f ) ≤ 1} Ë Lip d ( f ) =
| f ( x ) − f ( y) |
.
d ( x, y)
x≠y
sup
x , y ∈χ,
åÂÚË͇ òÛθ„Ë
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ, d) ÏÂÚË͇ òÛθ„Ë Ì‡ ÓÔ‰ÂÎflÂÚÒfl ͇Í

 

sup 
| f ( x ) | p p1 ( x ))1 / p  − 
| f ( x ) | p p2 ( x ))1 / p  ,

 
f ∈F 

  x ∈χ
 x ∈χ
∑
„‰Â F = { f : χ → , Lip d ( f ) ≤ 1} Ë Lip d ( f ) =
∑
| f ( x ) − f ( y) |
.
d ( x, y)
x≠y
sup
x , y ∈χ,
216
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
èÓÎÛÏÂÚË͇ áÓÎÓÚ‡‚‡
èÓÎÛÏÂÚËÍÓÈ áÓÎÓÚ‡‚‡ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl ͇Í
sup
f ∈F
∑
f ( x )( p1 ( x ) − p2 ( x )) ,
x ∈χ
„‰Â F – β·Ó ÏÌÓÊÂÒÚ‚Ó ÙÛÌ͈ËÈ (‰Îfl ÌÂÔÂ˚‚ÌÓ„Ó ÒÎÛ˜‡fl F – β·Ó ÏÌÓÊÂÒÚ‚Ó
Ú‡ÍËı Ó„‡Ì˘ÂÌÌ˚ı ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ); ÒÏ. åÂÚË͇ òÛθ„Ë, åÂÚË͇
ч‰ÎË.
åÂÚË͇ Ò‚ÂÚÍË
èÛÒÚ¸ G – ÒÂÔ‡‡·Âθ̇fl ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚ̇fl ‡·Â΂‡ „ÛÔÔ‡ Ë ÔÛÒÚ¸ ë(G) –
ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı Ó„‡Ì˘ÂÌÌ˚ı ÌÂÔÂ˚‚Ì˚È ÙÛÌ͈ËÈ Ì‡ G,
ÍÓÚÓ˚ ӷ‡˘‡˛ÚÒfl ‚ ÌÛθ ‚ ·ÂÒÍÓ̘ÌÓÒÚË. á‡ÙËÍÒËÛÂÏ ÙÛÌÍˆË˛ g ∈ C(G),
Ú‡ÍÛ˛ ˜ÚÓ | g | fl‚ÎflÂÚÒfl ËÌÚ„ËÛÂÏÓÈ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÏÂ ‡ ̇ G Ë
{β ∈ G * : gˆ (β) = 0} ËÏÂÂÚ ÔÛÒÚÛ˛ ‚ÌÛÚÂÌÌÓÒÚ¸: Á‰ÂÒ¸ G* – ‰Û‡Î¸Ì‡fl „ÛÔÔ‡ ‰Îfl G Ë
ĝ – ÔÂÓ·‡ÁÓ‚‡ÌË îÛ¸Â ‰Îfl g.
åÂÚË͇ Ò‚ÂÚÍË û͢‡ (ËÎË ÏÂÚË͇ ҄·ÊË‚‡ÌËfl) ÓÔ‰ÂÎflÂÚÒfl ‰Îfl β·˚ı
‰‚Ûı ÍÓ̘Ì˚ı ÏÂ Å˝‡ ÒÓ Á̇ÍÓÏ P1 Ë P2 ̇ G ͇Í
sup
x ∈G
∫
g( xy −1 )( dP1 − dP2 )( y) | .
y ∈G
чÌÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ Ú‡ÍÊ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ‡ÁÌÓÒÚ¸ Tp1 ( g) − Tp2 ( g)
ÓÔÂ‡ÚÓÓ‚ Ò‚ÂÚÍË Ì‡ C(G), „‰Â ‰Îfl β·ÓÈ f ∈ C(G) ÓÔÂ‡ÚÓ Tpf(x) ÓÔ‰ÂÎflÂÚÒfl
͇Í
∫
f ( xy −1 )dP( y).
y ∈G
åÂÚË͇ ÌÂÒıÓ‰ÒÚ‚‡
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ, d) ÏÂÚË͇ ÌÂÒıÓ‰ÒÚ‚‡ ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
sup{| P1 ( X ∈ B) − P2 ( X ∈ B) |: B – β·ÓÈ Á‡ÏÍÌÛÚ˚È ¯‡}.
èÓÎÛÏÂÚË͇ ‰‚ÓÈÌÓ„Ó ÌÂÒıÓ‰ÒÚ‚‡
èÓÎÛÏÂÚË͇ ‰‚ÓÈÌÓ„Ó ÌÂÒıÓ‰ÒÚ‚‡ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ÏÂÊ‰Û ‡ÒÔ‰ÂÎÂÌËflÏË P 1
Ë P2 , Á‡‰‡ÌÌ˚ÏË Ì‡‰ ‡ÁÌ˚ÏË ÒÂÏÂÈÒÚ‚‡ÏË 1 Ë 2 ËÁÏÂËÏ˚ı ÏÌÓÊÂÒÚ‚, ÓÔ‰ÂÎflÂχfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ:
D( P1 , P2 ) + D( P2 , P1 ),
„‰Â D( P1 , P2 ) = sup{inf{P2 (C ) : B C ∈ 2 } − P1 ( B) : B ∈ 1 } – ‡ÒıÓʉÂÌËÂ.
ê‡ÒÒÚÓflÌË ã ä‡Ï‡
ê‡ÒÒÚÓflÌË ã ä‡Ï‡ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ÏÂÊ‰Û ‡ÒÔ‰ÂÎÂÌËflÏË ‚ÂÓflÚÌÓÒÚÂÈ P1
Ë P 2 (Á‡‰‡ÌÌ˚ı ̇ ‡Á΢Ì˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı χ 1 Ë χ2), ÓÔ‰ÂÎÂÌ̇fl ÒÎÂ‰Û˛˘ËÏ
Ó·‡ÁÓÏ:
max{δ( P1 , P2 ), δ( P2 , P1 )},
É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ 217
„‰Â
δ( P1 , P2 ) = inf
B
BP1 ( X2 = x 2 ) =
∑
∑
| BP1 ( X2 = x 2 ) − BP2 ( X2 = x 2 ) | – Ì‚flÁ͇ ã ä‡Ï‡. á‰ÂÒ¸
x 2 ∈χ 2
p1 ( x1 )b( x 2 | x1 ), „‰Â Ç – ‡ÒÔ‰ÂÎÂÌË ‚ÂÓflÚÌÓÒÚÂÈ Ì‡‰ χ1 × χ2 Ë
x1 ∈χ1
b( x 2 | x1 ) =
B( X1 = x1 , X2 = x 2 )
=
B( X1 = x1 )
B( X1 = x1 , X2 = x 2 )
.
B( X1 = x 2 , X2 = x )
∑
x ∈χ 2
ëΉӂ‡ÚÂθÌÓ, BP2 ( X2 = x 2 ) fl‚ÎflÂÚÒfl ‡ÒÔ‰ÂÎÂÌËÂÏ ‚ÂÓflÚÌÓÒÚÂÈ Ì‡‰ χ2,
ÔÓÒÍÓθÍÛ
∑ b( x2 | x1 ) = 1. ê‡ÒÒÚÓflÌË ã ä‡Ï‡ Ì fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÚÂÓËË
x 2 ∈χ 2
‚ÂÓflÚÌÓÒÚÂÈ, ÔÓÒÍÓθÍÛ P1 Ë P2 Á‡‰‡Ì˚ ̇‰ ‡ÁÌ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË; ˝ÚÓ ÂÒÚ¸
‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÚ‡ÚËÒÚ˘ÂÒÍËÏË ˝ÍÒÔÂËÏÂÌÚ‡ÏË (ÏÓ‰ÂÎflÏË).
åÂÚË͇ ëÍÓÓıÓ‰‡–ÅËÎËÌ„ÒÎË
åÂÚË͇ ëÍÓÓıÓ‰‡–ÅËÎËÌ„ÒÎË – ÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl ͇Í

f ( y) − f ( x ) 
inf max sup | P1 ( X ≤ x ) − P2 ( X ≤ f ( x )) | sup | f ( x ) − x |,sup ln
,
f
y−x
x
x≠y
 x

„‰Â f: → – ÒÚÓ„Ó ‚ÓÁ‡ÒÚ‡˛˘‡fl ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl.
åÂÚË͇ ëÍÓÓıÓ‰‡
åÂÚËÍÓÈ ëÍÓÓıÓ‰‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl ͇Í




inf ε > 0 : max sup | P1 ( X < x ) − P2 ( X ≤ f ( x )) |,sup | f ( x ) − x | < ε ,
x

 x


„‰Â f: → – ÒÚÓ„Ó ‚ÓÁ‡ÒÚ‡˛˘‡fl ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl.
ê‡ÒÒÚÓflÌË ÅËÌ·‡Ûχ–é΢‡
ê‡ÒÒÚÓflÌË ÅËÌ·‡Ûχ–é΢‡ – ‡ÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓ ͇Í
sup f (| P1 ( X ≤ x ) − P2 ( X ≤ x ) |),
x ∈
„‰Â f: ≥0 → ≥0 – β·‡fl ÌÂÛ·˚‚‡˛˘‡fl ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl Ò f(0) = 0 Ë f(2t) ≤ Kf(t)
‰Îfl β·Ó„Ó t > 0 Ë ÌÂÍÓÚÓÓ„Ó Á‡‰‡ÌÌÓ„Ó K. éÌÓ fl‚ÎflÂÚÒfl ÔÓ˜ÚË ÏÂÚËÍÓÈ,
ÔÓÒÍÓθÍÛ Òӷ≇ÂÚÒfl ÛÒÎÓ‚Ë d ( P1 , P2 ) ≤ K ( d ( P2 , P3 ) + d ( P3 , P2 )).
ê‡ÒÒÚÓflÌË ÅËÌ·‡Ûχ–é΢‡ ÔËÏÂÌflÂÚÒfl Ú‡ÍÊ ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÌÚ„ËÛÂÏ˚ı ÙÛÌ͈ËÈ Ì‡ ÓÚÂÁÍ [0, 1], „‰Â ÓÌÓ ÓÔ‰ÂÎflÂÚÒfl
1
͇Í
∫
H (| f ( x ) − g( x ) |)dx, „‰Â ç – ÌÂÛ·˚‚‡˛˘‡fl ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl ËÁ [0, ∞) ‚
0
[0, ∞), ÍÓÚÓ‡fl Ó·‡˘‡ÂÚÒfl ‚ ÌÛθ ‚ ÌÛÎÂ Ë Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ é΢‡:
sup
t >0
H (2t )
< ∞.
H (t )
218
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌË äÛ„ÎÓ‚‡
ê‡ÒÒÚÓflÌË äÛ„ÎÓ‚‡ – ‡ÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓ ͇Í
∫
f ( P1 ( X ≤ x ) − P2 ( X ≤ x )dx,
„‰Â f: ≥ 0 → ≥0 – ÒÚÓ„Ó ‚ÓÁ‡ÒÚ‡˛˘‡fl ˜eÚ̇fl ÙÛÌ͈Ëfl Ò f(0) = 0 Ë f ( s + t ) ≤
≤ K ( f ( s) + f (t )) ‰Îfl β·˚ı s, t ≥ 0 Ë ÌÂÍÓÚÓÓ„Ó Á‡‰‡ÌÌÓ„Ó K ≥ 1. éÌÓ fl‚ÎflÂÚÒfl
ÔÓ˜ÚË ÏÂÚËÍÓÈ, ÔÓÒÍÓθÍÛ Òӷ≇ÂÚÒfl ÛÒÎÓ‚Ë d ( P1 , P2 ) ≤ K ( d ( P1 , P3 ) + d ( P3 , P2 )).
ê‡ÒÒÚÓflÌË ÅÛ·Ë–ê‡Ó
ê‡ÒÒÏÓÚËÏ ÌÂÔÂ˚‚ÌÛ˛ ‚˚ÔÛÍÎÛ˛ ÙÛÌÍˆË˛ φ(t ) : (0, ∞) → Ë ÔÓÎÓÊËÏ
φ(0) = lim φ(t ) ∈ ( −∞, ∞]. Ç˚ÔÛÍÎÓÒÚ¸ φ ‚ΘÂÚ ÌÂÓÚˈ‡ÚÂθÌÓÒÚ¸ ÙÛÌ͈ËË
t→0
δ φ : [0, 1]2 → ( −∞, ∞], ÓÔ‰ÂÎÂÌÌÓÈ Í‡Í δ φ ( x, y) =
φ( x ) + φ( y)
x + y
ÂÒÎË (x, y) ≠
− φ

2
2 
≠ (0, 0) Ë δφ (0, 0) = 0.
ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ‡ÒÒÚÓflÌË ÅÛ·Ë–ê‡Ó ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑ δ φ ( p1 ( x ), p2 ( x )).
x
ê‡ÒÒÚÓflÌË Å„χ̇
ê‡ÒÒÏÓÚËÏ ‰ËÙÙÂÂ̈ËÛÂÏÛ˛ ‚˚ÔÛÍÎÛ˛ ÙÛÌÍˆË˛ φ(t): (0, ∞) → Ë ÔÓÎÓÊËÏ φ(0) = lim φ(t ) ∈ ( −∞, ∞]. Ç˚ÔÛÍÎÓÒÚ¸ φ ‚ΘÂÚ ÌÂÓÚˈ‡ÚÂθÌÓÒÚ¸ ÙÛÌ͈ËË
t→0
δ φ : [0, 1]2 → ( −∞, ∞], ÓÔ‰ÂÎÂÌÌÓÈ Í‡Í ÌÂÔÂ˚‚ÌÓ ÔÓ‰ÓÎÊÂÌË ÙÛÌ͈ËË
δ φ (u, v) = φ(u) − φ( v) − φ ′( v)(u − v), 0 < u, v ≤ 1 ̇ [0, 1]2 .
ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ‡ÒÒÚÓflÌË Å„χ̇ ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
m
∑ δ φ ( pi , qi )
1
(ÒÏ. 䂇ÁË‡ÒÒÚÓflÌË Å„χ̇).
f-‡ÒıÓʉÂÌË óËÁ‡‡
f-‡ÒıÓʉÂÌË óËÁ‡‡ ÂÒÚ¸ ÙÛÌ͈Ëfl ̇ ÏÌÓÊÂÒÚ‚Â ×, ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑
x
 p ( x) 
p2 ( x ) f  1  ,
 p2 ( x ) 
„‰Â f: ≥0 → – ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl.
ëÎÛ˜‡Ë f(t ) = t ln t Ë f(t) = (t – 1)2 /2 ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ‡ÒÒÚÓflÌ˲ äÛÎη‡Í‡–
ãÂÈ·ÎÂ‡ Ë 2 -‡ÒÒÚÓflÌ˲, Û͇Á‡ÌÌ˚ı ÌËÊÂ. ëÎÛ˜‡È f(t) = | t – 1 | ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ
L1 -ÏÂÚËÍ ÏÂÊ‰Û ÔÎÓÚÌÓÒÚflÏË, ‡ ÒÎÛ˜‡È f (t ) = 4 1 − t (Ú‡Í ÊÂ Í‡Í Ë ÒÎÛ˜‡È
(
)
f (t ) = 2(t + 1) − 4 t ) ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Í‚‡‰‡ÚÛ ÏÂÚËÍË ïÂÎÎË̉ÊÂ‡.
É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ 219
èÓÎÛÏÂÚËÍË ÏÓ„ÛÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ˚ Ú‡Í ÊÂ, Í‡Í Í‚‡‰‡ÚÌ˚È ÍÓÂ̸ f-‡ÒıÓʉÂÌËfl óËÁ‡‡ ‚ ÒÎÛ˜‡flı f (t ) = (t − 1)2 /(t + 1) (ÔÓÎÛÏÂÚË͇ LJʉ˚–äÛÒ‡), f (t ) =
= | t a − 1 |1 / a Ò 0 < a ≤ 1 (ÔÓÎÛÏÂÚË͇ å‡ÚÛ¯ËÚ˚) Ë f (t ) =
(t a + 1)1 / a − 2 (1− a ) / a (t + 1)
1 −1/ a
(ÔÓÎÛÏÂÚË͇ éÒÚÂÂÈıÂ‡).
èÓ‰Ó·ÌÓÒÚ¸ ‰ÓÒÚÓ‚ÂÌÓÒÚË
èÓ‰Ó·ÌÓÒÚ¸ ‰ÓÒÚÓ‚ÂÌÓÒÚË (ËÎË ÍÓ˝ÙÙˈËÂÌÚ Åı‡ÚÚ‡˜‡¸fl, ‡ÙÙËÌÌÓÒÚ¸
ïÂÎÎË̉ÊÂ‡) ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
ρ( P1 , P2 ) =
∑
p1 ( x ) p2 ( x ).
x
åÂÚË͇ ïÂÎÎË̉ÊÂ‡
Ç ÚÂÏË̇ı ÔÓ‰Ó·ÌÓÒÚË ‰ÓÒÚÓ‚ÂÌÓÒÚË, ÏÂÚË͇ ïÂÎÎË̉ÊÂ‡ (ËÎË ÏÂÚË͇
ïÂÎÎË̉ÊÂ‡–ä‡ÍÛÚ‡ÌË) ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í

2

∑(
x
)
2
p1 ( x ) − p2 ( x ) 

1/ 2
= 2(1 − ρ( P1 , P2 ))1 / 2 .
ùÚÓ – L2 -ÏÂÚË͇ ÏÂÊ‰Û Í‚‡‰‡ÚÌ˚ÏË ÍÓÌflÏË ÙÛÌ͈ËÈ ÔÎÓÚÌÓÒÚË.
èÓ‰Ó·ÌÓÒÚ¸ Ò‰ÌÂ„Ó „‡ÏÓÌ˘ÂÒÍÓ„Ó
èÓ‰Ó·ÌÓÒÚ¸ Ò‰ÌÂ„Ó „‡ÏÓÌ˘ÂÒÍÓ„Ó ÂÒÚ¸ ÔÓ‰Ó·ÌÓÒÚ¸ ̇ , ÓÔ‰ÂÎÂÌ̇fl ͇Í
2
∑ p1 (1x ) + p2 2 ( x ) .
p ( x) p ( x)
x
ê‡ÒÒÚÓflÌË 1 Åı‡ÚÚ‡˜‡¸fl
Ç ÚÂÏË̇ı ÔÓ‰Ó·ÌÓÒÚË ‰ÓÒÚÓ‚ÂÌÓÒÚË, ‡ÒÒÚÓflÌË 1 Åı‡ÚÚ‡˜‡¸fl ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
(arccos ρ(P1 , P2 )) 2 .
쉂ÓÂÌË ڇÍÓ„Ó ‡ÒÒÚÓflÌËfl ÔËÏÂÌflÂÚÒfl Ú‡ÍÊ ‚ ÒÚ‡ÚËÒÚËÍÂ Ë Ï‡¯ËÌÌÓÏ
Ó·Û˜ÂÌËË, „‰Â ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ î˯Â‡.
ê‡ÒÒÚÓflÌË 2 Åı‡ÚÚ‡˜‡¸fl
Ç ÚÂÏË̇ı ÔÓ‰Ó·ÌÓÒÚË ‰ÓÒÚÓ‚ÂÌÓÒÚË, ‡ÒÒÚÓflÌË 2 Åı‡ÚÚ‡˜‡¸fl ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
–ln ρ(P1 , P2 ).
2 -‡ÒÒÚÓflÌËÂ
2 -‡ÒÒÚÓflÌË (ËÎË 2 -‡ÒÒÚÓflÌË çÂÈχ̇) ÂÒÚ¸ Í‚‡ÁË‡ÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑
x
( p1 ( x ) − p2 ( x ))2
.
p2 ( x )
220
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
2 -‡ÒÒÚÓflÌË èËÒÓ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑
x
( p1 ( x ) − p2 ( x ))2
.
p1 ( x )
ÇÂÓflÚÌÓÒÚ̇fl ÒËÏÏÂÚ˘ÂÒ͇fl 2 -ÏÂ‡ ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓ ͇Í
2
∑
x
( p1 ( x ) − p2 ( x ))2
.
p1 ( x ) − p2 ( x )
ê‡ÒÒÚÓflÌË ‡Á‰ÂÎÂÌËfl
ê‡ÒÒÚÓflÌËÂÏ ‡Á‰ÂÎÂÌËfl ̇Á˚‚‡ÂÚÒfl Í‚‡ÁË‡ÒÒÚÓflÌË ̇ (‰Îfl β·Ó„Ó Ò˜ÂÚÌÓ„Ó χ), ÓÔ‰ÂÎÂÌÌÓ ͇Í

p ( x) 
max1 − 1  .
x 
p2 ( x ) 
(ç ÔÛÚ‡Ú¸ Ò ‡ÒÒÚÓflÌËÂÏ ‡Á‰ÂÎÂÌËfl ÏÂÊ‰Û ‚˚ÔÛÍÎ˚ÏË Ú·ÏË.)
ê‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãeÈ·ÎÂ‡
ê‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãÂÈ·ÎÂ‡ (ËÎË ÓÚÌÓÒËÚÂθ̇fl ˝ÌÚÓÔËfl, ÓÚÍÎÓÌÂÌËÂ
ËÌÙÓχˆËË, KL-‡ÒÒÚÓflÌËÂ) ÂÒÚ¸ Í‚‡ÁË‡ÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓ ͇Í
KL( P1 , P2 ) =
P1 [ln
L] =
∑
p1 ( x ) ln
x
„‰Â L =
p1 ( x )
,
p2 ( x )
p1 ( x )
– ÓÚÌÓ¯ÂÌË Ô‡‚‰ÓÔÓ‰Ó·Ëfl. ëΉӂ‡ÚÂθÌÓ,
p2 ( x )
KL( P1 , P2 ) = −
∑
x
( p1 ( x ) ln p2 ( x )) +
∑
( p1 ( x ) ln p1 ( x )) = H ( P1 , P2 ) − H ( P1 ),
x
„‰Â H ( P1 ) – ˝ÌÚÓÔËfl P1 , ‡ H ( P1 , P2 ) – ÔÂÂÍeÒÚ̇fl ˝ÌÚÓÔËfl P1 Ë P2 . ÖÒÎË P2
fl‚ÎflÂÚÒfl ÔÓËÁ‚‰ÂÌËÂÏ Ï‡„Ë̇ÎÓ‚ P1 , ÚÓ KL-‡ÒÒÚÓflÌË KL(P1 , P2 ) ̇Á˚‚‡ÂÚÒfl
p ( x, y)
ÍÓ΢ÂÒÚ‚ÓÏ ËÌÙÓχˆËË ò˝ÌÌÓ̇ Ë ‡‚ÌÓ
p1 ( x, y) ln 1
(ÒÏ. ‡Òp1 ( x ) p1 ( y)
( x , y ) ∈χ × χ
∑
ÒÚÓflÌË ò˝ÌÌÓ̇).
äÓÒÓ ‡ÒıÓʉÂÌËÂ
äÓÒÓ ‡ÒıÓʉÂÌË – Í‚‡ÁË‡ÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓ ͇Í
KL( P1 , aP2 + (1 − a) P1 ),
„‰Â a ∈ [0, 1] – ÍÓÌÒÚ‡ÌÚ‡ Ë KL – ‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãÂÈ·ÎÂ‡. í‡ÍËÏ Ó·‡ÁÓÏ,
1
ÒÎÛ˜‡È a = 1 ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ KL(P 1 , P2 ). äÓÒÓ ‡ÒıÓʉÂÌËÂ Ò a =
̇Á˚‚‡ÂÚÒfl
2
K-‡ÒıÓʉÂÌËÂÏ.
É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ 221
ê‡ÒıÓʉÂÌË ÑÊÂÙÙË
ê‡ÒıÓʉÂÌËÂÏ ÑÊÂÙÙË (ËÎË J-‡ÒıÓʉÂÌËÂÏ) ̇Á˚‚‡ÂÚÒfl ÒËÏÏÂÚ˘̇fl ‚ÂÒËfl
‡ÒÒÚÓflÌËfl äÛÎη‡Í‡–ãÂÈ·ÎÂ‡, ÓÔ‰ÂÎÂÌ̇fl ͇Í
KL( P1 , P2 ) + KL( P2 , P1 ) =
∑
x

p1 ( x )
p ( x) 
+ p2 ( x ) ln 2  .
 p1 ( x ) ln
p
(
x
)
p1 ( x ) 

2
ÑÎfl P1 → P2 ‡ÒıÓʉÂÌË ÑÊÂÙÙË ‚‰ÂÚ Ò·fl ‡Ì‡Îӄ˘ÌÓ 2 -‡ÒÒÚÓflÌ˲.
ê‡ÒıÓʉÂÌË ÑÊÂÌÒÂ̇–ò˝ÌÌÓ̇
ê‡ÒıÓʉÂÌË ÑÊÂÌÒÂ̇–ò˝ÌÌÓ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
aKL( P1 , P3 ) + (1 − a) KL( P2 , P3 ),
„‰Â P3 = aP1 + (1 − a) P2 Ë a ∈ [0, 1] – ÍÓÌÒÚ‡ÌÚ‡ (ÒÏ. èÓ‰Ó·ÌÓÒÚ¸ flÒÌÓÒÚË).
ç‡ flÁ˚Í ˝ÌÚÓÔËË H ( P) =
∑
p( x ) ln p( x ) ‡ÒıÓʉÂÌË ÑÊÂÌÒÂ̇–ò˝ÌÌÓ̇
x
‡‚ÌÓ H ( aP1 + (1 − a) P2 ) − aH ( P1 ) − (1 − a) H ( P2 ).
ê‡ÒÒÚÓflÌË íÓÔÒ ÂÒÚ¸ ÒËÏÏÂÚ˘̇fl ‚ÂÒËfl ‡ÒÒÚÓflÌËfl äÛÎη‡Í‡–ãÂÈ·ÎÂ‡
̇ . éÌÓ ÓÔ‰ÂÎflÂÚÒfl ͇Í
KL( P1 , P3 ) + KL( P2 , P3 ) =
∑
x

p1 ( x )
p ( x) 
+ p2 ( x ) ln 2  ,
 p1 ( x ) ln
p3 ( x )
p3 ( x ) 

1
( P1 + P2 ). ê‡ÒÒÚÓflÌË íÓÔÒ ÂÒÚ¸ Û‰‚ÓÂÌÌÓ ‡ÒıÓʉÂÌË ÑÊÂÌÒÂ̇–
2
1
ò˝ÌÌÓ̇ Ò a = . çÂÍÓÚÓ˚ ‡‚ÚÓ˚ ËÒÔÓθÁÛ˛Ú ÚÂÏËÌ "‡ÒıÓʉÂÌË ÑÊÂÌÒÂ̇–
2
ò˝ÌÌÓ̇" ÚÓθÍÓ ‰Îfl ‰‡ÌÌÓÈ ‚Â΢ËÌ˚ ‡. ê‡ÒÒÚÓflÌË ÚÓÊ ÏÂÚËÍÓÈ Ì fl‚ÎflÂÚÒfl,
ÌÓ Â„Ó Í‚‡‰‡ÚÌ˚È ÍÓÂ̸ – ÏÂÚË͇.
„‰Â P3 =
ê‡ÒÒÚÓflÌË Ò‰ÌÂ„Ó ÒÓÔÓÚË‚ÎÂÌËfl
ê‡ÒÒÚÓflÌË Ò‰ÌÂ„Ó ÒÓÔÓÚË‚ÎÂÌËfl ÔÓ ÑÊÂÌÒÂÌÛ–òËχÌÓ‚Ë˜Û ÂÒÚ¸ ÒËÏÏÂÚ˘̇fl ‚ÂÒËfl ‡ÒÒÚÓflÌËfl äÛÎη‡Í‡–ãÂÈ·ÎÂ‡ ̇ . éÌÓ ÓÔ‰ÂÎflÂÚÒfl Í‡Í „‡ÏÓÌ˘ÂÒ͇fl ÒÛÏχ


1
1
+


 KL( P1 , P2 ) KL( P2 , P1 ) 
−1
(ÒÏ. åÂÚË͇ ÒÓÔÓÚË‚ÎÂÌËfl ‰Îfl „‡ÙÓ‚, „Î. 15).
ê‡ÒÒÚÓflÌË ÄÎË–ëË΂Âfl
ê‡ÒÒÚÓflÌË ÄÎË–ëË΂Âfl ÂÒÚ¸ Í‚‡ÁË‡ÒÒÚÓflÌË ̇ , Á‡‰‡ÌÌÓ ÙÛÌ͈ËÓ̇ÎÓÏ
f(
P1 [ g( L )]),
p1 ( x )
– ÓÚÌÓ¯ÂÌË Ô‡‚‰ÓÔÓ‰Ó·Ëfl, f – ÌÂÛ·˚‚‡˛˘‡fl ÙÛÌ͈Ëfl, ‡ g – ÌÂÔÂp2 ( x )
˚‚̇fl ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl (ÒÏ. f-‡ÒıÓʉÂÌË óËÁ‡‡).
ëÎÛ˜‡È f(x) = x, g(x ) = x ln x ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÒÚÓflÌ˲ äÛÎη‡Í‡–ãÂÈ·ÎÂ‡;
ÒÎÛ˜‡È f(x) = –ln x, g(x) = x' – ‡ÒÒÚÓflÌ˲ óÂÌÓ‚‡.
„‰Â L =
222
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌË óÂÌÓ‚‡
ê‡ÒÒÚÓflÌËÂÏ óÂÌÓ‚‡ (ËÎË ÔÂÂÍeÒÚÌÓÈ ˝ÌÚÓÔËÂÈ êÂ̸Ë) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓ ͇Í
max Dt ( P1 , P2 ),
t ∈[ 0,1]
„‰Â Dt ( P1 , P2 ) = − ln
∑
( p1 ( x ))t ( p2 ( x ))1− t , ˜ÚÓ ÔÓÔÓˆËÓ̇θÌÓ ‡ÒÒÚÓflÌ˲ êÂ̸Ë.
x
1
ëÎÛ˜‡È t = ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÒÚÓflÌ˲ 2 Åı‡ÚÚ‡˜‡¸fl.
2
ê‡ÒÒÚÓflÌË êÂ̸Ë
ê‡ÒÒÚÓflÌË êÂÌ¸Ë (ËÎË ˝ÌÚÓÔËfl êÂÌ¸Ë ÔÓfl‰Í‡ t) ÂÒÚ¸ Í‚‡ÁË‡ÒÒÚÓflÌË ̇ ,
ÓÔ‰ÂÎÂÌÌÓ ͇Í
1
ln
t −1
∑
x
t
 p ( x) 
p2 ( x ) 1  ,
 p2 ( x ) 
„‰Â t ≥ 0, t ≠ 1.
è‰ÂÎÓÏ ‡ÒÒÚÓflÌËfl êÂÌ¸Ë ‰Îfl t → 1 fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãÂÈ·ÎÂ‡.
1
ÑÎfl t = ÔÓÎÓ‚Ë̇ ‡ÒÒÚÓflÌËfl êÂÌ¸Ë ÂÒÚ¸ ‡ÒÒÚÓflÌË 2 Åı‡ÚÚ‡˜‡¸fl (ÒÏ. f-‡ÒıÓÊ2
‰ÂÌË óËÁ‡‡ Ë ‡ÒÒÚÓflÌË óÂÌÓ‚‡).
èÓ‰Ó·ÌÓÒÚ¸ flÒÌÓÒÚË
èÓ‰Ó·ÌÓÒÚ¸ flÒÌÓÒÚË – ˝ÚÓ ÔÓ‰Ó·ÌÓÒÚ¸ ̇ , ÓÔ‰ÂÎÂÌ̇fl ͇Í
( KL( P1 , P3 ) + KL( P2 , P3 )) − ( KL( P1 , P2 ) + KL( P2 , P1 )) =
=
∑
x

p2 ( x )
p ( x) 
+ p2 ( x ) ln 1  ,
 p1 ( x ) ln
p3 ( x )
p3 ( x ) 

„‰Â KL – ‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãÂÈ·ÎÂ‡ Ë P 3 – Á‡‰‡ÌÌ˚È ÒÒ˚ÎÓ˜Ì˚È Á‡ÍÓÌ ÚÂÓËË
‚ÂÓflÚÌÓÒÚÂÈ. ÇÔÂ‚˚ ÓÔ‰ÂÎÂ̇ ‚ Úۉ [CCL01], „‰Â P 3 ÓÁ̇˜‡ÎÓ ‡ÒÔ‰ÂÎÂÌËÂ
‚ÂÓflÚÌÓÒÚÂÈ Ó·˘Â„Ó ‡Ì„ÎËÈÒÍÓ„Ó flÁ˚͇.
ê‡ÒÒÚÓflÌË ò˝ÌÌÓ̇
ÑÎfl ÔÓÒÚ‡ÌÒÚ‚‡ Ò ÏÂÓÈ (Ω, , P) „‰Â ÏÌÓÊÂÒÚ‚Ó Ω ÍÓ̘ÌÓ Ë ê fl‚ÎflÂÚÒfl
‚ÂÓflÚÌÓÒÚÌÓÈ ÏÂÓÈ, ˝ÌÚÓÔËfl ÙÛÌ͈ËË f : Ω → X, „‰Â ï – ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó,
ÓÔ‰ÂÎflÂÚÒfl ͇Í
H( f ) =
∑
P( f = x ) ln( P( f = x ));
x ∈X
ÒΉӂ‡ÚÂθÌÓ, f ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ‡Á·ËÂÌË ÔÓÒÚ‡ÌÒÚ‚‡ Ò ÏÂÓÈ.
ÑÎfl β·˚ı ‰‚Ûı Ú‡ÍËı ‡Á·ËÂÌËÈ f : Ω → X Ë g : Ω → Y Ó·ÓÁ̇˜ËÏ ˝ÌÚÓÔ˲
‡Á·ËÂÌËfl (f, g): Ω → X × Y (Ó·˘Û˛ ˝ÌÚÓÔ˲) Í‡Í H(f, g) Ë ÛÒÎÓ‚ÌÛ˛ ˝ÌÚÓÔ˲
Í‡Í H(f | g). íÓ„‰‡ ‡ÒÒÚÓflÌË ò˝ÌÌÓ̇ ÏÂÊ‰Û f Ë g ÓÔ‰ÂÎflÂÚÒfl ͇Í
2H ( f , g) − H ( f ) − H ( g) = H ( f | g) + H ( g | f ).
É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ 223
чÌÌÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ. äÓ΢ÂÒÚ‚Ó ËÌÙÓχˆËË ò˝ÌÌÓ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
H ( f , g) − H ( f ) − H ( g) =
∑
p( f = x, g = y) ln
( x, y)
p( f = x, g = y)
.
p( f = x ) p( g = y)
ÖÒÎË ê – Á‡ÍÓÌ ‡‚ÌÓÏÂÌÓ„Ó ‡ÒÔ‰ÂÎÂÌËfl ‚ÂÓflÚÌÓÒÚÂÈ, ÚÓ, Í‡Í ‰Ó͇Á‡Î
ÉÓÔÔ‡, ‡ÒÒÚÓflÌË ò˝ÌÌÓ̇ ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ Í‡Í Ô‰ÂθÌ˚È ÒÎÛ˜‡È ÏÂÚËÍË
ÍÓ̘Ì˚ı ÔÓ‰„ÛÔÔ.
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÂÚË͇ ËÌÙÓχˆËË (ËÎË ÏÂÚË͇ ˝ÌÚÓÔËË) ÏÂÊ‰Û ‰‚ÛÏfl
ÒÎÛ˜‡ÈÌ˚ÏË ‚Â΢Ë̇ÏË (ËÒÚÓ˜ÌË͇ÏË ËÌÙÓχˆËË) ï Ë Y ÓÔ‰ÂÎflÂÚÒfl ͇Í
H(X | Y) + H(Y | X),
„‰Â ÛÒÎӂ̇fl ˝ÌÚÓÔËfl H(X | Y ) ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑∑
p( x, y) ln p( x | y) Ë
x ∈X y ∈Y
p( x, y) = P( X = x | Y = y) fl‚ÎflÂÚÒfl ÛÒÎÓ‚ÌÓÈ ‚ÂÓflÚÌÓÒÚ¸˛.
çÓχÎËÁËÓ‚‡Ì̇fl ÏÂÚË͇ ËÌÙÓχˆËË ÓÔ‰ÂÎflÂÚÒfl ͇Í
H ( X | Y ) − H (Y | X )
.
H ( X, Y )
é̇ ‡‚̇ 1, ÂÒÎË X Ë Y ÌÂÁ‡‚ËÒËÏ˚ (ÒÏ. ‰Û„Ó ÔÓÌflÚË çÓχÎËÁËÓ‚‡ÌÌÓ„Ó
‡ÒÒÚÓflÌËfl ËÌÙÓχˆËË, „Î. 11).
åÂÚË͇ ä‡ÌÚÓӂ˘‡–å˝ÎÎÓÛÁ‡–åÓÌʇ–LJÒÒÂ¯ÚÂÈ̇
ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ, d) ÏÂÚË͇ ä‡ÌÚÓӂ˘‡–å˝ÎÎÓÛÁ‡–åÓÌʇ–
LJÒÒÂ¯ÚÂÈ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
inf S[d(X, Y)],
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‡ÒÔ‰ÂÎÂÌËflÏ S Ô‡ (X, Y) ÒÎÛ˜‡ÈÌ˚ı ‚Â΢ËÌ X Ë Y,
Ú‡ÍËı ˜ÚÓ Ï‡„Ë̇θÌ˚ÏË ‡ÒÔ‰ÂÎÂÌËflÏË X Ë Y fl‚Îfl˛ÚÒfl P1 Ë P2.
ÑÎfl β·Ó„Ó ÒÂÔ‡‡·ÂθÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ, d) ˝ÚÓ ˝Í‚Ë‚‡ÎÂÌÚÌÓ
ÎËÔ¯ËˆÂ‚Û ‡ÒÒÚÓflÌ˲ ÏÂÊ‰Û ÏÂ‡ÏË sup
f
∫
fd ( P1 − P2 ), „‰Â ÒÛÔÂÏÛÏ ·ÂÂÚÒfl ÔÓ
‚ÒÂÏ ÙÛÌ͈ËflÏ f Ò | f ( x ) − f ( y) | ≤ d ( x, y) ‰Îfl β·˚ı x, y ∈ χ.
Ç ·ÓΠӷ˘ÂÏ ÒÏ˚ÒΠLp -‡ÒÒÚÓflÌË LJÒÒÂ¯ÚÂÈ̇ ‰Îfl χ = n ÓÔ‰ÂÎflÂÚÒfl ͇Í
(inf
S [d
p
( X , Y )])1 / p ,
Ë ‰Îfl p = 1 ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl Ú‡ÍÊ ρ -‡ÒÒÚÓflÌËÂÏ. ÑÎfl (χ, d) = (, | x – y |) ÓÌÓ
̇Á˚‚‡ÂÚÒfl Lp-ÏÂÚËÍÓÈ ÏÂÊ‰Û ÙÛÌ͈ËflÏË ‡ÒÔ‰ÂÎÂÌËfl (CDF) Ë Â„Ó ÏÓÊÌÓ
Á‡ÔËÒ‡Ú¸
(inf [| X − Y | ])
p
1/ p


=  | F1 ( x ) − F2 ( x ) | p dx 


∫
1/ p

1
=  | F1−1 ( x ) − F2−1 ( x ) | p dx 



0
1/ p
∫
Ò Fi −1 ( x ) = sup( Pi ( X ≤ x ) < u).
u
ëÎÛ˜‡È p = 1 ˝ÚÓÈ ÏÂÚËÍË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ åÓÌʇ–ä‡ÌÚÓӂ˘‡ (ËÎË, ‚
ÚÂÓËË Ù‡ÍÚ‡ÎÓ‚ ÏÂÚËÍÓÈ ï‡Ú˜ËÌÒÓ̇), ÏÂÚËÍÓÈ Ç‡ÒÒÂ¯ÚÂÈ̇ (ËÎË
ÏÂÚËÍÓÈ îÓÚ–åÛ¸Â)
224
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
d -ÏÂÚË͇ é̯ÚÂÈ̇
d -ÏÂÚË͇ é̯ÚÂÈ̇ ÂÒÚ¸ ÏÂÚË͇ ̇ (‰Îfl χ = n), ÓÔ‰ÂÎÂÌ̇fl ͇Í
1
inf
n
 n

1x i ≠ yi  dS,

 i =1

∫ ∑
x, y
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÒÓ‚ÏÂÒÚÌ˚Ï ‡ÒÔ‰ÂÎÂÌËflÏ S Ô‡ (X, Y) ÒÎÛ˜‡ÈÌ˚ı
‚Â΢ËÌ X Ë Y, Ú‡ÍËı ˜ÚÓ Ï‡„Ë̇θÌ˚ÏË ‡ÒÔ‰ÂÎÂÌËflÏË X Ë Y fl‚Îfl˛ÚÒfl P1 Ë P2 .
чÌ̇fl ÏÂÚË͇ ËÒÔÓθÁÛÂÚÒfl ‚ ÚÂÓËË ÒÚ‡ˆËÓ̇Ì˚ı ÒÎÛ˜‡ÈÌ˚ı ÔÓˆÂÒÒÓ‚,
ÚÂÓËË ‰Ë̇Ï˘ÂÒÍËı ÒËÒÚÂÏ Ë ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl.
ó‡ÒÚ¸ IV
êÄëëíéüçàü
Ç èêàäãÄÑçéâ åÄíÖåÄíàäÖ
É·‚‡ 15
ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
É‡ÙÓÏ Ì‡Á˚‚‡ÂÚÒfl Ô‡‡ G = (V, E), „‰Â V – ÏÌÓÊÂÒÚ‚Ó, ̇Á˚‚‡ÂÏÓ ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ „‡Ù‡ G, Ë Ö – ÏÌÓÊÂÒÚ‚Ó ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ı Ô‡ ‚Â¯ËÌ, ÍÓÚÓ˚Â
̇Á˚‚‡˛ÚÒfl ·‡ÏË „‡Ù‡ G . éËÂÌÚËÓ‚‡ÌÌ˚È „‡Ù (ËÎË Ó„‡Ù) ÂÒÚ¸ Ô‡‡
D = (V, E), „‰Â V – ÏÌÓÊÂÒÚ‚Ó, ̇Á˚‚‡ÂÏÓ ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ Ó„‡Ù‡ D, Ë Ö –
ÏÌÓÊÂÒÚ‚Ó ÛÔÓfl‰Ó˜ÂÌÌ˚ı Ô‡ ‚Â¯ËÌ, ÍÓÚÓ˚ ̇Á˚‚‡˛ÚÒfl ‰Û„‡ÏË Ó„‡Ù‡ D.
É‡Ù, Û ÍÓÚÓÓ„Ó Î˛·˚ ‰‚ ‚Â¯ËÌ˚ ÒÓ‰ËÌÂÌ˚ Ì ·ÓΠ˜ÂÏ Ó‰ÌËÏ ·ÓÏ,
̇Á˚‚‡ÂÚÒfl ÔÓÒÚ˚Ï „‡ÙÓÏ. ÖÒÎË ‰ÓÔÛÒ͇ÂÚÒfl ÒÓ‰ËÌÂÌË ‚Â¯ËÌ Í‡ÚÌ˚ÏË
(Ô‡‡ÎÎÂθÌ˚ÏË) ·‡ÏË, ÚÓ Ú‡ÍÓÈ „‡Ù ̇Á˚‚‡ÂÚÒfl ÏÛθÚË„‡ÙÓÏ. É‡Ù ̇Á˚‚‡ÂÚÒfl ÍÓ̘Ì˚Ï (·ÂÒÍÓ̘Ì˚Ï), ÂÒÎË ÏÌÓÊÂÒÚ‚Ó V Â„Ó ‚Â¯ËÌ ÍÓ̘ÌÓ (ËÎË
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ·ÂÒÍÓ̘ÌÓ). èÓfl‰ÍÓÏ ÍÓ̘ÌÓ„Ó „‡Ù‡ ̇Á˚‚‡ÂÚÒfl ÍÓ΢ÂÒÚ‚Ó
Â„Ó ‚Â¯ËÌ; ‡ÁÏÂÓÏ ÍÓ̘ÌÓ„Ó „‡Ù‡ ̇Á˚‚‡ÂÚÒfl ˜ËÒÎÓ Â„Ó ·Â.
É‡Ù ËÎË ÓËÂÌÚËÓ‚‡ÌÌ˚È „‡Ù ÒÓ‚ÏÂÒÚÌÓ Ò ÙÛÌ͈ËÂÈ, ÔËÔËÒ˚‚‡˛˘ÂÈ
ÔÓÎÓÊËÚÂθÌ˚È ‚ÂÒ Í‡Ê‰ÓÏÛ ·Û, ̇Á˚‚‡ÂÚÒfl ‚Á‚¯ÂÌÌ˚Ï „‡ÙÓÏ ËÎË ÒÂÚ¸˛.
ëÂÚ¸ Ú‡ÍÊ ̇Á˚‚‡˛Ú ͇͇ÒÓÏ ‚ ÚÓÏ ÒÎÛ˜‡Â ÍÓ„‰‡ ‚ÂÒ‡ ËÌÚÂÔÂÚËÛ˛ÚÒfl ͇Í
‰ÎËÌ˚ ·Â ‚ÓÁÏÓÊÌÓ„Ó ‚ÎÓÊÂÌËfl ‚ ÌÂÍÓÚÓÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. Ç ÚÂÏË̇ı ÚÂÓËË ÔÓ˜ÌÓÒÚË ·‡ ͇͇҇ ̇Á˚‚‡˛ÚÒfl ÔÛÚ¸flÏË (Ó·˚˜ÌÓ Ó‰Ë̇ÍÓ‚ÓÈ
‰ÎËÌ˚); ÚÂÌÒ„ËÚË – ˝ÚÓ Í‡͇Ò̇fl ÒÚÛÍÚÛ‡, ‚ ÍÓÚÓÓÈ ÔÛÚ¸fl fl‚Îfl˛ÚÒfl ÎË·Ó
˝ÎÂÏÂÌÚÓÏ Ì‡ÚflÊÂÌËfl – ÚÓÒ‡ÏË (Ú.Â. Ì ÏÓ„ÛÚ ÓÚ‰‡ÎËÚ¸Òfl ‰Û„ ÓÚ ‰Û„‡), ÎË·Ó
˝ÎÂÏÂÌÚÓÏ ÒʇÚËfl – ‡ÒÔÓ͇ÏË (Ú.Â. Ì ÏÓ„ÛÚ Ò·ÎËÁËÚ¸Òfl).
èÓ‰„‡ÙÓÏ „‡Ù‡ G ̇Á˚‚‡ÂÚÒfl „‡Ù G', ‚Â¯ËÌ˚ Ë ·‡ ÍÓÚÓÓ„Ó Ó·‡ÁÛ˛Ú
ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ‚Â¯ËÌ Ë ·Â „‡Ù‡ G. ÖÒÎË G' fl‚ÎflÂÚÒfl ÔÓ‰„‡ÙÓÏ G, ÚÓ „‡Ù G
̇Á˚‚‡ÂÚÒfl ÒÛÔÂ„‡ÙÓÏ „‡Ù‡ G ' . à̉ۈËÓ‚‡ÌÌ˚È ÔÓ‰„‡Ù – ÔÓ‰ÏÌÓÊÂÒÚ‚Ó
‚Â¯ËÌ „‡Ù‡ G ‚ÏÂÒÚ ÒÓ ‚ÒÂÏË ·‡ÏË, Ó·Â ÍÓ̘Ì˚ ÚÓ˜ÍË ÍÓÚÓ˚ı
ÔË̇‰ÎÂÊ‡Ú ‰‡ÌÌÓÏÛ ÔÓ‰ÏÌÓÊÂÒÚ‚Û.
É‡Ù G = (V, E) ̇Á˚‚‡ÂÚÒfl Ò‚flÁÌ˚Ï, ÂÒÎË ‰Îfl β·˚ı ‚Â¯ËÌ u, v ∈ V ÒÛ˘ÂÒÚ‚ÛÂÚ (u – v) ÔÛÚ¸, Ú.Â. ڇ͇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ·Â uw1 = w0 w 1 , w1 w 2 ,…, wn–1w n =
= w n–1 v ËÁ Ö, ˜ÚÓ wi ≠ wj ‰Îfl i ≠ j, i, j ∈ {0, 1,…, n}. é„‡Ù D = (V, E) ̇Á˚‚‡ÂÚÒfl
ÒËθÌÓ Ò‚flÁÌ˚Ï, ÂÒÎË ‰Îfl β·˚ı ‚Â¯ËÌ u, v ∈ V ÒÛ˘ÂÒÚ‚Û˛Ú Í‡Í ÓËÂÌÚËÓ‚‡ÌÌ˚È (u – v) ÔÛÚ¸, Ú‡Í Ë ÓËÂÌÚËÓ‚‡ÌÌ˚È (v – u) ÔÛÚ¸. ã˛·ÓÈ Ï‡ÍÒËχθÌ˚È
Ò‚flÁÌ˚È ÔÓ‰„‡Ù „‡Ù‡ G ̇Á˚‚‡ÂÚÒfl Â„Ó Ò‚flÁÌÓÈ ÍÓÏÔÓÌÂÌÚÓÈ.
ëÓ‰ËÌÂÌÌ˚ ·ÓÏ ‚Â¯ËÌ˚ ̇Á˚‚‡˛ÚÒfl ÒÏÂÊÌ˚ÏË. ëÚÂÔÂ̸ deg(v) ‚Â¯ËÌ˚
v ∈ V „‡Ù‡ G = (V, E) ‡‚̇ ˜ËÒÎÛ Â„Ó ‚Â¯ËÌ, ÒÏÂÊÌ˚ı Ò v.
èÓÎÌ˚Ï „‡ÙÓÏ Ì‡Á˚‚‡ÂÚÒfl „‡Ù, ͇ʉ‡fl Ô‡‡ ‚Â¯ËÌ ÍÓÚÓÓ„Ó ÒÓ‰ËÌÂ̇
·ÓÏ. Ñ‚Û‰ÓθÌ˚È „‡Ù – „‡Ù, ‚ ÍÓÚÓÓÏ ÏÌÓÊÂÒÚ‚Ó ‚Â¯ËÌ V ‡Á·Ë‚‡ÂÚÒfl ̇
‰‚‡ Ú‡ÍËı ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡, ˜ÚÓ ‚ Ó‰ÌÓÏ Ë ÚÓÏ Ê ÔÓ‰ÏÌÓÊÂÒÚ‚Â
ÌÂÚ ÌË Ó‰ÌÓÈ Ô‡˚ ÒÏÂÊÌ˚ı ‚Â¯ËÌ. èÛÚ¸ – ˝ÚÓ ÔÓÒÚÓÈ Ò‚flÁÌ˚È „‡Ù, ‚ ÍÓÚÓÓÏ
‰‚ ‚Â¯ËÌ˚ ËÏÂ˛Ú ÒÚÂÔÂ̸ 1, ‡ ‰Û„Ë ‚Â¯ËÌ˚, ÂÒÎË ÓÌË ÒÛ˘ÂÒÚ‚Û˛Ú, ËϲÚ
ÒÚÂÔÂ̸ 2; ‰ÎËÌÓÈ ÔÛÚË fl‚ÎflÂÚÒfl ˜ËÒÎÓ Â„Ó ·Â. ñËÍÎÓÏ fl‚ÎflÂÚÒfl Á‡ÏÍÌÛÚ˚È
ÔÛÚ¸, Ú.Â. ÔÓÒÚÓÈ Ò‚flÁÌ˚È „‡Ù, ͇ʉ‡fl ‚Â¯Ë̇ ÍÓÚÓÓ„Ó ËÏÂÂÚ ÒÚÂÔÂ̸ 2.
ÑÂÂ‚Ó – ˝ÚÓ ÔÓÒÚÓÈ Ò‚flÁÌ˚È „‡Ù, Ì Ëϲ˘ËÈ ˆËÍÎÓ‚.
227
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
Ñ‚‡ „‡Ù‡, ÒÓ‰Âʇ˘Ë ӉË̇ÍÓ‚Ó ˜ËÒÎÓ Ó‰Ë̇ÍÓ‚Ó ÒÓ‰ËÌÂÌÌ˚ı ‚Â¯ËÌ,
̇Á˚‚‡˛ÚÒfl ËÁÓÏÓÙÌ˚ÏË. îÓχθÌÓ, ‰‚‡ „‡Ù‡ G = (V(G), E(G )) Ë H = (V(H),
E(H)) ̇Á˚‚‡˛ÚÒfl ËÁÓÏÓÙÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ·ËÂ͈Ëfl f : V(G) → V(H), ڇ͇fl
˜ÚÓ ‰Îfl β·˚ı u, v ∈V(G) ·Ó uv ∈ E(G) ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ·Ó f(u)f(v)
∈ E(H).
å˚ ·Û‰ÂÏ ‡ÒÒÏÓÚË‚‡Ú¸ ÚÓθÍÓ ÔÓÒÚ˚ ÍÓ̘Ì˚ „‡Ù˚ Ë Ó„‡Ù˚, ÚÓ˜ÌÂÂ
Í·ÒÒ˚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË Ú‡ÍËı ËÁÓÏÓÙÌ˚ı „‡ÙÓ‚.
15.1. êÄëëíéüçàü çÄ ÇÖêòàçÄï ÉêÄîÄ
åÂÚË͇ ÔÛÚË
åÂÚËÍÓÈ ÔÛÚË (ËÎË ÏÂÚËÍÓÈ „‡Ù‡, ÏÂÚËÍÓÈ Í‡Ú˜‡È¯Â„Ó ÔÛÚË) dpath
̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ „‡Ù‡ G = (V, E), ÓÔ‰ÂÎÂÌ̇fl ‰Îfl
β·˚ı u, v ∈ V Í‡Í ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó (u – v) ÔÛÚË ‚ G. ä‡Ú˜‡È¯ËÈ (u – v) ÔÛÚ¸
̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍÓÈ ÎËÌËÂÈ. ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
̇Á˚‚‡ÂÚÒfl „‡Ù˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ò‚flÁ‡ÌÌ˚Ï Ò „‡ÙÓÏ G.
åÂÚË͇ ÔÛÚË „‡Ù‡ ä˝ÎË É ÍÓ̘ÌÓ ÔÓÓʉÂÌÌÓÈ „ÛÔÔ˚ (G, ⋅ , e) ̇Á˚‚‡ÂÚÒfl
ÒÎÓ‚‡ÌÓÈ ÏÂÚËÍÓÈ. åÂÚË͇ ÔÛÚË „‡Ù‡ G = (V, E), Ú‡ÍÓ„Ó ˜ÚÓ V ÏÓÊÂÚ ·˚Ú¸
ˆËÍ΢ÂÒÍË ÛÔÓfl‰Ó˜ÂÌÌÓ ‚ „‡ÏËθÚÓÌÓ‚ÓÏ ˆËÍÎÂ, ̇Á˚‚‡ÂÚÒfl „‡ÏËθÚÓÌÓ‚ÓÈ
ÏÂÚËÍÓÈ. åÂÚË͇ „ËÔÂÍÛ·‡ – ÏÂÚË͇ ÔÛÚË „‡Ù‡ „ËÔÂÍÛ·‡ ç(m , 2) Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ V = {0, 1}m , ·‡ ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl Ô‡‡ÏË ‚ÂÍÚÓÓ‚ x, y ∈
∈ {0, 1}m, Ú‡ÍËÏË ˜ÚÓ | {i ∈ {1,…, n}: x i ≠ yi} | = 1; Ó̇ ‡‚̇ | {i ∈ {1,…, n}:
xi ≠ 1}∆{i ∈ {1,…, n}: y i = 1 |. É‡Ù˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â „‡ÙÛ „ËÔÂÍÛ·‡, ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ „ËÔÂÍÛ·‡.
éÌÓ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ({0, 1}m , dl1 ).
ÇÁ‚¯ÂÌ̇fl ÏÂÚË͇ ÔÛÚË
ÇÁ‚¯ÂÌ̇fl ÏÂÚË͇ ÔÛÚË dwpath ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ V Ò‚flÁÌÓ„Ó
‚Á‚¯ÂÌÌÓ„Ó „‡Ù‡ G = (V, E) Ò ÔÓÎÓÊËÚÂθÌ˚ÏË ‚ÂÒ‡ÏË e·Â (w(e)) e ∈ E,
ÓÔ‰ÂÎÂÌ̇fl ͇Í
min
P
∑ w(e),
e ∈P
„‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ (u – v) ÔÛÚflÏ ê ‚ G.
ê‡ÒÒÚÓflÌË ӷıÓ‰‡
ê‡ÒÒÚÓflÌË ӷıÓ‰‡ – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ V Ò‚flÁÌÓ„Ó „‡Ù‡ G =
= (V, E), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ‰ÎË̇ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó Ë̉ۈËÓ‚‡ÌÌÓ„Ó ÔÛÚË
(Ú.Â. ÔÛÚË, ÍÓÚÓ˚È fl‚ÎflÂÚÒfl Ë̉ۈËÓ‚‡ÌÌ˚Ï ÔÓ‰„‡ÙÓÏ „‡Ù‡ G) ËÁ ‚Â¯ËÌ˚ u
‚ ‚Â¯ËÌÛ v ∈ V.
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÓÌÓ Ì fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ. É‡Ù ̇Á˚‚‡ÂÚÒfl „‡ÙÓÏ Ó·ıÓ‰‡,
ÂÒÎË Â„Ó ‡ÒÒÚÓflÌË ӷıÓ‰‡ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈ ÔÛÚË (ÒÏ., ̇ÔËÏÂ, [CJT93]).
䂇ÁËÏÂÚË͇ ÔÛÚË ‚ Ó„‡Ù‡ı
䂇ÁËÏÂÚË͇ ÔÛÚË ‚ Ó„‡Ù‡ı ddpath ÂÒÚ¸ Í‚‡ÁËÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ
V ÒËθÌÓ Ò‚flÁÌÓ„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó „‡Ù‡ D = (V, E), ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı u,
v ∈ V Í‡Í ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó (u – v) ÔÛÚË ‚ „‡Ù D. ïÓÓ¯ËÈ
Ú‡ÍÒËÒÚ ÔË ÂÁ‰Â ÔÓ „ÓÓ‰ÒÍËÏ ÛÎˈ‡Ï Ò Ó‰ÌÓÒÚÓÓÌÌËÏ ‰‚ËÊÂÌËÂÏ ‰ÓÎÊÂÌ
ÔÓθÁÓ‚‡Ú¸Òfl ‰‡ÌÌÓÈ Í‚‡ÁËÏÂÚËÍÓÈ.
228
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ñËÍ΢ÂÒ͇fl ÏÂÚË͇ ‚ Ó„‡Ù‡ı
ñËÍ΢ÂÒÍÓÈ ÏÂÚËÍÓÈ ‚ Ó„‡Ù‡ı ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ V
ÒËθÌÓ Ò‚flÁÌÓ„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó „‡Ù‡ D = (V, E), ÓÔ‰ÂÎÂÌ̇fl ͇Í
ddpath (u, v) + ddpath (v, u),
„‰Â ddpath – Í‚‡ÁËÏÂÚË͇ ÔÛÚË ‚ Ó„‡Ù‡ı.
-ÏÂÚË͇
ÑÎfl Í·ÒÒ‡ ϒ Ò‚flÁÌ˚ı „‡ÙÓ‚ ÏÂÚË͇ d ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d)
̇Á˚‚‡ÂÚÒfl -ÏÂÚËÍÓÈ, ÂÒÎË (X, d) ËÁÓÏÂÚ˘ÌÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Û ÏÂÚ˘ÂÒÍÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ (V, dwpath), „‰Â „‡Ù G = (V, E) ∈ ϒ Ë dwpath – ‚Á‚¯ÂÌ̇fl ÏÂÚË͇ ÔÛÚË
̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ V „‡Ù‡ G Ò ÔÓÎÓÊËÚÂθÌÓÈ ÙÛÌ͈ËÂÈ ·ÂÌ˚ı ‚ÂÒÓ‚ w (ÒÏ.
‰‚ӂˉ̇fl ÏÂÚË͇).
Ñ‚ӂˉ̇fl ÏÂÚË͇
Ñ‚ӂˉ̇fl ÏÂÚË͇ (ËÎË ‚Á‚¯ÂÌ̇fl ÏÂÚË͇ ‰Â‚‡) d ̇ ÏÌÓÊÂÒÚ‚Â ï ÂÒÚ¸
-ÏÂÚË͇ ‰Îfl Í·ÒÒ‡ ϒ ‚ÒÂı ‰Â‚¸Â‚, Ú.Â. ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d)
ËÁÓÏÂÚ˘ÌÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Û ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V, dwpath), „‰Â T = (V, E)
ÂÒÚ¸ ‰ÂÂ‚Ó Ë dwpath – ‚Á‚¯ÂÌ̇fl ÏÂÚË͇ ÔÛÚË Ì‡ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ V ‰Â‚‡ í
Ò ÔÓÎÓÊËÚÂθÌÓÈ ÙÛÌ͈ËÂÈ ·ÂÌ˚ı ‚ÂÒÓ‚ w. åÂÚË͇ fl‚ÎflÂÚÒfl ‰‚ӂˉÌÓÈ
ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÌÂ‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı
ÚÓ˜ÂÍ.
åÂÚË͇ d ̇ ÏÌÓÊÂÒÚ‚Â ï ̇Á˚‚‡ÂÚÒfl ÓÒ··ÎÂÌÌÓÈ ‰‚ÓÔÓ‰Ó·ÌÓÈ ÏÂÚËÍÓÈ,
ÂÒÎË ÏÌÓÊÂÒÚ‚Ó ï ÏÓÊÂÚ ·˚Ú¸ ‚ÎÓÊÂÌÓ ‚ ÌÂÍÓÚÓÓ (Ì ӷflÁ‡ÚÂθÌÓ ÔÓÎÓÊËÚÂθÌÓ) ·ÂÌÓ-‚Á‚¯ÂÌÌÓ ‰Â‚Ó, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·˚ı x, y ∈ X ÏÂÚË͇
d(x, y) ‡‚̇ ÒÛÏÏ ‚ÂÒÓ‚ ‚ÒÂı ·Â ‚‰Óθ (‰ËÌÒÚ‚ÂÌÌÓ„Ó) ÔÛÚË ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ‚Â¯Ë̇ÏË ı Ë Û ‰Â‚‡. åÂÚË͇ fl‚ÎflÂÚÒfl ÓÒ··ÎÂÌÌÓÈ ‰‚ӂˉÌÓÈ ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÓÒ··ÎÂÌÌÓÏÛ
ÌÂ‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ.
åÂÚË͇ ÒÓÔÓÚË‚ÎÂÌËfl
ÑÎfl ÒÎÛ˜‡fl Ò‚flÁÌÓ„Ó „‡Ù‡ G = (V, E) Ò ÔÓÎÓÊËÚÂθÌÓÈ ÙÛÌ͈ËÂÈ ·ÂÌ˚ı
‚ÂÒÓ‚ w = (w(e))e ∈ E ‡ÒÒÏÓÚËÏ ‚ÂÒ‡ e·Â Í‡Í ÒÓÔÓÚË‚ÎÂÌËfl. ÇÓÁ¸ÏÂÏ Î˛·˚ ‰‚Â
‡Á΢Ì˚ ‚Â¯ËÌ˚ Ë Ë v Ô‰ÔÓÎÓÊËÏ, ˜ÚÓ Í ÌËÏ ÔÓ‰ÒÓ‰ËÌÂ̇ ·‡Ú‡Âfl Ú‡ÍËÏ
Ó·‡ÁÓÏ, ˜ÚÓ Â‰ËÌˈ‡ ÚÓ͇ Ú˜ÂÚ ËÁ v ‚ u. çÂÓ·ıÓ‰Ëχfl ‰Îfl ˝ÚÓ„Ó ‡ÁÌÓÒÚ¸ (ÔÓÚÂ̈ˇÎÓ‚) ̇ÔflÊÂÌËfl ÓÔ‰ÂÎflÂÚÒfl ÔÓ Á‡ÍÓÌÛ éχ Í‡Í ˝ÙÙÂÍÚË‚ÌÓ ÒÓÔÓÚË‚ÎÂÌËÂ
ÏÂÊ‰Û u Ë v ‚ ˝ÎÂÍÚ˘ÂÒÍÓÈ ˆÂÔË; ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ ÒÓÔÓÚË‚ÎÂÌËfl Ω(u, v)
ÏÂÊ‰Û ÌËÏË ([KlRa93]) (ÒÏ. ê‡ÒÒÚÓflÌË Ò‰ÌÂ„Ó ÒÓÔÓÚË‚ÎÂÌËfl, „Î. 14). óËÒÎÓ
1
ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ ÔÓ‰Ó·ÌÓ ˝ÎÂÍÚ˘ÂÒÍÓÈ ÔÓ‚Ó‰ËÏÓÒÚË Í‡Í ÏÂÛ
Ω(u, v)
1
,
ÒÓ‰ËÌflÂÏÓÒÚË ÏÂÊ‰Û u Ë v. àÏÂÌÌÓ, ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë Ω(u, v) ≤ min
P
w
(e)
e ∈P
„‰Â ê – β·ÓÈ (u – v) ÔÛÚ¸, Ò ‡‚ÂÌÒÚ‚ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ú‡ÍÓÈ ÔÛÚ¸ ê
fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌ˚Ï; ÒΉӂ‡ÚÂθÌÓ, ÂÒÎË w(e) = 1 ‰Îfl ‚ÒÂı ·Â, ‡‚ÂÌÒÚ‚Ó
ÓÁ̇˜‡ÂÚ, ˜ÚÓ G fl‚ÎflÂÚÒfl ‰Â‚ÓÏ. åÂÚË͇ ÒÓÔÓÚË‚ÎÂÌËfl ÔËÏÂÌflÂÚÒfl (‚ ÙËÁËÍÂ,
ıËÏËË Ë ÒÂÚflı) ‚ ÒÎÛ˜‡flı, ÍÓ„‰‡ ÌÂÓ·ıÓ‰ËÏÓ Û˜ËÚ˚‚‡Ú¸ ˜ËÒÎÓ ÔÛÚÂÈ ÏÂÊ‰Û Î˛·˚ÏË
‰‚ÛÏfl ‚Â¯Ë̇ÏË.
ÖÒÎË w(e) = 1 ‰Îfl ‚ÒÂı ·Â, ÚÓ
Ω(u, v) = ( guu + gvv ) − ( gvv + guu ),
∑
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
229
„‰Â ((gij)) – Ó·Ó·˘fiÌ̇fl Ó·‡Ú̇fl χÚˈ‡ ‰Îfl χÚˈ˚ ã‡Ô·҇ (lij)) „‡Ù‡ G:
Á‰ÂÒ¸ lii ÂÒÚ¸ ÒÚÂÔÂ̸ ‚Â¯ËÌ˚ i, ‡ ‰Îfl i ≠ j ‚Â΢Ë̇ lij = 1, ÂÒÎË ‚Â¯ËÌ˚ i Ë j
ÒÏÂÊÌ˚Â, Ë lij = 0, Ë̇˜Â. ÇÂÓflÚÌÓÒÚ̇fl ËÌÚÂÔÂÚ‡ˆËfl Ú‡ÍÓ‚‡: Ω(u, v) =
= (deg(u) Pr(u − v)) −1 , „‰Â deg(u) – ÒÚÂÔÂ̸ ‚Â¯ËÌ˚ u Ë Pr(u – v) – ‚ÂÓflÚÌÓÒÚ¸ ÔË
ÒÎÛ˜‡ÈÌÓ„ ·ÎÛʉ‡ÌËË, ̇˜Ë̇˛˘ÂÏÒfl Ò u, ÔÓÒÂÚËÚ¸ v ÔÂ‰ ‚ÓÁ‡˘ÂÌËÂÏ ‚ u.
ìÒ˜ÂÌ̇fl ÏÂÚË͇
ìÒ˜ÂÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ „‡Ù‡, ‡‚̇fl 1
‰Îfl β·˚ı ‰‚Ûı ÒÏÂÊÌ˚ı ‚Â¯ËÌ Ë ‡‚̇fl 2 ‰Îfl β·˚ı ‡Á΢Ì˚ı ÌÂÒÏÂÊÌ˚ı
‚Â¯ËÌ. é̇ fl‚ÎflÂÚÒfl 2-ÛÒ˜ÂÌÌÓÈ ÏÂÚËÍÓÈ ‰Îfl ÏÂÚËÍË ÔÛÚË „‡Ù‡. é̇ fl‚ÎflÂÚÒfl
(1,2)-Ç-ÏÂÚËÍÓÈ, ÂÒÎË ÒÚÂÔÂ̸ β·ÓÈ ‚Â¯ËÌ˚ Ì ·Óθ¯Â ˜ÂÏ Ç.
åÌÓ„ÓÍ‡ÚÌÓ ‚˚‚ÂÂÌÌÓ ‡ÒÒÚÓflÌËÂ
åÌÓ„ÓÍ‡ÚÌÓ ‚˚‚ÂÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â
‚Â¯ËÌ V m-Ò‚flÁÌÓ„Ó ‚Á‚¯ÂÌÌÓ„Ó „‡Ù‡G = (V, E) , ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı u, v ∈
∈ V Í‡Í ÏËÌËχθ̇fl ‚Á‚¯ÂÌ̇fl ÒÛÏχ ‰ÎËÌ m ÌÂÔÂÂÒÂ͇˛˘ËıÒfl (u – v) ÔÛÚÂÈ.
éÌÓ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl ‡ÒÒÚÓflÌËfl ̇ ÒÎÛ˜‡È, ÍÓ„‰‡ Ú·ÛÂÚÒfl ̇ÈÚË
ÌÂÒÍÓθÍÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÔÛÚÂÈ ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, ̇ÔËÏÂ, ‚ ÒËÒÚÂχı
Ò‚flÁË, „‰Â m – 1 ËÁ (u – v) ÔÛÚÂÈ ËÒÔÓθÁÛ˛ÚÒfl ‰Îfl ÍÓ‰ËÓ‚‡ÌËfl ÒÓÓ·˘ÂÌËfl,
ÔÂ‰‡‚‡ÂÏÓ„Ó ÔÓ ÓÒÚ‡‚¯ÂÏÛÒfl (u – v) ÔÛÚË (ÒÏ. [McCa97]).
É‡Ù G ̇Á˚‚‡ÂÚÒfl m-Ò‚flÁÌ˚Ï, ÂÒÎË Ì ÒÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓÊÂÒÚ‚‡ ËÁ m – 1 ·‡, Û‰‡ÎÂÌË ÍÓÚÓ˚ı Ô‚‡ÚËÚ „‡Ù ‚ ÌÂÒ‚flÁÌ˚È. ë‚flÁÌ˚È „‡Ù fl‚ÎflÂÚÒfl
1-Ò‚flÁÌ˚Ï.
ê‡ÁÂÁ – ˝ÚÓ ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡ ̇ ‰‚ ˜‡ÒÚË. ÖÒÎË Á‡‰‡ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó S
ÏÌÓÊÂÒÚ‚‡ Vn = {1,…, n}, ÚÓ Á‡‰‡ÌÓ ‡Á·ËÂÌË {S, Vn\S} ÏÌÓÊÂÒÚ‚‡ Vn . èÓÎÛÏÂÚË͇ ‡ÁÂÁ‡ ̇ Vn , ÓÔ‰ÂÎflÂχfl Ú‡ÍËÏ ‡Á·ËÂÌËÂÏ, ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl
Í‡Í ÒÔˆˇθ̇fl ÔÓÎÛÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ ÔÓÎÌÓ„Ó ‰‚Û‰ÓθÌÓ„Ó „‡Ù‡
K S, Vn \ S , „‰Â ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚Â¯Ë̇ÏË ‡‚ÌÓ 1, ÂÒÎË ÓÌË ÔË̇‰ÎÂÊ‡Ú ‡ÁÌ˚Ï
˜‡ÒÚflÏ ‰‡ÌÌÓ„Ó „‡Ù‡, Ë ‡‚ÌÓ 0, Ë̇˜Â.
èÓÎÛÏÂÚË͇ ‡ÁÂÁ‡
ÖÒÎË Á‡‰‡ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó S ÏÌÓÊÂÒÚ‚‡ Vn = {1,…, n}, ÚÓ ÔÓÎÛÏÂÚË͇ ‡ÁÂÁ‡
(ËÎË ÔÓÎÛÏÂÚË͇ ‡Á‰‚ÓÂÌËfl) δS fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍa ̇ Vn , ÓÔ‰ÂÎÂÌ̇fl ͇Í
1, ÂÒÎË i ≠ j, | S
δ S (i, j ) = 
0, Ë̇˜Â.
{i, j} |= 1,
é·˚˜ÌÓ Ó̇ ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ‚ÂÍÚÓ ‚ | En | , E(n) = {{i, j} : 1 ≤ i < j ≤ n}.
äÛ„Ó‚ÓÈ ‡ÁÂÁ V n Á‡‰‡ÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ S[k+1, l] = {k + 1,…, l} (mod n) ⊂ Vn :
ÂÒÎË ‡ÒÒχÚË‚‡Ú¸ ÚÓ˜ÍË Í‡Í ÛÔÓfl‰Ó˜ÂÌÌ˚ ‚‰Óθ ÓÍÛÊÌÓÒÚË ‚ ÚÓÏ ÊÂ
ÍÛ„Ó‚ÓÏ ÔÓfl‰ÍÂ, ÚÓ S[k+1, l] ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ÔÓÒΉӂ‡ÚÂθÌ˚ı ‚Â¯ËÌ ÓÚ k + 1 ‰Ó l.
ÑÎfl ÍÛ„Ó‚Ó„Ó ‡ÁÂÁ‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÔÓÎÛÏÂÚË͇ ‡ÁÂÁ‡ ̇Á˚‚‡ÂÚÒfl
ÔÓÎÛÏÂÚËÍÓÈ ÍÛ„Ó‚Ó„Ó ‡ÁÂÁ‡.
èÓÎÛÏÂÚËÍÓÈ ˜ÂÚÌÓ„Ó ‡ÁÂÁ‡ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ δS ̇ Vn Ò ˜ÂÚÌ˚Ï | S |.
èÓÎÛÏÂÚËÍÓÈ Ì˜ÂÚÌÓ„Ó ‡ÁÂÁ‡ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ δS ̇ V n Ò Ì˜ÂÚÌ˚Ï
| S |. èÓÎÛÏÂÚË͇ k-‡‚ÌÓÏÂÌÓ„Ó ‡ÁÂÁ‡ ÂÒÚ¸ δS ̇ Vn Ò | S | ∈ { k, n – k} .
n 
 n
èÓÎÛÏÂÚË͇ ‡‚ÌÓ„Ó ‡ÁÂÁ‡ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ δS ̇ Vn Ò | S | ∈  ,   .
 2   2  
230
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
n 
 n
èÓÎÛÏÂÚË͇ ÌÂ‡‚ÌÓ„Ó ‡ÁÂÁ‡ – ÔÓÎÛÏÂÚË͇ δS ̇ Vn Ò | S | ∉  ,    (ÒÏ.,
2
2





̇ÔËÏÂ, [DeLa97]).
ê‡ÁÎÓÊËχfl ÔÓÎÛÏÂÚË͇
ê‡ÁÎÓÊËχfl ÔÓÎÛÏÂÚËÍÓÈ – ÔÓÎÛÏÂÚË͇ ̇ V n = {1,…, n}, ÍÓÚÓÛ˛ ÏÓÊÌÓ
Ô‰ÒÚ‡‚ËÚ¸ Í‡Í ÌÂÓÚˈ‡ÚÂθÌÛ˛ ÎËÌÂÈÌÛ˛ ÍÓÏ·Ë̇ˆË˛ ÔÓÎÛÏÂÚËÍ ‡ÁÂÁ‡.
åÌÓÊÂÒÚ‚ÓÏ ‚ÒÂı ‡ÁÎÓÊËÏ˚ı ÔÓÎÛÏÂÚËÍ Ì‡ Vn Ó·‡ÁÛÂÚ ‚˚ÔÛÍÎ˚È ÍÓÌÛÒ,
ÍÓÚÓ˚È Ì‡Á˚‚‡ÂÚÒfl ‡ÁÂÁÌ˚Ï ÍÓÌÛÒÓÏ CUTn .
èÓÎÛÏÂÚË͇ ̇ Vn ·Û‰ÂÚ ‡ÁÎÓÊËÏÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ fl‚ÎflÂÚÒfl
ÍÓ̘ÌÓÈ l1 -ÔÓÎÛÏÂÚËÍÓÈ.
äÛ„Ó‚ÓÈ ‡ÁÎÓÊËÏÓÈ ÔÓÎÛÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ Vn = {1,…, n},
ÍÓÚÓÛ˛ ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í ÌÂÓÚˈ‡ÚÂθÌÛ˛ ÎËÌÂÈÌÛ˛ ÍÓÏ·Ë̇ˆË˛ ÔÓÎÛÏÂÚËÍ ÍÛ„Ó‚Ó„Ó ‡ÁÂÁ‡.
èÓÎÛÏÂÚË͇ ̇ Vn ·Û‰ÂÚ ÍÛ„Ó‚ÓÈ ‡ÁÎÓÊËÏÓÈ ÔÓÎÛÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ
ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ ä‡ÎχÌÒÓ̇ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÚÓÏÛ ÊÂ
ÔÓfl‰ÍÛ (ÒÏ. [ChFi98]).
äÓ̘̇fl lp -ÔÓÎÛÏÂÚË͇
ÑÎfl ÍÓ̘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ï ÍÓ̘̇fl lp-ÔÓÎÛÏÂÚËÍ Ì‡Á˚‚‡ÂÚÒflÒ ÔÓÎÛÏÂÚË͇ d
̇ ï, ڇ͇fl ˜ÚÓ (X, d) ÂÒÚ¸ ÔÓÎÛÏÂÚ˘ÂÒÍÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó l pm -ÔÓÒÚ‡ÌÒÚ‚‡
( m , dl p ) ‰Îfl ÌÂÍÓÚÓÓ„Ó m ∈ . ÖÒÎË X = {0, 1}n , ÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
(X, d) ̇Á˚‚‡ÂÚÒfl l pm -ÍÛ·ÓÏ. l1m -ÍÛ· ̇Á˚‚‡ÂÚÒfl ı˝ÏÏËÌ„Ó‚˚Ï ÍÛ·ÓÏ.
èÓÎÛÏÂÚË͇ ä‡ÎχÌÒÓ̇
èÓÎÛÏÂÚËÍÓÈ ä‡ÎχÌÒÓ̇ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ d ̇ Vn = {1,…, n},
Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÛÒÎӂ˲
max{d (i, j ) + d (r, s), d (i, s) + d ( j, r )} ≤ d (i, r ) + d ( j, s)
‰Îfl ‚ÒÂı 1 ≤ i ≤ j ≤ r ≤ s ≤ n. Ç ‰‡ÌÌÓÏ ÓÔ‰ÂÎÂÌËË ‚‡ÊÂÌ ÔÓfl‰ÓÍ ˝ÎÂÏÂÌÚÓ‚; ËÏÂÌÌÓ, d fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ ä‡ÎχÌÒÓ̇ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÔÓfl‰ÍÛ
1,…, n.
ùÍ‚Ë‚‡ÎÂÌÚÌÓ, ÂÒÎË ‡ÒÒχÚË‚‡Ú¸ ÚÓ˜ÍË {1,…, n} Í‡Í ‡ÒÔÓÎÓÊÂÌÌ˚ ‚‰Óθ
ˆËÍ· C n ‚ ÚÓÏ Ê ÍÛ„Ó‚ÓÏ ÔÓfl‰ÍÂ, ÚÓ ‡ÒÒÚÓflÌË d ̇ Vn fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ
ä‡ÎχÌÒÓ̇, ÂÒÎË ÌÂ‡‚ÂÌÒÚ‚Ó
d (i, r ) + d ( j, s) ≤ d (i, j ) + d (r, s)
‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı i, j, r, s ∈ V n , Ú‡ÍËı ˜ÚÓ ÓÚÂÁÍË [i, j] Ë [r, s] fl‚Îfl˛ÚÒfl
ÔÂÂÒÂ͇˛˘ËÏËÒfl ıÓ‰‡ÏË C n .
Ñ‚ӂˉ̇fl ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇ ä‡ÎχÌÒÓ̇ ‰Îfl ÌÂÍÓÚÓÓÈ ÛÔÓfl‰Ó˜ÂÌÌÓÒÚË
‚Â¯ËÌ ‰Â‚‡. Ö‚ÍÎˉӂ‡ ÏÂÚË͇, Ó„‡Ì˘ÂÌ̇fl ̇ ÏÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ, Ó·‡ÁÛ˛˘Ëı ‚˚ÔÛÍÎ˚È ÏÌÓ„ÓÛ„ÓθÌËÍ Ì‡ ÔÎÓÒÍÓÒÚË, fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ä‡ÎχÌÒÓ̇.
èÓÎÛÏÂÚË͇ ÏÛθÚË‡ÁÂÁ‡
èÛÒÚ¸ {S1 ,…, Sq }, q ≥ 2 – ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡ Vn = {1,…, n}, Ú.Â. ÒÓ‚ÓÍÛÔÌÓÒÚ¸
S1 ,…, S q ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ Vn , Ú‡ÍËı ˜ÚÓ
S1 … Sq = Vn .
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
231
èÓÎÛÏÂÚË͇ ÏÛθÚË‡ÁÂÁ‡ δ S1 ,…, Sq – ˝ÚÓ ÔÓÎÛÏÂÚË͇ ̇ Vn , ÓÔ‰ÂÎÂÌ̇fl ͇Í
0, ÂÒÎË i, j ∈ Sh ‰Îfl ÌÂÍÓÚÓÓ„Ó h, 1 ≤ h ≤ q,
δ S1 ,…, Sq (i, j ) = 
1, Ë̇˜Â.
䂇ÁËÔÓÎÛÏÂÚË͇ ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ‡ÁÂÁ‡
ÑÎfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡ S ÏÌÓÊÂÒÚ‚‡ Vn = {1,…, n} Í‚‡ÁËÔÓÎÛÏÂÚËÍÓÈ ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ‡ÁÂÁ‡ δ ′S ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÔÓÎÛÏÂÚË͇ ̇ Vn , ÓÔ‰ÂÎÂÌ̇fl ͇Í
1, ÂÒÎË i ∈ S, j ∉ S,
δ ′S (i, j ) = 
0, Ë̇˜Â.
é·˚˜ÌÓ Ó̇ ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ‚ÂÍÚÓ ‚ | I n | , I (n) = {{i, j} : 1 ≤ i ≠ j ≤ n}.
èÓÎÛÏÂÚË͇ ‡ÁÂÁ‡ δS ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂ̇ Í‡Í δ ′S + δ V′ n \ S .
䂇ÁËÔÓÎÛÏÂÚË͇ ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ÏÛθÚË‡ÁÂÁ‡
ÑÎfl ‡Á·ËÂÌËfl {S1 ,…, Sq }, q ≥ 2 ÏÌÓÊÂÒÚ‚‡ Vn Í‚‡ÁËÔÓÎÛÏÂÚËÍÓÈ ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ÏÛθÚË‡ÁÂÁ‡ δ S1 ,…, Sq ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÔÓÎÛÏÂÚË͇ ̇ Vn , ÓÔ‰ÂÎÂÌ̇fl ͇Í
1, ÂÒÎË i ∈ Sh , j ∈ Sm , h < m,
δ ′S1 ,…, Sq (i, j ) = 
0, Ë̇˜Â.
15.2. ÉêÄîõ, éèêÖÑÖãüÖåõÖ ë èéåéôúû êÄëëíéüçàâ
k-cÚÂÔÂ̸ „‡Ù‡
k-cÚÂÔÂ̸ „‡Ù‡ G = (V, E) ÂÒÚ¸ ÒÛÔÂ„‡Ù Gk = (V, E') „‡Ù‡ G Ò ·‡ÏË ÏÂʉÛ
‚ÒÂÏË Ô‡‡ÏË ‚Â¯ËÌ, ÏÂÚË͇ ÔÛÚË ‰Îfl ÍÓÚÓ˚ı Ì ·Óθ¯Â ˜ÂÏ k .
àÁÓÏÂÚ˘ÂÒÍËÈ ÔÓ‰„‡Ù
èÓ‰„‡Ù ç „‡Ù‡ G = (V, E) ̇Á˚‚‡ÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏ ÔÓ‰„‡ÙÓÏ, ÂÒÎË
ÏÂÚË͇ ÔÛÚË ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ‚Â¯Ë̇ÏË ÔÓ‰„‡Ù‡ ç ‡‚̇ Ëı ÏÂÚËÍ ÔÛÚË
‚ „‡Ù G.
êÂÚ‡ÍÚ ÔÓ‰„‡Ù‡
èÓ‰„‡Ù ç „‡Ù‡ G = (V, E) ̇Á˚‚‡ÂÚÒfl ÂÚ‡ÍÚ-ÔÓ‰„‡ÙÓÏ, ÂÒÎË ÓÌ ÔÓÓʉÂÌ
ˉÂÏÔÓÚÂÌÚÌ˚Ï ÒÊËχ˛˘ËÏ ÓÚÓ·‡ÊÂÌËÂÏ G ‚ Ò·fl, Ú.Â. f2 = f : V → V Ò dpath(f(u),
f(v)) ≤ dpath(u, v) ‰Îfl ‚ÒÂı . ã˛·ÓÈ ÂÚ‡ÍÚ – ÔÓ‰„‡Ù fl‚ÎflÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏ
ÔÓ‰„‡ÙÓÏ.
ÉÂÓ‰ÂÚ˘ÂÒÍËÈ „‡Ù
ë‚flÁÌ˚È „‡Ù ̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÚ˘ÂÒÍËÏ, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÓθÍÓ Ó‰ËÌ Í‡Ú˜‡È¯ËÈ ÔÛÚ¸ ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl Â„Ó ‚Â¯Ë̇ÏË. ã˛·Ó ‰ÂÂ‚Ó fl‚ÎflÂÚÒfl
„ÂÓ‰ÂÚ˘ÂÒÍËÏ „‡ÙÓÏ.
232
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌÌÓ-„ÛÎflÌ˚È „‡Ù
ë‚flÁÌ˚È „‡Ù G = (V, E) ‰Ë‡ÏÂÚ‡ í ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌÌÓ-„ÛÎflÌ˚Ï, ÂÒÎË
‰Îfl β·˚ı Â„Ó ‚Â¯ËÌ u, v Ë Î˛·˚ı ˆÂÎ˚ı ˜ËÒÂÎ 0 ≤ i, j ≤ T ÍÓ΢ÂÒÚ‚Ó ‚Â¯ËÌ w,
Ú‡ÍËı ˜ÚÓ dpath(u, w) = i Ë dpath(v, w) = j, Á‡‚ËÒËÚ ÚÓθÍÓ ÓÚ i, j Ë k = dpath(u, v), ÌÓ Ì ÓÚ
‚˚·‡ÌÌ˚ı ‚Â¯ËÌ u Ë v.
ëÔˆˇθÌ˚Ï ÒÎÛ˜‡ÂÏ fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ-Ú‡ÌÁËÚË‚Ì˚È „‡Ù, Ú.Â. Ú‡ÍÓÈ „‡Ù,
˜ÚÓ Â„Ó „ÛÔÔ‡ ‡‚ÚÓÏÓÙËÁÏÓ‚ Ú‡ÌÁËÚ˂̇ ‰Îfl β·Ó„Ó 0 ≤ i < T ̇ Ô‡‡ı ‚Â¯ËÌ
(u, v) Ò dpath(u, v) = i.
ã˛·ÓÈ ‡ÒÒÚÓflÌÌÓ-„ÛÎflÌ˚È „‡Ù fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ-Û‡‚Ìӂ¯ÂÌÌ˚Ï
„‡ÙÓÏ, Ú.Â. | {x ∈ V: d(x, u) ≤ d(x, v)} | = | {x ∈ V: d(x, v) ≤ d(x, u)} | ‰Îfl β·˚ı „Ó
·Â uv, Ë ‡ÒÒÚÓflÌÌÓ-ÒÚÂÔÂÌÌÓ-„ÛÎflÌ˚Ï „‡ÙÓÏ, Ú.Â. | {x ∈ V: d(x, u) = i} |
Á‡‚ËÒËÚ ÚÓθÍÓ ÓÚ i, ÌÓ Ì ÓÚ u ∈ V.
ê‡ÒÒÚÓflÌÌÓ-„ÛÎflÌ˚È „‡Ù Ë̇˜Â ̇Á˚‚‡ÂÚÒfl ê-ÔÓÎËÌÓÏˇθÌÓÈ ‡ÒÒӈˇÚË‚ÌÓÈ ÒıÂÏÓÈ. äÓ̘ÌÓ ÔÓÎËÌÓÏˇθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó – ‡ÒÒӈˇÚ˂̇fl
ÒıÂχ, ÍÓÚÓ‡fl ê- Ë Q-ÔÓÎËÌÓÏˇθ̇. íÂÏËÌ ·ÂÒÍÓ̘ÌÓ ÔÓÎËÌÓÏˇθÌÓÂ
ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ËÒÔÓθÁÛÂÚÒfl ‰Îfl ÍÓÏÔ‡ÍÚÌÓ„Ó Ò‚flÁÌÓ„Ó ‰‚ÛıÚӘ˜ÌÓ„Ó Ó‰ÌÓÓ‰ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. LJ̄ Í·ÒÒËÙˈËÓ‚‡Î Ëı Í‡Í Â‚ÍÎˉӂ˚ ‰ËÌ˘Ì˚ ÒÙÂ˚, ‰ÂÈÒÚ‚ËÚÂθÌ˚Â, ÍÓÏÔÎÂÍÒÌ˚Â Ë Í‚‡ÚÂÌËÓÌÌ˚ ÔÓÂÍÚË‚Ì˚Â
ÔÓÒÚ‡ÌÒÚ‚‡ ËÎË ÔÓÂÍÚË‚Ì˚ ÔÎÓÒÍÓÒÚË ä˝ÎË.
ê‡ÒÒÚÓflÌÌÓ-ÔÓÎËÌÓÏˇθÌ˚È „‡Ù
ÇÓÁ¸ÏÂÏ Ò‚flÁÌ˚È „‡Ù G = (V, E) ‰Ë‡ÏÂÚ‡ í, ‰Îfl β·Ó„Ó 2 ≤ i ≤ T Ó·ÓÁ̇˜ËÏ
˜ÂÂÁ Gi „‡Ù Ò ÚÂÏ Ê ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ, ˜ÚÓ Ë G, Ë ·‡ÏË uv, Ú‡ÍËÏË ˜ÚÓ
dpath(u, v) = i.
É‡Ù G ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌÌÓ-ÔÓÎËÌÓÏˇθÌ˚Ï, ÂÒÎË Ï‡Úˈ‡ ÒÏÂÊÌÓÒÚË
β·Ó„Ó „‡Ù‡ G i, 2 ≤ i ≤ T, fl‚ÎflÂÚÒfl ÔÓÎËÌÓÏÓÏ ‚ ÚÂÏË̇ı χÚˈ˚ ÒÏÂÊÌÓÒÚË G.
ã˛·ÓÈ ‡ÒÒÚÓflÌÌÓ-„ÛÎflÌ˚È „‡Ù fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ-ÔÓÎËÌÓÏˇθÌ˚Ï.
ê‡ÒÒÚÓflÌÌÓ-̇ÒΉÒÚ‚ÂÌÌ˚È „‡Ù
ë‚flÁÌ˚È „‡Ù ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌÌÓ-̇ÒΉÒÚ‚ÂÌÌ˚Ï, ÂÒÎË Í‡Ê‰˚È ËÁ „Ó
Ò‚flÁÌ˚ı Ë̉ۈËÓ‚‡ÌÌ˚ı ÔÓ‰„‡ÙÓ‚ ËÁÓÏÂÚ˘ÂÌ. É‡Ù fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ̇ÒΉÒÚ‚ÂÌÌ˚Ï, ÂÒÎË ËÁÓÏÂÚ˘ÂÌ Í‡Ê‰˚È ËÁ Â„Ó Ë̉ۈËÓ‚‡ÌÌ˚ı ÔÛÚÂÈ. ã˛·ÓÈ
ÍÓ„‡Ù, Ú.Â. „‡Ù, ÍÓÚÓ˚È Ì ÒÓ‰ÂÊËÚ Ë̉ۈËÓ‚‡ÌÌ˚ı ÔÛÚÂÈ Ì‡ ˜ÂÚ˚Âı
‚Â¯ËÌ,‡ı fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ-̇ÒΉÒÚ‚ÂÌÌ˚Ï. É‡Ù fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ̇ÒΉÒÚ‚ÂÌÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Â„Ó ÏÂÚË͇ ÔÛÚË Û‰Ó‚ÎÂÚ‚ÓflÂÚ
ÓÒ··ÎÂÌÌÓÏÛ ÌÂ‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ. É‡Ù fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ-̇ÒΉÒÚ‚ÂÌÌ˚Ï, ‰‚Û‰ÓθÌ˚Ï ‡ÒÒÚÓflÌÌÓ-̇ÒΉÒÚ‚ÂÌÌ˚Ï, ·ÎÓÍÓ‚˚Ï „‡ÙÓÏ ËÎË ‰Â‚ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Â„Ó ÏÂÚË͇ ÔÛÚË ÂÒÚ¸ ÓÒ··ÎÂÌ̇fl ‰‚ӂˉ̇fl
ÏÂÚË͇ ‰Îfl ·ÂÌ˚ı ‚ÂÒÓ‚, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÌÂÌÛ΂˚ÏË
ÔÓÎÛˆÂÎ˚ÏË, ÌÂÌÛ΂˚ÏË ˆÂÎ˚ÏË, ÔÓÎÓÊËÚÂθÌ˚ÏË ÔÓÎÛˆÂÎ˚ÏË ËÎË ÔÓÎÓÊËÚÂθÌ˚ÏË ˆÂÎ˚ÏË ˜ËÒ·ÏË.
É‡Ù fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ-̇ÒΉÒÚ‚ÂÌÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ͇ʉ˚È
Â„Ó Ë̉ۈËÓ‚‡ÌÌ˚È ÔÓ‰„‡Ù – 1-ÓÒÚÓ‚.
ÅÎÓÍÓ‚˚È „‡Ù
É‡Ù ̇Á˚‚‡ÂÚÒfl · Î Ó Í Ó ‚ ˚ Ï, ÂÒÎË Í‡Ê‰˚È Â„Ó ·ÎÓÍ, Ú.Â. χÍÒËχθÌ˚È
2-Ò‚flÁÌ˚È Ë̉ۈËÓ‚‡ÌÌ˚È ÔÓ‰„‡Ù, fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï „‡ÙÓÏ. ã˛·Ó ‰ÂÂ‚Ó –
·ÎÓÍÓ‚˚È „‡Ù. É‡Ù fl‚ÎflÂÚÒfl ·ÎÓÍÓ‚˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Â„Ó ÏÂÚË͇
ÔÛÚË fl‚ÎflÂÚÒfl ‰‚ӂˉÌÓÈ ÏÂÚËÍÓÈ ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÌÂ‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ.
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
233
èÚÓÎÂÏ‚ „‡Ù
É‡Ù ̇Á˚‚‡ÂÚÒfl ÔÚÓÎÂÏ‚˚Ï, ÂÒÎË Â„Ó ÏÂÚË͇ ÔÛÚË Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÌÂ‡‚ÂÌÒÚ‚Û èÚÓÎÂÏÂfl
d ( x, y)d (u, z ) ≤ d ( x, u)d ( y, z ) + d ( x, z )d ( y, u).
É‡Ù fl‚ÎflÂÚÒfl ÔÚÓÎÂÏ‚˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌ ‡ÒÒÚÓflÌÌÓ̇ÒΉÒÚ‚ÂÌÌ˚È Ë ıÓ‰‡Î¸Ì˚È, Ú.Â. ͇ʉ˚È ˆËÍÎ ‰ÎËÌ˚ ·ÓΠ3 ËÏÂÂÚ ıÓ‰Û.
Ç ˜‡ÒÚÌÓÒÚË, β·ÓÈ ·ÎÓÍÓ‚˚È „‡Ù fl‚ÎflÂÚÒfl ÔÚÓÎÂÏ‚˚Ï.
É‡Ù D-‡ÒÒÚÓflÌËfl
ÑÎfl ÏÌÓÊÂÒÚ‚‡ D ÔÓÎÓÊËÚÂθÌ˚ı ˜ËÒÂÎ, ÒÓ‰Âʇ˘Â„Ó 1, Ë ÏÂÚ˘ÂÒÍÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) „‡ÙÓÏ D-‡ÒÒÚÓflÌËfl D(X, d) ̇Á˚‚‡ÂÚÒfl „‡Ù Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ ï Ë ÏÌÓÊÂÒÚ‚ÓÏ ·Â {uv : d(u, v) ∈ D} (ÒÏ. D-ıÓχÚ˘ÂÒÍÓ ˜ËÒÎÓ,
„Î. 1).
É‡Ù D-‡ÒÒÚÓflÌËfl ̇Á˚‚‡ÂÚÒfl „‡ÙÓÏ Â‰ËÌ˘ÌÓ„Ó ‡ÒÒÚÓflÌËfl, ÂÒÎË D = {1},
„‡ÙÓÏ ε -‰ËÌ˘ÌÓ„Ó ‡ÒÒÚÓflÌËfl, ÂÒÎË D = [1 – ε , 1 + ε], „‡ÙÓÏ Â‰ËÌ˘ÌÓÈ
ÓÍÂÒÚÌÓÒÚË, ÂÒÎË D = (0, 1], „‡ÙÓÏ ˆÂÎÓ˜ËÒÎÂÌÌÓ„Ó ‡ÒÒÚÓflÌËfl, ÂÒÎË D = +,
„‡ÙÓÏ ‡ˆËÓ̇θÌÓ„Ó ‡ÒÒÚÓflÌËfl, ÂÒÎË D = +, „‡ÙÓÏ ÔÓÒÚÓ„Ó ‡ÒÒÚÓflÌËfl,
ÂÒÎË D fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ÔÓÒÚ˚ı ˜ËÒÂÎ (Ò 1).
é·˚˜ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) fl‚ÎflÂÚÒfl ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ Â‚ÍÎˉӂ‡
ÔÓÒÚ‡ÌÒÚ‚‡ n. ÅÓΠÚÓ„Ó, ͇ʉ˚È ÍÓ̘Ì˚È „‡Ù G = (V, E) ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌ Í‡Í „‡Ù D-‡ÒÒÚÓflÌËfl ‚ ÌÂÍÓÚÓÓÏ n. åËÌËχθ̇fl ‡ÁÏÂÌÓÒÚ¸ Ú‡ÍÓ„Ó
‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl D-‡ÁÏÂÌÓÒÚ¸˛ „‡Ù‡ G.
t-çÂÔË‚Ó‰ËÏÓ ÏÌÓÊÂÒÚ‚Ó
åÌÓÊÂÒÚ‚Ó S ⊂ V ‚Â¯ËÌ ‚ Ò‚flÁÌÓÏ „‡Ù G = (V, E) ̇Á˚‚‡ÂÚÒfl t-ÌÂÔË‚Ó‰ËÏ˚Ï
(ÔÓ ï‡ÚÚËÌ„Û Ë ïÂÌÌËÌ„Û, 1994), ÂÒÎË ‰Îfl β·Ó„Ó u ∈ S ÒÛ˘ÂÒÚ‚ÛÂÚ ‚Â¯Ë̇ v ∈ V,
ڇ͇fl ˜ÚÓ ‰Îfl ÏÂÚËÍË ÔÛÚË ‚˚ÔÓÎÌflÂÚÒfl ÌÂ‡‚ÂÌÒÚ‚Ó
d ( v, x ) ≤ t < d ( v, V \ S ).
óËÒÎÓ t-ÌÂÔË‚Ó‰ËÏÓ ir t „‡Ù‡ G ÂÒÚ¸ ̇ËÏÂ̸¯Â ͇‰Ë̇θÌÓ ˜ËÒÎÓ | S |,
Ú‡ÍÓ ˜ÚÓ S fl‚ÎflÂÚÒfl, ‡ S ∪ {v} Ì fl‚ÎflÂÚÒfl t-ÌÂÔË‚Ó‰ËÏ˚Ï ‰Îfl Í‡Ê‰Ó„Ó v ∈ V\S.
óËÒÎÓ t-‰ÓÏËÌËÓ‚‡ÌËfl γt Ë ˜ËÒÎÓ t-ÌÂÁ‡‚ËÒËÏÓÒÚË α t „‡Ù‡ G ÂÒÚ¸ ÒÓÓÚ‚ÂÚÒÚ1
‚ÂÌÌÓ Í‡‰Ë̇θÌÓ ˜ËÒÎÓ Ì‡ËÏÂ̸¯Â„Ó t-ÔÓÍ˚ÚËfl Ë Ì‡Ë·Óθ¯ÂÈ -ÛÔ‡ÍÓ‚ÍË
2
ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V, d) (ÒÏ. P‡‰ËÛÒ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, „Î. 1).
t
èÛÒÚ¸ γ it – ̇ËÏÂ̸¯Â | S |, Ú‡ÍÓ ˜ÚÓ S fl‚ÎflÂÚÒfl, ‡ S ∪ {v} Ì fl‚ÎflÂÚÒfl -ÛÔ‡ÍÓ‚2
t
ÍÓÈ ‰Îfl Í‡Ê‰Ó„Ó v ∈ V\S; ÒΉӂ‡ÚÂθÌÓ, ڇ͇fl ÌÂ‡Ò¯ËflÂχfl
-ÛÔ‡ÍÓ‚2
γ +1
≤ irt ≤
͇ fl‚ÎflÂÚÒfl Ú‡ÍÊ t-ÔÓÍ˚ÚËÂÏ. èË ˝ÚÓÏ ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë t
2
≤ γ t ≤ γ it ≤ α t .
t-éÒÚÓ‚
éÒÚÓ‚ÌÓÈ ÔÓ‰„‡Ù H = (V , E( H )) Ò‚flÁÌÓ„Ó „‡Ù‡ G = (V, E) ̇Á˚‚‡ÂÚÒfl t-ÓÒÚÓ‚ÓÏ
H
G
„‡Ù‡ G, ÂÒÎË ‰Îfl β·˚ı u, v ∈ V ÒÔ‡‚‰ÎË‚Ó ÌÂ‡‚ÂÌÒÚ‚Ó d path
(u, v) / d path
(u, v) ≤ t. .
ÇÂ΢Ë̇ t ̇Á˚‚‡ÂÚÒfl ÍÓ˝ÙÙˈËÂÌÚÓÏ ‡ÒÚflÊÂÌËfl ÔÓ‰„‡Ù‡ ç.
234
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
éÒÚÓ‚ÌÓ ‰ÂÂ‚Ó Ò‚flÁÌÓ„Ó „‡Ù‡ G = (V, E) ÂÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ ËÁ | V | – 1
e·Â, ÍÓÚÓ˚ ӷ‡ÁÛ˛Ú ‰ÂÂ‚Ó Ì‡ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ V.
ê‡ÒÒÚÓflÌË òÚÂÈÌÂ‡
ê‡ÒÒÚÓflÌË òÚÂÈÌÂ‡ ÏÌÓÊÂÒÚ‚‡ S ⊂ V ‚Â¯ËÌ Ò‚flÁÌÓ„Ó „‡Ù‡ G = (V, E) ÂÒÚ¸
ÏËÌËχθÌÓ ˜ËÒÎÓ ·Â Ò‚flÁÌÓ„Ó ÔÓ‰„‡Ù‡ „‡Ù‡ G, ÒÓ‰Âʇ˘Â„Ó S. í‡ÍÓÈ
ÔÓ‰„‡Ù fl‚ÎflÂÚÒfl ‰Â‚ÓÏ Ë Ì‡Á˚‚‡ÂÚÒfl ‰Â‚ÓÏ òÚÂÈÌÂ‡ ‰Îfl S.
ëıÂχ Ë̉ÂÍÒËÓ‚‡ÌËfl ‡ÒÒÚÓflÌËÈ
ÉÓ‚ÓflÚ, ˜ÚÓ ÒÂÏÂÈÒÚ‚Ó „‡ÙÓ‚ Ä (èÂ΄, 2000) ËÏÂÂÚ l(n) ÒıÂÏÛ Ë̉ÂÍÒËÓ‚‡ÌËfl
‡ÒÒÚÓflÌËÈ, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÙÛÌ͈Ëfl L, ÍÓÚÓ‡fl Ë̉ÂÍÒËÛÂÚ ‚Â¯ËÌ˚ ͇ʉӄÓ
n-‚Â¯ËÌÌÓ„Ó „‡Ù‡ ‚ Ä ‡Á΢Ì˚ÏË Ë̉ÂÍÒ‡ÏË ‚Â΢ËÌÓÈ ‰Ó ·ËÚ, Ë ÒÛ˘ÂÒÚ‚ÛÂÚ
‡Î„ÓËÚÏ, ̇Á˚‚‡ÂÏ˚È ‰ÂÍÓ‰ÂÓÏ ‡ÒÒÚÓflÌËÈ, ÍÓÚÓ˚È Ì‡ıÓ‰ËÚ ‡ÒÒÚÓflÌËÂ
ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ‚Â¯Ë̇ÏË u, v ‚ „‡Ù ËÁ Ä ‚ ÔÓÎËÌÓÏˇθÌÓ (ÔÓ ‰ÎËÌ „Ó
Ë̉ÂÍÒÓ‚ L(u), L(v)) ‚ÂÏfl.
15.3. êÄëëíéüçàü çÄ ÉêÄîÄï
èÓ‰„‡Ù-ÒÛÔÂ„‡Ù ‡ÒÒÚÓflÌËfl
é·˘ËÈ ÔÓ‰„‡Ù „‡ÙÓ‚ G Ë H – „‡Ù, ÍÓÚÓ˚È ËÁÓÏÓÙÂÌ Ë̉ۈËÓ‚‡ÌÌ˚Ï
ÔÓ‰„‡Ù‡Ï Ó·ÓËı „‡ÙÓ‚ G Ë H . é·˘ËÈ ÒÛÔÂ„‡Ù „‡ÙÓ‚ G Ë H – „‡Ù, ÒÓ‰Âʇ˘ËÈ Ë̉ۈËÓ‚‡ÌÌ˚ ÔÓ‰„‡Ù˚, ËÁÓÏÓÙÌ˚ „‡Ù‡Ï G Ë H.
ê‡ÒÒÚÓflÌË áÂÎËÌÍË dZ ̇ ÏÌÓÊÂÒÚ‚Â G ‚ÒÂı „‡ÙÓ‚ (·ÓΠÚÓ˜ÌÓ, ̇ ÏÌÓÊÂÒÚ‚Â
‚ÒÂı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ËÁÓÏÓÙÌ˚ı „‡ÙÓ‚) ÓÔ‰ÂÎflÂÚÒfl ͇Í
max{n(G1 ), n(G2 )} − n(G1 , G2 )
‰Îfl β·˚ı G1 , G2 ∈G, „‰Â n(G 1 , – ˜ËÒÎÓ ‚Â¯ËÌ ‚ Gi, i = 1, 2 Ë n(G1, G2) – χÍÒËχθÌÓ ˜ËÒÎÓ ‚Â¯ËÌ Ó·˘Â„Ó ÔÓ‰„‡Ù‡ „‡ÙÓ‚ G1 Ë G2 ).
ÑÎfl ÔÓËÁ‚ÓθÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ å „‡ÙÓ‚ ‡ÒÒÚÓflÌË ӷ˘Â„Ó ÔÓ‰„‡Ù‡ dM ̇ å
ÓÔ‰ÂÎflÂÚÒfl ͇Í
max{n(G1 )n(G2 )} − n(G1 , G2 ),
*
̇ å ÓÔ‰ÂÎflÂÚÒfl ͇Í
‡ ‡ÒÒÚÓflÌË ӷ˘Â„Ó ÒÛÔÂ„‡Ù‡ d M
N (G1 , G2 ) − min{n(G1 ), n(G2 )}
‰Îfl β·˚ı G 1 , G2 ∈ M , „‰Â n(Gi) – ˜ËÒÎÓ ‚Â¯ËÌ ‚ Gi, i = 1, 2 Ë n(G1, G2) –
χÍÒËχθÌÓ ˜ËÒÎÓ ‚Â¯ËÌ Ó·˘Â„Ó ÔÓ‰„‡Ù‡ „‡ÙÓ‚ G ∈ M Ë G1 Ë G2 Ë
N(G1, G2) – ÏËÌËχθÌÓ ˜ËÒÎÓ ‚Â¯ËÌ Ó·˘Â„Ó ÒÛÔÂ„‡Ù‡ „‡ÙÓ‚ H ∈ M Ë G 1 Ë
G2.
dM fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ å, ÂÒÎË ‚˚ÔÓÎÌflÂÚÒfl ÒÎÂ‰Û˛˘Â ÛÒÎÓ‚Ë (1): ÂÒÎË H ∈
∈ M – Ó·˘ËÈ ÒÛÔÂ„‡Ù „‡ÙÓ‚ G1, G2 ∈ M, ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ Ó·˘ËÈ ÔÓ‰„‡Ù G ∈ M
*
„‡ÙÓ‚ G 1 Ë G2 Ò n(G) ≥ n(G1 ) + n(G2 ) − n( H ). d M
fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ å, ÂÒÎË
‚˚ÔÓÎÌflÂÚÒfl ÒÎÂ‰Û˛˘Â ÛÒÎÓ‚Ë (2): ÂÒÎË G ∈ M – Ó·˘ËÈ ÔÓ‰„‡Ù „‡ÙÓ‚ G1 , G2 ∈
∈ M , ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ Ó·˘ËÈ ÒÛÔÂ„‡Ù H ∈ M „‡ÙÓ‚ G 1 Ë G2 Ò n( H ) ≥
*
≥ n(G1 ) + n(G2 ) − n(G). å˚ ËÏÂÂÏ d M ≤ d M
, ÂÒÎË ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë (1) Ë
*
, ÂÒÎË ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë (2).
dM ≥ dM
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
235
ê‡ÒÒÚÓflÌË dM fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â G ‚ÒÂı „‡ÙÓ‚, ÏÌÓÊÂÒÚ‚Â ‚ÒÂı
„‡ÙÓ‚ ·ÂÁ ˆËÍÎÓ‚, ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ‰‚Û‰ÓθÌ˚ı „‡ÙÓ‚ Ë ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ‰Â‚¸Â‚.
*
ê‡ÒÒÚÓflÌË d M
fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â G ‚ÒÂı „‡ÙÓ‚, ÏÌÓÊÂÒÚ‚Â ‚ÒÂı
Ò‚flÁÌ˚ı „‡ÙÓ‚, ÏÌÓÊÂÒÚ‚Â ‚ÒÂı Ò‚flÁÌ˚ı ‰‚Û‰ÓθÌ˚ı „‡ÙÓ‚ Ë ÏÌÓÊÂÒÚ‚Â ‚ÒÂı
*
‰Â‚¸Â‚. ê‡ÒÒÚÓflÌË áÂÎËÌÍË dZ ÒÓ‚Ô‡‰‡ÂÚ Ò dM Ë d M
̇ ÏÌÓÊÂÒÚ‚Â G ‚ÒÂı „‡ÙÓ‚.
*
ç‡ ÏÌÓÊÂÒÚ‚Â í ‚ÒÂı ‰Â‚¸Â‚ ‡ÒÒÚÓflÌËfl dM Ë d M
ˉÂÌÚ˘Ì˚, ÌÓ ÓÚ΢‡˛ÚÒfl ÓÚ
‡ÒÒÚÓflÌËfl áÂÎËÌÍË.
ê‡ÒÒÚÓflÌË áÂÎËÌÍË dZ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â G(n) ‚ÒÂı „‡ÙÓ‚ Ò n
‚Â¯Ë̇ÏË Ë ‡‚ÌÓ n – k ËÎË K – n ‰Îfl ‚ÒÂı G1, G2 ∈ G(n), „‰Â k – χÍÒËχθÌÓÂ
˜ËÒÎÓ ‚Â¯ËÌ Ó·˘Â„Ó ÔÓ‰„‡Ù‡ „‡ÙÓ‚ G1 Ë G2, ‡ ä – ÏËÌËχθÌÓ ˜ËÒÎÓ ‚Â¯ËÌ
Ó·˘Â„Ó ÒÛÔÂ„‡Ù‡ „‡ÙÓ‚ G1 Ë G2. ç‡ ÏÌÓÊÂÒÚ‚Â T(n) ‚ÒÂı ‰Â‚¸Â‚ Ò n ‚Â¯Ë̇ÏË ‡ÒÒÚÓflÌË dZ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ‰Â‚‡ áÂÎËÌÍË (ÒÏ., ̇ÔËÏÂ,
[Zeli75]).
ê·ÂÌÓ ‡ÒÒÚÓflÌËÂ
ê·ÂÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â G ‚ÒÂı „‡ÙÓ‚, ÓÔ‰ÂÎÂÌÌÓÂ
͇Í
| E1 | + | E2 | −2 | E12 | + || V1 | − | V2 ||
‰Îfl β·˚ı „‡ÙÓ‚ G1 = (V1 , E1 ) Ë G2 = (V2 , E2 ), , „‰Â G12 = (V12 , E12 ) – Ó·˘ËÈ
ÔÓ‰„‡Ù „‡ÙÓ‚ G1 Ë G 2 Ò Ï‡ÍÒËχθÌ˚Ï ˜ËÒÎÓÏ e·Â. чÌÌÓ ‡ÒÒÚÓflÌË ¯ËÓÍÓ
ÔËÏÂÌflÂÚÒfl ‚ ӷ·ÒÚË Ó„‡Ì˘ÂÒÍÓÈ Ë Ï‰ˈËÌÒÍÓÈ ıËÏËË.
ê‡ÒÒÚÓflÌË ÒÚfl„Ë‚‡ÌËfl
ê‡ÒÒÚÓflÌË ÒÚfl„Ë‚‡ÌËfl – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â G(n ) ‚ÒÂı „‡ÙÓ‚ Ò n
‚Â¯Ë̇ÏË, ÓÔ‰ÂÎÂÌÌÓ ͇Í
n–k
‰Îfl β·˚ı G1, G 2 ∈ G(n), „‰Â k – χÍÒËχθÌÓ ˜ËÒÎÓ ‚Â¯ËÌ „‡Ù‡, ËÁÓÏÓÙÌÓ„Ó
Ó‰ÌÓ‚ÂÏÂÌÌÓ „‡ÙÛ, ÔÓÎÛ˜ÂÌÌÓÏÛ ËÁ Í‡Ê‰Ó„Ó „‡Ù‡ G1, G2 ÍÓ̘Ì˚Ï ˜ËÒÎÓÏ
ÓÔÂ‡ˆËÈ ÒÚfl„Ë‚‡ÌËfl ·Â.
éÒÛ˘ÂÒÚ‚ËÚ¸ ÒÚfl„Ë‚‡ÌË ·‡ u v ∈ E , ÔË̇‰ÎÂʇ˘Â„Ó „‡ÙÛ G = (V, E),
ÓÁ̇˜‡ÂÚ Á‡ÏÂÌËÚ¸ ‚Â¯ËÌ˚ u Ë v Ó‰ÌÓÈ Ú‡ÍÓÈ ‚Â¯ËÌÓÈ, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ÒÏÂÊÌÓÈ ‰Îfl ‚ÒÂı ‚Â¯ËÌ V \{u, v}, ÒÏÂÊÌ˚ı Ò u ËÎË v.
ê‡ÒÒÚÓflÌË ÔÂÂÏ¢ÂÌËfl ·‡
ê‡ÒÒÚÓflÌË ÔÂÂÏ¢ÂÌËfl ·‡ ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â G(n, m) ‚ÒÂı „‡ÙÓ‚
Ò n ‚Â¯Ë̇ÏË Ë m ·‡ÏË, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı G 1 , G2 ∈ G(n, m) ͇Í
ÏËÌËχθÌÓ ˜ËÒÎÓ ÔÂÂÏ¢ÂÌËÈ ·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl „‡Ù‡
G1 ‚ „‡Ù G2. éÌÓ ‡‚ÌÓ m – k, „‰Â k – χÍÒËχθÌÓ ˜ËÒÎÓ ·Â Ó·˘Â„Ó ÔÓ‰„‡Ù‡
„‡ÙÓ‚ G1 Ë G 2 .
èÂÂÏ¢ÂÌË ·‡ – Ó‰ËÌ ËÁ ÚËÔÓ‚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·Â, ÍÓÚÓ˚È Á‡‰‡ÂÚÒfl
ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: „‡Ù ç ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ „‡Ù‡ G ÔÂÂÏ¢ÂÌËÂÏ
·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú (Ì ӷflÁ‡ÚÂθÌÓ ‡Á΢Ì˚Â) ‚Â¯ËÌ˚ u, v, w Ë x ‚ „‡Ù G,
Ú‡ÍË ˜ÚÓ uv ∈ E(G), wx ≠ E(G) Ë H = G – uv + wx.
ê‡ÒÒÚÓflÌË Ò͇˜Í‡ ·‡
ê‡ÒÒÚÓflÌË Ò͇˜Í‡ ·‡ – ‡Ò¯ËÂÌ̇fl ÏÂÚË͇ (ÍÓÚÓ‡fl ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â
ÏÓÊÂÚ ÔËÌËχڸ Á̇˜ÂÌË ∞) ̇ ÏÌÓÊÂÒÚ‚Â G(n, m) ‚ÒÂı „‡ÙÓ‚ Ò n ‚Â¯Ë̇ÏË Ë m
236
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
·‡ÏË, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı G1, G2 ∈ G(n, m) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ Ò͇˜ÍÓ‚
·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl „‡Ù‡ G1 ‚ „‡Ù G 2 .
ë͇˜ÓÍ ·‡ – Ó‰ËÌ ËÁ ÚËÔÓ‚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·Â, ÍÓÚÓ˚È Á‡‰‡ÂÚÒfl
ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: „‡Ù ç ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ „‡Ù‡ G Ò ÔÓÏÓ˘¸˛ Ò͇˜Í‡
·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ˜ÂÚ˚ ‡Á΢Ì˚ ‚Â¯ËÌ˚ u, v, w Ë x ‚ „‡Ù G, Ú‡ÍËÂ
˜ÚÓ uv ∈ (G), wx ∉ E(G) Ë H = G – uv + wx.
ê‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ·‡
ê‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ·‡ ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â G(n, m) ‚ÒÂı „‡ÙÓ‚ Ò n
‚Â¯Ë̇ÏË Ë m ·Â‡ÏË, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı G1, G 2 ∈ G(n, m) ͇Í
ÏËÌËχθÌÓ ˜ËÒÎÓ ‚‡˘ÂÌËÈ ·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl „‡Ù‡ G1 ‚
„‡Ù G 2 .
Ç‡˘ÂÌË ·‡ – Ó‰ËÌ ËÁ ÚËÔÓ‚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·Â, ÍÓÚÓ˚È Á‡‰‡ÂÚÒfl
ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: „‡Ù ç ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ „‡Ù‡ G Ò ÔÓÏÓ˘¸˛
‚‡˘ÂÌËfl ·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ‡Á΢Ì˚ ‚Â¯ËÌ˚ u, v Ë w ‚ „‡Ù G, Ú‡ÍËÂ
˜ÚÓ uv ∈ E(G), wx ∉ E(G) Ë H = G – uv + uw.
ê‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ‰Â‚‡
ê‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ‰Â‚‡ – ˝ÚÓ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â T(n) ‚ÒÂı ‰Â‚¸Â‚ Ò n
‚Â¯Ë̇ÏË, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl ‚ÒÂı T1 , T2 ∈ T(n) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ‚‡˘ÂÌËÈ
·Â ‰Â‚‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl T 1 ‚ T 2 . ÑÎfl ÏÌÓÊÂÒÚ‚‡ T(n)
‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ‰Â‚‡ Ë ‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ·‡ ÏÓ„ÛÚ ‡Á΢‡Ú¸Òfl.
Ç‡˘ÂÌË ·‡ ‰Â‚‡ – ˝ÚÓ ‚‡˘ÂÌË ·‡, ÓÒÛ˘ÂÒÚ‚ÎflÂÏÓ ̇ ‰Â‚ Ë
‰‡˛˘Â ‚ ÂÁÛθڇÚ ‰Â‚Ó.
ê‡ÒÒÚÓflÌË ÒÏ¢ÂÌËfl ·‡
ê‡ÒÒÚÓflÌË ÒÏ¢ÂÌËfl ·‡ (ËÎË ‡ÒÒÚÓflÌË ÒÍÓθÊÂÌËfl ·‡) ÂÒÚ¸ ÏÂÚË͇ ̇
ÏÌÓÊÂÒÚ‚Â Gc(n, m) ‚ÒÂı Ò‚flÁÌ˚ı „‡ÙÓ‚ Ò n ‚Â¯Ë̇ÏË Ë m e·‡ÏË, Á‡‰‡‚‡Âχfl
‰Îfl β·˚ı G 1 , G2 ∈ GÒ(n, m) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÒÏ¢ÂÌËÈ ·‡, ÌÂÓ·ıÓ‰ËÏ˚ı
‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl „‡Ù‡ G 1 ‚ „‡Ù G 2 .
ëÏ¢ÂÌË ·‡ – Ó‰ËÌ ËÁ ÚËÔÓ‚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·Â, ÍÓÚÓ˚È Á‡‰‡ÂÚÒfl
ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: „‡Ù ç ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ „‡Ù‡ G Ò ÔÓÏÓ˘¸˛
ÒÏ¢ÂÌËfl ·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ‡Á΢Ì˚ ‚Â¯ËÌ˚ u, v Ë w ‚ „‡Ù G, Ú‡ÍËÂ
˜ÚÓ uv, uv ∈ E(G), wx ∉ E(G) Ë H = G – uv + uw. ëÏ¢ÂÌË ·‡ – ˝ÚÓ ÓÒÓ·˚È ÚËÔ
‚‡˘ÂÌËfl ·‡ ‰Îfl ÒÎÛ˜‡fl, ÍÓ„‰‡ ‚Â¯ËÌ˚ v, w fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË ‚ G.
ê‡ÒÒÚÓflÌË ÒÏ¢ÂÌËfl ·‡ ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ ÏÂÊ‰Û Î˛·˚ÏË „‡Ù‡ÏË G Ë
H Ò ÍÓÏÔÓÌÂÌÚ‡ÏË Gi(1 ≤ i ≤ k) Ë Hi(1 ≤ i ≤ k), ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÂÒÎË Gi Ë Hi ËϲÚ
Ó‰Ë̇ÍÓ‚˚ ÔÓfl‰ÓÍ Ë ‡ÁÏÂ.
ê‡ÒÒÚÓflÌË F-‚‡˘ÂÌËfl
ê‡ÒÒÚÓflÌËÂÏ F-‚‡˘ÂÌËfl ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â GF(n, m) ‚ÒÂı
„‡ÙÓ‚ Ò n ‚Â¯Ë̇ÏË Ë m ·Â‡ÏË, ÒÓ‰Âʇ˘Ëı ÔÓ‰„‡Ù, ËÁÓÏÓÙÌ˚È ‰‡ÌÌÓÏÛ „‡ÙÛ F ÔÓfl‰Í‡ Ì ÏÂÌ 2, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl ‚ÒÂı G1, G2 ∈ G F(n, m) ͇Í
ÏËÌËχθÌÓ ˜ËÒÎÓ F-‚‡˘ÂÌËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl „‡Ù‡ G1 ‚
„‡Ù G 2 .
F-‚‡˘ÂÌË – Ó‰ËÌ ËÁ ÚËÔÓ‚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·Â, ÍÓÚÓ˚È Á‡‰‡ÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ÔÛÒÚ¸ F' ÂÒÚ¸ ÔÓ‰„‡Ù „‡Ù‡ G, ËÁÓÏÓÙÌ˚È „‡ÙÛ F, Ë ÔÛÒÚ¸ u, v,
w – ÚË ‡Á΢Ì˚ ‚Â¯ËÌ˚ „‡Ù‡ G, Ú‡ÍË ˜ÚÓ u ∉ V(F'), v , w ∈ V(F'), uv ∈
∈ E (G ) Ë u w ∉ E(G); „‡Ù ç ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ „‡Ù‡ G Ò ÔÓÏÓ˘¸˛
F-‚‡˘ÂÌËfl ·‡ uv ‚ ÔÓÎÓÊÂÌË uw, ÂÒÎË H = G – uv + uw..
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
237
ê‡ÒÒÚÓflÌË ·Ë̇ÌÓ„Ó ÓÚÌÓ¯ÂÌËfl
èÛÒÚ¸ R – ÌÂÂÙÎÂÍÒË‚ÌÓ ·Ë̇ÌÓ ÓÚÌÓ¯ÂÌË ÏÂÊ‰Û „‡Ù‡ÏË, Ú.Â. R ⊂ G × G
Ë ÒÛ˘ÂÒÚ‚ÛÂÚ „‡Ù G ∈ G, Ú‡ÍÓÈ ˜ÚÓ (G, G) ∉ R.
ê‡ÒÒÚÓflÌË ·Ë̇ÌÓ„Ó ÓÚÌÓ¯ÂÌËfl – ‡Ò¯ËÂÌ̇fl ÏÂÚË͇ (ÍÓÚÓ‡fl ‚ Ó·˘ÂÏ
ÒÎÛ˜‡Â ÏÓÊÂÚ ÔËÌËχڸ Á̇˜ÂÌË ∞) ̇ ÏÌÓÊÂÒÚ‚Â G ‚ÒÂı „‡ÙÓ‚, ÓÔ‰ÂÎÂÌ̇fl
‰Îfl β·˚ı „‡ÙÓ‚ G 1 Ë G2 Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ R-ÔÂÓ·‡ÁÓ‚‡ÌËÈ,
ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ú‡ÌÒÙÓχˆËË „‡Ù‡ G1 ‚ „‡Ù G2. å˚ „Ó‚ÓËÏ, ˜ÚÓ „‡Ù ç
ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ „‡Ù‡ G ÔÛÚÂÏ R-ÔÂÓ·‡ÁÓ‚‡ÌËfl, ÂÒÎË (H, G) ∈ R.
èËÏÂÓÏ Ú‡ÍÓ„Ó ‡ÒÒÚÓflÌËfl fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚÂÛ„ÓθÌ˚ÏË
‚ÎÓÊÂÌËflÏË ÔÓÎÌÓ„Ó „‡Ù‡ (Ú.Â. Â„Ó ÍÎÂÚÓ˜Ì˚ÏË ‚ÎÓÊÂÌËflÏË ‚ ÔÓ‚ÂıÌÓÒÚ¸,
Ëϲ˘Û˛ ÚÓθÍÓ 3-„Ó̇θÌ˚ „‡ÌË), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ t,
Ú‡ÍÓ ˜ÚÓ ‚ÎÓÊÂÌËfl ËÁÓÏÂÚ˘Ì˚ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó Á‡Ï¢ÂÌËfl t „‡ÌÂÈ.
åÂÚËÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl ·ÂÁ ÔÂÂÒ˜ÂÌËÈ
ÑÎfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡ S ËÁ 2 ÓÒÚÓ‚ÌÓ ‰ÂÂ‚Ó ·ÂÁ ÔÂÂÒ˜ÂÌËÈ ÏÌÓÊÂÒÚ‚‡ S ÂÒÚ¸
‰Â‚Ó, ‚Â¯ËÌ˚ ÍÓÚÓÓ„Ó – ÚÓ˜ÍË ÏÌÓÊÂÒÚ‚‡ S , ‡ ·‡ – ÔÓÔ‡ÌÓ
ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl ÓÚÂÁÍË ÔflÏ˚ı.
åÂÚË͇ ÔÂÂÏ¢ÂÌËfl ·‡ ·ÂÁ ÔÂÂÒ˜ÂÌËÈ ([AAH00]) ̇ ÏÌÓÊÂÒÚ‚Â TS ‚ÒÂı
ÓÒÚÓ‚Ì˚ı ‰Â‚¸Â‚ ·ÂÁ ÔÂÂÒ˜ÂÌËÈ ÏÌÓÊÂÒÚ‚‡ S ÓÔ‰ÂÎflÂÚÒfl ‰Îfl β·˚ı T1, T2 ∈
∈ TS Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÔÂÂÏ¢ÂÌËÈ ·‡ ·ÂÁ ÔÂÂÒ˜ÂÌËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl
ÔÂÓ·‡ÁÓ‚‡ÌËfl T 1 ‚ T2. èÂÂÏ¢ÂÌË ·‡ ÔÂÂÒ˜ÂÌËÈ – ÔÂÓ·‡ÁÓ‚‡ÌË ·Â,
ÒÛÚ¸ ÍÓÚÓÓ„Ó Á‡Íβ˜‡ÂÚÒfl ‚ ‰Ó·‡‚ÎÂÌËË ÌÂÍÓÚÓÓ„Ó ·‡  ‚ T ∈ T S Ë ÛÌ˘ÚÓÊÂÌËË ÌÂÍÓÚÓÓ„Ó ·‡ f ËÁ ÔÓÎÛ˜ÂÌÌÓ„Ó ˆËÍ·, Ú‡Í ˜ÚÓ·˚ e Ë f Ì ÔÂÂÒÂ͇ÎËÒ¸.
åÂÚË͇ ÒÍÓθÊÂÌËfl ·‡ ·ÂÁ ÔÂÂÒ˜ÂÌËÈ ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â T S ‚ÒÂı
ÓÒÚÓ‚Ì˚ı ‰Â‚¸Â‚ ·ÂÁ ÔÂÂÒ˜ÂÌËÈ ÏÌÓÊÂÒÚ‚‡ S, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı T1, T 2 ∈
∈ T S Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÒÍÓθÊÂÌËÈ · ·ÂÁ ÔÂÂÒ˜ÂÌËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl
ÔÂÓ·‡ÁÓ‚‡ÌËfl T1 ‚ T 2 . ëÍÓθÊÂÌË ·‡ ·ÂÁ ÔÂÂÒ˜ÂÌËÈ ÂÒÚ¸ Ó‰ÌÓ ËÁ ÔÂÓ·‡ÁÓ‚‡ÌËÈ ·Â, ‚ ıӉ ÍÓÚÓÓ„Ó ·ÂÂÚÒfl ÌÂÍÓÚÓÓ ·Ó Â ‚ T ∈ TS Ë Ó‰Ì‡ ËÁ „Ó
ÍÓ̈‚˚ı ÚÓ˜ÂÍ ÔÂÂÏ¢‡ÂÚÒfl ‚‰Óθ ÌÂÍÓÚÓÓ„Ó ÒÏÂÊÌÓ„Ó Ò Â ·‡ ‚ T Ú‡Í, ˜ÚÓ·˚
Ì ‚ÓÁÌËÍÎÓ ÔÂÂÒ˜ÂÌËfl ·Â Ë "Á‡ÏÂÚ‡ÌËfl" ÚÓ˜ÂÍ ËÁ S (˝ÚÓ ‰‡ÂÚ Ì‡Ï ‚ÏÂÒÚÓ Â
ÌÓ‚Ó ·Ó f). ëÍÓθÊÂÌË ·‡ fl‚ÎflÂÚÒfl ÓÒÓ·˚Ï ÒÎÛ˜‡ÂÏ ÔÂÂÏ¢ÂÌËfl ·‡
·ÂÁ ÔÂÂÒ˜ÂÌËÈ: ÌÓ‚Ó ‰ÂÂ‚Ó Ó·‡ÁÛÂÚÒfl ‚ ÂÁÛθڇÚ Á‡Ï˚͇ÌËfl Ò ÔÓÏÓ˘¸˛ f
ˆËÍ· ë ‰ÎËÌ˚ 3 ‚ í Ë Û‰‡ÎÂÌËfl  ËÁ ë Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ f Ì ÔÓÔ‡‰‡ÎÓ ‚ÌÛÚ¸
ÚÂÛ„ÓθÌË͇ ë.
ê‡ÒÒÚÓflÌËfl χ¯ÛÚÓ‚ ÍÓÏÏË‚ÓflÊÂ‡
èÓ·ÎÂχ ÍÓÏÏË‚ÓflÊÂ‡ ËÁ‚ÂÒÚ̇ Í‡Í Á‡‰‡˜‡ ̇ıÓʉÂÌËfl Í‡Ú˜‡È¯Â„Ó Ï‡¯ÛÚ‡ ‰Îfl ÔÓÒ¢ÂÌËfl ÌÂÍÓÚÓÓ„Ó ÏÌÓÊÂÒÚ‚‡ „ÓÓ‰Ó‚. å˚ ‡ÒÒÏÓÚËÏ ÔÓ·ÎÂÏÛ
ÍÓÏÏË‚ÓflÊÂ‡ ÚÓθÍÓ ‰Îfl ÌÂÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ÒÎÛ˜‡fl. ÑÎfl ¯ÂÌËfl ÔÓ·ÎÂÏ˚
ÍÓÏÏË‚ÓflÊÂ‡ ÔËÏÂÌËÚÂθÌÓ Í N „ÓÓ‰‡Ï ‡ÒÒÏÓÚËÏ ÔÓÒÚ‡ÌÒÚ‚Ó N
( N − 1)!
χ¯ÛÚÓ‚ Í‡Í ÏÌÓÊÂÒÚ‚Ó, ÒÓÒÚÓfl˘Â ËÁ
ˆËÍ΢ÂÒÍËı ÔÂÂÒÚ‡ÌÓ‚ÓÍ
2
„ÓÓ‰Ó‚ 1, 2,…, N.
åÂÚË͇ D ̇ N ÓÔ‰ÂÎflÂÚÒfl ‚ ÚÂÏË̇ı ‡Á΢Ëfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ÂÒÎË
χ¯ÛÚ˚ T, T' ∈ N ‡Á΢‡˛ÚÒfl ‚ m ·‡ı, ÚÓ D(T, T') = m.
k-OPT ÔÂÓ·‡ÁÓ‚‡ÌË χ¯ÛÚ‡ í ÔÓÎÛ˜‡˛Ú ÔÓÒ‰ÒÚ‚ÓÏ Û‰‡ÎÂÌËfl k ·Â ËÁ í
Ë ÔÓÒÚÓÂÌËfl ‰Û„Ëı ·Â. å‡¯ÛÚ T', ÔÓÎÛ˜‡ÂÏ˚È ËÁ í Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ k-OPT
ÔÂÓ·‡ÁÓ‚‡ÌËfl, ̇Á˚‚‡ÂÚÒfl k-OPTÓÏ ‰Îfl í . ê‡ÒÒÚÓflÌË d ̇ ÏÌÓÊÂÒÚ‚Â N
ÓÔ‰ÂÎflÂÚÒfl ‚ ÚÂÏË̇ı 2-OPT ÔÂÓ·‡ÁÓ‚‡ÌËÈ: d(T, T') ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ i,
238
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
‰Îfl ÍÓÚÓÓ„Ó ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ËÁ i 2-OPT ÔÂÓ·‡ÁÓ‚‡ÌËÈ, ÔÂ‚Ӊfl˘‡fl í ‚ T'.
ÑÎfl β·˚ı T, T' ∈ N ËÏÂÂÚ ÏÂÒÚÓ ÌÂ‡‚ÂÌÒÚ‚Ó d(T, T') ≤ D(T, T') (ÒÏ., ̇ÔËÏÂ,
[MaMo95]).
ê‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÔÓ‰„‡Ù‡ÏË
ëڇ̉‡ÚÌÓ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓ‰„‡ÙÓ‚ Ò‚flÁÌÓ„Ó „‡Ù‡ G = (V, E)
ÓÔ‰ÂÎflÂÚÒfl ͇Í
min{d path (u, v) : u ∈ V ( F ), v ∈ V ( H )}
‰Îfl β·˚ı ÔÓ‰„‡ÙÓ‚ F, H „‡Ù‡ G. ÑÎfl β·˚ı ÔÓ‰„‡ÙÓ‚ F, H ÒËθÌÓ Ò‚flÁÌÓ„Ó
Ó„‡Ù‡ D = (V, E) Òڇ̉‡ÚÌÓ ͂‡ÁË‡ÒÒÚÓflÌË ÓÔ‰ÂÎflÂÚÒfl ͇Í
min{ddpath (u, v) : u ∈V ( F ), v ∈V ( H )}.
ê‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ·‡ ̇ ÏÌÓÊÂÒÚ‚Â Sk(G) ‚ÒÂı ·ÂÌÓ-Ë̉ۈËÓ‚‡ÌÌ˚ı
ÔÓ‰„‡ÙÓ‚ Ò k ·‡ÏË ‚ Ò‚flÁÌÓÏ „‡Ù G ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ
‚‡˘ÂÌËÈ ·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl F ∈ Sk(G) ‚ H ∈ Sk(G). ÉÓ‚ÓflÚ,
˜ÚÓ H ÔÓÎÛ˜‡ÂÚÒfl ËÁ F ‚‡˘ÂÌËÂÏ ·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ‡Á΢Ì˚ ‚Â¯ËÌ˚ u, v
Ë w ‚ G, Ú‡ÍË ˜ÚÓ uv ∈ E(F), uw ∈ E(G) Ë H = F – uv + uw.
ê‡ÒÒÚÓflÌË ÒÏ¢ÂÌËfl ·‡ ̇ ÏÌÓÊÂÒÚ‚Â S k(G) ‚ÒÂı ·ÂÌÓ-Ë̉ۈËÓ‚‡ÌÌ˚ı
ÔÓ‰„‡ÙÓ‚ Ò k ·‡ÏË ‚ Ò‚flÁÌÓÏ „‡Ù G ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ
ÒÏ¢ÂÌËÈ ·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl F ∈ Sk(G) ‚ H ∈ Sk(G). ÉÓ‚ÓflÚ,
˜ÚÓ ç ÔÓÎÛ˜‡ÂÚÒfl ËÁ F ÒÏ¢ÂÌËÂÏ ·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ‡Á΢Ì˚ ‚Â¯ËÌ˚ u, v
Ë w ‚ G, Ú‡ÍË ˜ÚÓ uv ∈ E(F), uw ∈ E(G)\E(F) Ë H = F – uv + uw.
ê‡ÒÒÚÓflÌË ÔÂÂÏ¢ÂÌËfl ·‡ ̇ ÏÌÓÊÂÒÚ‚Â Sk(G) ‚ÒÂı ·ÂÌÓ-Ë̉ۈËÓ‚‡ÌÌ˚ı ÔÓ‰„‡ÙÓ‚ Ò k ·‡ÏË ‚ „‡Ù G (Ì ӷflÁ‡ÚÂθÌÓ Ò‚flÁÌÓÏ) ÓÔ‰ÂÎflÂÚÒfl
Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÔÂÂÏ¢ÂÌËÈ ·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl F ∈
∈ S k(G) ‚ H ∈ S k(G). ÉÓ‚ÓflÚ, ˜ÚÓ ç ÔÓÎÛ˜‡ÂÚÒfl ËÁ F ÔÂÂÏ¢ÂÌËflÏ ·‡, ÂÒÎË
ÒÛ˘ÂÒÚ‚Û˛Ú (Ì ӷflÁ‡ÚÂθÌÓ ‡Á΢Ì˚Â) ‚Â¯ËÌ˚ u, v, w Ë x ‚ G, Ú‡ÍË ˜ÚÓ
uv ∈ E(F), wx ∈ E(G)\E(F) Ë H = F – uv + w x. ê‡ÒÒÚÓflÌË ÔÂÂÏ¢ÂÌËfl ·‡ –
ÏÂÚË͇ ̇ S k(G). ÖÒÎË F Ë H ËÏÂ˛Ú s Ó·˘Ëı e·Â, ÚÓ ÓÌÓ ‡‚ÌÓ k – s.
ê‡ÒÒÚÓflÌË Ò͇˜Í‡ ·‡ (ÍÓÚÓÓ ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÓÊÂÚ ÔËÌËχڸ Á̇˜ÂÌËÂ
∞) ̇ ÏÌÓÊÂÒÚ‚Â S k(G) ‚ÒÂı ·ÂÌÓ-Ë̉ۈËÓ‚‡ÌÌ˚ı ÔÓ‰„‡ÙÓ‚ Ò k e·‡ÏË „‡Ù‡
G (Ì ӷflÁ‡ÚÂθÌÓ Ò‚flÁÌÓ„Ó) ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ Ò͇˜ÍÓ‚ ·‡,
ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl F ∈ S k(G) ‚ H ∈ S k(G). ÉÓ‚ÓflÚ, ˜ÚÓ H ÔÓÎÛ˜‡ÂÚÒfl
ËÁ F Ò͇˜ÍÓÏ ·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍË ˜ÂÚ˚ ‡Á΢Ì˚ ‚Â¯ËÌ˚ u, v, w Ë x
‚ G, ˜ÚÓ uv ∈ E(F), wx ∈ E(G)\E(F) Ë H = F – uv + wx.
15.4. êÄëëíéüçàü çÄ ÑÖêÖÇúüï
èÛÒÚ¸ í – ÍÓÌ‚Ó ‰Â‚Ó, Ú.Â. ‰Â‚Ó, Û ÍÓÚÓÓ„Ó Ó‰Ì‡ ËÁ Â„Ó ‚Â¯ËÌ ‚˚·‡Ì‡ ‚
͇˜ÂÒÚ‚Â ÍÓÌfl. ÉÎÛ·Ë̇ ‚Â¯ËÌ˚ v, depth(v) – ˝ÚÓ ˜ËÒÎÓ e·Â ̇ ÔÛÚË ÓÚ v Í
ÍÓÌ˛. ÇÂ¯Ë̇ v ̇Á˚‚‡ÂÚÒfl Ó‰ËÚÂθÒÍÓÈ ‰Îfl ‚Â¯ËÌ˚ u, v = par(u), ÂÒÎË ÓÌË
ÒÏÂÊÌ˚Â Ë ËÏÂÂÚ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó depth(u) = depth(v) + 1; ‚ ˝ÚÓÏ ÒÎÛ˜‡Â u ̇Á˚‚‡ÂÚÒfl ‰Ó˜ÂÌÂÈ ‰Îfl v. Ñ‚Â ‚Â¯ËÌ˚ ̇Á˚‚‡˛ÚÒfl ÒÂÒÚ‡ÏË, ÂÒÎË ËÏÂ˛Ú Ó‰ÌÓ„Ó Ë
ÚÓ„Ó Ê Ó‰ËÚÂÎfl. ëÚÂÔÂ̸ ‚˚ıÓ‰‡ ‚Â¯ËÌ˚ – ˝ÚÓ ÍÓ΢ÂÒÚ‚Ó Â ‰Ó˜ÂÌËı ‚Â¯ËÌ. T(v) ÂÒÚ¸ ÔÓ‰‰ÂÂ‚Ó ‰Â‚‡ í Ò ÍÓÌÂÏ ‚ ‚Â¯ËÌ v ∈ V(T). ÖÒÎË w ∈ V(T(v)),
ÚÓ v fl‚ÎflÂÚÒfl Ô‰ÍÓÏ ‰Îfl w, ‡ w – ÔÓÚÓÏÍÓÏ ‰Îfl v; nca(u, v) – ·ÎËʇȯËÈ Ó·˘ËÈ
Ô‰ÓÍ ‰Îfl ‚Â¯ËÌ u Ë v. ÑÂÂ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÔÓϘÂÌÌ˚Ï ‰Â‚ÓÏ, ÂÒÎË Í‡Ê‰‡fl ËÁ
239
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
Â„Ó ‚Â¯ËÌ Ó·ÓÁ̇˜Â̇ ÒËÏ‚ÓÎÓÏ Á‡‰‡ÌÌÓ„Ó ÍÓ̘ÌÓ„Ó ‡ÎÙ‡‚ËÚ‡ . ÑÂÂ‚Ó í
̇Á˚‚‡ÂÚÒfl ÛÔÓfl‰Ó˜ÂÌÌ˚Ï ‰Â‚ÓÏ, ÂÒÎË Á‡‰‡Ì ÔÓfl‰ÓÍ (Ò΂‡ ̇Ô‡‚Ó) ̇
‚Â¯Ë̇ı-ÒÂÒÚ‡ı.
ç‡ ÏÌÓÊÂÒÚ‚Â rlo ‚ÒÂı ÍÓÌ‚˚ı ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚ ‰ÓÔÛÒ͇˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÓÔÂ‡ˆËË ‰‡ÍÚËÓ‚‡ÌËfl:
èÂÂË̉ÂÍÒ‡ˆËfl – ËÁÏÂÌÂÌË ÏÂÚÍË ‚Â¯ËÌ˚ v.
쉇ÎÂÌË – Û‰‡ÎÂÌË ÌÂÍÓÌ‚ÓÈ ‚Â¯ËÌ˚ v Ò Ó‰ËÚÂÎÂÏ v', Ú‡Í ˜ÚÓ ‰Ó˜ÂÌËÂ
˝ÎÂÏÂÌÚ˚ v ÒÚ‡ÌÓ‚flÚÒfl ‰Ó˜ÂÌËÏË ˝ÎÂÏÂÌÚ‡ÏË v'; ˝ÚË ‰Ó˜ÂÌË ˝ÎÂÏÂÌÚ˚ ‚ÒÚ‡‚Îfl˛ÚÒfl ‚ÏÂÒÚÓ v Í‡Í ÛÔÓfl‰Ó˜ÂÌ̇fl Ò΂‡ ̇Ô‡‚Ó ÔÓ‰ÔÓÒΉӂÚÂθÌÓÒÚ¸ ‰Ó˜ÂÌËı
˝ÎÂÏÂÌÚÓ‚ v'.
ÇÒÚ‡‚͇ – ‰ÓÔÓÎÌÂÌËÂ Í Û‰‡ÎÂÌ˲; ‚ÒÚ‡‚͇ ‚Â¯ËÌ˚ v ‚ ͇˜ÂÒÚ‚Â ‰Ó˜ÂÌ„Ó
˝ÎÂÏÂÌÚ‡ v', ˜ÚÓ ‰Â·ÂÚ v Ó‰ËÚÂÎÂÏ ÔÓÒÎÂ‰Û˛˘ÂÈ ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ‰Ó˜ÂÌËı ˝ÎÂÏÂÌÚÓ‚ v'.
ÑÎfl ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚ ÓÔÂ‡ˆËË ‰‡ÍÚËÓ‚‡ÌËfl ÓÔ‰ÂÎfl˛ÚÒfl ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ, ÌÓ ÓÔÂ‡ˆËË ‚ÒÚ‡‚ÍË Ë Û‰‡ÎÂÌËfl ‰ÂÈÒÚ‚Û˛Ú Ì‡ ÔÓ‰ÏÌÓÊÂÒÚ‚Â, ‡ ÌÂ
̇ ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚË.
è‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ÙÛÌ͈Ëfl ˆÂÌ˚, ÓÔ‰ÂÎflÂχfl ‰Îfl ͇ʉÓÈ ÓÔÂ‡ˆËË ‰‡ÍÚËÓ‚‡ÌËfl, ‡ ˆÂ̇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÓÔÂ‡ˆËÈ ‰‡ÍÚËÓ‚‡ÌËfl
ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÒÛÏχ ˆÂÌ ˝ÚËı ÓÔÂ‡ˆËÈ.
ìÔÓfl‰Ó˜ÂÌÌÓ ÓÚÓ·‡ÊÂÌË ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl – ÒÔˆˇθ̇fl
ËÌÚÂÔÂÚ‡ˆËfl ÓÔÂ‡ˆËÈ ‰‡ÍÚËÓ‚‡ÌËfl. îÓχθÌÓ, ̇ÁÓ‚ÂÏ ÚÓÈÍÛ (M, T1, T2)
Í‡Í ÛÔÓfl‰Ó˜ÂÌÌ˚Ï ÓÚÓ·‡ÊÂÌËÂÏ ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl ‰Â‚‡ í1 ‚
‰ÂÂ‚Ó í2, T 1 , T 2 ∈ rlo, ÂÒÎË M ⊂ V(T 1 ) × V(T 2 ) Ë, ‰Îfl β·˚ı (v1, w 1 ), (v2 , w 2 ) ∈ M
‚˚ÔÓÎÌflÂÚÒfl ÒÎÂ‰Û˛˘Â ÛÒÎÓ‚ËÂ: v1 = v2 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ w 1 = w 2
(ÛÒÎÓ‚Ë ‚Á‡ËÏÌÓÈ Ó‰ÌÓÁ̇˜ÌÓÒÚË), v1 fl‚ÎflÂÚÒfl Ô‰ÍÓÏ ‰Îfl v2 ÚÓ„‰‡ Ë ÚÓθÍÓ
ÚÓ„‰‡, ÍÓ„‰‡ w1 fl‚ÎflÂÚÒfl Ô‰ÍÓÏ w2 (ÛÒÎÓ‚Ë Ô‰ÍÓ‚), v 1 ̇ıÓ‰ËÚÒfl Ò΂‡ ÓÚ v2
ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ w 1 ̇ıÓ‰ËÚÒfl Ò΂‡ ÓÚ w2 (ÛÒÎÓ‚Ë ÒÂÒÚÂ).
ÉÓ‚ÓflÚ, ˜ÚÓ ‚Â¯Ë̇ v ‚ T 1 Ë T2 ÚÓÌÛÚ‡ ÎËÌËÂÈ ‚ å , ÂÒÎË v ÔÓfl‚ÎflÂÚÒfl
‚ ÌÂÍÓÚÓÓÈ Ô‡ ËÁ å. èÛÒÚ¸ N1 Ë N2 – ÏÌÓÊÂÒÚ‚‡ ‚Â¯ËÌ ‰Â‚¸Â‚ T 1 Ë T2 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÍÓÚÓ˚ Ì ÚÓÌÛÚ˚ ÎËÌËflÏË ‚ å.
ñÂ̇ å Á‡‰‡ÂÚÒfl ͇Í
γ (M) =
γ ( v → w) +
γ (v → λ) +
γ (λ → w ), „‰Â γ ( a → b) = γ ( a, b) – ˆÂ̇ ÓÔÂ-
∑
( v , w ) ∈M
∑
v ∈N1
∑
w ∈N 2
‡ˆËË ‰‡ÍÚËÓ‚‡ÌËfl a → b, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ÔÂÂË̉ÂÍÒ‡ˆËÂÈ, ÂÒÎË a, b ∈ ,
Û‰‡ÎÂÌËÂÏ, ÂÒÎË b = λ, Ë ‚ÒÚ‡‚ÍÓÈ, ÂÒÎË a = λ. á‰ÂÒ¸ ÒËÏ‚ÓÎ λ ∉ ‚˚ÒÚÛÔ‡ÂÚ Í‡Í
ÒÔˆˇθÌ˚È ÒËÏ‚ÓÎ Ôӷ·, Ë γ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â ∪ λ (ËÒÍβ˜‡fl Á̇˜ÂÌË γ(λ, λ)).
ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl ‰Â‚‡
ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl ‰Â‚‡ ([Tai79]) ̇ ÏÌÓÊÂÒÚ‚Â rlo ‚ÒÂı ÍÓÌ‚˚ı
ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚ ÓÔ‰ÂÎflÂÚÒfl ‰Îfl β·˚ı T1, T 2 ∈ rlo ͇Í
ÏËÌËχθ̇fl ˆÂ̇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÓÔÂ‡ˆËÈ ‰‡ÍÚËÓ‚‡ÌËfl (ÔÂÂË̉ÂÍÒ‡ˆËÈ,
‚ÒÚ‡‚ÓÍ Ë Û‰‡ÎÂÌËÈ), ÔÂ‚Ӊfl˘ÂÈ T 1 ‚ T2.
Ç ÚÂÏË̇ı ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl ˝ÚÓ
‡ÒÒÚÓflÌË ‡‚ÌÓ min ( M , T1 , T2 ) γ ( M ), „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÛÔÓfl‰Ó˜ÂÌÌ˚Ï
ÓÚÓ·‡ÊÂÌËflÏ ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl (M, T1 , T 2 ).
ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl ‰Â‚‡ ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ Ì‡
ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÍÓÌ‚˚ı ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚.
240
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌË ëÂÎÍÓÛ
ê‡ÒÒÚÓflÌË ëÂÎÍÓÛ (ËÎË ‡ÒÒÚÓflÌË ÌËÒıÓ‰fl˘Â„Ó ‰‡ÍÚËÓ‚‡ÌËfl, ‡ÒÒÚÓflÌËfl
‰‡ÍÚËÓ‚‡ÌËfl 1-ÒÚÂÔÂÌË) ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â rlo ‚ÒÂı ÍÓÌ‚˚ı
ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı T1, T2 ∈ rlo
Í‡Í ÏËÌËχθ̇fl ˆÂ̇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÓÔÂ‡ˆËÈ ‰‡ÍÚËÓ‚‡ÌËfl (ÔÂÂË̉ÂÍÒ‡ˆËÈ, ‚ÒÚ‡‚ÓÍ Ë Û‰‡ÎÂÌËÈ), ÔÂ‚Ӊfl˘ÂÈ T 1 ‚ T2, ÂÒÎË ‚ÒÚ‡‚ÍË Ë Û‰‡ÎÂÌËfl
‡ÒÔÓÒÚ‡Ìfl˛ÚÒfl ÚÓθÍÓ Ì‡ ÎËÒÚ¸fl ‰Â‚¸Â‚ ([Selk77]). äÓÂ̸ ‰Â‚‡ T1 ‰ÓÎÊÂÌ
ÓÚÓ·‡Ê‡Ú¸Òfl ‚ ÍÓÂ̸ ‰Â‚‡ T 2 Ë, ÂÒÎË ‚Â¯Ë̇ v ÔÓ‰ÎÂÊËÚ Û‰‡ÎÂÌ˲ (‚ÒÚ‡‚ÍÂ),
ÚÓ ÔÓ‰‰ÂÂ‚Ó Ò ÍÓÌÂÏ ‚ v, ÂÒÎË Ú‡ÍÓ‚Ó ËÏÂÂÚÒfl, ÔÓ‰ÎÂÊËÚ Û‰‡ÎÂÌ˲ (‚ÒÚ‡‚ÍÂ).
Ç ÚÂÏË̇ı ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl ‡ÒÒÚÓflÌË ëÂÎÍÓÛ ‡‚ÌÓ min ( M , T1 , T2 ) γ ( M ), „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÓÚÓ·‡ÊÂÌËflÏ
‡ÒÒÚÓflÌËfl ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ‰‡ÍÚËÓ‚‡ÌËfl (M, T1, T2 ), Û‰Ó‚ÎÂÚ‚Ófl˛˘ËÏ ÒÎÂ‰Û˛˘ÂÏÛ ÛÒÎӂ˲: ÂÒÎË (v, w) ∈ M , „‰Â ÌË v, ÌË w Ì fl‚Îfl˛ÚÒfl ÍÓÌflÏË, ÚÓ (par(v),
par(w)) ∈ M.
ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl Ò Ó„‡Ì˘ÂÌËÂÏ
ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl Ò Ó„‡Ì˘ÂÌËÂÏ (ËÎË ‡ÒÒÚÓflÌË „·ÏÂÌÚËÓ‚‡ÌÌÓ„Ó ‰‡ÍÚËÓ‚‡ÌËfl) ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â rlo ‚ÒÂı ÍÓÌ‚˚ı ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı T1, T2 ∈ rlo ͇Í
ÏËÌËχθ̇fl ˆÂ̇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÓÔÂ‡ˆËÈ ‰‡ÍÚËÓ‚‡ÌËfl (ÔÂÂË̉ÂÍÒ‡ˆËÈ,
‚ÒÚ‡‚ÓÍ Ë Û‰‡ÎÂÌËÈ), ÔÂ‚Ӊfl˘ÂÈ T 1 ‚ T 2 , Ò ÚÂÏ Ó„‡Ì˘ÂÌËÂÏ, ˜ÚÓ ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl ÔÓ‰‰Â‚¸fl ‰ÓÎÊÌ˚ ÓÚÓ·‡Ê‡Ú¸Òfl ̇ ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl ÔÓ‰‰Â‚¸fl.
Ç ÚÂÏË̇ı ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl ‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl Ò Ó„‡Ì˘ÂÌËÂÏ ‡‚ÌÓ min ( M , T1 , T2 ) γ ( M ), „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl
ÔÓ ‚ÒÂÏ ÛÔÓfl‰Ó˜ÂÌÌ˚Ï ÓÚÓ·‡ÊÂÌËflÏ ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl (M, T1 , T 2 ),
Û‰Ó‚ÎÂÚ‚Ófl˛˘ËÏ ÒÎÂ‰Û˛˘ÂÏÛ ÛÒÎӂ˲: ‰Îfl ‚ÒÂı (v1 , w 1 ), (v2, w 2 ), (v3, w 3 ) ∈ M,
nca(v1 , v2 ) fl‚ÎflÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï Ô‰ÍÓÏ v3 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ nca(w 1 , w2 )
fl‚ÎflÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï Ô‰ÍÓÏ w 3 .
ùÚÓ ‡ÒÒÚÓflÌË ˝Í‚Ë‚‡ÎÂÌÚÌÓ ‡ÒÒÚÓflÌ˲ ‰‡ÍÚËÓ‚‡ÌËfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ
ÒÚÛÍÚÛÂ, ÓÔ‰ÂÎÂÌÌÓÏÛ Í‡Í min ( M , T1 , T2 ) γ ( M ), „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ
ÛÔÓfl‰Ó˜ÂÌÌ˚Ï ÓÚÓ·‡ÊÂÌËflÏ ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl (M, T1 , T 2 ), Û‰Ó‚ÎÂÚ‚Ófl˛˘ËÏ ÒÎÂ‰Û˛˘ÂÏÛ ÛÒÎӂ˲: ‰Îfl ‚ÒÂı (v1 , w1), (v2 , w2), (v3 , w3) ∈ M, Ú‡ÍËı ˜ÚÓ ÌË
Ӊ̇ ËÁ v1 , v2 Ë v3 Ì fl‚ÎflÂÚÒfl Ô‰ÍÓÏ ‰Îfl ‰Û„Ëı, nca(v1, v2 ) = nca(v1 , v3 ) ÚÓ„‰‡ Ë
ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ nca(w1, w 2 ) = nca(w 1 , w 3 )
ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl ‰ËÌ˘ÌÓÈ ˆÂÌ˚
ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl ‰ËÌ˘ÌÓÈ ˆÂÌ˚ – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â rlo ‚ÒÂı
ÍÓÌ‚˚ı ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı
T 1 , T 2 ∈ rlo Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÓÔÂ‡ˆËÈ ‰‡ÍÚËÓ‚‡ÌËfl (ÔÂÂË̉ÂÍÒ‡ˆËÂÈ,
‚ÒÚ‡‚ÓÍ Ë Û‰‡ÎÂÌËÈ), ÔÂ‚Ӊfl˘Ëı T 1 ‚ T2.
ê‡ÒÒÚÓflÌË ‚˚‡‚ÌË‚‡ÌËfl
ê‡ÒÒÚÓflÌË ‚˚‡‚ÌË‚‡ÌËfl ([JWZ94]) ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â rlo ‚ÒÂı
ÍÓÌ‚˚ı ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı
T 1 , T2 ∈ rlo Í‡Í ÏËÌËχθ̇fl ˆÂ̇ ‚˚‡‚ÌË‚‡ÌËfl T1 Ë T 2 . éÌÓ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÒÚÓflÌ˲ „·ÏÂÌÚËÓ‚‡ÌÌÓ„Ó ‰‡ÍÚËÓ‚‡ÌËfl, „‰Â ‚Ò ‚ÒÚ‡‚ÍË ‰ÓÎÊÌ˚ Ô‰¯ÂÒÚ‚Ó‚‡Ú¸ Û‰‡ÎÂÌËflÏ.
ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ Ï˚ ‚ÒÚ‡‚ÎflÂÏ ÔÓ·ÂÎ˚, Ú.Â. ‚Â¯ËÌ˚, Ó·ÓÁ̇˜ÂÌÌ˚ ÒËÏ‚ÓÎÓÏ Ôӷ· λ, ‚ ‰Â‚¸fl T 1 Ë T 2 Ú‡Í, ˜ÚÓ·˚ ÓÌË ÒÚ‡ÎË ËÁÓÏÓÙÌ˚ ÔË Ë„ÌÓËÓ-
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
241
‚‡ÌËË Ë̉ÂÍÒÓ‚; ÔÓÎÛ˜ÂÌÌ˚ ‚ ÂÁÛθڇÚ ‰Â‚¸fl ̇Í·‰˚‚‡˛ÚÒfl ‰Û„ ̇ ‰Û„‡ Ë
‰‡˛Ú ‚˚‡‚ÌË‚‡ÌË T A , – ‰Â‚Ó, ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ‚Â¯Ë̇ ÔÓÎÛ˜Â̇ Ô‡ÓÈ
Ë̉ÂÍÒÓ‚. ñÂ̇ TA – ÒÛÏχ ˆÂÌ ‚ÒÂı Ô‡ ÔÓÚË‚ÓÔÓÎÓÊÂÌÌ˚ı Ë̉ÂÍÒÓ‚ ‚ TA.
ê‡ÒÒÚÓflÌË ‡Á·ËÂÌËÈ-ÒÓ‚Ï¢ÂÌËÈ
ê‡ÒÒÚÓflÌË ‡Á·ËÂÌËÈ-ÒÓ‚Ï¢ÂÌËÈ ([ChLu85]) ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â rlo
‚ÒÂı ÍÓÌ‚˚ı ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı T1 ,
T 2 ∈ rlo Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ‡Á·ËÂÌËÈ Ë ÒÓ‚Ï¢ÂÌËÈ ‚Â¯ËÌ, ÌÂÓ·ıÓ‰ËÏ˚ı
‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl T 1 ‚ T2.
ê‡ÒÒÚÓflÌË 2-ÒÚÂÔÂÌË
ê‡ÒÒÚÓflÌË 2-ÒÚÂÔÂÌË ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â l ‚ÒÂı ÔÓϘÂÌÌ˚ı ‰Â‚¸Â‚
(ÔÓϘÂÌÌ˚ı Ò‚Ó·Ó‰Ì˚ı ‰Â‚¸Â‚), ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÏËÌËχθÌÓ ‚Á‚¯ÂÌÌÓÂ
˜ËÒÎÓ ÓÔÂ‡ˆËÈ ‰‡ÍÚËÓ‚‡ÌËfl (ÔÂÂË̉ÂÍÒ‡ˆËÂÈ, ‚ÒÚ‡‚ÓÍ Ë Û‰‡ÎÂÌËÈ), ÔÂ‚Ӊfl˘Ëı T1 ‚ T2, ÂÒÎË Î˛·‡fl ‚ÒÚ‡‚ÎflÂχfl (Û‰‡ÎflÂχfl) ‚Â¯Ë̇ ËÏÂÂÚ Ì ·ÓΠ‰‚Ûı
ÒÓÒ‰ÌËı ‚Â¯ËÌ. í‡Í‡fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ÂÒÚÂÒÚ‚ÂÌÌ˚Ï ‡Ò¯ËÂÌËÂÏ ‡ÒÒÚÓflÌËfl
‰‡ÍÚËÓ‚‡ÌËfl ‰Â‚‡ Ë ‡ÒÒÚÓflÌËfl ëÂÎÍÓÛ.
îËÎÓ„ÂÌÂÚ˘ÂÒÍÓ ï-‰ÂÂ‚Ó – ÌÂÛÔÓfl‰Ó˜ÂÌÌÓ ‰ÂÂ‚Ó ·ÂÁ ÍÓÌfl Ò ÏÌÓÊÂÒÚ‚ÓÏ
ÔÓϘÂÌÌ˚ı ÎËÒڸ‚ ï, Ì Ëϲ˘Â ‚Â¯ËÌ ÔÓfl‰Í‡ 2. ÖÒÎË Í‡Ê‰‡fl ‚ÌÛÚÂÌÌflfl
‚Â¯Ë̇ ËÏÂÂÚ ÔÓfl‰ÓÍ 3, ÚÓ ‰ÂÂ‚Ó Ì‡Á˚‚‡ÂÚÒfl ·Ë̇Ì˚Ï (ËÎË ‚ÔÓÎÌ ‡Á¯ÂÌÌ˚Ï).
ê‡ÁÂÁ Ä|Ç ÏÌÓÊÂÒÚ‚‡ ï ÂÒÚ¸ ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡ ï ̇ ‰‚‡ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç
(ÒÏ. èÓÎÛÏÂÚË͇ ‡ÁÂÁ‡). 쉇ÎÂÌË ·‡  ËÁ ÙËÎÓ„ÂÌÂÚ˘ÂÒÍÓ„Ó ï-‰Â‚‡ ‚ΘÂÚ ‡ÁÂÁ ÏÌÓÊÂÒÚ‚‡ ÎËÒڸ‚ ï, ̇Á˚‚‡ÂÏ˚È ‡ÁÂÁÓÏ, ‡ÒÒÓˆËËÓ‚‡ÌÌ˚Ï Ò Â.
åÂÚË͇ êÓ·ËÌÁÓ̇–îÓÛΉ҇
åÂÚË͇ êÓ·ËÌÁÓ̇-îÓÛΉ҇ (ËÎË ÏÂÚË͇ ·ÎËÊ‡È¯Â„Ó ‡Á·ËÂÌËfl, ‡ÒÒÚÓflÌËÂ
‡ÁÂÁ‡) ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â (X) ‚ÒÂı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚,
ÓÔ‰ÂÎÂÌ̇fl ͇Í
1
1
1
Σ(T1 )∆Σ(T2 ) = Σ(T1 ) − Σ(T2 ) + Σ(T2 ) − Σ(T1 ) .
2
2
2
‰Îfl ‚ÒÂı T1, T2 ∈ (X), „‰Â Σ(T) – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ‚ÒÂı ‡ÁÂÁÓ‚ ï, ‡ÒÒÓˆËËÓ‚‡ÌÌ˚ı Ò
·‡ÏË í.
ÇÁ‚¯ÂÌ̇fl ÏÂÚË͇ êÓ·ËÌÁÓ̇–îÓÛΉ҇
ÇÁ‚¯ÂÌ̇fl ÏÂÚË͇ êÓ·ËÌÁÓ̇–îÓÛΉ҇ – ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â (X) ‚ÒÂı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑
w1 ( A | B) − w2 ( A | B)
A| B ∈Σ ( T1 ) ∪ Σ ( T2 )
‰Îfl ‚ÒÂı T1, T2 ∈ (X), „‰Â wi = ( w(e))e ∈E ( Ti ) – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÎÓÊËÚÂθÌ˚ı
·ÂÌ˚ı ‚ÂÒÓ‚ ï-‰Â‚‡ Ti, Σ(Ti) – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ‚ÒÂı ‡ÁÂÁÓ‚ ï, ‡ÒÒÓˆËËÓ‚‡ÌÌ˚ı Ò ·‡ÏË T i, Ë wi(A|B) – ‚ÂÒ ·‡, ‡ÒÒÓˆËËÓ‚‡ÌÌÓ„Ó Ò ‡ÁÂÁÓÏ Ä|Ç
ÏÌÓÊÂÒÚ‚‡ ïi, i = 1, 2.
åÂÚË͇ Ó·ÏÂ̇ ·ÎËʇȯËÏË ÒÓÒ‰flÏË
åÂÚË͇ Ó·ÏÂ̇ ·ÎËʇȯËÏË ÒÓÒ‰flÏË (ËÎË ÏÂÚË͇ ÍÓÒÒÓ‚Â‡) ÂÒÚ¸ ÏÂÚË͇
̇ ÏÌÓÊÂÒÚ‚Â (X) ‚ÒÂı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl ‚ÒÂı
T 1 , T 2 ∈ (X) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ Ó·ÏÂÌÓ‚ ·ÎËʇȯËÏË ÒÓÒ‰flÏË, ÌÂÓ·ıÓ‰ËÏ˚ı
‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl T 1 ‚ T2.
242
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
é·ÏÂÌ ·ÎËʇȯËÏË ÒÓÒ‰flÏË – Á‡ÏÂ̇ ‰‚Ûı ÔÓ‰‰Â‚¸Â‚ ‚ ‰Â‚Â, ÒÏÂÊÌ˚ı
Ò Ó‰ÌËÏ Ë ÚÂÏ Ê ‚ÌÛÚÂÌÌËÏ ·ÓÏ; ÔË ˝ÚÓÏ ÓÒڇθ̇fl ˜‡ÒÚ¸ ‰Â‚‡ ÓÒÚ‡ÂÚÒfl
·ÂÁ ËÁÏÂÌÂÌËÈ.
ê‡ÒÒÚÓflÌË ÛÔÓ˘ÂÌËfl Ë ÔÂÂÒ‡‰ÍË ÔÓ‰‰Â‚‡
ê‡ÒÒÚÓflÌË ÛÔÓ˘ÂÌËfl Ë ÔÂÂÒ‡‰ÍË ÔÓ‰‰Â‚‡ ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â (X)
‚ÒÂı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl ‚ÒÂı T1, T2 ∈ (X) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÛÔÓ˘ÂÌËÈ Ë ÔÂÂÒ‡‰ÍË ÔÓ‰‰Â‚‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl T1 ‚ T2.
èÂÓ·‡ÁÓ‚‡ÌË ÛÔÓ˘ÂÌËfl Ë ÔÂÂÒ‡‰ÍË ÔÓ‰‰Â‚‡ ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ‚ ÚË ˝Ú‡Ô‡:
Ò̇˜‡Î‡ ‚˚·Ë‡ÂÚÒfl Ë Û‰‡ÎflÂÚÒfl ·Ó uv ‰Â‚‡, ÚÂÏ Ò‡Ï˚Ï ‰ÂÂ‚Ó ‡Á‰ÂÎflÂÚÒfl ̇
‰‚‡ ÔÓ‰‰Â‚‡ T u (ÒÓ‰Âʇ˘Â u) Ë Tv (ÒÓ‰Âʇ˘Â v); Á‡ÚÂÏ ‚˚·Ë‡ÂÚÒfl Ë ÔÓ‰‡Á‰ÂÎflÂÚÒfl ·Ó ÔÓ‰‰Â‚‡ Tv, ˜ÚÓ ‰‡ÂÚ Ì‡Ï ÌÓ‚Û˛ ‚Â¯ËÌÛ w; ̇ÍÓ̈, ‚Â¯ËÌ˚ u Ë
w ÒÓ‰ËÌfl˛ÚÒfl ·ÓÏ, ‡ ‚Ò ‚Â¯ËÌ˚ ÒÚÂÔÂÌË ‰‚‡ Û‰‡Îfl˛ÚÒfl.
åÂÚË͇ ‡ÒÒ˜ÂÌËfl-‚ÓÒÒÚ‡ÌÓ‚ÎÂÌËfl ‰Â‚‡
åÂÚË͇ ‡ÒÒ˜ÂÌËfl-‚ÓÒÒÚ‡ÌÓ‚ÎÂÌËfl ‰Â‚‡ – ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â (X) ‚ÒÂı
ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl ‚ÒÂı T 1 , T 2 ∈ (X) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÔÂÓ·‡ÁÓ‚‡ÌËÈ ‡ÒÒ˜ÂÌËfl – ‚ÓÒÒÚ‡ÌÓ‚ÎÂÌËfl ‰Â‚‡, ÌÂÓ·ıÓ‰ËÏ˚ı
‰Îfl Ó·‡˘ÂÌËfl T 1 ‚ T2.
èÂÓ·‡ÁÓ‚‡ÌË ‡ÒÒ˜ÂÌËfl – ‚ÓÒÒÚ‡ÌÓ‚ÎÂÌËfl ‰Â‚‡ ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ‚ ÚË
˝Ú‡Ô‡: Ò̇˜‡Î‡ ‚˚·Ë‡ÂÚÒfl Ë Û‰‡ÎflÂÚÒfl ·Ó uv ‰Â‚‡, ÚÂÏ Ò‡Ï˚Ï ‰ÂÂ‚Ó ‡Á‰ÂÎflÂÚÒfl ̇ ‰‚‡ ÔÓ‰‰Â‚‡ T u (ÒÓ‰Âʇ˘Â u) Ë T v (ÒÓ‰Âʇ˘Â v); Á‡ÚÂÏ ‚˚·Ë‡˛ÚÒfl
Ë ÔÓ‰‡Á‰ÂÎfl˛ÚÒfl ·Ó ÔÓ‰‰Â‚‡ T v, ˜ÚÓ ‰‡ÂÚ Ì‡Ï ÌÓ‚Û˛ ‚Â¯ËÌÛ w, Ë ·Ó
ÔÓ‰‰Â‚‡ Tu, ˜ÚÓ ‰‡ÂÚ Ì‡Ï ÌÓ‚Û˛ ‚Â¯ËÌÛ z; ̇ÍÓ̈, ‚Â¯ËÌ˚ w Ë z ÒÓ‰ËÌfl˛ÚÒfl
·ÓÏ, ‡ ‚Ò ‚Â¯ËÌ˚ ÒÚÂÔÂÌË ‰‚‡ Û‰‡Îfl˛ÚÒfl.
ê‡ÒÒÚÓflÌË ͂‡ÚÂÚ‡
ê‡ÒÒÚÓflÌË ͂‡ÚÂÚ‡ ([EMM85]) – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â b (X) ‚ÒÂı ·Ë̇Ì˚ı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl ‚ÒÂı T1, T 2 ∈ b (X) ͇Í
˜ËÒÎÓ ÌÂÒÓ‚Ô‡‰‡˛˘Ëı Í‚‡ÚÂÚÓ‚ (ËÁ Ó·˘Â„Ó ˜ËÒ· ( n4 ) ‚ÓÁÏÓÊÌ˚ı Í‚‡ÚÂÚÓ‚) ‰Îfl
T 1 Ë T2 .
чÌÌÓ ‡ÒÒÚÓflÌË ÓÒÌÓ‚‡ÌÓ Ì‡ ÚÓÏ Ù‡ÍÚÂ, ˜ÚÓ ‰Îfl ˜ÂÚ˚Âı ÎËÒڸ‚ {1, 2, 3, 4}
‰Â‚‡ ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÓθÍÓ ÚË ‡Á΢Ì˚ı ÒÔÓÒÓ·‡ Ëı Ó·˙‰ËÌÂÌËfl ̇ ·Ë̇ÌÓÏ
ÔÓ‰‰Â‚Â: (12|34), (13|24) ËÎË (14|23): ÒËÏ‚ÓÎÓÏ (12|34) Ó·ÓÁ̇˜‡ÂÚÒfl ·Ë̇ÌÓÂ
‰ÂÂ‚Ó Ò ÏÌÓÊÂÒÚ‚ÓÏ ÎËÒڸ‚ {1, 2, 3, 4}, ËÁ ÍÓÚÓÓ„Ó ÔÓÒΠۉ‡ÎÂÌËfl ‚ÌÛÚÂÌÌ„Ó
·‡ ÔÓÎÛ˜‡˛ÚÒfl ‰Â‚¸fl Ò ÏÌÓÊÂÒÚ‚‡ÏË ÎËÒڸ‚ {1, 2} Ë {3, 4}.
ê‡ÒÒÚÓflÌË ÚËÔÎÂÚ‡
ê‡ÒÒÚÓflÌËÂÏ ÚËÔÎÂÚ‡ ([CPQ96]) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â b(X) ‚ÒÂı
·Ë̇Ì˚ı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl ‚ÒÂı T1, T2 ∈ b(X) ͇Í
˜ËÒÎÓ ÚÓÂÍ (ËÁ Ó·˘Â„Ó ˜ËÒ· ( 3n ) ‚ÓÁÏÓÊÌ˚ı ÚÓÂÍ), ÍÓÚÓ˚ ‡Á΢‡˛ÚÒfl (̇ÔËÏÂ, ÔÓ ‡ÒÔÓÎÓÊÂÌ˲ ÎËÒÚ‡) ‰Îfl T 1 Ë T2 .
ê‡ÒÒÚÓflÌË ÒÓ‚Â¯ÂÌÌÓ„Ó Ô‡ÓÒÓ˜ÂÚ‡ÌËfl
ê‡ÒÒÚÓflÌË ÒÓ‚Â¯ÂÌÌÓ„Ó Ô‡ÓÒÓ˜ÂÚ‡ÌËfl – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â b (X) ‚ÒÂı
ÍÓÌ‚˚ı ·Ë̇Ì˚ı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚ Ò ÏÌÓÊÂÒÚ‚ÓÏ ï n ÔÓϘÂÌÌ˚ı
ÎËÒڸ‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı T1 , T 2 ∈ b(X) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÔÂÂÒÚ‡ÌÓ‚ÓÍ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÚÓ„Ó, ˜ÚÓ·˚ ÔÂ‚ÂÒÚË ÒÓ‚Â¯ÂÌÌÓ ԇÓÒÓ˜ÂÚ‡ÌËÂ
‰Â‚‡ T 1 ‚ ÒÓ‚Â¯ÂÌÌÓ ԇÓÒÓ˜ÂÚ‡ÌË ‰Â‚‡ T 2 .
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
243
ÑÎfl ÏÌÓÊÂÒÚ‚‡ A = {1,..., 2k}, ÒÓÒÚÓfl˘Â„Ó ËÁ 2k ÚÓ˜ÂÍ, ÒÓ‚Â¯ÂÌÌ˚Ï Ô‡ÓÒÓ˜ÂÚ‡ÌËÂÏ A ̇Á˚‚‡ÂÚÒfl ‡Á·ËÂÌË A ̇ k Ô‡. äÓÌ‚Ó ·Ë̇ÌÓ ÙËÎÓ„ÂÌÂÚ˘ÂÒÍÓ ‰ÂÂ‚Ó Ò n ÔÓϘÂÌÌ˚ÏË ÎËÒÚ¸flÏË ËÏÂÂÚ ÍÓÂ̸ Ë n – 2 ‚ÌÛÚÂÌÌËÂ
‚Â¯ËÌ˚, ÓÚ΢‡˛˘ËıÒfl ÓÚ ÍÓÌfl. Ö„Ó ÏÓÊÌÓ ÓÚÓʉÂÒÚ‚ËÚ¸ Ò ÒÓ‚Â¯ÂÌÌ˚Ï
Ô‡ÓÒÓ˜ÂÚ‡ÌËÂÏ Ì‡ 2n – 2 ÓÚ΢‡˛˘ËıÒfl ÓÚ ÍÓÌfl ‚Â¯ËÌ Ò ÔÓÏÓ˘¸˛ ÒÎÂ‰Û˛˘Â„Ó
ÔÓÒÚÓÂÌËfl: Ó·ÓÁ̇˜ËÏ ‚ÌÛÚÂÌÌË ‚Â¯ËÌ˚ ˜ËÒ·ÏË n + 1,..., 2n – 2, ÔÓÒÚ‡‚Ë‚
̇ËÏÂ̸¯ËÈ Ëϲ˘ËÈÒfl Ë̉ÂÍÒ ‚ ͇˜ÂÒÚ‚Â Ó‰ËÚÂθÒÍÓÈ ‚Â¯ËÌ˚ Ô‡˚ ÔÓϘÂÌÌ˚ı ‰Ó˜ÂÌËı ˝ÎÂÏÂÌÚÓ‚, ËÁ ÍÓÚÓ˚ı Ó‰ËÌ ËÏÂÂÚ Ì‡ËÏÂ̸¯ËÈ Ë̉ÂÍÒ Ò‰Ë
ÔÓϘÂÌÌ˚ı ‰Ó˜ÂÌËı ˝ÎÂÏÂÌÚÓ‚; ÚÂÔÂ¸ Ô‡ÓÒÓ˜ÂÚ‡ÌË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÔÓÒ‰ÒÚ‚ÓÏ ÓÚÒÎÓÂÌËfl ÔÓ ‰‚Ó ‰Ó˜ÂÌËı ˝ÎÂÏÂÌÚÓ‚ ËÎË Ô‡ ‚Â¯ËÌ-ÒÂÒÚÂ.
åÂÚËÍË ‡ÚË·ÛÚË‚ÌÓ„Ó ‰Â‚‡
ÄÚË·ÛÚË‚Ì˚Ï ‰Â‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÚÓÈ͇ (V, E, α), „‰Â T = (V, E) – ËÒıÓ‰ÌÓÂ
‰ÂÂ‚Ó Ë α – ÙÛÌ͈Ëfl, ÍÓÚÓ‡fl ÒÚ‡‚ËÚ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ͇ʉÓÈ ‚Â¯ËÌ v ∈ V ‚ÂÍÚÓ
‡ÚË·ÛÚÓ‚ α(v). ÑÎfl ‰‚Ûı ‡ÚË·ÛÚË‚Ì˚ı ‰Â‚¸Â‚ (V1 , E1 , α) Ë (V2 , E2 , β) ‡ÒÒÏÓÚËÏ
ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÓÏÓÙËÁÏÓ‚ ÔÓ‰‰Â‚¸Â‚ ÏÂÊ‰Û ÌËÏË, Ú.Â. ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı
ËÁÓÏÓÙËÁÏÓ‚ f : H1 → H2, H 1 ⊂ V1 , H 2 ⊂ V2 ÏÂÊ‰Û Ëı Ë̉ۈËÓ‚‡ÌÌ˚ÏË
ÔÓ‰‰Â‚¸flÏË. ÖÒÎË Ì‡ ÏÌÓÊÂÒÚ‚Â ‡ÚË·ÛÚÓ‚ ËÏÂÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸ s, ÚÓ ÔÓ‰Ó·ÌÓÒÚ¸
ÏÂÊ‰Û ËÁÓÏÓÙÌ˚ÏË Ë̉ۈËÓ‚‡ÌÌ˚ÏË ÔÓ‰ ‰Â‚¸flÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
Ws ( f ) =
s(α( v), β( f ( v))). àÁÓÏÓÙËÁÏ φ Ò Ï‡ÍÒËχθÌÓÈ ÔÓ‰Ó·ÌÓÒÚ¸˛ Ws(φ) =
∑
v ∈H1
= W(φ) ̇Á˚‚‡ÂÚÒfl ËÁÓÏÓÙËÁÏÓÏ ‰Â‚‡ Ò Ï‡ÍÒËχθÌÓÈ ÔÓ‰Ó·ÌÓÒÚ¸˛.
ç‡ ÏÌÓÊÂÒÚ‚Â Tatt ‚ÒÂı ‡ÚË·ÛÚË‚Ì˚ı ‰Â‚¸Â‚ ËÒÔÓθÁÛ˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÔÓÎÛÏÂÚËÍË:
1. max{| V1 |,| V2 |} − W (φ);
2. | V1 | + | V2 | −2W (φ);
W ( φ)
3. 1 −
;
max{| V1 |,| V2 |}
W ( φ)
.
4. 1 −
| V1 | + | V2 | −W (φ)
éÌË ÒÚ‡ÌÓ‚flÚÒfl ÏÂÚË͇ÏË Ì‡ ÏÌÓÊÂÒÚ‚Â Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ‡ÚË·ÛÚË‚Ì˚ı ‰Â‚¸Â‚: ‰‚‡ ‡ÚË·ÛÚË‚Ì˚ı ‰Â‚‡ (V1 , E1 , α ) Ë (V2 , E2 , β) ̇Á˚‚‡˛ÚÒfl
˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÓÌË ‡ÚË·ÛÚË‚ÌÓ-ËÁÓÏÓÙÌ˚, Ú.Â. ÒÛ˘ÂÒÚ‚ÛÂÚ ËÁÓÏÓÙËÁÏ
g: V1 → V2 ÏÂÊ‰Û ‰Â‚¸flÏË T1 Ë T 2 , Ú‡ÍÓÈ ˜ÚÓ ‰Îfl β·ÓÈ ‚Â¯ËÌ˚ v ∈ V1 ËÏÂÂÚÒfl
α(v) = β(g(v)). íÓ„‰‡ |V1 | = |V2 | = W(g).
ê‡ÒÒÚÓflÌË ÔÓ‰‰Â‚‡ ̇˷Óθ¯Â„Ó ÒıÓ‰ÒÚ‚‡
ê‡ÒÒÚÓflÌË ÔÓ‰‰Â‚‡ ̇˷Óθ¯Â„Ó ÒıÓ‰ÒÚ‚‡ – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â í ‚ÒÂı
‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı T1, T 2 ∈ T Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÎËÒڸ‚,
ÍÓÚÓ˚ ÌÛÊÌÓ Û‰‡ÎËÚ¸ ‰Îfl ÔÓÎÛ˜ÂÌËfl ÔÓ‰‰Â‚‡ ̇˷Óθ¯Â„Ó ÒıÓ‰ÒÚ‚‡.
èÓ‰‰ÂÂ‚Ó ÒıÓ‰ÒÚ‚‡ (ËÎË Ó·˘Â ÛÔÓ˘ÂÌÌÓ ‰Â‚Ó) ‰‚Ûı ‰Â‚¸Â‚ ÂÒÚ¸ ‰Â‚Ó,
ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ ËÁ Ó·ÂËı ‰Â‚¸Â‚ ÔÓÒ‰ÒÚ‚ÓÏ Û‰‡ÎÂÌËfl ÎËÒڸ‚ Ò
Ó‰Ë̇ÍÓ‚˚Ï Ë̉ÂÍÒÓÏ.
É·‚‡ 16
ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl
íÂÓËfl ÍÓ‰ËÓ‚‡ÌËfl Óı‚‡Ú˚‚‡ÂÚ ‚ÓÔÓÒ˚ ‡Á‡·ÓÚÍË Ë Ò‚ÓÈÒÚ‚ Í Ó ‰ Ó ‚ Ò
ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ ‰Îfl Ó·ÂÒÔ˜ÂÌËfl ̇‰ÂÊÌÓÈ ÔÂ‰‡˜Ë ËÌÙÓχˆËË ÔÓ
Í‡Ì‡Î‡Ï Ò ‚˚ÒÓÍËÏ ÛÓ‚ÌÂÏ ¯ÛÏÓ‚ ‚ ÒËÒÚÂχı Ò‚flÁË Ë ÛÒÚÓÈÒÚ‚‡ı ı‡ÌÂÌËfl
‰‡ÌÌ˚ı. ñÂθ˛ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl fl‚ÎflÂÚÒfl ÔÓËÒÍ ÍÓ‰Ó‚, Ó·ÂÒÔ˜˂‡˛˘Ëı
·˚ÒÚÛ˛ ÔÂ‰‡˜Û Ë ‰ÂÒÍÓ‰ËÓ‚‡ÌË ËÌÙÓχˆËË, ÒÓ‰Âʇ˘Ëı ÏÌÓ„Ó Á̇˜ËÏ˚ı
ÍÓ‰Ó‚˚ı ÒÎÓ‚ Ë ÒÔÓÒÓ·Ì˚ı ËÒÔ‡‚ÎflÚ¸ ËÎË, ÔÓ Í‡ÈÌÂÈ ÏÂÂ, ӷ̇ÛÊË‚‡Ú¸ ÏÌÓ„Ó
ӯ˷ÓÍ. ùÚË ˆÂÎË fl‚Îfl˛ÚÒfl ‚Á‡ËÏÌÓ ËÒÍβ˜‡˛˘ËÏË; Ú‡ÍËÏ Ó·‡ÁÓÏ, ͇ʉÓ ËÁ
ÔËÎÓÊÂÌËÈ ËÏÂÂÚ Ò‚ÓÈ ÒÓ·ÒÚ‚ÂÌÌ˚È ıÓÓ¯ËÈ ÍÓ‰.
Ç Ó·Î‡ÒÚË ÍÓÏÏÛÌË͇ˆËÈ ÍÓ‰ÓÏ Ì‡Á˚‚‡ÂÚÒfl Ô‡‚ËÎÓ ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ÒÓÓ·˘ÂÌËÈ (̇ÔËÏÂ, ÔËÒÂÏ, ÒÎÓ‚ ËÎË Ù‡Á) ‚ ‰Û„Û˛ ÙÓÏÛ ËÎË Ô‰ÒÚ‡‚ÎÂÌËÂ, ÌÂ
Ó·flÁ‡ÚÂθÌÓ ÚÓ„Ó Ê ÚËÔ‡. äÓ‰ËÓ‚‡ÌË – ÔÓˆÂÒÒ, ÔÓÒ‰ÒÚ‚ÓÏ ÍÓÚÓÓ„Ó ËÒÚÓ˜ÌËÍ
(Ó·˙ÂÍÚ) ÓÒÛ˘ÂÒÚ‚ÎflÂÚ ÔÂÓ·‡ÁÓ‚‡ÌË ËÌÙÓχˆËË ‚ ‰‡ÌÌ˚Â, ÔÂ‰‡‚‡ÂÏ˚ Á‡ÚÂÏ
ÔÓÎÛ˜‡ÚÂβ (̇·Î˛‰‡ÚÂβ), ̇ÔËÏÂ, ÒËÒÚÂÏ ӷ‡·ÓÚÍË ‰‡ÌÌ˚ı. ÑÂÍÓ‰ËÓ‚‡ÌËÂ
fl‚ÎflÂÚÒfl Ó·‡ÚÌ˚Ï ÔÓˆÂÒÒÓÏ ÔÂÓ·‡ÁÓ‚‡ÌËfl ‰‡ÌÌ˚ı, ÔÓÒÚÛÔË‚¯Ëı ÓÚ ËÒÚÓ˜ÌË͇,
‚ ÔÓÌflÚÌ˚È ‰Îfl ÔÓÎÛ˜‡ÚÂÎfl ‚ˉ.
äÓ‰ Ò ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ – Ú‡ÍÓÈ ÍÓ‰, ‚ ÍÓÚÓÓÏ Í‡Ê‰˚È ÔÂ‰‡‚‡ÂÏ˚È
˝ÎÂÏÂÌÚ ‰‡ÌÌ˚ı ÔÓ‰˜ËÌflÂÚÒfl ÒÔˆˇθÌ˚Ï Ô‡‚ËÎ‡Ï ÔÓÒÚÓÂÌËfl, Ò ÚÂÏ ˜ÚÓ·˚
ÓÚÍÎÓÌÂÌËfl ÓÚ ‰‡ÌÌÓ„Ó ÔÓÒÚÓÂÌËfl ‚ ÔÓÎÛ˜ÂÌÌÓÏ Ò˄̇ΠÏÓ„ÎË ‡‚ÚÓχÚ˘ÂÒÍË
‚˚fl‚ÎflÚ¸Òfl Ë ÍÓÂÍÚËÓ‚‡Ú¸Òfl. í‡Í‡fl ÚÂıÌÓÎÓ„Ëfl ËÒÔÓθÁÛÂÚÒfl ‚ ÍÓÏÔ¸˛ÚÂÌ˚ı
̇ÍÓÔËÚÂθÌ˚ı ÛÒÚÓÈÒÚ‚‡ı, ̇ÔËÏÂ ‚ ‰Ë̇Ï˘ÂÒÍÓÈ Ô‡ÏflÚË RAM Ë ‚ ÒËÒÚÂχı
ÔÂ‰‡˜Ë ‰‡ÌÌ˚ı. ᇉ‡˜‡ ‚˚fl‚ÎÂÌËfl ӯ˷ÓÍ ¯‡ÂÚÒfl „Ó‡Á‰Ó ΄˜Â, ˜ÂÏ Á‡‰‡˜‡
ËÒÔ‡‚ÎÂÌËfl ӯ˷ÓÍ, Ë ‰Îfl ӷ̇ÛÊÂÌËfl ӯ˷ÓÍ ‚ ÌÓÏÂ‡ Í‰ËÚÌ˚ı ͇Ú
‰ÓÔÓÎÌËÚÂθÌÓ ‚‚Ó‰flÚÒfl Ӊ̇ ËÎË ·ÓΠ"ÍÓÌÚÓθÌ˚ı" ˆËÙ. ëÛ˘ÂÒÚ‚Û˛Ú ‰‚‡
ÓÒÌÓ‚Ì˚ı Í·ÒÒ‡ ÍÓ‰Ó‚ Ò ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ: ·ÎÓÍÓ‚˚ ÍÓ‰˚ Ë Ò‚ÂÚÓ˜Ì˚ ÍÓ‰˚.
ÅÎÓÍÓ‚˚È ÍÓ‰ (ËÎË ‡‚ÌÓÏÂÌ˚È ÍÓ‰) ‰ÎËÌ˚ n ̇‰ ‡ÎÙ‡‚ËÚÓÏ , Ó·˚˜ÌÓ
̇‰ ÍÓ̘Ì˚Ï ÔÓÎÂÏ q = {0,..., q – 1}, fl‚ÎflÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ C ⊂ n; ͇ʉ˚È
‚ÂÍÚÓ x ∈ C ̇Á˚‚‡ÂÚÒfl ÍÓ‰Ó‚˚Ï ÒÎÓ‚ÓÏ, M = | C | ̇Á˚‚‡ÂÚÒfl ‡ÁÏÂÓÏ ÍÓ‰‡; ‰Îfl
‰‡ÌÌÓÈ ÏÂÚËÍË d ̇ qn (Ó·˚˜ÌÓ ı˝ÏÏËÌ„Ó‚ÓÈ ÏÂÚËÍË d H) Á̇˜ÂÌË d* = d* (C) =
= minx,y ∈ C, x ≠ yd(x, y) ̇Á˚‚‡ÂÚÒfl ÏËÌËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ ÍÓ‰‡ ë. ÇÂÒ w(x)
ÍÓ‰Ó‚Ó„Ó ÒÎÓ‚‡ x ∈ C ÓÔ‰ÂÎflÂÚÒfl Í‡Í w(x) = d(x, 0). (n, M, d* )-ÍÓ‰ ÂÒÚ¸ q-Á̇˜Ì˚È
·ÎÓÍÓ‚˚È ÍÓ‰ ‰ÎËÌ˚ n, ‡ÁÏÂ‡ å Ë Ò ÏËÌËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ d*. ÅË̇Ì˚Ï
ÍÓ‰ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÍÓ‰ ̇‰ 2.
äÓ„‰‡ ÍÓ‰Ó‚˚ ÒÎÓ‚‡ ‚˚·Ë‡˛ÚÒfl Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ ‡ÒÒÚÓflÌË ÏÂʉÛ
ÌËÏË ·˚ÎÓ Ï‡ÍÒËχθÌ˚Ï, ÍÓ‰ ̇Á˚‚‡ÂÚÒfl ÍÓ‰ÓÏ Ò ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ, ÔÓÒÍÓθÍÛ ÌÂÁ̇˜ËÚÂθÌÓ ËÒ͇ÊÂÌÌ˚ ‚ÂÍÚÓ˚ ÏÓ„ÛÚ ·˚Ú¸ ‚ÓÒÒÚ‡ÌÓ‚ÎÂÌ˚ ÔÛÚÂÏ
‚˚·Ó‡ ·ÎËÊ‡È¯Â„Ó ÍÓ‰Ó‚Ó„Ó ÒÎÓ‚‡. äÓ‰ ë fl‚ÎflÂÚÒfl ÍÓ‰ÓÏ Ò ËÒÔ‡‚ÎÂÌËÂÏ t
ӯ˷ÓÍ (Ë ÍÓ‰ÓÏ Ò Ó·Ì‡ÛÊÂÌËÂÏ 2t ӯ˷ÓÍ), ÂÒÎË d* (C) ≥ 2t + 1. Ç ˝ÚÓÏ ÒÎÛ˜‡Â
͇ʉ‡fl ÓÍÂÒÚÌÓÒÚ¸ Ut(x) = {y ∈ C: d(x, y) ≤ t} ÚÓ˜ÍË x ∈ C Ì ÔÂÂÒÂ͇ÂÚÒfl Ò Ut(y)
‰Îfl β·ÓÈ ÚÓ˜ÍË y ∈ C, y ≠ x. ëÓ‚Â¯ÂÌÌ˚È ÍÓ‰ – ˝ÚÓ q-Á̇˜Ì˚È (n, M, 2t + 1)-ÍÓ‰,
É·‚‡ 16. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl
245
‰Îfl ÍÓÚÓÓ„Ó å ÒÙÂ U t(x) Ò ‡‰ËÛÒÓÏ t Ë ˆÂÌÚ‡ÏË ‚ ÍÓ‰Ó‚˚ı ÒÎÓ‚‡ı Á‡ÔÓÎÌfl˛Ú
ÔÓÎÌÓÒÚ¸˛ ‚Ò ÔÓÒÚ‡ÌÒÚ‚Ó Fqn ·ÂÁ ÔÂÂÒ˜ÂÌËÈ.
ÅÎÓÍÓ‚˚È ÍÓ‰ C ⊂ Fqn ̇Á˚‚‡ÂÚÒfl ÎËÌÂÈÌ˚Ï, ÂÒÎË ë fl‚ÎflÂÚÒfl ‚ÂÍÚÓÌ˚Ï ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚‡ Fqn . [n, k]-ÍÓ‰ ÂÒÚ¸ k-ÏÂÌ˚È ÎËÌÂÈÌ˚È ÍÓ‰ C ⊂ Fqn
(Ò ÏËÌËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ d* ); ÓÌ ËÏÂÂÚ ‡ÁÏÂ qk, Ú.Â. fl‚ÎflÂÚÒfl (n, qk, d* )-ÍÓ‰ÓÏ.
 qr − 1 qr − 1

,
äÓ‰ÓÏ ï˝ÏÏËÌ„‡ ̇Á˚‚‡ÂÚÒfl ÎËÌÂÈÌ˚È ÒÓ‚Â¯ÂÌÌ˚È 
− r, 3 -ÍÓ‰ Ò
1
1
q
−
q
−


ËÒÔ‡‚ÎÂÌËÂÏ Ó‰ÌÓÈ Ó¯Ë·ÍË.
k × n å‡Úˈ‡ G ÒÓ ÒÚÓ͇ÏË, fl‚Îfl˛˘ËÏËÒfl ·‡ÁËÒÌ˚ÏË ‚ÂÍÚÓ‡ÏË ‰Îfl ÎËÌÂÈÌÓ„Ó [n, k]-ÍÓ‰‡ ë, ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘ÂÈ Ï‡ÚˈÂÈ ÍÓ‰‡ C . Ç Òڇ̉‡ÚÌÓÏ
‚ˉ Â ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í (1k|A), „‰Â 1k ÂÒÚ¸ k × k ‰ËÌ˘̇fl χÚˈ‡. ä‡Ê‰ÓÂ
ÒÓÓ·˘ÂÌË (ËÎË ËÌÙÓχˆËÓÌÌ˚È ÒËÏ‚ÓÎ, ÒËÏ‚ÓÎ ËÒÚÓ˜ÌË͇) u = (u1 ,..., uk ) ∈ Fqn
ÏÓÊÂÚ ·˚Ú¸ Á‡ÍÓ‰ËÓ‚‡Ì ÔÛÚÂÏ ÛÏÌÓÊÂÌËfl Â„Ó (ÒÔ‡‚‡) ̇ ÔÓÓʉ‡˛˘Û˛ χÚˈÛ:
uG ∈ C. å‡Úˈ‡ H = (–AT|1n–k) ̇Á˚‚‡ÂÚÒfl χÚˈÂÈ ÔÓ‚ÂÍË Ì‡ ÔÓ˜ÌÓÒÚ¸ ÍÓ‰‡
ë. óËÒÎÓ r = n – k ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÍÓ΢ÂÒÚ‚Û ˆËÙ ÔÓ‚ÂÍË Ì‡ ˜ÂÚÌÓÒÚ¸ ‚ ÍӉ Ë
̇Á˚‚‡ÂÚÒfl ËÁ·˚ÚÓ˜ÌÓÒÚ¸˛ ÍÓ‰‡ ë. àÌÙÓχˆËÓÌ̇fl ÒÍÓÓÒÚ¸ (ËÎË ÍÓ‰Ó‚‡fl
log 2 M
k
ÒÍÓÓÒÚ¸) ÍÓ‰‡ ë – ˝ÚÓ ˜ËÒÎÓ R =
. ÑÎfl q-Á̇˜ÌÓ„Ó [n, k]-ÍÓ‰‡ R = log 2 q;
n
n
k
‰Îfl ·Ë̇ÌÓ„Ó [n, k]-ÍÓ‰‡ R = .
n
ë‚ÂÚÓ˜Ì˚È ÍÓ‰ – Ú‡ÍÓÈ ÚËÔ ÍÓ‰‡ Ò ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ, ‚ ÍÓÚÓÓÏ ÔÓ‰ÎÂʇ˘ËÈ ÍÓ‰ËÓ‚‡Ì˲ k-·ËÚÓ‚ ËÌÙÓχˆËÓÌÌ˚È ÒËÏ‚ÓÎ ÔÂÓ·‡ÁÛÂÚÒfl ‚ n-·ËÚÓ‚ÓÂ
k
ÍÓ‰Ó‚Ó ÒÎÓ‚Ó, „‰Â R = – ÍÓ‰Ó‚‡fl ÒÍÓÓÒÚ¸ (n ≥ k), ‡ ÔÂÓ·‡ÁÓ‚‡ÌË fl‚ÎflÂÚÒfl
n
ÙÛÌ͈ËÂÈ ÔÓÒΉÌËı m ËÌÙÓχˆËÓÌÌ˚ı ÒËÏ‚ÓÎÓ‚, „‰Â m – ‰ÎË̇ ÍÓ‰Ó‚Ó„Ó Ó„‡Ì˘ÂÌËfl. ë‚ÂÚÓ˜Ì˚ ÍÓ‰˚ ˜‡ÒÚÓ ËÒÔÓθÁÛ˛ÚÒfl ‰Îfl ÔÓ‚˚¯ÂÌËfl ͇˜ÂÒÚ‚‡ ‡‰ËÓ Ë
ÒÔÛÚÌËÍÓ‚˚ı ÎËÌËÈ Ò‚flÁË. äÓ‰ ÔÂÂÏÂÌÌÓÈ ‰ÎËÌ˚ – ÍÓ‰ Ò ÍÓ‰Ó‚˚ÏË ÒÎÓ‚‡ÏË
‡Á΢ÌÓÈ ‰ÎËÌ˚.
Ç ÓÚ΢ˠÓÚ ÍÓ‰Ó‚ Ò ‡‚ÚÓχÚ˘ÂÒÍËÏ ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ, ÍÓÚÓ˚ Ô‰̇Á̇˜ÂÌ˚ ÚÓθÍÓ ‰Îfl ÔÓ‚˚¯ÂÌËfl ̇‰ÂÊÌÓÒÚË ÔÂ‰‡˜Ë ‰‡ÌÌ˚ı, ÍËÔÚÓ„‡Ù˘ÂÒÍËÂ
ÍÓ‰˚ Ô‰̇Á̇˜ÂÌ˚ ‰Îfl ÔÓ‚˚¯ÂÌËfl Á‡˘Ë˘ÂÌÌÓÒÚË ÎËÌËÈ Ò‚flÁË. Ç ÍËÔÚÓ„‡ÙËË
ÓÚÔ‡‚ËÚÂθ ËÒÔÓθÁÛÂÚ Íβ˜ ‰Îfl ¯ËÙÓ‚‡ÌËfl ÒÓÓ·˘ÂÌËfl ‰Ó Â„Ó ÔÂ‰‡˜Ë ÔÓ
ÌÂÁ‡˘Ë˘ÂÌÌ˚Ï Í‡Ì‡Î‡Ï Ò‚flÁË, ‡ ‡‚ÚÓËÁÓ‚‡ÌÌ˚È ÔÓÎÛ˜‡ÚÂθ ̇ ‰Û„ÓÏ ÍÓ̈Â
ËÒÔÓθÁÛÂÚ Íβ˜ ‰Îfl ‡Ò¯ËÙÓ‚ÍË ÔÓÎÛ˜ÂÌÌÓ„Ó ÒÓÓ·˘ÂÌËfl. ó‡˘Â ‚ÒÂ„Ó ‡Î„ÓËÚÏ˚ ÒʇÚËfl Ë ÍÓ‰˚ Ò ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ ËÒÔÓθÁÛ˛ÚÒfl ÒÓ‚ÏÂÒÚÌÓ Ò ÍËÔÚÓ„‡Ù˘ÂÒÍËÏË ÍÓ‰‡ÏË, ˜ÚÓ Ó·ÂÒÔ˜˂‡ÂÚ Ó‰ÌÓ‚ÂÏÂÌÌÓ ˝ÙÙÂÍÚË‚ÌÛ˛ Ë Ì‡‰ÂÊÌÛ˛
Ò‚flÁ¸ ·ÂÁ ӯ˷ÓÍ ÔÂ‰‡˜Ë ‰‡ÌÌ˚ı Ë Á‡˘ËÚÛ ‰‡ÌÌ˚ı ÓÚ ÌÂÒ‡Ì͈ËÓÌËÓ‚‡ÌÌÓ„Ó
‰ÓÒÚÛÔ‡. ᇯËÙÓ‚‡ÌÌ˚ ÒÓÓ·˘ÂÌËfl, ÍÓÚÓ˚Â, ·ÓΠÚÓ„Ó, ÏÓ„ÛÚ ·˚Ú¸ ÒÍ˚Ú˚ ‚
ÚÂÍÒÚÂ, ËÁÓ·‡ÊÂÌËË Ë Ú.Ô., ̇Á˚‚‡˛ÚÒfl ÒÚ„‡ÌÓ„‡Ù˘ÂÒÍËÏË ÒÓÓ·˘ÂÌËflÏË.
16.1. åàçàåÄãúçéÖ êÄëëíéüçàÖ à ÖÉé ÄçÄãéÉà
åËÌËχθÌÓ ‡ÒÒÚÓflÌËÂ
ÑÎfl ÍÓ‰‡ ë ⊂ V, „‰Â V – n-ÏÂÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ
d, ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË d* = d* (C) ÍÓ‰‡ ë ÓÔ‰ÂÎflÂÚÒfl ͇Í
min d ( x, y).
x , y ∈C , x ≠ y
246
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
åÂÚË͇ d Á‡‚ËÒËÚ ÓÚ ÔËÓ‰˚ ÔÓ‰ÎÂʇ˘Ëı ËÒÔ‡‚ÎÂÌ˲ ӯ˷ÓÍ ‚
ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò Ô‰̇Á̇˜ÂÌËÂÏ ÍÓ‰‡. ÑÎfl Ó·ÂÒÔ˜ÂÌËfl Ú·ÛÂÏ˚ı ı‡‡ÍÚÂËÒÚËÍ
ÔÓ ÍÓÂÍÚËÓ‚Í ÌÂÓ·ıÓ‰ËÏÓ ÔËÏÂÌflÚ¸ ÍÓ‰˚ Ò Ï‡ÍÒËχθÌ˚Ï ÍÓ΢ÂÒÚ‚ÓÏ
ÍÓ‰Ó‚˚ı ÒÎÓ‚. ç‡Ë·ÓΠ¯ËÓÍÓ ËÒÒΉӂ‡ÌÌ˚ÏË ‚ ˝ÚÓÏ Ô·Ì ÍÓ‰‡ÏË fl‚Îfl˛ÚÒfl
q-Á̇˜Ì˚ ·ÎÓÍÓ‚˚ ÍÓ‰˚ ‚ ı˝ÏÏËÌ„Ó‚ÓÈ ÏÂÚËÍ d H ( x, y) =| {i : xi ≠ yi , i = 1,..., n} | .
ÑÎfl ÎËÌÂÈÌ˚ı ÍÓ‰Ó‚ ë ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË d* (C) = w (C), „‰Â w (C) =
= min{w(x): x ∈ C}, ̇Á˚‚‡ÂÚÒfl ÏËÌËχθÌ˚Ï ‚ÂÒÓÏ ÍÓ‰‡ C. èÓÒÍÓθÍÛ Ï‡Úˈ‡ H
χÚˈ‡ ÔÓ‚ÂÂ̇ ˜ÂÒÚÌÓÒÚ¸ [n, k]-ÍÓ‰‡ ë ËÏÂÂÚ rank(H ) ≤ n – k ÌÂÁ‡‚ËÒËÏ˚ı
ÒÚÓηˆÓ‚, ÚÓ d* (C) ≤ n – k + 1 (‚ÂıÌflfl „‡Ìˈ‡ ëËÌ„ÎÚÓ̇).
Ñ‚ÓÈÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌËÂ
Ñ‚ÓÈÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌË d⊥ ÎËÌÂÈÌÓ„Ó [n, k]-ÍÓ‰‡ C ⊂ qn fl‚ÎflÂÚÒfl ÏËÌËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ ‰‚ÓÈÒÚ‚ÂÌÌÓ„Ó ÍÓ‰‡ C⊥ ‰Îfl ë.
Ñ‚ÓÈÒÚ‚ÂÌÌ˚È ÍÓ‰ C⊥ ‰Îfl ÍÓ‰‡ ë ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ‚ÂÍÚÓÓ‚
n
q , ÓÚÓ„Ó̇θÌ˚ı ͇ʉÓÏÛ ÍÓ‰Ó‚ÓÏÛ ÒÎÓ‚Û ËÁ ë: C ⊥ = {v ∈qn : ⟨ v, u ⟩ = 0 ‰Îfl
β·Ó„Ó u ∈ C}. äÓ‰ C ⊥ fl‚ÎflÂÚÒfl ÎËÌÂÈÌ˚Ï [n, n – k]-ÍÓ‰ÓÏ. (n – k) × n ÔÓÓʉ‡˛˘‡fl
χÚˈ‡ ‰Îfl C ⊥ fl‚ÎflÂÚÒfl χÚˈÂÈ ÔÓ‚ÂÍË Ì‡ ˜ÂÚÌÓÒÚ¸ ‰Îfl ë.
ê‡ÒÒÚÓflÌË ‚ar-ÔÓËÁ‚‰ÂÌËfl
ÑÎfl ÎËÌÂÈÌ˚ı ÍÓ‰Ó‚ ë1 Ë ë2 , Ëϲ˘Ëı ‰ÎËÌÛ n Ò C 2 ⊂ C1 , Ëı bar-ÔÓËÁ‚‰ÂÌËÂ
C 1 |C 2 ÂÒÚ¸ ÎËÌÂÈÌ˚È ÍÓ‰ ‰ÎËÌ˚ 2n, ÓÔ‰ÂÎÂÌÌ˚È Í‡Í C1 | C2 = {x | x + y : x ∈ C1 ,
y ∈ C2}.
ê‡ÒÒÚÓflÌË bar-ÔÓËÁ‚‰ÂÌËfl – ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË d * (C 1 |C 2 ) bar-ÔÓËÁ‚‰ÂÌËfl C1 | C2 .
ê‡ÒÒÚÓflÌË ‰ËÁ‡È̇
ãËÌÂÈÌ˚È ÍÓ‰ ̇Á˚‚‡ÂÚÒfl ˆËÍ΢ÂÒÍËÏ ÍÓ‰ÓÏ, ÂÒÎË ‚Ò ˆËÍ΢ÂÒÍË ҉‚Ë„Ë
ÍÓ‰Ó‚Ó„Ó ÒÎÓ‚‡ Ú‡ÍÊ ÔË̇‰ÎÂÊ‡Ú ë, Ú.Â. ÂÒÎË ‰Îfl β·Ó„Ó (a0 ,...., an–1 ) ∈ C ‚ÂÍÚÓ
(an– 1 , a0 ,..., an– 2 ) ∈ C . ì‰Ó·ÌÓ ÓÚÓʉÂÒÚ‚ÎflÚ¸ ÍÓ‰Ó‚Ó ÒÎÓ‚Ó (a 0 ,..., an– 1 ) Ò
ÏÌÓ„Ó˜ÎÂÌÓÏ c( x ) = a0 + a1 x + ... + an −1 x n −1 , ÚÓ„‰‡ ͇ʉ˚È ˆËÍ΢ÂÒÍËÈ [n, k]-ÍÓ‰
ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌ Í‡Í „·‚Ì˚È Ë‰Â‡Î ⟨ g( x )⟩ = {r ( x )g( x ) : r ( x ) ∈ Rn} ÍÓθˆ‡
Rn = q ( x ) /( x n − 1), ÔÓÓʉÂÌÌ˚È ÏÌÓ„Ó˜ÎÂÌÓÏ g( x ) = g0 + g1 x + ... + x n − k , ̇Á˚‚‡ÂÏ˚Ï ÔÓÓʉ‡˛˘ËÏ ÏÌÓ„Ó˜ÎÂÌÓÏ ÍÓ‰‡ ë.
ÑÎfl ˝ÎÂÏÂÌÚ‡ α ÔÓfl‰Í‡ n ‚ ÍÓ̘ÌÓÏ ÔÓΠq s [n, k]-ÍÓ‰ ÅÓÁ–óÓ‰ıÛË–
ïÓÍ‚ÂÌ„Âχ, Ëϲ˘ËÈ ‡ÒÒÚÓflÌË ‰ËÁ‡È̇ d, fl‚ÎflÂÚÒfl ˆËÍ΢ÂÒÍËÏ ÍÓ‰ÓÏ ‰ÎËÌ˚ n,
ÔÓÓʉÂÌÌ˚Ï ÏÌÓ„Ó˜ÎÂÌÓÏ g(x) ‚ q ( x ) ÒÚÂÔÂÌË n – k, Ëϲ˘ËÏ ÍÓÌË
α , α2,..., αd–1. åËÌËχθÌÓ ‡ÒÒÚÓflÌË d* ÍÓ‰‡ ÅÓÁ–óÓ‰ıÛË–ïÓÍ‚ÂÌ„Âχ Ò
̘ÂÚÌ˚Ï ‡ÒÒÚÓflÌËÂÏ ‰ËÁ‡È̇ d ·Óθ¯Â ËÎË ‡‚ÌÓ d.
äÓ‰ êˉ‡–ëÓÎÓÏÓ̇ – ˝ÚÓ ÍÓ‰ ÅÓÁ–óÓ‰ıÛË–ïÓÍ‚ÂÌ„Âχ Ò s = 1. èÓÓʉ‡˛˘ËÏ ÏÌÓ„Ó˜ÎÂÌÓÏ ÍÓ‰‡ êˉ‡–ëÓÎÓÏÓ̇ Ò ‡ÒÒÚÓflÌËÂÏ ‰ËÁ‡È̇ d fl‚ÎflÂÚÒfl
ÏÌÓ„Ó˜ÎÂÌ g( x ) = ( x − α )...( x − α d −1 ) ÒÚÂÔÂÌË n – k = d – 1, Ú.Â. ‰Îfl ÍÓ‰‡ êˉ‡–
ëÓÎÓÏÓ̇ ‡ÒÒÚÓflÌË ‰ËÁ‡È̇ d = n – k + 1 Ë ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË d* ≥ d .
èÓÒÍÓθÍÛ ‰Îfl ÎËÌÂÈÌÓ„Ó [n, k]-ÍÓ‰‡ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË d * ≤ n – k + 1
(‚ÂıÌflfl „‡Ìˈ‡ ëËÌ„ÎÚÓ̇), ÍÓ‰ êˉ‡–ëÓÎÓÏÓ̇ ӷ·‰‡ÂÚ ÏËÌËχθÌ˚Ï
‡ÒÒÚÓflÌËÂÏ d* = n – k + 1 Ë ‰ÓÒÚË„‡ÂÚ ‚ÂıÌÂÈ „‡Ìˈ˚ ëËÌ„ÎÚÓ̇. Ç ÔÓË„˚‚‡ÚÂÎflı ÍÓÏÔ‡ÍÚ-‰ËÒÍÓ‚ ÔÂËÏÛ˘ÂÒÚ‚ÂÌÌÓ ËÒÔÓθÁÛÂÚÒfl ÒËÒÚÂχ ‰‚ÓÈÌÓÈ ÍÓÂ͈ËË Ó¯Ë·ÓÍ (255, 251,5) ÍÓ‰‡ êˉ‡–ëÓÎÓÏÓ̇ ̇‰ ÔÓÎÂÏ 256 .
É·‚‡ 16. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl
247
ê‡Ò˜ÂÚÌÓ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË ÉÓÔÔ˚
ê‡Ò˜ÂÚÌÓ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË ÉÓÔÔ˚ ([Gopp71]) – ÌËÊÌflfl „‡Ìˈ‡ d* (m)
‰Îfl ÏËÌËχθÌÓ„Ó ‡ÒÒÚÓflÌËfl Ó‰ÌÓÚӘ˜Ì˚ı „ÂÓÏÂÚ˘ÂÒÍËı ÍÓ‰Ó‚ ÉÓÔÔ˚ (ËÎË
ÍÓ‰Ó‚ ‡Î„·‡Ë˜ÂÒÍÓÈ „ÂÓÏÂÚËË) G(m ). ÑÎfl ÍÓ‰‡ G(m), ‡ÒÒÓˆËËÓ‚‡ÌÌÓ„Ó Ò
‰ÂÎËÚÂÎflÏË D Ë mP, m ∈ „·‰ÍÓÈ ÔÓÂÍÚË‚ÌÓÈ ‡·ÒÓβÚÌÓ ÌÂÔË‚Ó‰ËÏÓÈ
‡Î„·‡Ë˜ÂÒÍÓÈ ÍË‚ÓÈ Ó‰‡ g > 0 ̇‰ ÍÓ̘Ì˚Ï ÔÓÎÂÏ q , Ï˚ ËÏÂÂÏ ‡‚ÂÌÒÚ‚Ó
d* (m) = m + 2 – 2g, ÂÒÎË 2g – 2 < m < n.
ÑÎfl ÍÓ‰‡ ÉÓÔÔ˚ ë(m) ÒÚÛÍÚÛ‡ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÔÓÔÛÒÍÓ‚ ‚ ê ÏÓÊÂÚ
ÔÓÁ‚ÓÎËÚ¸ ÔÓÎÛ˜ËÚ¸ ·ÓΠÚÓ˜ÌÛ˛ ÌËÊÌ˛˛ „‡ÌËˆÛ ÏËÌËχθÌÓ„Ó ‡ÒÒÚÓflÌËfl
(ÒÏ. ‡ÒÒÚÓflÌË îÂÌ„‡-ê‡Ó).
ê‡ÒÒÚÓflÌË îÂÌ„‡–ê‡Ó
ê‡ÒÒÚÓflÌË îÂÌ„‡-ê‡Ó δ FR (m) – ÌËÊÌflfl „‡Ìˈ‡ ‰Îfl ÏËÌËχθÌÓ„Ó ‡ÒÒÚÓflÌËfl
Ó‰ÌÓÚӘ˜Ì˚ı „ÂÓÏÂÚ˘ÂÒÍËı ÍÓ‰Ó‚ ÉÓÔÔ˚ G(m), ÍÓÚÓÓ ÎÛ˜¯Â ‡Ò˜ÂÚÌÓ„Ó
ÏËÌËχθÌÓ„Ó ‡ÒÒÚÓflÌËfl ÉÓÔÔ˚. àÒÔÓθÁÛÂÏ˚È ÏÂÚÓ‰ ÍÓ‰ËÓ‚‡ÌËfl îÂÌ„‡–ê‡Ó
‰Îfl ÍÓ‰‡ ë(m) ‰ÂÍÓ‰ËÛÂÚ Ó¯Ë·ÍË ‰Ó ÔÓÎÓ‚ËÌ˚ ‡ÒÒÚÓflÌËfl îÂÌ„‡–ê‡Ó δFR(m) Ë
Û‚Â΢˂‡ÂÚ ‚ÓÁÏÓÊÌÓÒÚË ÔÓ ËÒÔ‡‚ÎÂÌ˲ ӯ˷ÓÍ ‰Îfl Ó‰ÌÓÚӘ˜Ì˚ı „ÂÓÏÂÚ˘ÂÒÍËı ÍÓ‰Ó‚ ÉÓÔÔ˚.
îÓχθÌÓ ‡ÒÒÚÓflÌË îÂÌ„‡–ê‡Ó ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ. èÛÒÚ¸ S
·Û‰ÂÚ ˜ËÒÎÓ‚‡fl ÔÓÎÛ„ÛÔÔ‡, Ú.Â. ÔÓ‰ÔÓÎÛ„ÛÔÔ‡ S ÔÓÎÛ„ÛÔÔ˚ ∪ {0}, ڇ͇fl ˜ÚÓ
Ó‰ g =| ∪ {0} \ S | ÔÓÎÛ„ÛÔÔ˚ S fl‚ÎflÂÚÒfl ÍÓ̘Ì˚Ï, Ë 0 ∈ S. ê‡ÒÒÚÓflÌË îÂÌ„‡–
ê‡Ó ̇ S ÂÒÚ¸ ÙÛÌ͈Ëfl δ FR : S → ∪ {0}, ڇ͇fl ˜ÚÓ δ FR ( m) = min{ν(r ) : r ≥ m, r ∈ S},
„‰Â ν(r ) =| {( a, b) ∈ S 2 : a + b = r} | . é·Ó·˘ÂÌÌÓ r- ‡ÒÒÚÓflÌË îÂÌ„‡–ê‡Ó ̇ S ÓÔ‰ÂÎflÂÚÒfl Í‡Í δ rFR ( m) = min{ν[ m1 ,..., mr ] : m ≤ m1 < ... < mr , mi ∈ S}, „‰Â ν[ m1 ,..., mr ] =
= | {a ∈ S : mi − a ∈ S ‰Îfl ÌÂÍÓÚÓÓ„Ó i = 1,..., r}|. íÓ„‰‡ ËÏÂÂÏ δ FR ( m) = δ1FR ( m)
(ÒÏ., ̇ÔËÏÂ, [FaMu03]).
ë‚Ó·Ó‰ÌÓ ‡ÒÒÚÓflÌËÂ
ë‚Ó·Ó‰ÌÓ ‡ÒÒÚÓflÌË – ÏËÌËχθÌ˚È ÌÂÌÛ΂ÓÈ ‚ÂÒ ï˝ÏÏËÌ„‡ β·Ó„Ó ÍÓ‰Ó‚Ó„Ó ÒÎÓ‚‡ ‚ Ò‚ÂÚÓ˜ÌÓÏ ÍӉ ËÎË ÍӉ ÔÂÂÏÂÌÌÓÈ ‰ÎËÌ˚.
îÓχθÌÓ, k- ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË dk∗ Ò‚ÂÚÓ˜ÌÓ„Ó ÍÓ‰‡ ËÎË ÍÓ‰‡ ÔÂÂÏÂÌÌÓÈ ‰ÎËÌ˚ ÂÒÚ¸ ̇ËÏÂ̸¯Â ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ì‡˜‡Î¸Ì˚ÏË ÓÚÂÁ͇ÏË ‰ÎËÌ˚ k β·˚ı ‰‚Ûı ÍÓ‰Ó‚˚ı ÒÎÓ‚, ÍÓÚÓ˚ ‡Á΢‡˛ÚÒfl ̇ ‰‡ÌÌ˚ı
̇˜‡Î¸Ì˚ı ÓÚÂÁ͇ı. èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ d1∗ , d2∗ , d3∗ ,...( d1∗ ≤ d2∗ ≤ d3∗ ≤ ...) ̇Á˚‚‡ÂÚÒfl
‡ÒÒÚÓflÌÌ˚Ï ÔÓÙËÎÂÏ ÍÓ‰‡. ë‚Ó·Ó‰ÌÓ ‡ÒÒÚÓflÌË ҂ÂÚÓ˜ÌÓ„Ó ÍÓ‰‡ ËÎË ÍÓ‰‡
ÔÂÂÏÂÌÌÓÈ ‰ÎËÌ˚ ‡‚ÌÓ max dl∗ lim dl∗ = d∞∗ .
l
l →∞
ùÙÙÂÍÚË‚ÌÓ ҂ӷӉÌÓ ‡ÒÒÚÓflÌËÂ
íÛ·Ó-ÍÓ‰ÓÏ Ì‡Á˚‚‡ÂÚÒfl ‰ÎËÌÌ˚È ·ÎÓÍÓ‚˚È ÍÓ‰, ‚ ÍÓÚÓÓÏ ËÏÂÂÚÒfl L ‚ıÓ‰fl˘Ëı
·ËÚÓ‚ Ë Í‡Ê‰˚È ËÁ ˝ÚËı ·ËÚÓ‚ ÍÓ‰ËÛÂÚÒfl q ‡Á. èË j-Ï ÍÓ‰ËÓ‚‡ÌËË L ·ËÚÓ‚
ÔÓÔÛÒ͇˛ÚÒfl ˜ÂÂÁ ·ÎÓÍ ÔÂÂÒÚ‡ÌÓ‚ÓÍ Pj, ‡ Á‡ÚÂÏ ÍÓ‰ËÛ˛ÚÒfl ·ÎÓÍÓ‚˚Ï [Nj, L]
ÍÓ‰ÂÓÏ (ÍÓ‰ÂÓÏ ÍÓ‰Ó‚˚ı Ù‡„ÏÂÌÚÓ‚), ÍÓÚÓ˚È ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl ͇Í
L × Nj χÚˈ‡. íÓ„‰‡ ËÒÍÓÏ˚Ï ÚÛ·Ó-ÍÓ‰ÓÏ fl‚ÎflÂÚÒfl ÎËÌÂÈÌ˚È [N1 + ... +Nq, L]-ÍÓ‰
(ÒÏ., ̇ÔËÏÂ, [BGT93]).
i-‚Á‚¯ÂÌÌÓ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË ‚ıÓ‰‡ di(C) ÚÛ·Ó-ÍÓ‰‡ ë ÂÒÚ¸ ÏËÌËχθÌ˚È ‚ÂÒ ‰Îfl ÍÓ‰Ó‚˚ı ÒÎÓ‚, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ‚ıÓ‰fl˘ËÏ ÒÎÓ‚‡Ï ‚ÂÒ‡ i. ùÙÙÂÍÚË‚Ì˚Ï Ò‚Ó·Ó‰Ì˚Ï ‡ÒÒÚÓflÌËÂÏ ÍÓ‰‡ ë ÔÓ͇Á˚‚‡ÂÚÒfl Â„Ó 2-‚Á‚¯ÂÌÌÓ ÏËÌËχθ-
248
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ÌÓ ‡ÒÒÚÓflÌË ‚ıÓ‰‡ d2 (C), Ú.Â. ÏËÌËχθÌ˚È ‚ÂÒ ‰Îfl ÍÓ‰Ó‚˚ı ÒÎÓ‚, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ‚ıÓ‰fl˘ËÏ ÒÎÓ‚‡Ï ‚ÂÒ‡ 2.
ê‡ÒÔ‰ÂÎÂÌË ‡ÒÒÚÓflÌËÈ
ÑÎfl ÍÓ‰‡ ë ̇‰ ÍÓ̘Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (X, d) Ò ‰Ë‡ÏÂÚÓÏ
diam(X, d) = D ‡ÒÔ‰ÂÎÂÌË ‡ÒÒÚÓflÌËÈ ‰Îfl ë ÂÒÚ¸ (D + 1)-‚ÂÍÚÓ (A0 ,..., AD), „‰Â
1
Ai =
| {(c, c ′) ∈ C 2 : d (c, c ′) = i} | . í‡ÍËÏ Ó·‡ÁÓÏ, Ï˚ ‡ÒÒχÚË‚‡ÂÏ ‚Â΢ËÌ˚
|C|
Ai(c) – ˜ËÒÎÓ ÍÓ‰Ó‚˚ı ÒÎÓ‚ ̇ ‡ÒÒÚÓflÌËË i ÓÚ ÍÓ‰Ó‚Ó„Ó ÒÎÓ‚‡ Ò, Ë ·ÂÂÏ Ai ͇Í
Ò‰Ì ÓÚ Ai(c) ÔÓ ‚ÒÂÏ c ∈ C. A0 = 1 Ë, ÂÒÎË d* = d* (C) fl‚ÎflÂÚÒfl ÏËÌËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ ‰Îfl ë, ÚÓ A1 = ... Ad ∗ −1 = 0.
ê‡ÒÔ‰ÂÎÂÌË ‡ÒÒÚÓflÌËÈ ‰Îfl ÍÓ‰‡ Ò Á‡‰‡ÌÌ˚ÏË Ô‡‡ÏÂÚ‡ÏË ‚‡ÊÌÓ, ‚ ˜‡ÒÚÌÓÒÚË, ‰Îfl ÓˆÂÌÍË ‚ÂÓflÚÌÓÒÚË Ó¯Ë·ÍË ‰ÂÍÓ‰ËÓ‚‡ÌËfl ÔË ÔËÏÂÌÂÌËË ‡Á΢Ì˚ı
‡Î„ÓËÚÏÓ‚ ‰ÂÍÓ‰ËÓ‚‡ÌËfl. äÓÏ ÚÓ„Ó, ˝ÚÓ ÏÓÊÂÚ ÔÓÏÓ˜¸ ÔË ÓÔ‰ÂÎÂÌËË
Ò‚ÓÈÒÚ‚ ÍÓ‰Ó‚˚ı ÒÚÛÍÚÛ Ë ‰Ó͇Á‡ÚÂθÒÚ‚Â Ì‚ÓÁÏÓÊÌÓÒÚË ÒÛ˘ÂÚ‚Ó‚‡ÌËfl ÓÔ‰ÂÎÂÌÌ˚ı ÍÓ‰Ó‚.
ê‡ÒÒÚÓflÌË ӉÌÓÁ̇˜ÌÓÒÚË
ê‡ÒÒÚÓflÌËÂÏ Ó‰ÌÓÁ̇˜ÌÓÒÚË ÍËÔÚÓÒËÒÚÂÏ˚ (òÂÌÌÓÌ, 1949) ̇Á˚‚‡ÂÚÒfl ÏËÌËχθ̇fl ‰ÎË̇ ¯ËÙÓÚÂÍÒÚ‡, ÌÂÓ·ıÓ‰Ëχfl ‰Îfl Û‚ÂÂÌÌÓÒÚË ‚ ÚÓÏ, ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ
ÚÓθÍÓ Â‰ËÌÒÚ‚ÂÌÌ˚È ÒÏ˚ÒÎÓ‚ÓÈ ‚‡ˇÌÚ Â„Ó ‡Ò¯ËÙÓ‚ÍË. ÑÎfl Í·ÒÒ˘ÂÒÍËı
ÍËÔÚÓ„‡Ù˘ÂÒÍËı ÒËÒÚÂÏ Ò ÙËÍÒËÓ‚‡ÌÌ˚Ï Íβ˜Â‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‡ÒÒÚÓflÌË ӉÌÓÁ̇˜ÌÓÒÚË ‡ÔÔÓÍÒËÏËÛÂÚÒfl ÔÓ ÙÓÏÛΠç(K)/D , „‰Â H(K) – ˝ÌÚÓÔËfl
Íβ˜Â‚Ó„Ó ÔÓÒÚ‡ÌÒÚ‚‡ („Û·Ó „Ó‚Ófl, log2 N, „‰Â N – ÍÓ΢ÂÒÚ‚Ó Íβ˜ÂÈ), ‡ D
ËÁÏÂflÂÚ ËÁ·˚ÚÓ˜ÌÓÒÚ¸ ÂÁÂ‚ËÓ‚‡ÌËfl ËÒıÓ‰ÌÓ„Ó flÁ˚͇ ÓÚÍ˚ÚÓ„Ó ÚÂÍÒÚ‡ ‚ ·ËÚ‡ı
̇ ·ÛÍ‚Û.
äËÔÚÓÒËÒÚÂχ Ó·ÂÒÔ˜˂‡ÂÚ Ë‰Â‡Î¸ÌÛ˛ ÒÂÍÂÚÌÓÒÚ¸, ÂÒÎË Â ‡ÒÒÚÓflÌË ӉÌÓÁ̇˜ÌÓÒÚË ·ÂÒÍÓ̘ÌÓ. ç‡ÔËÏÂ, Ó‰ÌÓ‡ÁÓ‚˚ ·ÎÓÍÌÓÚ˚ Ó·ÂÒÔ˜˂‡˛Ú ˉ‡θÌÛ˛ ÒÂÍÂÚÌÓÒÚ¸; ËÏÂÌÌÓ Ú‡ÍË ÍÓ‰˚ ËÒÔÓθÁÛ˛ÚÒfl ‰Îfl Ò‚flÁË ÔÓ "Í‡ÒÌÓÏÛ
ÚÂÎÂÙÓÌÛ" ÏÂÊ‰Û äÂÏÎÂÏ Ë ÅÂÎ˚Ï ‰ÓÏÓÏ.
16.2. éëçéÇçõÖ êÄëëíéüçàü çÄ äéÑÄï
ê‡ÒÒÚÓflÌË ‡ËÙÏÂÚ˘ÂÒÍÓ„Ó ÍÓ‰‡
ÄËÙÏÂÚ˘ÂÒÍËÏ ÍÓ‰ÓÏ (ËÎË ÍÓ‰ÓÏ Ò ËÒÔ‡‚ÎÂÌËÂÏ ‡ËÙÏÂÚ˘ÂÒÍËı ӯ˷ÓÍ)
̇Á˚‚‡ÂÚÒfl ÍÓ̘ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ë ÏÌÓÊÂÒÚ‚‡ ˆÂÎ˚ı (Ó·˚˜ÌÓ ÌÂÓÚˈ‡ÚÂθÌ˚ı) ˜ËÒÂÎ. éÌ Ô‰̇Á̇˜‡ÂÚÒfl ‰Îfl ÍÓÌÚÓÎfl ÙÛÌ͈ËÓÌËÓ‚‡ÌËfl ·ÎÓ͇
ÒÛÏÏËÓ‚‡ÌËfl (ÏÓ‰ÛÎfl ÒÎÓÊÂÌËfl). äÓ„‰‡ ÒÎÓÊÂÌË ˜ËÒÂÎ ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ‚ ‰‚Ó˘ÌÓÈ ÒËÒÚÂÏ ҘËÒÎÂÌËfl, ÚÓ Â‰ËÌÒÚ‚ÂÌÌ˚È Ò·ÓÈ ‚ ‡·ÓÚ ·ÎÓ͇ ÒÛÏÏËÓ‚‡ÌËfl ‚‰ÂÚ Í
ËÁÏÂÌÂÌ˲ ÂÁÛθڇڇ ̇ ÌÂÍÓÚÓÛ˛ ÒÚÂÔÂ̸ ‰‚ÓÈÍË, Ú.Â., Í Ó‰ÌÓÈ ‡ËÙÏÂÚ˘ÂÒÍÓÈ Ó¯Ë·ÍÂ. îÓχθÌÓ Ó‰Ì‡ ‡ËÙÏÂÚ˘ÂÒ͇fl ӯ˷͇ ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
ÔÂÓ·‡ÁÓ‚‡ÌË ˜ËÒ· n ∈ ‚ ˜ËÒÎÓ n = n ± 2i, i = 1, 2,... .
ê‡ÒÒÚÓflÌË ‡ËÙÏÂÚ˘ÂÒÍÓ„Ó ÍÓ‰‡ ÂÒÚ¸ ÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı
n1 , n2 ∈ Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ‡ËÙÏÂÚ˘ÂÒÍËı ӯ˷ÓÍ, ÔÂ‚Ӊfl˘Ëı n1 ‚ n 2 .
Ö„Ó ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í w 2 (n1 – n 2 ), „‰Â w 2 (n) ÂÒÚ¸ ‡ËÙÏÂÚ˘ÂÒÍËÈ 2-‚ÂÒ n, Ú.Â.
̇ËÏÂ̸¯Ó ‚ÓÁÏÓÊÌÓ ˜ËÒÎÓ ÌÂÌÛ΂˚ı ÍÓ˝ÙÙˈËÂÌÚÓ‚ ‚ Ô‰ÒÚ‡‚ÎÂÌËË
k
n=
∑ ei 2i ,
i=0
„‰Â e i 0, ±1 Ë k – ÌÂÍÓÚÓÓ ÌÂÓÚˈ‡ÚÂθÌÓ ˜ËÒÎÓ. àÏÂÌÌÓ, ‰Îfl
Í‡Ê‰Ó„Ó n ËÏÂÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓ ڇÍÓ Ô‰ÒÚ‡‚ÎÂÌËÂ Ò e k ≠ 0, e iei+1 = 0 ‰Îfl ‚ÒÂı
É·‚‡ 16. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl
249
i = 0,..., k – 1, ÍÓÚÓÓ ӷ·‰‡ÂÚ Ì‡ËÏÂ̸¯ËÏ ˜ËÒÎÓÏ ÌÂÌÛ΂˚ı ÍÓ˝ÙÙˈËÂÌÚÓ‚
(ÒÏ. ÄËÙÏÂÚ˘ÂÒ͇fl ÏÂÚË͇ r-ÌÓÏ˚, „Î. 12).
ê‡ÒÒÚÓflÌË ò‡Ï˚–äÓ¯Ë͇
èÛÒÚ¸ q ≥ 2 Ë m ≥ 2. ê‡Á·ËÂÌË {B0 , B1 ,..., Bq–1} ÏÌÓÊÂÒÚ‚‡ m ̇Á˚‚‡ÂÚÒfl ‡Á·ËÂÌËÂÏ ò‡Ï˚–äÓ¯Ë͇, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl:
1) B0 = {0};
2) ‰Îfl β·Ó„Ó i ∈ m, i ∈ Bs ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ m – i ∈ Bs, s = 1, 2,..., q – 1;
3) ÂÒÎË i∈ Bs, j ∈ Bt Ë s > t, ÚÓ min{i, m – i} > {j, m – j};
4) ÂÒÎË s > t, s, t = 0, 1,..., q – 1, ÚÓ | Bs | ≥ | Bt |, ÍÓÏ s = q – 1, ÍÓ„‰‡
1
| Bq −1 | ≥ | Bq − 2 | .
2
ÑÎfl ‡Á·ËÂÌËfl ò‡Ï˚–äÓ¯Ë͇ ÏÌÓÊÂÒÚ‚‡ m ‚ÂÒ ò‡Ï˚–äÓ¯Ë͇ w SK(x)
β·Ó„Ó ˝ÎÂÏÂÌÚ‡ x ∈ m ÓÔ‰ÂÎflÂÚÒfl Í‡Í wSK(x) = i, ÂÒÎË x ∈ Bi, i ∈ {0, 1,..., q – 1}.
ê‡ÒÒÚÓflÌË ò‡Ï˚–äÓ¯Ë͇ (ÒÏ., ̇ÔËÏÂ, [ShKa97]) ÂÒÚ¸ ÏÂÚË͇ ̇ m,
ÓÔ‰ÂÎÂÌ̇fl ͇Í
w SK(x – y).
ê‡ÒÒÚÓflÌË ò‡Ï˚–äÓ¯Ë͇ ̇ nm ÓÔ‰ÂÎflÂÚÒfl Í‡Í w SK(x – y), „‰Â ‰Îfl
n
n
x = ( x1 ,..., x n ) ∈ nm Ï˚ ËÏÂÂÏ wSK
( x) =
∑ wSK ( xi ).
i =1
ï˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ Ë ÏÂÚË͇ ãË ‚ÓÁÌË͇˛Ú Í‡Í ‰‚‡ ˜‡ÒÚÌ˚ı ÒÎÛ˜‡fl ‡Á·ËÂÌËÈ ‚˚¯Â̇Á‚‡ÌÌÓ„Ó ÚËÔ‡: PH = {B0 , B1 }, „‰Â B1 = {1, 2,...., q – 1} Ë PL = {B0 , B1 ,...,
q
Bq/2}, „‰Â Bi = {i, m − i}, i = 1,...,  .
2
ê‡ÒÒÚÓflÌË ‡·ÒÓβÚÌÓ„Ó ÒÛÏÏËÓ‚‡ÌËfl
ê‡ÒÒÚÓflÌË ‡·ÒÓβÚÌÓ„Ó ÒÛÏÏËÓ‚‡ÌËfl (ËÎË ‡ÒÒÚÓflÌË ãË) – ÏÂÚË͇ ãË Ì‡
ÏÌÓÊÂÒÚ‚Â nm , ÓÔ‰ÂÎÂÌ̇fl ͇Í
w Lee(x – y),
n
„‰Â wSK ( x ) =
∑ min{xi , m − xi} fl‚ÎflÂÚÒfl ‚ÂÒÓÏ ãË ˝ÎÂÏÂÌÚ‡ x = ( x1,..., xn ) ∈ nm .
i =1
ÖÒÎË ÏÌÓÊÂÒÚ‚Ó nm Ò̇·ÊÂÌÓ ‡ÒÒÚÓflÌËÂÏ ‡·ÒÓβÚÌÓ„Ó ÒÛÏÏËÓ‚‡ÌËfl, ÚÓ
ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ë ÏÌÓÊÂÒÚ‚‡ nm ̇Á˚‚‡ÂÚÒfl ÍÓ‰ÓÏ ‡ÒÒÚÓflÌËfl ãË. äÓ‰˚ ‡ÒÒÚÓflÌËfl ãË ÔËÏÂÌfl˛ÚÒfl ‚ ͇̇·ı Ò‚flÁË Ò Ù‡ÁÓ‚ÓÈ ÏÓ‰ÛÎflˆËÂÈ Ë Ò ÏÌÓ„ÓÛÓ‚Ì‚ÓÈ
Í‚‡ÌÚÓ‚‡ÌÌÓÈ ËÏÔÛθÒÌÓÈ ÏÓ‰ÛÎflˆËÂÈ, ‡ Ú‡ÍÊ ‚ ÚÓÓˉ‡Î¸Ì˚ı ÒÂÚflı Ò‚flÁË.
LJÊÌÂȯËÏË ÍÓ‰‡ÏË ‡ÒÒÚÓflÌËfl ãË fl‚Îfl˛ÚÒfl Ì„‡ˆËÍ΢ÂÒÍË ÍÓ‰˚.
ê‡ÒÒÚÓflÌË å‡ÌıÂÈχ
èÛÒÚ¸ [i] = {a + bi: a, b ∈ } – ÏÌÓÊÂÒÚ‚Ó ˆÂÎ˚ı „‡ÛÒÒÓ‚˚ı ˜ËÒÂÎ. èÛÒÚ¸
π = a + bi(a > b > 0) – „‡ÛÒÒÓ‚Ó ÔÓÒÚÓ ˜ËÒÎÓ. ùÚÓ Á̇˜ËÚ, ˜ÚÓ (a + bi)(a – bi) =
= a2 + b 2 = p, „‰Â p 1(mod 4) ÂÒÚ¸ ÔÓÒÚÓ ˜ËÒÎÓ, ËÎË ˜ÚÓ π = p + 0 ⋅ i = p, „‰Â
p 3(mod 4) ÂÒÚ¸ ÔÓÒÚÓ ˜ËÒÎÓ.
ê‡ÒÒÚÓflÌË å‡ÌıÂÈχ – ˝ÚÓ ‡ÒÒÚÓflÌË ̇ [i], ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı ‰‚Ûı
ˆÂÎ˚ı „‡ÛÒÒÓ‚˚ı ˜ËÒÂÎ ı Ë Û Í‡Í ÒÛÏχ ‡·ÒÓβÚÌ˚ı Á̇˜ÂÌËÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë
ÏÌËÏÓÈ ˜‡ÒÚÂÈ ‡ÁÌÓÒÚË x – y(mod π). è˂‰ÂÌË ÔÓ ÏÓ‰Ûβ ÔÂ‰ ÒÛÏÏËÓ‚‡ÌËÂÏ
250
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
‡·ÒÓβÚÌ˚ı Á̇˜ÂÌËÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ÏÌËÏÓÈ ˜‡ÒÚÂÈ – ‡ÁÌˈ‡ ÏÂÊ‰Û ÏÂÚËÍÓÈ
å‡Ìı˝ÚÚÂ̇ Ë ‡ÒÒÚÓflÌËÂÏ å‡ÌıÂÈχ.
ùÎÂÏÂÌÚ˚ ÍÓ̘ÌÓ„Ó ÔÓÎfl p = {0, 1,..., p – 1} ‰Îfl p 2(mod 4), p = a2 + b2 Ë
˝ÎÂÏÂÌÚ˚ ÍÓ̘ÌÓ„Ó ÔÓÎfl p 2 ‰Îfl p 3(mod 4), p = a ÏÓ„ÛÚ ÓÚÓ·‡Ê‡Ú¸Òfl ̇ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ˆÂÎ˚ı „‡ÛÒÒÓ‚˚ı ˜ËÒÂÎ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÙÛÌ͈ËË
 k ( a − bi ) 
µ( k ) = k − 
( a + bi ), k = 0,..., p − 1, „‰Â [.] Ó·ÓÁ̇˜‡ÂÚ ÓÍÛ„ÎÂÌË ‰Ó ·ÎËp


Ê‡È¯Â„Ó ˆÂÎÓ„Ó „‡ÛÒÒÓ‚Ó„Ó ˜ËÒ·. åÌÓÊÂÒÚ‚Ó ‚˚·‡ÌÌ˚ı ˆÂÎ˚ı „‡ÛÒÒÓ‚˚ı ˜ËÒÂÎ
Ò ÏËÌËχθÌ˚ÏË ÌÓχÏË É‡ÎÛ‡ ̇Á˚‚‡ÂÚÒfl ÒÓÁ‚ÂÁ‰ËÂÏ. í‡ÍÓ Ô‰ÒÚ‡‚ÎÂÌË ‰‡ÂÚ
ÌÓ‚˚È ÒÔÓÒÓ· ÔÓÒÚÓÂÌËfl ÍÓ‰Ó‚ ‰Îfl ‰‚ÛÏÂÌ˚ı Ò˄̇ÎÓ‚. ê‡ÒÒÚÓflÌË å‡ÌıÂÈχ
·˚ÎÓ ‚‚‰ÂÌÓ ‰Îfl ÚÓ„Ó, ˜ÚÓ·˚ Ó·ÂÒÔ˜ËÚ¸ ÔËÏÂÌÂÌËÂ Í éÄå-ÔÓ‰Ó·Ì˚Ï Ò˄̇·Ï
ÏÂÚÓ‰Ó‚ ‡Î„·‡Ë˜ÂÒÍÓ„Ó ‰ÂÍÓ‰ËÓ‚‡ÌËfl. ÑÎfl ÍÓ‰Ó‚ ̇‰ ÒÓÁ‚ÂÁ‰ËflÏË „ÂÍÒ‡„Ó̇θÌ˚ı Ò˄̇ÎÓ‚ ÏÓÊÂÚ ·˚Ú¸ ÔËÏÂÌÂ̇ ‡Ì‡Îӄ˘̇fl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â
ˆÂÎ˚ı ˜ËÒÂÎ ùÈ̯ÚÂÈ̇–üÍÓ·Ë. é̇ fl‚ÎflÂÚÒfl Û‰Ó·ÌÓÈ ‰Îfl ·ÎÓÍÓ‚˚ı ÍÓ‰Ó‚ ̇‰
ÚÓÓÏ (ÒÏ., ̇ÔËÏÂ, [Hube93], [Hube94]).
ê‡ÒÒÚÓflÌË ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡
èÛÒÚ¸ (Vn , p
− ) – ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó Ì‡ Vn = {1,..., n}. èÓ‰ÏÌÓÊÂÒÚ‚Ó I
ÏÌÓÊÂÒÚ‚‡ Vn ̇Á˚‚‡ÂÚÒfl ˉ‡ÎÓÏ, ÂÒÎË x ∈ I Ë ËÁ ÛÒÎÓ‚Ëfl y p
− x ÒΉÛÂÚ, ˜ÚÓ y ∈ I.
ÖÒÎË J ⊂ Vn , ÚÓ (J) – ̇ËÏÂ̸¯ËÈ Ë‰Â‡Î ÏÌÓÊÂÒÚ‚‡ Vn , ÒÓ‰Âʇ˘ËÈ J. ê‡ÒÒÏÓÚËÏ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó qn ̇‰ ÍÓ̘Ì˚Ï ÔÓÎÂÏ q. ê-‚ÂÒ ˝ÎÂÏÂÌÚ‡
x = ( x1 ,..., x n ) ∈qn ÓÔ‰ÂÎflÂÚÒfl Í‡Í Í‡‰Ë̇θÌÓ ˜ËÒÎÓ Ì‡ËÏÂ̸¯Â„Ó Ë‰Â‡Î‡
ÏÌÓÊÂÒÚ‚‡ Vn , ÒÓ‰Âʇ˘Â„Ó ÌÂÒÛ˘Â ÏÌÓÊÂÒÚ‚Ó ı: wp(x) = |⟨supp(x)⟩|, „‰Â supp(x) =
= {i: xi ≠ 0}. ê‡ÒÒÚÓflÌË ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ (ÒÏ. [BGL95]) ÂÒÚ¸ ÏÂÚË͇ ̇
qn , ÓÔ‰ÂÎÂÌ̇fl ͇Í
w P(x – y).
ÖÒÎË qn Ò̇·ÊÂÌÓ ‡ÒÒÚÓflÌËÂÏ ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡, ÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ë
ÏÌÓÊÂÒÚ‚‡ qn ̇Á˚‚‡ÂÚÒfl ÍÓ‰ÓÏ ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡. ÖÒÎË V n Ó·‡ÁÛÂÚ
ˆÂÔ¸ 1 ≤ 2 ≤ ... ≤ n, ÚÓ ÎËÌÂÈÌ˚È ÍÓ‰ ë ‡ÁÏÂÌÓÒÚË k, ÒÓÒÚÓfl˘ËÈ ËÁ ‚ÒÂı ‚ÂÍÚÓÓ‚
(0,..., 0, an − k +1 ,..., an ) ∈qn , fl‚ÎflÂÚÒfl ÒÓ‚Â¯ÂÌÌ˚Ï ÍÓ‰ÓÏ ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡
Ò ÏËÌËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ (ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡) d P∗ (C ) = n − k + 1. ÖÒÎË Vn
Ó·‡ÁÛÂÚ ‡ÌÚˈÂÔ¸, ÚÓ ‡ÒÒÚÓflÌË ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ÒÓ‚Ô‡‰‡ÂÚ Ò ıÂÏÏËÌ„Ó‚ÓÈ ÏÂÚËÍÓÈ.
ê‡ÒÒÚÓflÌË ‡Ì„‡
èÛÒÚ¸ q – ÍÓ̘ÌÓ ÔÓÎÂ,
= q – ‡Ò¯ËÂÌË ÒÚÂÔÂÌË m ÔÓÎfl q Ë = n –
‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÁÏÂÌÓÒÚË n ̇‰ . ÑÎfl β·Ó„Ó a = (a1 ,..., an ) ∈ „Ó
‡Ì„, rank(a), ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‡ÁÏÂÌÓÒÚ¸ ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇‰ q ,
ÔÓÓʉ‡ÂÏÓ„Ó ÏÌÓÊÂÒÚ‚ÓÏ {a1 ,..., an }. ê‡ÒÒÚÓflÌË ‡Ì„‡ ÂÒÚ¸ ÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl ͇Í
rank(a – b).
èÓÒÍÓθÍÛ ‡ÒÒÚÓflÌË ‡Ì„‡ ÏÂÊ‰Û ‰‚ÛÏfl ÍÓ‰Ó‚˚ÏË ÒÎÓ‚‡ÏË Ì ·Óθ¯Â, ˜ÂÏ
ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË, ‰Îfl β·Ó„Ó ÍÓ‰‡ ë ⊂ Â„Ó ÏËÌËχθÌÓ ‡Ò-
É·‚‡ 16. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl
251
∗
∗
ÒÚÓflÌË (‡Ì„‡) d RK
(C ) ≤ min{m, n − log q m | C | +1}. äÓ‰ ë Ò d RK
(C ) = n − log q m | C | +1,
∗
n < m, ̇Á˚‚‡ÂÚÒfl ÍÓ‰ÓÏ É‡·Ë‰ÛÎË̇ (ÒÏ. [Gabi85]). äÓ‰ ë Ò d RK
(C ) = m, m ≤ n,
̇Á˚‚‡ÂÚÒfl ÍÓ‰ÓÏ ‡ÒÒÚÓflÌËfl ÔÓÎÌÓ„Ó ‡Ì„‡. í‡ÍÓÈ ÍÓ‰ ËÏÂÂÚ Ì ·ÓΠq n
˝ÎÂÏÂÌÚÓ‚. å‡ÍÒËχθÌ˚Ï ÍÓ‰ÓÏ ‡ÒÒÚÓflÌËfl ÔÓÎÌÓ„Ó ‡Ì„‡ ÔÓ͇Á˚‚‡ÂÚÒfl ÍÓ‰
‡ÒÒÚÓflÌËfl ÔÓÎÌÓ„Ó ‡Ì„‡ Ò qn ˝ÎÂÏÂÌÚ‡ÏË; ÓÌ ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡,
ÍÓ„‰‡ m ‰ÂÎËÚ n.
åÂÚËÍË É‡·Ë‰ÛÎË̇–ëËÏÓÌËÒ‡
ê‡ÒÒÏÓÚËÏ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó qn (̇‰ ÍÓ̘Ì˚Ï ÔÓÎÂÏ q) Ë ÍÓ̘ÌÓÂ
ÒÂÏÂÈÒÚ‚Ó F = {Fi: i ∈ I} Â„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚, Ú‡ÍËı ˜ÚÓ
U Fi = qn . ç ӄ‡Ì˘˂‡fl
i ∈I
Ó·˘ÌÓÒÚË, ÏÓÊÌÓ Ò˜ËÚ‡Ú¸, ˜ÚÓ F – ‡ÌÚˈÂÔ¸ ÎËÌÂÈÌ˚ı ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ qn . F-‚ÂÒ wF
‚ÂÍÚÓ‡ x = ( x1 ,..., x n ) ∈qn ÓÔ‰ÂÎflÂÚÒfl Í‡Í Í‡‰Ë̇θÌÓ ˜ËÒÎÓ Ì‡ËÏÂ̸¯Â„Ó
ÔÓ‰ÏÌÓÊÂÒÚ‚‡ J ËÁ I, Ú‡ÍÓ„Ó ˜ÚÓ x ∈
U Fqn .
i ∈I
åÂÚË͇ ɇ·Ë‰ÛÎË̇–ëËÏÓÌËÒ‡ (ËÎË F-‡ÒÒÚÓflÌËÂ, ÒÏ. [GaSi98]) ÂÒÚ¸ ÏÂÚË͇
̇ qn , ÓÔ‰ÂÎÂÌ̇fl ͇Í
w F(x – y).
ï˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÒÎÛ˜‡˛, ÍÓ„‰‡ Fi, i ∈ I Ó·‡ÁÛ˛Ú Òڇ̉‡ÚÌ˚È ·‡ÁËÒ. åÂÚË͇ LJ̉ÂÏÓ̉‡ – ˝ÚÓ F-‡ÒÒÚÓflÌËÂ Ò Fi, i ∈ I, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl
ÒÚÓηˆ‡ÏË Ó·Ó·˘ÂÌÌÓÈ Ï‡Úˈ˚ LJ̉ÂÏÓ̉‡. åÂÚË͇ÏË É‡·Ë‰ÛÎË̇–ëËÏÓÌËÒ‡
fl‚Îfl˛ÚÒfl Ú‡ÍÊÂ: ‡ÒÒÚÓflÌË ‡Ì„‡, ‡ÒÒÚÓflÌË b-Ô‡ÍÂÚ‡, ÍÓÏ·Ë̇ÚÓÌ˚ ÏÂÚËÍË É‡·Ë‰ÛÎË̇ (ÒÏ. ê‡ÒÒÚÓflÌË ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÒÓÏÌÓÊÂÒÚ‚‡).
ê‡ÒÒÚÓflÌË êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇
èÛÒÚ¸ Mm,n(Fq ) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı m × n χÚˈ Ò ˝ÎÂÏÂÌÚ‡ÏË ËÁ ÍÓ̘ÌÓ„Ó ÔÓÎfl
Fq (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ËÁ β·Ó„Ó ÍÓ̘ÌÓ„Ó ‡ÎÙ‡‚ËÚ‡ = {a1 ,..., aq }). çÓχ êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇ || ⋅ ||RT ̇ Mm,n(Fq ) ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ÂÒÎË m = 1 Ë
a = (ξ1 , ξ 2 ,..., ξn ) ∈ M 1,n, ÚÓ || 01,n ||RT = 0 Ë || a ||RT = max{i | ξi ≠ 0} ‰Îfl a ≠ 0 1,n; ÂÒÎË
m
A = ( a1 ,..., am )T ∈ Mm, n ( Fq ), a j ∈ M1, n ( Fq ), 1 ≤ j ≤ m, ÚÓ || A || RT =
∑ || a j || RT .
j =1
ê‡ÒÒÚÓflÌË êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇ ([RoTs96]) ÂÒÚ¸ ÏÂÚË͇ (·ÓΠÚÓ„Ó, ÛθÚ‡ÏÂÚË͇) ̇ Mm,n(Fq ), ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| A − B || RT .
ÑÎfl Í‡Ê‰Ó„Ó Ï‡Ú˘ÌÓ„Ó ÍÓ‰‡ C ⊂ Mm, n ( Fq ) Ò q k ˝ÎÂÏÂÌÚ‡ÏË ÏËÌËχθÌÓÂ
∗
‡ÒÒÚÓflÌË (êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇) d RT
(C ) ≤ mn − k + 1. äÓ‰˚, ̇ ÍÓÚÓ˚ı ‰ÓÒÚË„‡ÂÚÒfl ‡‚ÂÌÒÚ‚Ó, ̇Á˚‚‡˛ÚÒfl ‡Á‰ÂÎËÚÂθÌ˚ÏË ÍÓ‰‡ÏË Ò Ï‡ÍÒËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ.
ç‡Ë·ÓΠ˜‡ÒÚÓ ËÒÔÓθÁÛÂÏ˚Ï ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÍÓ‰Ó‚˚ÏË ÒÎÓ‚‡ÏË Ï‡Ú˘ÌÓ„Ó ÍÓ‰‡ C ⊂ Mm, n ( Fq ) fl‚ÎflÂÚÒfl ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ ̇ M m,n(Fq ), ÓÔ‰ÂÎÂÌ̇fl
Í‡Í || A − B || H , „‰Â || A || H – ‚ÂÒ ï˝ÏÏËÌ„‡ χÚˈ˚ A ∈ Mm,n(Fq ), Ú.Â. ˜ËÒÎÓ ÌÂÌÛ΂˚ı ˝ÎÂÏÂÌÚÓ‚ χÚˈ˚ Ä.
252
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌË ‚Á‡ËÏÓÓ·ÏÂ̇
ê‡ÒÒÚÓflÌË ‚Á‡ËÏÓÓ·ÏÂ̇ (ËÎË ‡ÒÒÚÓflÌË ҂ÓÔ‡) ÂÒÚ¸ ÏÂÚË͇ ̇ ÍӉ ë ⊂ n
̇‰ ‡ÎÙ‡‚ËÚÓÏ , ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ C Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ Ò‚ÓÔÓ‚
(Ú‡ÌÒÔÓÁˈËÈ), Ú.Â. ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÒÏÂÊÌ˚ı Ô‡ ÒËÏ‚ÓÎÓ‚, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ı ‚ Û.
ê‡ÒÒÚÓflÌË ÄëåÖ
ê‡ÒÒÚÓflÌË ÄëåÖ – ˝ÚÓ ÏÂÚË͇ ̇ ÍӉ ë ⊂ n ̇‰ ‡ÎÙ‡‚ËÚÓÏ , ÓÔ‰ÂÎÂÌ̇fl ͇Í
min{d H ( x, y), d I ( x, y)},
„‰Â dH – ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇, ‡ dI – ‡ÒÒÚÓflÌË ÔÂÂÒÚ‡ÌÓ‚ÓÍ.
ê‡ÒÒÚÓflÌË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌË
èÛÒÚ¸ W – ÏÌÓÊÂÒÚ‚ÓÏ ‚ÒÂı ÒÎÓ‚ ̇‰ ‡ÎÙ‡‚ËÚÓÏ . 쉇ÎÂÌË ·ÛÍ‚˚ ‚ ÒÎÓ‚Â
β = b1 ...bn ‰ÎËÌ˚ n ÂÒÚ¸ ÔÂÓ·‡ÁÓ‚‡ÌËÂ β ‚ ÒÎÓ‚Ó β ′ = b1 ...bi −1bi +1 ...bn ‰ÎËÌ˚ n – 1.
ÇÒÚ‡‚͇ ·ÛÍ‚˚ ‚ ÒÎÓ‚Ó β = b1 ...bn ‰ÎËÌ˚ n ÂÒÚ¸ ÔÂÓ·‡ÁÓ‚‡ÌËÂ β ‚ ÒÎÓ‚Ó
β ′′ = b1 ...bi bbi +1 ...bn ‰ÎËÌ˚ n + 1.
ê‡ÒÒÚÓflÌË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl (ËÎË ‡ÒÒÚÓflÌË ÍÓ‰Ó‚ Ò ËÒÔ‡‚ÎÂÌËÂÏ Û‰‡ÎÂÌËÈ Ë
‚ÒÚ‡‚ÓÍ) ÂÒÚ¸ ÏÂÚË͇ ̇ W, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı α, β ∈ W Í‡Í ÏËÌËχθÌÓÂ
˜ËÒÎÓ Û‰‡ÎÂÌËÈ Ë ‚ÒÚ‡‚ÓÍ ·ÛÍ‚, ÔÂÓ·‡ÁÛ˛˘Ëı α ‚ β.
äÓ‰ ë Ò ËÒÔ‡‚ÎÂÌËÂÏ Û‰‡ÎÂÌËÈ Ë ‚ÒÚ‡‚ÓÍ – ÔÓËÁ‚ÓθÌÓ ÍÓ̘ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ W. èËÏÂÓÏ Ú‡ÍÓ„Ó ÍÓ‰‡ fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ÒÎÓ‚
n
β = b1 ...bn ‰ÎËÌ˚ n ̇‰ ‡ÎÙ‡‚ËÚÓÏ = {0, 1}, ‰Îfl ÍÓÚÓÓ„Ó
∑ ibi ≡ 0(mod n + 1).
i =1
∑
1
äÓ΢ÂÒÚ‚Ó ÒÎÓ‚ ‚ ˝ÚÓÏ ÍӉ ‡‚ÌÓ
φ( k )2 ( n +1) / k , „‰Â ÒÛÏχ ·ÂÂÚÒfl ÔÓ
2(n + 1) k
‚ÒÂÏ Ì˜ÂÚÌ˚Ï ‰ÂÎËÚÂÎflÏ k ˜ËÒ· n + 1, ‡ φ – ÙÛÌ͈Ëfl ùÈÎÂ‡.
àÌÚÂ‚‡Î¸ÌÓ ‡ÒÒÚÓflÌËÂ
àÌÚÂ‚‡Î¸ÌÓ ‡ÒÒÚÓflÌË (ÒÏ., ̇ÔËÏÂ, [Bata95]) – ÏÂÚË͇ ̇ ÍÓ̘ÌÓÈ „ÛÔÔ (G, +, 0), ÓÔ‰ÂÎÂÌ̇fl ͇Í
w int(x – y),
„‰Â wint(x) – ËÌÚÂ‚‡Î¸Ì˚È ‚ÂÒ Ì‡ G, Ú.Â. ÌÓχ „ÛÔÔ˚, Á̇˜ÂÌËfl ÍÓÚÓÓÈ fl‚Îfl˛ÚÒfl
ÔÓÒΉӂ‡ÚÂθÌ˚ÏË ÌÂÓÚˈ‡ÚÂθÌ˚ÏË ˆÂÎ˚ÏË ˜ËÒ·ÏË 0,..., m. ùÚÓ ‡ÒÒÚÓflÌËÂ
ËÒÔÓθÁÛÂÚÒfl ‚ „ÛÔÔÓ‚˚ı ÍÓ‰‡ı C ⊂ G.
åÂÚË͇ î‡ÌÓ
åÂÚËÍÓÈ î‡ÌÓ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ‰ÂÍÓ‰ËÓ‚‡ÌËfl, Ô‰̇Á̇˜ÂÌ̇fl ‰Îfl
ÓÔ‰ÂÎÂÌËfl ̇ËÎÛ˜¯ÂÈ ‚ÓÁÏÓÊÌÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÔËÏÂÌËÚÂθÌÓ Í ‡Î„ÓËÚÏÛ î‡ÌÓ ÔÓÒΉӂ‡ÚÂθÌÓ„Ó ‰ÂÍÓ‰ËÓ‚‡ÌËfl Ò‚ÂÚÓ˜Ì˚ı ÍÓ‰Ó‚.
ë‚ÂÚÓ˜Ì˚È ÍÓ‰ – ÍÓ‰ Ò ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ, ‚ ÍÓÚÓÓÏ Í‡Ê‰˚È k-·ËÚ ÔÓ‰ÎÂʇ˘Â„Ó ÍÓ‰ËÓ‚‡Ì˲ ËÌÙÓχˆËÓÌÌÓ„Ó ÒËÏ‚Ó· ÔÂÓ·‡ÁÛÂÚÒfl ‚ n-·ËÚÓ‚ ÍÓ‰Ó‚ÓÂ
k
ÒÎÓ‚Ó, „‰Â R = ÂÒÚ¸ ÍÓ‰Ó‚‡fl ÒÍÓÓÒÚ¸ (n ≥ k), ‡ ÔÂÓ·‡ÁÓ‚‡ÌË – ÙÛÌ͈Ëfl ÔÓÒΉn
ÌËı m ËÌÙÓχˆËÓÌÌ˚ı ÒËÏ‚ÓÎÓ‚. ãËÌÂÈÌ˚È, Ì Á‡‚ËÒfl˘ËÈ ÓÚ ‚ÂÏÂÌË ‰ÂÍÓ‰Â
(ÙËÍÒËÓ‚‡ÌÌ˚È Ò‚ÂÚÓ˜Ì˚È ‰ÂÍÓ‰Â) ÓÚÓ·‡Ê‡ÂÚ ËÌÙÓχˆËÓÌÌ˚È ÒËÏ‚ÓÎ
É·‚‡ 16. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl
253
ui ∈{u1 ,..., u N }, ui = (ui1 ,..., uik ), uij ∈2 ÍÓ‰Ó‚ÓÂ ÒÎÓ‚Ó xi ∈{x1 ,..., x N }, xi = ( xi1 ,..., xin ),
xij ∈2 Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ Ì‡ ‚˚ıӉ ÔÓÎÛ˜‡ÂÚÒfl ÍÓ‰ {x 1 ,..., xN} ËÁ N ÍÓ‰Ó‚˚ı ÒÎÓ‚ Ò
‚ÂÓflÚÌÓÒÚflÏË {p( x1 ),..., p( x N )}. èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ l ÍÓ‰Ó‚˚ı ÒÎÓ‚ ÙÓÏËÛÂÚ ÔÓÚÓÍ (ËÎË ÔÛÚ¸) x = x[1, l ] = {x1 ,..., xl }, ÍÓÚÓ˚È ÔÂ‰‡ÂÚÒfl ÔÓ ‰ËÒÍÂÚÌ˚Ï
Í‡Ì‡Î‡Ï ·ÂÁ Ô‡ÏflÚË Ë ÔÓÒÚÛÔ‡ÂÚ Ì‡ ÔËÂÏÌËÍ ‚ ‚ˉ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË y = y[1,l].
Ç Á‡‰‡˜Û ‰ÂÍÓ‰Â‡, Ô‰̇Á̇˜ÂÌÌÓ„Ó ‰Îfl ÏËÌËÏËÁ‡ˆËË ‚ÂÓflÚÌÓÒÚË Ó¯Ë·ÓÍ ‚
ÔÓÒΉӂ‡ÚÂθÌÓÒÚË, ‚ıÓ‰ËÚ ÔÓËÒÍ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË, ÍÓÚÓ‡fl χÍÒËχθÌÓ
Û‚Â΢˂‡ÂÚ Ó·˘Û˛ ‚ÂÓflÚÌÓÒÚ¸ ‚ıÓ‰fl˘ÂÈ Ë ËÒıÓ‰fl˘ÂÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ
p(x, y) = p (y | x) ⋅ p(x). é·˚˜ÌÓ ‰ÓÒÚ‡ÚÓ˜ÌÓ Ì‡ÈÚË Ôӈ‰ÛÛ Ï‡ÍÒËÏËÁ‡ˆËË p(y | x),
Ë ‰ÂÍÓ‰Â, ‚Ò„‰‡ ‚˚·Ë‡˛˘ËÈ ‚ ͇˜ÂÒÚ‚Â Ò‚ÓÂÈ ÓˆÂÌÍË Ó‰ÌÛ ËÁ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ, χÍÒËÏËÁËÛ˛˘Ëı ˝ÚÛ ‚Â΢ËÌÛ (ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, ÏÂÚË͇ î‡ÌÓ),
̇Á˚‚‡ÂÚÒfl ‰ÂÍÓ‰ÂÓÏ Ï‡ÍÒËχθÌÓ„Ó Ô‡‚‰ÓÔÓ‰Ó·Ëfl.
ÉÛ·Ó „Ó‚Ófl, ͇ʉ˚È ÍÓ‰ ÏÓÊÌÓ Ò˜ËÚ‡Ú¸ ‰Â‚ÓÏ, Û ÍÓÚÓÓ„Ó Í‡Ê‰‡fl ‚ÂÚ‚¸
fl‚ÎflÂÚÒfl ÓÚ‰ÂθÌ˚Ï ÍÓ‰Ó‚˚Ï ÒÎÓ‚ÓÏ. ÑÂÍÓ‰Â ̇˜Ë̇ÂÚ ‡·ÓÚÛ Ò ÔÂ‚ÓÈ ‚Â¯ËÌ˚
‰Â‚‡ Ë ‡ÒÒ˜ËÚ˚‚‡ÂÚ ÏÂÚËÍÛ ‚ÂÚ‚Ë ‰Îfl ͇ʉÓÈ ËÁ ‚ÓÁÏÓÊÌ˚ı ‚ÂÚ‚ÂÈ, ÓÔ‰ÂÎflfl
Í‡Í Ì‡ËÎÛ˜¯Û˛ ÚÛ, ‚ÂÚ‚¸ ÍÓÚÓ‡fl ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÍÓ‰Ó‚ÓÏÛ ÒÎÓ‚Û xj, ӷ·‰‡˛˘ÂÏÛ
̇˷Óθ¯ÂÈ ÏÂÚËÍÓÈ ‚ÂÚ‚Ë µF(xj). ùÚ‡ ‚ÂÚ‚¸ ‰Ó·‡‚ÎflÂÚÒfl Í ÔÛÚË, Ë ‡Î„ÓËÚÏ
ÔÓ‰ÓÎʇÂÚÒfl Ò ÌÓ‚ÓÈ ‚Â¯ËÌ˚, Ô‰ÒÚ‡‚Îfl˛˘ÂÈ ÒÛÏÏÛ Ô‰˚‰Û˘ÂÈ ‚Â¯ËÌ˚ Ë
ÍÓ΢ÂÒÚ‚‡ ·ËÚÓ‚ ‚ ÚÂÍÛ˘ÂÏ Ì‡ËÎÛ˜¯ÂÏ ÍÓ‰Ó‚ÓÏ ÒÎÓ‚Â.
èÓÒ‰ÒÚ‚ÓÏ ÔÓˆÂÒÒ‡ ËÚÂ‡ˆËË ‰Ó ÍÓ̘ÌÓÈ ‚Â¯ËÌ˚ ‰Â‚‡ ‡Î„ÓËÚÏ ÔÓÍ·‰˚‚‡ÂÚ Ì‡Ë·ÓΠ‚ÂÓflÚÌ˚È ÔÛÚ¸. Ç ˝ÚÓÏ ÔÓÒÚÓÂÌËË ·ËÚÓ‚‡fl ÏÂÚË͇ î‡ÌÓ
ÓÔ‰ÂÎflÂÚÒfl ͇Í
log 2
p( yi | xi )
− R,
p( yi )
ÏÂÚË͇ ‚ÂÚ‚Ë î‡ÌÓ ÓÔ‰ÂÎflÂÚÒfl ͇Í
n
µF (x j ) =

p( yi | x ji )
∑  log2
p( yi )
i =1

− R ,

‡ ÏÂÚË͇ ÔÛÚË î‡ÌÓ – ͇Í
l
µ F ( x[1, l ] ) =
∑ µ F ( x j ),
j =1
„‰Â p( yi | x ji ) – ‚ÂÓflÚÌÓÒÚË ÔÂÂıÓ‰‡ ͇̇ÎÓ‚, p( yi ) =
∑ p( xm )p( yi | xm ) – ‡ÒÔÂxm
‰ÂÎÂÌË ‚ÂÓflÚÌÓÒÚÂÈ ‚˚ıÓ‰Ì˚ı ‰‡ÌÌ˚ı ÔË Á‡‰‡ÌÌ˚ı ‚ıÓ‰Ì˚ı ‰‡ÌÌ˚ı (ÛÒ‰k
ÌÂÌÌÓ ÔÓ ‚ÒÂÏ ‚ıÓ‰Ì˚Ï ÒËÏ‚Ó·Ï) Ë R = – ÍÓ‰Ó‚‡fl ÒÍÓÓÒÚ¸.
n
1
ÑÎfl ‰ÂÍÓ‰Â‡ Ò "ÊÂÒÚÍËÏ" ¯ÂÌËÂÏ p( yi = 0 | x j = 0) = p, 0 < p <
ÏÂÚËÍÛ
2
î‡ÌÓ ‰Îfl ÔÛÚË x[1, l ] ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ͇Í
µ F ( x[1, l ] ) = −αd H ( y[1, l ] , x[1, l ] ) + β ⋅ l ⋅ n,
„‰Â α = − log 2
p
> 0, β = 1 − R + log 2 (1 − p) Ë dH – ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇.
1− p
254
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
é·Ó·˘ÂÌ̇fl ÏÂÚË͇ î‡ÌÓ ‰Îfl ÔÓÒΉӂ‡ÚÂθÌÓ„Ó ‰ÂÍÓ‰ËÓ‚‡ÌËfl ÓÔ‰ÂÎflÂÚÒfl ͇Í


p( yi | x j ) w
log
 2
1− w − wR ,
p( y j )

j =1 
ln
µ wF ( x[1, l ] ) =
∑
0 ≤ w ≤ 1. äÓ„‰‡ w = 1/2, Ó·Ó·˘ÂÌ̇fl ÏÂÚË͇ î‡ÌÓ Ò‚Ó‰ËÚÒfl Í ÏÂÚËÍ î‡ÌÓ Ò
ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ ÍÓÌÒÚ‡ÌÚÓÈ 1/2.
åÂÚ˘ÂÒ͇fl ÂÍÛÒËfl åÄê ‰ÂÍÓ‰ËÓ‚‡ÌËfl
å‡ÍÒËχθ̇fl ‡ÔÓÒÚÂËÓ̇fl ÓˆÂÌ͇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ËÎË åÄê ‰ÂÍÓ‰ËÓ‚‡ÌË ‰Îfl ÍÓ‰Ó‚ ÔÂÂÏÂÌÌÓÈ ‰ÎËÌ˚, ËÒÔÓθÁÛ˛˘‡fl ‡Î„ÓËÚÏ ÇËÚÂ·Ë, ÓÒÌÓ‚‡Ì‡
̇ ÏÂÚ˘ÂÒÍÓÈ ÂÍÛÒËË
Λ(km )
=
Λ(km−)1
+
l k( m )
∑
n =1
x k( m, n) log 2
p( yk , n | x k( m, n) = +1
p( yk , n | x k( m, n) = −1
+ 2 log 2 p(uk( m ) ),
„‰Â Λ(km ) – ÏÂÚË͇ ‚ÂÚ‚Ë ‰Îfl ‚ÂÚ‚Ë m ‚ ÔÂËÓ‰ ‚ÂÏÂÌË (ÛÓ‚Â̸) k; xk,n – n-È ·ËÚ ÍÓ‰Ó‚Ó„Ó ÒÎÓ‚‡ Ò lk( m ) ·ËÚ‡ÏË, ÔÓϘÂÌÌ˚ı ̇ ͇ʉÓÈ ‚ÂÚ‚Ë; Ûk,n – ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÈ
ÔËÌflÚ˚È "Ïfl„ÍËÈ" ·ËÚ; ukm – ËÒıÓ‰Ì˚ ÒËÏ‚ÓÎ˚ ‚ÂÚ‚Ë m ‚ ÔÂËÓ‰ k, Ë ÔË
Ô‰ÔÓÎÓÊÂÌËË ÒÚ‡ÚËÒÚ˘ÂÒÍÓÈ ÌÂÁ‡‚ËÒËÏÓÒÚË ËÒıÓ‰Ì˚ı ÒËÏ‚ÓÎÓ‚ ‚ÂÓflÚÌÓÒÚ¸
p(uk( m ) ) ˝Í‚Ë‚‡ÎÂÌÚ̇ ‚ÂÓflÚÌÓÒÚË ËÒıÓ‰ÌÓ„Ó ÒËÏ‚Ó·, ÔÓϘÂÌÌÓ„Ó Ì‡ ‚ÂÚ‚Ë m,
ÍÓÚÓ‡fl ËÁ‚ÂÒÚ̇ ËÎË ‡ÒÒ˜ËÚ˚‚‡ÂÚÒfl. åÂÚ˘ÂÒÍËÈ ËÌÍÂÏÂÌÚ ‡ÒÒ˜ËÚ˚‚‡ÂÚÒfl
‰Îfl ͇ʉÓÈ ‚ÂÚ‚Ë, Ë Ì‡Ë·Óθ¯Â Á̇˜ÂÌËÂ, ÔË ËÒÔÓθÁÓ‚‡ÌËË ÎÓ„‡ËÙÏ˘ÂÒÍÓ„Ó
Á̇˜ÂÌËfl Ô‡‚‰ÓÔÓ‰Ó·Ëfl Í‡Ê‰Ó„Ó ÒÓÒÚÓflÌËflËÒÔÓθÁÛÂÚÒfl ‰Îfl ‰‡Î¸ÌÂȯÂÈ ÂÍÛÒËË. ÑÂÍÓ‰Â Ò̇˜‡Î‡ ‚˚˜ËÒÎflÂÚ ÏÂÚËÍÛ Ì‡ ‚ÒÂı ‚ÂÚ‚flı, Ë Á‡ÚÂÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ Ò Ì‡Ë·Óθ¯ÂÈ ÏÂÚËÍÓÈ ‚ÂÚ‚Ë ‚˚·Ë‡ÂÚÒfl ̇˜Ë̇fl
Ò Á‡Íβ˜ËÚÂθÌÓ„Ó ÒÓÒÚÓflÌËfl.
É·‚‡ 17
êÄëëíéüçàü à èéÑéÅçéëíà
Ç ÄçÄãàáÖ ÑÄççõï
åÌÓÊÂÒÚ‚Ó ‰‡ÌÌ˚ı – ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó, ÒÓÒÚÓfl˘Â ËÁ m ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ
( x1j ,..., x nj ), j ∈{1,..., m} ‰ÎËÌ˚ n. á̇˜ÂÌËfl xi1 ,..., xim Ô‰ÒÚ‡‚Îfl˛Ú ‡ÚË·ÛÚ S i.
éÌ ÏÓÊÂÚ ·˚Ú¸ ˜ËÒÎÓ‚˚Ï, ‚ ÚÓÏ ˜ËÒΠÌÂÔÂ˚‚Ì˚Ï (‰ÂÈÒÚ‚ËÚÂθÌ˚ ˜ËÒ·) Ë
‰‚Ó˘Ì˚Ï (‰‡/ÌÂÚ ‚˚‡Ê‡ÂÚÒfl Í‡Í 1/0), Ó‰Ë̇θÌ˚Ï (˜ËÒ·ÏË Û͇Á˚‚‡ÂÚÒfl ÚÓθÍÓ
‡Ì„) ËÎË ÌÓÏË̇θÌ˚Ï (ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚Ï).
ä·ÒÚÂÌ˚È ‡Ì‡ÎËÁ (ËÎË Í·ÒÒËÙË͇ˆËfl, Ú‡ÍÒÓÌÓÏËfl, ‡ÒÔÓÁ̇‚‡ÌË ӷ‡ÁÓ‚)
Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ‡Á·ËÂÌË ‰‡ÌÌ˚ı Ä Ì‡ ÓÚÌÓÒËÚÂθÌÓ Ï‡ÎÓ ˜ËÒÎÓ Í·ÒÚÂÓ‚,
Ú.Â. Ú‡ÍËı ÏÌÓÊÂÒÚ‚ Ó·˙ÂÍÚÓ‚, ˜ÚÓ (ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ‚˚·‡ÌÌÓÈ ÏÂ ‡ÒÒÚÓflÌËfl)
Ó·˙ÂÍÚ˚, ̇ÒÍÓθÍÓ ˝ÚÓ ‚ÓÁÏÓÊÌÓ, "·ÎËÁÍË", ÂÒÎË ÔË̇‰ÎÂÊ‡Ú Ó‰ÌÓÏÛ Ë ÚÓÏÛ ÊÂ
Í·ÒÚÂÛ, Ë "‰‡ÎÂÍË", ÂÒÎË ÔË̇‰ÎÂÊ‡Ú ‡ÁÌ˚Ï Í·ÒÚÂ‡Ï, Ë ‰‡Î¸ÌÂȯ ÔÓ‰‡Á‰ÂÎÂÌË ̇ Í·ÒÚÂ˚ ÓÒ··ËÚ ‚˚¯ÂÛ͇Á‡ÌÌ˚ ÛÒÎÓ‚Ëfl.
ê‡ÒÒÏÓÚËÏ ÚË ÚËÔ˘Ì˚ı ÒÎÛ˜‡fl. Ç ÔËÎÓÊÂÌËflı, Ò‚flÁ‡ÌÌ˚ı Ò ‚˚·ÓÍÓÈ ËÌÙÓχˆËË, ÛÁÎ˚ Ó‰ÌÓ‡Ì„Ó‚ÓÈ ·‡Á˚ ‰‡ÌÌ˚ı ˝ÍÒÔÓÚËÛ˛Ú ËÌÙÓχˆË˛ (ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÚÂÍÒÚÓ‚˚ı ‰ÓÍÛÏÂÌÚÓ‚); ͇ʉ˚È ‰ÓÍÛÏÂÌÚ ı‡‡ÍÚÂËÁÛÂÚÒfl ‚ÂÍÚÓÓÏ ËÁ
n. Ç Á‡ÔÓÒ ÔÓθÁÓ‚‡ÚÂÎfl ÒÓ‰ÂÊËÚÒfl ‚ÂÍÚÓ x ∈ n, Ë ÔÓθÁÓ‚‡ÚÂβ ÌÂÓ·ıÓ‰ËÏ˚
‚Ò ‰ÓÍÛÏÂÌÚ˚ ·‡Á˚ ‰‡ÌÌ˚ı, Ëϲ˘Ë ÓÚÌÓ¯ÂÌËÂ Í ˝ÚÓÏÛ Á‡ÔÓÒÛ, Ú.Â. ÔË̇‰ÎÂʇ˘Ë ¯‡Û ‚ n Ò ˆÂÌÚÓÏ ‚ ı, ÙËÍÒËÓ‚‡ÌÌÓ„Ó ‡‰ËÛÒ‡ Ë ÔÓ‰ıÓ‰fl˘ÂÈ
ÙÛÌ͈ËÂÈ ‡ÒÒÚÓflÌËfl. Ç „ÛÔÔËÓ‚Í Á‡ÔËÒÂÈ, ͇ʉ˚È ‰ÓÍÛÏÂÌÚ (Á‡ÔËÒ¸ ‚ ·‡ÁÂ
‰‡ÌÌ˚ı) Ô‰ÒÚ‡‚ÎÂÌ ‚ÂÍÚÓÓÏ ˜‡ÒÚÓÚÌÓÒÚË ÚÂÏË̇ x ∈ n , Ë Ú·ÛÂÚÒfl ÓÔ‰ÂÎËÚ¸ ÒÂχÌÚ˘ÂÒÍÛ˛ Á̇˜ËÏÓÒÚ¸ ÒËÌÚ‡ÍÒ˘ÂÒÍË ‡ÁÌ˚ı Á‡ÔËÒÂÈ. Ç ˝ÍÓÎÓ„ËË, ÂÒÎË
‚ÂÍÚÓ‡ ı, Û Ó·ÓÁ̇˜‡˛Ú ‡ÒÔ‰ÂÎÂÌËfl ˜ËÒÎÂÌÌÓÒÚË ‚ˉӂ, ÔÓÎÛ˜ÂÌÌ˚ ‰‚ÛÏfl
ÏÂÚÓ‰‡ÏË, ‚˚·ÓÍË ‰‡ÌÌ˚ı (Ú.Â. x j, yj – ˜ËÒ· Ë̉˂ˉӂ ‚ˉ‡ j, ÔÓÎÛ˜ÂÌÌ˚ ‚
ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ‚˚·ÓÍÂ), ÚÓ Ú·ÛÂÚÒfl ÓÔ‰ÂÎËÚ¸ ÏÂÛ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ı Ë Û
‰Îfl Ò‡‚ÌÂÌËfl ‰‚Ûı ÏÂÚÓ‰Ó‚. ᇘ‡ÒÚÛ˛ ‰‡ÌÌ˚ Ó„‡ÌËÁÛ˛ÚÒfl Ò̇˜‡Î‡ ‚ ‚ˉÂ
ÏÂÚ˘ÂÒÍÓ„Ó ‰Â‚‡, Ú.Â. ‚ ‚ˉ ‰Â‚‡, Ë̉ÂÍÒËÓ‚‡ÌÌÓ„Ó ˝ÎÂÏÂÌÚ‡ÏË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡.
èÓÒΠ‚˚·Ó‡ ‡ÒÒÚÓflÌËfl d ÏÂÊ‰Û Ó·˙ÂÍÚ‡ÏË ÏÂÚË͇ ÎËÌÍˉʇ, Ú.Â. ‡ÒÒÚÓflÌË ÏÂÊ‰Û Í·ÒÚÂ‡ÏË A = {a 1 ,..., am} Ë B = {b1 ,..., bn }, Ó·˚˜ÌÓ ÓÔ‰ÂÎflÂÚÒfl ͇Í
Ó‰ÌÓ ËÁ ÒÎÂ‰Û˛˘Ëı:
– ÛÒ‰ÌÂÌ̇fl ÎËÌÍˉÊ: Ò‰Ì Á̇˜ÂÌË ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ‚ÒÂÏË ˜ÎÂ̇ÏË
d ( ai , b j )
∑∑
˝ÚËı Í·ÒÚÂÓ‚, Ú.Â.
i
j
;
mn
– Ó‰Ë̇Ì˚È ÎËÌÍˉÊ: ‡ÒÒÚÓflÌË ÏÂÊ‰Û ·ÎËʇȯËÏË ˜ÎÂ̇ÏË ˝ÚËı Í·ÒÚÂÓ‚,
Ú.Â. min d ( ai , b j );
ij
– ÔÓÎÌ˚È ÎËÌÍˉÊ: ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ò‡Ï˚ÏË Û‰‡ÎÂÌÌ˚ÏË ‰Û„ ÓÚ ‰Û„‡
˜ÎÂ̇ÏË ˝ÚËı Í·ÒÚÂÓ‚, Ú.Â. min d ( ai , b j );
ij
256
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
– ÎËÌÍË‰Ê ˆÂÌÚÓˉӂ: ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚÓˉ‡ÏË (ˆÂÌÚ‡ÏË ÚflÊÂÒÚË)
ai
bi
i
i
˜
˝ÚËı Í·ÒÚÂÓ‚, Ú.Â. || a˜ − b ||2 , „‰Â a =
Ë b=
;
m
n
min
|| a˜ − b˜ ||2 .
– ÎËÌÍË‰Ê ‚‡‰‡: ‡ÒÒÚÓflÌËÂ
m+n
åÌÓ„ÓÏÂÌÓ ¯Í‡ÎËÓ‚‡ÌË – ÚÂıÌË͇, ÔËÏÂÌflÂχfl ‚ ӷ·ÒÚË Ôӂ‰Â̘ÂÒÍËı Ë
ÒӈˇθÌ˚ı ̇ÛÍ ‰Îfl ËÒÒΉӂ‡ÌËfl Ó·˙ÂÍÚÓ‚ ËÎË Î˛‰ÂÈ. ÇÏÂÒÚÂ Ò Í·ÒÚÂÌ˚Ï
‡Ì‡ÎËÁÓÏ Ó̇ ·‡ÁËÛÂÚÒfl ̇ ËÒÔÓθÁÓ‚‡ÌËË ‡ÒÒÚÓflÌËÈ. é‰Ì‡ÍÓ ÔË ÏÌÓ„ÓÏÂÌÓÏ
¯Í‡ÎËÓ‚‡ÌËË, ‚ ÓÚ΢ˠÓÚ Í·ÒÚÂÌÓ„Ó ‡Ì‡ÎËÁ‡, ÔÓˆÂÒÒ Ì‡˜Ë̇ÂÚÒfl Ò ÌÂÍÓÚÓÓÈ
m × m χÚˈ˚ D ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û Ó·˙ÂÍÚ‡ÏË Ë Á‡ÚÂÏ (ËÚÂ‡ˆËÓÌÌÓ) ˢÂÚÒfl
ÂÔÂÁÂÌÚ‡ˆËfl Ó·˙ÂÍÚÓ‚ ‚ n Ò Ï‡Î˚Ï n, ڇ͇fl ˜ÚÓ Ëı χÚˈ‡ ‚ÍÎˉӂ˚ı ‡ÒÒÚÓflÌËÈ ËÏÂÂÚ ÏËÌËχθÌÓ ͂‡‰‡Ú˘ÌÓ ÓÚÍÎÓÌÂÌË ÓÚ ËÒıÓ‰ÌÓÈ
χÚˈ˚ D.
Ç ÔÓˆÂÒÒ ‡Ì‡ÎËÁ‡ ‰‡ÌÌ˚ı ÔËÏÂÌfl˛ÚÒfl ÏÌÓ„Ë ÔÓ‰Ó·ÌÓÒÚË; Ëı ‚˚·Ó Á‡‚ËÒËÚ
ÓÚ ı‡‡ÍÚÂ‡ ‰‡ÌÌ˚ı Ë ÔÓ͇ ÚÓ˜ÌÓÈ Ì‡ÛÍÓÈ Ì fl‚ÎflÂÚÒfl. çËÊ ÔË‚Ó‰flÚÒfl
ÓÒÌÓ‚Ì˚ ËÁ ˝ÚËı ÔÓ‰Ó·ÌÓÒÚÂÈ Ë ‡ÒÒÚÓflÌËÈ.
ÑÎfl ‰‚Ûı Ó·˙ÂÍÚÓ‚, Ô‰ÒÚ‡‚ÎÂÌÌ˚ı ÌÂÌÛ΂˚ÏË ‚ÂÍÚÓ‡ÏË x = (x 1 ,..., x n ) Ë
y = (y 1 ,..., yn) ËÁ n, ‚ ‰‡ÌÌÓÈ „·‚ ËÒÔÓθÁÛ˛ÚÒfl ÒÎÂ‰Û˛˘Ë ӷÓÁ̇˜ÂÌËfl:
∑
∑
∑
n
xi ÓÁ̇˜‡ÂÚ
∑ xi .
i =1
1 F – ı‡‡ÍÚÂËÒÚ˘ÂÒ͇fl ÙÛÌ͈Ëfl ÒÓ·˚ÚËfl F: 1 F = 1, ÂÒÎË F ËÏÂÂÚ ÏÂÒÚÓ Ë
1F = 0, ÂÒÎË ÌÂÚ.
|| x ||2 = ∑ xi2 – Ó·˚˜Ì‡fl ‚ÍÎˉӂ‡ ÌÓχ ̇ n.
∑ xi
1
, Ú.Â. Ò‰Ì Á̇˜ÂÌË ÍÓÏÔÓÌÂÌÚ‡ ı, Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í x. í‡Í, x = , ÂÒÎË
n
n
x fl‚ÎflÂÚÒfl ‚ÂÍÚÓÓÏ ˜‡ÒÚÓÚÌÓÒÚË (‰ËÒÍÂÚÌ˚Ï ‡ÒÔ‰ÂÎÂÌËÂÏ ‚ÂÓflÚÌÓÒÚÂÈ),
n +1
Ú.Â. ‚ÒÂ x i ≥ 0, ∑xi = 1; Ë x =
, ÂÒÎË ı fl‚ÎflÂÚÒfl ‡ÌÊËÓ‚‡ÌËÂÏ (ÔÂÂÒÚ‡ÌÓ‚ÍÓÈ),
2
Ú.Â. ‚Ò x i – ‡ÁÌ˚ ˜ËÒ· ÏÌÓÊÂÒÚ‚‡ {1,..., n}.
ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl x ∈ {0, 1}n (Ú.Â. ÍÓ„‰‡ ı fl‚ÎflÂÚÒfl ·Ë̇ÌÓÈ n-ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛) ÔÛÒÚ¸ X = {1 ≤ i ≤ n : xi = 1} Ë X = {1 ≤ i ≤ n : xi = 0}. èÛÒÚ¸ | X ∩ Y |,
| X ∪ Y |, | X \ Y | Ë | X∆Y | Ó·ÓÁ̇˜‡˛Ú ͇‰Ë̇θÌÓ ˜ËÒÎÓ ÔÂÂÒ˜ÂÌËfl, Ó·˙‰ËÌÂÌËfl, ‡ÁÌÓÒÚË Ë ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË ( X \ Y ) ∪ (Y \ X ) ÏÌÓÊÂÒÚ‚ X Ë Y ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
17.1. èéÑêéÅçéëíà à êÄëëíéüçàü Ñãü óàëãéÇõï ÑÄççõï
èÓ‰Ó·ÌÓÒÚ¸ êÛʘÍË
èÓ‰Ó·ÌÓÒÚ¸ êÛʘÍË – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑ min{xi , yi}
∑ max{xi , yi}
257
É·‚‡ 17. ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı
ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ‡ÒÒÚÓflÌËÂ
1−
∑ min{xi , yi}
∑ | xi − yi |
=
∑ max{xi , yi} ∑ max{xi , yi}
n
ÒÓ‚Ô‡‰‡ÂÚ Ì‡ ≥0
Ò ÏÂÚËÍÓÈ Ì˜ÂÚÍÓ„Ó ÔÓÎËÌÛÍÎÂÓÚˉ‡ (ÒÏ. „Î. 25).
èÓ‰Ó·ÌÓÒÚ¸ êÓ·ÂÚÒ‡
èÓ‰Ó·ÌÓÒÚ¸ êÓ·ÂÚÒ‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
min{xi , yi}
max{xi , yi}
.
∑( xi + yi )
∑( xi + yi )
èÓ‰Ó·ÌÓÒÚ¸ ùÎÎÂÌ·Â„‡
èÓ‰Ó·ÌÓÒÚ¸ ùÎÎÂÌ·Â„‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑( xi + yi )1x i x i ≠ 0
∑( xi + yi )(1 + 1x i yi = 0 )
.
ÅË̇Ì˚ ÒÎÛ˜‡Ë ÔÓ‰Ó·ÌÓÒÚÂÈ ùÎÎÂÌ·Â„‡ Ë êÛʘÍË ÒÓ‚Ô‡‰‡˛Ú; ڇ͇fl ÔÓ‰Ó·ÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ í‡ÌËÏÓÚÓ (ËÎË Ê‡Í͇‰Ó‚ÓÈ ÔÓ‰Ó·ÌÓÒÚ¸˛
Ó·˘ÌÓÒÚË):
| X ∩Y |
| X ∪Y |
ê‡ÒÒÚÓflÌË í‡ÌËÏÓÚÓ (ËÎË ‡ÒÒÚÓflÌË ·ËÓÚÓÔ‡) – ‡ÒÒÚÓflÌË ̇ {0, 1}n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
1−
| X ∩ Y | | X∆Y |
=
.
| X ∪Y | | X ∪Y |
èÓ‰Ó·ÌÓÒÚ¸ ÉÎËÒÓ̇
èÓ‰Ó·ÌÓÒÚ¸ ÉÎËÒÓ̇ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑( xi + yi )1x i x i ≠ 0
∑( xi + yi )
.
ÅË̇Ì˚ ÒÎÛ˜‡Ë ÔÓ‰Ó·ÌÓÒÚÂÈ ÉÎËcÓ̇, åÓÚ˚ÍË Ë Å˝fl-äÛÚËÒ‡ ÒÓ‚Ô‡‰‡˛Ú;
ڇ͇fl ÔÓ‰Ó·ÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ чÈÒ‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸˛ ëÓÂÌÒÂ̇,
ÔÓ‰Ó·ÌÓÒÚ¸˛ ôÂ͇ÌÓ‚ÒÍÓ„Ó):
2| X ∩Y |
2| X ∩Y |
.
=
| X ∪Y | + | X ∩Y | | X | + |Y |
ê‡ÒÒÚÓflÌË ôÂ͇ÌÓ‚ÒÍӄӖчÈÒ‡ (ËÎË ÌÂÏÂÚ˘ÂÒÍËÈ ÍÓ˝ÙÙˈËÂÌÚ Å˝fl–
äÛÚËÒ‡, ÌÓχÎËÁÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË) ÂÒÚ¸ ÔÓ˜ÚË
ÏÂÚË͇ ̇ {0, 1}n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
1−
2| X ∩Y |
| X∆Y |
=
.
| X |+|Y | | X |+|Y |
258
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌË ÔÂÂÒ˜ÂÌËfl
ê‡ÒÒÚÓflÌË ÔÂÂÒ˜ÂÌËfl – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
1−
∑ min{xi , yi}
.
min{∑ xi , ∑ yi}
èÓ‰Ó·ÌÓÒÚ¸ åÓÚ˚ÍË
èÓ‰Ó·ÌÓÒÚ¸ åÓÚ˚ÍË – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑ min{xi , yi}
∑ min{xi , yi}
=n
.
∑( xi + yi}
x+y
èÓ‰Ó·ÌÓÒÚ¸ Å˝fl–äÛÚËÒ‡
èÓ‰Ó·ÌÓÒÚ¸ Å˝fl-äÛÚËÒ‡ – ˝ÚÓ ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
2
∑ min{xi , y j }.
n( x + y )
é̇ ̇Á˚‚‡ÂÚÒfl % ÔÓ‰Ó·ÌÓÒÚ¸˛ êÂÌÍÓÌÂ̇ (ËÎË ÔÓˆÂÌÚÌÓÈ ÔÓ‰Ó·ÌÓÒÚ¸˛),
ÂÒÎË ı, Û fl‚Îfl˛ÚÒfl ‚ÂÍÚÓ‡ÏË ˜‡ÒÚÓÚÌÓÒÚË.
ê‡ÒÒÚÓflÌË Å˝fl–äÛÚËÒ‡
ê‡ÒÒÚÓflÌË Å˝fl-äÛÚËÒ‡ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑ | xi − yi |
.
∑( xi + yi )
ê‡ÒÒÚÓflÌË ä‡Ì·Â˚
ê‡ÒÒÚÓflÌË ä‡Ì·Â˚ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑
| xi − yi |
.
| xi | + | yi |
èÓ‰Ó·ÌÓÒÚ¸ 1 äÛθ˜ËÌÒÍÓ„Ó
èÓ‰Ó·ÌÓÒÚ¸ 1 äÛθ˜ËÌÒÍÓ„Ó – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑ min{xi , yi}
.
∑ | xi − yi |
ëÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ‡ÒÒÚÓflÌËÂÏ fl‚ÎflÂÚÒfl
∑ | xi − yi |
.
∑ min{xi , yi}
èÓ‰Ó·ÌÓÒÚ¸ 2 äÛθ˜ËÌÒÍÓ„Ó
èÓ‰Ó·ÌÓÒÚ¸ 2 äÛθ˜ËÌÒÍÓ„Ó – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
n  1 1
 +  ∑ min{xi , yi}.
2  x y
ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl Ó̇ ÔËÌËχÂÚ ‚ˉ
| x ∩ Y | ⋅(| X | + | Y |)
.
2 | X |⋅|Y |
259
É·‚‡ 17. ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı
èÓ‰Ó·ÌÓÒÚ¸ ŇÓÌË-ì·‡ÌË–ÅÛcÂ‡
èÓ‰Ó·ÌÓÒÚ¸ ŇÓÌË-ì·‡ÌË-ÅÛcÂ‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑ min{xi , yi} + ∑ min{xi , yi} ∑(max1≤ j ≤ n x j − max{xi , yi})
∑ max{xi , yi} + ∑ min{xi , yi} ∑(max1≤ j ≤ n x j − max{xi , yi})
.
ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl Ó̇ ÔËÌËχÂÚ ‚ˉ
| X ∩Y | + | X ∩Y |⋅| X ∪Y |
| X ∪Y | + | X ∩Y |⋅| X ∪Y |
.
17.2. ÄçÄãéÉà ÖÇäãàÑéÇÄ êÄëëíéüçàü
ëÚÂÔÂÌÌÓ (p, r) – ‡ÒÒÚÓflÌËÂ
ëÚÂÔÂÌÌ˚Ï (p, r)-‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
( ∑ wi ( xi − yi ) p )1 / p
ÑÎfl p = r ≥ 1 ÓÌÓ fl‚ÎflÂÚÒfl lp -ÏÂÚËÍÓÈ, ‚Íβ˜‡fl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Â‚ÍÎË‰Ó‚Û ÏÂÚËÍÛ, ÏÂÚËÍÛ å‡Ìı˝ÚÚÂ̇ Ë ˜Â·˚¯Â‚ÒÍÛ˛ ÏÂÚËÍÛ ‰Îfl n = 2,1 Ë ∞ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
ëÎÛ˜‡È 0 < p = r < 1 ̇Á˚‚‡ÂÚÒfl ‰Ó·Ì˚Ï lp-‡ÒÒÚÓflÌËÂÏ (Ì ÏÂÚË͇); ÓÌÓ
ËÒÔÓθÁÛÂÚÒfl ‰Îfl ÒÎÛ˜‡Â‚, ÍÓ„‰‡ ÍÓ΢ÂÒÚ‚Ó Ì‡·Î˛‰ÂÌËÈ ÌÂÁ̇˜ËÚÂθÌÓ, ‡ ˜ËÒÎÓ n
ÔÂÂÏÂÌÌ˚ı ‚ÂÎËÍÓ.
ÇÁ‚¯ÂÌÌ˚ ‚ÂÒËË ( ∑ wi ( xi − yi ) p )1 / p (Ò ÌÂÓÚˈ‡ÚÂθÌ˚ÏË ‚ÂÒ‡ÏË w i) Ú‡ÍÊÂ
ËÒÔÓθÁÛ˛ÚÒfl ‚ ÔËÎÓÊÂÌËflı ‰Îfl p = 2,1.
ê‡ÒÒÚÓflÌË ‡ÁÏÂ‡ èÂÌÓÛÁ‡
ê‡ÒÒÚÓflÌË ‡ÁÏÂ‡ èÂÌÓÛÁ‡ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
n ∑ | xi − yi | .
éÌÓ ÔÓÔÓˆËÓ̇θÌÓ ÏÂÚËÍ å‡Ìı˝ÚÚÂ̇. ë‰Ìflfl ‡ÁÌÓÒÚ¸ ôÂ͇ÌÓ‚ÒÍÓ„Ó
∑ | xi − yi |
.
ÓÔ‰ÂÎflÂÚÒfl ͇Í
n
ê‡ÒÒÚÓflÌË ÙÓÏ˚ èÂÌÓÛÁ‡
ê‡ÒÒÚÓflÌË ÙÓÏ˚ èÂÌÓÛÁ‡ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑(( xi − x ) − ( yi − y ))2 .
ëÛÏχ Í‚‡‰‡ÚÓ‚ ‚˚¯ÂÔ˂‰ÂÌÌ˚ı ‡ÒÒÚÓflÌËÈ èÂÌÓÛÁ‡ ‡‚̇ Í‚‡‰‡ÚÛ
‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl.
ãÓÂ̈‚ÒÍÓ ‡ÒÒÚÓflÌËÂ
ãÓÂ̈‚ÒÍÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n , ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑ ln(1+ | xi − yi |).
Ö‚ÍÎË‰Ó‚Ó ‰‚Ó˘ÌÓ ‡ÒÒÚÓflÌËÂ
Ö‚ÍÎË‰Ó‚Ó ‰‚Ó˘ÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑(1x i > 0 − 1yi > 0 )2 .
260
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
Ö‚ÍÎË‰Ó‚Ó Ò‰Ì ˆÂÌÁÛËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌËÂ
Ö‚ÍÎË‰Ó‚Ó Ò‰Ì ˆÂÌÁÛËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑( xi − yi )2
.
∑ 1x 2 + y 2 ≠ 0
i
i
çÓÏËÓ‚‡ÌÌÓ lp -‡ÒÒÚÓflÌËÂ
çÓÏËÓ‚‡ÌÌÓ lp -‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
|| x − y || p
|| x || p + || y || p
.
Ö‰ËÌÒÚ‚ÂÌÌ˚Ï ˆÂÎ˚Ï ˜ËÒÎÓÏ , ‰Îfl ÍÓÚÓÓ„Ó ÌÓÏËÓ‚‡ÌÌÓ lp -‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ, ÂÒÚ¸ p = 2. ÅÓΠÚÓ„Ó, Í‡Í ÔÓ͇Á‡ÌÓ ‚ [Yian91], ‰Îfl β·˚ı
|| x − y ||2
a, b > 0 ‡ÒÒÚÓflÌËÂ
fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ.
a + b(|| x ||2 + || y ||2 )
ê‡ÒÒÚÓflÌË ä·͇
ê‡ÒÒÚÓflÌË ä·͇ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
 1  x − y  2
i
i
 ∑
 
|
|
|
n
x
y
+

i
i | 

1/ 2
.
ê‡ÒÒÚÓflÌË åË·
ê‡ÒÒÚÓflÌË åË· (ËÎË Ë̉ÂÍÒ åË·) – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑
( xi − yi − xi +1 + yi +1 )2 .
1≤ i ≤ n − 1
ê‡ÒÒÚÓflÌË ïÂÎÎË̉ÊÂ‡
ê‡ÒÒÚÓflÌË ïÂÎÎË̉ÊÂ‡ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
 x
2 ∑ i −
 x
yi 
y 
2
(ÒÏ. åÂÚË͇ ïÂÎÎË̉ÊÂ‡, „Î. 14).
à̉ÂÍÒ ‡ÒÒӈˇˆËË ì‡ÈÚÚÂÍÂ‡ ÓÔ‰ÂÎflÂÚÒfl ͇Í
1 xi yi
∑ − .
2 x
y
ëËÏÏÂÚ˘̇fl 2 -ÏÂ‡
ëËÏÏÂÚ˘̇fl 2 -ÏÂ‡ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑
2
x + y  xi yi 
 −  =
n( xi + yi )  x
y
x+y
∑ n( x ⋅ y )2 ⋅
( xi y − yi x )2
.
xi + yi
ëËÏÏÂÚ˘ÂÒÍÓ 2 -‡ÒÒÚÓflÌËÂ
ëËÏÏÂÚ˘ÂÒÍÓ 2 -‡ÒÒÚÓflÌË (ËÎË ıË-‡ÒÒÚÓflÌËÂ) ÂÒÚ¸ ‡ÒÒÚÓflÌË ÔÓ n ,
É·‚‡ 17. ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı
261
ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑
2
x + y  xi yi 
 −  =
n( xi + yi )  x
y
∑
x + y ( xi y − yi x )2
.
⋅
xi + yi
n( x ⋅ y )2
ê‡ÒÒÚÓflÌË å‡ı‡Î‡ÌÓ·ËÒ‡
ê‡ÒÒÚÓflÌË å‡ı‡Î‡ÌÓ·ËÒ‡ (ËÎË ÒÚ‡ÚËÒÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ) – ‡ÒÒÚÓflÌË ̇
n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
(det A)1 / n ( x − y) A −1 ( x − y)T .
„‰Â Ä – ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl χÚˈ‡ (Ó·˚˜ÌÓ ˝ÚÓ Ï‡Úˈ‡ ÍÓ‚‡ˇÌÚÌÓÒÚË Ï‡Úˈ‡ ÍÓ̘ÌÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ËÁ n, ÒÓÒÚÓfl˘Â„Ó ËÁ ‚ÂÍÚÓÓ‚ ̇·Î˛‰ÂÌËfl) (ÒÏ. èÓÎÛÏÂÚË͇ å‡ı‡Î‡ÌÓ·ËÒ‡, „Î. 14).
17.3. èéÑéÅçéëíà à êÄëëíéüçàü Ñãü ÅàçÄêçõï ÑÄççõï
é·˚˜ÌÓ Ú‡ÍË ÔÓ‰Ó·ÌÓÒÚË s ËÏÂ˛Ú ÏÌÓÊÂÒÚ‚Ó Á̇˜ÂÌËÈ ÓÚ 0 ‰Ó 1 ËÎË ÓÚ –1 ‰Ó 1,
1− s
‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ‡ÒÒÚÓflÌËfl Ó·˚˜ÌÓ ‡‚Ì˚ 1 – s ËÎË
.
2
èÓ‰Ó·ÌÓÒÚ¸ Äχ̇
èÓ‰Ó·ÌÓÒÚ¸ Äχ̇ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
2 | X∆Y |
n − 2 | X∆Y |
−1 =
.
n
n
èÓ‰Ó·ÌÓÒÚ¸ ê˝Ì‰‡
èÓ‰Ó·ÌÓÒÚ¸ ê˝Ì‰‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸ ëÓ͇·–å˘ÂÌÂ‡, ÔÓÒÚÓ ÒÓÓÚ‚ÂÚÒÚ‚ËÂ) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X∆Y |
.
n
| X∆Y |
̇Á˚‚‡ÂÚÒfl ‚‡ˇÌÚÌÓÒÚ¸˛ (fl‚ÎflÂÚÒfl ·Ë̇n
| X∆Y |
Ì˚Ï ÒÎÛ˜‡ÂÏ Ò‰ÌÂÈ ‡ÁÌÓÒÚË ÏÂÊ‰Û ÔËÁ͇̇ÏË ôÂ͇ÌÓ‚ÒÍÓ„Ó) Ë 1 −
n
̇Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ ÉÓ‚‡‡.
ëÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÂÚË͇
èÓ‰Ó·ÌÓÒÚ¸ 1 ëÓ͇·–ëÌËÒ‡
èÓ‰Ó·ÌÓÒÚ¸ 1 ëÓ͇·–ëÌËÒ‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
2 | X∆Y |
.
n + | X∆Y |
èÓ‰Ó·ÌÓÒÚ¸ 2 ëÓ͇·–ëÌËc‡
èÓ‰Ó·ÌÓÒÚ¸ 2 ëÓ͇·–ëÌËc‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X ∩Y |
.
| X ∪ Y | + | X∆Y |
262
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
èÓ‰Ó·ÌÓÒÚ¸ 3 ëÓ͇·–ëÌËc‡
èÓ‰Ó·ÌÓÒÚ¸ 3 ëÓ͇·–ëÌËÒ‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X∆Y |
.
| X∆Y |
èÓ‰Ó·ÌÓÒÚ¸ ê‡ÒÒ·–ê‡Ó
èÓ‰Ó·ÌÓÒÚ¸ ê‡ÒÒ·–ê‡Ó – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X ∩Y |
.
n
èÓ‰Ó·ÌÓÒÚ¸ ëËÏÔÒÓ̇
èÓ‰Ó·ÌÓÒÚ¸ ëËÏÔÒÓ̇ (ÔÓ‰Ó·ÌÓÒÚ¸ ÔÂÂÍ˚ÚËfl) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1}n ,
ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X ∩Y |
.
min{| X |,| Y |}
èÓ‰Ó·ÌÓÒÚ¸ Å‡Û̇–Å·ÌÍÂ
èÓ‰Ó·ÌÓÒÚ¸ Å‡Û̇–Å·ÌÍ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X ∩Y |
.
max{| X |,| Y |}
èÓ‰Ó·ÌÓÒÚ¸ êÓ‰ÊÂ‡–í‡ÌËÏÓÚÓ
èÓ‰Ó·ÌÓÒÚ¸ êÓ‰ÊÂ‡–í‡ÌËÏÓÚÓ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X∆Y |
.
n + | X∆Y |
èÓ‰Ó·ÌÓÒÚ¸ î˝ÈÒ‡
èÓ‰Ó·ÌÓÒÚ¸ îÂÈÚ‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X ∩ Y | + | X∆Y |
.
2n
èÓ‰Ó·ÌÓÒÚ¸ í‚ÂÒÍÓ„Ó
èÓ‰Ó·ÌÓÒÚ¸ í‚ÂÒÍÓ„Ó – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X ∩Y |
.
a | X∆Y | + b | X ∩ Y |
é̇ ÒÚ‡ÌÓ‚ËÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ í‡ÌËÏÓÚÓ, ÔÓ‰Ó·ÌÓÒÚ¸˛ чÈÒ‡ Ë (‰Îfl ·Ë̇ÌÓ„Ó
1
ÒÎÛ˜‡fl) ÔÓ‰Ó·ÌÓÒÚ¸˛ 1 äÛθ˜ËÌÒÍÓ„Ó ‰Îfl ( a, b) = (1, 1),  , 1 Ë (1, 0) ÒÓÓÚ‚ÂÚ2 
ÒÚ‚ÂÌÌÓ.
èÓ‰Ó·ÌÓÒÚ¸ ÉÓ‚Â‡–ãÂʇ̉‡
èÓ‰Ó·ÌÓÒÚ¸ ÉÓÛ˝‡–ãÂʇ̉‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X∆Y |
| X∆Y |
=
.
a | X∆Y | + | X∆Y | n + ( a − 1) | X∆Y |
263
É·‚‡ 17. ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı
èÓ‰Ó·ÌÓÒÚ¸ Ä̉Â·Â„‡
èÓ‰Ó·ÌÓÒÚ¸ Ä̉Â·Â„‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸ 4 ëÓ͇·–ëÌËc‡) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇
{0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X ∩Y | 1
1  | X ∪Y | 1
1 
.
+
+
+
 | X | | Y |
 | X | | Y |
4
4
Q ÔÓ‰Ó·ÌÓÒÚ¸ ûÎÂ
Q ÔÓ‰Ó·ÌÓÒÚ¸ ûΠ– ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X ∩ Y | ⋅| X ∪ Y |− | X \ Y | ⋅ | Y \ X |
.
| X ∩Y |⋅| X ∪Y | + | X \ Y |⋅|Y \ X |
Y ÔÓ‰Ó·ÌÓÒÚ¸ ‚Á‡ËÏÓÒ‚flÁ‡ÌÌÓÒÚË ûÎÂ
Y ÔÓ‰Ó·ÌÓÒÚ¸ ‚Á‡ËÏÓÒ‚flÁ‡ÌÌÓÒÚË ûΠ– ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1}n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X ∩ Y | ⋅| X ∪ Y | − | X \ Y | ⋅ | Y \ X |
| X ∩Y |⋅| X ∪Y | + | X \ Y |⋅|Y \ X |
.
èÓ‰Ó·ÌÓÒÚ¸ ‰ËÒÔÂÒËË
èÓ‰Ó·ÌÓÒÚ¸ ‰ËÒÔÂÒËË – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X ∩ Y | ⋅| X ∪ Y |− | X \ Y | ⋅ | Y \ X |
.
n2
ÔÓ‰Ó·ÌÓÒÚ¸ èËÒÓ̇
ÔÓ‰Ó·ÌÓÒÚ¸ èËÒÓ̇ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1}n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X ∩ Y | ⋅| X ∪ Y |− | X \ Y | ⋅ | Y \ X |
| X |⋅| X |⋅|Y |⋅|Y |
.
èÓ‰Ó·ÌÓÒÚ¸ 2 ÉÓ‚Â‡
èÓ‰Ó·ÌÓÒÚ¸ 2 ÉÓ‚Â‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸ 5 ëÓ͇·–ëÌËÒ‡) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1)n ,
ÓÔ‰ÂÎÂÌ̇fl ͇Í
| X ∩Y |⋅| X ∪Y |
| X |⋅| X |⋅|Y |⋅|Y |
.
ê‡ÁÌÓÒÚ¸ Ó·‡ÁÓ‚
ê‡ÁÌÓÒÚ¸ Ó·‡ÁÓ‚ – ‡ÒÒÚÓflÌË ̇ {0, 1}n , ÓÔ‰ÂÎÂÌÌÓ ͇Í
4 | X \ Y |⋅|Y / X |
.
n2
Q0-‡ÁÌÓÒÚ¸
Q0-‡ÁÌÓÒÚ¸ – ‡ÒÒÚÓflÌË ̇ {0, 1} n , ÓÔ‰ÂÎÂÌÌÓ ͇Í
| X \ Y |⋅|Y / X |
.
| X ∩Y |⋅| X ∪Y |
264
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
17.4. äéêêÖãüñàéççõÖ èéÑêéÅçéëíà à êÄëëíéüçàü
äÓ‚‡ˇˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸
äÓ‚‡ˇˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑( xi − x )( yi − y ) ∑ xi yi
=
− x ⋅ y.
n
n
äÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸
äÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ (ËÎË ÍÓÂÎflˆËfl èËÒÓ̇, ËÎË ÎËÌÂÈÌ˚È ÍÓ˝ÙÙˈËÂÌÚ ÍÓÂÎflˆËË ÔÓ Òϯ‡ÌÌ˚Ï ÏÓÏÂÌÚ‡Ï èËÒÓ̇) s – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n,
ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑( xi − x )( yi − y )
( ∑( x j − x )2 )( ∑( y j − y )2 )
.
çÂÒıÓ‰ÒÚ‚‡ 1 – s Ë 1 – s2 ̇Á˚‚‡˛ÚÒfl ÍÓÂÎflˆËÓÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ èËÒÓ̇ Ë
Í‚‡‰‡ÚÓÏ ‡ÒÒÚÓflÌËfl èËÒÓ̇ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ÅÓΠÚÓ„Ó,
2(1 − s) =
∑

xi − x

−
 ∑( x − x ) 2
j



∑( y j − y )2 
yi − y
fl‚ÎflÂÚÒfl ÌÓχÎËÁ‡ˆËÂÈ Â‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl (ÒÏ. ÓÚ΢‡˛˘ÂÂÒfl ÌÓÏËÓ‚‡ÌÌÓÂ
l2 -‡ÒÒÚÓflÌË ‚ ‰‡ÌÌÓÈ „·‚Â).
⟨ x, y ⟩
ÑÎfl ÒÎÛ˜‡fl x = y = 0 ÍÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ ÔËÌËχÂÚ ‚ˉ
.
|| x ||2 || y ||2
èÓ‰Ó·ÌÓÒÚ¸ ÍÓÒËÌÛÒ‡
èÓ‰Ó·ÌÓÒÚ¸ ÍÓÒËÌÛÒ‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸ é˜ËÌË, Û„ÎÓ‚‡fl ÔÓ‰Ó·ÌÓÒÚ¸, ÌÓÏËÓ‚‡ÌÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌËÂ) ÂÒÚ¸ ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
⟨ x, y ⟩
= cos φ,
|| x ||2 ⋅ || y ||2
„‰Â φ – Û„ÓÎ ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ı Ë Û. ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl Ó̇ ÔËÌËχÂÚ ‚ˉ
| X ∩Y |
| X |⋅|Y |
Ë Ì‡Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ é˜Ë‡Ë-éÚÒÛÍË.
Ç „ÛÔÔËÓ‚Í Á‡ÔËÒÂÈ ÔÓ‰Ó·ÌÓÒÚ¸ ÍÓÒËÌÛÒ‡ ̇Á˚‚‡ÂÚÒfl TF-IDF (ÒÓÍ‡˘ÂÌÌÓ ÓÚ
‡Ì„ÎËÈÒÍËı ÚÂÏËÌÓ‚ ó‡ÒÚÓÚ‡ – é·‡Ú̇fl ó‡ÒÚÓÚ‡ ÑÓÍÛÏÂÌÚ‡).
ê‡ÒÒÚÓflÌË ÍÓÒËÌÛÒ‡ ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 – cos φ.
ì„ÎÓ‚‡fl ÔÓÎÛÏÂÚË͇
ì„ÎÓ‚‡fl ÔÓÎÛÏÂÚË͇ ̇ n – Û„ÓÎ (ËÁÏÂÂÌÌ˚È ‚ ‡‰Ë‡Ì‡ı) ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË
ı Ë Û:
arccos
⟨ x, y ⟩
.
|| x ||2 ⋅ || y ||2
265
É·‚‡ 17. ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı
ê‡ÒÒÚÓflÌË éÎÓ˜Ë
ê‡ÒÒÚÓflÌË éÎÓ˜Ë (ËÎË ıÓ‰Ó‚Ó ‡ÒÒÚÓflÌËÂ) – ‡ÒÒÚÓflÌË ̇ n , ÓÔ‰ÂÎflÂÏÓ ͇Í


⟨ x, y ⟩
21 −
.
||
||
||
||
x
⋅
y

2
2
éÚÌÓ¯ÂÌË ÔÓ‰Ó·ÌÓÒÚË
éÚÌÓ¯ÂÌË ÔÓ‰Ó·ÌÓÒÚË (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸˛ äÓıÓÌÂ̇) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
⟨ x, y ⟩
.
⟨ x, y ⟩+ || x − y ||22
ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl Ó̇ ÒÓ‚Ô‡‰‡ÂÚ Ò ÔÓ‰Ó·ÌÓÒÚ¸˛ í‡ÌËÏÓÚÓ.
èÓ‰Ó·ÌÓÒÚ¸ åÓËÒËÚ˚–ïÓ̇
èÓ‰Ó·ÌÓÒÚ¸ åÓËÒËÚ˚–ïÓ̇ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x
||22
2⟨ x, y ⟩
.
y
x
⋅ + || y ||22 ⋅
x
y
ê‡Ì„Ó‚‡fl ÍÓÂÎflˆËfl ëÔËχ̇
Ç ÒÎÛ˜‡Â, ÍÓ„‰‡ ‚ÂÍÚÓ˚ x, y ∈ n fl‚Îfl˛ÚÒfl ‡ÌÊËÓ‚‡ÌËflÏË (ËÎË ÔÂÂÒÚ‡Ìӂ͇ÏË), Ú.Â. ÍÓÏÔÓÌÂÌÚ˚ Í‡Ê‰Ó„Ó ËÁ ÌËı – ‡Á΢Ì˚ ˜ËÒ· ÏÌÓÊÂÒÚ‚‡ {1,..., n}, Ï˚
n +1
ËÏÂÂÏ x = y =
. ÑÎfl Ú‡ÍËı Ó‰Ë̇θÌ˚ı ‰‡ÌÌ˚ı ÍÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸
2
ÔËÌËχÂÚ ‚ˉ
1−
6
∑( xi − yi )2 .
n(n 2 − 1)
ùÚÓ – ρ ‡Ì„Ó‚‡fl ÍÓÂÎflˆËfl ëÔËχ̇. é̇ ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ ρ-ÏÂÚËÍÓÈ
ëÔËχ̇, ÌÓ Ì fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ. ρ ‡ÒÒÚÓflÌË ëÔËÏÂ̇ – ‚ÍÎˉӂ‡ ÏÂÚË͇ ̇ ÔÂÂÒÚ‡Ìӂ͇ı. å‡Ò¯Ú‡·Ì‡fl ÎËÌÂÈ͇ ëÔËχ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
1−
3
∑ | xi − yi | .
n2 − 1
ùÚÓ l1 -‚ÂÒËfl ‡Ì„Ó‚ÓÈ ÍÓÂÎflˆËË ëÔËχ̇. ê‡ÒÒÚÓflÌË χүڇ·ÌÓÈ ÎËÌÂÈÍË
ëÔËχ̇ fl‚ÎflÂÚÒfl l1 -ÏÂÚËÍÓÈ Ì‡ ÔÂÂÒÚ‡Ìӂ͇ı.
ÑÛ„ÓÈ ÍÓÂÎflˆËÓÌÌÓÈ ÔÓ‰Ó·ÌÓÒÚ¸˛ ‰Îfl ÔÂÂÒÚ‡ÌÓ‚ÓÍ fl‚ÎflÂÚÒfl τ ‡Ì„Ó‚‡fl
ÍÓÂÎflˆËfl äẨ‡Î·, ̇Á˚‚‡Âχfl Ú‡ÍÊ τ ÏÂÚËÍÓÈ äẨ‡Î· (‡ÒÒÚÓflÌËÂÏ ÌÂ
fl‚ÎflÂÚÒfl), ÍÓÚÓ‡fl ÓÔ‰ÂÎflÂÚÒfl ͇Í
2 ∑1≤ j < j ≤ n sign( xi − x j )sign( yi − y j )
n(n − 1)
.
τ ‡ÒÒÚÓflÌË äẨ‡Î· ̇ ÔÂÂÒÚ‡Ìӂ͇ı ÓÔ‰ÂÎflÂÚÒfl ͇Í
| {(i, j ) : 1 ≤ i < j ≤ n, ( xi − x j )( yi − y j ) < 0} | .
266
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌË äÛ͇
ê‡ÒÒÚÓflÌËÂÏ äÛ͇ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ n , ‰‡˛˘Â ÒÚ‡ÚËÒÚ˘ÂÒÍÛ˛ ÓˆÂÌÍÛ
ÚÓ„Ó, ̇ÒÍÓθÍÓ ÒËθÌÓ ÌÂÍÓ i- ̇·Î˛‰ÂÌË ÏÓÊÂÚ ÔÓ‚ÎËflÚ¸ ̇ ÓˆÂÌÍË „ÂÒÒËË.
éÌÓ fl‚ÎflÂÚÒfl ÌÓÏËÓ‚‡ÌÌ˚Ï Í‚‡‰‡ÚÓÏ Â‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‡Ò˜ÂÚÌ˚ÏË
Ô‡‡ÏÂÚ‡ÏË „ÂÒÒËÓÌÌ˚ı ÏÓ‰ÂÎÂÈ, ÔÓÒÚÓÂÌÌ˚ı ̇ ÓÒÌÓ‚Â ‚ÒÂı ‰‡ÌÌ˚ı Ë ‰‡ÌÌ˚ı ·ÂÁ Û˜ÂÚ‡ i-„Ó Ì‡·Î˛‰ÂÌËfl.
éÒÌÓ‚Ì˚ÏË ‡ÒÒÚÓflÌËflÏË Ú‡ÍÓ„Ó Ó‰‡, ÔËÏÂÌflÂÏ˚ÏË ‚ „ÂÒÒË‚ÌÓÏ ‡Ì‡ÎËÁÂ
‰Îfl ‚˚fl‚ÎÂÌËfl ̇˷ÓΠ‚ÎËflÚÂθÌ˚ı ̇·Î˛‰ÂÌËÈ, fl‚Îfl˛ÚÒfl DFITS ‡ÒÒÚÓflÌËÂ,
‡ÒÒÚÓflÌËÂ Ç˝Î¯‡ Ë ‡ÒÒÚÓflÌË Ë.
凯ËÌÌÓ ӷۘÂÌË ̇ ·‡Á ‡ÒÒÚÓflÌËÈ
ÑÎfl ÏÌÓ„Ëı Ô‡ÍÚ˘ÂÒÍËı ÔËÎÓÊÂÌËÈ (ÌÂÈÓÌÌ˚ı ÒÂÚÂÈ, ËÌÙÓχˆËÓÌÌ˚ı
ÒÂÚÂÈ Ë Ú.Ô.), ı‡‡ÍÚÂÌ˚ÏË ÔËÁ͇̇ÏË ÍÓÚÓ˚ı fl‚Îfl˛ÚÒfl ÌÂÔÓÎÌÓÚ‡ ‰‡ÌÌ˚ı, ‡
Ú‡ÍÊ ÌÂÔÂ˚‚ÌÓÒÚ¸ Ë ÌÓÏË̇θÌÓÒÚ¸ ‡ÚË·ÛÚÓ‚ ‡ÒÒχÚË‚‡˛ÚÒfl ÒÎÂ‰Û˛˘ËÂ
Á‡‰‡˜Ë. ÑÎfl Ú × (n + 1) χÚˈ˚ ((xij)),  ÒÚÓ͇ (xi0, xi1,..., xin) Ó·ÓÁ̇˜‡ÂÚ ‚ıÓ‰ÌÓÈ
‚ÂÍÚÓ xi = (x i1,..., x in) Ò ‚˚ıÓ‰ÌÓÈ ÏÂÚÍÓÈ xi0; ÏÌÓÊÂÒÚ‚Ó ËÁ m ‚ıÓ‰Ì˚ı ‚ÂÍÚÓÓ‚
Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÚÂÌËÓ‚Ó˜ÌÓ ÏÌÓÊÂÒÚ‚Ó. ÑÎfl β·Ó„Ó ÌÓ‚Ó„Ó ‚ıÓ‰ÌÓ„Ó
‚ÂÍÚÓ‡ y = (y1,..., yn) ˢÂÚÒfl ·ÎËʇȯËÈ (‚ ÚÂÏË̇ı ‚˚·‡ÌÌÓ„Ó ‡ÒÒÚÓflÌËfl)
‚ıÓ‰ÌÓÈ ‚ÂÍÚÓ ıi, ÌÂÓ·ıÓ‰ËÏ˚È ‰Îfl Í·ÒÒËÙË͇ˆËË Û, Ú.Â. ‰Îfl ÔÓ„ÌÓÁËÓ‚‡ÌËfl „Ó
‚˚ıÓ‰ÌÓÈ ÏÂÚÍË Í‡Í x i0.
ê‡ÒÒÚÓflÌË ([WiMa97]) d(x i, y) ÓÔ‰ÂÎflÂÚÒfl ͇Í
n
∑ d 2j ( xij , y j )
j =1
Ò dj(x ij, yj) = 1, ÂÒÎË xij ËÎË y j ÌÂËÁ‚ÂÒÚÌ˚. ÖÒÎË ‡ÚË·ÛÚ j (Ú.Â. ‰Ë‡Ô‡ÁÓÌ Á̇˜ÂÌËÈ x ij
‰Îfl 1 ≤ i ≤ m) fl‚ÎflÂÚÒfl ÌÓÏË̇θÌ˚Ï, ÚÓ dj(x ij, y j) ÓÔ‰ÂÎflÂÚÒfl, ̇ÔËÏÂ, Í‡Í 1x ij ≠ y
ËÎË Í‡Í
∑
o
| {1 ≤ t ≤ m : xt 0 = a, xij = xij } |
| {1 ≤ t ≤ m : xtj = xij } |
−
| {1 ≤ t ≤ m : xt 0 = a, xtj = yi} |
q
| {1 ≤ t ≤ m : xtj = y j } |
‰Îfl q = 1 ËÎË 2; ÒÛÏχ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ Í·ÒÒ‡Ï ‚˚ıÓ‰Ì˚ı ÏÂÚÓÍ, Ú.Â. Á̇˜ÂÌËÈ ‡ ËÁ
{xt0 : 1 ≤ t ≤ m}. ÑÎfl ÌÂÔÂ˚‚Ì˚ı ‡ÚË·ÛÚÓ‚ j ˜ËÒÎÓ d j ·ÂÂÚÒfl Í‡Í ‚Â΢Ë̇
1
Òڇ̉‡ÚÌÓ„Ó ÓÚÍÎÓÌÂÌËfl Á̇˜ÂÌËÈ
| xij − y j |, ‰ÂÎÂÌ̇fl ̇ maxt xtj – min t xtj ËÎË Ì‡
4
xij, 1 ≤ t ≤ m.
É·‚‡ 18
ê‡ÒÒÚÓflÌËfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ËÌÊÂÌÂËË
Ç ˝ÚÓÈ „·‚ ҄ÛÔÔËÓ‚‡Ì˚ ÓÒÌÓ‚Ì˚ ‡ÒÒÚÓflÌËfl, ÔËÏÂÌflÂÏ˚ ÔË ÔÓ„‡ÏÏËÓ‚‡ÌËË ‰‚ËÊÂÌËfl Ó·ÓÚÓ‚, ÍÎÂÚÓ˜Ì˚ı ‡‚ÚÓχÚÓ‚, ÒËÒÚÂÏ Ò Ó·‡ÚÌÓÈ Ò‚flÁ¸˛ Ë
ÏÌÓ„ÓˆÂ΂ÓÈ ÓÔÚËÏËÁ‡ˆËË.
18.1. êÄëëíéüçàü Ç éêÉÄçàáÄñàà ÑÇàÜÖçàü êéÅéíéÇ
åÂÚÓ‰˚ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ ‡‚ÚÓχÚ˘ÂÒÍËı ÏÂı‡ÌËÁÏÓ‚ ÔËÏÂÌfl˛ÚÒfl ‚ ӷ·ÒÚË Ó·ÓÚÓÚÂıÌËÍË, ÒËÒÚÂχı ‚ËÚۇθÌÓÈ ‡θÌÓÒÚË Ë ‡‚ÚÓχÚËÁËÓ‚‡ÌÌÓ„Ó ÔÓÂÍÚËÓ‚‡ÌËfl. åÂÚË͇ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ –
˝ÚÓ ÏÂÚË͇, ËÒÔÓθÁÛÂχfl ‚ ÏÂÚÓ‰ËÍ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ ‡‚ÚÓχÚ˘ÂÒÍËı ÏÂı‡ÌËÁÏÓ‚.
êÓ·ÓÚÓÏ Ì‡Á˚‚‡ÂÚÒfl ÍÓ̘̇fl ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÊfiÒÚÍËı Á‚Â̸‚, Ó„‡ÌËÁÓ‚‡ÌÌ˚ı
‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò ÍËÌÂχÚ˘ÂÒÍÓÈ ËÂ‡ıËÂÈ. ÖÒÎË Ó·ÓÚ ËÏÂÂÚ n ÒÚÂÔÂÌÂÈ Ò‚Ó·Ó‰˚, ˝ÚÓ ÔË‚Ó‰ËÚ Ì‡Ò Í n-ÏÂÌÓÏÛ ÏÌÓ„ÓÓ·‡Á˲ ë, ̇Á˚‚‡ÂÏÓÏÛ ÔÓÒÚ‡ÌÒÚ‚ÓÏ
ÍÓÌÙË„Û‡ˆËÈ (ËÎË C-ÔÓÒÚ‡ÌÒÚ‚ÓÏ) Ó·ÓÚ‡. ꇷӘ ÔÓÒÚ‡ÌÒÚ‚Ó W Ó·ÓÚ‡ –
˝ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ Ô‰Â·ı ÍÓÚÓÓ„Ó Ó·ÓÚ ÔÂÂÏ¢‡ÂÚÒfl. é·˚˜ÌÓ ÓÌÓ ÏÓ‰ÂÎËÛÂÚÒfl Í‡Í Â‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó 3 . é·Î‡ÒÚ¸ ÔÂÔflÚÒÚ‚ËÈ ëÇ – ÏÌÓÊÂÒÚ‚Ó
‚ÒÂı ÍÓÌÙË„Û‡ˆËÈ q ∈ C , ÍÓÚÓ˚ ÎË·Ó ‚˚ÌÛʉ‡˛Ú Ó·ÓÚ‡ ÒÚ‡ÎÍË‚‡Ú¸Òfl Ò
ÔÂÔflÚÒÚ‚ËflÏË Ç, ÎË·Ó Á‡ÒÚ‡‚Îfl˛Ú ‡ÁÌ˚ Á‚Â̸fl Ó·ÓÚ‡ ÒÚ‡ÎÍË‚‡Ú¸Òfl ÏÂʉÛ
ÒÓ·ÓÈ. á‡Ï˚͇ÌË Cl(Cfree) ÏÌÓÊÂÒÚ‚‡ Cfree = C\{CB} ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ
ÍÓÌÙË„Û‡ˆËÈ ·ÂÁ ÒÚÓÎÍÌÓ‚ÂÌËÈ. ᇉ‡˜‡ ‡Î„ÓËÚχ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ ÒÓÒÚÓËÚ ‚ ÔÓËÒÍ ҂ӷӉÌÓ„Ó ÓÚ ÒÚÓÎÍÌÓ‚ÂÌËÈ ÔÛÚË ÓÚ ÔÂ‚Ó̇˜‡Î¸ÌÓÈ
ÍÓÌÙË„Û‡ˆËË Í ÍÓ̘ÌÓÈ.
åÂÚËÍÓÈ ÍÓÌÙË„Û‡ˆËË Ì‡Á˚‚‡ÂÚÒfl β·‡fl ÏÂÚË͇ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â ÍÓÌåÙË„Û‡ˆËÈ ë Ó·ÓÚ‡.
é·˚˜ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÍÓÌÙË„Û‡ˆËÈ ë Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÛÔÓfl‰Ó˜ÂÌÌÛ˛
¯ÂÒÚÂÍÛ ˜ËÒÂÎ (x, y, z, α, β, γ), „‰Â ÔÂ‚˚ ÚË ˜ËÒ· – ÍÓÓ‰Ë̇Ú˚ ÔÓÎÓÊÂÌËfl Ë
ÔÓÒΉÌË ÚË – ÓËÂÌÚ‡ˆËfl. äÓÓ‰Ë̇Ú˚ ÓËÂÌÚ‡ˆËË ‚˚‡ÊÂÌ˚ ۄ·ÏË ‚ ‡‰Ë‡Ì‡ı. àÌÚÛËÚË‚ÌÓ, ıÓÓ¯‡fl ÏÂ‡ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÍÓÌÙË„Û‡ˆËflÏË – ˝ÚÓ
ÏÂ‡ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡, Á‡ÏÂÚ‡ÂÏÓ„Ó Ó·ÓÚÓÏ ‚ ıӉ ÔÂÂÏ¢ÂÌËfl ÏÂʉÛ
ÌËÏË (Á‡ÏÂÚ‡ÂÏ˚È Ó·˙ÂÏ). é‰Ì‡ÍÓ ‡Ò˜ÂÚ Ú‡ÍÓÈ ÏÂÚËÍË fl‚ÎflÂÚÒfl ˜ÂÁÏÂÌÓ
‰ÓÓ„ÓÒÚÓfl˘ËÏ ‰ÂÎÓÏ.
èӢ ‚ÒÂ„Ó ‡ÒÒχÚË‚‡Ú¸ ë-ÔÓÒÚ‡ÌÒÚ‚Ó Í‡Í Â‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Ë
ËÒÔÓθÁÓ‚‡Ú¸ ‚ÍÎˉӂ˚ ‡ÒÒÚÓflÌËfl ËÎË Ëı Ó·Ó·˘ÂÌËfl. ÑÎfl Ú‡ÍËı ÏÂÚËÍ ÍÓÌÙË„Û‡ˆËË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÌÓχÎËÁ‡ˆËfl ÍÓÓ‰ËÌ‡Ú ÓËÂÌÚ‡ˆËË Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ ÓÌË ·˚ÎË Ó‰Ë̇ÍÓ‚˚ÏË ÔÓ ‚Â΢ËÌÂ Ò ÍÓÓ‰Ë̇ڇÏË ÔÓÎÓÊÂÌËfl. ÉÛ·Ó „Ó‚Ófl,
ÍÓÓ‰Ë̇Ú˚ ÓËÂÌÚ‡ˆËË ÛÏÌÓʇ˛ÚÒfl ̇ χÍÒËÏÛÏ Á̇˜ÂÌËÈ x, y ËÎË z ‡ÁÏÂ‡
Ó„‡Ì˘˂‡˛˘Â„Ó ·ÎÓ͇ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡. èËÏÂ˚ Ú‡ÍËı ÏÂÚËÍ ÍÓÌÙË„Û‡ˆËË ÔË‚Ó‰flÚÒfl ÌËÊÂ.
268
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÔÓÒÚ‡ÌÒÚ‚Ó ÍÓÌÙË„Û‡ˆËÈ ‰Îfl ÚÂıÏÂÌÓ„Ó ÊÂÒÚÍÓ„Ó Ú·
ÏÓÊÌÓ ÓÚÓʉÂÒÚ‚ËÚ¸ Ò „ÛÔÔÓÈ ãË ISO(3):C 3 × P3 . é·˘‡fl ÙÓχ χÚˈ˚ ‚
ISO(3) Á‡‰‡ÂÚÒfl ͇Í
 R X

,
 0 1
„‰Â ∈ SO(3) P3 Ë X ∈ 3. ÖÒÎË Xq Ë R q fl‚Îfl˛ÚÒfl ÍÓÏÔÓÌÂÌÚ‡ÏË ÔÂÂÌÓÒ‡ Ë
‚‡˘ÂÌËfl ÍÓÌÙË„Û‡ˆËË q = (Xq , Rq ) ∈ ISO(3), ÚÓ ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË ÏÂʉÛ
ÍÓÌÙË„Û‡ˆËflÏË q Ë r Á‡‰‡ÂÚÒfl Í‡Í wtr || Xq − Xr || + wrot f ( Rq , Rr ), „‰Â ‡ÒÒÚÓflÌË ÔÂÂÌÓÒ‡ || Xq − Xr || ÔÓÎÛ˜‡ÂÚÒfl ‚ ÂÁÛθڇÚ ËÒÔÓθÁÓ‚‡ÌËfl ÌÂÍÓÚÓÓÈ ÌÓÏ˚ || ⋅ || ̇
3, ‡ ‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl f(Rq , Rr) fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓÈ Ò͇ÎflÌÓÈ ÙÛÌ͈ËÂÈ,
Á‡‰‡˛˘ÂÈ Ì‡Ï ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚‡˘ÂÌËflÏË Rq , Rr ∈ SO(3). ê‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl
χүڇ·ËÛÂÚÒfl ÓÚÌÓÒËÚÂθÌÓ ‡ÒÒÚÓflÌËfl ÔÂÂÌÓÒ‡ Ò ÔÓÏÓ˘¸˛ ‚ÂÒÓ‚ w tr Ë wrot.
åÂÚË͇ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡ – β·‡fl ÏÂÚË͇ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ ‚ ‡·Ó˜ÂÏ ÔÓÒÚ‡ÌÒÚ‚Â 3.
àÏÂÂÚÒfl Ú‡ÍÊ ÏÌÓ„Ó ‰Û„Ëı ÚËÔÓ‚ ÏÂÚËÍ, ËÒÔÓθÁÛÂÏ˚ı ‚ ÔÓˆÂÒÒ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ, ‚ ˜‡ÒÚÌÓÒÚË, ËχÌÓ‚˚ ÏÂÚËÍË, ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇,
‡ÒÒÚÓflÌË ÓÒÚ‡ Ë Ú.Ô.
ÇÁ‚¯ÂÌÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ
ÇÁ‚¯ÂÌÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË – ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ 6, ÓÔ‰ÂÎÂÌ̇fl ͇Í
6
 3

2
|
|
( wi | xi − yi |)2 
x
−
y
+
i
i

 i =1

i=4
∑
∑
1/ 2
‰Îfl β·˚ı x, y ∈ 6, „‰Â x = (x1,..., x6), x1, x2 , x3 – ÍÓÓ‰Ë̇Ú˚ ÔÓÎÓÊÂÌËfl, x4 , x5 , x6 –
ÍÓÓ‰Ë̇Ú˚ ÓËÂÌÚ‡ˆËË Ë wi – ÌÓχÎËÁËÛ˛˘ËÈ ÏÌÓÊËÚÂθ. ÇÁ‚¯ÂÌÌÓÂ
‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ‚ 6 ‰Â·ÂÚ Ó‰Ë̇ÍÓ‚ÓÈ Á̇˜ËÏÓÒÚ¸ Ë ÔÓÎÓÊÂÌËfl, Ë
ÓËÂÌÚ‡ˆËË.
å‡Ò¯Ú‡·ËÓ‚‡ÌÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ
å‡Ò¯Ú‡·ËÓ‚‡ÌÌ˚Ï Â‚ÍÎˉӂ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ 6 , ÓÔ‰ÂÎÂÌ̇fl ͇Í
6
 3

2
2
 s | xi − yi | +(1 − s) ( wi | xi − yi |) 
 i =1

i=4
∑
∑
1/ 2
‰Îfl β·˚ı x, y ∈ 6. å‡Ò¯Ú‡·ËÓ‚‡ÌÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ËÁÏÂÌflÂÚ ÓÚÌÓÒËÚÂθÌÛ˛ Á̇˜ËÏÓÒÚ¸ ˝ÎÂÏÂÌÚÓ‚ ÔÓÎÓÊÂÌËfl Ë ÓËÂÌÚ‡ˆËË ÔÓÒ‰ÒÚ‚ÓÏ Ï‡Ò¯Ú‡·ÌÓ„Ó Ô‡‡ÏÂÚ‡ s.
ÇÁ‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„Ó
ÇÁ‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„Ó – ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ 6, ÓÔ‰ÂÎÂÌ̇fl ͇Í
6
 3

p
x
−
y
+
|
|
( wi | xi − yi |) p 
i
i

 i =1

i=4
∑
∑
1/ p
269
É·‚‡ 18. ê‡ÒÒÚÓflÌËfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ËÌÊÂÌÂËË
‰Îfl β·˚ı x, y ∈ 6. é̇ ËÒÔÓθÁÛÂÚ Ô‡‡ÏÂÚ p ≥ 1 Ë Í‡Í Ë ‚ ‚ÍÎˉӂÓÏ ÒÎÛ˜‡Â,
ËÏÂÂÚ Ó‰Ë̇ÍÓ‚Û˛ Á̇˜ËÏÓÒÚ¸ ÔÓÎÓÊÂÌËfl Ë ÓËÂÌÚ‡ˆËË.
åÓ‰ËÙˈËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„Ó
åÓ‰ËÙˈËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„Ó – ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ 6 ,
ÓÔ‰ÂÎÂÌ̇fl ͇Í
6
 3

p1
p2
 | xi − yi | + ( wi | xi − yi |) 
 i =1

i=4
∑
∑
1 / p3
‰Îfl ‚ÒÂı x, y ∈ 6. ê‡Á΢Ëfl ÏÂÊ‰Û ÔÓÎÓÊÂÌËÂÏ Ë ÓËÂÌÚ‡ˆËÂÈ ÓÔ‰ÂÎfl˛ÚÒfl Ò
ËÒÔÓθÁÓ‚‡ÌËÂÏ Ô‡‡ÏÂÚÓ‚ p1 ≥ 1 (‰Îfl ÔÓÎÓÊÂÌËfl) Ë p2 ≥ 1 (‰Îfl ÓËÂÌÚ‡ˆËË).
ÇÁ‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË å‡Ìı˝ÚÚÂ̇
ÇÁ‚¯ÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ å‡Ìı˝ÚÚÂ̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ 6,
ÓÔ‰ÂÎÂÌ̇fl ͇Í
3
6
i =1
i=4
∑ | xi − yi | +∑ wi | xi − yi |
‰Îfl β·˚ı x, y ∈ 6 . é̇ ÒÓ‚Ô‡‰‡ÂÚ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ÌÓχÎËÁÛ˛˘Â„Ó ÏÌÓÊËÚÂÎfl Ò
Ó·˚˜ÌÓÈ l1 -ÏÂÚËÍÓÈ Ì‡ 6 .
åÂÚË͇ ÔÂÂÏ¢ÂÌËfl Ó·ÓÚ‡
åÂÚË͇ ÔÂÂÏ¢ÂÌËfl Ó·ÓÚ‡ – ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â
ÍÓÌÙË„Û‡ˆËË ë Ó·ÓÚ‡, ÓÔ‰ÂÎÂÌ̇fl ͇Í
max || a(q ) − a( p) ||
a ∈A
‰Îfl β·˚ı ÍÓÌÙË„Û‡ˆËÈ q, r ∈ C, „‰Â a(q) – ÔÓÎÓÊÂÌË ÚÓ˜ÍË ‡ ‚ ‡·Ó˜ÂÏ
ÔÓÒÚ‡ÌÒÚ‚Â 3, ÍÓ„‰‡ Ó·ÓÚ Ì‡ıÓ‰ËÚÒfl ‚ ÍÓÌÙË„Û‡ˆËË q, Ë || ⋅ || – Ӊ̇ ËÁ ÌÓÏ
̇ 3, Ó·˚˜ÌÓ Â‚ÍÎˉӂ‡ ÌÓχ. àÌÚÛËÚË‚ÌÓ, ÏÂÚË͇ ‚˚˜ËÒÎflÂÚ Ï‡ÍÒËχθÌÓ ËÁ
ÚÂı ‡ÒÒÚÓflÌËÈ ‚ ‡·Ó˜ÂÏ ÔÓÒÚ‡ÌÒÚ‚Â, ÍÓÚÓ˚ ÔÓıÓ‰ËÚ Í‡Ê‰‡fl ˜‡ÒÚ¸ Ó·ÓÚ‡
ÔË Â„Ó ÔÂÂıӉ ÓÚ Ó‰ÌÓÈ ÍÓÌÙË„Û‡ˆËË Í ‰Û„ÓÈ (ÒÏ. ÏÂÚË͇ Ó„‡Ì˘ÂÌÌÓ„Ó
·ÎÓ͇).
åÂÚË͇ Û„ÎÓ‚ ùÈÎÂ‡
åÂÚË͇ Û„ÎÓ‚ ùÈÎÂ‡ – ÏÂÚË͇ ‚‡˘ÂÌËfl ̇ „ÛÔÔ SO(3) (‰Îfl ÒÎÛ˜‡fl ËÒÔÓθÁÓ‚‡ÌËfl ˝ÈÎÂÓ‚˚ı Û„ÎÓ‚ ‰Îfl ‚‡˘ÂÌËfl), ÓÔ‰ÂÎÂÌ̇fl ͇Í
wrot ∆(θ1 , θ 2 )2 + ∆(φ1 , φ 2 )2 + ∆( η1 , η2 )2
‰Îfl ‚ÒÂı R1 , R2 ∈ SO(3), Á‡‰‡ÌÌ˚ı ۄ·ÏË ùÈÎÂ‡ (θ1, φ1, η1 ) Ë (θ2, φ2, η2 ) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, „‰Â ∆(θ1 , θ 2 ) = min{| θ1 − θ 2 |, 2 π − | θ1 − θ 2 |}, θ i ∈[0, 2 π] – ÏÂÚË͇ ÏÂʉÛ
ۄ·ÏË Ë wrot –ÍÓ˝ÙÙˈËÂÌÚ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl.
åÂÚË͇ ‰ËÌ˘Ì˚ı Í‚‡ÚÂÌËÓÌÓ‚
åÂÚËÍÓÈ Â‰ËÌ˘Ì˚ı Í‚‡ÚÂÌËÓÌÓ‚ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ‚‡˘ÂÌËfl ̇ Ô‰ÒÚ‡‚ÎÂÌËË Ò ÔÓÏÓ˘¸˛ ‰ËÌ˘Ì˚ı Í‚‡ÚÂÌËÓÌÓ‚ ‰Îfl SO(3), Ú.Â. Ô‰ÒÚ‡‚ÎÂÌËË SO(3) ͇Í
ÏÌÓÊÂÒÚ‚‡ ÚÓ˜ÂÍ (‰ËÌ˘Ì˚ı Í‚‡ÚÂÌËÓÌÓ‚) ̇ ‰ËÌ˘ÌÓÈ ÒÙÂ S3 ‚ 4 Ò
ÓÚÓʉÂÒÚ‚ÎÂÌÌ˚ÏË ‡ÌÚËÔÓ‰‡Î¸Ì˚ÏË ÚӘ͇ÏË (q ~ –q). чÌÌÓ Ô‰ÒÚ‡‚ÎÂÌË SO(3)
270
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
Ô‰ÔÓ·„‡ÂÚ Ì‡Î˘Ë ÏÌÓ„Ëı ‚ÓÁÏÓÊÌ˚ı ÏÂÚËÍ Ì‡ ÌÂÏ, ̇ÔËÏÂ Ú‡ÍËı, ͇Í:
1) || ln(q −1r ) ||,
4
2) wrot (1− || λ ||), λ =
∑ qi ri ,
i =1
3) min{|| q − r ||, || q + r ||},
4
4) arccos λ, λ =
∑ qi ri ,
i =1
4
„‰Â q = q1 + q2 i + q3 j + q4 k ,
∑ qi = 1,
|| ⋅ || – ÌÓχ ̇ 4 Ë wrot – ÍÓ˝ÙÙˈËÂÌÚ
i =1
χүڇ·ËÓ‚‡ÌËfl.
åÂÚË͇ ˆÂÌÚ‡ χÒÒ˚
åÂÚË͇ ˆÂÌÚ‡ χÒÒ˚ – ÏÂÚË͇ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÓÔ‰ÂÎÂÌ̇fl ͇Í
‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚÓÏ Ï‡ÒÒ˚ Ó·ÓÚ‡ ‚ ‰‚Ûı ÍÓÌÙË„Û‡ˆËflı. ñÂÌÚ
χÒÒ˚ ‡ÔÔÓÍÒËÏËÛÂÚÒfl ÔÛÚÂÏ ÛÒ‰ÌÂÌËfl ‚ÒÂı ‚Â¯ËÌ Ó·˙ÂÍÚ‡.
åÂÚË͇ Ó„‡Ì˘ÂÌÌÓ„Ó ·ÎÓ͇
åÂÚËÍÓÈ Ó„‡Ì˘ÂÌÌÓ„Ó ·ÎÓ͇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡,
ÓÔ‰ÂÎÂÌ̇fl Í‡Í Ï‡ÍÒËχθÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û Î˛·ÓÈ ‚Â¯ËÌÓÈ
Ó„‡Ì˘˂‡˛˘Â„Ó ·ÎÓ͇ Ó·ÓÚ‡ ‚ Ó‰ÌÓÈ ÍÓÌÙË„Û‡ˆËË Ë ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÈ
‚Â¯ËÌÓÈ ‚ ‰Û„ÓÈ ÍÓÌÙË„Û‡ˆËË.
ê‡ÒÒÚÓflÌË ÔÓÁ˚
ê‡ÒÒÚÓflÌË ÔÓÁ˚ Ó·ÂÒÔ˜˂‡ÂÚ ÏÂÛ ÌÂÒıÓ‰ÒÚ‚‡ ÏÂÊ‰Û ‰ÂÈÒÚ‚ËflÏË ËÒÔÓÎÌËÚÂθÌ˚ı ÛÒÚÓÈÒÚ‚ (‚Íβ˜‡fl Ó·ÓÚÓ‚ Ë Î˛‰ÂÈ) ‚ ÔÓˆÂÒÒ ӷۘÂÌËfl Ó·ÓÚÓ‚
ÔÓÒ‰ÒÚ‚ÓÏ ËÏËÚ‡ˆËË.
Ç ˝ÚÓÏ ÍÓÌÚÂÍÒÚ ËÒÔÓÎÌËÚÂθÌ˚ ÛÒÚÓÈÒÚ‚‡ ‡ÒÒχÚË‚‡˛ÚÒfl Í‡Í ÍËÌÂχÚ˘ÂÒÍË ˆÂÔË Ë Ô‰ÒÚ‡‚ÎÂÌ˚ ‚ ÙÓÏ ÍËÌÂχÚ˘ÂÒÍÓ„Ó ‰Â‚‡, Ú‡ÍÓ„Ó ˜ÚÓ Í‡Ê‰ÓÂ
Á‚ÂÌÓ ‚ ÍËÌÂχÚ˘ÂÒÍÓÈ ˆÂÔË Ô‰ÒÚ‡‚ÎÂÌÓ Â‰ËÌÒÚ‚ÂÌÌ˚Ï ·ÓÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó ‰Â‚‡. äÓÌÙË„Û‡ˆËfl ˆÂÔË Ô‰ÒÚ‡‚ÎÂ̇ ÔÓÁÓÈ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ„Ó ‰Â‚‡,
ÔÓÎÛ˜ÂÌÌÓÈ ÔÓÒ‰ÒÚ‚ÓÏ ‡ÁÏ¢ÂÌËfl Ô‡˚ (ni, li) ̇ ͇ʉÓÏ · e i. á‰ÂÒ¸ ni
fl‚ÎflÂÚÒfl ‰ËÌ˘Ì˚Ï ‚ÂÍÚÓÓÏ ÌÓχÎË, Ô‰ÒÚ‡‚Îfl˛˘ËÏ ÓËÂÌÚ‡ˆË˛ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó Á‚Â̇ ˆÂÔË, ‡ li ÂÒÚ¸ ‰ÎË̇ Á‚Â̇. ä·ÒÒ ÔÓÁ ÒÓÒÚÓËÚ ËÁ ‚ÒÂı ÔÓÁ ‰‡ÌÌÓ„Ó
ÍËÌÂχÚ˘ÂÒÍÓ„Ó ‰Â‚‡.
ê‡ÒÒÚÓflÌË ÔÓÁ˚ – ‡ÒÒÚÓflÌË ̇ ‰‡ÌÌÓÏ Í·ÒÒ ÔÓÁ, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÒÛÏÏÓÈ
ÏÂ ÌÂÒıÓ‰ÒÚ‚‡ ‰Îfl ͇ʉÓÈ Ô‡˚ ÒÓÔÓÒÚ‡‚ËÏ˚ı ÓÚÂÁÍÓ‚ ‚ ‰‡ÌÌ˚ı ‰‚Ûı ÔÓÁ‡ı.
åÂÚËÍË ÏËÎÎË·ÓÚÓ‚
åËÎÎË·ÓÚ˚ – „ÛÔÔ‡ ‡ÁÌÓÓ‰Ì˚ı Ó„‡Ì˘ÂÌÌ˚ı ÔÓ ÂÒÛÒ‡Ï Ó·ÓÚÓ‚ χÎÓ„Ó
‡ÁÏÂ‡. ÉÛÔÔ‡ Ó·ÓÚÓ‚ ÏÓÊÂÚ ÍÓÎÎÂÍÚË‚ÌÓ Ó·ÏÂÌË‚‡Ú¸Òfl ËÌÙÓχˆËÂÈ. éÌË ‚
ÒÓÒÚÓflÌËË Ó·˙‰ËÌflÚ¸ ËÌÙÓχˆË˛ Ó ‡ÒÒÚÓflÌËflı, ÔÓÎÛ˜‡ÂÏÛ˛ ÓÚ ‡ÁÌ˚ı Ô·ÚÙÓÏ, Ë ÒÚÓËÚ¸ ͇ÚÛ „ÎÓ·‡Î¸ÌÓ„Ó ‡ÁÏ¢ÂÌËfl, Ô‰ÒÚ‡‚Îfl˛˘Û˛ ÒÓ·ÓÈ Â‰ËÌÓÂ
ÍÓÎÎÂÍÚË‚ÌÓ ‚ˉÂÌË ÓÍÛʇ˛˘ÂÈ Ò‰˚. èË ÔÓ„‡ÏÏËÓ‚‡ÌËË ÔÂÂÏ¢ÂÌËfl
ÏËÎÎË·ÓÚÓ‚ Ò ˆÂθ˛ ÔÓÒÚÓÂÌËfl ÏÂÚËÍË ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËfl ÏÓÊÌÓ
̇Á̇˜ËÚ¸ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÒÎÛ˜‡ÈÌ˚ı ÚÓ˜ÂÍ ‚ÓÍÛ„ Ó·ÓÚ‡ Ë Ô‰ÒÚ‡‚ËÚ¸
Í‡Ê‰Û˛ ÚÓ˜ÍÛ Í‡Í ÏÂÒÚÓ ‰Îfl Ô‰ÒÚÓfl˘Â„Ó ÔÂÂÏ¢ÂÌËfl. èÓÒΠ˝ÚÓ„Ó ‚˚·Ë‡ÂÚÒfl
ÚӘ͇ Ò Ì‡Ë·ÓΠ‚˚ÒÓÍÓÈ ÙÛÌ͈ËÂÈ ÔÓÎÂÁÌÓÒÚË Ë Ó·ÓÚ Ì‡Ô‡‚ÎflÂÚÒfl ËÏÂÌÌÓ ‚
É·‚‡ 18. ê‡ÒÒÚÓflÌËfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ËÌÊÂÌÂËË
271
˝ÚÛ ÚÓ˜ÍÛ. í‡Í, ÏÂÚË͇ Ò‚Ó·Ó‰ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÓÔ‰ÂÎflÂχfl ÍÓÌÚÛÓÏ Ò‚Ó·Ó‰ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÔÓÁ‚ÓÎflÂÚ ‚˚·Ë‡Ú¸ ÚÓθÍÓ Ú ÚÓ˜ÍË, ÍÓÚÓ˚ Ì Ô‰ÔÓ·„‡˛Ú ÔÂÓ‰ÓÎÂÌËfl Ó·ÓÚÓÏ Í‡ÍËı-ÎË·Ó ÔÂÔflÚÒÚ‚ËÈ; ÏÂÚËÍÓÈ ËÒÍβ˜ÂÌËfl
ÒÚÓÎÍÌÓ‚ÂÌËÈ ÓÚ‚Â„‡˛ÚÒfl ÔÂÂÏ¢ÂÌËfl, χ¯ÛÚ ÍÓÚÓ˚ı ÔÓıÓ‰ËÚ ÒÎ˯ÍÓÏ
·ÎËÁÍÓ ÓÚ ÔÂÔflÚÒÚ‚ËÈ; ÏÂÚËÍÓÈ ÓÒ‚‡Ë‚‡ÂÏÓÈ Ó·Î‡ÒÚË ÔÓÓ˘fl˛ÚÒfl ÔÂÂÏ¢ÂÌËfl
Ó·ÓÚ‡ ÔÓ Ï‡¯ÛÚ‡Ï, ‚˚‚Ó‰fl˘ËÏ Â„Ó Ì‡ ÓÚÍ˚ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó; ÏÂÚËÍÓÈ ÍÓÌÙË„Û‡ˆËË ÔÓÓ˘fl˛ÚÒfl ÔÂÂÏ¢ÂÌËfl, ÔÓÁ‚ÓÎfl˛˘Ë ÒÓı‡ÌËÚ¸ ÍÓÌÙË„Û‡ˆË˛;
ÏÂÚË͇ ÎÓ͇ÎËÁ‡ˆËË, ÓÒÌÓ‚‡Ì̇fl ̇ ۄΠ‡ÒıÓʉÂÌËfl ÏÂÊ‰Û Ó‰ÌÓÈ ËÎË ÌÂÒÍÓθÍËÏË Ô‡‡ÏË ÎÓ͇ÎËÁ‡ˆËË, ÔÓÓ˘flÂÚ Ú ÔÂÂÏ¢ÂÌËfl, ÍÓÚÓ˚ χÍÒËÏËÁËÛ˛Ú
ÎÓ͇ÎËÁ‡ˆË˛ ([GKC04], ÒÏ. ê‡ÒÒÚÓflÌË ËÒÍβ˜ÂÌËfl ÒÚÓÎÍÌÓ‚ÂÌËÈ, ê‡ÒÒÚÓflÌËÂ
ÌÓÒËθ˘ËÍÓ‚ ÔˇÌËÌÓ, „Î. 19).
18.2. êÄëëíéüçàü Ñãü äãÖíéóçõï ÄÇíéåÄíéÇ
èÛÒÚ¸ S, 2 ≤ | S | < ∞ ÂÒÚ¸ ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó (‡ÎÙ‡‚ËÚ) Ë ÔÛÒÚ¸ S ∞ – ÏÌÓÊÂÒÚ‚Ó
·ÂÒÍÓ̘Ì˚ı ‚ Ó·Â ÒÚÓÓÌ˚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ {xi}i∞= – ∞ (ÍÓÌÙË„Û‡ˆËÈ) ˝ÎÂÏÂÌÚÓ‚ (·ÛÍ‚) ÏÌÓÊÂÒÚ‚‡ S. (é‰ÌÓÏÂÌ˚È) ÍÎÂÚÓ˜Ì˚È ‡‚ÚÓÏ‡Ú – ÌÂÔÂ˚‚ÌÓÂ
ÓÚÓ·‡ÊÂÌË f : S∞ → S∞, ÍÓÚÓÓ ÍÓÏÏÛÚËÛÂÚ Ò ÓÚÓ·‡ÊÂÌËÂÏ ÔÂÂÌÓÒ‡ g : S∞ →
S∞, ÓÔ‰ÂÎÂÌÌ˚Ï Í‡Í g( xi ) = xi +1 . èÓÒΠÓÔ‰ÂÎÂÌËfl ÏÂÚËÍË Ì‡ S∞ ÔÓÎÛ˜ÂÌÌÓÂ
ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÏÂÒÚÂ Ò ÓÚÓ·‡ÊÂÌËÂÏ f Ó·‡ÁÛ˛Ú ‰ËÒÍÂÚÌÛ˛ ‰Ë̇Ï˘ÂÒÍÛ˛ ÒËÒÚÂÏÛ. äÎÂÚÓ˜Ì˚ ‡‚ÚÓχÚ˚ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ·ÂÒÍÓ̘Ì˚ ‚ Ó·Â
ÒÚÓÓÌ˚ Ú‡·Îˈ˚ ‚ÏÂÒÚÓ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ) ÔËÏÂÌfl˛ÚÒfl ‚ ÒËÏ‚Ó΢ÂÒÍÓÈ
‰Ë̇ÏËÍÂ, ËÌÙÓχÚËÍÂ Ë (Í‡Í ÏÓ‰ÂÎË) ‚ ÙËÁËÍÂ Ë ·ËÓÎÓ„ËË. éÒÌÓ‚Ì˚ ‡ÒÒÚÓflÌËfl
ÏÂÊ‰Û ÍÓÌÙË„Û‡ˆËflÏË {xi} Ë {yi} ËÁ S∞ (ÒÏ. [BFK99]) Ô˂‰ÂÌ˚ ÌËÊÂ.
åÂÚË͇ ä‡ÌÚÓ‡
åÂÚËÍÓÈ ä‡ÌÚÓ‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ S∞, ÓÔ‰ÂÎÂÌ̇fl ͇Í
2 − min{i ≥ 0:| x i − yi | + | x − i − y − i |≠ 0}.
1
Ó·Ó·˘ÂÌÌÓÈ ÏÂÚËÍË ä‡ÌÚÓ‡ („Î. 11). ëÓÓÚ‚ÂÚ2
ÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï.
é̇ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÒÎÛ˜‡˛ a =
èÓÎÛÏÂÚË͇ ÅÂÒËÍӂ˘‡
èÓÎÛÏÂÚËÍÓÈ ÅÂÒËÍӂ˘‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ S∞, ÓÔ‰ÂÎÂÌ̇fl ͇Í
lim l →∞
| −l ≤ i ≤ l : xi ≠ yi |
.
2l + 1
ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÔÓÎÛÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï (ÒÏ. ê‡ÒÒÚÓflÌË ÅÂÒËÍӂ˘‡ ̇ ËÁÏÂËÏ˚ı ÙÛÌ͈Ëflı, „Î. 13).
èÓÎÛÏÂÚË͇ ÇÂÈÎfl
èÓÎÛÏÂÚË͇ ÇÂÈÎfl ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ S∞, ÓÔ‰ÂÎÂÌ̇fl ͇Í
lim l →∞ max
k ∈
| k + 1 ≤ i ≤ l : xi ≠ yi |
.
l
ùÚ‡ Ë Ô˂‰ÂÌÌ˚ ‚˚¯Â ÏÂÚËÍË fl‚Îfl˛ÚÒfl Ë Ì ‚ ‡  Ë ‡ Ì Ú Ì ˚ Ï Ë Ó Ú Ì Ó Ò Ë Ú Â Î ¸ Ì Ó Ô Â ÂÌÓÒ‡, Ӊ̇ÍÓ ÓÌË Ì fl‚Îfl˛ÚÒfl ÒÂÔ‡‡·ÂθÌ˚ÏË ËÎË ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌ˚ÏË (ÒÏ.
ê‡ÒÒÚÓflÌË ÇÂÈÎfl, „Î. 13).
272
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
18.3. êÄëëíéüçàü Ç íÖéêàà äéçíêéãü
Ç ÚÂÓËË ÍÓÌÚÓÎfl ‡ÒÒχÚË‚‡ÂÚÒfl ˆÂÔ¸ Ó·‡ÚÌÓÈ Ò‚flÁË ÏÂÊ‰Û ÛÒÚ‡ÌÓ‚ÍÓÈ ê
(ÙÛÌ͈Ëfl, Ô‰ÒÚ‡‚Îfl˛˘‡fl ÔÓ‰ÎÂʇ˘ËÈ ÍÓÌÚÓβ Ó·˙ÂÍÚ Ë ÛÔ‡‚Îfl˛˘ËÏ
ÛÒÚÓÈÒÚ‚ÓÏ ë (ÙÛÌ͈Ëfl, ÍÓÚÓÛ˛ Ô‰ÒÚÓËÚ ÔÓÒÚÓËÚ¸). êÂÁÛÎ¸Ú‡Ú y, ËÁÏÂÂÌÌ˚È ÒÂÌÒÓÌ˚Ï ‰‡Ú˜ËÍÓÏ, Ò‡‚ÌË‚‡ÂÚÒfl Ò ˝Ú‡ÎÓÌÌ˚Ï Á̇˜ÂÌËÂÏ r. á‡ÚÂÏ
ÛÔ‡‚Îfl˛˘Â ÛÒÚÓÈÒÚ‚Ó ËÒÔÓθÁÛÂÚ ‚˚˜ËÒÎÂÌÌÛ˛ ӯ˷ÍÛ e = r – y ‰Îfl ‚‚Ó‰‡
‰‡ÌÌ˚ı u = Ce. èË Ì‡ÎË˜Ë ÌÛ΂˚ı ̇˜‡Î¸Ì˚ı ÛÒÎÓ‚ËÈ Ò˄̇Î˚ ‚‚Ó‰‡ Ë ‚˚‚Ó‰‡ ̇
ÛÒÚ‡ÌÓ‚ÍÛ ÒÓÓÚÌÓÒflÚÒfl Í‡Í y = Pu, „‰Â r, y, v Ë P, C fl‚Îfl˛ÚÒfl ÙÛÌ͈ËflÏË ˜‡ÒÚÓÚÌÓÈ
PC
ÔÂÂÏÂÌÌÓÈ s. í‡ÍËÏ Ó·‡ÁÓÏ, y =
r Ë y ≈ r (Ú.Â. ‚˚‚Ó‰ ÍÓÌÚÓÎËÛÂÚÒfl
1 + PC
ÔÓÒÚÓ ÛÒÚ‡ÌÓ‚ÍÓÈ ˝Ú‡ÎÓÌÌÓ„Ó Á̇˜ÂÌËfl), ÂÒÎË êë ·Óθ¯Â β·Ó„Ó Á̇˜ÂÌËfl s.
ÖÒÎË ÒËÒÚÂχ ÏÓ‰ÂÎËÛÂÚÒfl Í‡Í ÒËÒÚÂχ ÎËÌÂÈÌ˚ı ‰ËÙÙÂÂ̈ˇθÌ˚ı Û‡‚ÌÂÌËÈ,
PC
ÚÓ ÔÂ‰‡ÚӘ̇fl ÙÛÌ͈Ëfl
fl‚ÎflÂÚÒfl ‡ˆËÓ̇θÌÓÈ ÙÛÌ͈ËÂÈ. ìÒÚ‡Ìӂ͇ ê
1 + PC
fl‚ÎflÂÚÒfl ÒÚ‡·ËθÌÓÈ, ÂÒÎË Ì ËÏÂÂÚ ÔÓβÒÓ‚ ‚ Á‡ÏÍÌÛÚÓÈ Ô‡‚ÓÈ ÔÓÎÛÔÎÓÒÍÓÒÚË
ë+ = {s ∈ : s ≥ 0}.
ᇉ‡˜‡ ÛÒÚÓȘ˂ÓÈ ÒÚ‡·ËÎËÁ‡ˆËË ÒÓÒÚÓËÚ ‚ ̇ıÓʉÂÌËË ‰Îfl Á‡‰‡ÌÌÓÈ ÌÓÏË̇θÌÓÈ ÛÒÚ‡ÌÓ‚ÍË (ÏÓ‰ÂÎË) P0 Ë ÌÂÍÓÂÈ ÏÂÚËÍË d ̇ ÛÒÚ‡Ìӂ͇ı Ú‡ÍÓ„Ó ˆÂÌÚËÓ‚‡ÌÌÓ„Ó ‚ P0 ÓÚÍ˚ÚÓ„Ó ¯‡‡ Ò Ï‡ÍÒËχθÌ˚Ï ‡‰ËÛÒÓÏ, ˜ÚÓ·˚ ÌÂÍÓÚÓ˚Â
ÛÔ‡‚Îfl˛˘Ë ÛÒÚÓÈÒÚ‚‡ (‡ˆËÓ̇θÌ˚ ÙÛÌ͈ËË) ë ÏÓ„ÎË ÒÚ‡·ËÎËÁËÓ‚‡Ú¸ ͇ʉ˚È ˝ÎÂÏÂÌÚ ‰‡ÌÌÓ„Ó ¯‡‡.
É‡Ù G(P) ÛÒÚ‡ÌÓ‚ÍË ê ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı Ô‡ ‚ıÓ‰-‚˚ıÓ‰
(u, y = P u). ä‡Í u Ú‡Í Ë y ÔË̇‰ÎÂÊ‡Ú ÔÓÒÚ‡ÌÒÚ‚Û ï‡‰Ë H2( +) Ô‡‚ÓÈ
ÔÓÎÛÔÎÓÒÍÓÒÚË; „‡Ù fl‚ÎflÂÚÒfl Á‡ÏÍÌÛÚ˚Ï ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ H 2 ( +) + H 2 ( +).
àÏÂÌÌÓ, G(P) = f(P)H2( 2 ) ‰Îfl ÌÂÍÓÚÓÓÈ ÙÛÌ͈ËË f(P), ̇Á˚‚‡ÂÏÓÈ ÒËÏ‚ÓÎÓÏ
„‡Ù‡, ‡ G(P) fl‚ÎflÂÚÒfl Á‡ÏÍÌÛÚ˚Ï ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ H 2 ( 2 ).
ÇÒ Ô˂‰ÂÌÌ˚ ÌËÊ ÏÂÚËÍË fl‚Îfl˛ÚÒfl ÔÓÔÛÒÍÓÔÓ‰Ó·Ì˚ÏË ÏÂÚË͇ÏË; ÓÌË
ÚÓÔÓÎӄ˘ÂÒÍË ˝Í‚Ë‚‡ÎÂÌÚÌ˚, Ë ÒÚ‡·ËÎËÁ‡ˆËfl fl‚ÎflÂÚÒfl ÛÒÚÓȘ˂˚Ï Ò‚ÓÈÒÚ‚ÓÏ ÔÓ
ÓÚÌÓ¯ÂÌ˲ Í Í‡Ê‰ÓÈ ËÁ ÌËı.
åÂÚË͇ ÔÓÔÛÒ͇
åÂÚË͇ ÔÓÔÛÒ͇ ÏÂÊ‰Û ÛÒÚ‡Ìӂ͇ÏË P1 Ë P 2 (‚‚‰Â̇ ‚ ÚÂÓ˲ ÍÓÌÚÓÎfl á‡ÏÂÒÓÏ Ë ùθ-á‡Í͇Ë) ÓÔ‰ÂÎflÂÚÒfl ͇Í
gap( P1 , P2 ) =|| Π( P1 ) − Π( P2 ) ||2 ,
„‰Â è(P o ), i = 1, 2 fl‚ÎflÂÚÒfl ÓÚÓ„Ó̇θÌÓÈ ÔÓÂ͈ËÂÈ „‡Ù‡ G(Pi) ÛÒÚ‡ÌÓ‚ÍË Pi,
‡ÒÒχÚË‚‡ÂÏÓ„Ó Í‡Í Á‡ÏÍÌÛÚÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó H 2 ( 2 ).
àÏÂÂÏ
gap( P1 , P2 ) = max{δ1 ( P1 , P2 ), δ1 ( P2 , P1 )},
„‰Â δ1 ( P1 , P2 ) = infQ ∈H∞ || f ( P1 ) − f ( P2 )Q || H∞ Ë f(P) – ÒËÏ‚ÓÎ „‡Ù‡.
ÖÒÎË Ä fl‚ÎflÂÚÒfl m × n χÚˈÂÈ Ò m < n, ÚÓ Â n ÒÚÓηˆÓ‚ ÔÓÓʉ‡˛Ú n-ÏÂÌÓÂ
ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó, ‡ χÚˈ‡ Ç ÓÚÓ„Ó̇θÌÓÈ ÔÓÂ͈ËË Ì‡ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÚÓηˆÓ‚
χÚˈ˚ Ä ËÏÂÂÚ ‚ˉ A( AT A) − 1AT . ÖÒÎË ·‡ÁËÒ ÓÚÓÌÓÏËÓ‚‡Ì, ÚÓ B = AAT. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÂÚË͇ ÔÓÔÛÒ͇ ÏÂÊ‰Û ‰‚ÛÏfl ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ó‰ÌÓÈ Ë ÚÓÈ ÊÂ
‡ÁÏÂÌÓÒÚË – l2 -ÌÓχ ‡ÁÌÓÒÚË Ëı ÓÚÓ„Ó̇θÌ˚ı ÔÓÂ͈ËÈ (ÒÏ. ê‡ÒÒÚÓflÌËÂ
îÓ·ÂÌËÛÒ‡, „Î. 12).
É·‚‡ 18. ê‡ÒÒÚÓflÌËfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ËÌÊÂÌÂËË
273
åÂÚË͇ Çˉ¸flÒ‡„‡‡
åÂÚË͇ Çˉ¸flÒ‡„‡‡ (ËÎË ÏÂÚË͇ „‡Ù‡) ÏÂÊ‰Û ÛÒÚ‡Ìӂ͇ÏË P1 Ë P2 ÓÔ‰ÂÎflÂÚÒfl ͇Í
max{δ 2 ( P1 , P2 ), δ 2 ( P2 , P1 )},
„‰Â δ 2 ( P1 , P2 ) = inf||Q||≤1 || f ( P1 ) − f ( P2 )Q || H∞ .
èӂ‰Â̘ÂÒÍÓ ‡ÒÒÚÓflÌË – ÔÓÔÛÒÍ ÏÂÊ‰Û ‡Ò¯ËÂÌÌ˚ÏË „‡Ù‡ÏË ÛÒÚ‡ÌÓ‚ÓÍ
P1 Ë P2 ; ÌÓ‚˚È ˝ÎÂÏÂÌÚ ‰Ó·‡‚ÎÂÌ Í „‡ÙÛ G(P) ‰Îfl Û˜ÂÚ‡ ‚ÒÂı ‚ÓÁÏÓÊÌ˚ı ËÒıÓ‰Ì˚ı
ÛÒÎÓ‚ËÈ (‚ÏÂÒÚÓ Ó·˚˜ÌÓÈ ÒËÚÛ‡ˆËË, ÍÓ„‰‡ ËÒıÓ‰Ì˚ ÛÒÎÓ‚Ëfl ÌÛ΂˚Â).
åÂÚË͇ ÇËÌÌËÍÓÏ·Â
åÂÚË͇ ÇËÌÌËÍÓÏ·Â (ÏÂÚË͇ ν-ÔÓÔÛÒ͇) ÏÂÊ‰Û ÛÒÚ‡Ìӂ͇ÏË P1 Ë P2
ÓÔ‰ÂÎflÂÚÒfl ͇Í
δ ν ( P1 , P2 ) = || (1 + P2 P2∗ ) −1 / 2 ( P2 − P1 )(1 + P1∗ P1 ) −1 / 2 ||∞
ÂÒÎË wno( f ∗ ( P2 ) f ( P1 )) = 0 Ë ‡‚̇ 1, Ë̇˜Â. á‰ÂÒ¸ f(P) fl‚ÎflÂÚÒfl ÙÛÌ͈ËÂÈ ÒËÏ‚Ó·
„‡Ù‡ ÛÒÚ‡ÌÓ‚ÍË ê. Ç [Youn98] ‰‡Ì˚ ÓÔ‰ÂÎÂÌËfl ˜ËÒ· ÍÛ˜ÂÌËfl wno(f) ‰Îfl ‡ˆËÓ̇θÌÓÈ ÙÛÌ͈ËË f, ‡ Ú‡ÍÊ ıÓӯ ‚‚‰ÂÌË ‚ ÚÂÓ˲ ÒÚ‡·ËÎËÁ‡ˆËË Ò Ó·‡ÚÌÓÈ Ò‚flÁ¸˛.
18.4. åéÖÄ êÄëëíéüçàü
åÌÓ„Ë ҂flÁ‡ÌÌ˚Â Ò ÓÔÚËÏËÁ‡ˆËÂÈ Á‡‰‡˜Ë ÔÂÒÎÂ‰Û˛Ú ÌÂÒÍÓθÍÓ ˆÂÎÂÈ
Ó‰ÌÓ‚ÂÏÂÌÌÓ, Ӊ̇ÍÓ ‰Îfl ÔÓÒÚÓÚ˚ ÚÓθÍÓ Ó‰Ì‡ ËÁ ÌËı ÓÔÚËÏËÁËÛÂÚÒfl, ‡
ÓÒڇθÌ˚ ‚˚ÒÚÛÔ‡˛Ú ‚ ͇˜ÂÒÚ‚Â Ó„‡Ì˘ÂÌËÈ. èË ÏÌÓ„ÓˆÂ΂ÓÈ ÓÔÚËÏËÁ‡ˆËË
‡ÒÒχÚË‚‡ÂÚÒfl (ÔÓÏËÏÓ ÌÂÍÓÚÓ˚ı Ó„‡Ì˘ÂÌËÈ ‚ ‚ˉ ÌÂ‡‚ÂÌÒÚ‚) ˆÂ΂‡fl
‚ÂÍÚÓ-ÙÛÌ͈Ëfl f : X ⊂ n → k ËÁ ÔÓÒÚ‡ÌÒÚ‚‡ ÔÓËÒ͇ (ËÎË „ÂÌÓÚËÔ‡, ÔÂÂÏÂÌÌ˚ı ¯ÂÌËfl) ï ‚ ÔÓÒÚ‡ÌÒÚ‚Ó ˆÂÎÂÈ (ËÎË ÙÂÌÓÚËÔ‡, ‚ÂÍÚÓÓ‚ ¯ÂÌËÈ) f(X) =
= {f(x): x ∈ X} ⊂ k. íӘ͇ x * ∈ X fl‚ÎflÂÚÒfl ÓÔÚËχθÌÓÈ ÔÓ è‡ÂÚÓ, ÂÒÎË ‰Îfl
͇ʉÓÈ ‰Û„ÓÈ ÚÓ˜ÍË x ∈ X ‚ÂÍÚÓ ¯ÂÌËÈ f(x) Ì χÊÓËÛÂÚ ÔÓ è‡ÂÚÓ ‚ÂÍÚÓ
f(x * ), Ú. f(x ) ≤ f(x * ). éÔÚËχθÌ˚È ÔÓ è‡ÂÚÓ ÙÓÌÚ – ˝ÚÓ ÏÌÓÊÂÒÚ‚Ó
PF ∗ = { f ( x ) : x ∈ X ∗}, „‰Â X* fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ‚ÒÂı ÓÔÚËχθÌ˚ı ÔÓ è‡ÂÚÓ
ÚÓ˜ÂÍ.
åÌÓ„ÓˆÂ΂˚ ˝‚ÓβˆËÓÌÌ˚ ‡Î„ÓËÚÏ˚ (ÒÓÍ‡˘ÂÌÌÓ MOEA ÓÚ ‡Ì„ÎËÈÒÍÓ„Ó
Multi-objective evolutionary algorithms) ÔÓÓʉ‡˛Ú ̇ ͇ʉÓÏ ˝Ú‡Ô ÏÌÓÊÂÒÚ‚Ó
‡ÔÔÓÍÒËχˆËË (̇ȉÂÌÌ˚È ÔÓ è‡ÂÚÓ ÙÓÌÚ PF known ÔË·ÎËʇÂÚ Í Ê·ÂÏ˚È
è‡ÂÚÓ ÙÓÌÚ PF * ) ‚ ÔÓÒÚ‡ÌÒÚ‚Â ˆÂÎÂÈ, „‰Â ÌË Ó‰ËÌ ˝ÎÂÏÂÌÚ ‰ÓÏËÌËÛÂÚ ÔÓ
è‡ÂÚÓ Ì‡‰ ‰Û„ËÏ. èËÏÂ˚ ÏÂÚËÍ åéÖÄ, Ú.Â. ÏÂ ÓˆÂÌÍË, ̇ÒÍÓθÍÓ PFknown
·ÎËÁÓÍ Í PF * , Ô‰ÒÚ‡‚ÎÂÌ˚ ÌËÊÂ.
ê‡ÒÒÚÓflÌË ÔÓÍÓÎÂÌËÈ
ê‡ÒÒÚÓflÌË ÔÓÍÓÎÂÌËÈ ÓÔ‰ÂÎflÂÚÒfl ͇Í
1/ 2
 m

2
 d j 
 j =1 
,
m
„‰Â m = | PFknown | Ë dj ÂÒÚ¸ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË (‚ ÔÓÒÚ‡ÌÒÚ‚Â ˆÂÎÂÈ) ÏÂʉÛ
(Ú.Â. j-Ï ˜ÎÂÌÓÏ ÙÓÌÚ‡ PFknown) Ë ·ÎËʇȯËÏ ˜ÎÂÌÓÏ PF*.
∑
274
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
íÂÏËÌ ‡ÒÒÚÓflÌË ÔÓÍÓÎÂÌËÈ (ËÎË ÒÍÓÓÒÚ¸ Ó·ÓÓÚ‡) ËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ ‰Îfl
Ó·ÓÁ̇˜ÂÌËfl ÏËÌËχθÌÓ„Ó ˜ËÒ· ‚ÂÚ‚ÂÈ ÏÂÊ‰Û ‰‚ÛÏfl ÔÓÎÓÊÂÌËflÏË ‚ β·ÓÈ
ÒËÒÚÂÏ ‡ÌÊËÓ‚‡ÌÌÓ„Ó Û·˚‚‡ÌËfl, Ô‰ÒÚ‡‚ÎÂÌÌÓ„Ó ‚ ‚ˉ ËÂ‡ı˘ÂÒÍÓ„Ó ‰Â‚‡. èËÏÂ‡ÏË fl‚Îfl˛ÚÒfl: ÙËÎÓ„ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ̇ ÙËÎÓ„ÂÌÂÚ˘ÂÒÍÓÏ
‰Â‚Â, ÍÓ΢ÂÒÚ‚Ó ÔÓÍÓÎÂÌËÈ, ÓÚ‰ÂÎfl˛˘Ëı ÙÓÚÓÍÓÔ˲ ÓÚ ÓË„Ë̇θÌÓ„Ó ÓÚÚËÒ͇,
ÍÓ΢ÂÒÚ‚Ó ÔÓÍÓÎÂÌËÈ, ÓÚ‰ÂÎfl˛˘Ëı ÔÓÒÂÚËÚÂÎÂÈ ÏÂÏÓˇ· ÓÚ Ô‡ÏflÚÌ˚ı ÒÓ·˚ÚËÈ,
ÍÓÚÓ˚Ï ÓÌ ÔÓÒ‚fl˘ÂÌ.
ê‡ÒÔÓÎÓÊÂÌËÂ Ò ÔÓÏÂÊÛÚ͇ÏË
ê‡ÒÔÓÎÓÊÂÌËÂ Ò ÔÓÏÂÊÛÚ͇ÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í








(d − d j ) 
j =1


m −1



m
∑
1/ 2
2
,
„‰Â m = | PFknown | Ë dj ÂÒÚ¸ l1 -‡ÒÒÚÓflÌË (‚ ÔÓÒÚ‡ÌÒÚ‚Â ˆÂÎÂÈ) ÏÂÊ‰Û fi(x) (Ú.Â. j-Ï
˜ÎÂÌÓÏ ÙÓÌÚ‡ PF known) Ë ‰Û„ËÏ ·ÎËʇȯËÏ ˜ÎÂÌÓÏ PF known , ‚ ÚÓ ‚ÂÏfl Í‡Í d
fl‚ÎflÂÚÒfl Ò‰ÌËÏ Á̇˜ÂÌËÂÏ ‚ÒÂı dj.
ëÛÏχÌӠ̉ÓÏËÌËÓ‚‡ÌÌÓ ÓÚÌÓ¯ÂÌË ‚ÂÍÚÓÓ‚
ëÛÏχÌӠ̉ÓÏËÌËÓ‚‡ÌÌÓ ÓÚÌÓ¯ÂÌË ‚ÂÍÚÓÓ‚ ÓÔ‰ÂÎflÂÚÒfl ͇Í
| PFknown |
.
| PF ∗ |
ó‡ÒÚ¸ V
êÄëëíéüçàü
Ç äéåèúûíÖêçéâ ëîÖêÖ
É·‚‡ 19
ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ
Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
19.1. åÖíêàäà çÄ ÑÖâëíÇàíÖãúçéâ èãéëäéëíà
ç‡ ÔÎÓÒÍÓÒÚË 2 ÏÓÊÌÓ ËÒÔÓθÁÓ‚‡Ú¸ ÏÌÓ„Ó ‡ÁÌ˚ı ÏÂÚËÍ. Ç ˜‡ÒÚÌÓÒÚË, β·‡fl
lp -ÏÂÚË͇ (Ú‡Í ÊÂ, Í‡Í Ë Î˛·‡fl ÏÂÚË͇ ÌÓÏ˚ ‰Îfl ‰‡ÌÌÓÈ ÌÓÏ˚ || ⋅ || ̇ 2 )
ÏÓÊÂÚ ·˚Ú¸ ËÒÔÓθÁÓ‚‡Ì‡ ̇ ÔÎÓÒÍÓÒÚË, ÔË ˝ÚÓÏ Ì‡Ë·ÓΠÂÒÚÂÒÚ‚ÂÌÌÓÈ fl‚ÎflÂÚÒfl
l2 -ÏÂÚË͇, Ú.Â. ‚ÍÎˉӂ‡ ÏÂÚË͇ d E ( x, y) = ( x1 − y1 )2 + ( x 2 − y2 )2 , ÍÓÚÓ‡fl ‰‡ÂÚ
Ì‡Ï ‰ÎËÌÛ ÓÚÂÁ͇ [x, y] ÔflÏÓÈ Ë fl‚ÎflÂÚÒfl ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ ÔÎÓÒÍÓÒÚË.
é‰Ì‡ÍÓ ËϲÚÒfl Ë ‰Û„ËÂ, ÌÂ‰ÍÓ "˝ÍÁÓÚ˘ÂÒÍËÂ" ÏÂÚËÍË Ì‡ 2. åÌÓ„Ë ËÁ ÌËı
ÔËÏÂÌfl˛ÚÒfl ‰Îfl ÔÓÒÚÓÂÌËfl Ó·Ó·˘ÂÌÌ˚ı ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó Ì‡ 2 (ÒÏ., ̇ÔËÏÂ, ÏÓÒÍÓ‚ÒÍÛ˛ ÏÂÚËÍÛ, ÏÂÚËÍÛ ÒÂÚË, Ô‡‚ËθÌÛ˛ ÏÂÚËÍÛ). çÂÍÓÚÓ˚ ËÁ ÌËı
ÔËÏÂÌfl˛ÚÒfl ‚ ˆËÙÓ‚ÓÈ „ÂÓÏÂÚËË.
ᇉ‡˜Ë ̇ ‡ÒÒÚÓflÌËfl ˝‰Â¯Â‚ÒÍÓ„Ó ÚËÔ‡ (Á‡‰‡‚‡ÂÏ˚ ӷ˚˜ÌÓ ‰Îfl ‚ÍÎˉӂÓÈ
ÏÂÚËÍË Ì‡ 2) Ô‰ÒÚ‡‚Îfl˛Ú ËÌÚÂÂÒ ‰Îfl ÒÎÛ˜‡fl n Ë ‰Îfl ‰Û„Ëı ÏÂÚËÍ Ì‡ 2.
èËÏÂÌ˚Ï ÒÓ‰ÂʇÌËÂÏ Ú‡ÍËı Á‡‰‡˜ fl‚ÎflÂÚÒfl:
– ̇ıÓʉÂÌË ̇ËÏÂ̸¯Â„Ó ˜ËÒ· ‡Á΢Ì˚ı ‡ÒÒÚÓflÌËÈ (ËÎË Ì‡Ë·Óθ¯Â„Ó
˜ËÒ· ÔÓfl‚ÎÂÌËÈ Á‡‰‡ÌÌÓ„Ó ‡ÒÒÚÓflÌËfl) ‚ n-ÔÓ‰ÏÌÓÊÂÒÚ‚Â ÏÌÓÊÂÒÚ‚‡ 2; ̇˷Óθ¯ËÈ ‡ÁÏÂ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÏÌÓÊÂÒÚ‚‡ 2 , ÓÔ‰ÂÎfl˛˘Â„Ó Ì ·ÓΠm
‡ÒÒÚÓflÌËÈ;
– ÓÔ‰ÂÎÂÌË ÏËÌËχθÌÓ„Ó ‰Ë‡ÏÂÚ‡ n-ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÏÌÓÊÂÒÚ‚‡ 2 ÚÓθÍÓ Ò
ˆÂÎÓ˜ËÒÎÂÌÌ˚ÏË ‡ÒÒÚÓflÌËflÏË (ËÎË, Ò͇ÊÂÏ, ·ÂÁ Ô‡˚ (d 1 , d2 ) ‡ÒÒÚÓflÌËÈ Ò
0 < | d1 – d2 | < 1);
– ÒÛ˘ÂÒÚ‚Ó‚‡ÌË n-ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÏÌÓÊÂÒÚ‚‡ 2, ‚ ÍÓÚÓÓÏ ‡ÒÒÚÓflÌË i (‰Îfl
Í‡Ê‰Ó„Ó 1 ≤ i ≤ n) ‚ÒÚ˜‡ÂÚÒfl ÚÓ˜ÌÓ i ‡Á (ÔËÏÂ˚ ËÁ‚ÂÒÚÌ˚ ‰Îfl n ≤ 8);
– ÓÔ‰ÂÎÂÌˠ̉ÓÔÛÒÚËÏ˚ı ‡ÒÒÚÓflÌËÈ ‡Á·ËÂÌËfl ÏÌÓÊÂÒÚ‚‡ 2, Ú.Â. ‡ÒÒÚÓflÌËÈ, ÍÓÚÓ˚ ÓÚÒÛÚÒÚ‚Û˛Ú ‚ ͇ʉÓÈ ËÁ ˜‡ÒÚÂÈ.
åÂÚË͇ „ÓÓ‰ÒÍÓ„Ó Í‚‡ڇ·
åÂÚËÍÓÈ „ÓÓ‰ÒÍÓ„Ó Í‚‡ڇ· ̇Á˚‚‡ÂÚÒfl l1-ÏÂÚË͇ ̇ 2 , ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x − y ||1 = | x1 − y1 | + | x 2 − y2 | .
чÌÌÛ˛ ÏÂÚËÍÛ Ì‡Á˚‚‡˛Ú ÔÓ-‡ÁÌÓÏÛ, ̇ÔËÏÂ, ÏÂÚËÍÓÈ Ú‡ÍÒË, ÏÂÚËÍÓÈ
å‡Ìı˝ÚÚÂ̇, ÔflÏÓÛ„ÓθÌÓÈ ÏÂÚËÍÓÈ, ÏÂÚËÍÓÈ ÔflÏÓ„Ó Û„Î‡; ̇ 2  ̇Á˚‚‡˛Ú
ÏÂÚËÍÓÈ „ˉ˚ Ë 4-ÏÂÚËÍÓÈ.
åÂÚË͇ ó·˚¯Â‚‡
åÂÚËÍÓÈ ó·˚¯Â‚‡ ̇Á˚‚‡ÂÚÒfl l-ÏÂÚË͇ ̇ 2 , ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x − y ||∞ − max{| x1 − y1 |, | x 2 − y2 |}.
ùÚÛ ÏÂÚËÍÛ Ì‡Á˚‚‡˛Ú Ú‡ÍÊ ‡‚ÌÓÏÂÌÓÈ ÏÂÚËÍÓÈ, sup-ÏÂÚËÍÓÈ Ë ·ÓÍÒÏÂÚËÍÓÈ; ̇ 6 Ó̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ ¯ÂÚÍË, ÏÂÚËÍÓÈ ˘‡ıχÚÌÓÈ ‰ÓÒÍË,
ÏÂÚËÍÓÈ ıÓ‰‡ ÍÓÓÎfl Ë 8-ÏÂÚËÍÓÈ.
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
277
(p, q)-ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇
2 − q
èÛÒÚ¸ 0 < q ≤ 1, p ≥ max 1 − q,
 Ë ÔÛÒÚ¸ || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ 2 (‚ Ó·3 

˘ÂÏ ÒÎÛ˜‡Â ̇ n ).
(p, q)-ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇ ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n Ë ‰‡ÊÂ
̇ β·ÓÏ ÔÚÓÎÂÏ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (V ,|| ⋅ ||)), ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x − y ||2
q/ p
1
 (|| x || p + || y || p )
2
2 
2
‰Îfl ı ËÎË y ≠ 0 (Ë ‡‚̇fl 0, Ë̇˜Â). Ç ÒÎÛ˜‡Â p = ∞ Ó̇ ÔËÌËχÂÚ ‚ˉ
|| x − y ||2
.
(max || x ||2 ,|| y ||2}) q
ÑÎfl q = 1 Ë Î˛·Ó„Ó 1 ≤ p < ∞ Ï˚ ÔÓÎÛ˜‡ÂÏ -ÓÚÌÓÒËÚÂθÌÛ˛ ÏÂÚËÍÛ (ËÎË
ÏÂÚËÍÛ ä·ÏÍË̇–åÂË‡); ‰Îfl q = 1 Ë 1 ≤ p < ∞ ÔÓÎÛ˜‡ÂÏ ÓÚÌÓÒËÚÂθÌÛ˛ ÏÂÚËÍÛ. (1,1)-ÏÂÚË͇ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ ò‡Ú¯ÌÂȉÂ.
å-ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇
èÛÒÚ¸ f : [0, ∞) → (0, ∞) – ‚˚ÔÛÍ·fl ‚ÓÁ‡ÒÚ‡˛˘‡fl ÙÛÌ͈Ëfl, ڇ͇fl ˜ÚÓ
f ( x)
x
Û·˚‚‡ÂÚ ‰Îfl x > 0. èÛÒÚ¸ || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n).
å-ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇ ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n Ë ‰‡Ê ̇
β·ÓÏ ÔÚÓÎÂÏ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (V ,|| ⋅ ||)), ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x − y ||2
.
f (|| x ||2 ) ⋅ f (|| y ||2 )
Ç ˜‡ÒÚÌÓÒÚË, ‡ÒÒÚÓflÌËÂ
|| x − y ||2
p
1+ || x ||2p p 1+ || y ||2p
fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ 2 (̇ n) ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ p ≥ 1. Ä̇Îӄ˘̇fl
ÏÂÚË͇ ̇ 2 \ {0} (̇ n \ {0}) ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ ͇Í
|| x − y ||2
.
|| x ||2 ⋅ || y ||2
åÓÒÍÓ‚Ò͇fl ÏÂÚË͇
åÓÒÍÓ‚Ò͇fl ÏÂÚË͇ (ËÎË ÏÂÚË͇ ä‡ÎÒÛ˝) ÂÒÚ¸ ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl
Í‡Í ÏËÌËχθ̇fl ‚ÍÎˉӂ‡ ‰ÎË̇ ‚ÒÂı ‰ÓÔÛÒÚËÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ı Ë
y ∈ 2, „‰Â ÍË‚‡fl ̇Á˚‚‡ÂÚÒfl ‰ÓÔÛÒÚËÏÓÈ, ÂÒÎË ÒÓÒÚÓËÚ ÚÓθÍÓ ËÁ ÓÚÂÁÍÓ‚
ÔflÏ˚ı, ÔÓıÓ‰fl˘Ëı ˜ÂÂÁ ̇˜‡ÎÓ ÍÓÓ‰Ë̇Ú, Ë ÓÚÂÁÍÓ‚ ÓÍÛÊÌÓÒÚÂÈ Ò ˆÂÌÚ‡ÏË
‚ ̇˜‡Î ÍÓÓ‰ËÌ‡Ú (ÒÏ., ̇ÔËÏÂ, [Klei88]).
ÖÒÎË ÔÓÎflÌ˚ ÍÓÓ‰Ë̇Ú˚ ‰Îfl ÚÓ˜ÂÍ x, y ∈ 2 ‡‚Ì˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ (rx, θx) Ë
(ry, θ y), ÚÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‡ÌÌ˚ÏË ÚӘ͇ÏË ‡‚ÌÓ min{rx , ry}∆(θ x − θ y )+ | rx − ry |,
ÂÒÎË 0 ≤ ∆(θ x , θ y ) < 2, Ë ‡‚ÌÓ rx + ry ,, ÂÒÎË 2 ≤ ∆(θ x , θ y ) < π, „‰Â ∆(θ x , θ y ) =
= min{| θ x − θ y |, 2 π − | θ x − θ y |}, θ x , θ y ∈[0, 2 π) ÂÒÚ¸ ÏÂÚË͇ ÏÂÊ‰Û Û„Î‡ÏË.
278
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
åÂÚË͇ Ù‡ÌˆÛÁÒÍÓ„Ó ÏÂÚÓ
ÑÎfl ÌÓÏ˚ || ⋅ || ̇ 2 ÏÂÚËÍÓÈ Ù‡ÌˆÛÁÒÍÓ„Ó ÏÂÚÓ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2,
ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x − y ||,
ÂÒÎË x = cy ‰Îfl ÌÂÍÓÚÓÓ„Ó c ∈ , Ë Í‡Í
|| x || + || y ||,
Ë̇˜Â. ÑÎfl ‚ÍÎˉӂÓÈ ÌÓÏ˚ || ⋅ ||2 Ó̇ ̇Á˚‚‡ÂÚÒfl Ô‡ËÊÒÍÓÈ ÏÂÚËÍÓÈ, ÏÂÚËÍÓÈ
Âʇ, ‡‰Ë‡Î¸ÌÓÈ ÏÂÚËÍÓÈ ËÎË ÛÒËÎÂÌÌÓÈ ÏÂÚËÍÓÈ SNCF. Ç ˝ÚÓÏ ÒÎÛ˜‡Â Ó̇
ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ Í‡Í ÏËÌËχθ̇fl ‚ÍÎˉӂ‡ ‰ÎË̇ ‚ÒÂı ‰ÓÔÛÒÚËÏ˚ı ÍË‚˚ı ÏÂÊ‰Û ‰‚ÛÏfl ‰‡ÌÌ˚ÏË ÚӘ͇ÏË ı Ë Û, „‰Â ÍË‚‡fl ̇Á˚‚‡ÂÚÒfl ‰ÓÔÛÒÚËÏÓÈ, ÂÒÎË ÒÓÒÚÓËÚ ÚÓθÍÓ ËÁ ÓÚÂÁÍÓ‚ ÔflÏ˚ı, ÔÓıÓ‰fl˘Ëı ˜ÂÂÁ ̇˜‡ÎÓ
ÍÓÓ‰Ë̇Ú.
Ç ÚÂÏË̇ı „‡ÙÓ‚ ˝Ú‡ ÏÂÚË͇ ÔÓıÓʇ ̇ ÏÂÚËÍÛ ÔÛÚË ‰Â‚‡, ÒÓÒÚÓfl˘Â„Ó ËÁ
ÚÓ˜ÍË, ÓÚÍÛ‰‡ ËÒıÓ‰flÚ ÌÂÒÍÓθÍÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÔÛÚÂÈ.
è‡ËÊÒ͇fl ÏÂÚË͇ – ˝ÚÓ ÔËÏÂ -‰Â‚‡ í, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÒËÏÔÎˈˇθÌ˚Ï, Ú.Â. ÏÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ ı, ‰Îfl ÍÓÚÓ˚ı ÏÌÓÊÂÒÚ‚Ó T – {x} ÒÓÒÚÓËÚ ËÁ Ó‰ÌÓÈ
ÍÓÏÔÓÌÂÌÚ˚, fl‚ÎflÂÚÒfl ‰ËÒÍÂÚÌ˚Ï Ë Á‡ÏÍÌÛÚ˚Ï.
åÂÚË͇ ÎËÙÚ‡
åÂÚËÍÓÈ ÎËÙÚ‡ (ËÎË ÏÂÚËÍÓÈ Ò·Ó˘Ë͇ χÎËÌ˚, ÏÂÚ˘ÂÒÍÓÈ "ÂÍÓÈ") ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl ͇Í
| x1 − y1 |,
ÂÒÎË x 2 = y2, Ë Í‡Í
| x1 | + | x 2 − y2 | + | y1 |,
ÂÒÎË x 2 ≠ y 2 (ÒÏ., ̇ÔËÏÂ, [Brya85]). é̇ ÏÓÊÂÚ ÓÔ‰ÂÎflÚ¸Òfl Í‡Í ÏËÌËχθ̇fl
‚ÍÎˉӂ‡ ‰ÎË̇ ‚ÒÂı ‰ÓÔÛÒÚËÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ‰‚ ‰‡ÌÌ˚ ÚÓ˜ÍË ı Ë Û,
„‰Â ÍË‚‡fl ̇Á˚‚‡ÂÚÒfl ‰ÓÔÛÒÚËÏÓÈ, ÂÒÎË ÒÓÒÚÓËÚ ÚÓθÍÓ ËÁ ÓÚÂÁÍÓ‚ ÔflÏ˚ı,
Ô‡‡ÎÎÂθÌ˚ı ÓÒË x1, Ë ÓÚÂÁÍÓ‚ ÓÒË x2.
åÂÚË͇ ÎËÙÚ‡ fl‚ÎflÂÚÒfl ÔËÏÂÓÏ ÌÂÒËÏÔÎˈˇθÌÓ„Ó (ÒÏ. åÂÚË͇ Ù‡ÌˆÛÁÒÍÓ„Ó ÏÂÚÓ) -‰Â‚‡.
åÂÚË͇ ·ËÚ‡ÌÒÍÓÈ ÊÂÎÂÁÌÓÈ ‰ÓÓ„Ë
ÑÎfl ÌÓÏ˚ || ⋅ || ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n) ÏÂÚËÍÓÈ ·ËÚ‡ÌÒÍÓÈ ÊÂÎÂÁÌÓÈ
‰ÓÓ„Ë Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n), ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x || + || y ||
‰Îfl x ≠ y (Ë ‡‚̇fl 0, Ë̇˜Â).
Ö ̇Á˚‚‡˛Ú Ú‡ÍÊ ÏÂÚËÍÓÈ ÔÓ˜Ú˚, ÏÂÚËÍÓÈ „ÛÒÂÌˈ˚ Ë ÏÂÚËÍÓÈ ˜ÂÎÌÓ͇.
åÂÚË͇ ˆ‚ÂÚÓ˜ÌÓ„Ó Ï‡„‡ÁË̇
èÛÒÚ¸ d – ÏÂÚËÍ Ì‡ 2 Ë f – ÙËÍÒËÓ‚‡Ì̇fl ÚӘ͇ (ˆ‚ÂÚÓ˜Ì˚È Ï‡„‡ÁËÌ) ̇
ÔÎÓÒÍÓÒÚË.
åÂÚËÍÓÈ ˆ‚ÂÚÓ˜ÌÓ„Ó Ï‡„‡ÁË̇ (ËÌÓ„‰‡  ̇Á˚‚‡˛Ú ÏÂÚËÍÓÈ SNCF) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ β·ÓÏ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â),
ÓÔ‰ÂÎÂÌ̇fl ͇Í
d(x, f) + d(f, y)
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
279
‰Îfl x ≠ y (Ë ‡‚̇fl 0, Ë̇˜Â). í‡Í, ˜ÂÎÓ‚ÂÍ, ÊË‚Û˘ËÈ ‚ ÚӘ͠ı, ÍÓÚÓ˚È ıÓ˜ÂÚ
ÔÓÒÂÚËÚ¸ ÍÓ„Ó-ÚÓ, ÊË‚Û˘Â„Ó ‚ ÚӘ͠y, Ò̇˜‡Î‡ Á‡ıÓ‰ËÚ ‚ f, ˜ÚÓ·˚ ÍÛÔËÚ¸ ˆ‚ÂÚ˚.
Ç ÒÎÛ˜‡Â ÂÒÎË d ( x, f ) = || x − y ||, ‡ ÚӘ͇ f fl‚ÎflÂÚÒfl ̇˜‡ÎÓÏ ÍÓÓ‰Ë̇Ú, Ï˚ ÔÓÎÛ˜‡ÂÏ
ÏÂÚËÍÛ ·ËÚ‡ÌÒÍÓÈ ÊÂÎÂÁÌÓÈ ‰ÓÓ„Ë.
ÖÒÎË ËÏÂÂÚÒfl k > 1 ˆ‚ÂÚÓ˜Ì˚ı χ„‡ÁËÌÓ‚ f1 ,…, fk, ÚÓ ˜ÂÎÓ‚ÂÍ ÍÛÔËÚ ˆ‚ÂÚ˚ ‚ ·ÎËʇȯÂÏ Ï‡„‡ÁËÌÂ Ò ÏËÌËχθÌ˚Ï ÓÚÍÎÓÌÂÌËÂÏ ÓÚ Ò‚ÓÂ„Ó Ï‡¯ÛÚ‡, Ú.Â. ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‡Á΢Ì˚ÏË ÚӘ͇ÏË x, y ‡‚ÌÓ min l ≤ i ≤ k ( d ( x, fi ) + d ( fi , y)).
åÂÚË͇ ˝Í‡Ì‡ ‡‰‡‡
ÑÎfl ÌÓÏ˚ || ⋅ || ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n ) ÏÂÚËÍÓÈ ˝Í‡Ì‡ ‡‰‡‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n), ÓÔ‰ÂÎÂÌ̇fl ͇Í
min{1,|| x − y ||}.
åÂÚË͇ ÍÓ‚‡ êËÍχ̇
ÑÎfl ˜ËÒ· α ∈ (0, 1) ÏÂÚËÍÓÈ ÍÓ‚‡ êËÍχ̇ fl‚ÎflÂÚÒfl ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl ͇Í
x1 − y1 + x 2 − y2
α
.
ùÚÓ fl‚ÎflÂÚÒfl ÒÎÛ˜‡ÂÏ n = 2 Ô‡‡·Ó΢ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl („Î. 6; ÒÏ. Ú‡Ï Ê ‰Û„ËÂ
ÏÂÚËÍË Ì‡ n, n ≥ 2).
åÂÚË͇ ÅÛ‡„Ó–à‚‡ÌÓ‚‡
å Â Ú  Ë Í Ó È Å Û  ‡ „  Ó – à ‚ ‡ Ì Ó ‚ ‡ ([BuIv01]) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 , ÓÔ‰ÂÎÂÌ̇fl ͇Í
|| x ||2 − || y ||2 + min{|| x ||2 ⋅ ||| y ||2 } ⋅ ∠( x, y),
„‰Â ∠(x, y) – Û„ÓÎ ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ı Ë Û Ë || ⋅ || – ‚ÍÎˉӂ‡ ÌÓχ ̇ 2 . ëÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ 2 ‡‚̇ || x ||2 − || y ||2 , ÂÒÎË ∠(x, y) = 0, Ë ‡‚̇
|| x ||2 − || y ||2 , Ë̇˜Â.
åÂÚË͇ 2n-Û„ÓθÌË͇
ÑÎfl ˆÂÌÚ‡Î¸ÌÓ ÒËÏÏÂÚ˘ÌÓ„Ó Ô‡‚ËθÌÓ„Ó 2n-Û„ÓθÌË͇ K ̇ ÔÎÓÒÍÓÒÚË ÏÂÚËÍÓÈ 2n-Û„ÓθÌË͇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 , ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x,y ∈ 2
Í‡Í Ì‡ËÍ‡Ú˜‡È¯‡fl ‚ÍÎˉӂ‡ ‰ÎË̇ ÎÓχÌÓÈ ÎËÌËË ÓÚ ı Í Û, ͇ʉÓ ËÁ Á‚Â̸ ÍÓÚÓÓÈ Ô‡‡ÎÎÂθ̇ ÌÂÍÓÚÓÓÏÛ ËÁ ·Â ÏÌÓ„ÓÛ„ÓθÌË͇ ä.
ÖÒÎË ä ÂÒÚ¸ ÔflÏÓÛ„ÓθÌËÍ Ò ‚Â¯Ë̇ÏË {(±1, ±1)}, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ
å‡Ìı˝ÚÚÂ̇. åÂÚËÍÛ å‡Ìı˝ÚÚÂ̇ Ú‡ÍÊ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÂÚËÍÛ åËÌÍÓ‚ÒÍÓ„Ó Ò Â‰ËÌ˘Ì˚Ï ¯‡ÓÏ ‚ ‚ˉ ·ËÎΡÌÚ‡, Ú.Â. Í‚‡‰‡Ú‡ Ò ‚Â¯Ë̇ÏË
{(1,0(0,1), (–1,0),(0,–1)}.
åÂÚË͇ ˆÂÌÚ‡Î¸ÌÓ„Ó Ô‡͇
åÂÚËÍÓÈ ˆÂÌÚ‡Î¸ÌÓ„Ó Ô‡͇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ‰ÎË̇ ̇ËÍ‡Ú˜‡È¯Â„Ó l1 -ÔÛÚË (ÔÛÚË å‡Ìı˝ÚÚÂ̇) ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, x, y ∈ 2 ÔË
̇΢ËË ‰‡ÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ÁÓÌ, ˜ÂÂÁ ÍÓÚÓ˚ ÔÓıÓ‰flÚ Í‡Ú˜‡È¯Ë ‚ÍÎˉӂ˚
ÔÛÚË (̇ÔËÏÂ, ñÂÌÚ‡Î¸Ì˚È Ô‡Í ‚ å‡Ìı˝ÚÚÂÌÂ).
ê‡ÒÒÚÓflÌË ËÒÍβ˜ÂÌËfl ÒÚÓÎÍÌÓ‚ÂÌËÈ
èÛÒÚ¸ = {O1 ,…,Om} – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÏÌÓ„ÓÛ„ÓθÌËÍÓ‚ ̇ ‚ÍÎˉӂÓÈ ÔÎÓÒÍÓÒÚË, Ô‰ÒÚ‡‚Îfl˛˘Â ÒÓ·ÓÈ ÏÌÓÊÂÒÚ‚Ó ÔÂÔflÚÒÚ‚ËÈ,
ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl Ó‰ÌÓ‚ÂÏÂÌÌÓ ÌÂÔÓÁ‡˜Ì˚ÏË Ë ÌÂÔÓıÓ‰ËÏ˚ÏË.
280
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ê‡ÒÒÚÓflÌËÂÏ ËÒÍβ˜ÂÌËfl ÒÚÓÎÍÌÓ‚ÂÌËÈ (ËÎË ‡ÒÒÚÓflÌËÂÏ ÌÓÒËθ˘ËÍÓ‚ ÔˇÌËÌÓ, ÏÂÚËÍÓÈ Í‡Ú˜‡È¯Â„Ó ÔÛÚË Ò ÔÂÔflÚÒÚ‚ËflÏË) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â 2\{}, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ 2\{} Í‡Í ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó ËÁ
‚ÒÂı ‚ÓÁÏÓÊÌ˚ı ÌÂÔÂ˚‚Ì˚ı ÔÛÚÂÈ, ÒÓ‰ËÌfl˛˘Ëı ı Ë Û Ë Ì ÔÂÂÒÂ͇˛˘Ëı ÔÂÔflÚÒÚ‚Ëfl Oi\∂Oi (ÔÛÚ¸ ÏÓÊÂÚ ÔÓıÓ‰ËÚ¸ ˜ÂÂÁ ÚÓ˜ÍË Ì‡ „‡Ìˈ ∂Oi ÔÂÔflÚÒÚ‚Ëfl
∂Oi), i = 1,…,m.
èflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌËÂ Ò ·‡¸Â‡ÏË
èÛÒÚ¸ = {O1,…,Om} – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÓÚÍ˚Ú˚ı
ÏÌÓ„ÓÛ„ÓθÌ˚ı ·‡¸ÂÓ‚ ̇ 2. èflÏÓÛ„ÓθÌ˚È ÔÛÚ¸ (ËÎË ÔÛÚ¸ å‡Ìı˝ÚÚÂ̇)
Px y ÓÚ x Í y ÂÒÚ¸ ÒÓ‚ÓÍÛÔÌÓÒÚ¸ „ÓËÁÓÌڇθÌ˚ı Ë ‚ÂÚË͇θÌ˚ı ÓÚÂÁÍÓ‚
̇ ÔÎÓÒÍÓÒÚË, ÒÓ‰ËÌfl˛˘Ëı ı Ë Û. èÛÚ¸ Pxy ̇Á˚‚‡ÂÚÒfl ÓÒÛ˘ÒÚ‚ÎflÂÏ˚Ï ÂÒÎË
m 
Pxy ∩  Bi  = 0/ .
 i =1 
èflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌËÂ Ò ·‡¸Â‡ÏË (ËÎË ÔflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌË ÔË
̇΢ËË ·‡¸ÂÓ‚) ÂÒÚ¸ ÏÂÚË͇ ̇ 2\{}, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ 2\{}
Í‡Í ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó ÓÒÛ˘ÂÒÚ‚ËÏÓ„Ó ÔflÏÓÛ„ÓθÌÓ„Ó ÔÛÚË ÓÚ ı Í Û.
èflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌËÂ Ò ·‡¸Â‡ÏË fl‚ÎflÂÚÒfl ÒÛÊÂÌËÂÏ ÏÂÚËÍË å‡Ìı˝ÚÚÂ̇
Ë Ó·˚˜ÌÓ ‡ÒÒχÚË‚‡ÂÚÒfl ̇ ÏÌÓÊÂÒÚ‚Â {q1 , …, qr } ⊂ 2 ËÁ n ÚÓ˜ÂÍ "ÓÚÔ‡‚ËÚÂθÔÓÎÛ˜‡ÚÂθ": Á‡‰‡˜‡ ̇ıÓʉÂÌËfl ÔÛÚÂÈ Ú‡ÍÓ„Ó ÚËÔ‡ ‚ÓÁÌË͇ÂÚ, ̇ÔËÏÂ, ÔË Ó„‡ÌËÁ‡ˆËË Ú‡ÌÒÔÓÚÌ˚ı ÔÂ‚ÓÁÓÍ ‚ „ÓÓ‰ÒÍËı ÛÒÎÓ‚Ëflı, ‡ Ú‡ÍÊ ÔË Ô·ÌËÓ‚ÍÂ
Á‡‚Ó‰Ó‚ Ë ÒÓÓÛÊÂÌËÈ (ÒÏ., ̇ÔËÏÂ, [LaLi81]).
U
ê‡ÒÒÚÓflÌË ҂flÁË
èÛÒÚ¸ P ⊂ 2 – ÏÌÓ„ÓÛ„Óθ̇fl ӷ·ÒÚ¸ (̇ n ‚Â¯Ë̇ı Ò h ‰˚‡ÏË), Ú.Â. Á‡ÏÍÌÛÚ‡fl ÏÌÓ„ÓÒ‚flÁ̇fl ӷ·ÒÚ¸, „‡Ìˈ‡ ÍÓÚÓÓÈ – Ó·˙‰ËÌÂÌË n ÎËÌÂÈÌ˚ı ÓÚÂÁÍÓ‚,
Ó·‡ÁÛ˛˘Ëı n + 1 Á‡ÏÍÌÛÚ˚ı ÏÌÓ„ÓÛ„ÓθÌ˚ı ˆËÍÎÓ‚. ê‡ÒÒÚÓflÌËÂÏ Ò‚flÁË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ê, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ P Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ
·Â ÏÌÓ„ÓÛ„ÓθÌÓ„Ó ÔÛÚË ÓÚ ı Í Û ‚ Ô‰Â·ı ÏÌÓ„ÓÛ„ÓθÌÓÈ Ó·Î‡ÒÚË ê.
ÖÒÎË ‡Á¯ÂÌ˚ ÚÓθÍÓ ÔflÏÓÛ„ÓθÌ˚ ÔÛÚË, Ï˚ ÔÓÎÛ˜‡ÂÏ ÔflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌË ҂flÁË. ÖÒÎË ÔÛÚË ë-ÓËÂÌÚËÓ‚‡Ì˚ (Ú.Â. ͇ʉÓ ·Ó Ô‡‡ÎÎÂθÌÓ Ó‰ÌÓÏÛ ËÁ ·Â ÏÌÓÊÂÒÚ‚‡ ë Ò Á‡‰‡ÌÌÓÈ ÓËÂÌÚ‡ˆËÂÈ), ÚÓ Ï˚ ËÏÂÂÏ ë-ÓËÂÌÚËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË ҂flÁË.
ê‡ÒÒÚÓflÌËfl Ô·ÌËÓ‚ÍË ÒÓÓÛÊÂÌËÈ
è·ÌËӂ͇ – ˝ÚÓ ‡Á·ËÂÌË ÔflÏÓÛ„ÓθÌÓÈ ÔÎÓÒÍÓÈ Ó·Î‡ÒÚË Ì‡ ÔflÏÓÛ„ÓθÌËÍË ÏÂ̸¯Â„Ó ‡ÁÏÂ‡, ̇Á˚‚‡ÂÏ˚ ÓÚ‰ÂÎÂÌËflÏË, ÎËÌËflÏË, ÔÓıÓ‰fl˘ËÏË
Ô‡‡ÎÎÂθÌÓ ÒÚÓÓÌ‡Ï ËÒıÓ‰ÌÓ„Ó ÔflÏÓÛ„ÓθÌË͇. ÇÒ ‚ÌÛÚÂÌÌË ‚Â¯ËÌ˚
‰ÓÎÊÌ˚ ·˚Ú¸ ÚÂı‚‡ÎÂÌÚÌ˚ÏË, ‡ ÌÂÍÓÚÓ˚ ËÁ ÌËı, ÔÓ Í‡ÈÌÂÈ ÏÂ Ӊ̇ ̇ „‡ÌËˆÂ Í‡Ê‰Ó„Ó ÓÚ‰ÂÎÂÌËfl, fl‚Îfl˛ÚÒfl ‰‚ÂflÏË, Ú.Â. ÏÂÒÚ‡ÏË ‚ıÓ‰‡-‚˚ıÓ‰‡. èÓ·ÎÂχ
Á‡Íβ˜‡ÂÚÒfl ‚ ÒÓÁ‰‡ÌËË ÔÓ‰ıÓ‰fl˘Â„Ó Ô‰ÒÚ‡‚ÎÂÌËfl Ó ‡ÒÒÚÓflÌËË d(x, y) ÏÂÊ‰Û ÓÚ‰ÂÎÂÌËflÏË ı Ë Û, ÍÓÚÓÓ ÏËÌËÏËÁËÓ‚‡ÎÓ ·˚ ÙÛÌÍˆË˛ ˆÂÌ˚
F( x, y)d ( x, y), „‰Â
∑
x, y
F(x, y) – ÌÂÍËÈ Ï‡ÚÂˇθÌ˚È ÔÓÚÓÍ ÏÂÊ‰Û ı Ë Û. éÒÌÓ‚Ì˚ÏË ËÒÔÓθÁÛÂÏ˚ÏË ‰Îfl
˝ÚÓ„Ó ‡ÒÒÚÓflÌËflÏË fl‚Îfl˛ÚÒfl:
– ‡ÒÒÚÓflÌË ˆÂÌÚÓˉ‡, Ú.Â. Í‡Ú˜‡È¯Â ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ËÎË ‡ÒÒÚÓflÌËÂ
å‡Ìı˝ÚÚÂ̇ ÏÂÊ‰Û ˆÂÌÚÓˉ‡ÏË (ÔÂÂÒ˜ÂÌËfl ‰Ë‡„Ó̇ÎÂÈ) ı Ë Û;
– ‡ÒÒÚÓflÌË ÔÂËÏÂÚ‡, Ú.Â. Í‡Ú˜‡È¯Â ÔflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌË ÏÂʉÛ
‰‚ÂflÏË ı Ë Û, ÔÓıÓ‰fl˘Â ÚÓθÍÓ ‚‰Óθ ÒÚÂÌ, Ú.Â. ÔÂËÏÂÚÓ‚ ÓÚ‰ÂÎÂÌËÈ.
281
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
åÂÚË͇ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË
åÂÚË͇ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË (ËÎË ÏÂÚË͇ ÒÂÚË) – ÏÂÚË͇ ̇ 2 (ËÎË Ì‡ ÔÓ‰ÏÌÓÊÂÒÚ‚Â 2) ÔË Ì‡Î˘ËË ‰‡ÌÌÓÈ ÒÂÚË, Ú.Â. ÔÎÓÒÍÓ„Ó ‚Á‚¯ÂÌÌÓ„Ó „‡Ù‡ G(V, E).
ÑÎfl β·˚ı x, y ∈ 2 ˝ÚÓ fl‚ÎflÂÚÒfl ‚ÂÏÂÌÂÏ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË ÏÂÊ‰Û ı Ë Û ‚ ÔË
̇΢ËË ÒÂÚË G, Ú.Â. ÔÛÚË, χÍÒËχθÌÓ ÒÓÍ‡˘‡˛˘Â„Ó ‚ÂÏfl ÔÂÂÏ¢ÂÌËfl ÏÂʉÛ
ı Ë Û. èÓÒΠÔÓÎÛ˜ÂÌËfl ‰ÓÒÚÛÔ‡ ‚ ÒÂÚ¸ G ‰‡Î ÏÓÊÌÓ ÔÂÂÏ¢‡Ú¸Òfl Ò ÌÂÍÓÚÓÓÈ
ÒÍÓÓÒÚ¸˛ v > 1 ‚‰Óθ  ·Â. Ñ‚ËÊÂÌË ‚Ì ÒÂÚË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Â‰ËÌ˘ÌÓÈ
ÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ Á‡‰‡ÌÌÓÈ ÏÂÚËÍË d ̇ ÔÎÓÒÍÓÒÚË (̇ÔËÏÂ, ‚ÍÎˉӂÓÈ
ÏÂÚËÍË ËÎË ÏÂÚËÍË å‡Ìı˝ÚÚÂ̇).
åÂÚË͇ ‚ÓÁ‰Û¯Ì˚ı ÔÂ‚ÓÁÓÍ ÂÒÚ¸ ÏÂÚËÍÓÈ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË Ì‡ 2 ÔË Ì‡Î˘ËË ÒÂÚË ‡˝ÓÔÓÚÓ‚, Ú.Â. ÔÎÓÒÍÓ„Ó „‡Ù‡ G(V, E) ̇ n ‚Â¯Ë̇ı (‡˝ÓÔÓÚ‡ı) Ò
ÔÓÎÓÊËÚÂθÌ˚ÏË ‚ÂÒ‡ÏË ·Â (w e)e∈E (‚ÂÏfl ÔÓÎÂÚ‡). ÇÓÈÚË Ë ‚˚ÈÚË ËÁ „‡Ù‡
ÏÓÊÌÓ ÚÓθÍÓ ˜ÂÂÁ ‡˝ÓÔÓÚ˚. Ñ‚ËÊÂÌË ‚Ì ÒÂÚË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Â‰ËÌ˘ÌÓÈ
ÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ Â‚ÍÎˉӂÓÈ ÏÂÚËÍË. è‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ‰‚ËÊÂÌË ̇
‡‚ÚÓÏÓ·ËΠÔÓ ‚ÂÏÂÌË ‡‚ÌÓ ÏÂÚËÍ ‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl dE, ÚÓ„‰‡ Í‡Í ÔÓÎÂÚ
‚‰Óθ ·‡ e = uv „‡Ù‡ G Á‡ÈÏÂÚ ‚ÂÏfl we < d E (u, v). Ç ÔÓÒÚÂȯÂÏ ÒÎÛ˜‡Â, ÍÓ„‰‡
ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÔÂ‚ÓÁ͇ ÔÓ ‚ÓÁ‰ÛıÛ ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË a, b ∈ 2, ‡ÒÒÚÓflÌËÂ
ÏÂÊ‰Û ı Ë Û ‡‚ÌÓ
min{d E ( x, y), d E ( x, a) + w + d E (b, y), d E ( x, b) + w + d E ( a, y)},
„‰Â w < d2 (a, b) ÂÒÚ¸ ÔÓ‰ÓÎÊËÚÂθÌÓÒÚ¸ ÔÓÎÂÚ‡ ÏÂÊ‰Û a Ë b.
åÂÚË͇ „ÓÓ‰‡ – ÏÂÚË͇ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË Ì‡ 2 ÔË Ì‡Î˘ËË ÒÂÚË Ó·˘ÂÒÚ‚ÂÌÌÓ„Ó Ú‡ÌÒÔÓÚ‡, Ú.Â. ÔÎÓÒÍÓ„Ó „‡Ù‡ G Ò „ÓËÁÓÌڇθÌ˚ÏË ËÎË ‚ÂÚË͇θÌ˚ÏË ·‡ÏË. G ÏÓÊÂÚ ÒÓÒÚÓflÚ¸ ËÁ ÏÌÓ„Ëı Ò‚flÁÌ˚ı ÍÓÏÔÓÌÂÌÚ Ë ÒÓ‰Âʇڸ
ˆËÍÎ˚. ä‡Ê‰˚È ÏÓÊÂÚ ÔÓÔ‡ÒÚ¸ ‚ G ‚ β·ÓÈ ÚÓ˜ÍÂ, ·Û‰¸ ÚÓ ‚Â¯Ë̇ ËÎË ·Ó
(‚ÓÁÏÓÊÌÓ Ì‡Á̇˜ËÚ¸ Ú‡ÍÊÂ Ë ÒÚÓ„Ó ÙËÍÒËÓ‚‡ÌÌ˚ ÚÓ˜ÍË ‚ıÓ‰‡). ÇÌÛÚË G
‰‚ËÊÂÌË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Á‡‰‡ÌÌÓÈ ÒÍÓÓÒÚ¸˛ v > 1 ‚ Ó‰ÌÓÏ ËÁ ‰ÓÒÚÛÔÌ˚ı
̇Ô‡‚ÎÂÌËÈ. Ñ‚ËÊÂÌË ‚Ì ÒÂÚË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Â‰ËÌ˘ÌÓÈ ÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ ÏÂÚËÍË å‡Ìı˝ÚÚÂ̇ (‚ ̇¯ÂÏ ÒÎÛ˜‡Â ÔÓ‰‡ÁÛÏ‚‡ÂÚÒfl ÍÛÔÌ˚È
ÒÓ‚ÂÏÂÌÌ˚È „ÓÓ‰ Ò ÔflÏÓÛ„ÓθÌÓÈ Ô·ÌËÓ‚ÍÓÈ ÛÎˈ ÔÓ Ì‡Ô‡‚ÎÂÌËflÏ Ò‚Â–˛„
Ë ‚ÓÒÚÓÍ–Á‡Ô‡‰).
åÂÚË͇ ÏÂÚÓ – ÏÂÚË͇ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË Ì‡ 2, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ‚‡ˇÌÚÓÏ
ÏÂÚËÍË „ÓÓ‰‡: ÏÂÚÓ (‚ ‚ˉ ÎËÌËË Ì‡ ÔÎÓÒÍÓÒÚË) ËÒÔÓθÁÛÂÚÒfl ‰Îfl ÒÓÍ‡˘ÂÌËfl
ıÓ‰¸·˚ Ô¯ÍÓÏ ‚ Ô‰Â·ı „ÓÓ‰ÒÍÓÈ ÒÂÚÍË ÍÓÓ‰Ë̇Ú.
èÂËӉ˘ÂÒ͇fl ÏÂÚË͇
åÂÚË͇ d ̇ 2 ̇Á˚‚‡ÂÚÒfl ÔÂËӉ˘ÂÒÍÓÈ, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ‰‚‡ ÎËÌÂÈÌÓ ÌÂÁ‡‚ËÒËÏ˚ı ‚ÂÍÚÓ‡ v Ë u, Ú‡ÍË ˜ÚÓ ÔÂÂÌÓÒ ÔÓ Î˛·ÓÏÛ ‚ÂÍÚÓÛ w = mv + nu,m,n ∈ ÒÓı‡ÌflÂÚ ‡ÒÒÚÓflÌËfl, Ú.Â. d ( x, y) = d ( x + w, y + w ) ‰Îfl β·˚ı x, y ∈ 2 (ÒÏ. àÌ‚‡ˇÌÚ̇fl ÏÂÚË͇ ÔÂÂÌÓÒ‡, „Î. 5)
è‡‚Ëθ̇fl ÏÂÚË͇
åÂÚË͇ d ̇ 2 ̇Á˚‚‡ÂÚÒfl Ô‡‚ËθÌÓÈ, ÂÒÎË Ó·Î‡‰‡ÂÚ ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË:
1) d ÔÓÓʉ‡ÂÚ Â‚ÍÎË‰Ó‚Û ÚÓÔÓÎӄ˲;
2) d-ÓÍÛÊÌÓÒÚË Ó„‡Ì˘ÂÌ˚ ÓÚÌÓÒËÚÂθÌÓ Â‚ÍÎˉӂÓÈ ÏÂÚËÍË;
3) ÂÒÎË x, y ∈ 2 Ë x ≠ y, ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ÚӘ͇ z, z ≠ x, z ≠ y, ڇ͇fl ˜ÚÓ ‚˚ÔÓÎÌflÂÚÒfl
‡‚ÂÌÒÚ‚Ó d ( x, y) = d ( x, z ) + d ( z, y);
4) ÂÒÎË x, y ∈ 2, x p y („‰Â p ÙËÍÒËÓ‚‡ÌÌ˚È ÔÓfl‰ÓÍ Ì‡ 2, ̇ÔËÏÂ, ÎÂÍÒËÍÓ„‡Ù˘ÂÒÍËÈ ÔÓfl‰ÓÍ), C( x, y) = {z ∈ 2 : d ( x, z ) ≤ d ( y, z )},
D( x, y) = {z ∈ 2 : d ( x,
282
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
z ) < d ( y, z )} Ë D( x, y) – Á‡Ï˚͇ÌË D(x,y), ÚÓ J ( x, y) = C( x, y) ∩ D( x, y) ÂÒÚ¸ ÍË‚‡fl,
„ÓÏÂÓÏÓÙ̇fl (0,1). èÂÂÒ˜ÂÌË ‰‚Ûı Ú‡ÍËı ÍË‚˚ı ÒÓÒÚÓËÚ ËÁ ÍÓ̘ÌÓ„Ó ˜ËÒ·
ÏÌÓ„Ëı Ò‚flÁÌ˚ı ÍÓÏÔÓÌÂÌÚ.
ä‡Ê‰‡fl ÏÂÚË͇ ÌÓÏ˚ ËÏÂÂÚ Ò‚ÓÈÒÚ‚‡ 1., 2. Ë 3. ë‚ÓÈÒÚ‚Ó 2. ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÏÂÚË͇ d fl‚ÎflÂÚÒfl ÌÂÔÂ˚‚ÌÓÈ ‚ ·ÂÒÍÓ̘ÌÓÒÚË ÓÚÌÓÒËÚÂθÌÓ Â‚ÍÎˉӂÓÈ ÏÂÚËÍË.
ë‚ÓÈÒÚ‚ÓÏ 4. Ó·ÂÒÔ˜˂‡ÂÚÒfl, ˜ÚÓ „‡Ìˈ˚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó
fl‚Îfl˛ÚÒfl ÍË‚˚ÏË Ë ˜ÚÓ Ì ÒÎ˯ÍÓÏ ÏÌÓ„Ó ÔÂÂÒ˜ÂÌËÈ ÒÛ˘ÂÒÚ‚Ó‚ÛÂÚ ‚ ÓÍÂÒÚÌÓÒÚË ÚÓ˜ÍË ËÎË ‚ ·ÂÒÍÓ̘ÌÓÒÚË. è‡‚Ëθ̇fl ÏÂÚË͇ d ËÏÂÂÚ Ô‡‚ËθÌÛ˛ ‰Ë‡„‡ÏÏÛ ÇÓÓÌÓ„Ó: ‚ ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó V ( P, d , 2 ) („‰Â P = {p1 , …, pk }, k ≥ 2 – ÏÌÓÊÂÒÚ‚Ó „ÂÌÂ‡ÚÓÓ‚) ͇ʉ‡fl ӷ·ÒÚ¸ ÇÓÓÌÓ„Ó V(pi) fl‚ÎflÂÚÒfl ÔÛÚ¸-Ò‚flÁÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ Ò ÌÂÔÛÒÚÓÈ ‚ÌÛÚÂÌÌÓÒÚ¸˛, ‡ ÒËÒÚÂχ {V ( pi ), …, V ( pk )} Ó·‡ÁÛÂÚ ‡Á·ËÂÌËÂ
ÔÎÓÒÍÓÒÚË.
䂇ÁË‡ÒÒÚÓflÌËfl ÍÓÌÚ‡ÍÚ‡
䂇ÁË‡ÒÒÚÓflÌËfl ÍÓÌÚ‡ÍÚ‡ Ô‰ÒÚ‡‚Îfl˛Ú ÒÓ·ÓÈ ÒÎÂ‰Û˛˘Ë ‚‡ˇÌÚ˚ ‚˚ÔÛÍÎÓÈ
ÙÛÌ͈ËË ‡ÒÒÚÓflÌËfl (ÒÏ. „Î. 1), ÓÔ‰ÂÎÂÌÌÓÈ Ì‡ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n).
ÑÎfl ÏÌÓÊÂÒÚ‚‡ B ⊂ 2 Í‚‡ÁË‡ÒÒÚÓflÌË ÔÂ‚Ó„Ó ÍÓÌÚ‡ÍÚ‡ dB ÓÔ‰ÂÎflÂÚÒfl ͇Í
inf{α > 0 : y − x ∈ α B}
(ÒÏ. ê‡ÒÒÚÓflÌËfl ÒÂÚË ÒÂÌÒÓÌ˚ı ‰‡Ú˜ËÍÓ‚, „Î. 28).
ÅÓΠÚÓ„Ó, ‰Îfl ÚÓ˜ÍË b ∈ B Ë ÏÌÓÊÂÒÚ‚‡ A ⊂ 2 Í‚‡ÁË‡ÒÒÚÓflÌËÂÏ ÎËÌÂÈÌÓ„Ó
ÍÓÌÚ‡ÍÚ‡ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ, ÓÔ‰ÂÎÂÌÌÓ ͇Í
db ( x, A) = inf{α ≥ 0 : αb + x ∈ A}.
䂇ÁË‡ÒÒÚÓflÌË ÔÂÂı‚‡Ú‡ ‰Îfl ÍÓ̘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ Ç ÓÔ‰ÂÎflÂÚÒfl ͇Í
db ( x , y )
∑
b ∈B
| B|
.
чθÌÓÒÚ¸ ‡ÒÔÓÁ̇‚‡ÌËfl ‡‰‡‡
чθÌÓÒÚ¸ ‡ÒÔÓÁ̇‚‡ÌËfl ‡‰‡‡ – ‡ÒÒÚÓflÌË ̇ 2, ÓÔ‰ÂÎÂÌÌÓ ͇Í
| ρ x − ρ y + θ xy |,
ÂÒÎË x, y ∈ 2 \ {0}, Ë Í‡Í
| ρ x − ρ y |,
ÂÒÎË x = 0 ËÎË y = 0, „‰Â ‰Îfl ͇ʉÓÈ "ÎÓ͇ˆËË" x ∈ 2 ρ x – ‡‰Ë‡Î¸ÌÓ ‡ÒÒÚÓflÌË ı
ÓÚ Ì‡˜‡Î‡ ÍÓÓ‰Ë̇Ú, Ë ‰Îfl β·˚ı x, y ∈ 2 \{0} θ xy – Û„ÓÎ ÏÂÊ‰Û ÌËÏË (‚ ‡‰Ë‡Ì‡ı)˛
èÓÎÛÏÂÚË͇ ùÂÌÙfiıÚ‡–ï‡ÛÒÎÂ‡
èÛÒÚ¸ S – ·Û‰ÂÚ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó 2, Ú‡Í ˜ÚÓ x1 ≥ x 2 − 1 ≥ 0 ‰Îfl β·Ó„Ó x ∈ S.
èÓÎÛÏÂÚË͇ ùÂÌÙfiıÚ‡–ï‡ÛÒÎÂ‡ ([EhHa88]) ̇ S ÓÔ‰ÂÎflÂÚÒfl ͇Í
 x
  y 
log 2   1 + 1  1   .
  x 2 + 1 
  y2
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
283
íÓÓˉ‡Î¸Ì‡fl ÏÂÚË͇
íÓÓˉ‡Î¸Ì‡fl ÏÂÚË͇ – ÏÂÚË͇ ̇ ÚÂΠT = [0, 1) × [0, 1) = {x ∈ 2 : 0 ≤ x1 , x 2 < 1},
ÓÔ‰ÂÎÂÌ̇fl ͇Í
t12 + t22
‰Îfl β·˚ı x, y ∈ 2, „‰Â ti = min{| xi − yi |, | xi − yi + 1 |} ‰Îfl i = 1,2 (ÒÏ. åÂÚË͇
ÚÓ‡).
åÂÚË͇ ÓÍÛÊÌÓÒÚË
åÂÚË͇ ÓÍÛÊÌÓÒÚË – ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ‰ËÌ˘ÌÓÈ ÓÍÛÊÌÓÒÚË S1 ÍÛ„Â
̇ ÔÎÓÒÍÓÒÚË. èÓÒÍÓθÍÛ S1 = {( x, y) : x 2 + y 2 = 1} = {e iθ : 0 ≤ θ < 2 π}, ˝Ú‡ ÏÂÚË͇
‰ÎËÌÓÈ Í‡Ú˜‡È¯ÂÈ ËÁ ‰‚Ûı ‰Û„, ÒÓ‰ËÌfl˛˘Ëı ÚÓ˜ÍË e iθ , e iϑ ∈ S1 , Ë ÏÓÊÂÚ ·˚Ú¸
Á‡ÔË҇̇ ͇Í
ÂÒÎË 0 ≤ | θ − ϑ | ≤ π,
| θ − ϑ |,
min{| θ − ϑ}, 2 π − | θ − ϑ |} = 
2 π − | ϑ − θ |, ÂÒÎË | ϑ − θ | > π
(ÒÏ. åÂÚË͇ ÏÂÊ‰Û Û„Î‡ÏË).
ì„ÎÓ‚Ó ‡ÒÒÚÓflÌËÂ
ì„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÔÓ ÓÍÛÊÌÓÒÚË ÍÛ„‡ fl‚ÎflÂÚÒfl ˜ËÒÎÓÏ ‡‰Ë‡Ì, ÔÓȉÂÌÌ˚ı
ÔÛÚÂÏ, Ú.Â.
l
θ= ,
r
„‰Â l – ‰ÎË̇ ÔÛÚË Ë r – ‡‰ËÛÒ ÓÍÛÊÌÓÒÚË.
åÂÚË͇ ÏÂÊ‰Û Û„Î‡ÏË
åÂÚËÍÓÈ ÏÂÊ‰Û Û„Î‡ÏË Λ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı Û„ÎÓ‚ ÔÎÓÒÍÓÒÚË, ÓÔ‰ÂÎÂÌ̇fl ͇Í
ÂÒÎË 0 ≤ | ϑ − θ | ≤ π,
| ϑ − θ |,
min{| θ − ϑ}, 2 π − | θ − ϑ |} = 
2 π − | ϑ − θ |, ÂÒÎË | ϑ − θ | > π
‰Îfl β·˚ı θ, ϑ ∈ [0, 2π) (ÒÏ. åÂÚË͇ ÍÛ„‡).
åÂÚË͇ ÏÂÊ‰Û Ì‡Ô‡‚ÎÂÌËflÏË
ç‡ ÔÎÓÒÍÓÒÚË 2 ̇Ô‡‚ÎÂÌË lˆ ÂÒÚ¸ Í·ÒÒ ‚ÒÂı ÔflÏ˚ı, Ô‡‡ÎÎÂθÌ˚ı ‰‡ÌÌÓÈ
ÔflÏÓÈ l ⊂ 2 . åÂÚËÍÓÈ ÏÂÊ‰Û Ì‡Ô‡‚ÎÂÌËflÏË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â
‚ÒÂı ̇Ô‡‚ÎÂÌËÈ ÔÎÓÒÍÓÒÚË, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı ̇Ô‡‚ÎÂÌËÈ lˆ, mˆ ∈ ͇Í
Û„ÓÎ ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl Ëı Ô‰ÒÚ‡‚ËÚÂÎflÏË.
䂇ÁËÏÂÚË͇ ÍÓθˆÂ‚ÓÈ ÊÂÎÂÁÌÓÈ ‰ÓÓ„Ë
䂇ÁËÏÂÚËÍÓÈ ÍÓθˆÂ‚ÓÈ ÊÂÎÂÁÌÓÈ ‰ÓÓ„Ë Ì‡Á˚‚‡ÂÚÒfl Í‚‡ÁËÏÂÚË͇ ̇ ‰ËÌ˘ÌÓÈ ÓÍÛÊÌÓÒÚË S1 ⊂ 2, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x,y ∈ S1 Í‡Í ‰ÎË̇ ‰Û„Ë
ÓÍÛÊÌÓÒÚË ÔÓÚË‚ ˜‡ÒÓ‚ÓÈ ÒÚÂÎÍË ÓÚ ı Í Û.
àÌ‚ÂÒË‚ÌÓ ‡ÒÒÚÓflÌËÂ
àÌ‚ÂÒË‚ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÌÂÔÂÂÒÂ͇˛˘ËÏËÒfl ÍÛ„‡ÏË Ì‡ ÔÎÓÒÍÓÒÚË ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ì‡ÚÛ‡Î¸Ì˚È ÎÓ„‡ËÙÏ ˜‡ÒÚÌÓ„Ó ‡‰ËÛÒÓ‚ (·Óθ¯Â„Ó Ë ÏÂ̸-
284
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
¯Â„Ó) ‰‚Ûı ÍÓ̈ÂÌÚ˘ÂÒÍËı ÍÛ„Ó‚, ‚ ÍÓÚÓ˚ ‰‡ÌÌ˚ ÍÛ„Ë ÏÓ„ÛÚ ·˚Ú¸ ËÌ‚ÂÒËÓ‚‡Ì˚.
èÛÒÚ¸ Ò – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚ‡ÏË ‰‚Ûı ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÍÛ„Ó‚ Ò ‡‰ËÛÒ‡ÏË ‡ Ë ‚, b < a. íÓ„‰‡ Ëı ËÌ‚ÂÒË‚ÌÓ ‡ÒÒÚÓflÌË Á‡‰‡ÂÚÒfl ͇Í
cosh −1
a2 + b2 − c2
.
2 ab
éÔËÒ‡Ì̇fl ÓÍÛÊÌÓÒÚ¸ Ë ‚ÔËÒ‡Ì̇fl ÓÍÛÊÌÓÒÚ¸ ÚÂÛ„ÓθÌË͇ Ò ‡‰ËÛÒÓÏ ÓÔËÒ‡ÌÌÓÈ ÓÍÛÊÌÓÒÚË R Ë ‡‰ËÛÒÓÏ ‚ÔËÒ‡ÌÌÓÈ ÓÍÛÊÌÓÒÚË Ì‡ıÓ‰flÚÒfl ̇ ËÌ‚ÂÒË‚ÌÓÏ
1 r 
‡ÒÒÚÓflÌËË 2 sinh −1 
.
2 R
àÏÂfl ÚË ÌÂÍÓÎÎË̇Ì˚ı ÚÓ˜ÍË, ÔÓÒÚÓËÏ ÚË ÔÓÔ‡ÌÓ Í‡Ò‡˛˘ËÂÒfl ÓÍÛÊÌÓÒÚË Ò ˆÂÌÚ‡ÏË ‚ Û͇Á‡ÌÌ˚ı ÚӘ͇ı. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ÒÛ˘ÂÒÚ‚Û˛Ú ÚÓ˜ÌÓ ‰‚ ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl ÓÍÛÊÌÓÒÚË, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ͇҇ÚÂθÌ˚ÏË ‰Îfl ‚ÒÂı ÚÂı ÓÍÛÊÌÓÒÚÂÈ. éÌË Ì‡Á˚‚‡˛ÚÒfl ‚ÌÛÚÂÌÌËÏ Ë Ì‡ÛÊÌ˚Ï ÍÛ„‡ÏË ëÓ‰‰Ë. àÌ‚ÂÒË‚ÌÓÂ
‡ÒÒÚÓflÌË ÏÂÊ‰Û ÍÛ„‡ÏË ëÓ‰‰Ë ‡‚ÌÓ 2cosh –12.
19.2. åÖíêàäà çÄ ñàîêéÇéâ èãéëäéëíà
çËÊ ÔÂ˜ËÒÎfl˛ÚÒfl ÏÂÚËÍË, ÍÓÚÓ˚ ÔËÏÂÌfl˛ÚÒfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÏ ÁÂÌËË
(ËÎË ‡ÒÔÓÁ̇‚‡ÌËË Ó·‡ÁÓ‚, ÒËÒÚÂχı ÚÂıÌ˘ÂÒÍÓ„Ó ÁÂÌËfl Ó·ÓÚ‡, ˆËÙÓ‚ÓÈ
„ÂÓÏÂÚËË).
凯ËÌÌÓ ËÁÓ·‡ÊÂÌË (ËÎË ÍÓÏÔ¸˛ÚÂÌÓ ËÁÓ·‡ÊÂÌËÂ) – ÔÓ‰ÏÌÓÊÂÒÚ‚Ó n ,
̇Á˚‚‡ÂÏÓ„Ó ˆËÙÓ‚˚Ï nD ÔÓÒÚ‡ÌÒÚ‚ÓÏ. é·˚˜ÌÓ ËÁÓ·‡ÊÂÌËfl Ô‰ÒÚ‡‚Îfl˛ÚÒfl ̇ ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚË (ËÎË ÔÎÓÒÍÓÒÚË Ó·‡ÁÓ‚) 2 ËÎË ‚ ˆËÙÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (ËÎË ÔÓÒÚ‡ÌÒÚ‚Â Ó·‡ÁÓ‚) 3. íÓ˜ÍË n ̇Á˚‚‡˛ÚÒfl ÔËÍÒÂÎflÏË.
ñËÙÓ‚Ó nD m-Í‚‡ÌÚÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ¯Í‡ÎËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó
1 n
.
m
ñËÙÓ‚‡fl ÏÂÚË͇ (ÒÏ., ̇ÔËÏÂ, [RoPf68]) – β·‡fl ÏÂÚË͇ ̇ ˆËÙÓ‚ÓÏ nD
ÔÓÒÚ‡ÌÒÚ‚Â. é·˚˜ÌÓ Ó̇ ˆÂÎÓ˜ËÒÎÂÌ̇.
éÒÌÓ‚Ì˚ÏË ËÒÔÓθÁÛÂÏ˚ÏË ÏÂÚË͇ÏË Ì‡ n fl‚Îfl˛ÚÒfl l1 - Ë l∞-ÏÂÚËÍË, ‡ Ú‡ÍÊÂ
l2 -ÏÂÚË͇, ÓÍÛ„ÎÂÌÌ˚ ‰Ó ·ÎËÊ‡È¯Â„Ó ÒÔ‡‚‡ (ËÎË Ò΂‡) ˆÂÎÓ„Ó. Ç Ó·˘ÂÏ
ÒÎÛ˜‡Â, ÂÒÎË Á‡‰‡Ú¸ ÔÂ˜Â̸ ÒÓÒ‰ÌÂÈ ÔËÍÒÂÎfl, ÚÓ ÏÂÚËÍÛ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸
Í‡Í ÔÂ˜Â̸ ÔÓ¯‡„Ó‚˚ı ‰‚ËÊÂÌËÈ Ì‡ 2 . ëÓÔÓÒÚ‡‚ËÏ ÔÓÒÚÓ ‡ÒÒÚÓflÌËÂ, Ú.Â. ÔÓÎÓÊËÚÂθÌ˚È ‚ÂÒ, ͇ʉÓÏÛ ÚËÔÛ Ú‡ÍËı ‰‚ËÊÂÌËÈ. íÂÔÂ¸ ÏÌÓ„Ë ˆËÙÓ‚˚ ÏÂÚËÍË ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ Í‡Í ÏËÌËÏÛÏ (ÔÓ ‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï ÔÛÚflÏ, Ú.Â. ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏ ‰ÓÔÛÒÚËÏ˚ı ‰‚ËÊÂÌËÈ) ÒÛÏÏ˚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ÔÓÒÚ˚ı ‡ÒÒÚÓflÌËÈ.
ç‡ Ô‡ÍÚËÍ ‚ÏÂÒÚÓ ÔÓÎÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ n ‡ÒÒχÚË‚‡ÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚Ó
( m ) n = {0, 1, …, m − 1}n . ( m )2 Ë ( m )3 ̇Á˚‚‡˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ m-„ËÎÂÏ Ë mÒÚÂηÊÓÏ ÒÚÛÍÚÛÓÈ. ç‡Ë·ÓΠ˜‡ÒÚÓ ËÒÔÓθÁÛÂÏ˚ÏË ÏÂÚË͇ÏË Ì‡ ( m ) n
fl‚Îfl˛ÚÒfl ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ Ë ÏÂÚË͇ ãË.
åÂÚË͇ „ˉ˚
åÂÚËÍÓÈ „ˉ˚ ̇Á˚‚‡ÂÚÒfl l1 -ÏÂÚË͇ ̇ n . l1 -ÏÂÚËÍÛ Ì‡ n ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÂÚËÍÛ ÔÛÚË ·ÂÒÍÓ̘ÌÓ„Ó „‡Ù‡: ‰‚ ÚÓ˜ÍË n fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË Ëı l1 -‡ÒÒÚÓflÌË ‡‚ÌÓ Â‰ËÌˈÂ. ÑÎfl 2 ‰‡ÌÌ˚È „‡Ù fl‚ÎflÂÚÒfl Ó·˚˜ÌÓÈ
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
285
„ˉÓÈ (ÒÂÚÍÓÈ ÍÓÓ‰Ë̇Ú). èÓÒÍÓθÍÛ Í‡Ê‰‡fl ÚӘ͇ ËÏÂÂÚ ÚÓ˜ÌÓ ˜ÂÚ˚ ·ÎËʇȯËı ÒÓÒ‰‡ ‚ 2 ‰Îfl l1 -ÏÂÚËÍË, ÚÓ Â ̇Á˚‚‡˛Ú Ú‡ÍÊ 4-ÏÂÚËÍÓÈ .
ÑÎfl n = 2 ‰‡Ì̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ÒÛÊÂÌËÂÏ Ì‡ 2 ÏÂÚËÍË „ÓÓ‰ÒÍÓ„Ó Í‚‡ڇ·, ÍÓÚÓÛ˛ ̇Á˚‚‡˛Ú Ú‡ÍÊ ÏÂÚËÍÓÈ Ú‡ÍÒË, ÔflÏÓÛ„ÓθÌÓÈ ÏÂÚËÍÓÈ ËÎË ÏÂÚËÍÓÈ å‡Ìı˝ÚÚÂ̇.
åÂÚË͇ ¯ÂÚÍË
åÂÚËÍÓÈ ¯ÂÚÍË Ì‡Á˚‚‡ÂÚÒfl l∞-ÏÂÚË͇ ̇ n . l ∞-ÏÂÚËÍÛ Ì‡ n ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÂÚËÍÛ ÔÛÚË ·ÂÒÍÓ̘ÌÓ„Ó „‡Ù‡: ‰‚ ÚÓ˜ÍË n fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË Ëı l∞-‡ÒÒÚÓflÌË ‡‚ÌÓ Â‰ËÌˈÂ. ÑÎfl 2 ÒÏÂÊÌÓÒÚ¸ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ıÓ‰Û
ÍÓÓÎfl, ‚ ÚÂÏË̇ı ¯‡ıχÚ, Ë Ú‡ÍÓÈ „‡Ù ̇Á˚‚‡ÂÚÒfl l∞-„ˉÓÈ, ‡ ҇χ ÏÂÚË͇ ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ ÏÂÚËÍÓÈ ¯‡ıχÚÌÓÈ ‰ÓÒÍË, ÏÂÚËÍÓÈ ıÓ‰‡ ÍÓÓÎfl ËÎË ÏÂÚËÍÓÈ
ÍÓÓÎfl. í‡Í Í‡Í Í‡Ê‰‡fl ÚӘ͇ ËÏÂÂÚ ÚÓ˜ÌÓ ‚ÓÒÂϸ ·ÎËʇȯËı ÒÓÒ‰ÂÈ ‚ 2 ‰Îfl l∞ÏÂÚËÍË, Ó̇ ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ 8-ÏÂÚËÍÓÈ.
чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ÒÛÊÂÌËÂÏ Ì‡ n ÏÂÚËÍË ó·˚¯Â‚‡, ÍÓÚÓÛ˛ Ú‡ÍÊÂ
̇Á˚‚‡˛Ú sup ÏÂÚËÍÓÈ ËÎË ‡‚ÌÓÏÂÌÓÈ ÏÂÚËÍÓÈ.
òÂÒÚËÛ„Óθ̇fl ÏÂÚË͇
òÂÒÚËÛ„ÓθÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 Ò Â‰ËÌ˘ÌÓÈ ÒÙÂÓÈ S1 (x)
(Ò ˆÂÌÚÓÏ ‚ ÚӘ͠x ∈ 2 ), ÓÔ‰ÂÎÂÌÌÓÈ Í‡Í S1 ( x ) = Sl11 ( x ) ∪ {( x1 − 1, x 2 − 1), ( x1 − 1,
x 2 + 1)} ‰Îfl ı ˜ÂÚÌÓ„Ó (Ú.Â. Ò ˜ÂÚÌ˚Ï x 2 ) Ë Í‡Í S1 ( x ) = Sl11 ( x ) ∪ {( x1 + 1, x 2 − 1), ( x1 + 1,
x 2 + 1)} ‰Îfl ı ̘ÂÚÌÓ„Ó (Ú.Â. Ò Ì˜ÂÚÌ˚Ï x 2 ). èÓÒÍÓθÍÛ Î˛·‡fl ‰ËÌ˘̇fl ÒÙÂ‡
S1 (x) ÒÓ‰ÂÊËÚ ÚÓ˜ÌÓ ¯ÂÒÚ¸ ˆÂÎÓ˜ËÒÎÂÌÌ˚ı ÚÓ˜ÂÍ, ¯ÂÒÚËÛ„Óθ̇fl ÏÂÚË͇ ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ 6-ÏÂÚËÍÓÈ ([LuRo76]).
ÑÎfl β·˚ı x, y ∈ 2 Ó̇ ÏÓÊÂÚ ·˚Ú¸ Á‡ÔË҇̇ ͇Í
x + 1   y2 + 1 
1

−
− u1 ,
max | u2 |, (| u2 | +u2 ) +  2
2
 2   2 

x + 1   y2 + 1 
1

(| u2 | −u2 ) −  2
+
+ u1 .
2
 2   2 

„‰Â u1 = x1–y1 Ë u2 = x2–y2.
òÂÒÚËÛ„Óθ̇fl ÏÂÚË͇ ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ Í‡Í ÏÂÚË͇ ÔÛÚË Ì‡ ¯ÂÒÚËÛ„ÓθÌÓÈ „ˉ ÔÎÓÒÍÓÒÚË. Ç ¯ÂÒÚËÛ„ÓθÌ˚ı ÍÓÓ‰Ë̇ڇı (h1 , h2 ) („‰Â h1 - Ë h2 ÓÒË Ô‡‡ÎÎÂθÌ˚ ·‡Ï „ˉ˚) ¯ÂÒÚËÛ„ÓθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚӘ͇ÏË (h1 , h2)
Ë (i1 , i2 ) ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í | h1 − i1 | + | h2 − i2 |, ÂÒÎË (h1 − i1 )(h2 − i2 ) ≥ 0, Ë Í‡Í
max{| h1 − i1 |, | h2 − i2 |}, ÂÒÎË (h1 − i1 ) (h2 − i2 ) ≤ 0. á‰ÂÒ¸ ¯ÂÒÚËÛ„ÓθÌ˚ ÍÓÓ‰Ë̇Ú˚
(h1 , h2 ) ÚÓ˜ÍË ı ÒÓÓÚÌÓÒflÚÒfl Ò Ëı ÔflÏÓÛ„ÓθÌ˚ÏË ‰Â͇ÚÓ‚˚ÏË ÍÓÓ‰Ë̇ڇÏË
x
x + 1
(x 1 , x 2 ) Í‡Í h1 = x1 −  2 , h2 = x2 ‰Îfl ı ˜ÂÚÌÓ„Ó Ë Í‡Í h1 − = x1 −  2
, h2 = x2 ‰Îfl ı
2
 2 
̘ÂÚÌÓ„Ó.
òÂÒÚËÛ„Óθ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ÎÛ˜¯ÂÈ, ˜ÂÏ l1 -ÏÂÚË͇ ËÎË l∞-ÏÂÚË͇,
‡ÔÔÓÍÒËχˆËÂÈ Â‚ÍÎˉӂÓÈ ÏÂÚËÍË.
åÂÚË͇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÒÓÒ‰ÒÚ‚‡
ç‡ ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚË 2 ‡ÒÒÏÓÚËÏ ‰‚‡ ÚËÔ‡ ‰‚ËÊÂÌËÈ: ‰‚ËÊÂÌË „ÓÓ‰ÒÍÓ„Ó
Í‚‡ڇ·, „‰Â ‡Á¯ÂÌ˚ ÚÓθÍÓ „ÓËÁÓÌڇθÌ˚ ËÎË ‚ÂÚË͇θÌ˚ ̇Ô‡‚ÎÂÌËfl,
286
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
Ë ‰‚ËÊÂÌË ¯‡ıχÚÌÓÈ ‰ÓÒÍË, „‰Â ‡Á¯‡˛ÚÒfl Ú‡ÍÊ ÔÂÂÏ¢ÂÌËfl ÔÓ ‰Ë‡„Ó̇ÎË.
àÒÔÓθÁÓ‚‡ÌË ‰‚Ûı ˝ÚËı ÚËÔÓ‚ ‰‚ËÊÂÌËÈ ÓÔ‰ÂÎflÂÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛
ÒÓÒ‰ÒÚ‚‡ B = {b(1), b(2), …, b(l )}, „‰Â b(i ) ∈{1, 2} fl‚ÎflÂÚÒfl ÒÔˆˇθÌ˚Ï ÚËÔÓÏ ÒÓÒ‰ÒÚ‚‡: b(i) = 1 Ó·ÓÁ̇˜‡ÂÚ ËÁÏÂÌÂÌË ӷ˙ÂÍÚ‡ ‚ Ó‰ÌÓÈ ÍÓÓ‰Ë̇Ú (ÒÓÒ‰ÒÚ‚Ó
„ÓÓ‰ÒÍÓ„Ó Í‚‡ڇ·), ‡ b(i) = 2 Ó·ÓÁ̇˜‡ÂÚ ËÁÏÂÌÂÌË ӷ˙ÂÍÚ‡ Ú‡ÍÊ ‚ ‰‚Ûı ÍÓÓ‰Ë̇ڇı (ÒÓÒ‰ÒÚ‚Ó ¯‡ıχÚÌÓÈ ‰ÓÒÍË). èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ Ç ÓÔ‰ÂÎflÂÚ ÚËÔ ‰‚ËÊÂÌËfl, ÍÓÚÓÓ ·Û‰ÂÚ ÔËÏÂÌflÚ¸Òfl ̇ ͇ʉÓÏ ˝Ú‡Ô (ÒÏ. [Das90]).
åÂÚË͇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÒÓÒ‰ÒÚ‚‡ – ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ‰ÎË̇
Í‡Ú˜‡È¯Â„Ó ÔÛÚË ÏÂÊ‰Û ı Ë y ∈ 2 , Á‡‰‡‚‡ÂÏÓ„Ó ÍÓÌÍÂÚÌÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛
ÒÓÒ‰ÒÚ‚‡ Ç. Ö ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ͇Í
max{d 1B (u), d B2 (u)},
 | u1 | + | u2 | + g( j ) 
,
f (l )

j =1
l
„‰Â u1 = x1 − y1 , u2 = x 2 − y2 , d 1B (u) = max{| u1 |,| u2 |}, d B2 (u) =
∑ 
i
f (0) = 0,
f (i )
∑ b( j ),
1 ≤ i ≤ l, g( j ) = f (l ) − f ( j − 1) − 1, 1 ≤ j ≤ l.
j =1
ÑÎfl B = {1} ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ „ÓÓ‰ÒÍÓ„Ó Í‚‡ڇ·, ‰Îfl B = {2} ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ ¯‡ıχÚÌÓÈ ‰ÓÒÍË. ëÎÛ˜‡È B = {1, 2}, Ú.Â. ‡Î¸ÚÂ̇ÚË‚ÌÓ ËÒÔÓθÁÓ‚‡ÌË ˝ÚËı
ÔÂ‰‚ËÊÂÌËÈ, ‰‡ÂÚ ‚ÓÒ¸ÏËÛ„ÓθÌÛ˛ ÏÂÚËÍÛ (ÒÏ. [RoPf68]).
è‡‚ËθÌ˚È ‚˚·Ó Ç-ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÏÓÊÂÚ ÔÓ‰‚ÂÒÚË ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Û˛
ÏÂÚËÍÛ ‚ÂҸχ ·ÎËÁÍÓ Í Â‚ÍÎˉӂÓÈ ÏÂÚËÍÂ. é̇ ‚Ò„‰‡ ·Óθ¯Â, ˜ÂÏ ‡ÒÒÚÓflÌËÂ
¯‡ıχÚÌÓÈ ‰ÓÒÍË, ÌÓ ÏÂ̸¯Â, ˜ÂÏ ‡ÒÒÚÓflÌË „ÓÓ‰ÒÍÓ„Ó Í‚‡ڇ·.
åÂÚË͇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË nD-ÒÓÒ‰ÒÚ‚‡
åÂÚËÍÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË nD-ÒÓÒ‰ÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó ÔÛÚË ÏÂÊ‰Û x Ë y ∈ n , Á‡‰‡‚‡ÂÏÓ„Ó ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ nD-ÒÓÒ‰ÒÚ‚‡ Ç (ÒÏ. [Faze99]).
îÓχθÌÓ ‰‚ ÚÓ˜ÍË x, y ∈ n ̇Á˚‚‡˛ÚÒfl m-ÒÓÒ‰flÏË, 0 ≤ m ≤ n, ÂÒÎË
n
0 ≤ | xi − y1 |≤ 1, 1 ≤ i ≤ n, Ë
∑ | xi − yi | ≤ m. äÓ̘̇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸
B = {b(1),
i =1
…, b(l )}, b(i ) ∈{1, 2, …, n} ̇Á˚‚‡ÂÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ nD-ÒÓÒ‰ÒÚ‚‡ Ò ÔÂËÓn
‰ÓÏ l. ÑÎfl β·˚ı x, y ∈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÚÓ˜ÂÍ x = x0 , x 1 ,…, xk = y, „‰Â xi Ë xi+1,
fl‚Îfl˛ÚÒfl
r-ÒÓÒ‰flÏË,
r = b((i mod l)+1), ̇Á˚‚‡ÂÚÒfl ÔÛÚÂÏ ‰ÎËÌ˚ R ÓÚ ı
0 ≤ i ≤ k −1
Í Û, Á‡‰‡ÌÌ˚Ï Ò ÔÓÏÓ˘¸˛ Ç. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë Û ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ͇Í
l
max di (u) ⊂ di (u) =
1≤ i ≤ n
∑
j =1
 ai + gi ( j ) 

,
 fi (l ) 
„‰Â u = (| u1 |,| u2 |, …,| un |) fl‚ÎflÂÚÒfl Ì‚ÓÁ‡ÒÚ‡˛˘ÂÈ ÛÔÓfl‰Ó˜ÂÌÌÓÒÚ¸˛ | um |, um =
= x m − ym , m = 1, …, n, Ú.Â. | ui | ≤ | u j |, ÂÒÎË i < j; ai =
n − i +1
∑ uj ;
bi ( j ) = b( j ), ÂÒÎË b( j ) <
j =1
j
< n − i + 2, Ë ‡‚ÌÓ n − i + 1, , Ë̇˜Â; fi ( j ) =
j = 0; gi ( j ) = f1 (l ) − fi ( j − 1) − 1, 1 ≤ j ≤ l.
∑ bi (k ), ÂÒÎË 1 ≤ j ≤ l, Ë ‡‚ÌÓ 0, ÂÒÎË
k =1
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
287
→→
→ →
→
→ →
→ →
→
→ →
→
→
→
→
→
→
→
→
åÌÓÊÂÒÚ‚Ó ÏÂÚËÍ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË 3D-ÒÓÒ‰ÒÚ‚‡ Ó·‡ÁÛÂÚ ÔÓÎÌÛ˛ ‰ËÒÚË·ÛÚË‚ÌÛ˛ ¯ÂÚÍÛ ÓÚÌÓÒËÚÂθÌÓ ÂÒÚÂÒÚ‚ÂÌÌÓ„Ó Ò‡‚ÌÂÌËfl. чÌ̇fl ÒÚÛÍÚÛ‡
Ë„‡ÂÚ ‚‡ÊÌÛ˛ Óθ ‚ ‡ÔÔÓÍÒËÏËÓ‚‡ÌËË Â‚ÍÎˉӂÓÈ ÏÂÚËÍË ˆËÙÓ‚˚ÏË ÏÂÚË͇ÏË.
åÂÚË͇, ÔÓÓʉÂÌ̇fl ÔÛÚÂÏ
ê‡ÒÒÏÓÚËÏ l∞-„ˉÛ, Ú.Â. „‡Ù Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ 2 , ‚ ÍÓÚÓÓÏ ‰‚ ‚Â¯ËÌ˚
fl‚Îfl˛ÚÒfl ÒÓÒ‰ÌËÏË, ÂÒÎË Ëı l∞-‡ÒÒÚÓflÌË ‡‚ÌÓ Â‰ËÌˈÂ. èÛÒÚ¸ – ÒÓ‚ÓÍÛÔÌÓÒÚ¸
ÔÛÚÂÈ ‚ l∞-„ˉÂ, ڇ͇fl ˜ÚÓ ‰Îfl β·˚ı x, y ∈ 2 ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓ Í‡ÈÌÂÈ ÏÂ ӉËÌ
ÔÛÚ¸ ËÁ ÏÂÊ‰Û ı Ë Û, Ë ÂÒÎË ÒÓ‰ÂÊËÚ ÔÛÚ¸ Q, ÚÓ Ó̇ Ú‡ÍÊ ÒÓ‰ÂÊËÚ Í‡Ê‰˚È
ÔÛÚ¸, ÒÓ‰Âʇ˘ËÈÒfl ‚ Q. èÛÒÚ¸ d ( x, y) – ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó ÔÛÚË ËÁ ÏÂÊ‰Û ı Ë
y ∈ 2. ÖÒÎË d fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ 2 , ÚÓ Ó̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ, ÔÓÓʉÂÌÌÓÈ ÔÛÚÂÏ (ÒÏ., ̇ÔËÏÂ, [Melt91]).
G2A = { , },
G2B = { , },
èÛÒÚ¸ G – Ó‰ÌÓ ËÁ ÏÌÓÊÂÒÚ‚ G1 = { , →},
G2C = { , },
G2D = {→ , },
G3A = {→ , , },
G3B = {→ , , },
G4A = {→ , , },
G4B = { , , },
G5 = {→ , , , }. èÛÒÚ¸ (G) – ÏÌÓÊÂÒÚ‚Ó ÔÛÚÂÈ, ÔÓÎÛ˜ÂÌÌ˚ı ÔÓÒ‰ÒÚ‚ÓÏ ÒÓ˜ÎÂÌÂÌËfl ÔÛÚÂÈ ‚ G Ë ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı
ÔÛÚÂÈ ‚ ÔÓÚË‚ÓÔÓÎÓÊÌ˚ı ̇Ô‡‚ÎÂÌËflı. ã˛·‡fl ÏÂÚË͇, ÔÓÓʉÂÌ̇fl ÔÛÚÂÏ,
ÒÓ‚Ô‡‰‡ÂÚ Ò Ó‰ÌÓÈ ËÁ ÏÂÚËÍ d(G). ÅÓΠÚÓ„Ó, ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ÙÓÏÛÎ˚:
1. d ( G1 ) ( x, y) =| u1 | + | u2 |;
2. d ( G2 A ) ( x, y) = {| 2u1 − u2 |,| u2 |};
3. d ( G
2B )
( x, y) = max{| 2u1 − u2 |,| u2 |};
4. d ( G2 C ) ( x, y) = max{| 2u2 − u1 |,| u1 |};
5. d ( G
2D )
( x, y) = max{| 2u2 − u1 |,| u1 |};
6. d ( G3 A ) ( x, y) = max{| u1 |,| u2 |,| u1 − u2 |};
7. d ( G3 B ) ( x, y) = max{| u1 |,| u2 |,| u1 + u2 |};
8. d ( G
4A )
9. d ( G
4B )
{
( x, y) = max{2 (| u
}
| − | u |) / 2 , 0}+ | u |;
( x, y) = max 2 (| u1 | − | u2 |) / 2 , 0 + | u2 |;
2
1
1
10. d ( G ) ( x, y) = max{| u1 |,| u2 |};
5
„‰Â u1 = x1 − y1 , u2 = x 2 − y2 , ‡ ⋅ fl‚ÎflÂÚÒfl ÔÓÚÓÎÓ˜ÌÓÈ ÙÛÌ͈ËÂÈ: ‰Îfl β·Ó„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ı ˜ËÒÎÓ fl‚ÎflÂÚÒfl x ̇ËÏÂ̸¯ËÏ ˆÂÎ˚Ï ˜ËÒÎÓÏ, ÍÓÚÓÓ ·Óθ¯Â ËÎË
‡‚ÌÓ ı.
èÓÎÛ˜ÂÌÌ˚ ËÁ G-ÏÌÓÊÂÒÚ‚ ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡, Ëϲ˘Ë ӉË̇ÍÓ‚˚Â
ˆËÙÓ‚˚ Ë̉ÂÍÒ˚, fl‚Îfl˛ÚÒfl ËÁÓÏÂÚ˘Ì˚ÏË. d ( G ) ÂÒÚ¸ ÏÂÚË͇ „ÓÓ‰ÒÍÓ„Ó
1
Í‚‡ڇ·, ‡ d ( G ) – ÏÂÚË͇ ¯‡ıχÚÌÓÈ ‰ÓÒÍË.
5
åÂÚË͇ ÍÓÌfl
åÂÚËÍÓÈ ÍÓÌfl ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ
ıÓ‰Ó‚, ÍÓÚÓ˚ ÔÓ̇‰Ó·ËÚÒfl ҉·ڸ ¯‡ıχÚÌÓÏÛ ÍÓÌ˛ ‰Îfl ÔÂÂÏ¢ÂÌËfl ËÁ ı ‚ 2 .
1
Ö ‰ËÌ˘̇fl ÒÙÂ‡ Sknight
Ò ˆÂÌÚÓÏ ‚ ̇˜‡Î ÍÓÓ‰ËÌ‡Ú ÒÓ‰ÂÊËÚ Ó‚ÌÓ 8 ˆÂÎÓ-
288
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
1
˜ËÒÎÂÌÌ˚ı ÚÓ˜ÂÍ {(±2, ±1), (±1, ±2)} Ë ÏÓÊÂÚ ·˚Ú¸ Á‡ÔË҇̇ Í‡Í Sknight
= Sl31 ∩ Sl2∞ ,
„‰Â Sl31 ÂÒÚ¸ l1 -ÒÙÂ‡ ‡‰ËÛÒ‡ 3 Ë Sl2∞ ÂÒÚ¸ l∞-ÒÙÂ‡ ‡‰ËÛÒ‡ 2 Ë ˆÂÌÚÓÏ ‚ ̇˜‡ÎÂ
ÍÓÓ‰ËÌ‡Ú ([DaCh88]).
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë Û ‡‚ÌÓ 3, ÂÒÎË (M, m) = (1, 0), ‡‚ÌÓ 4, ÂÒÎË (M, m) = (2, 2), Ë
 M   M + m  
 M M + m 
‡‚ÌÓ max  , 
(mod 2), Ë̇˜Â, „‰Â M =
 + ( M + m) − max  , 

 2   3  
 2   3  
= max{| u1 |,| u2 |}, m = min{| u1 |,| u2 |}, u1 = x1 − y1 , u2 = x 2 − y2 .
åÂÚË͇ ÒÛÔÂ-ÍÓÌfl
èÛÒÚ¸ p, q ∈ , Ô˘ÂÏ p + q ˜ÂÚÌÓ Ë (p, q) = 1.
(p, q)-ÒÛÔÂ-ÍÓ̸ (ËÎË (p, q)-Ô˚„ÛÌ) ÂÒÚ¸ ÙË„Û‡ Ó·Ó·˘ÂÌÌ˚ı ¯‡ıχÚ, ıÓ‰ ÍÓÚÓÓÈ ÒÓÒÚÓËÚ ËÁ Ô˚Ê͇ ̇  ÍÎÂÚÓÍ ‚ Ó‰ÌÓÏ Ì‡Ô‡‚ÎÂÌËË Ë ÔÓÒÎÂ‰Û˛˘Â„Ó ÓÚÓ„Ó̇θÌÓ„Ó Ô˚Ê͇ ̇ q ÍÎÂÚÓÍ ‚ Á‡‰‡ÌÌÛ˛ ÍÓ̘ÌÛ˛ ÍÎÂÚÍÛ. íÂÏËÌ˚ Ó·Ó·˘ÂÌÌ˚ı ¯‡ıÏ‡Ú ÒÛ˘ÂÒÚ‚Û˛Ú ‰Îfl (p, 1)-Ô˚„Û̇ Ò p = 0,1,2,3,4 (‚ËÁË¸, ÙÂÁ¸, Ó·˚˜Ì˚È
ÍÓ̸, ‚Â·Î˛‰, ÊË‡Ù) Ë ‰Îfl (p, 2)-Ô˚„Û̇ Ò p = 0,1,2,3 (‰‡··‡·‡, Ó·˚˜Ì˚È ÍÓ̸,
‡ÎÙËÎ, Á·‡).
åÂÚË͇ (p, q)-ÒÛÔÂ-ÍÓÌfl (ËÎË ÏÂÚË͇ (p, q)-Ô˚„Û̇) – ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ıÓ‰Ó‚, ÍÓÚÓÓ ÔÓ̇‰Ó·ËÚÒfl (p, q)-ÒÛÔÂ-ÍÓÌ˛ ‰Îfl
ÔÂÂÏ¢ÂÌËfl ËÁ ı ‚ y ∈ 2. í‡ÍËÏ Ó·‡ÁÓÏ,  ‰ËÌ˘̇fl ÒÙÂ‡ S1p, q Ò ˆÂÌÚÓÏ ‚
̇˜‡Î ÍÓÓ‰ËÌ‡Ú ÒÓ‰ÂÊËÚ Ó‚ÌÓ 8 ˆÂÎÓ˜ËÒÎÂÌÌ˚ı ÚÓ˜ÂÍ {(±p, ±q), (±q, ±p)}
([DaMu90].)
åÂÚË͇ ÍÓÌfl – ÏÂÚË͇ (1,2)-ÒÛÔÂ-ÍÓÌfl. åÂÚËÍÛ „ÓÓ‰ÒÍÓ„Ó Í‚‡ڇ· ÏÓÊÌÓ
‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÂÚËÍÛ ‚ËÁËfl, Ú.Â. ÏÂÚËÍÛ (0,1)-ÒÛÔÂ-ÍÓÌfl.
åÂÚË͇ ·‰¸Ë
åÂÚËÍÓÈ Î‡‰¸Ë ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ıÓ‰Ó‚, ÍÓÚÓ˚ ÔÓ̇‰Ó·ËÚÒfl ҉·ڸ ¯‡ıχÚÌÓÈ Î‡‰¸Â ‰Îfl ÔÂÂÏ¢ÂÌËfl ËÁ x ‚
y ∈ 2. чÌ̇fl ÏÂÚË͇ ËÏÂÂÚ ÚÓθÍÓ Á̇˜ÂÌËfl {0,1,2} Ë ÒÓ‚Ô‡‰ÂÚ Ò ı˝ÏÏËÌ„Ó‚ÓÈ
ÏÂÚËÍÓÈ Ì‡ 2 .
åÂÚË͇ ÒÍÛ„ÎÂÌËfl
ÇÓÁ¸ÏÂÏ ‰‚‡ ÔÓÎÓÊËÚÂθÌ˚ı ˜ËÒ· α, β Ò α ≤ β < 2 Ë ‡ÒÒÏÓÚËÏ (α,β)-‚Á‚¯ÂÌÌÛ˛ l∞-„Ë‰Û ÍÓÓ‰Ë̇Ú, Ú.Â. ·ÂÒÍÓ̘Ì˚È „‡Ù Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ 2, ‰‚ ‚Â¯ËÌ˚ ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË Ëı l∞-‡ÒÒÚÓflÌË ‡‚ÌÓ Â‰ËÌˈÂ, Ô˘ÂÏ
„ÓËÁÓÌڇθÌ˚Â/‚ÂÚË͇θÌ˚Â Ë ‰Ë‡„Ó̇θÌ˚ ·‡ ËÏÂ˛Ú ‚ÂÒ‡ α Ë β ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
åÂÚËÍÓÈ ÒÍÛ„ÎÂÌËfl (ËÎË ÏÂÚËÍÓÈ (α, β)-ÒÍÛ„ÎÂÌËfl, ÒÏ. [Borg86]) ̇Á˚‚‡ÂÚÒfl
ÏÂÚË͇ ‚Á‚¯ÂÌÌÓ„Ó ÔÛÚË ‚ ‚˚¯ÂÛ͇Á‡ÌÌÓÏ „‡ÙÂ. ÑÎfl β·˚ı x, y ∈ 2 Ó̇
ÏÓÊÂÚ ·˚Ú¸ Á‡ÔË҇̇ ͇Í
βm + α( M − m),
„‰Â M = max{| u1 |,| u2 |}, m = min{| u1 |,| u2 |}, u1 = x1 − y1 , u2 = x 2 − y2 .
ÖÒÎË ‚ÂÒ‡ α Ë β ‡‚Ì˚ ‚ÍÎˉӂ˚Ï ‰ÎËÌ‡Ï 1, 2 „ÓËÁÓÌڇθÌ˚ı/‚ÂÚË͇θÌ˚ı
Ë ‰Ë‡„Ó̇θÌ˚ı ·Â ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÚÓ ÔÓÎÛ˜‡ÂÏ Â‚ÍÎË‰Ó‚Û ‰ÎËÌÛ Í‡Ú˜‡È¯Â„Ó
ÔÛÚË ¯‡ıχÚÌÓÈ ‰ÓÒÍË ÏÂÊ‰Û ı Ë Û. ÖÒÎË α = β = 1, ÚÓ ËÏÂÂÏ ÏÂÚËÍÛ ¯‡ıχÚÌÓÈ
‰ÓÒÍË. åÂÚË͇ (3, 4)-ÒÍÛ„ÎÂÌËfl ̇˷ÓΠ˜‡ÒÚÓ ËÒÔÓθÁÛÂÚÒfl ‰Îfl ‡·ÓÚ˚ Ò ˆËÙÓ‚˚ÏË Ó·‡Á‡ÏË; Ó̇ ̇Á˚‚‡ÂÚÒfl ÔÓÒÚÓ (3, 4)-ÏÂÚËÍÓÈ.
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
289
åÂÚË͇ 3D-ÒÍÛ„ÎÂÌËfl – ÏÂÚË͇ ‚Á‚¯ÂÌÌÓ„Ó ÔÛÚË „‡Ù‡ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ 3 ‚ÓÍÒÂÎÂÈ, ‰‚‡ ËÁ ÍÓÚÓ˚ı fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË Ëı l∞-‡ÒÒÚÓflÌË ‡‚ÌÓ
‰ËÌˈÂ, Ô˘ÂÏ ‚ÂÒ‡ α, β Ë γ Ò‚flÁ‡Ì˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ò ‡ÒÒÚÓflÌËflÏË ÓÚ 6 „‡Ì‚˚ı
ÒÓÒ‰ÂÈ, 12 ·ÂÌ˚ı ÒÓÒ‰ÂÈ Ë 8 Û„ÎÓ‚˚ı ÒÓÒ‰ÂÈ.
åÂÚË͇ ‚Á‚¯ÂÌÌÓ„Ó ‡ÁÂÁ‡
ê‡ÒÒÏÓÚËÏ ‚Á‚¯ÂÌÌÛ˛ l∞-„ˉÛ, Ú.Â. „‡Ù Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ 2, ‰‚ ËÁ
ÍÓÚÓ˚ı fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË Ëı l∞-‡ÒÒÚÓflÌË ‡‚ÌÓ Â‰ËÌˈÂ, Ë Í‡Ê‰ÓÂ
·Ó ËÏÂÂÚ Á‡‰‡ÌÌ˚È ÔÓÎÓÊËÚÂθÌ˚È ‚ÂÒ (ËÎË ˆÂÌÛ). é·˚˜Ì‡fl ÏÂÚË͇ ‚Á‚¯ÂÌÌÓ„Ó ÔÛÚË ÏÂÊ‰Û ‰‚ÛÏfl ÔËÍÒÂÎflÏË fl‚ÎflÂÚÒfl ÏËÌËχθÌÓÈ ˆÂÌÓÈ ÒÓ‰ËÌfl˛˘Â„Ó Ëı
ÔÛÚË. åÂÚËÍÓÈ ‚Á‚¯ÂÌÌÓ„Ó ‡ÁÂÁ‡ ÏÂÊ‰Û ‰‚ÛÏfl ÔËÍÒÂÎflÏË Ì‡Á˚‚‡ÂÚÒfl ÏËÌËχθ̇fl ˆÂ̇ (ÓÔ‰ÂÎÂÌ̇fl ÒÂȘ‡Ò Í‡Í ÒÛÏχ ˆÂÌ ÔÂÂÒÂ͇ÂÏ˚ı ·Â) ‡ÁÂÁ‡,
Ú.Â. ÍË‚ÓÈ ‚ ÔÎÓÒÍÓÒÚË, ÒÓ‰ËÌfl˛˘ÂÈ Ëı Ë Ó·ıÓ‰fl˘ÂÈ ÔËÍÒÂÎË.
åÂÚË͇ ˆËÙÓ‚Ó„Ó Ó·˙Âχ
åÂÚËÍÓÈ ˆËÙÓ‚Ó„Ó Ó·˙Âχ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ä ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ (ËÁÓ·‡ÊÂÌËÈ ËÎË Ó·‡ÁÓ‚) ÏÌÓÊÂÒÚ‚‡ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â
n ), ÓÔ‰ÂÎÂÌ̇fl ͇Í
vol( A∆B),
„‰Â vol(A) = |A|, Ú.Â. ˜ËÒÎÓ ÒÓ‰Âʇ˘ËıÒfl ‚ Ä ÔËÍÒÂÎÂÈ, Ë A∆B – ÒËÏÏÂÚ˘ÂÒ͇fl
‡ÁÌÓÒÚ¸ ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË Ä Ë Ç.
чÌ̇fl ÏÂÚË͇ – ˆËÙÓ‚ÓÈ ‡Ì‡ÎÓ„ ÏÂÚËÍË çËÍÓ‰Ëχ.
òÂÒÚËÛ„Óθ̇fl ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇
òÂÒÚËÛ„Óθ̇fl ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ (ËÁÓ·‡ÊÂÌËÈ ËÎË Ó·‡ÁÓ‚) ¯ÂÒÚËÛ„ÓθÌÓÈ „ˉ˚ ̇ ÔÎÓÒÍÓÒÚË, ÓÔ‰ÂÎÂÌ̇fl ͇Í
inf{p, q : A ⊂ B + qH , D ⊂ A + pH}
‰Îfl β·˚ı ËÁÓ·‡ÊÂÌËÈ Ä Ë Ç, „‰Â ç – Ô‡‚ËθÌ˚È ¯ÂÒÚËÛ„ÓθÌËÍ ‡ÁÏÂ‡ 
(Ú.Â. Ò p + 1 ÔËÍÒÂÎÂÏ Ì‡ ͇ʉÓÏ ·Â) Ò ˆÂÌÚÓÏ ‚ ̇˜‡Î ÍÓÓ‰Ë̇Ú, ÒÓ‰Âʇ˘ËÈ
Ò‚Ó˛ ‚ÌÛÚÂÌÌÓÒÚ¸, Ë + fl‚ÎflÂÚÒfl ÒÎÓÊÂÌËÂÏ åËÌÍÓ‚ÒÍÓ„Ó: A + B = {y + y : x ∈ A,
y ∈ B} (ÒÏ. åÂÚË͇ èÓÏÔÂÈ˛–ï‡ÛÒ‰ÓÙ‡–ÅÎfl¯ÍÂ, „Î. 9). ÖÒÎË Ä fl‚ÎflÂÚÒfl ÔËÍÒÂÎÂÏ ı, ÚÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë Ç ‡‚ÌÓ sup y ∈B d6 ( x, y), „‰Â d6 – ¯ÂÒÚËÛ„Óθ̇fl ÏÂÚË͇, Ú.Â. ÏÂÚË͇ ÔÛÚË Ì‡ ¯ÂÒÚËÛ„ÓθÌÓÈ „ˉÂ.
É·‚‡ 20
êÄëëíéüçàü ÑàÄÉêÄåå ÇéêéçéÉé
ÑÎfl ÍÓ̘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ Ä Ó·˙ÂÍÚÓ‚ Ai ‚ ÔÓÒÚ‡ÌÒÚ‚Â S ÔÓÒÚÓÂÌË ‰Ë‡„‡ÏÏ˚
ÇÓÓÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ Ä ÓÁ̇˜‡ÂÚ ‡Á·ËÂÌË ÔÓÒÚ‡ÌÒÚ‚‡ S ̇ ӷ·ÒÚË ÇÓÓÌÓ„Ó
V(A i) Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ V(Ai) ÒÓ‰ÂʇÎË ‚Ò ÚÓ˜ÍË S, ÍÓÚÓ˚ ‡ÒÔÓÎÓÊÂÌ˚
"·ÎËÊÂ" Í Ai, ˜ÂÏ Í Î˛·ÓÏÛ ‰Û„ÓÏÛ Ó·˙ÂÍÚÛ Aj ËÁ Ä.
ÑÎfl ÔÓÓʉ‡˛˘Â„Ó ÏÌÓÊÂÒÚ‚‡ P = {p1 , …, pk }, k ≥ 2, ‡Á΢Ì˚ı ÚÓ˜ÂÍ (ÔÓÓʉ‡˛˘Ëı ˝ÎÂÏÂÌÚÓ‚), ËÎË „ÂÌÂ‡ÚÓÓ‚ ËÁ n, n ≥ 2, Òڇ̉‡ÚÌ˚È ÏÌÓ„ÓÛ„ÓθÌËÍ
ÇÓÓÌÓ„Ó V(pi), Ò‚flÁ‡ÌÌ˚È Ò ÔÓÓʉ‡˛˘ËÏ ˝ÎÂÏÂÌÚÓÏ pi, ÓÔ‰ÂÎflÂÚÒfl ͇Í
V ( pi ) = {x ∈ n : d E ( x, pi ) ≤ d E ( x, p j ) ‰Îfl β·Ó„Ó j ≠ i},
„‰Â dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ̇ n. åÌÓÊÂÒÚ‚Ó
V ( P, d E , n ) = {V ( p1 ), …, V ( pk )}
̇Á˚‚‡ÂÚÒfl n-ÏÂÌÓÈ Òڇ̉‡ÚÌÓÈ ‰Ë‡„‡ÏÏÓÈ ÇÓÓÌÓ„Ó, ÔÓÓʉ‡ÂÏÓÈ ê . É‡Ìˈ˚ (n-ÏÂÌ˚ı) ÏÌÓ„ÓÛ„ÓθÌËÍÓ‚ ÇÓÓÌÓ„Ó Ì‡Á˚‚‡˛ÚÒfl ((n–1)-ÏÂÌ˚ÏË) „‡ÌflÏË
ÇÓÓÌÓ„Ó, „‡Ìˈ˚ „‡ÌÂÈ ÇÓÓÌÓ„Ó Ì‡Á˚‚‡˛ÚÒfl (n–2)-ÏÂÌ˚ÏË „‡ÌflÏË ÇÓÓÌÓ„Ó, …, „‡Ìˈ˚ ‰‚ÛÏÂÌ˚ı „‡ÌÂÈ ÇÓÓÌÓ„Ó Ì‡Á˚‚‡˛ÚÒfl ·‡ÏË ÇÓÓÌÓ„Ó, „‡Ìˈ˚ ·Â – ‚Â¯Ë̇ÏË ÇÓÓÌÓ„Ó.
é·Ó·˘ÂÌË Òڇ̉‡ÚÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó ‚ÓÁÏÓÊÌÓ ‚ ÒÎÂ‰Û˛˘Ëı ÚÂı
̇Ô‡‚ÎÂÌËflı:
1. é·Ó·˘ÂÌË ‚ ÒÏ˚ÒΠÔÓÓʉ‡˛˘Â„Ó ÏÌÓÊÂÒÚ‚‡ A = {A1 , …, Ak }, ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸ ÏÌÓÊÂÒÚ‚ÓÏ ÔflÏ˚ı, ÏÌÓÊÂÒÚ‚ÓÏ Ó·Î‡ÒÚÂÈ Ë Ú.Ô.
2. é·Ó·˘ÂÌË ‚ ÒÏ˚ÒΠÔÓÒÚ‡ÌÒÚ‚‡ S, ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸ ÒÙÂÓÈ (ÒÙÂ˘ÂÒ͇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó), ˆËÎË̉ÓÏ (ˆËÎË̉˘ÂÒ͇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó),
ÍÓÌÛÒÓÏ (ÍÓÌ˘ÂÒ͇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó), ÔÓ‚ÂıÌÓÒÚ¸˛ ÏÌÓ„Ó„‡ÌÌË͇ (‰Ë‡„‡Ïχ ÏÌÓ„Ó„‡ÌÌË͇ ÇÓÓÌÓ„Ó) Ë Ú.Ô.
3. é·Ó·˘ÂÌË ‚ ÒÏ˚ÒΠÙÛÌ͈ËË d, „‰Â d(x, A) fl‚ÎflÂÚÒfl ÏÂÓÈ "‡ÒÒÚÓflÌËfl" ÓÚ
ÚÓ˜ÍË x ∈ S ‰Ó ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ Ai ∈ A.
í‡Í‡fl ÙÛÌ͈Ëfl Ó·Ó·˘ÂÌÌÓ„Ó ‡ÒÒÚÓflÌËfl d ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘ËÏ ‡ÒÒÚÓflÌËÂÏ ÇÓÓÌÓ„Ó (ËÎË ‡ÒÒÚÓflÌËÂÏ ÇÓÓÌÓ„Ó, V-‡ÒÒÚÓflÌËÂÏ) Ë ÔÓÁ‚ÓÎflÂÚ ÔÓÎÛ˜ËÚ¸
ÏÌÓ„Ó ‰Û„Ëı ÙÛÌ͈ËÈ, ÍÓÏ ӷ˚˜ÌÓÈ ÏÂÚËÍË Ì‡ S. ÖÒÎË F fl‚ÎflÂÚÒfl ÒÚÓ„Ó ‚ÓÁ‡ÒÚ‡˛˘ÂÈ ÙÛÌ͈ËÂÈ V-‡ÒÒÚÓflÌËfl d, Ú.Â. F( d ( x, Ai )) ≤ F( d ( x, A j )) ÚÓ„‰‡ Ë ÚÓθÍÓ
ÚÓ„‰‡, ÍÓ„‰‡ d ( x, Ai ) ≤ d ( x, A j ), ÚÓ Ó·Ó·˘ÂÌÌ˚ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, F( d ), S ) Ë
V ( A, d , S ) ÒÓ‚Ô‡‰‡˛Ú Ë „Ó‚ÓflÚ, ˜ÚÓ V-‡ÒÒÚÓflÌË F(d) fl‚ÎflÂÚÒfl Ú‡ÌÒÙÓÏËÛÂÏ˚Ï
‚ V-‡ÒÒÚÓflÌË d, Ë ˜ÚÓ Ó·Ó·˘ÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó V ( A, F( d ), S ) fl‚ÎflÂÚÒfl
Ú˂ˇθÌ˚Ï Ó·Ó·˘ÂÌËÂÏ Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, d , S ). Ç
ÔËÎÓÊÂÌËflı ‰Îfl Ú˂ˇθÌÓ„Ó Ó·Ó·˘ÂÌËfl Òڇ̉‡ÚÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó
V ( P, d , n ) ˜‡ÒÚÓ ÔÓθÁÛ˛ÚÒfl ˝ÍÒÔÓÌÂ̈ˇθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ, ÎÓ„‡ËÙÏ˘ÂÒÍËÏ
‡ÒÒÚÓflÌËÂÏ Ë ÒÚÂÔÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ. ëÛ˘ÂÒÚ‚Û˛Ú Ó·Ó·˘ÂÌÌ˚ ‰Ë‡„‡ÏÏ˚
É·‚‡ 20. ê‡ÒÒÚÓflÌËfl ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó
291
ÇÓÓÌÓ„Ó V ( P, d , n ), ÓÔ‰ÂÎÂÌÌ˚Â Ò ÔÓÏÓ˘¸˛ V-‡ÒÒÚÓflÌËÈ, ÍÓÚÓ˚ ÌÂ
fl‚Îfl˛ÚÒfl Ú‡ÌÒÙÓÏËÛÂÏ˚ÏË Í Â‚ÍÎË‰Ó‚Û ‡ÒÒÚÓflÌ˲ dE: ÏÛθÚËÔÎË͇ÚË‚ÌÓ
‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó, ‡‰‰ËÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó
Ë Ú.Ô.
ÑÓÔÓÎÌËÚÂθÌ˚ ҂‰ÂÌËfl ÔÓ ˝ÚÓÈ ÚÂχÚËÍ ÏÓÊÌÓ Ì‡ÈÚË ‚ [OBS92], [Klei89].
20.1. äãÄëëàóÖëäàÖ êÄëëíéüçàü ÇéêéçéÉé
ùÍÒÔÓÌÂ̈ˇθÌÓ ‡ÒÒÚÓflÌËÂ
ùÍÒÔÓÌÂ̈ˇθÌÓ ‡ÒÒÚÓflÌË – ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó
Dexp ( x, pi ) = e d E ( x , pi )
‰Îfl Ú˂ˇθÌÓ„Ó Ó·Ó·˘ÂÌËfl V ( P, Dexp , n ) Òڇ̉‡ÚÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó
V ( P, d E , n ), „‰Â dE – ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ.
ãÓ„‡ËÙÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
ãÓ„‡ËÙÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌË – ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó
Dln ( x, pi ) = ln d E ( x, pi )
‰Îfl Ú˂ˇθÌÓ„Ó Ó·Ó·˘ÂÌËfl V ( P, Dln , n ) Òڇ̉‡ÚÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó
V ( P, d E , n ), „‰Â dE – ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ.
ëÚÂÔÂÌÌÓ ‡ÒÒÚÓflÌËÂ
ëÚÂÔÂÌÌÓ ‡ÒÒÚÓflÌË – ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó
Dα ( x, pi ) = d E ( x, pi )α , α > 0,
‰Îfl Ú˂ˇθÌÓ„Ó Ó·Ó·˘ÂÌËfl V ( P, Dα , n ) Òڇ̉‡ÚÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P,
d E , n ), „‰Â dE – ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ.
åÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌËÂ
åÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË dMW – ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d MW , n ) (ÏÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓ ͇Í
d MW ( x, pi ) =
1
d E ( x, pi )
wi
‰Îfl β·ÓÈ ÚÓ˜ÍË x ∈ n Ë Î˛·Ó„Ó ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi ∈ P = {pi , …, pk },
k ≥ 2, „‰Â wi ∈ w = {wi , …, wk } – Á‡‰‡ÌÌ˚È ÔÓÎÓÊËÚÂθÌ˚È ÏÛθÚËÔÎË͇ÚË‚Ì˚È ‚ÂÒ
ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi Ë dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ.
ÑÎfl 2 ÏÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó Ì‡Á˚‚‡ÂÚÒfl ÍÛ„Ó‚ÓÈ ÛÔ‡ÍÓ‚ÒÍÓÈ ÑËËıÎÂ. ê·ÓÏ ˝ÚÓÈ ‰Ë‡„‡ÏÏ˚ fl‚ÎflÂÚÒfl ‰Û„‡ ÓÍÛÊÌÓÒÚË ËÎË
Ôflχfl.
Ç ÔÎÓÒÍÓÒÚË 2 ÒÛ˘ÂÒÚ‚ÛÂÚ Ó·Ó·˘ÂÌË ÏÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó, ÍËÒÚ‡Î΢ÂÒ͇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó, Ò ÚÂÏ Ê ÓÔ‰ÂÎÂÌËÂÏ
‡ÒÒÚÓflÌËfl („‰Â w i – ÒÍÓÓÒÚ¸ ÓÒÚ‡ ÍËÒڇη p i), ÌÓ ÓÚ΢‡˛˘ËÏÒfl ‡Á·ËÂ-
292
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ÌËÂÏ ÔÎÓÒÍÓÒÚË, ÔÓÒÍÓθÍÛ ÍËÒÚ‡ÎÎ˚ ÏÓ„ÛÚ ‡ÒÚË ÚÓθÍÓ Ì‡ Ò‚Ó·Ó‰ÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â.
ĉ‰ËÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌËÂ
ĉ‰ËÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË dMW ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó
Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d AW , n ) (‡‰‰ËÚË‚ÌÓ ‚Á‚¯ÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓ ͇Í
d AW ( x, pi ) = d E ( x, pi ) − wi
‰Îfl β·ÓÈ ÚÓ˜ÍË x ∈ n Ë Î˛·Ó„Ó ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi ∈ P = {pi , …, pk }, ,
k ≥ 2, „‰Â wi ∈ w = {wi , …, wk } – Á‡‰‡ÌÌ˚È ‡‰‰ËÚË‚Ì˚È ‚ÂÒ ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡
pi, Ë dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ.
ÑÎfl 2 ‡‰‰ËÚË‚ÌÓ ‚Á‚¯ÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó Ì‡Á˚‚‡ÂÚÒfl „ËÔÂ·Ó΢ÂÒÍÓÈ
ÛÔ‡ÍÓ‚ÍÓÈ ÑËËıÎÂ. ê·ÓÏ ˝ÚÓÈ ‰Ë‡„‡ÏÏ˚ fl‚ÎflÂÚÒfl ‰Û„‡ „ËÔÂ·ÓÎ˚ ËÎË ÓÚÂÁÓÍ
ÔflÏÓÈ.
ĉ‰ËÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ÒÚÂÔÂÌÌÓ ‡ÒÒÚÓflÌËÂ
ĉ‰ËÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ÒÚÂÔÂÌÌÓ ‡ÒÒÚÓflÌË dPW – ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌËÂ
ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d PW , n ) (‡‰‰ËÚË‚ÌÓ ‚Á‚¯ÂÌ̇fl
ÒÚÂÔÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓ ͇Í
d PW ( x, pi ) = d E2 ( x, pi ) − wi
‰Îfl β·ÓÈ ÚÓ˜ÍË x ∈ n Ë Î˛·Ó„Ó ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi ∈ P = {pi , …, pk },
k ≥ 2, „‰Â wi ∈ w = {wi , …, wk } – Á‡‰‡ÌÌ˚È ‡‰‰ËÚË‚Ì˚È ‚ÂÒ ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡, pi, Ë dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ.
ùÚ‡ ‰Ë‡„‡Ïχ ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ‰Ë‡„‡Ïχ ÍÛ„Ó‚ ÇÓÓÌÓ„Ó ËÎË
‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó Ò „ÂÓÏÂÚËÂÈ ã‡„Â‡.
1 2
åÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ÒÚÂÔÂÌÌÓ ‡ÒÒÚÓflÌË d MPW ( x, pi ) =
d E ( x, pi ),
wi
wi > 0, Ú‡ÌÒÙÓÏËÛÂÚÒfl ‚ ÏÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌËÂ Ë ‰‡ÂÚ Ú˂ˇθÌÓ ‡Ò¯ËÂÌË ÏÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó.
äÓÏ·ËÌËÓ‚‡ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌËÂ
äÓÏ·ËÌËÓ‚‡ÌÌÓ ‚Á‚¯ÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ dCW ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, dCW , n ) (ÍÓÏ·ËÌËÓ‚‡ÌÌÓ ‚Á‚¯ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓ ͇Í
dCW ( x, pi ) =
1
d E ( x, pi ) − vi
wi
‰Îfl β·ÓÈ ÚÓ˜ÍË x ∈ n Ë Î˛·Ó„Ó ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi ∈ P = {pi , …, pk },
k ≥ 2, „‰Â wi ∈ w = {wi , …, wk } – Á‡‰‡ÌÌ˚È ÔÓÎÓÊËÚÂθÌ˚È ÏÛθÚËÔÎË͇ÚË‚Ì˚È ‚ÂÒ
ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi, vi ∈ v = {vi , …, vk } – Á‡‰‡ÌÌ˚È ‡‰‰ËÚË‚Ì˚È ‚ÂÒ
ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi, Ë dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ.
ê·ÓÏ ‰‚ÛÏÂÌÓÈ ÍÓÏ·ËÌËÓ‚‡ÌÌÓ ‚Á‚¯ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó fl‚ÎflÂÚÒfl
˜‡ÒÚ¸ ÍË‚ÓÈ ˜ÂÚ‚ÂÚÓ„Ó ÔÓfl‰Í‡, „ËÔÂ·Ó΢ÂÒ͇fl ‰Û„‡, ‰Û„‡ ÓÍÛÊÌÓÒÚË ËÎË
Ôflχfl.
É·‚‡ 20. ê‡ÒÒÚÓflÌËfl ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó
293
20.2. êÄëëíéüçàü ÇéêéçéÉé çÄ èãéëäéëíà
ê‡ÒÒÚÓflÌË Í‡Ú˜‡È¯Â„Ó ÔÛÚË Ò ÔÂÔflÚÒÚ‚ËflÏË
èÛÒÚ¸ = {O1 ,…,Om} – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÏÌÓ„ÓÛ„ÓθÌËÍÓ‚ ̇ ‚ÍÎˉӂÓÈ ÔÎÓÒÍÓÒÚË, Ô‰ÒÚ‡‚Îfl˛˘‡fl ÒÓ·ÓÈ ÏÌÓÊÂÒÚ‚Ó ÔÂÔflÚÒÚ‚ËÈ,
ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ÌÂÔÓÁ‡˜Ì˚ÏË Ë ÌÂÔÂÓ‰ÓÎËÏ˚ÏË.
ê‡ÒÒÚÓflÌËÂÏ Í‡Ú˜‡È¯Â„Ó ÔÛÚË Ò ÔÂÔflÚÒÚ‚ËflÏË d sp ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘ÂÂ
‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, dsp , 2 \ {}) (‰Ë‡„‡ÏÏ˚ Í‡Ú˜‡È¯Â„Ó ÔÛÚË ÇÓÓÌÓ„Ó Ò ÔÂÔflÚÒÚ‚ËflÏË), ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı x, y ∈ 2\{} Í‡Í ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó ËÁ ‚ÒÂı ‚ÓÁÏÓÊÌ˚ı ÌÂÔÂ˚‚Ì˚ı ÔÛÚÂÈ,
ÒÓ‰ËÌfl˛˘Ëı ı Ë Û Ë ÔË ˝ÚÓÏ Ó·ıÓ‰fl˘Ëı ÔÂÔflÚÒÚ‚Ëfl Oi\∂Oi (ÔÛÚ¸ ÏÓÊÂÚ
ÔÓıÓ‰ËÚ¸ ˜ÂÂÁ ÚÓ˜ÍË Ì‡ „‡Ìˈ Oi ÔÂÔflÚÒÚ‚Ëfl Oi), i = 1,…,m.
ä‡Ú˜‡È¯ËÈ ÔÛÚ¸ ÒÚÓËÚÒfl Ò ÔÓÏÓ˘¸˛ ÏÌÓ„ÓÛ„ÓθÌË͇ ‚ˉËÏÓÒÚË Ë „‡Ù‡
‚ˉËÏÓÒÚË ‰Ë‡„‡ÏÏ˚ V ( P, dsp , 2 \ {}).
ê‡ÒÒÚÓflÌË ‚ˉËÏÓ„Ó Í‡Ú˜‡È¯Â„Ó ÔÛÚË
èÛÒÚ¸ = {O1 ,…,Om} – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÓÚÂÁÍÓ‚
Ol = = [al, bl] ̇ ‚ÍÎˉӂÓÈ ÔÎÓÒÍÓÒÚË, P = {p1 ,…,pk}, k ≥ 2 – ÏÌÓÊÂÒÚ‚Ó ÔÓÓʉ‡˛˘Ëı ˝ÎÂÏÂÌÚÓ‚,
VIS( pi ) = {x ∈ 2 : [ x, pi ] ∩ ]al , bl [ = 0/ ‰Îfl ‚ÒÂı l = 1,…,m}
– ÏÌÓ„ÓÛ„ÓθÌËÍ ‚ˉËÏÓÒÚË Ó·‡ÁÛ˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi, ‡ dE – Ó·˚˜ÌÓ ‚ÍÎˉӂÓ
‡ÒÒÚÓflÌËÂ.
ê‡ÒÒÚÓflÌËÂÏ ‚ˉËÏÓ„Ó Í‡Ú˜‡È¯Â„Ó ÔÛÚË dvsp ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, dvsp , 2 \ {}) (‰Ë‡„‡Ïχ ‚ˉËÏÓ„Ó Í‡Ú˜‡È¯Â„Ó ÔÛÚË ÇÓÓÌÓ„Ó Ò ÔÂÔflÚÒÚ‚ËflÏË), ÓÔ‰ÂÎÂÌÌÓ ͇Í
d E ( x, pi ), ÂÒÎË x ∈ VIS( pi ),
dvsp ( x, pi ) = 
∞,
Ë̇˜Â.

ê‡ÒÒÚÓflÌË ÒÂÚË
ëÂÚ¸ ̇ 2 ÂÒÚ¸ Ò‚flÁÌ˚È ÔÎÓÒÍËÈ „ÂÓÏÂÚ˘ÂÒÍËÈ „‡Ù G = (V, E) Ò ÏÌÓÊÂÒÚ‚ÓÏ
V ‚Â¯ËÌ Ë ÏÌÓÊÂÒÚ‚ÓÏ E ·Â.
èÛÒÚ¸ ÔÓÓʉ‡˛˘Â ÏÌÓÊÂÒÚ‚Ó P = ( pi , …, pk ) fl‚ÎflÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ ÏÌÓÊÂÒÚ‚‡ V = ( p1 , …, pl ) ‚Â¯ËÌ „‡Ù‡ G Ë ÏÌÓÊÂÒÚ‚Ó L Á‡‰‡ÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı
ÚÓ˜ÂÍ ·Â „‡Ù‡ G.
ê‡ÒÒÚÓflÌË ÒÂÚË dnetv ̇ ÏÌÓÊÂÒÚ‚Â V ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó
‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó ÛÁÎÓ‚ ÒÂÚË V ( P, dnetv , V ), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í Í‡Ú˜‡È¯ËÈ ÔÛÚ¸
‚‰Óθ ·Â „‡Ù‡ G ÓÚ pi ∈ V ‰Ó pj ∈ V. éÌÓ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‚Á‚¯ÂÌÌÓ„Ó ÔÛÚË
„‡Ù‡ G, „‰Â w e – ‚ÍÎˉӂ‡ ‰ÎË̇ ·‡ e ∈ E.
ê‡ÒÒÚÓflÌË ÒÂÚË dnetv ̇ ÏÌÓÊÂÒÚ‚Â L ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ‰Ë‡„‡ÏÏ˚
ÇÓÓÌÓ„Ó ·Â ÒÂÚË V ( P, dnetl , L), , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í Í‡Ú˜‡È¯ËÈ ÔÛÚ¸ ‚‰Óθ ·Â
ÓÚ x ∈ L ‰Ó y ∈ L.
ê‡ÒÒÚÓflÌË ‰ÓÒÚÛÔ‡ Í ÒÂÚË daccnet ̇ 2 ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó
‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó Ó·Î‡ÒÚË ÒÂÚË V ( P, daccnet , 2 ), ÓÔ‰ÂÎÂÌÌÓ ͇Í
daccnet ( x, y) = dnetl (l( x ), l( y)) + dacc ( x ) + dacc ( y),
294
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
„‰Â dacc ( x ) = min l ∈L d ( x, l ) = d E ( x, l( x )) – ‡ÒÒÚÓflÌË ‰ÓÒÚÛÔ‡ ÚÓ˜ÍË ı. àÏÂÌÌÓ,
dacc(x) ÂÒÚ¸ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÓÚ ı ‰Ó ÚÓ˜ÍË ‰ÓÒÚÛÔ‡ l(x) ∈ L ‰Îfl ı, ÍÓÚÓ‡fl
fl‚ÎflÂÚÒfl ·ÎËʇȯÂÈ Í ı ÚÓ˜ÍÓÈ Ì‡ ·‡ı „‡Ù‡ G.
ê‡ÒÒÚÓflÌË ‚ÓÁ‰Û¯Ì˚ı ÔÂ‚ÓÁÓÍ
ëÂÚ¸ ‡˝ÓÔÓÚÓ‚ – ÔÓËÁ‚ÓθÌ˚È ÔÎÓÒÍËÈ „‡Ù G ̇ n ‚Â¯Ë̇ı (‡˝ÓÔÓÚ‡ı) Ò
ÔÓÎÓÊËÚÂθÌ˚ÏË ‚ÂÒ‡ÏË ·Â (‚ÂÏfl ÔÓÎÂÚ‡). ÇıÓ‰ Ë ‚˚ıÓ‰ ËÁ „‡Ù‡ ‰ÓÔÛÒ͇˛ÚÒfl ÚÓθÍÓ ˜ÂÂÁ ‡˝ÓÔÓÚ˚. èÂÂÏ¢ÂÌË ÔÓ ÒÂÚË ‚ÌÛÚË „‡Ù‡ G ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Á‡‰‡ÌÌÓÈ ÒÍÓÓÒÚ¸˛ v > 1. Ñ‚ËÊÂÌË ‚Ì ÒÂÚË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Â‰ËÌ˘ÌÓÈ ÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ Ó·˚˜ÌÓÈ Â‚ÍÎˉӂÓÈ ÏÂÚËÍË.
ê‡ÒÒÚÓflÌË ‚ÓÁ‰Û¯Ì˚ı ÔÂ‚ÓÁÓÍ dal ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó
‰Ë‡„‡ÏÏ˚ ‚ÓÁ‰Û¯Ì˚ı ÔÂ‚ÓÁÓÍ ÇÓÓÌÓ„Ó V ( P, dal , 2 ), , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ‚ÂÏfl,
ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË ÏÂÊ‰Û ı Ë Û ÔË Ì‡Î˘ËË ÒÂÚË ‡˝ÓÔÓÚÓ‚ G,
Ú.Â. ÔÛÚË, ÏËÌËÁËÛ˛˘Â„Ó ÔÓ‰ÓÎÊËÚÂθÌÓÒÚ¸ ÔÛÚ¯ÂÒÚ‚Ëfl ÏÂÊ‰Û ı Ë Û.
ê‡ÒÒÚÓflÌË „ÓÓ‰‡
ëÂÚ¸ „ÓÓ‰ÒÍÓ„Ó Ó·˘ÂÒÚ‚ÂÌÌÓ„Ó Ú‡ÌÒÔÓÚ‡, ̇ÔËÏÂ ÏÂÚÓ ËÎË ‡‚ÚÓ·ÛÒÌ˚ ÔÂ‚ÓÁÍË, Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÔÎÓÒÍËÈ „‡Ù G Ò „ÓËÁÓÌڇθÌ˚ÏË ËÎË
‚ÂÚË͇θÌ˚ÏË ·‡ÏË. G ÏÓÊÂÚ ÒÓÒÚÓflÚ¸ ËÁ ÏÌÓ„Ëı Ò‚flÁÌ˚ı ÍÓÏÔÓÌÂÌÚ Ë
ÒÓ‰Âʇڸ ˆËÍÎ˚. ä‡Ê‰˚È ÏÓÊÂÚ ‚ÓÈÚË ‚ G ‚ β·ÓÈ ÚÓ˜ÍÂ, ·Û‰¸ ÚÓ ‚Â¯Ë̇ ËÎË
·Ó (‚ÓÁÏÓÊÌÓ Ì‡Á̇˜ËÚ¸ Ú‡ÍÊÂ Ë ÒÚÓ„Ó ÙËÍÒËÓ‚‡ÌÌ˚ ÚÓ˜ÍË ‚ıÓ‰‡). ÇÌÛÚË
G ‰‚ËÊÂÌË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Á‡‰‡ÌÌÓÈ ÒÍÓÓÒÚ¸˛ v > 1 ‚ Ó‰ÌÓÏ ËÁ ‰ÓÒÚÛÔÌ˚ı
̇Ô‡‚ÎÂÌËÈ. Ñ‚ËÊÂÌË ‚Ì ÒÂÚË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Â‰ËÌ˘ÌÓÈ ÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ ÏÂÚËÍË å‡Ìı˝ÚÚÂ̇ (‚ ̇¯ÂÏ ÒÎÛ˜‡Â ÔÓ‰‡ÁÛÏ‚‡ÂÚÒfl ÍÛÔÌ˚È ÒÓ‚ÂÏÂÌÌ˚È „ÓÓ‰ Ò ÔflÏÓÛ„ÓθÌÓÈ Ô·ÌËÓ‚ÍÓÈ ÛÎˈ ÔÓ Ì‡Ô‡‚ÎÂÌËflÏ Ò‚Â–˛„ Ë
‚ÓÒÚÓÍ–Á‡Ô‡‰).
ê‡ÒÒÚÓflÌËÂÏ „ÓÓ‰‡ d city ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Ë‡„‡ÏÏ˚ „ÓÓ‰‡ ÇÓÓÌÓ„Ó V ( P, dcity , 2 ), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ‚ÂÏfl, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl
·˚ÒÚÂÈ¯Â„Ó ÔÛÚË ÏÂÊ‰Û ı Ë Û ‚ ÛÒÎÓ‚Ëflı ÒÂÚË G, Ú.Â. ÔÛÚË. ÏËÌËÎËÁËÛ˛˘Â„Ó
ÔÓ‰ÓÎÊËÚÂθÌÓÒÚ¸ ÔÛÚ¯ÂÒÚ‚Ëfl ÏÂÊ‰Û ı Ë Û.
åÌÓÊÂÒÚ‚Ó P = ( p1 , …, pk ), k ≥ 2 ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÌÓÊÂÒÚ‚Ó ÌÂÍËı
„ÓÓ‰ÒÍËı Û˜ÂʉÂÌËÈ (̇ÔËÏÂ, ÔÓ˜ÚÓ‚˚ı ÓÚ‰ÂÎÂÌËÈ ËÎË ·ÓθÌˈ): ‰Îfl ÏÌÓ„Ëı
β‰ÂÈ Û˜ÂʉÂÌËfl Ó‰ÌÓ„Ó Ë ÚÓ„Ó Ê Ô‰̇Á̇˜ÂÌËfl Ó‰Ë̇ÍÓ‚˚ Ë Ô‰ÔÓ˜ÚËÚÂθÌ˚Ï fl‚ÎflÂÚÒfl ÚÓ, ‰Ó ÍÓÚÓÓ„Ó ·˚ÒÚ ‰Ó·‡Ú¸Òfl.
ê‡ÒÒÚÓflÌË ̇ ÂÍÂ
ê‡ÒÒÚÓflÌËÂÏ Ì‡ ÂÍ d riv ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d riv , 2 ) (‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó Ì‡ ÂÍÂ), ÓÔ‰ÂÎÂÌÌÓ ͇Í
d riv ( x, y) =
−α( x1 − y1 ) + ( x1 − y1 )2 + (1 − α 2 )( x 2 − y2 )2
v(1 − α 2 )
,
„‰Â v – ÒÍÓÓÒÚ¸ ÎÓ‰ÍË ‚ ÌÂÔÓ‰‚ËÊÌÓÈ ‚Ó‰Â, w > 0 – ÒÍÓÓÒÚ¸ ÔÓÒÚÓflÌÌÓ„Ó ÔÓÚÓ͇ ‚
w
ÔÓÎÓÊËÚÂθÌÓÏ Ì‡Ô‡‚ÎÂÌËË x1-ÓÒË Ë α = (0 < α < 1) – ÓÚÌÓÒËÚÂθ̇fl ÒÍÓÓÒÚ¸
v
ÔÓÚÓ͇.
É·‚‡ 20. ê‡ÒÒÚÓflÌËfl ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó
295
ê‡ÒÒÚÓflÌË ԇÛÒÌÓÈ ÎÓ‰ÍË
èÛÒÚ¸ Ω ⊂ 2 – ӷ·ÒÚ¸ ̇ ÔÎÓÒÍÓÒÚË (‚Ӊ̇fl ÔÓ‚ÂıÌÓÒÚ¸), ÔÛÒÚ¸ f : Ω → 2 –
ÌÂÔÂ˚‚ÌÓ ‚ÂÍÚÓÌÓ ÔÓΠ̇ Ω, Ô‰ÒÚ‡‚Îfl˛˘Â ÒÍÓÓÒÚ¸ ÔÓÚÓ͇ ‚Ó‰˚ (ÔÓÎÂÔÓÚÓ͇); ÔÛÒÚ¸ P = ( p1 , …, pk ) ⊂ Ω, k ≥ 2 – ÏÌÓÊÂÒÚ‚Ó k ÚÓ˜ÂÍ ‚ Ω („‡‚‡ÌË).
ê‡ÒÒÚÓflÌËÂÏ Ô‡ÛÒÌË͇ ([NiSu03]) d bs ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌËÂ
ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V(P, dbs, Ω) (‰Ë‡„‡Ïχ Ô‡ÛÒÌË͇
ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓ ͇Í
dbs ( x, y) = inf δ( γ , x, y)
γ
1
‰Îfl ‚ÒÂı x, y ∈ Ω, „‰Â δ( γ , x, y) =
∫
0
γ ′( s )
F
+ f ( γ ( s))
γ ′( s )
−1
ds – ‚ÂÏfl, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl
ÚÓ„Ó, ˜ÚÓ·˚ Ô‡ÛÒÌËÍ Ò Ï‡ÍÒËχθÌÓÈ ÒÍÓÓÒÚ¸˛ F ̇ ÌÂÔÓ‰‚ËÊÌÓÈ ‚Ӊ ÔÂÂÏÂÒÚËÎÒfl ËÁ ı ‚ Û ‚‰Óθ ÍË‚ÓÈ γ : {0, 1} → Ω, γ (0) = x, γ (1) = y, ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ
‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï ÍË‚˚Ï γ.
ê‡ÒÒÚÓflÌË ÔÓ‰ÒχÚË‚‡˛˘Â„Ó
èÛÒÚ¸ S = {( x1 , x 2 ) ∈ 2 : x1 > 0} – ÔÓÎÛÔÎÓÒÍÓÒÚ¸ ‚ 2, ÔÛÒÚ¸ P = ( p1 , …, pk ),
k ≥ 2, – ÏÌÓÊÂÒÚ‚ÓÏ ÚÓ˜ÂÍ, ÒÓ‰Âʇ˘ËıÒfl ‚ ÔÓÎÛÔÎÓÒÍÓÒÚË {( x1 , x 2 ) ∈ 2 : x1 < 0},
Ë ÔÛÒÚ¸ ÓÍÌÓ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ËÌÚÂ‚‡Î ]a, b[ Ò a = (0,1) Ë b = (0, –1).
ê‡ÒÒÚÓflÌË ÔÓ‰ÒχÚË‚‡˛˘Â„Ó dpee ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó
Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d pee , S ) (‰Ë‡„‡Ïχ ÔÓ‰ÒχÚË‚‡˛˘Â„Ó
ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓ ͇Í
d ( x, pi ) ÂÒÎË [ x, p] ∩ ]a, b[ ≠ 0/ ,
d pee ( x, pi ) =  E
∞, Ë̇˜Â,

„‰Â dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ.
ê‡ÒÒÚÓflÌË ÒÌ„ÓıÓ‰‡
èÛÒÚ¸ Ω ⊂ 2 – ӷ·ÒÚ¸ ̇ x1x2-ÔÎÓÒÍÓÒÚË ÔÓÒÚ‡ÌÒÚ‚‡ 3 (‰‚ÛÏÂÌÓ ÓÚÓ·‡ÊÂÌËÂ) Ë Ω* = {(q, h(q )) : q = ( x1 (q ), x 2 (q )) ∈ Ω, h(q ) ∈ } – ÚÂıÏÂ̇fl ÔÓ‚ÂıÌÓÒÚ¸
ÁÂÏÎË, ÔÓÒÚ‡‚ÎÂÌ̇fl ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ËÁÓ·‡ÊÂÌ˲ Ω. èÛÒÚ¸ P = {p1 , …, pk } ⊂ Ω,
k ≥ 2 – ÏÌÓÊÂÒÚ‚Ó k ÚÓ˜ÂÍ ‚ Ω (ÒÚÓflÌÍË ÒÌ„ÓıÓ‰Ó‚).
ê‡ÒÒÚÓflÌËÂÏ ÒÌ„ÓıÓ‰‡ d sm ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó
Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, dsm , Ω) (‰Ë‡„‡ÏÏ˚ ÒÌ„ÓıÓ‰‡ ÇÓÓÌÓ„Ó),
ÓÔ‰ÂÎÂÌÌÓ ͇Í
dsm (q, r ) = inf
γ
∫
γ
1
ds
dh( γ ( s)) 

F 1− α

ds 
‰Îfl β·˚ı q,r ∈ Ω Ë ÔÓÁ‚ÓÎfl˛˘Â ‡ÒÒ˜ËÚ‡Ú¸ ÏËÌËχθÌÓ ÌÂÓ·ıÓ‰ËÏÓ ‚ÂÏfl ‰Îfl
ÔÂÂÏ¢ÂÌËfl ÒÌ„ÓıÓ‰‡ ÒÓ ÒÍÓÓÒÚ¸˛ F ̇ Ó‚ÌÓÈ ÔÓ‚ÂıÌÓÒÚË ËÁ (q,h(q)) ‚ (r,h(r))
ÔÓ Ï‡¯ÛÚÛ γ * : γ * ( s) = ( γ ( s), h( γ ( s))), ‡ÒÒÓˆËËÓ‚‡ÌÌÓÏÛ Ò ÔÛÚÂÏ ÔÓ Ó·Î‡ÒÚË
296
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
γ : [0, 1] → Ω, γ (0) = q, γ (1) = r (ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï ÔÛÚflÏ γ,
‡ α fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓÈ ÍÓÌÒÚ‡ÌÚÓÈ).
ëÌ„ÓıÓ‰ ‰‚ËÊÂÚÒfl ‚‚Âı, ‚ „ÓÛ, ωÎÂÌÌÂÂ, ˜ÂÏ ‚ÌËÁ, ÔÓ‰ „ÓÛ. ÑÎfl ÎÂÒÌÓ„Ó
ÔÓʇ‡ ı‡‡ÍÚÂÌÓ Ó·‡ÚÌÓÂ: ÙÓÌÚ Ó„Ìfl ÔÂÂÏ¢‡ÂÚÒfl ·˚ÒÚ ‚‚Âı Ë Ï‰ÎÂÌÌ ‚ÌËÁ. чÌÌÛ˛ ÒËÚÛ‡ˆË˛ ÏÓÊÌÓ ÒÏÓ‰ÂÎËÓ‚‡Ú¸ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÓÚˈ‡ÚÂθÌÓ„Ó Á̇˜ÂÌËfl α. èÓÎÛ˜ÂÌÌÓ ‡ÒÒÚÓflÌË ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÎÂÒÌÓ„Ó ÔÓʇ‡
Ë ÔÓÎÛ˜ÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó Ì‡Á˚‚‡ÂÚÒfl ‰Ë‡„‡ÏÏÓÈ ÎÂÒÌÓ„Ó ÔÓʇ‡ ÇÓÓÌÓ„Ó.
ê‡ÒÒÚÓflÌË ÒÍÓθÊÂÌËfl
èÛÒÚ¸ í – ̇ÍÎÓÌ̇fl ÔÎÓÒÍÓÒÚ¸ ‚ 3, ÔÓÎÛ˜ÂÌ̇fl ÔÓÒ‰ÒÚ‚ÓÏ ‚‡˘ÂÌËfl x 1 x2π
ÔÎÓÒÍÓÒÚË ‚ÓÍÛ„ x 1 -ÓÒË Ì‡ Û„ÓÎ α, 0 < α < , Ò ÍÓÓ‰Ë̇ÚÌÓÈ ÒËÒÚÂÏÓÈ, ÍÓÚÓ‡fl
2
ÔÓÎÛ˜Â̇ ÔÓÒ‰ÒÚ‚ÓÏ ‡Ì‡Îӄ˘ÌÓ„Ó ‚‡˘ÂÌËfl ÍÓÓ‰Ë̇ÚÌÓÈ ÒËÒÚÂÏ˚ x 1 x2-ÔÎÓÒÍÓÒÚË. ÑÎfl ÚÓ˜ÍË q ∈ T , q = ( x1 (q ), x 2 (q )) ÓÔ‰ÂÎËÏ ‚˚ÒÓÚÛ h(q) Í‡Í Â x 3 -ÍÓÓ‰Ë̇ÚÛ ‚ 3. í‡ÍËÏ Ó·‡ÁÓÏ, h(q ) = x 2 (q ) ⋅ sin α. èÛÒÚ¸ P = {p1 , …, pk } ⊂ T , k ≥ 2.
ê‡ÒÒÚÓflÌËÂÏ ÒÍÓθÊÂÌËfl ([AACL98]) dskew ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌËÂ
ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, dskew , T ) (‰Ë‡„‡Ïχ ÒÍÓθÊÂÌËfl
ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓ ͇Í
dskew (q, r ) = d E (q, r ) + (h(r ) − h(q )) = d E (q, r ) + sin α( x 2 (r ) − x 2 (q )),
ËÎË, ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â,
dskew (q, r ) = d E (q, r ) + k ( x 2 (r ) − x 2 (q ))
‰Îfl ‚ÒÂı q,r ∈ T, „‰Â dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ, ‡ k ≥ 0 – ÍÓÌÒÚ‡ÌÚ‡.
20.3. ÑêìÉàÖ êÄëëíéüçàü ÇéêéçéÉé
ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl ÓÚÂÁÍÓ‚
ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl (ÏÌÓÊÂÒÚ‚‡) ÓÚÂÁÍÓ‚ dsl ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, dls , 2 ) (ÎËÌÂÈ̇fl ‰Ë‡„‡Ïχ
ÇÓÓÌÓ„Ó, ÔÓÓʉÂÌ̇fl ÓÚÂÁ͇ÏË), ÓÔ‰ÂÎÂÌÌÓ ͇Í
dsl ( x, Ai ) = inf d E ( x, y),
y ∈Ai
„‰Â ÏÌÓÊÂÒÚ‚Ó ÔÓÓʉ‡˛˘Ëı ˝ÎÂÏÂÌÚÓ‚ A = {A1 , …, Ak }, k ≥ 2 ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÓÚÂÁÍÓ‚ Ai = [ai bi ] Ë d E ÂÒÚ¸ Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. àÏÂÌÌÓ,


d E ( x, ai ),
ÂÒÎË


dls ( x, Ai ) = 
d E ( x, bi ),
ÂÒÎË

T
d ( x − a , ( x − ai ) (bi − ai ) (b − a )), ÂÒÎË
i
i
i
2
 E
d E ( ai , bi )

x ∈ Rai ,
x ∈ Rbi ,
x ∈ 2 \ {Rai ∪ Rbi },
„‰Â ai = {x ∈ 2 : (bi − ai )T ( x − ai ) < 0}, Rbi = {x ∈ 2 : ( ai − bi )T ( x − bi ) < 0}.
É·‚‡ 20. ê‡ÒÒÚÓflÌËfl ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó
297
ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl ‰Û„
ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl (ÏÌÓÊÂÒÚ‚‡ ÍÛ„Ó‚˚ı) ‰Û„ dca ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, dca , 2 ) (ÎËÌÂÈ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó, ÔÓÓʉÂÌ̇fl ‰Û„‡ÏË ÓÍÛÊÌÓÒÚÂÈ), ÓÔ‰ÂÎÂÌÌÓ ͇Í
dca ( x, Ai ) = inf d E ( x, y),
y ∈Ai
„‰Â ÔÓÓʉ‡˛˘Â ÏÌÓÊÂÒÚ‚Ó A = {Ai , …, Ak }, k ≥ 2 ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ‰Û„ ÓÍÛÊÌÓÒÚÂÈ Ai (ÏÂ̸¯Ëı ËÎË ‡‚Ì˚ı ÔÓÎÛÓÍÛÊÌÓÒÚflÏ) Ò
‡‰ËÛÒÓÏ ri Ë ˆÂÌÚÓÏ ‚ xci , ‡ dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. àÏÂÌÌÓ Ù‡ÍÚ˘ÂÒÍË,
dca ( x, Ai ) = min{d E ( x, ai ), d E ( x, bi ),| d E ( x, xci ) − ri |},
„‰Â ai Ë bi – ÍÓ̈‚˚ ÚÓ˜ÍË ‰Û„Ë A i .
ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl ÓÍÛÊÌÓÒÚÂÈ
ê‡ÒÒÚÓflÌËÂÏ ÇÓÓÌÓ„Ó ‰Îfl (ÏÌÓÊÂÒÚ‚‡) ÓÍÛÊÌÓÒÚÂÈ dcl ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ӷӷ˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, dcl , 2 ) (ÎËÌÂÈ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó, ÔÓÓʉÂÌ̇fl ÓÍÛÊÌÓÒÚflÏË), ÓÔ‰ÂÎÂÌÌÓ ͇Í
dcl ( x, Ai ) = inf d E ( x, y),
y ∈Ai
„‰Â ÔÓÓʉ‡˛˘Â ÏÌÓÊÂÒÚ‚Ó A = {A1 , …, Ak }, k ≥ 2 ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÓÍÛÊÌÓÒÚÂÈ A i Ò ‡‰ËÛÒÓÏ ri Ë ˆÂÌÚÓÏ ‚ xci , ‡ dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. àÏÂÌÌÓ, Ù‡ÍÚ˘ÂÒÍË
dca ( x, Ai ) = | d E ( x, xci ) − ri | .
ÑÎfl ÎËÌÂÈÌ˚ı ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó, ÔÓÓʉÂÌÌ˚ı ÓÍÛÊÌÓÒÚflÏË, ÒÛ˘ÂÒÚ‚ÛÂÚ
ÏÌÓ„Ó ‡Á΢Ì˚ı ÔÓÓʉ‡˛˘Ëı ‡ÒÒÚÓflÌËÈ. ç‡ÔËÏÂ, dcl* ( x, Ai ) = d E ( x, xci ) − ri
ËÎË dcl* ( x, Ai ) = d E2 ( x, xci ) − ri2 (‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó ÔÓ ã‡„ÂÛ).
ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl ӷ·ÒÚÂÈ
ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl ӷ·ÒÚÂÈ dar ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó
Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, dar , 2 ) (‰Ë‡„‡Ïχ ӷ·ÒÚÂÈ ÇÓÓÌÓ„Ó),
ÓÔ‰ÂÎÂÌÌÓ ͇Í
dar ( x, Ai ) = inf d E ( x, y),
y ∈Ai
„‰Â A = {A1 , …, Ak ), k ≥ 2 ÂÒÚ¸ ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl Ò‚flÁÌ˚ı
Á‡ÏÍÌÛÚ˚ı ÏÌÓÊÂÒÚ‚ (ӷ·ÒÚÂÈ), Ë dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ.
ëΉÛÂÚ Ó·‡ÚËÚ¸ ‚ÌËχÌË ̇ ÚÓ, ˜ÚÓ ‰Îfl β·Ó„Ó Ó·Ó·˘ÂÌÌÓ„Ó ÔÓÓʉ‡˛˘Â„Ó
ÏÌÓÊÂÒÚ‚‡ A = {A1 , …, Ak ), k ≥ 2 ÏÓÊÌÓ ËÒÔÓθÁÓ‚‡Ú¸ ‚ ͇˜ÂÒÚ‚Â ÔÓÓʉ‡˛˘Â„Ó
‡ÒÒÚÓflÌËfl ÇÓÓÌÓ„Ó ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ÓÚ ÚÓ˜ÍË ı ‰Ó ÏÌÓÊÂÒÚ‚‡ Ai :
: dHaus ( x, Ai ) = sup d E ( x, y), „‰Â dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ.
y ∈Ai
298
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ñËÎË̉˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
ñËÎË̉˘ÂÒÍÓ ‡ÒÒÚÓflÌË dcyl ÂÒÚ¸ ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÔÓ‚ÂıÌÓÒÚË ˆËÎË̉‡ S, ÍÓÚÓ‡fl ËÒÔÓθÁÛÂÚÒfl ‚ ͇˜ÂÒÚ‚Â ÔÓÓʉ‡˛˘Â„Ó ‡ÒÒÚÓflÌËfl ÇÓÓÌÓ„Ó ‰Îfl
ˆËÎË̉˘ÂÒÍÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, dcyl , S ) ÖÒÎË ÓÒ¸ ˆËÎË̉‡ ‰ËÌ˘ÌÓ„Ó
‡‰ËÛÒ‡ ‡ÁÏ¢Â̇ ̇ ı3 -ÓÒË ‚ 3 , ÚÓ ˆËÎË̉˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Î˛·˚ÏË
ÚӘ͇ÏË x,y ∈ S Ò ˆËÎË̉˘ÂÒÍËÏË ÍÓÓ‰Ë̇ڇÏË (1, θx, zx) Ë (1, θy, zy) Á‡‰‡ÂÚÒfl ͇Í
 (θ − θ )2 + ( z − z )2 , ÂÒÎË θ − θ ≤ π,
x
y
x
y
y
x

dcyl ( x, y) = 
 (θ x + 2 π − θ y )2 + ( z x − z y )2 , ÂÒÎË θ y − θ x > π.

äÓÌ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
äÓÌ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ d con ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÔÓ‚ÂıÌÓÒÚË
ÍÓÌÛÒ‡ S, ÍÓÚÓ‡fl ËÒÔÓθÁÛÂÚÒfl ‚ ͇˜ÂÒÚ‚Â ÔÓÓʉ‡˛˘Â„Ó ‡ÒÒÚÓflÌËfl ‰Îfl ÍÓÌ˘ÂÒÍÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, dcon , S ). ÖÒÎË ÓÒ¸ ÍÓÌÛÒ‡ S ‡ÁÏ¢Â̇ ̇ x 3 -ÓÒË ‚
3 Ë ‡‰ËÛÒ ÓÍÛÊÌÓÒÚË Ó˜Â˜Ë‚‡ÂÏÓÈ ÔÂÂÒ˜ÂÌËÂÏ ÍÓÌÛÒ‡ S Ò x1x2-ÔÎÓÒÍÓÒÚ¸˛
‡‚ÂÌ Â‰ËÌˈÂ, ÚÓ ‡ÒÒÚÓflÌË ÍÓÌÛÒ‡ ÏÂÊ‰Û Î˛·˚ÏË ÚӘ͇ÏË x, y ∈ S Á‡‰‡ÂÚÒfl ͇Í

rx2 + ry2 − 2 rx ry cos(θ ′y − θ ′x ),
ÂÒÎË θ ′y ≤ θ ′x + π sin(α / 2),

dcon ( x, y) = 
 rx2 + ry2 − 2 rx ry cos(θ ′x + 2 π sin(α / 2) − θ ′y ), ÂÒÎË θ ′y > θ ′x + π sin(α / 2),

„‰Â (x1, x 2 , x 3 ) – ÔflÏÓÛ„ÓθÌ˚ ‰Â͇ÚÓ‚˚ ÍÓÓ‰Ë̇Ú˚ ÚÓ˜ÍË ı ̇ S, α – Û„ÓÎ ÔË
‚Â¯ËÌ ÍÓÌÛÒ‡, θx – Û„ÓÎ ÔÓÚË‚ ˜‡ÒÓ‚ÓÈ ÒÚÂÎÍË ÓÚ x 1 -ÓÒË ‰Ó ÎÛ˜‡ ËÁ ËÒıÓ‰ÌÓÈ
ÚÓ˜ÍË ‰Ó ÚÓ˜ÍË ( x1 , x 2 , 0), θ ′x = θ x sin(α / 2), rx = x12 + x 22 + ( x3 − coth(α / 2))2 – ‡ÒÒÚÓflÌË ÔÓ ÔflÏÓÈ ÓÚ ‚Â¯ËÌ˚ ÍÓÌÛÒ‡ ‰Ó ÚÓ˜ÍË (x 1 , x2, x3).
ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ÔÓfl‰Í‡ m
ê‡ÒÒÏÓÚËÏ ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó Ä Ó·˙ÂÍÚÓ‚ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (S, d) Ë
ˆÂÎÓ ˜ËÒÎÓ m ≥ 1. ê‡ÒÒÏÓÚËÏ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı m-ÔÓ‰ÏÌÓÊÂÒÚ‚ Mi ËÁ Ä (Ú.Â. Mi ⊂ A
Ë | Mi | = m). Ñˇ„‡Ïχ ÇÓÓÌÓ„Ó ÔÓfl‰Í‡ m ÏÌÓÊÂÒÚ‚‡ Ä ÂÒÚ¸ ‡Á·ËÂÌË S ̇ ӷ·ÒÚË ÇÓÓÌÓ„Ó V(Mi) m-ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ Ä Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ V(M i)
ÒÓ‰Âʇ· ‚Ò ÚÓ˜ÍË s ∈ S, ÍÓÚÓ˚ "·ÎËÊÂ" Í Mi, ˜ÂÏ Í Î˛·ÓÏÛ ‰Û„ÓÏÛ m ÏÌÓÊÂÒÚ‚Û M i : d(s, x) < d(s, y) ‰Îfl β·˚ı x ∈ Mii Ë y ∈ S\Mi. ùÚ‡ ‰Ë‡„‡Ïχ Û͇Á˚‚‡ÂÚ ÔÂ‚Ó„Ó, ‚ÚÓÓ„Ó, …, m-„Ó ·ÎËÊ‡È¯Â„Ó ÒÓÒ‰‡ ÓÍÂÒÚÌÓÒÚË ÚÓ˜ÍË ËÁ S.
í‡ÍË ‰Ë‡„‡ÏÏ˚ ÏÓ„ÛÚ ·˚Ú¸ ÓÔ‰ÂÎÂÌ˚ ‚ ÚÂÏË̇ı ÌÂÍÓÚÓÓÈ "ÙÛÌ͈ËË
‡ÒÒÚÓflÌËfl" D(s, Mi), ‚ ˜‡ÒÚÌÓÒÚË, ÌÂÍÓÚÓÓ m-ıÂÏËÏÂÚËÍË Ì‡ S. ÑÎfl Mi = {ai , bi}
‡ÒÒχÚË‚‡ÎËÒ¸ ÙÛÌ͈ËË | d ( s, ai ) − d ( s, bi ) |, d ( s, ai ) + d ( s, bi ), d ( s, ai ) ⋅ d ( s, bi ), ‡ Ú‡ÍÊ 2-ÏÂÚËÍË d ( s, ai ) + d ( s, bi ) + d ( ai , bi ) Ë ÔÎÓ˘‡‰¸ ÚÂÛ„ÓθÌË͇ (s, ai, bi).
É·‚‡ 21
ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁÂ
Ó·‡ÁÓ‚ Ë Á‚ÛÍÓ‚
21.1. êÄëëíéüçàü Ç ÄçÄãàáÖ éÅêÄáéÇ
é·‡·ÓÚ͇ Ó·‡ÁÓ‚ (ËÁÓ·‡ÊÂÌËÈ) ËÏÂÂÚ ‰ÂÎÓ Ò Ú‡ÍËÏË Í‡Í ÙÓÚÓ„‡ÙËË, ‚ˉÂÓ‰‡ÌÌ˚ ËÎË ÚÓÏÓ„‡Ù˘ÂÒÍË ËÁÓ·‡ÊÂÌËfl. Ç ˜‡ÒÚÌÓÒÚË, ÍÓÏÔ¸˛ÚÂ̇fl „‡ÙË͇
Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÔÓˆÂÒÒ ÒËÌÚÂÁËÓ‚‡ÌËfl Ó·‡ÁÓ‚ ËÁ ‡·ÒÚ‡ÍÚÌ˚ı ÏÓ‰ÂÎÂÈ,
ÚÓ„‰‡ Í‡Í Ï‡¯ËÌÌÓ ‡ÒÔÓÁ̇‚‡ÌË ӷ‡ÁÓ‚ – ˝ÚÓ ËÁ‚ΘÂÌË ÌÂÍÓÈ ‡·ÒÚ‡ÍÚÌÓÈ
ËÌÙÓχˆËË: Ò͇ÊÂÏ, 3D (Ú.Â. ÚÂıÏÂÌÓ„Ó) ÓÔËÒ‡ÌËfl ÚÓÈ ËÎË ËÌÓÈ ÒˆÂÌ˚, ËÒÔÓθÁÛfl  ‚ˉÂÓÒ˙ÂÏÍÛ. 燘Ë̇fl „‰Â-ÚÓ Ò 2000 „. ‡Ì‡ÎÓ„Ó‚‡fl Ó·‡·ÓÚ͇ ËÁÓ·‡ÊÂÌËÈ
(ÓÔÚ˘ÂÒÍËÏË ÛÒÚÓÈÒÚ‚‡ÏË) ÛÒÚÛÔ‡ÂÚ ÏÂÒÚÓ ˆËÙÓ‚ÓÈ Ó·‡·ÓÚÍ Ë, ‚ ˜‡ÒÚÌÓÒÚË,
ˆËÙÓ‚ÓÏÛ ‰‡ÍÚËÓ‚‡Ì˲ (̇ÔËÏÂ, Ó·‡·ÓÚÍ ËÁÓ·‡ÊÂÌËÈ, ÔÓÎÛ˜ÂÌÌ˚ı Ò
ÔÓÏÓ˘¸˛ Ó·˚˜Ì˚ı ˆËÙÓ‚˚ı ÙÓÚÓ‡ÔÔ‡‡ÚÓ‚).
äÓÏÔ¸˛ÚÂ̇fl „‡ÙË͇ (Ë ÏÓÁ„ ˜ÂÎÓ‚Â͇) ËÏÂÂÚ ‰ÂÎÓ Ò Ó·‡Á‡ÏË ‚ÂÍÚÓÌÓÈ
„‡ÙËÍË, Ú.Â. Ú‡ÍËÏË, ÍÓÚÓ˚ Ô‰ÒÚ‡‚ÎÂÌ˚ „ÂÓÏÂÚ˘ÂÒÍË ÍË‚˚ÏË, ÏÌÓ„ÓÛ„ÓθÌË͇ÏË Ë Ú.Ô. àÁÓ·‡ÊÂÌË ‡ÒÚÓ‚ÓÈ „‡ÙËÍË (ËÎË ˆËÙÓ‚Ó ËÁÓ·‡ÊÂÌËÂ, ÔÓ·ËÚÓ‚Ó ÓÚÓ·‡ÊÂÌËÂ) ‚ 2D ÂÒÚ¸ Ô‰ÒÚ‡‚ÎÂÌË 2D ËÁÓ·‡ÊÂÌËfl Í‡Í ÍÓ̘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ‰ËÒÍÂÚÌ˚ı ‚Â΢ËÌ, ̇Á˚‚‡ÂÏ˚ı ÔËÍÒÂÎflÏË (ÒÓÍ‡˘ÂÌÌÓ ÓÚ
‡Ì„ÎËÈÒÍÓ„Ó "picture element"), ‡ÁÏ¢ÂÌÌ˚ı ̇ Í‚‡‰‡ÚÌÓÈ „ËÁ 2 ËÎË
¯ÂÒÚËÛ„ÓθÌÓÈ „ËÁÂ. ä‡Í Ô‡‚ËÎÓ, ‡ÒÚ – ˝ÚÓ Í‚‡‰‡Ú̇fl 2k × 2k „ËÁ‡ Ò k = 8,9
ËÎË 10. ÇˉÂÓËÁÓ·‡ÊÂÌËfl Ë ÚÓÏÓ„‡Ù˘ÂÒÍË (Ú.Â. ÔÓÎÛ˜ÂÌÌ˚Â Í‡Í ÒÂËfl
ÔÓÔÂ˜Ì˚ı Ò˜ÂÌËÈ ÓÚ‰ÂθÌ˚ÏË ˜‡ÒÚflÏË) ËÁÓ·‡ÊÂÌËfl fl‚Îfl˛ÚÒfl 3D ËÁÓ·‡ÊÂÌËflÏË (2D ÔÎ˛Ò ‚ÂÏfl); Ëı ‰ËÒÍÂÚÌ˚ ‚Â΢ËÌ˚ ̇Á˚‚‡˛ÚÒfl ‚ÓÍÒÂÎflÏË
(˝ÎÂÏÂÌÚ‡ÏË Ó·˙Âχ).
ÑËÒÍÂÚÌÓ ‰‚Ó˘ÌÓ ËÁÓ·‡ÊÂÌË ËÒÔÓθÁÛÂÚ ÚÓθÍÓ ‰‚‡ Á̇˜ÂÌËfl: 0 Ë 1; 1 ËÌÚÂÔÂÚËÛÂÚÒfl Í‡Í Îӄ˘ÂÒ͇fl "ËÒÚË̇" Ë ÓÚÓ·‡Ê‡ÂÚÒfl ˜ÂÌ˚Ï ˆ‚ÂÚÓÏ; Ú‡ÍËÏ
Ó·‡ÁÓÏ, Ò‡ÏÓ ËÁÓ·‡ÊÂÌË ÓÚÓʉÂÒÚ‚ÎflÂÚÒfl Ò ÏÌÓÊÂÒÚ‚ÓÏ ˜ÂÌ˚ı ÔËÍÒÂÎÂÈ.
ùÎÂÏÂÌÚ˚ ·Ë̇ÌÓ„Ó 2D ËÁÓ·‡ÊÂÌËfl ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÍÓÏÔÎÂÍÒÌ˚Â
˜ËÒ· x = iy, „‰Â (x, y) – ÍÓÓ‰Ë̇ڇ ÚÓ˜ÍË Ì‡ ‰ÂÈÒÚ‚ËÚÂÎÌÓÈ ÔÎÓÒÍÓÒÚË 2 . çÂÔÂ˚‚ÌÓ ·Ë̇ÌÓ ËÁÓ·‡ÊÂÌË fl‚ÎflÂÚÒfl (Ó·˚˜ÌÓ ÍÓÏÔ‡ÍÚÌ˚Ï) ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ
ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (Ó·˚˜ÌÓ Â‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n Ò n = 2,3).
èÓÎÛÚÓÌÓ‚˚ ËÁÓ·‡ÊÂÌËfl ÏÓ„ÛÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÚӘ˜ÌÓ-‚Á‚¯ÂÌÌ˚ ·Ë̇Ì˚ ËÁÓ·‡ÊÂÌËfl. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ̘ÂÚÍÓ ÏÌÓÊÂÒÚ‚Ó fl‚ÎflÂÚÒfl ÚӘ˜ÌÓ‚Á‚¯ÂÌÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ Ò ‚ÂÒ‡ÏË (Á̇˜ÂÌËflÏË ÔË̇‰ÎÂÊÌÓÒÚË) (ÒÏ. [Bloc99] ‰Îfl
Ó·ÁÓ‡ ̘ÂÚÍËı ‡ÒÒÚÓflÌËÈ). ÑÎfl ÔÓÎÛÚÓÌÓ‚˚ı ËÁÓ·‡ÊÂÌËÈ xyi-Ô‰ÒÚ‡‚ÎÂÌËÂ
ÔËÏÂÌflÂÚÒfl ‚ ÒÎÛ˜‡Â, ÍÓ„‰‡ ÔÎÓÒÍÓÒÌ˚ ÍÓÓ‰Ë̇Ú˚ (x, y) Ó·ÓÁ̇˜‡˛Ú ÙÓÏÛ, ‚ ÚÓ
‚ÂÏfl Í‡Í ‚ÂÒ i (ÒÓÍ‡˘ÂÌÌÓ ÓÚ ËÌÚÂÌÒË‚ÌÓÒÚË, Ú.Â. flÍÓÒÚË) – ÚÂÍÒÚÛÛ (‡ÒÔ‰ÂÎÂÌË ËÌÚÂÌÒË‚ÌÓÒÚË). àÌÓ„‰‡ ËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ χÚˈ‡ ((ixy)) ÔÓÎÛÚÓÌÓ‚. ÉËÒÚÓ„‡Ïχ flÍÓÒÚË ÔÓÎÛÚÓÌÓ‚Ó„Ó ËÁÓ·‡ÊÂÌËfl ÔÓ͇Á˚‚‡ÂÚ ˜‡ÒÚÓÚÛ Í‡Ê‰Ó„Ó
Ëϲ˘Â„ÓÒfl ‚ ‰‡ÌÌÓÏ ËÁÓ·‡ÊÂÌËË Á̇˜ÂÌËfl flÍÓÒÚË. ÖÒÎË ËÁÓ·‡ÊÂÌË ËÏÂÂÚ m
300
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ÛÓ‚ÌÂÈ flÍÓÒÚË (ÒÚÓηËÍÓ‚ „ËÒÚÓ„‡ÏÏ˚ ÔÓÎÛÚÓÌÓ‚), ÚÓ ÒÛ˘ÂÒÚ‚Û˛Ú 2m ‡Á΢Ì˚ı ‚ÓÁÏÓÊÌ˚ı ËÌÚÂÌÒË‚ÌÓÒÚÂÈ. é·˚˜ÌÓ m = 8 Ë ˜ËÒ· 0,1,…,255 Ô‰ÒÚ‡‚Îfl˛Ú
‰Ë‡Ô‡ÁÓÌ ËÌÚÂÌÒË‚ÌÓÒÚË ÓÚ ·ÂÎÓ„Ó ‰Ó ˜ÂÌÓ„Ó; ‰Û„Ë ÚËÔ˘Ì˚ Á̇˜ÂÌËfl m = 10,
12, 14, 16. É·Á ˜ÂÎÓ‚Â͇ ‡Á΢‡ÂÚ ÔÓfl‰Í‡ 350 Ú˚Ò. ‡Á΢Ì˚ı ˆ‚ÂÚÓ‚, ÌÓ ÚÓθÍÓ
30 ‡Á΢Ì˚ı ÔÓÎÛÚÓÌÓ‚; Ú‡ÍËÏ Ó·‡ÁÓÏ, ˆ‚ÂÚ Ó·Î‡‰‡ÂÚ „Ó‡Á‰Ó ·ÓΠ‚˚ÒÓÍÓÈ
‡Á¯‡˛˘ÂÈ ÒÔÓÒÓ·ÌÓÒÚ¸˛.
ÑÎfl ˆ‚ÂÚÌ˚ı ËÁÓ·‡ÊÂÌËÈ Ì‡Ë·ÓΠËÁ‚ÂÒÚÌ˚Ï fl‚ÎflÂÚÒfl (RGB)-Ô‰ÒÚ‡‚ÎÂÌËÂ,
„‰Â ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ ÍÓÓ‰Ë̇Ú˚ R, G, B Ó·ÓÁ̇˜‡˛Ú ÛÓ‚ÌË Í‡ÒÌÓÈ, ÁÂÎÂÌÓÈ Ë
ÒËÌÂÈ ˆ‚ÂÚÓ‚˚ı ÒÓÒÚ‡‚Îfl˛˘Ëı; 3D „ËÒÚÓ„‡Ïχ ÔÓ͇Á˚‚‡ÂÚ flÍÓÒÚ¸ ‚ ͇ʉÓÈ ÚÓ˜ÍÂ. ëÂ‰Ë ÏÌÓ„Ëı ‰Û„Ëı 3D ÏÓ‰ÂÎÂÈ (ÔÓÒÚ‡ÌÒÚ‚) ˆ‚ÂÚÓ‚ ‡Á΢‡˛Ú: (CMY) ÍÛ·
(ˆ‚ÂÚ‡ „ÓÎÛ·ÓÈ, χÎËÌÓ‚˚È, ÊÂÎÚ˚È), (HSL) ÍÓÌÛÒ (ÚËÔ ÍÓÎÓËÚ‡ ç, Á‡‰‡ÌÌ˚È
Í‡Í Û„ÓÎ, ̇Ò˚˘ÂÌÌÓÒÚ¸ S, Á‡‰‡Ì̇fl ‚ %, ÓÒ‚Â˘ÂÌÌÓÒÚ¸ L, Á‡‰‡Ì̇fl ‚ %) Ë (YUV),
(YIQ), ËÒÔÓθÁÛÂÏ˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‚ ÚÂ΂ËÁËÓÌÌ˚ı ÒËÒÚÂχı PAL Ë NTSC.
ëӄ·ÒÌÓ ÛÚ‚ÂʉÂÌÌÓÈ åÂʉÛ̇Ó‰ÌÓÈ ÍÓÏËÒÒËÂÈ ÔÓ ÓÒ‚Â˘ÂÌÌÓÒÚË (åäé)
ÏÂÚÓ‰ËÍ ÔÂÂÒ˜ÂÚ (RGB) ‚ ÏÂÛ flÍÓÒÚË (ÓÒ‚Â˘ÂÌÌÓÒÚË) ÔÓÎÛÚÓ̇ ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl
Í‡Í 0,299R + 0, 587G + 0,114B. ñ‚ÂÚÓ‚‡fl „ËÒÚÓ„‡Ïχ fl‚ÎflÂÚÒfl ‚ÂÍÚÓÓÏ ÔËÁ̇ÍÓ‚ ‰ÎËÌ˚ n (Ó·˚˜ÌÓ n = 64 ËÎË 256) Ò ÍÓÏÔÓÌÂÌÚ‡ÏË, Ô‰ÒÚ‡‚Îfl˛˘ËÏË
ÎË·Ó Ó·˘Â ÍÓ΢ÂÒÚ‚Ó ÔËÍÒÂÎÂÈ, ÎË·Ó ÔÓˆÂÌÚ ÔËÍÒÂÎÂÈ ‰‡ÌÌÓ„Ó ˆ‚ÂÚ‡ ‚ ËÁÓ·‡ÊÂÌËË.
àÁÓ·‡ÊÂÌËfl ˜‡˘Â ‚ÒÂ„Ó Ô‰ÒÚ‡‚ÎÂÌ˚ ‚ÂÍÚÓ‡ÏË ÔËÁ̇ÍÓ‚, ‚Íβ˜‡fl ˆ‚ÂÚÓ‚˚ „ËÒÚÓ„‡ÏÏ˚, ˆ‚ÂÚÓ‚Û˛ ̇Ò˚˘ÂÌÌÓÒÚ¸ ÚÂÍÒÚÛ˚, ‰ÂÒÍËÔÚÓ˚ ÙÓÏ˚ Ë Ú.Ô.
èËÏÂ‡ÏË ÔÓÒÚ‡ÌÒÚ‚ ÔËÁ̇ÍÓ‚ fl‚Îfl˛ÚÒfl: ËÒıӉ̇fl ËÌÚÂÌÒË‚ÌÓÒÚ¸ (Á̇˜ÂÌËfl
ÔËÍÒÂÎÂÈ), Í‡fl („‡Ìˈ˚, ÍÓÌÚÛ˚, ÔÓ‚ÂıÌÓÒÚË), ÓÚ΢ËÚÂθÌ˚ ı‡‡ÍÚÂËÒÚËÍË (Û„ÎÓ‚˚ ÚÓ˜ÍË, ÔÂÂÒ˜ÂÌËfl ÎËÌËÈ, ÚÓ˜ÍË ‚˚ÒÓÍÓÈÍË‚ËÁÌ˚) Ë ÒÚ‡ÚËÒÚ˘ÂÒÍË ÔËÁ̇ÍË (ÏÓÏÂÌÚÌ˚ ËÌ‚‡ˇÌÚ˚, ˆÂÌÚÓˉ˚). ä ÚËÔÓ‚˚Ï ‚ˉÂÓÔËÁÌ‡Í‡Ï ÓÚÌÓÒflÚÒfl ÔÂÂÍ˚ÚË ͇‰Ó‚, ÔÂÂÏ¢ÂÌËfl. ÇÓÒÒÚ‡ÌÓ‚ÎÂÌË ËÁÓ·‡ÊÂÌËfl
(ÔÓËÒÍ ÔÓ‰Ó·ÌÓÒÚÂÈ) ÒÓÒÚÓËÚ (Ú‡Í ÊÂ Í‡Í Ë ‰Îfl ‰Û„Ëı ‰‡ÌÌ˚ı, Ú‡ÍËı Í‡Í ‡Û‰ËÓÁ‡ÔËÒË, ÔÓÒΉӂ‡ÚÂθÌÓÒÚË Ñçä, ÚÂÍÒÚÓ‚˚ ‰ÓÍÛÏÂÌÚ˚, ‚ÂÏÂÌÌ˚ fl‰˚ Ë Ú.Ô.) ‚
ÔÓËÒÍ ËÁÓ·‡ÊÂÌËÈ, ÔËÁ̇ÍË ÍÓÚÓ˚ı ÎË·Ó ·ÎËÁÍË ÏÂÊ‰Û ÒÓ·ÓÈ, ÎË·Ó ·ÎËÁÍË Í
ÍÓÌÍÂÚÌÓÏÛ Á‡ÔÓÒÛ, ÎË·Ó Ì‡ıÓ‰flÚÒfl ‚ Á‡‰‡ÌÌÓÏ ‰Ë‡Ô‡ÁÓÌÂ.
àÏÂÂÚÒfl ‰‚‡ ÏÂÚÓ‰‡ ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ„Ó Ò‡‚ÌÂÌËfl ËÁÓ·‡ÊÂÌËÈ: ÔÓ ËÌÚÂÌÒË‚ÌÓÒÚË (ˆ‚ÂÚ‡ Ë ÚÂÍÒÚÛ˚ „ËÒÚÓ„‡ÏÏ˚) Ë ÔÓ „ÂÓÏÂÚËË (ÓÔËÒ‡ÌË ÙÓÏ˚ Ò ÔÓÏÓ˘¸˛ ÒÂ‰ËÌÌÓÈ ÓÒË, ÒÍÎÂÎÂÚ‡ Ë Ú.Ô.). ç˜ÂÚÍËÈ ÚÂÏËÌ ÙÓχ ÔËÏÂÌflÂÚÒfl ‰Îfl
ÓÔËÒ‡ÌËfl ‚̯ÌÂ„Ó Ó·ÎË͇ (ÒËÎÛ˝Ú‡) Ó·˙ÂÍÚ‡, Â„Ó ÎÓ͇θÌÓÈ „ÂÓÏÂÚËË ËÎË Ó·˘Â„Ó „ÂÓÏÂÚ˘ÂÒÍÓ„Ó ËÒÛÌ͇ („ÂÓÏÂÚ˘ÂÒÍËı ÓÒÓ·ÂÌÌÓÒÚÂÈ, ÚÓ˜ÂÍ, ÍË‚˚ı Ë
Ú.Ô.) ËÎË ‰Îfl Ú‡ÍÓ„Ó ËÒÛÌ͇ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ÌÂÍÚÓÓÈ „ÛÔÔ˚ ÔÂÓ·‡ÁÓ‚‡ÌËÈ
ÔÓ‰Ó·Ëfl (ÔÂÂÌÓÒÓ‚, ‚‡˘ÂÌËÈ Ë Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl). ç˜ÂÚÍËÈ ÚÂÏËÌ ÚÂÍÒÚÛ‡
ÓÁ̇˜‡ÂÚ ‚ÒÂ, ˜ÚÓ ÓÒÚ‡ÂÚÒfl ÔÓÒΠӷ‡·ÓÚÍË ‰‡ÌÌ˚ı Ó ˆ‚ÂÚÂ Ë ÙÓÏÂ.
èÓ‰Ó·ÌÓÒÚ¸ ÏÂÊ‰Û ‚ÂÍÚÓÌ˚ÏË Ô‰ÒÚ‡‚ÎÂÌËflÏË ËÁÓ·‡ÊÂÌËÈ ËÁÏÂflÂÚÒfl Ò
ÔÓÏÓ˘¸˛ Ó·˚˜Ì˚ı, ‡ÒÒÚÓflÌËÈ: lp -ÏÂÚËÍ, ÏÂÚËÍ ‚Á‚¯ÂÌÌÓ„Ó ‰‡ÍÚËÓ‚‡ÌËfl,
‡ÒÒÚÓflÌËfl í‡ÌËÏÓÚÓ, ‡ÒÒÚÓflÌËfl ÍÓÒËÌÛÒ‡, ‡ÒÒÚÓflÌËfl å‡ı‡ÎÓÌÓ·ËÒ‡ Ë Â„Ó Ó·Ó·˘ÂÌËÈ, ‡ÒÒÚÓflÌËfl ·Ûθ‰ÓÁÂ‡. àÁ ‚ÂÓflÚÌÓÒÚÌ˚ı ‡ÒÒÚÓflÌËÈ Ì‡Ë·ÓΠ˜‡ÒÚÓ ËÒÔÓθÁÛ˛ÚÒfl: ‡ÒÒÚÓflÌË Åı‡ÚÚ‡˜‡¸fl 2, ‡ÒÒÚÓflÌË ïÂÎÎË̉ÊÂ‡, ‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãÂÈ·ÎÂ‡, ‡ÒÒÚÓflÌË ÑÊÂÙÙË Ë (ÓÒÓ·ÂÌÌÓ ‰Îfl „ËÒÚÓ„‡ÏÏ) ␹2 -‡ÒÒÚÓflÌËÂ,
‡ÒÒÚÓflÌË äÓÎÏÓ„ÓÓ‚‡–ëÏËÌÓ‚‡, ‡ÒÒÚÓflÌË äÛËÔÂ‡.
éÒÌÓ‚Ì˚ÏË ‡ÒÒÚÓflÌËflÏË, ÔËÏÂÌflÂÏ˚ÏË ‰Îfl ÍÓÏÔ‡ÍÚÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ X Ë Y
ÏÌÓÊÂÒÚ‚‡ n (Ó·˚˜ÌÓ n = 2,3) ËÎË Ëı ‰ËÒÍÂÚÌ˚ı ‚‡ˇÌÚÓ‚, fl‚Îfl˛ÚÒfl: ÏÂÚË͇
ÄÒÔÎÛ̉‡, ÏÂÚË͇ òÂÔ‡‰‡, ÔÓÎÛÏÂÚË͇ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË Vol(X∆Y) (ÒÏ.
åÂÚË͇ çËÍÓ‰Ëχ, ÓÚÍÎÓÌÂÌË ÔÎÓ˘‡‰Ë, åÂÚË͇ ˆËÙÓ‚Ó„Ó Ó·˙Âχ Ë Ëı ÌÓχÎËÁ‡ˆËË, ‡ Ú‡ÍÊ ‚‡ˇÌÚ˚ ı‡ÛÒ‰ÓÙÓ‚‡ ‡ÒÒÚÓflÌËfl (ÒÏ. ÌËÊ ÔÓ ÚÂÍÒÚÛ).
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
301
ÑÎfl ˆÂÎÂÈ Ó·‡·ÓÚÍË ËÁÓ·‡ÊÂÌËÈ ÔÂ˜ËÒÎÂÌÌ˚ ÌËÊ ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl
‡ÒÒÚÓflÌËflÏË ÏÂÊ‰Û "ËÒÚËÌÌ˚Ï" Ë ÔË·ÎËÊÂÌÌ˚Ï ˆËÙÓ‚˚ÏË ËÁÓ·‡ÊÂÌËflÏË Ò
ÚÂÏ, ˜ÚÓ·˚ ÓˆÂÌËÚ¸ ͇˜ÂÒÚ‚Ó ‡Î„ÓËÚÏÓ‚. ÑÎfl ˆÂÎÂÈ ‚ÓÒÒÚ‡ÌÓ‚ÎÂÌËfl ËÁÓ·‡ÊÂÌËÈ
‡ÒÒÚÓflÌËfl ËÁÏÂfl˛ÚÒfl ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ÔËÁ̇ÍÓ‚ Á‡ÔÓÒ‡ Ë ÒÒ˚ÎÓÍ.
ñ‚ÂÚÓ‚˚ ‡ÒÒÚÓflÌËfl
ñ‚ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó – ˝ÚÓ 3-Ô‡‡ÏÂÚ˘ÂÒÍÓ ÓÔËÒ‡ÌË ˆ‚ÂÚÌÓÒÚË. çÂÓ·ıÓ‰ËÏÓÒÚ¸ ËÏÂÌÌÓ ÚÂı Ô‡‡ÏÂÚÓ‚ Ó·ÛÒÎÓ‚ÎÂ̇ ÒÛ˘ÂÒÚ‚Ó‚‡ÌËÂÏ ‚ ˜ÂÎӂ˜ÂÒÍÓÏ
„·ÁÛ ÚÂı ‚ˉӂ ˆÂÔÚÓÓ‚, ‚ÓÒÔËÌËχ˛˘Ëı ÍÓÓÚÍÓ‚ÓÎÌÓ‚˚Â, Ò‰Ì‚ÓÎÌÓ‚˚Â
Ë ‰ÎËÌÌÓ‚ÓÎÌÓ‚˚ ËÁÎÛ˜ÂÌËfl, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ÒËÌÂÏÛ, ÁÂÎÂÌÓÏÛ Ë Í‡ÒÌÓÏÛ
ˆ‚ÂÚÛ.
åÂʉÛ̇Ӊ̇fl ÍÓÏËÒÒËfl ÔÓ ÓÒ‚Â˘ÂÌÌÓÒÚË ÓÔ‰ÂÎË· ‚ 1931 „. Ô‡‡ÏÂÚ˚ ˆ‚ÂÚÓ‚Ó„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (XYZ) ̇ ÓÒÌÓ‚Â (RGB)-ÏÓ‰ÂÎË Ë ËÁÏÂÂÌËÈ ˜ÂÎӂ˜ÂÒÍÓ„Ó
ÁÂÌËfl. ëӄ·ÒÌÓ Òڇ̉‡ÚÛ ÍÓÏËÒÒËË ‚ ˆ‚ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (XYZ) ‚Â΢ËÌ˚ X,
Y Ë Z ÔË·ÎËÁËÚÂθÌÓ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Í‡ÒÌÓÏÛ, ÁÂÎÂÌÓÏÛ Ë ÒËÌÂÏÛ ˆ‚ÂÚ‡Ï. É·‚Ì˚Ï Ô‰ÔÓÎÓÊÂÌËÂÏ ÍÓÎÓËÏÂÚ˘ÂÒÍÓ„Ó ‡Ì‡ÎËÁ‡, ˝ÍÒÔÂËÏÂÌڇθÌÓ Ó·ÓÒÌÓ‚‡ÌÌ˚Ï à̉ÓÛ (1991), fl‚ÎflÂÚÒfl ÚÓ, ˜ÚÓ ‚ÓÒÔËÌËχÂÏÓ ˆ‚ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ‰ÓÔÛÒ͇ÂÚ ÒÛ˘ÂÒÚ‚Ó‚‡ÌË ÏÂÚËÍË, ËÒÚËÌÌÓ„Ó ˆ‚ÂÚÓ‚Ó„Ó ‡ÒÒÚÓflÌËfl. è‰ÔÓ·„‡ÂÚÒfl,
˜ÚÓ ‰‡Ì̇fl ÏÂÚË͇ ·Û‰ÂÚ ÎÓ͇θÌÓ Â‚ÍÎˉӂÓÈ, Ú.Â. ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. ÑÛ„ËÏ
‰ÓÔÛ˘ÂÌËÂÏ fl‚ÎflÂÚÒfl ÒÛ˘ÂÒÚ‚Ó‚‡ÌË ÌÂÔÂ˚‚ÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl ËÁ ÏÂÚ˘ÂÒÍÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ Ò‚ÂÚÓ‚˚ı ÒÚËÏÛÓ‚ ‚ ˝ÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ÒÏ. „ËÔÓÚÂÁÛ
‚ÂÓflÚÌÓÒÚË ‡ÒÒÚÓflÌËfl ‚ „Î. 23 Ó ÚÓÏ, ˜ÚÓ ‚ÂÓflÚÌÓÒÚ¸ ÚÓ„Ó, ˜ÚÓ ÒÛ·˙ÂÍÚ ÓÚ΢ËÚ
Ó‰ËÌ ÒÚËÏÛÎ ÓÚ ‰Û„Ó„Ó, fl‚ÎflÂÚÒfl ÌÂÔÂ˚‚ÌÓ ‚ÓÁ‡ÒÚ‡˛˘ÂÈ ÙÛÌ͈ËÂÈ ÌÂÍÓÚÓÓÈ
ÒÛ·˙ÂÍÚË‚ÌÓÈ Í‚‡ÁËÏÂÚËÍË ÏÂÊ‰Û ˝ÚËÏË ÒÚËÏÛ·ÏË).
í‡ÍÓÈ ‡‚ÌÓÍÓÌÚ‡ÒÚÌÓÈ ˆ‚ÂÚÓ‚ÓÈ ¯Í‡Î˚, „‰Â ‡‚Ì˚ ‡ÒÒÚÓflÌËfl ‚ ˆ‚ÂÚÓ‚ÓÏ
ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ‡‚Ì˚Ï ‡ÒÒÚÓflÌËflÏ ‚ ˆ‚ÂÚ‡ı, ÔÓ͇ ¢ Ì ÔÓÎÛ˜ÂÌÓ Ë
ÒÛ˘ÂÒÚ‚Û˛˘Ë ˆ‚ÂÚÓ‚˚ ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl ‡Á΢Ì˚ÏË Â ‡ÔÔÓÍÒËχˆËflÏË.
èÂ‚˚Ï ¯‡„ÓÏ ‚ ˝ÚÓÏ Ì‡Ô‡‚ÎÂÌËË fl‚Îfl˛ÚÒfl ˝ÎÎËÔÒ˚ å‡Íĉ‡Ï‡, Ú. ӷ·ÒÚË (x, y)
̇ ‰Ë‡„‡ÏÏ ıÓχÚ˘ÌÓÒÚË, ‚Ò ÒÓ‰Âʇ˘ËÂÒfl ˆ‚ÂÚ‡ ÍÓÚÓÓÈ ‚˚„Îfl‰flÚ ÌÂ‡Á΢ËÏ˚ÏË ‰Îfl ÌÓχθÌÓ„Ó ˜ÂÎӂ˜ÂÒÍÓ„Ó „·Á‡. ùÚË 25 ˝ÎÎËÔÒÓ‚ ÓÔ‰ÂÎfl˛Ú
X
Y
Ë y=
fl‚Îfl˛ÚÒfl
ÏÂÚËÍÛ ‚ ˆ‚ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â. á‰ÂÒ¸ x =
X +Y + Z
X +Y + Z
ÔÓÂÍÚË‚Ì˚ÏË ÍÓÓ‰Ë̇ڇÏË, Ë ˆ‚ÂÚ‡ ‰Ë‡„‡ÏÏ˚ ıÓχÚ˘ÌÓÒÚË Á‡ÌËχ˛Ú ÌÂÍÛ˛
ӷ·ÒÚ¸ ‚¢ÂÒÚ‚ÂÌÌÓÈ ÔÓÂÍÚË‚ÌÓÈ ÔÎÓÒÍÓÒÚË. èÓÒÚ‡ÌÒÚ‚Ó CIE (L * a* b* )fl‚ÎflÂÚÒfl
‡‰‡ÔÚ‡ˆËÂÈ ˆ‚ÂÚÓ‚Ó„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ÍÓÏËÒÒËË åäé (ÓÚ 1931 „.); ÓÌÓ Ó·ÂÒÔ˜˂‡ÂÚ
˜‡ÒÚ˘ÌÛ˛ ÎË̇ËÁ‡ˆË˛ ÏÂÚËÍË, Á‡ÎÓÊÂÌÌÓÈ ‚ ˝ÎÎËÔÒ‡ı å‡Íĉ‡Ï‡. è‡‡ÏÂÚ˚
L * , a* , b* ̇˷ÓΠÔÓÎÌÓÈ ÏÓ‰ÂÎË – ÔÓËÁ‚Ó‰Ì˚ ÓÚ L, a, b, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ı‡‡ÍÚÂËÒÚËÍÓÈ flÍÓÒÚË L ˆ‚ÂÚ‡ ÓÚ ˜ÂÌÓ„Ó L = 0 ‰Ó ·ÂÎÓ„Ó L = 100, ÔË ˝ÚÓÏ ‡
̇ıÓ‰ËÚÒfl ÏÂÊ‰Û ÁÂÎÂÌ˚Ï a < 0 Ë Í‡ÒÌ˚Ï a > 0, b – ÏÂÊ‰Û ÁÂÎÂÌ˚Ï a < 0 Ë ÊÂÎÚ˚Ï
b > 0.
ë‰Ì ˆ‚ÂÚÓ‚Ó ‡ÒÒÚÓflÌËÂ
ÑÎfl ‰‡ÌÌÓ„Ó 3D ˆ‚ÂÚÓ‚Ó„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ë ÔÂ˜Ìfl n ˆ‚ÂÚÓ‚ ÔÛÒÚ¸ (Òi1, Òi2, Òi3) –
Ô‰ÒÚ‡‚ÎÂÌË i-„Ó ˆ‚ÂÚ‡ ËÁ ÔÂ˜Ìfl ‚ ‰‡ÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â. ÑÎfl ˆ‚ÂÚÓ‚ÓÈ
„ËÒÚÓ„‡ÏÏ˚ x = (x1,…,xn)  Ò‰ÌËÏ ˆ‚ÂÚÓÏ fl‚ÎflÂÚÒfl ‚ÂÍÚÓ ( x(1) , x( 2 ) , x(3) ), „‰Â
n
x( j ) =
∑ xi cij (̇ÔËÏÂ, Ò‰ÌË Á̇˜ÂÌËfl Í‡ÒÌÓ„Ó, ÒËÌÂ„Ó Ë ÁÂÎÂÌÓ„Ó ‚ (RGB)).
i =1
ë‰Ì ˆ‚ÂÚÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ˆ‚ÂÚÓ‚˚ÏË „ËÒÚÓ„‡ÏχÏË
([HSEFN95]) fl‚ÎflÂÚÒfl ‚ÍÎˉӂ˚Ï ‡ÒÒÚÓflÌËÂÏ Ëı Ò‰ÌËı ˆ‚ÂÚÓ‚.
302
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ê‡ÒÒÚÓflÌËfl ˆ‚ÂÚÓ‚˚ı ÍÓÏÔÓÌÂÌÚÓ‚
èÛÒÚ¸ ‰‡ÌÓ ËÁÓ·‡ÊÂÌË (Í‡Í ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ 2); ÔÛÒÚ¸ pi Ó·ÓÁ̇˜‡ÂÚ
(‚ ÔÓˆÂÌÚ‡ı) ӷ·ÒÚ¸ ‰‡ÌÌÓ„Ó ËÁÓ·‡ÊÂÌËfl ˆ‚ÂÚf c i. ñ‚ÂÚÓ‚ÓÈ ÒÓÒÚ‡‚Îfl˛˘ÂÈ
ËÁÓ·‡ÊÂÌËfl fl‚ÎflÂÚÒfl Ô‡‡ (ci, pi). ê‡ÒÒÚÓflÌË 凖ÑÂÌ„‡–å‡ÌÊÛ̇ڇ ÏÂÊ‰Û ˆ‚ÂÚÓ‚˚ÏË ÒÓÒÚ‡‚Îfl˛˘ËÏË (c i, pi) Ë (c jpj) ÓÔ‰ÂÎflÂÚÒfl ͇Í
| pi − p j | ⋅d (ci , c j ),
„‰Â d (ci , c j ) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆ‚ÂÚ‡ÏË c i Ë c j ‚ ‰‡ÌÌÓÏ ˆ‚ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â.
åÓÈÒËÎӂ˘ Ë ‰. ‚‚ÂÎË ÏÓ‰ËÙË͇ˆË˛ ‰‡ÌÌÓ„Ó ‡ÒÒÚÓflÌËfl, ÔÓ‰Ó·ÌÛ˛ ‡ÒÒÚÓflÌ˲
·Ûθ‰ÓÁÂ‡.
䂇ÁË‡ÒÒÚÓflÌË ÔÂÂÒ˜ÂÌËÈ „ËÒÚÓ„‡ÏÏ
ÇÓÁ¸ÏÂÏ ‰‚ ˆ‚ÂÚÓ‚˚ „ËÒÚÓ„‡ÏÏ˚ x = ( x1 , …, x n ) Ë y = ( y1 , …, yn ) (Ò xi, yi, Ô‰ÒÚ‡‚Îfl˛˘ËÏË ÍÓ΢ÂÒÚ‚Ó ÔËÍÒÂÎÂÈ ‚ ÒÚÓηËÍ i). 䂇ÁË‡ÒÒÚÓflÌË ÔÂÂÒ˜ÂÌËÈ
„ËÒÚÓ„‡ÏÏ ë‚ÂÈ̇–Ňη‰‡ ÏÂÊ‰Û ÌËÏË (ÒÏ. ê‡ÒÒÚÓflÌË ÔÂÂÒ˜ÂÌËÈ, „Î. 17)
ÓÔ‰ÂÎflÂÚÒfl ͇Í
n
1−
∑ min( xi , yi )
i =1
n
∑ xi
.
i =1
ÑÎfl ÌÓχÎËÁËÓ‚‡ÌÌ˚ı „ËÒÚÓ„‡ÏÏ (Ó·˘‡fl ÒÛÏχ ‡‚̇ 1) ‚˚¯ÂÔ˂‰ÂÌÌÓÂ
n
Í‚‡ÁË‡ÒÒÚÓflÌË ÒÚ‡ÌÓ‚ËÚÒfl Ó·˚˜ÌÓÈ l1 -ÏÂÚËÍÓÈ
∑ | xi − yi |. çÓχÎËÁËÓ‚‡Ì̇fl
i =1
‚Á‡ËÏ̇fl ÍÓÂÎflˆËfl êÓÁÂÌÙÂ艇–ä‡Í‡ ÏÂÊ‰Û ı Ë Û fl‚ÎflÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛, ÓÔÂn
∑ xi , yi
‰ÂÎÂÌÌÓÈ Í‡Í
i =1
n
∑
.
xi2
i =1
䂇‰‡Ú˘ÌÓ ‡ÒÒÚÓflÌË „ËÒÚÓ„‡ÏÏ˚
ÑÎfl ‰‚Ûı „ËÒÚÓ„‡ÏÏ x = ( x1 , …, x n ) Ë y = ( y1 , …, yn ) (Ó·˚˜ÌÓ n = 256 ËÎË n = 64),
Ô‰ÒÚ‡‚Îfl˛˘Ëı ˆ‚ÂÚÌÓÒÚ¸ (‚ ÔÓˆÂÌÚ‡ı) ‰‚Ûı ËÁÓ·‡ÊÂÌËÈ, Ëı Í‚‡‰‡Ú˘ÌÓÂ
‡ÒÒÚÓflÌË „ËÒÚÓ„‡ÏÏ˚ (ËÒÔÓθÁÛÂÏÓ ‚ ÒËÒÚÂÏ IBM Á‡ÔÓÒ‡ ÔÓ ÒÓ‰ÂʇÌ˲
ËÁÓ·‡ÊÂÌËfl) fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ å‡ı‡ÎÓÌÓ·ËÒ‡, ÓÔ‰ÂÎÂÌÌ˚Ï Í‡Í
( x − y)T A( x − y),
„‰Â A = (( aij )) – ÒËÏÏÂÚ˘̇fl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl χÚˈ‡, Ë ‚ÂÒ a ij –
ÌÂÍÓ ÔÓ‰Ú‚ÂʉÂÌÌÓ ÌÂÔÓÒ‰ÒÚ‚ÂÌÌ˚Ï ‚ÓÒÔËflÚËÂÏ ÒıÓ‰ÒÚ‚Ó ÏÂÊ‰Û ˆ‚ÂÚ‡ÏË i Ë
dij
j. ç‡ÔËÏÂ (ÒÏ. [HSEFN95]), aij = 1 −
, „‰Â dij fl‚ÎflÂÚÒfl ‚ÍÎˉӂ˚Ï ‡Òmax d pq
1≤ p , q ≤ n
ÒÚÓflÌËÂÏ ÏÂÊ‰Û 3-‚ÂÍÚÓ‡ÏË, Ô‰ÒÚ‡‚Îfl˛˘ËÏË i Ë j ‚ ÌÂÍÓÚÓÓÏ ˆ‚ÂÚÓ‚ÓÏ ÔÓÒÚ-
303
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
1
(( v j − v j )2 + ( si cosh i −
5
− s j cosh j )2 + ( si sinh i − s j sinh j )2 )1 / 2 , „‰Â (hi , si , vi ) Ë (h j , s j , v j ) – Ô‰ÒÚ‡‚ÎÂÌËfl ˆ‚ÂÚÓ‚ i Ë j ‚ ˆ‚ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (HSV).
ê‡ÒÒÚÓflÌË ÔÓÎÛÚÓÌÓ‚Ó„Ó ËÁÓ·‡ÊÂÌËfl
èÛÒÚ¸ f(x) Ë g(x) – Á̇˜ÂÌËfl flÍÓÒÚË ‰‚Ûı ˆËÙÓ‚˚ı ÔÓÎÛÚÓÌÓ‚˚ı ËÁÓ·‡ÊÂÌËÈ f
Ë g ‰Îfl ÔËÍÒÂÎfl x ∈ X, „‰Â ï fl‚ÎflÂÚÒfl ‡ÒÚÓÏ ÔËÍÒÂÎÂÈ. ã˛·Ó ‡ÒÒÚÓflÌË ÏÂʉÛ
ÚÓ˜ÌÓ ‚Á‚¯ÂÌÌ˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË (X, f) Ë (X, g) (̇ÔËÏÂ, ‡ÒÒÚÓflÌË ·Ûθ‰ÓÁÂ‡)
ÏÓÊÂÚ ·˚Ú¸ ÔËÏÂÌÂÌÓ ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û f Ë g. é‰Ì‡ÍÓ ÓÒÌÓ‚Ì˚ÏË
ËÒÔÓθÁÛÂÏ˚ÏË ‡ÒÒÚÓflÌËflÏË (ÓÌË Ì‡Á˚‚‡˛ÚÒfl Ú‡ÍÊ ӯ˷͇ÏË) ÏÂÊ‰Û ËÁÓ·‡ÊÂÌËflÏË f Ë g fl‚Îfl˛ÚÒfl:
‡ÌÒÚ‚Â. ÑÛ„Ó ÓÔ‰ÂÎÂÌË Á‡‰‡ÂÚÒfl Í‡Í aij = 1 −
1/ 2
 1

1) Ò‰ÌÂÍ‚‡‰‡Ú˘ÂÒ͇fl ӯ˷͇ RMS( f , g) = 
( f ( x ) − g( x ))2 
(Í‡Í ‚‡ | X | x ∈X

ˇÌÚ ‰ÓÔÛÒ͇ÂÚÒfl ËÒÔÓθÁÓ‚‡ÌË l1 -ÌÓÏ˚ | f ( x ) − g( x ) | ‚ÏÂÒÚÓ l2-ÌÓÏ˚);
∑
∑


g( x ) 2


x ∈X
2) ÓÚÌÓ¯ÂÌË Ò˄̇Î-¯ÛÏ SNR( f , g) = 
2
(
f
(
x
)
−
g
(
x
))


 x ∈X

∑
1/ 2
;
3) ÍÓ˝ÙÙˈËÂÌÚ Ó¯Ë·ÓÍ ÌÂÔ‡‚ËθÌÓÈ Í·ÒÒËÙË͇ˆËË ÔËÍÒÂÎÂÈ
1
{x ∈ X :
|X|
: f ( x ) ≠ g( x )} (ÌÓχÎËÁËÓ‚‡ÌÌÓ ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌËÂ);
1/ 2
 1

4) Ò‰ÌÂÍ‚‡‰‡Ú˘ÂÒ͇fl ˜‡ÒÚÓÚ̇fl ӯ˷͇ 
( F(u) − G(u))2  , „‰Â F Ë
2
 | U | u ∈U

G – ‰ËÒÍÂÚÌ˚ ÔÂÓ·‡ÁÓ‚‡ÌËfl îÛ¸Â ‰Îfl f Ë g ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ë U – ˜‡ÒÚÓÚ̇fl
ӷ·ÒÚ¸;
∑
1/ 2
 1

(1+ | ηu |2 )δ ( F(u) − G(u))2  ,
5) ӯ˷͇ ÔÓfl‰Í‡ δ ‚ ÌÓÏÂ ëÓ·Ó΂‡ 
2
 | U | u ∈U

1
„‰Â 0 < δ < 1 ÙËÍÒËÓ‚‡ÌÓ (Ó·˚˜ÌÓ ) Ë η u ÂÒÚ¸ ˜‡ÒÚÓÚÌ˚È ‚ÂÍÚÓ, ‡ÒÒÓˆËË2
Ó‚‡ÌÌ˚È Ò ÔÓÁˈËÂÈ u ‚ ˜‡ÒÚÓÚÌÓÈ Ó·Î‡ÒÚË U.
Lp -ÏÂÚË͇ ÒʇÚËfl ËÁÓ·‡ÊÂÌËfl
ÇÓÁ¸ÏÂÏ ˜ËÒÎÓ r, 0 ≤ r < 1. Lp -ÏÂÚË͇ ÒʇÚËfl ËÁÓ·‡ÊÂÌËfl fl‚ÎflÂÚÒfl Ó·˚˜ÌÓÈ
∑
2
n
L p -ÏÂÚËÍÓÈ Ì‡ ≥0
(ÏÌÓÊÂÒÚ‚Â ÔÓÎÛÚÓÌÓ‚˚ı ËÁÓ·‡ÊÂÌËÈ, ‡ÒÒχÚË‚‡ÂÏ˚ı ͇Í
p
p − 1 2 p −1
n × n χÚˈ˚), „‰Â  – ¯ÂÌË Û‡‚ÌÂÌËfl r =
⋅e
. í‡Í, p = 1,2 ËÎË ∞ ‰Îfl
2p −1
e
1
≈ 0, 82. á‰ÂÒ¸ r ÓˆÂÌË‚‡ÂÚ ËÌÙÓχÚË‚ÌÛ˛ (Ú.Â.
r = 0, r = e 2 / 3 ≈ 0, 65 ËÎË r ≥
2
3
̇ÔÓÎÌÂÌÌÛ˛ ÌÂÌÛ΂˚ÏË Á̇˜ÂÌËflÏË) ˜‡ÒÚ¸ ËÁÓ·‡ÊÂÌËfl. ëӄ·ÒÌÓ [KKN02], ˝Ú‡
ÏÂÚË͇ fl‚ÎflÂÚÒfl ̇ËÎÛ˜¯ÂÈ ÔÓ Í‡˜ÂÒÚ‚Û ÏÂÚËÍÓÈ ‰Îfl ‚˚·Ó‡ ÒıÂÏ˚ ÒʇÚËfl Ò
ÔÓÚÂflÏË.
304
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ê‡ÒÒÚÓflÌËfl ÒÍÛ„ÎÂÌËfl
ê‡ÒÒÚÓflÌËflÏË ÒÍÛ„ÎÂÌËfl ̇Á˚‚‡˛ÚÒfl ‡ÒÒÚÓflÌËfl, ‡ÔÔÓÍÒËÏËÛ˛˘Ë ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ Í‡Í ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË ÔÛÚË ‚ „‡Ù G = ( 2 , E), „‰Â ‰‚‡ ÔËÍÒÂÎfl Ò˜ËÚ‡˛ÚÒfl ÒÓÒ‰ÌËÏË, ÂÒÎË Ó‰ËÌ ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ ‰Û„Ó„Ó
Ó‰ÌÓ¯‡„Ó‚˚Ï ıÓ‰ÓÏ ÔÓ 2 . èË ˝ÚÓÏ ‰‡˛ÚÒfl ÔÂ˜Â̸ ‡Á¯ÂÌÌ˚ı ıÓ‰Ó‚ Ë
ÔÓÒÚÓ ‡ÒÒÚÓflÌËÂ, Ú.Â. ÔÓÎÓÊËÚÂθÌ˚È ‚ÂÒ (ÒÏ. „Î. 19) ÔÓÒÚ‡‚ÎÂÌ ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËÂ
͇ʉÓÏÛ ÚËÔÛ Ú‡ÍÓ„Ó ıÓ‰‡.
åÂÚË͇ (␣, ␤)-ÒÍÛ„ÎÂÌËfl ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‰‚ÛÏ ‡Á¯ÂÌÌ˚Ï ıÓ‰‡Ï – Ò l1 -‡ÒÒÚÓflÌËÂÏ Ë l∞-‡ÒÒÚÓflÌËÂÏ 1 (ÚÓθÍÓ ‰Ë‡„Ó̇θÌ˚ ÔÂÂÏ¢ÂÌËfl) – ‚Á‚¯ÂÌÌ˚ı
˜ËÒ·ÏË α Ë β ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. éÒÌÓ‚Ì˚ÏË ÒÎÛ˜‡flÏË ÔËÏÂÌÂÌËfl fl‚Îfl˛ÚÒfl (α, β) =
= (1, 0) (ÏÂÚË͇ „ÓÓ‰ÒÍÓ„Ó Í‚‡ڇ· ËÎË 4-ÏÂÚË͇), (ÏÂÚË͇ ¯‡ıχÚÌÓÈ ‰ÓÒÍË,
ËÎË 8-ÏÂÚË͇), (1, 2 ) (ÏÂÚË͇ åÓÌڇ̇Ë), ((3,4)-ÏÂÚË͇), (ÏÂÚË͇ ïËΉ˘‡–
êÛÚӂˈ‡), (5, 7) (ÏÂÚË͇ ÇÂ‚Â‡).
åÂÚË͇ ÅÓ„ÂÙÓÒ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÚÂÏ ‡Á¯ÂÌÌ˚Ï ıÓ‰‡Ï – Ò l1 -‡ÒÒÚÓflÌËÂÏ
1, Ò l∞-‡ÒÒÚÓflÌËÂÏ 1 (ÚÓθÍÓ ‰Ë‡„Ó̇θÌ˚ ÔÂÂÏ¢ÂÌËfl) Ë ıÓ‰ÓÏ ÍÓÌfl – Ò ‚ÂÒ‡ÏË
5,7 Ë 11 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
åÂÚË͇ 3D-ÒÍÛ„ÎÂÌËfl (ËÎË ÏÂÚË͇ (α, β, γ)-ÒÍÛ„ÎÂÌËfl) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ
‚Á‚¯ÂÌÌÓ„Ó ÔÛÚË ·ÂÒÍÓ̘ÌÓ„Ó „‡Ù‡ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ 3 , ‚ ÍÓÚÓÓÏ ‰‚Â
‚Â¯ËÌ˚ fl‚Îfl˛ÚÒfl ÒÓÒ‰ÌËÏË, ÂÒÎË Ëı l∞-‡ÒÒÚÓflÌË ‡‚ÌÓ Â‰ËÌˈÂ, ‡ ‚ÂÒ‡ α, β Ë γ
Ò‚flÁ‡Ì˚ Ò 6 ÒÓÒ‰ÌËÏË „‡ÌflÏË, 12 ÒÓÒ‰ÌËÏË ·‡ÏË Ë 8 ÒÓÒ‰ÌËÏË ‚Â¯Ë̇ÏË
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ÖÒÎË α = β = γ = 1, ÚÓ Ï˚ ËÏÂÂÏ l∞-ÏÂÚËÍÛ. åÂÚËÍË (3, 4, 5)- Ë
(1, 2, 3)-ÒÍÛ„ÎÂÌËfl fl‚Îfl˛ÚÒfl ̇˷ÓΠ˜‡ÒÚÓ ÔËÏÂÌflÂÏ˚ÏË ‰Îfl ‡·ÓÚ˚ Ò 3D
ËÁÓ·‡ÊÂÌËflÏË.
åÂÚË͇ ó‡Û‰ıÛË–åÛÚË–ó‡Û‰ıÛË ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË x = (x1,
…, xm) Ë y = ( y1 , …, ym ) ÓÔ‰ÂÎflÂÚÒfl ͇Í
xi ( x , y ) − yi ( x , y ) +
∑
1
| xi − yi |,
n
1 +   1≤ i ≤ n, i ≠ i ( x , y )
2
„‰Â χÍÒËχθÌÓ Á̇˜ÂÌË x i–yi ÔÓÎÛ˜‡ÂÚÒfl ‰Îfl i = i(x,y). ÑÎfl n = 2 ˝ÚÓ ÏÂÚË͇
1, 3  - ÒÍÛ„ÎÂÌËfl.
 2
ê‡ÒÒÚÓflÌË ·Ûθ‰ÓÁÂ‡
ê‡ÒÒÚÓflÌË ·Ûθ‰ÓÁÂ‡ fl‚ÎflÂÚÒfl ‰ËÒÍÂÚÌÓÈ ÙÓÏÓÈ ‡ÒÒÚÓflÌËfl åÓÌʇ–ä‡ÌÚÓӂ˘‡. ÉÛ·Ó „Ó‚Ófl, ˝ÚÓ ÏËÌËχθÌ˚È Ó·˙ÂÏ ‡·ÓÚ˚, ÍÓÚÓ‡fl ÌÂÓ·ıÓ‰Ëχ ‰Îfl
ÔÂÂÏ¢ÂÌËfl „ÛÌÚ‡ ËÎË Ï‡ÒÒ˚ Ò Ó‰ÌÓ„Ó ÏÂÒÚ‡ (ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ Ó·‡ÁÓÏ ‡ÁÏ¢ÂÌÌÓ„Ó ‚ ÔÓÒÚ‡ÌÒÚ‚Â) ̇ ‰Û„Ó (ÒÓ‚ÓÍÛÔÌÓÒÚ¸ flÏ). ÑÎfl β·˚ı ‰‚Ûı ÍÓ̘Ì˚ı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ x = ( x1 , …, x m ) Ë y = ( y1 , …, ym ) ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ‡ÒÒÏÓÚËÏ Ò˄̇ÚÛ˚, Ú.Â. ÚӘ˜ÌÓ ‚Á‚¯ÂÌÌ˚ ÏÌÓÊÂÒÚ‚‡ P1 = ( p1 ( x1 ),
…, p1 ( x m )) Ë P2 = ( p2 ( x1 ), …, p2 ( x n )). ç‡ÔËÏÂ (ÒÏ. [RTG00]), Ò˄̇ÚÛ˚ ÏÓ„ÛÚ
Ô‰ÒÚ‡‚ÎflÚ¸ Í·ÒÚÂ˚ ˆ‚ÂÚÓ‚ ËÎË ÚÂÍÒÚÛÌÓ„Ó ÒÓ‰ÂʇÌËfl ËÁÓ·‡ÊÂÌËÈ: ˝ÎÂÏÂÌÚ˚ ï fl‚Îfl˛ÚÒfl ˆÂÌÚÓˉ‡ÏË Í·ÒÚÂÓ‚, ‡ p1 ( x1 ), p2 ( y j ) – ‡ÁÏÂ‡ÏË ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı Í·ÒÚÂÓ‚. àÒıÓ‰ÌÓ ‡ÒÒÚÓflÌË d fl‚ÎflÂÚÒfl ÌÂÍÓÚÓ˚Ï ˆ‚ÂÚÓ‚˚ı ‡ÒÒÚÓflÌËÂÏ, Ò͇ÊÂÏ, ‚ÍÎˉӂ˚Ï ‡ÒÒÚÓflÌËÂÏ ‚ 3D CIE (L * a* b* ) ˆ‚ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â.
305
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
èÛÒÚ¸ W1 =
∑ p1 ( xi )
Ë W2 =
i
∑ p2 ( y j )
fl‚Îfl˛ÚÒfl ÒÛÏχÌ˚ÏË ‚ÂÒ‡ÏË P1 Ë P2
i
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. íÓ„‰‡ ‡ÒÒÚÓflÌË ·Ûθ‰ÓÁÂ‡ (ËÎË ‡ÒÒÚÓflÌË Ú‡ÌÒÔÓÚËÓ‚ÍË)
ÏÂÊ‰Û Ò˄̇ÚÛ‡ÏË P1 Ë P2 ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÙÛÌ͈Ëfl
∑ fij*d( xi , y j )
i, j
∑ fij*
,
i, j
„‰Â m × n χÚˈ‡ S * = (( fij* )) fl‚ÎflÂÚÒfl ÓÔÚËχθÌ˚Ï, Ú.Â. ÏËÌËÏËÁËÛ˛˘ËÏ
∑ fij d( xi , y j ), ÔÓÚÓÍÓÏ. èÓÚÓÍ (‚ÂÒ‡ „ÛÌÚ‡) – ˝ÚÓ m × n χÚˈ‡
S = (( fij )), Û‰Ó‚-
i, j
ÎÂÚ‚Ófl˛˘‡fl ÒÎÂ‰Û˛˘ËÏ Ó„‡Ì˘ÂÌËflÏ:
1) ‚ÒÂ fij ≥ 0;
2)
∑ fij = min{W1, W2};
ij
3)
∑ fij ≤ p2 ( y j ) Ë ∑ fij ≤ p1 ( xi ).
i
i
àÚ‡Í, ‰‡ÌÌÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÛÒ‰ÌÂÌËÂÏ ËÒıÓ‰ÌÓ„Ó ‡ÒÒÚÓflÌËfl d, ̇ ÍÓÚÓÓ „ÛÁ˚ ÔÂÂÏ¢‡˛ÚÒfl ÓÔÚËχθÌ˚Ï ÔÓÚÓÍÓÏ.
Ç ÒÎÛ˜‡Â W1 = W2 = 1 ‚˚¯ÂÔ˂‰ÂÌÌ˚ ‰‚‡ ÌÂ‡‚ÂÌÒÚ‚‡ 3) ÒÚ‡ÌÓ‚flÚÒfl ‡‚ÂÌÒÚ‚‡ÏË. çÓχÎËÁ‡ˆËfl Ò˄̇ÚÛ ‰Ó W1 = W2 = 1 (˜ÚÓ Ì ËÁÏÂÌflÂÚ ‡ÒÒÚÓflÌËfl) ÔÓÁ‚ÓÎflÂÚ ‡ÒÒχÚË‚‡Ú¸ P1 Ë P2 Í‡Í ‡ÒÔ‰ÂÎÂÌËfl ‚ÂÓflÚÌÓÒÚÂÈ ÒÎÛ˜‡ÈÌ˚ı ‚Â΢ËÌ,
Ò͇ÊÂÏ, X Ë Y. íÓ„‰‡
fij d ( xi , y j ) fl‚ÎflÂÚÒfl ÔÓÒÚÓ S [d ( X , Y )], Ú.Â. ‡ÒÒÚÓflÌËÂ
∑
i, j
·Ûθ‰ÓÁÂ‡ ÒÓ‚Ô‡‰‡ÂÚ ‚ ˝ÚÓÏ ÒÎÛ˜‡Â Ò ÏÂÚËÍÓÈ ä‡ÌÚÓӂ˘‡–å˝ÎÎÓÛÁ‡–åÓÌʇ–
LJÒÒÂχ̇. Ä ‰Îfl ÒÎÛ˜‡fl, Ò͇ÊÂÏ, W1 < W2 ÓÌÓ ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â Ì fl‚ÎflÂÚÒfl
ÏÂÚËÍÓÈ. é‰Ì‡ÍÓ Á‡ÏÂ̇ ‚ ‚˚¯ÂÔ˂‰ÂÌÌÓÏ ÓÔ‰ÂÎÂÌËË ÌÂ‡‚ÂÌÒÚ‚‡ 3) ‡‚ÂÌÒÚ‚‡ÏË
p ( x )W
3⬘)
fij = p2 ( y j ) Ë
fij = 1 1 1
W2
i
i
∑
∑
‰‡ÂÚ ÔÓÎÛÏÂÚËÍÛ ÔÓÔÓˆËÓ̇θÌÓ„Ó ÔÂÂÌÓÒ‡ ܡÌÌÓÔÓÎÓÒ‡–ÇÂθÚ͇ÏÔ‡.
ê‡ÒÒÚÓflÌË ԇ‡ÏÂÚËÁÓ‚‡ÌÌ˚ı ÍË‚˚ı
îÓχ ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂ̇ Ô‡‡ÏÂÚËÁÓ‚‡ÌÌ˚ÏË ÍË‚˚ÏË Ì‡ ÔÎÓÒÍÓÒÚË.
é·˚˜ÌÓ Ú‡Í‡fl ÍË‚‡fl fl‚ÎflÂÚÒfl ÔÓÒÚÓÈ, Ú.Â. Ì ËÏÂÂÚ Ò‡ÏÓÔÂÂÒ˜ÂÌËÈ. èÛÒÚ¸
X = X ( x (t )) Ë Y = Y ( y(t )) – ‰‚ ԇ‡ÏÂÚËÁÓ‚‡ÌÌ˚ ÍË‚˚Â, Û ÍÓÚÓ˚ı (ÌÂÔÂ˚‚Ì˚Â) ÙÛÌ͈ËË Ô‡‡ÏÂÚËÁ‡ˆËË x(t) Ë y(t) ̇ [0, 1] Û‰Ó‚ÎÂÚ‚Ófl˛Ú ÛÒÎÓ‚ËflÏ x(0) =
= y(0) = 0 Ë x (1) = y(1) = 1.
ç‡Ë·ÓΠËÒÔÓθÁÛÂÏ˚Ï ‡ÒÒÚÓflÌËÂÏ Ô‡‡ÏÂÚËÁÓ‚‡ÌÌ˚ı ÍË‚˚ı fl‚ÎflÂÚÒfl ÏËÌËÏÛÏ (ÍÓÚÓ˚È ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÏÓÌÓÚÓÌÌÓ ‚ÓÁ‡ÒÚ‡˛˘ËÏ Ô‡‡ÏÂÚËÁ‡ˆËflÏ x(t)
Ë y(t)) χÍÒËχθÌÓ„Ó Â‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl d E ( X ( x (t )), Y ( y(t ))). ùÚÓ – ÒÔˆˇθÌ˚È Â‚ÍÎˉӂ ÒÎÛ˜‡È ‡ÒÒÚÓflÌËfl ÒÓ·‡ÍÓ‚Ó‰‡, ÍÓÚÓÓÂ, ‚ Ò‚Ó˛ Ó˜Â‰¸, fl‚ÎflÂÚÒfl
306
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ÏÂÚËÍÓÈ î¯ ‰Îfl ÒÎÛ˜‡fl ÍË‚˚ı. LJˇÌÚ‡ÏË ˝ÚÓ„Ó ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl
ÓÚ·‡Ò˚‚‡ÌË ÛÒÎÓ‚Ëfl ÏÓÌÓÚÓÌÌÓÒÚË Ô‡‡ÏÂÚËÁ‡ˆËË ËÎË Ì‡ıÓʉÂÌË ˜‡ÒÚË
ÍË‚ÓÈ, ÓÚ ÍÓÚÓÓÈ ‰Û„‡fl  ˜‡ÒÚ¸ ÓÚÒÚÓËÚ Ì‡ ÏËÌËχθÌÓÏ Ú‡ÍÓÏ ‡ÒÒÚÓflÌËË
([VeHa01]).
ê‡ÒÒÚÓflÌËfl ÌÂÎËÌÂÈÌÓ„Ó „Ë·ÍÓ„Ó Òӄ·ÒÓ‚‡ÌËfl
ê‡ÒÒÏÓÚËÏ ‰ËÒÍÂÚÌÓ Ô‰ÒÚ‡‚ÎÂÌË ÍË‚˚ı. èÛÒÚ¸ r ≥ 1 – ÍÓÌÒÚ‡ÌÚ‡ Ë A =
= {a1 , …, am}, B = {b1 , …, bn} – ÍÓ̘Ì˚ ÛÔÓfl‰Ó˜ÂÌÌ˚ ÏÌÓÊÂÒÚ‚‡ ÔÓÒΉӂ‡ÚÂθÌ˚ı ÚÓ˜ÂÍ Ì‡ ‰‚Ûı Á‡ÏÍÌÛÚ˚ı ÍË‚˚ı. ÑÎfl β·Ó„Ó ÒÓı‡Ìfl˛˘Â„Ó ÔÓfl‰ÓÍ ÒÓÓÚ‚ÂÚÒÚ‚Ëfl f ÏÂÊ‰Û ‚ÒÂÏË ÚӘ͇ÏË Ä Ë ‚ÒÂÏË ÚӘ͇ÏË Ç Û˜‡ÒÚÓÍ s(ai, bj) ‰Îfl ( ai , f ( ai ) =
= b j ) ‡‚ÂÌ r, ÂÒÎË f(ai–1) = bj ËÎË f(ai) = bj–1, Ë ‡‚ÂÌ 0, Ë̇˜Â.
éÒ··ÎÂÌÌÓ ‡ÒÒÚÓflÌË ÌÂÎËÌÂÈÌÓ„Ó „Ë·ÍÓ„Ó Òӄ·ÒÓ‚‡ÌËfl fl‚ÎflÂÚÒfl ÏËÌËÏÛÏÓÏ ÔÓ ‚ÒÂÏ Ú‡ÍËÏ f ‚Â΢ËÌ˚
( s( ai , b j ) + d ( ai , b j )), „‰Â d(ai, bj) – ‡ÁÌÓÒÚ¸ ÏÂʉÛ
͇҇ÚÂθÌ˚ÏË Û„Î‡ÏË ai Ë bj. éÌÓ fl‚ÎflÂÚÒfl ÔÓ˜ÚË ÏÂÚËÍÓÈ ‰Îfl ÌÂÍÓÚÓÓ„Ó r.
ÑÎfl r = 1 ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÌÂÎËÌÂÈÌÓ„Ó „Ë·ÍÓ„Ó Òӄ·ÒÓ‚‡ÌËfl.
∑
ê‡ÒÒÚÓflÌË ÙÛÌ͈ËË ‚‡˘ÂÌËfl
ÑÎfl ÔÎÓÒÍÓ„Ó ÏÌÓ„ÓÛ„ÓθÌË͇ ê Â„Ó ÙÛÌ͈ËÂÈ ‚‡˘ÂÌËfl Tp(s) ̇Á˚‚‡ÂÚÒfl Û„ÓÎ
(ÔÓÚË‚ ˜‡ÒÓ‚ÓÈ ÒÚÂÎÍË) ÏÂÊ‰Û Í‡Ò‡ÚÂθÌÓÈ Ë x-ÓÒ¸˛ Í‡Í ÙÛÌ͈Ëfl ‰ÎËÌ˚ ‰Û„Ë s.
ùÚ‡ ÙÛÌ͈Ëfl ‚ÓÁ‡ÒÚ‡ÂÚ ÔË Í‡Ê‰ÓÏ ÔÓ‚ÓÓÚ ̇ÎÂ‚Ó Ë Û·˚‚‡ÂÚ ÔË ÔÓ‚ÓÓÚÂ
̇Ô‡‚Ó.
ÑÎfl ‰‚Ûı ÏÌÓ„ÓÛ„ÓθÌËÍÓ‚ Ò ‡‚Ì˚ÏË ÔÂËÏÂÚ‡ÏË Ëı ‡ÒÒÚÓflÌËÂÏ ÙÛÌ͈ËË
‚‡˘ÂÌËfl fl‚ÎflÂÚÒfl L p -ÏÂÚË͇ ÏÂÊ‰Û Ëı ÙÛÌ͈ËflÏË ‚‡˘ÂÌËfl.
ê‡ÒÒÚÓflÌË ÙÛÌ͈ËË ‡ÁÏÂ‡
ÑÎfl ÔÎÓÒÍÓ„Ó „‡Ù‡ G = (V , E ) Ë ËÁÏÂfl˛˘ÂÈ ÙÛÌ͈ËË f ̇ Â„Ó ÏÌÓÊÂÒÚ‚Â
‚Â¯ËÌ V (̇ÔËÏÂ, ‡ÒÒÚÓflÌËË ÓÚ v ∈V ‰Ó ˆÂÌÚ‡ χÒÒ˚ V) ÙÛÌ͈Ëfl ‡ÁÏÂ‡
SG ( x, y) ÓÔ‰ÂÎflÂÚÒfl ̇ ÚӘ͇ı ( x, y) ∈ 2 Í‡Í ˜ËÒÎÓ Ò‚flÁÌ˚ı ÍÓÏÔÓÌÂÌÚ ÒÛÊÂÌËfl
G ̇ ‚Â¯ËÌ˚ {v ∈ V : f ( vl ) ≤ y}, ÒÓ‰Âʇ˘Ëı ÚÓ˜ÍÛ v⬘ Ò f ( v ′) ≤ x.
ÑÎfl ‰‚Ûı ÔÎÓÒÍËı „‡ÙÓ‚ Ò ÏÌÓÊÂÒÚ‚‡ÏË ‚Â¯ËÌ, ÔË̇‰ÎÂʇ˘ËÏË ‡ÒÚÛ
R ⊂ 2 , Ëı ‡ÒÒÚÓflÌËÂÏ ÙÛÌ͈ËË ‡ÁÏÂ‡ ì‡Á‡–ÇÂË fl‚ÎflÂÚÒfl ÌÓχÎËÁÓ‚‡ÌÌÓÂ
l1 -‡ÒÒÚÓflÌË ÏÂÊ‰Û Ëı ÙÛÌ͈ËflÏË ‡ÒÒÚÓflÌËfl ̇‰ ‡ÒÚ‡ÏË ÔËÍÒÂÎÂÈ.
ê‡ÒÒÚÓflÌË ÓÚ‡ÊÂÌËfl
ÑÎfl ÍÓ̘ÌÓ„Ó Ó·˙‰ËÌÂÌËfl Ä ÔÎÓÒÍËı ÍË‚˚ı Ë Í‡Ê‰ÓÈ ÚÓ˜ÍË x ∈ 2 ÔÛÒÚ¸ VAx
Ó·ÓÁ̇˜‡ÂÚ Ó·˙‰ËÌÂÌË ËÌÚÂ‚‡ÎÓ‚ ] x, a [ a ∈ A, ÍÓÚÓ˚ ‚ˉÌ˚ ËÁ ı, Ú.Â.
] x, a [ ∩ A = 0/ . èÛÒÚ¸
p Ax – ÔÎÓ˘‡‰¸ ÏÌÓÊÂÒÚ‚‡ {x + v ∈ VAx : x − v ∈ VAx }.
ê‡ÒÒÚÓflÌËÂÏ ÓÚ‡ÊÂÌËfl ‰Ó̇–ÇÂθ͇ÏÔ‡ ÏÂÊ‰Û ÍÓ̘Ì˚ÏË Ó·˙‰ËÌÂÌËflÏË Ä Ë Ç ÍË‚˚ı ÔÎÓÒÍËı fl‚ÎflÂÚÒfl ÌÓχÎËÁÓ‚‡ÌÌÓ l1 -‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ÙÛÌ͈ËflÏË p Ax Ë pBx , ÓÔ‰ÂÎÂÌÌÓ ͇Í
∫ pA − pB dx
x
x
2
∫ max pA ⋅ pB dx
x
2
x
.
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
307
ê‡ÒÒÚÓflÌÌÓ ÔÂÓ·‡ÁÓ‚‡ÌËÂ
ÇÓÁ¸ÏÂÏ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( X = 2 , d ) Ë ‰‚Ó˘ÌÓ ˆËÙÓ‚Ó ËÁÓ·‡ÊÂÌË M ⊂ X. ê‡ÒÒÚÓflÌÌ˚Ï ÔÂÓ·‡ÁÓ‚‡ÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÙÛÌ͈Ëfl f M : X → ≥ 0 , „‰Â
f M ( x ) = infu ∈M d ( x, u) fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ d(x, M).
ëΉӂ‡ÚÂθÌÓ, ‡ÒÒÚÓflÌÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÔÓÎÛÚÓÌÓ‚Ó ˆËÙÓ‚Ó ËÁÓ·‡ÊÂÌËÂ, ‚ ÍÓÚÓÓÏ Í‡Ê‰ÓÏÛ ÔËÍÒÂβ ÔËÒ‚‡Ë‚‡ÂÚÒfl ÏÂÚ͇
(ÛÓ‚Â̸ ÔÓÎÛÚÓ̇), ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ‡ÒÒÚÓflÌ˲ ‰Ó ·ÎËÊ‡È¯Â„Ó ÔËÍÒÂÎfl ÙÓ̇.
ê‡ÒÒÚÓflÌÌ˚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ‚ ÔÓˆÂÒÒ‡ı Ó·‡·ÓÚÍË ËÁÓ·‡ÊÂÌËÈ Ú‡ÍÊ ̇Á˚‚‡˛ÚÒfl ‡ÒÒÚÓflÌÌ˚ÏË ÔÓÎflÏË Ë, „·‚Ì˚Ï Ó·‡ÁÓÏ, ‡ÒÒÚÓflÌÌ˚ÏË Í‡Ú‡ÏË; Ӊ̇ÍÓ
ÔÓÒΉÌËÈ ÚÂÏËÌ Ï˚ ÂÁÂ‚ËÛÂÏ ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ˝ÚÓ„Ó ÔÓÌflÚËfl ÔËÏÂÌËÚÂθÌÓ
Í Î˛·ÓÏÛ ÏÂÚ˘ÂÒÍÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û. ê‡ÒÒÚÓflÌÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË ÙÓÏ˚ –
‡ÒÒÚÓflÌÌÓ ÔÂÓ·‡ÁÓ‚‡ÌËÂ, ‚ ÍÓÚÓÓÏ å – „‡Ìˈ‡ ËÁÓ·‡ÊÂÌËfl. ÑÎfl X = 2 „‡Ù
{( x, f ( x )) : x ∈ X} ‰Îfl d(x, M) ̇Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸˛ ÇÓÓÌÓ„Ó ‰Îfl å.
ë‰ËÌ̇fl ÓÒ¸ Ë ÒÍÂÎÂÚ̇fl
èÛÒÚ¸ (X, d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë å – ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï. ë‰ËÌ̇fl ÓÒ¸
ï – ÏÌÓÊÂÒÚ‚Ó MA( X ) = {x ∈ X :| {m ∈ M : d ( x, m) = d ( x, M )} | ≥ 2}, Ú.Â. ‚Ò ÚÓ˜ÍË ï,
Ëϲ˘Ë ‚ å Ì ÏÂÌ ‰‚Ûı ˝ÎÂÏÂÌÚÓ‚ ̇ËÎÛ˜¯Â„Ó ÔË·ÎËÊÂÌËfl. MA(X) ÒÓÒÚÓËÚ
ËÁ ‚ÒÂı ÚÓ˜ÂÍ „‡Ìˈ ӷ·ÒÚÂÈ ÇÓÓÌÓ„Ó ‰Îfl ÚÓ˜ÂÍ ËÁ å. ëÍÂÎÂÚ Skel(X) ÏÌÓÊÂÒÚ‚‡ ï ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ˆÂÌÚÓ‚ ‚ÒÂı ¯‡Ó‚ (ÓÚÌÓÒËÚÂÎÌÓ ‡ÒÒÚÓflÌËfl d), ÍÓÚÓ˚Â
‚ÔËÒ‡Ì˚ ‚ ï Ë fl‚Îfl˛ÚÒfl χÍÒËχθÌ˚ÏË, Ú.Â. Ì ÔË̇‰ÎÂÊ‡Ú ÌË͇ÍÓÏÛ ‰Û„ÓÏÛ
Ú‡ÍÓÏÛ ¯‡Û. ÉÂÓÏÂÚ˘ÂÒÍÓ ÏÂÒÚÓ ‡ÁÂÁÓ‚ ÏÌÓÊÂÒÚ‚‡ ï – ˝ÚÓ Á‡Ï˚͇ÌËÂ
MA( X ) Ò‰ËÌÌÓÈ ÓÒË. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â MA( X ) ⊂ Skel( X ) ⊂ MA( X ). èÂÓ·‡ÁÓ‚‡ÌËfl
Ò‰ËÌÌÓÈ ÓÒË, ÒÍÂÎÂÚ‡ Ë „ÂÓÏÂÚ˘ÂÒÍÓ„Ó ÏÂÒÚ‡ ‡ÁÂÁÓ‚ – ˝ÚÓ ÚӘ˜ÚÌÓ-‚Á‚¯ÂÌÌ˚ ÏÌÓÊÂÒÚ‚‡ÏË MA(X), Skel(X) Ë MA( X ) (ÒÛÊÂÌË ‡ÒÒÚÓflÌÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇ ˝ÚË ÏÌÓÊÂÒÚ‚‡) Ò d(x, M), ‡ÒÒχÚË‚‡ÂÏ˚Ï Í‡Í ‚ÂÒ ÚÓ˜ÍË x ∈ X.
é·˚˜ÌÓ X ⊂ n Ë M – „‡Ìˈ‡ ï. Ç ÒÎÛ˜‡Â ÍÓ„‰‡ å fl‚ÎflÂÚÒfl ÌÂÔÂ˚‚ÌÓÈ „‡ÌˈÂÈ, Ò‰ËÌ̇fl ÓÒ¸ ÏÓÊÂÚ Ò˜ËÚ‡Ú¸Òfl Ô‰ÂÎÓÏ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó ÔÓ ÏÂ ÚÓ„Ó
Í‡Í ˜ËÒÎÓ ÔÓÓʉ‡˛˘Ëı ÚÓ˜ÂÍ ÒÚ‡ÌÓ‚ËÚÒfl ·ÂÒÍÓ̘Ì˚Ï. ÑÎfl 2D ·Ë̇Ì˚ı ËÁÓ·‡ÊÂÌËÈ ï ÒÍÂÎÂÚ fl‚ÎflÂÚÒfl ÍË‚ÓÈ ÚÓ΢ËÌÓÈ ‚ Ó‰ËÌ ÔËÍÒÂθ ‚ ˆËÙÓ‚ÓÏ ÒÎÛ˜‡Â.
ùÍÁÓÒÍÂÎÂÚ ÏÌÓÂÊÒÚ‚‡ ï – ÒÍÂÎÂÚ ‰ÓÔÓÎÌÂÌËfl ÏÌÓÊÂÒÚ‚‡ ï, Ú.Â. ÙÓ̇ ËÁÓ·‡ÊÂÌËfl, ‰Îfl ÍÓÚÓÓ„Ó ï fl‚ÎflÂÚÒfl ÔÂ‰ÌËÏ Ô·ÌÓÏ.
èÓÍÛÒÚÓ‚Ó ‡ÒÒÚÓflÌËÂ
é˜ÂÚ‡ÌË ÙÓÏ˚ (ÍÓÌÙË„Û‡ˆËfl ÚÓ˜ÂÍ ‚ 2), ÍÓÚÓÓ ‡ÒÒχÚË‚‡ÂÚÒfl ͇Í
‚˚‡ÊÂÌË ËÌ‚‡ˇÌÚÌ˚ı Ò‚ÓÈÒÚ‚ ÙÓÏ˚ ÓÚÌÓÒËÚÂθÌÓ ÔÂÂÌÓÒ‡, ‚‡˘ÂÌËfl Ë
χүڇ·‡, ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÓËÂÌÚËÓ‚, Ú.Â. ÒÔˆËÙ˘ÂÒÍËı ÚÓ˜ÂÍ Ì‡ ÙÓÏÂ, ‚˚·‡ÌÌ˚ı ÔÓ ÓÔ‰ÂÎÂÌÌÓÏÛ Ô‡‚ËÎÛ. ä‡Ê‰˚È ÓËÂÌÚË
‡ ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ˝ÎÂÏÂÌÚ ( a ′, a ′′) ∈ 2 ËÎË ˝ÎÂÏÂÌÚ a ′ + a ′′i ∈ .
ê‡ÒÒÏÓÚËÏ ‰‚ ÙÓÏ˚ ı Ë Û, Ô‰ÒÚ‡‚ÎÂÌÌ˚ Ëı ÓËÂÌÚËÌ˚ÏË ‚ÂÍÚÓ‡ÏË (x1,…,xn) Ë (y1,…,yn) ËÁ n . è‰ÔÓÎÓÊËÏ, ˜ÚÓ ı Ë Û ÍÓÂÍÚËÛ˛ÚÒfl ‰Îfl ÔÂÂÌÓÒ‡ ÛÒÎÓ‚ËÂÏ
xt =
yt = 0. íÓ„‰‡ Ëı ÔÓÍÛÒÚÓ‚Ó ‡ÒÒÚÓflÌË ÓÔ‰ÂÎflÂÚ-
∑
t
∑
t
Òfl ͇Í
n
∑
t =1
| xt − yt |2 ,
308
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
„‰Â ‰‚ ÙÓÏ˚ fl‚Îfl˛ÚÒfl, ÓÔÚËχθÌÓ (ÔÓ ÍËÚÂ˲ ̇ËÏÂ̸¯Ëı Í‚‡‰‡ÚÓ‚) ‡ÒÔÓÎÓÊÂÌÌ˚ÏË ÔÓ Ó‰ÌÓÈ ÎËÌËË ‰Îfl ÍÓÂÍÚËÓ‚ÍË Ï‡Ò¯Ú‡·‡ Ë Ëı ‡ÒÒÚÓflÌË ӘÂÚ‡ÌËfl äẨ‡Î· ÓÔ‰ÂÎflÂÚÒfl ͇Í
arccos








∑ xt yt   ∑ yt xt 
t
t
∑
t

xt xt  

∑
t

yt yt 

,
„‰Â α = a ′ − a ′′i fl‚ÎflÂÚÒfl ÍÓÏÔÎÂÍÒÌÓ ÒÓÔflÊÂÌÌ˚Ï ˜ËÒ· α = a ′ − a ′′i.
ä‡Ò‡ÚÂθÌÓ ‡ÒÒÚÓflÌËÂ
ÑÎfl β·Ó„Ó x ∈ n Ë ÒÂÏÂÈÒÚ‚‡ ÔÂÓ·‡ÁÓ‚‡ÌËÈ t(x, α), „‰Â α ∈ k – ‚ÂÍÚÓ k Ô‡‡ÏÂÚÓ‚ (̇ÔËÏÂ, ÍÓ˝ÙÙˈËÂÌÚ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl Ë Û„ÓÎ ‚‡˘ÂÌËfl), ÏÌÓÊÂÒÚ‚Ó
M x = {t ( x, σ ) : α ∈ k } ⊂ n fl‚ÎflÂÚÒfl ÏÌÓ„ÓÓ·‡ÁËÂÏ ‡ÁÏÂÌÓÒÚË Ì ·Óθ¯Â ˜ÂÏ k.
ùÚÓ ÍË‚‡fl, ÂÒÎË k = 1. åËÌËχθÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓ„ÓÓ·‡ÁËflÏË
Mx Ë My fl‚ÎflÂÚÒfl ÔÓÎÂÁÌ˚Ï ‡ÒÒÚÓflÌËÂÏ, ÔÓÒÍÓθÍÛ ÓÌÓ ËÌ‚‡ˇÌÚÌÓ ÓÚÌÓÒËÚÂθÌÓ
ÔÂÓ·‡ÁÓ‚‡ÌËÈ t(x, α). é‰Ì‡ÍÓ ‡ÒÒ˜ËÚ‡Ú¸ Ú‡ÍÓ ‡ÒÒÚÓflÌË ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â Ó˜Â̸
ÚÛ‰ÌÓ; ÔÓ˝ÚÓÏÛ M x ‡ÔÔÓÍÒËÏËÛ˛Ú Í‡Í Â„Ó Í‡Ò‡ÚÂθÌÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó ‚
k
ÚӘ͠ı: {x +
∑ α k x i : α ∈ k } ⊂ n , „‰Â ÔÓÓʉ‡˛˘ËÂ Â„Ó Í‡Ò‡ÚÂθÌ˚ ‚ÂÍÚÓ˚
i =1
xi, 1 ≤ i ≤ k, fl‚Îfl˛ÚÒfl ˜‡ÒÚÌ˚ÏË ÔÓËÁ‚Ó‰Ì˚ÏË t(x, α) ÓÚÌÓÒËÚÂθÌÓ α. é‰ÌÓÒÚÓÓÌÌ (ËÎË ÓËÂÌÚËÓ‚‡ÌÌÓÂ) ͇҇ÚÂθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˝ÎÂÏÂÌÚ‡ÏË ı Ë Û ËÁ n
ÂÒÚ¸ Í‚‡ÁË‡ÒÒÚÓflÌË d, ÓÔ‰ÂÎÂÌÌÓ ͇Í
2
k
min x +
α
∑ αk x
i
−y .
i =1
ä‡Ò‡ÚÂθÌÓ ‡ÒÒÚÓflÌË ëËχ‡–ã ä‡Ì‡–ÑÂÌÍÂ‡ ÓÔ‰ÂÎflÂÚÒfl ͇Í
min{d ( x, y), d ( y, x )}.
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ͇҇ÚÂθÌÓ ÏÌÓÊÂÒÚ‚Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ï ‚
ÚӘ͠ı ÓÔ‰ÂÎflÂÚÒfl (ÔÓ ÉÓÏÓ‚Û) Í‡Í Î˛·‡fl Ô‰Âθ̇fl ÚӘ͇ ÒÂÏÂÈÒÚ‚‡ Â„Ó ‡ÒÚflÊÂÌËÈ Ò ÍÓ˝ÙÙˈËÂÌÚÓÏ ‡ÒÚflÊÂÌËfl, ÒÚÂÏfl˘ËÏÒfl Í ·ÂÒÍÓ̘ÌÓÒÚË, ÍÓÚÓ‡fl ·ÂÂÚÒfl ‚ ÚӘ˜ÌÓÈ ÚÓÔÓÎÓ„ËË ÉÓÏÓ‚‡–ï‡ÛÒ‰ÓÙ‡ (ÒÏ. åÂÚË͇ ÉÓÏÓ‚‡–ï‡ÛÒ‰ÓÙ‡, „Î. 1).
ê‡ÒÒÚÓflÌË ÔËÍÒÂÎfl
ÇÓÁ¸ÏÂÏ ‰‚‡ ˆËÙÓ‚˚ı Ó·‡Á‡, ‡ÒÒχÚË‚‡ÂÏ˚ı Í‡Í ·Ë̇Ì˚ m × n χÚˈ˚
x = ((xij)) Ë y = ((yij)), „‰Â ÔËÍÒÂθ x ij fl‚ÎflÂÚÒfl ˜ÂÌ˚Ï ËÎË ·ÂÎ˚Ï, ÂÒÎË ÓÌ ‡‚ÂÌ 1 ËÎË
0 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ÑÎfl Í‡Ê‰Ó„Ó ÔËÍÒÂÎfl xij Ó͇ÈÏÎÂÌÌÓ ‡ÒÒÚÓflÌÌÓ ÓÚÓ·‡ÊÂÌËÂ
‰Ó ·ÎËÊ‡È¯Â„Ó ÔËÍÒÂÎfl ÔÓÚË‚ÓÔÓÎÓÊÌÓ„Ó ˆ‚ÂÚ‡ DBW(x ij) ÂÒÚ¸ ˜ËÒÎÓ Ó͇ÈÏÎÂÌËÈ
(„‰Â ͇ʉÓ Ó͇ÈÏÎÂÌË ÒÓÒÚÓËÚ ËÁ ÔËÍÒÂÎÂÈ, ‡‚ÌÓÛ‰‡ÎÂÌÌ˚ı (i, j)), ÔÓÚflÌÛ‚¯ËıÒfl ÓÚ (i, j) ‰Ó ‚ÒÚÂ˜Ë Ò ÔÂ‚˚Ï Ó͇ÈÏÎÂÌËÂÏ, ÒÓ‰Âʇ˘ËÏ ÔËÍÒÂθ ÔÓÚË‚ÓÔÓÎÓÊÌÓ„Ó ˆ‚ÂÚ‡.
ê‡ÒÒÚÓflÌË ÔËÍÒÂÎÂÈ (‚‚‰ÂÌÌÓ ì‡ÈÚÓÏ Ë ‰., 1994) Á‡‰‡ÂÚÒfl ͇Í
∑ ∑
1≤ i ≤ m 1≤ i ≤ n
(
)
| xij − yij | DBW ( xij ) + DBW ( yij ) .
309
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
䂇ÁË‡ÒÒÚÓflÌË ÍÓ˝ÙÙˈËÂÌÚ‡ ͇˜ÂÒÚ‚‡
ÇÓÁ¸ÏÂÏ ‰‚‡ ·Ë̇Ì˚ı ËÁÓ·‡ÊÂÌËfl, ‡ÒÒχÚË‚‡ÂÏ˚ı Í‡Í ÌÂÔÛÒÚ˚ ÍÓ̘Ì˚Â
ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d). ÑÎfl ÌËı Í‚‡ÁË‡ÒÒÚÓflÌË ÍÓ˝ÙÙˈËÂÌÚ‡ ͇˜ÂÒÚ‚‡ è‡ÚÚ‡ ÓÔ‰ÂÎflÂÚÒfl ͇Í
−1


1
 max{| A |,| B |}
2 ,
1 + αd ( x, A) 

x ∈B
∑
„‰Â α – ÍÓÌÒÚ‡ÌÚ‡ χүڇ·ËÓ‚‡ÌËfl (Ó·˚˜ÌÓ
1
) Ë d ( x, A) = min d ( x, y) – ‡ÒÒÚÓflÌËÂ
y ∈A
9
ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ.
èËÏÂ‡ÏË ÔÓ‰Ó·Ì˚ı Í‚‡ÁË‡ÒÒÚÓflÌËÈ fl‚Îfl˛ÚÒfl ‡ÒÒÚÓflÌË Ò‰ÌÂÈ ÔÓ„¯1
ÌÓÒÚË èÂÎË-å‡Î‡ı‡
d ( x, A) Ë ‡ÒÒÚÓflÌË Ò‰ÌÂÍ‚‡‰‡Ú˘ÂÒÍÓÈ ÔÓ„¯| B | x ∈B
1
ÌÓÒÚË
d ( x , A) 2 .
| B | x ∈B
∑
∑
ë‰Ì ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË -„Ó ÔÓfl‰Í‡
ÇÓÁ¸ÏÂÏ ‰‚‡ ·Ë̇Ì˚ı ËÁÓ·‡ÊÂÌËfl, ‡ÒÒχÚË‚‡ÂÏ˚ı Í‡Í ÌÂÔÛÒÚ˚ ÍÓ̘Ì˚Â
ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (Ò͇ÊÂÏ, ‡ÒÚ‡ ÔËÍÒÂÎÂÈ) (X, d). àı Ò‰Ì ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË -„Ó ÔÓfl‰Í‡ ÂÒÚ¸ ([Badd92]) ÌÓχÎËÁÓ‚‡ÌÌÓ Lp -‡ÒÒÚÓflÌË ï‡ÛÒ‰ÓÙ‡, ÓÔ‰ÂÎÂÌÌÓ ͇Í
1
 1
p
p
−
| d ( x, A) d ( x, B) |  ,
| X |


x ∈X
∑
„‰Â d ( x, A) = min d ( x, y) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ. é·˚˜Ì‡fl ı‡ÛÒy ∈A
‰ÓÙÓ‚‡ ÏÂÚË͇ ÔÓÔÓˆËÓ̇θ̇ Ò‰ÌÂÏÛ ı‡ÛÒ‰ÓÙÓ‚Û ‡ÒÒÚÓflÌ˲ ∞-„Ó
ÔÓfl‰Í‡.
Σ-ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ÇÂÌ͇ڇÒÛ·‡ÏËÌˇ̇ d d Haus ( A, B) + d d Haus ( B, A) ‡‚ÌÓ
∑
| d ( x, A) − d ( x, B) |, Ú.Â. fl‚ÎflÂÚÒfl ‚‡ˇÌÚÓÏ L 1 -‡ÒÒÚÓflÌËfl ï‡ÛÒ‰ÓÙ‡.
x ∈A ∪ B
ÑÛ„ËÏ ‚‡ˇÌÚÓÏ Ò‰ÌÂ„Ó ı‡ÛÒ‰ÓÙÓ‚‡ ‡ÒÒÚÓflÌËfl 1-„Ó ÔÓfl‰Í‡ fl‚ÎflÂÚÒfl Ò‰Ìflfl „ÂÓÏÂÚ˘ÂÒ͇fl ÔÓ„¯ÌÓÒÚ¸ ãË̉ÒÚfiχ-íÛ͇ ÏÂÊ‰Û ‰‚ÛÏfl ËÁÓ·‡ÊÂÌËflÏË,
‡ÒÒχÚË‚‡ÂÏ˚ÏË Í‡Í ÔÓ‚ÂıÌÓÒÚË Ä Ë Ç. é̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í

1

Area( A) + Area( B) 
∫
d ( x, B)dS +
x ∈A

d ( x, A)dS ,


x ∈B
∫
„‰Â Area( A) – ÔÎÓ˘‡‰¸ ÔÓ‚ÂıÌÓÒÚË Ä. ÖÒÎË ‡ÒÒχÚË‚‡Ú¸ ËÁÓ·‡ÊÂÌËfl Í‡Í ÍÓ̘Ì˚ ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç, ÚÓ Ëı Ò‰Ìflfl „ÂÓÏÂÚ˘ÂÒ͇fl ÔÓ„¯ÌÓÒÚ¸ ÓÔ‰ÂÎflÂÚÒfl ͇Í


1
d ( x, B) +
d ( x, A) .

| A | + | B |  x ∈A

x ∈B
∑
∑
310
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
åÓ‰ËÙˈËÓ‚‡ÌÌÓ ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌËÂ
ÇÓÁ¸ÏÂÏ ‰‚‡ ·Ë̇Ì˚ı ËÁÓ·‡ÊÂÌËfl, ‡ÒÒχÚË‚‡ÂÏ˚ı Í‡Í ÌÂÔÛÒÚ˚ ÍÓ̘Ì˚Â
ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d). àı ÏÓ‰ËÙˈËÓ‚‡ÌÌÓ ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ÔÓ Ñ˛·˛ÒÒÓÌÛ–ÑÊÂÈÌÛ ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ï‡ÍÒËÏÛÏ ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ, ÛÒ‰ÌÂÌÌ˚ı ÔÓ Ä Ë Ç:
1
 1

max 
d ( x, B),
d ( x, A).
| B | x ∈B
 | A | x ∈A

∑
∑
ó‡ÒÚ˘ÌÓ ı‡ÛÒ‰ÓÙÓ‚Ó Í‚‡ÁË‡ÒÒÚÓflÌËÂ
ÇÓÁ¸ÏÂÏ ‰‚‡ ·Ë̇Ì˚ı ËÁÓ·‡ÊÂÌËfl, ‡ÒÒχÚË‚‡ÂÏ˚ı Í‡Í ÌÂÔÛÒÚ˚ ÍÓ̘Ì˚Â
ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä, Ç ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d), Ë ˆÂÎ˚ ˜ËÒ· k, l,
Ú‡ÍË ˜ÚÓ 1 ≤ k ≤ | A |, 1 ≤ l ≤ | B | . àı ˜‡ÒÚ˘ÌÓ (k, l)-ı‡ÛÒ‰ÓÙÓ‚Ó Í‚‡ÁË‡ÒÒÚÓflÌËÂ
ÔÓ ï‡ÚÚÂÌÎÓÍÂÛ–êÛÍÎˉÊÛ ÓÔ‰ÂÎflÂÚÒfl ͇Í
{
}
max kkth∈A d ( x, B), lxth∈B d ( x, A) ,
„‰Â kkth∈A d ( x, B) ÓÁ̇˜‡ÂÚ k- (‚ÏÂÒÚÓ, ̇˷Óθ¯Ó„Ó A-„Ó, ‡ÒÔÓÎÓÊÂÌÌÓ„Ó ÔÂ‚˚Ï)
ÒÂ‰Ë | A | ‡ÒÒÚÓflÌËÈ d(x, B), ‡ÒÔÓÎÓÊÂÌÌ˚ı ‚ ‚ÓÁ‡ÒÚ‡˛˘ÂÏ ÔÓfl‰ÍÂ. ëÎÛ˜‡È
| A |
B
k = 
, l =   ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ò‰ÌÂÏÛ ÏÓ‰ËÙˈËÓ‚‡ÌÌÓÏÛ ı‡ÛÒ‰ÓÙÓ‚Û Í‚‡
 2 
2
ÁË‡ÒÒÚÓflÌ˲.
ê‡ÒÒÚÓflÌË ·ÛÚ˚ÎÓ˜ÌÓ„Ó „ÓÎ˚¯Í‡
ÇÓÁ¸ÏÂÏ ‰‚‡ ·Ë̇Ì˚ı ËÁÓ·‡ÊÂÌËfl, ‡ÒÒχÚË‚‡ÂÏ˚ı Í‡Í ÌÂÔÛÒÚ˚ ÍÓ̘Ì˚Â
ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä, Ç Ò | A | = | B | = m ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d).
àı ‡ÒÒÚÓflÌË ·ÛÚ˚ÎÓ˜ÌÓ„Ó „ÓÎ˚¯Í‡ ÓÔ‰ÂÎflÂÚÒfl ͇Í
min max d ( x, f ( x )),
f
x ∈A
„‰Â f – β·Ó ·ËÂÍÚË‚ÌÓ ÓÚÓ·‡ÊÂÌË ÏÂÊ‰Û Ä Ë Ç.
LJˇÌÚ‡ÏË ‚˚¯ÂÔ˂‰ÂÌÌÓ„Ó ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl:
1) ÒÓÓÚ‚ÂÚÒÚ‚Ë ÏËÌËχθÌÓ„Ó ‚ÂÒ‡: min
d ( x, f ( x ));
{
f
∑
x ∈A
}
2) ‡‚ÌÓÏÂÌÓ ÒÓÓÚ‚ÂÚÒÚ‚ËÂ: max d ( x, f ( x )) − min d ( x, f ( x )) ;
x ∈A
x ∈A
3) ÒÓÓÚ‚ÂÚÒÚ‚Ë ̇ËÏÂ̸¯Â„Ó ÓÚÍÎÓÌÂÌËfl:


1
min max d ( x, f ( x )) −
d ( x, f ( x )).
f  x ∈A
| A | x ∈A


ÑÎfl ˆÂÎÓ„Ó ˜ËÒ· t, 1 ≤ t ≤ | A |, ‡ÒÒÚÓflÌË t-·ÛÚ˚ÎÓ˜ÌÓ„Ó „ÓÎ˚¯Í‡ ÏÂÊ‰Û Ä Ë
Ç ([InVe00]) ‡‚ÌÓ ‚˚¯ÂÛÔÓÏflÌÛÚÓÏÛ ÏËÌËÏÛÏÛ, ÂÒÎË f – β·Ó ÓÚÓ·‡ÊÂÌË ËÁ Ä
‚ Ç, Ú‡ÍÓ ˜ÚÓ | {x ∈ A : f ( x ) = e} | ≤ t. ëÎÛ˜‡Ë t = 1 Ë t = | A | ‡Ì‡Îӄ˘Ì˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌ˲ ·ÛÚ˚ÎÓ˜ÌÓ„Ó „ÓÎ˚¯Í‡ Ë ÓËÂÌÚËÓ‚‡ÌÌÓÏÛ ı‡ÛÒ‰ÓÙÓ‚Û ‡ÒÒÚÓflÌ˲ dd Haus ( A, B) = max min d ( x, y).
∑
x ∈A y ∈B
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
311
ï‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌËÂ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó G
ÑÎfl „ÛÔÔ˚ (G, ⋅, id), ‰ÂÈÒÚ‚Û˛˘ÂÈ Ì‡ ‚ÍÎˉӂÓÏ ÔÓÒÚ‡ÌÒÚ‚Â n , ı‡ÛÒ‰ÓÙÓ‚Ó
‡ÒÒÚÓflÌËÂ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó G ÏÂÊ‰Û ‰‚ÛÏfl ÍÓÏÔ‡ÍÚÌ˚ÏË ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË Ä Ë Ç
(ËÒÔÓθÁÛÂÏÓ ÔË Ó·‡·ÓÚÍ ËÁÓ·‡ÊÂÌËÈ) ÂÒÚ¸ Ó·Ó·˘ÂÌÌÓ G-ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË, Ú.Â. ÏËÌËÏÛÏ dHaus ( A, g( B)) ÔÓ ‚ÒÂÏ g ∈ G. é·˚˜ÌÓ G – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÓÏÂÚËÈ ËÎË ‚ÒÂı ÔÂÂÌÓÒÓ‚ ÔÓÒÚ‡ÌÒÚ‚‡ n.
ÉËÔÂ·Ó΢ÂÒÍÓ ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌËÂ
ÑÎfl β·Ó„Ó ÍÓÏÔ‡ÍÚÌÓ„Ó Ó‰ÏÌÓÊÂÒÚ‚‡ Ä ÏÌÓÊÂÒÚ‚‡ n Ó·ÓÁ̇˜ËÏ ˜ÂÂÁ
åAT(A) Â„Ó ÔÂÓ·‡ÁÓ‚‡ÌË Ò‰ËÌÌÓÈ ÓÒË ÔÓ ÅβÏÛ, Ú.Â. ÔÓ‰ÏÌÓÊÂÒÚ‚Ó X =
= n × ≥ 0 , ‚Ò ˝ÎÂÏÂÌÚ˚ ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl Ô‡‡ÏË x = ( x ′, rx ) ˆÂÌÚÓ‚ x⬘ Ë
‡‰ËÛÒÓ‚ rx χÍÒËχθÌ˚ı ‚ÔËÒ‡ÌÌ˚ı ‚ A ¯‡Ó‚ ÔËÏÂÌËÚÂθÌÓ Í Â‚ÍÎˉӂÓÏÛ
‡ÒÒÚÓflÌ˲ dE ‚ n (ÒÏ. C‰ËÌ̇fl ÓÒ¸ Ë ÒÍÂÎÂÚ).
ÉËÔÂ·Ó΢ÂÒÍÓ ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ([ChSe00]) – ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ ̇
ÌÂÔÛÒÚ˚ı ÍÓÏÔ‡ÍÚÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚‡ı åAT(A) ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d),
„‰Â „ËÔÂ·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌË d ̇ ï ÓÔ‰ÂÎflÂÚÒfl ‰Îfl Â„Ó ˝ÎÂÏÂÌÚÓ‚ x = ( x ′, rx )
Ë y = ( y ′, ry ) ͇Í
max{0, d E ( x ′, y ′) − (ry − rx )}.
çÂÎËÌÂÈ̇fl ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇
ÑÎfl ‰‚Ûı ÍÓÏÔ‡ÍÚÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ Ä Ë Ç ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) Ëı
ÌÂÎËÌÂÈÌÓÈ ı‡ÛÒ‰ÓÙÓ‚ÓÈ ÏÂÚËÍÓÈ (ËÎË ‚ÓÎÌÓ‚˚Ï ‡ÒÒÚÓflÌËÂÏ á‡ÚχË–
êÂ͘ÍË–êÓÒ͇) ̇Á˚‚‡ÂÚÒfl ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË dHaus ( A ∩ B, ( A ∪ B)* ), „‰Â
( A ∪ B)* ÂÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó A ∩ B, Ó·‡ÁÛ˛˘Â Á‡ÏÍÌÛÚÛ˛ ÌÂÔÂ˚‚ÌÛ˛ ӷ·ÒÚ¸
Ò A ∩ B Ë ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÚӘ͇ÏË ÏÓ„ÛÚ ËÁÏÂflÚ¸Òfl ÚÓθÍÓ ‚‰Óθ ÔÛÚÂÈ,
ÔÓÎÌÓÒÚ¸˛ ÔË̇‰ÎÂʇ˘Ëı A ∪ B.
åÂÚËÍË Í‡˜ÂÒÚ‚‡ ‚ˉÂÓËÁÓ·‡ÊÂÌËfl
чÌÌ˚ ÏÂÚËÍË fl‚Îfl˛ÚÒfl ‡ÒÒÚÓflÌËflÏË ÏÂÊ‰Û ‚ıÓ‰ÌÓÈ Ë ÔÓÚÓÚËÔÌÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ˆ‚ÂÚÌ˚ı ‚ˉÂÓ͇‰Ó‚, ÍÓÚÓ˚ ӷ˚˜ÌÓ Ô‰̇Á̇˜ÂÌ˚ ‰Îfl ÓÔÚËÏËÁ‡ˆËË ‡Î„ÓËÚÏÓ‚ ÍÓ‰ËÓ‚‡ÌËfl, ÒʇÚËfl Ë ‰ÂÍÓ‰ËÓ‚‡ÌËfl. ä‡Ê‰‡fl ËÁ ÌËı ÓÒÌÓ‚‡Ì‡ ̇ ÌÂÍÓÈ ÏÓ‰ÂÎË ‚ÓÒÔËflÚËfl ‚ ÒËÒÚÂÏ ˜ÂÎӂ˜ÂÒÍÓ„Ó ÁÂÌËfl, ÔÓÒÚÂȯËÏË ËÁ
ÍÓÚÓ˚ı fl‚Îfl˛ÚÒfl RMSE (Ò‰ÌÂÍ‚‡‰‡Ú˘ÂÒ͇fl ӯ˷͇) Ë PSNR (ÔËÍÓ‚Ó ÒÓÓÚÌÓ¯ÂÌË Ò˄̇Î-¯ÛÏ) ÏÂ˚ ÔÓ„¯ÌÓÒÚÂÈ. ëÂ‰Ë ÔÓ˜Ëı ÏÓÊÌÓ Ì‡Á‚‡Ú¸ ÔÓÓ„Ó‚˚ ÏÂÚËÍË, Ò ÔÓÏÓ˘¸˛ ÍÓÚÓ˚ı ÓˆÂÌË‚‡ÂÚÒfl ‚ÂÓflÚÌÓÒÚ¸ ‚˚‰ÂÎÂÌËfl ‚ˉÂÓ
‡ÚÂÙ‡ÍÚÓ‚ (Ú.Â. ‚ËÁۇθÌ˚ı ËÒ͇ÊÂÌËÈ ËÁÓ·‡ÊÂÌËfl, ̇Í·‰˚‚‡˛˘ËıÒfl ̇
‚ˉÂÓÒ˄̇Π‚ ÔÓˆÂÒÒ ˆËÙÓ‚Ó„Ó ÍÓ‰ËÓ‚‡ÌËfl). Ç Í‡˜ÂÒÚ‚Â ÔËÏÂÓ‚ ÏÓÊÌÓ ÔË‚ÂÒÚË ÏÂÚËÍÛ JND (‰‚‡ ÛÎÓ‚ËÏ˚ ‡Á΢Ëfl) ë‡ÌÓÙÙ‡, PDM ÏÂÚËÍÛ (ÏÂÚË͇
ËÒ͇ÊÂÌËfl ‚ÓÒÔËflÚËfl ÇËÌÍÎÂ‡) Ë ÏÂÚËÍÛ DVQ (͇˜ÂÒÚ‚Ó ˆËÙÓ‚Ó„Ó ËÁÓ·‡ÊÂÌËfl). DVQ – lp -ÏÂÚË͇ ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ÔËÁ̇ÍÓ‚, Ô‰ÒÚ‡‚Îfl˛˘Ëı ‰‚Â
‚ˉÂÓÔÓÒΉӂ‡ÚÂθÌÓÒÚË. çÂÍÓÚÓ˚ ÏÂÚËÍË ËÒÔÓθÁÛ˛ÚÒfl ‰Îfl ËÁÏÂÂÌËfl
ÒÔˆˇθÌ˚ı ‡ÚÂÙ‡ÍÚÓ‚ ‚ˉÂÓÒ˄̇·: ÔÓfl‚ÎÂÌËfl ·ÎÓÍÓ‚˚ı ÒÚÛÍÚÛ, ‡ÁÏ˚ÚÓÒÚË
ËÁÓ·‡ÊÂÌËÈ, Ò˄̇ÎÓ‚ ÔÓÏÂı (ÌÂÓÔ‰ÂÎÂÌÌÓÒÚ¸ ÓËÂÌÚ‡ˆËË ÍÓÏÍË), ËÒ͇ÊÂÌËÂ
ÚÂÍÒÚÛ˚ Ë Ú.Ô.
ê‡ÒÒÚÓflÌËfl ‚ÂÏÂÌÌ˚Á fl‰Ó‚ ‚ˉÂÓ
ê‡ÒÒÚÓflÌËfl ‚ÂÏÂÌÌ˚ı fl‰Ó‚ ‚ˉÂÓ – Ó·˙ÂÍÚË‚Ì˚ ҂ÓÈÒÚ‚‡ı, ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ‚ÂÏÂÌÌ˚ ÏÂÚËÍË Í‡˜ÂÒÚ‚‡ ‚ˉÂÓ, ·‡ÁËÛ˛˘ËÂÒfl ̇ ‚ÂÈ‚ÎÂÚ‡ı. Ç ıӉ ӷ‡·ÓÚÍË ‚ˉÂÓÔÓÚÓÍ ı ÔÂÓ·‡ÁÛÂÚÒfl ‚Ó ‚ÂÏÂÌÌÓÈ fl‰ x(t) ‚ ‚ˉ ÍË‚ÓÈ Ì‡ ÍÓÓ‰Ë-
312
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
̇ÚÌÓÈ ÔÎÓÒÍÓÒÚË, ÍÓÚÓ˚È Á‡ÚÂÏ (ÍÛÒÓ˜ÌÓ-ÎËÌÂÈÌÓ) ‡ÔÔÓÍÒËÏËÛÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó ÔÓÒΉӂ‡ÚÂθÌ˚ı ÓÚÂÁÍÓ‚, ÍÓÚÓ˚ ÏÓÊÌÓ Á‡‰‡Ú¸ Ò ÔÓÏÓ˘¸˛ n + 1 ÍÓ̘ÌÓÈ ÚÓ˜ÍË ( xi , xi′), 0 ≤ i ≤ n ̇ ÍÓÓ‰Ë̇ÚÌÓÈ ÔÎÓÒÍÓÒÚË. Ç ‡·ÓÚ [WoPi99]
Ô‰ÒÚ‡‚ÎÂÌ˚ ÒÎÂ‰Û˛˘Ë (ÒÏ. ê‡ÒÒÚÓflÌË åË·) ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‚ˉÂÓÔÓÚÓ͇ÏË ı Ë Û:
1) Ó˜ÂÚ‡ÌË ( x, y) =
n −1
∑
( xi′+1 − xi′) − ( yi′+1 − yi′) ;
i=0
2) ÒÏ¢ÂÌË ( x, y) =
n −1
∑
i=0
xi′+1 + xi′ yi′+1 + yi′
−
.
2
2
21.2. êÄëëíéüçàü Ç ÄçÄãàáÖ áÇìäéÇ
é·‡·ÓÚ͇ Á‚ÛÍÓ‚˚ı (˜¸, ÏÛÁ˚͇ Ë Ú.Ô.) Ò˄̇ÎÓ‚ fl‚ÎflÂÚÒfl Ó·‡·ÓÚÍÓÈ ‡Ì‡ÎÓ„Ó‚˚ı (ÌÂÔÂ˚‚Ì˚ı) ËÎË, „·‚Ì˚Ï Ó·‡ÁÓÏ, ˆËÙÓ‚˚ı (‰ËÒÍÂÚÌ˚ı) Ô‰ÒÚ‡‚ÎÂÌËÈ ÍÓη‡ÌËÈ ‰‡‚ÎÂÌËfl ‚ÓÁ‰Ûı‡ ÓÚ Á‚ÛÍÓ‚˚ı ‚ÓÁ‰ÂÈÒÚ‚ËÈ. á‚ÛÍÓ‚‡fl
ÒÔÂÍÚÓ„‡Ïχ (ËÎË ÒÓÌÓ„‡Ïχ) fl‚ÎflÂÚÒfl ‚ËÁۇθÌ˚Ï ÚÂıÏÂÌ˚Ï Ô‰ÒÚ‡‚ÎÂÌËÂÏ ‡ÍÛÒÚ˘ÂÒÍÓ„Ó Ò˄̇·. éÌÓ ÙÓÏËÛÂÚÒfl ÎË·Ó ‚ ÂÁÛθڇÚ ÔÓıÓʉÂÌËfl
˜ÂÂÁ ÒÂ˲ ÔÓÎÓÒÓ‚˚ı ÙËθÚÓ‚ (‡Ì‡ÎÓ„Ó‚‡fl Ó·‡·ÓÚ͇), ÎË·Ó ÔÓÒ‰ÒÚ‚ÓÏ ÔËÏÂÌÂÌËfl ·˚ÒÚÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl îÛ¸Â Í ˝ÎÂÍÚÓÌÌÓÏÛ ‡Ì‡ÎÓ„Û ‡ÍÛÒÚ˘ÂÒÍÓÈ
‚ÓÎÌ˚. íË ÓÒË Ô‰ÒÚ‡‚Îfl˛Ú ‚ÂÏfl, ˜‡ÒÚÓÚÛ Ë ËÌÚÂÌÒË‚ÌÓÒÚ¸ (‡ÍÛÒÚ˘ÂÒÍÛ˛
˝ÌÂ„˲). ᇘ‡ÒÚÛ˛ ˝Ú‡ ÚÂıÏÂ̇fl ÍË‚‡fl ÒÓÍ‡˘‡ÂÚÒfl ‰Ó ‰‚Ûı ı‡‡ÍÚÂËÒÚËÍ
ÔÓÒ‰ÒÚ‚ÓÏ Ô‰ÒÚ‡‚ÎÂÌËfl ËÌÚÂÌÒË‚ÌÓÒÚË ·ÓΠÊËÌ˚ÏË ÎËÌËflÏË ËÎË ·ÓÎÂÂ
ÔÓ‰˜ÂÍÌÛÚ˚Ï ÒÂ˚Ï ËÎË ‚‚‰ÂÌËÂÏ ˆ‚ÂÚÓ‚˚ı Á̇˜ÂÌËÈ.
á‚ÛÍ Ì‡Á˚‚‡ÂÚÒfl ÚÓÌÓÏ, ÂÒÎË ÓÌ ÔÂËӉ˘ÂÒÍËÈ (҇χfl ÌËÁ͇fl ˜‡ÒÚÓÚ‡ ÓÒÌÓ‚ÌÓÈ
„‡ÏÓÌËÍË ÔÎ˛Ò ÂÈ Í‡ÚÌ˚Â, „‡ÏÓÌËÍË ËÎË Ó·ÂÚÓÌ˚), Ë ¯ÛÏÓÏ, Ë̇˜Â. ó‡ÒÚÓÚ‡
ËÁÏÂflÂÚÒfl ‚ ˆËÍ·ı ‚ ÒÂÍÛÌ‰Û (ÍÓ΢ÂÒÚ‚Ó ÔÓÎÌ˚ı ˆËÍÎÓ‚ ‚ ÒÂÍÛ̉Û) ËÎË ‚ „Âˆ‡ı.
ÑˇԇÁÓÌ ÒÎ˚¯ËÏ˚ı ˜ÂÎӂ˜ÂÒÍËÏ ÛıÓÏ Á‚ÛÍÓ‚˚ı ˜‡ÒÚÓÚ Ó·˚˜ÌÓ ÎÂÊËÚ ‚
Ô‰Â·ı 20 Ɉ–20 ÍɈ.
åÓ˘ÌÓÒÚ¸ Ò˄̇· P(f) – ˝ÌÂ„Ëfl ̇ ‰ËÌËˆÛ ‚ÂÏÂÌË; Ó̇ ÔÓÔÓˆËÓ̇θ̇
Í‚‡‰‡ÚÛ ‡ÏÔÎËÚÛ‰˚ Ò˄̇· A(f). ш˷ÂÎ (‰Å) – ‰ËÌˈ‡ ËÁÏÂÂÌËfl, ÔÓ͇Á˚‚‡˛˘‡fl ÓÚÌÓ¯ÂÌË ‚Â΢ËÌ ‰‚Ûı Ò˄̇ÎÓ‚. é‰Ì‡ ‰ÂÒflÚ‡fl ˜‡ÒÚ¸ 1 ‰Å ̇Á˚‚‡ÂÚÒfl ·ÂÎÓÏ
(ÔÂ‚˘̇fl ÛÒÚ‡‚¯‡fl ‰ËÌˈ‡). ÄÏÔÎËÚÛ‰‡ Á‚ÛÍÓ‚Ó„Ó Ò˄̇· ‚ ‰Å ‡‚̇
A( f )
P( f )
= 10 log10
20 log10
, „‰Â f⬘ – ÓÔÓÌ˚È Ò˄̇Î, ‚˚·‡ÌÌ˚È Ó·ÓÁ̇˜‡Ú¸ 0 ‰Å
A( f ′)
P( f ′ )
(Ó·˚˜ÌÓ ˝ÚÓ Ô‰ÂÎ ‚ÓÒÔËflÚËfl ˜ÂÎӂ˜ÂÒÍÓ„Ó ÒÎÛı‡). èÓÓ„ÓÏ ·ÓÎÂ‚Ó„Ó Ó˘Û˘ÂÌËfl fl‚ÎflÂÚÒfl ÒË· Á‚Û͇ ‚ 120–140 ‰Å.
Ç˚ÒÓÚ‡ ÚÓ̇ Ë „ÓÏÍÓÒÚ¸ fl‚Îfl˛ÚÒfl ÒÛ·˙ÂÍÚË‚Ì˚ÏË Ô‡‡ÏÂÚ‡ÏË ‚ÓÒÔËflÚËfl
˜‡ÒÚÓÚ˚ Ë ‡ÏÔÎËÚÛ‰˚ Ò˄̇·.
åÂÎ-¯Í‡Î‡ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÔÂˆÂÔˆËÓÌÌÛ˛ ¯Í‡ÎÛ ˜‡ÒÚÓÚ ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò
‚ÓÒÔËÌËχÂÏÓÈ Ì‡ ÒÎÛı ‚˚ÒÓÚÓÈ ÚÓ̇ Ë ÓÒÌÓ‚˚‚‡ÂÚÒfl ̇ ‚ÌÂÒËÒÚÂÏÌÓÈ Â‰ËÌˈÂ
‚˚ÒÓÚ˚ Á‚Û͇ ÏÂÎ Í‡Í Â‰ËÌˈ ‚ÓÒÔËflÚËfl ˜‡ÒÚÓÚ˚ (‚˚ÒÓÚ˚ ÚÓ̇). é̇ ÒÓÓÚÌÓf 
ÒËÚÒfl ÒÓ ¯Í‡ÎÓÈ ‡ÍÛÒÚ˘ÂÒÍËı ˜‡ÒÚÓÚ f (‚ Ɉ) Í‡Í Mel( f ) = 1127 ln1 +
ËÎË

700 
f 
, Ú‡ÍËÏ Ó·‡ÁÓÏ, 1000 Ɉ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ
ÔÓÒÚÓ Í‡Í Mel( f ) = 1000 log 21 +

700 
1000 ÏÂÎ.
313
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
ò͇· Ň͇ (̇Á‚‡Ì̇fl Ú‡Í ‚ ˜ÂÒÚ¸ ŇÍ„‡ÛÁÂ̇) fl‚ÎflÂÚÒfl ÔÒËıÓ‡ÍÛÒÚ˘ÂÒÍÓÈ
¯Í‡ÎÓÈ ‚ÓÒÔËflÚËfl ËÌÚÂÌÒË‚ÌÓÒÚË („ÓÏÍÓÒÚË) Á‚Û͇:  ‰Ë‡Ô‡ÁÓÌ ÒÓÒÚ‡‚ÎflÂÚ ÓÚ 1
‰Ó 24, Óı‚‡Ú˚‚‡fl ÔÂ‚˚ 24 ÍËÚ˘ÂÒÍË ÔÓÎÓÒ˚ ÒÎ˚¯ËÏ˚ı ˜‡ÒÚÓÚ (0, 100, 200, …,
1270, 1480, 1720, …, 950, 12000, 15500Ɉ). ùÚË ÔÓÎÓÒ˚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚Ï Ó·Î‡ÒÚflÏ ·‡ÁËÎflÌÓÈ ÏÂÏ·‡Ì˚ (‚ÌÛÚÂÌÌÂ„Ó Ûı‡), „‰Â ÍÓη‡ÌËfl, ‚˚Á˚‚‡ÂÏ˚ Á‚Û͇ÏË ÓÔ‰ÂÎÂÌÌ˚ı ˜‡ÒÚÓÚ, ‡ÍÚË‚ËÁËÛ˛Ú ‚ÓÎÓÒÍÓ‚˚ ÒÂÌÒÓÌ˚ ÍÎÂÚÍË Ë ÌÂÈÓÌ˚. ò͇· Ň͇ ÒÓÓÚÌÓÒËÚÒfl ÒÓ ¯Í‡ÎÓÈ ‡ÍÛÒÚ˘ÂÒÍËı ˜‡ÒÚÓÚ f (‚ ÍɈ)
2
 f 
Í‡Í Bark( f ) = 13 arctg(0, 76 f ) + 3, 5 arctg
 .
 0, 75 
éÒÌÓ‚Ì˚Ï ÒÔÓÒÓ·ÓÏ ÛÔ‡‚ÎÂÌËfl ˜ÂÎÓ‚ÂÍÓÏ Ò‚ÓËÏ „ÓÎÓÒÓÏ (˜¸, ÔÂÌËÂ, ÒÏÂı)
fl‚ÎflÂÚÒfl „ÛÎËÓ‚‡ÌË ÙÓÏ˚ Â˜Â‚Ó„Ó Ú‡ÍÚ‡ („ÓÎÓ Ë ÓÚ). чÌÌÛ˛ ÙÓÏÛ,
Ú.Â. ÔÓÙËθ ÔÓÔÂ˜ÌÓ„Ó Ò˜ÂÌËfl ÚÛ·ÍË ÓÚ ÒÍ·‰ÍË ‚ „ÓÎÓÒÓ‚ÓÈ ˘ÂÎË (ÔÓÒÚ‡ÌÒÚ‚‡ ÏÂÊ‰Û „ÓÎÓÒÓ‚˚ÏË Ò‚flÁ͇ÏË) ‰Ó ‡ÔÂÚÛ˚ („Û·˚), ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸
Í‡Í ÙÛÌÍˆË˛ ÔÎÓ˘‡‰Ë ÔÓÔÂ˜ÌÓ„Ó Ò˜ÂÌËfl Area(x), „‰Â ı – ‡ÒÒÚÓflÌË ‰Ó „ÓÎÓÒÓ‚ÓÈ ˘ÂÎË. ꘂÓÈ Ú‡ÍÚ ‚˚ÒÚÛÔ‡ÂÚ Ò‚ÓÂ„Ó Ó‰‡ ÂÁÓ̇ÚÓÓÏ ÔË ÔÓËÁÌÂÒÂÌËË
„·ÒÌ˚ı Á‚ÛÍÓ‚, Ú‡Í Í‡Í Ì‡ıÓ‰ËÚÒfl ‚ ÓÚÌÓÒËÚÂθÌÓ ÓÚÍ˚ÚÓÏ ÒÓÒÚÓflÌËË. ùÚË
ÂÁÓ̇ÌÒÌ˚ ÍÓη‡ÌËfl ÛÒËÎË‚‡˛Ú ËÒıÓ‰Ì˚È Á‚ÛÍ (ÓÚ ‚˚ıÓ‰fl˘Â„Ó ËÁ ΄ÍËı
ÔÓÚÓ͇ ‚ÓÁ‰Ûı‡) ̇ ÓÒÓ·˚ı ÂÁÓ̇ÌÒÌ˚ı ˜‡ÒÚÓÚ‡ı (ÙÓχÌÚ‡ı) Â˜Â‚Ó„Ó Ú‡ÍÚ‡ Ò
ÔËÍÓ‚˚ÏË ‚˚·ÓÒ‡ÏË ‚ ‰Ë‡Ô‡ÁÓÌ Á‚ÛÍÓ‚˚ı ˜‡ÒÚÓÚ. ä‡Ê‰˚È „·ÒÌ˚È Á‚ÛÍ ËÏÂÂÚ
‰‚ ı‡‡ÍÚÂÌ˚ ÙÓχÌÚ˚ ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ‚ÂÚË͇θÌÓ„Ó Ë „ÓËÁÓÌڇθÌÓ„Ó
ÔÓÎÓÊÂÌËfl flÁ˚͇. îÛÌ͈Ëfl ËÒıÓ‰ÌÓ„Ó Á‚Û͇ ÏÓ‰ÛÎËÛÂÚÒfl ÙÛÌ͈ËÂÈ ‡ÏÔÎËÚÛ‰ÌÓ˜‡ÒÚÓÚÌÓÈ ı‡‡ÍÚÂËÒÚËÍË ‰Îfl Á‡‰‡ÌÌÓÈ ÙÛÌ͈ËË, ÔÎÓ˘‡‰Ë. ÖÒÎË Ï˚ ‡ÔÔÓÍÒËÏËÛÂÏ ˜‚ÓÈ Ú‡ÍÚ Í‡Í ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÒÓ‰ËÌÂÌÌ˚ı ÚÛ·ÓÍ Ò ÔÓÒÚÓflÌÌÓÈ
ÔÎÓ˘‡‰¸˛ Ò˜ÂÌËfl, ÚÓ ÍÓ˝ÙÙˈËÂÌÚ˚ ÓÚÌÓ¯ÂÌËfl ÔÎÓ˘‡‰ÂÈ ‡‚Ì˚ ˜‡ÒÚÌ˚Ï
Area( xi +1 )
‰Îfl ÔÓÒΉӂ‡ÚÂθÌ˚ı ÚÛ·ÓÍ; ‡Ò˜ÂÚ Ú‡ÍËı ÍÓ˝ÙÙˈËÂÌÚÓ‚ ÏÓÊÌÓ ÓÒÛArea( xi )
˘ÂÒÚ‚ËÚ¸ ÔÓ ÏÂÚÓ‰Û ÍÓ‰ËÓ‚‡ÌËfl Ò ÎËÌÂÈÌ˚Ï Ô‰Ò͇Á‡ÌËÂÏ (ÒÏ. ÌËÊÂ).
ëÔÂÍÚ Á‚Û͇ – ‡ÒÔ‰ÂÎÂÌË ËÌÚÂÌÒË‚ÌÓÒÚË (‰Å) (‡ ËÌÓ„‰‡ Ë Ù‡Á ‚ ˜‡ÒÚÓÚ‡ı
(ÍɈ)) ÍÓÏÔÓÌÂÌÚÓ‚ ‚ÓÎÌ˚. é„Ë·‡˛˘‡fl ÒÔÂÍÚ‡ – „·‰Í‡fl ÍË‚‡fl, ÒÓ‰ËÌfl˛˘‡fl
ÔËÍË ÒÔÂÍÚ‡. éˆÂÌ͇ Ó„Ë·‡˛˘Ëı ÒÔÂÍÚ‡ ÔÓËÁ‚Ó‰ËÚÒfl ̇ ÓÒÌÓ‚Â ÍÓ‰ËÓ‚‡ÌËfl Ò
ÎËÌÂÈÌ˚Ï Ô‰Ò͇Á‡ÌËÂÏ (LPC) ËÎË ·˚ÒÚÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl îÛ¸Â (FFT) Ò
ËÒÔÓθÁÓ‚‡ÌËÂÏ ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ÍÂÔÒÚ‡, Ú.Â. ÎÓ„‡ËÙχ ‡ÏÔÎËÚÛ‰ÌÓ„Ó ÒÔÂÍÚ‡
Á‚Û͇.
èÂÓ·‡ÁÓ‚‡ÌË îÛ¸Â (FT) ÓÚÓ·‡Ê‡ÂÚ ÙÛÌ͈ËË ‚ÂÏÂÌÌÓ„Ó ËÌÚÂ‚‡Î‡ ̇
Ô‰ÒÚ‡‚ÎÂÌËfl ˜‡ÒÚÓÚÌ˚ı ËÌÚÂ‚‡ÎÓ‚. äÂÔÒÚ Ò˄̇· f(t) Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ
FT (ln( FT ( f (t ) + 2πmi ))), „‰Â m – ˆÂÎÓ ˜ËÒÎÓ, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl ‡Á‚ÂÚ˚‚‡ÌËfl ۄ·
ËÎË ÏÌËÏÓÈ ˜‡ÒÚË ÍÓÏÔÎÂÍÒÌÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÙÛÌ͈ËË. äÓÏÔÎÂÍÒÌ˚È Ë ‰ÂÈÒÚ‚ËÚÂθÌ˚È ÍÂÔÒÚ ËÒÔÓθÁÛ˛Ú, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÍÓÏÔÎÂÍÒÌÛ˛ Ë ‰ÂÈÒÚ‚ËÚÂθÌÛ˛
ÎÓ„‡ËÙÏ˘ÂÒÍÛ˛ ÙÛÌÍˆË˛. ÑÂÈÒÚ‚ËÚÂθÌ˚È ÍÂÔÒÚ ËÒÔÓθÁÛÂÚ ÚÓθÍÓ ‚Â΢ËÌÛ
ËÒıÓ‰ÌÓ„Ó Ò˄̇· f(t), ‚ ÚÓ ‚ÂÏfl Í‡Í ÍÓÏÔÎÂÍÒÌ˚È ÍÂÔÒÚ – Ú‡ÍÊ هÁÓ‚˚ ԇ‡ÏÂÚ˚ f(t). Ä΄ÓËÚÏ ·˚ÒÚÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl îÛ¸Â (FFT) ÓÒÌÓ‚˚‚‡ÂÚÒfl ̇ ÎËÌÂÈÌÓÏ ÒÔÂÍÚ‡Î¸ÌÓÏ ‡Ì‡ÎËÁÂ. ë ÔÓÏÓ˘¸˛ FFT ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÔÂÓ·‡ÁÓ‚‡ÌËÂ
îÛ¸Â ̇ Ò˄̇ÎÂ Ë ‰Â·ÂÚÒfl ‚˚·Ó͇ ÂÁÛθڇÚÓ‚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ÔÓ ËÒÍÓÏ˚Ï
˜‡ÒÚÓÚ‡Ï Ó·˚˜ÌÓ ÔÓ ¯Í‡Î ÏÂÎ.
ê‡ÒÒÚÓflÌËfl ÓÒÌÓ‚‡ÌÌ˚ ̇ Ô‡‡ÏÂÚ‡ı, ÔËÏÂÌflÂÏ˚ı ‰Îfl ‡ÒÔÓÁ̇‚‡ÌËfl Ë Ó·‡·ÓÚÍË ˜‚˚ı ‰‡ÌÌ˚ı, Ó·˚˜ÌÓ ÔÓÎÛ˜‡˛ÚÒfl ‡Î„ÓËÚÏÓÏ LPC (ÔÓˆÂÒÒ‡ ÍÓ‰ËÓ‚‡ÌËfl Ò ÎËÌÂÈÌ˚Ï Ô‰Ò͇Á‡ÌËÂÏ), ÍÓÚÓ˚È ÏÓ‰ÂÎËÛÂÚ ˜‚ÓÈ ÒÔÂÍÚ Í‡Í ÎËÌÂÈÌÛ˛ ÍÓÏ·Ë̇ˆË˛ Ô‰˚‰Û˘Ëı ‚˚·ÓÓÍ (ÔÓ‰Ó·ÌÓ ‡‚ÚÓ„ÂÒÒËÓÌÌÓÏÛ ÔÓˆÂÒÒÛ).
314
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ÉÛ·Ó „Ó‚Ófl, ‡Î„ÓËÚÏ LPC Ó·‡·‡Ú˚‚‡ÂÚ Í‡Ê‰Ó ÒÎÓ‚Ó Â˜Â‚Ó„Ó Ò˄̇·,
ÓÒÛ˘ÂÒÚ‚Îflfl ÔÓÒΉӂ‡ÚÂθÌÓ ¯ÂÒÚ¸ ÓÔÂ‡ˆËÈ: ÙËθÚÓ‚‡ÌËÂ, ÌÓχÎËÁ‡ˆËË
˝ÌÂ„ËË, ‡Á·ËÂÌË ̇ ͇‰˚, ͇‰ËÓ‚‡ÌË (‰Îfl ÏËÌËÏËÁ‡ˆËË ÌÂÓ‰ÌÓÓ‰ÌÓÒÚÂÈ Ì‡
„‡Ìˈ‡ı ͇‰Ó‚), ÔÓÎÛ˜ÂÌË ԇ‡ÏÂÚÓ‚ LPC Ò ÎËÌÂÈÌ˚Ï ÏÂÚÓ‰ÓÏ ‡‚ÚÓÍÓÂÎflˆËË Ë ÔÂÓ·‡ÁÓ‚‡ÌËÂ Í ÍÂÔÒÚ‡Î¸Ì˚Ï ÍÓ˝ÙÙˈËÂÌÚÓÏ, ÔÓÎÛ˜ÂÌÌ˚Ï ‡Î„ÓËÚÏÓÏ LPC. LPC Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ ˜‚ÓÈ Ò˄̇ΠÙÓÏËÛÂÚÒfl ËÁ ÔÂ˚‚ËÒÚÓ„Ó
Á‚Û͇ (ÁÛÏÏÂ‡), ËÁ‰‡‚‡ÂÏÓ„Ó „ÓÎÓÒÓ‚ÓÈ ˘Âθ˛, Ò ˝ÔËÁӉ˘ÂÒÍËÏ ‰Ó·‡‚ÎÂÌËÂÏ
¯ËÔfl˘Ëı, Ò‚ËÒÚfl˘Ëı Ë ‚Á˚‚Ì˚ı Á‚ÛÍÓ‚, ÔË ˝ÚÓÏ ÙÓχÌÚ˚ Û‰‡Îfl˛ÚÒfl ‚
ÂÁÛθڇÚ ÙËθÚÓ‚‡ÌËfl.
ÅÓθ¯ËÌÒÚ‚Ó ÏÂ ËÒ͇ÊÂÌËÈ ÏÂÊ‰Û ÒÓÌÓ„‡ÏχÏË fl‚Îfl˛ÚÒfl ‡ÁÌӂˉÌÓÒÚflÏË
Í‚‡‰‡Ú‡ ‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl (‚ ÚÓÏ ˜ËÒΠÍÓ‚‡ˇˆËÓÌÌÓ-‚Á‚¯ÂÌÌÓ„Ó, Ú.Â. ‡ÒÒÚÓflÌËfl å‡ı‡ÎÓÌÓ·ËÒ‡) Ë ‚ÂÓflÚÌÓÒÚÌ˚ı ‡ÒÒÚÓflÌËÈ, ÔË̇‰ÎÂʇ˘Ëı ÒÎÂ‰Û˛˘ËÏ
Ó·˘ËÏ ÚËÔ‡Ï: ÏÂÚËÍ ӷӷ˘ÂÌÌÓÈ ÔÓÎÌÓÈ ‚‡ˇˆËË, f-‡ÒıÓʉÂÌ˲ óËÁ‡‡ Ë ‡ÒÒÚÓflÌ˲ óÂÌÓ‚‡.
è˂‰ÂÌÌ˚ ÌËÊ ‡ÒÒÚÓflÌËfl ‰Îfl Ó·‡·ÓÚÍË Á‚ÛÍÓ‚ ÂÒÚ¸ ‡ÒÒÚÓflÌËfl ÏÂʉÛ
‚ÂÍÚÓ‡ÏË ı Ë Û, Ô‰ÒÚ‡‚Îfl˛˘ËÏË ‰‚‡ Ò˄̇· Ò‡‚ÌË‚‡ÂÏ˚ı. ÑÎfl ˆÂÎÂÈ ‡ÒÔÓÁ̇‚‡ÌËfl ÓÌË fl‚Îfl˛ÚÒfl ˝Ú‡ÎÓÌÌ˚Ï Ë ‚ıÓ‰Ì˚Ï Ò˄̇·ÏË, ‡ ‰Îfl ¯ÛÏÓÔÓ‰‡‚ÎÂÌËfl – ËÒıÓ‰Ì˚Ï (ÓÔÓÌ˚Ï) Ë ËÒ͇ÊÂÌÌ˚Ï Ò˄̇·ÏË (ÒÏ., ̇ÔËÏÂ, [OASM03]). ᇘ‡ÒÚÛ˛
‡ÒÒÚÓflÌËfl ‡ÒÒ˜ËÚ˚‚‡˛ÚÒfl ‰Îfl Ì·Óθ¯Ëı ÓÚÂÁÍÓ‚ ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË, Ô‰ÒÚ‡‚Îfl˛˘ËÏË Í‡ÚÍÓ‚ÂÏÂÌÌ˚ ÒÔÂÍÚ˚, ‡ Á‡ÚÂÏ ÓÒ‰Ìfl˛ÚÒfl.
ë„ÏÂÌÚËÓ‚‡ÌÌÓ ÒÓÓÚÌÓ¯ÂÌË Ò˄̇Î/¯ÛÏ
ë„ÏÂÌÚËÓ‚‡ÌÌÓ ÓÚÌÓ¯ÂÌË Ò˄̇Î/¯ÛÏ SNRseg(x, y) ÏÂÊ‰Û Ò˄̇·ÏË x = (x i) Ë
y = (yi) ÓÔ‰ÂÎflÂÚÒfl ͇Í
M −1
∑
10
m m=0
nm + n


xi2
log
 10
2 ,
( xi − yi ) 

i − nm +1
∑
„‰Â n – ÍÓ΢ÂÒÚ‚Ó Í‡‰Ó‚ Ë å – ÍÓ΢ÂÒÚ‚Ó Ò„ÏÂÌÚÓ‚.
é·˚˜ÌÓ ÓÚÌÓ¯ÂÌË Ò˄̇Î/¯ÛÏ SNR(x, y) ÏÂÊ‰Û ı Ë Û Á‡‰‡ÂÚÒfl ͇Í
n
∑ xi2
10 log10
i =1
.
n
∑ ( xi − yi )
2
i −1
ÑÛ„ÓÈ ÏÂÓÈ ‰Îfl Ò‡‚ÌÂÌËfl ‰‚Ûı ÙÓÏ ÍÓη‡ÌËÈ Ò˄̇· ı Ë Û ‚Ó ‚ÂÏÂÌÌÓÈ
ӷ·ÒÚË fl‚ÎflÂÚÒfl Ëı ‡ÒÒÚÓflÌË óÂ͇ÌÓ‚ÒÍӄӖчÈÒ‡, ÓÔ‰ÂÎÂÌÌÓ ͇Í
1
n
n
∑
i −1

2 min{xi − yi}
1 −
.
xi + yi


ëÔÂÍÚ‡Î¸ÌÓ ËÒ͇ÊÂÌË ËÌÚÂÌÒË‚ÌÓÒÚ¸ Ù‡Á‡
ëÔÂÍÚ‡Î¸Ì ËÒ͇ÊÂÌË ËÌÚÂÌÒ‚ÌÓÒÚ¸ Ù‡Á‡ ÏÂÊ‰Û Ò˄̇·ÏË x = (w ) Ë y = (w)
ÓÔ‰ÂÎflÂÚÒfl ͇Í
n
n

1
λ
(| x ( w ) | − | y( w ) |)2 + (1 − λ )
(∠ x ( w ) − ∠ y( w ))2  ,

n  i =1

i =1
∑
∑
315
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
„‰Â | x ( w ) |, | y( w ) | – ÒÔÂÍÚ˚ ËÌÚÂÌÒË‚ÌÓÒÚ¸ ∠ x ( w ), Ë ∠ y( w ) – Ù‡ÁÓ‚˚ ÒÔÂÍÚ˚ ı
Ë Û ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÔË ˝ÚÓÏ Ô‡‡ÏÂÚ λ, 0 ≤ λ ≤ 1, ‚˚·‡Ì Ò ˆÂθ˛ Ôˉ‡ÌËfl
ÒÓ‡ÁÏÂÌ˚ı ‚ÂÒÓ‚ Í ÒÓÒÚ‡‚Îfl˛˘ËÏ ËÌÚÂÌÒË‚ÌÓÒÚË Ë Ù‡Á˚. ëÎÛ˜‡È λ = 0
ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÒÚÓflÌ˲ ÒÔÂÍÚ‡Î¸ÌÓÈ Ù‡Á˚.
a
„Ó
ÑÎfl Ò˄̇· f (t ) = a e − bt U (t ), a, b > 0 Ò ÔÂÓ·‡ÁÓ‚‡ÌËÂÏ îÛ¸Â x ( w ) =
b + iw
a
ÒÔÂÍÚ ËÌÚÂÌÒË‚ÌÓÒÚË (ËÎË ‡ÏÔÎËÚÛ‰˚) ‡‚ÂÌ | x | =
, Ë Â„Ó Ù‡ÁÓ‚˚È
2
b + w2
w
ÒÔÂÍÚ (‚ ‡‰Ë‡Ì‡ı) ‡‚ÂÌ α( x ) = tg −1 , Ú.Â. x ( w ) = | x | e iα = | x | (cos α + i sin α ).
b
ë‰ÌÂÍ‚‡‰‡Ú˘ÂÒÍÓ ÎÓ„‡ËÙÏ˘ÂÒÍÓ ÒÔÂÍÚ‡Î¸ÌÓ ‡ÒÒÚÓflÌËÂ
ë‰ÌÂÍ‚‡‰‡Ú˘ÂÒÍÓ ÎÓ„‡ËÙÏ˘ÂÒÍÓ ÒÔÂÍÚ‡Î¸ÌÓ ‡ÒÒÚÓflÌË (ËÎË Ò‰ÌÂÍ‚‡‰‡Ú˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ) L S D(x, y) ÏÂÊ‰Û ‰ËÒÍÂÚÌ˚ÏË ÒÔÂÍÚ‡ÏË x = (x i) Ë
y = (y i) Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÒÎÂ‰Û˛˘Â ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ:
1
n
n
∑ (lnxi − ln yi )2 .
i =1
䂇‰‡Ú ˝ÚÓ„Ó ‡ÒÒÚÓflÌËfl, ËÒÔÓθÁÛfl Ô‰ÒÚ‡‚ÎÂÌË ÍÂÔÒÚ‡ ln x ( w ) =
=
∞
∑ c j e −ijw („‰Â x(w) – ÒÔÂÍÚ ÏÓ˘ÌÓÒÚË, Ú.Â. ÔÂÓ·‡ÁÓ‚‡ÌË îÛ¸Â Í‚‡‰‡Ú‡ ËÌ-
j = −∞
ÚÂÌÒË‚ÌÓÒÚË), ÒÚ‡ÌÓ‚ËÚÒfl ‚ ÍÓÏÔÎÂÍÒÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÍÂÔÒÚ‡, ‡ÒÒÚÓflÌËÂÏ
ÍÂÔÒÚ‡.
ê‡ÒÒÚÓflÌË ÎÓ„‡ËÙχ ÓÚÌÓ¯ÂÌËfl ÔÎÓ˘‡‰ÂÈ LAR(x, y) ÏÂÊ‰Û ı Ë Û ÓÔ‰ÂÎflÂÚÒfl
͇Í
1
n
n
∑ 10(log10 Area( xi ) − log10 Area( yi ))2 ,
i =1
„‰Â Area(zi) – ÔÎÓ˘‡‰¸ Ò˜ÂÌËfl Ò„ÏÂÌÚ‡ ÚÛ·ÍË Â˜Â‚Ó„Ó Ú‡ÍÚ‡, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó
z i.
ëÔÂÍÚ‡Î¸ÌÓ ‡ÒÒÚÓflÌË Ň͇
ëÔÂÍÚ‡Î¸ÌÓ ‡ÒÒÚÓflÌË Ň͇ – ÔÂˆÂÔˆËÓÌÌÓ ‡ÒÒÚÓflÌËÂ, ÓÔ‰ÂÎÂÌÌÓ ͇Í
n
BSD( x, y) =
∑
( xi − yi )2 ,
i =1
Ú.Â. Í‚‡‰‡Ú ‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÒÔÂÍÚ‡ÏË Å‡͇ (xi) Ë (y i) ÒÔÂÍÚÓ‚ ı
Ë Û, „‰Â i-È ÍÓÏÔÓÌÂÌÚ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ i-È ÍËÚ˘ÂÒÍÓÈ ÔÓÎÓÒ ÒÎÛı‡ ÔÓ ¯Í‡Î Ň͇.
ëÛ˘ÂÒÚ‚ÛÂÚ ÏÓ‰ËÙË͇ˆËfl ÒÔÂÍÚ‡Î¸ÌÓ„Ó ‡ÒÒÚÓflÌËfl Ň͇, ÍÓÚÓ‡fl ËÒÍβ˜‡ÂÚ
ÍËÚ˘ÂÒÍË ÔÓÎÓÒ˚ i, ̇ ÍÓÚÓ˚ı ËÒ͇ÊÂÌËfl „ÓÏÍÓÒÚË | x i–yi | ÏÂ̸¯Â, ˜ÂÏ ÔÓÓ„
χÒÍËÓ‚ÍË ¯Ûχ.
䂇ÁË‡ÒÒÚÓflÌË àÚ‡ÍÛ˚–ë‡ËÚÓ
䂇ÁË‡ÒÒÚÓflÌË àÚ‡ÍÛ˚–ë‡ËÚÓ (ËÎË ‡ÒÒÚÓflÌË ̇˷Óθ¯Â„Ó Ô‡‚‰ÓÔÓ‰Ó·Ëfl) IS(x, y) ÏÂÊ‰Û Ó„Ë·‡˛˘ËÏË ÒÔÂÍÚ‡ x = x(w) Ë y = y(w) (ÔÓÎÛ˜ÂÌÌ˚ÏË ‡Î„Ó-
316
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ËÚÏÓÏ LPC) ÓÔ‰ÂÎflÂÚÒfl ͇Í
1
2π
π
 x ( w ) y( w ) 
+
− 1 dw.
 ln
 y( w ) x ( w ) 
∫
−π
ê‡ÒÒÚÓflÌË „ËÔÂ·Ó΢ÂÒÍÓ„Ó ÍÓÒËÌÛÒ‡ ÓÔ‰ÂÎflÂÚÒfl Í‡Í IS( x, y) + IS( y, x ),
Ú.Â. ‡‚ÌÓ
1
2π
π
∫
−π
 x ( w ) y( w )

1
+
− 2 dw =

2π
 y( w ) x ( w )

π
∫
−π
 x(w) 
− 1 dw.
2 cosh ln
 y( w ) 
et + e −t
– „ËÔÂ·Ó΢ÂÒÍËÈ ÍÓÒËÌÛÒ.
2
„‰Â cosh(t ) =
䂇ÁË‡ÒÒÚÓflÌË ÎÓ„‡ËÙχ ÓÚÌÓ¯ÂÌËfl Ô‡‚‰ÓÔÓ‰Ó·Ëfl
䂇ÁË‡ÒÒÚÓflÌË ÍÓ˝ÙÙˈËÂÌÚ‡ ÎÓ„‡ËÙχ ÓÚÌÓ¯ÂÌËfl Ô‡‚‰ÓÔÓ‰Ó·Ëfl (ËÎË
‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãÂÈ·ÎÂ‡) KL(x, y) ÏÂÊ‰Û Ó„Ë·‡˛˘ËÏË ÒÔÂÍÚ‡ x = x(w) Ë
y = y(w) (ÔÓÎÛ˜ÂÌÌ˚ÏË ‡Î„ÓËÚÏÓÏ LPC) ÓÔ‰ÂÎflÂÚÒfl ͇Í
1
2π
π
∫
−π
x ( w ) ln
x(w)
dw.
y( w )
èËÏÂÌflÂÚÒfl Ú‡ÍÊÂ Ë ‡ÒıÓʉÂÌË ÑÊÂÙË KL( x, y) + KL( y, x ).
ê‡ÒÒÚÓflÌË ‚Á‚¯ÂÌÌÓ„Ó ÓÚÌÓ¯ÂÌËfl Ô‡‚‰ÓÔÓ‰Ó·Ëfl ÏÂÊ‰Û Ó„Ë·‡˛˘ËÏË ÒÔÂÍÚ‡ x = x(w) Ë y = y(w) ÓÔ‰ÂÎflÂÚÒfl ͇Í
1
2π
π
∫
−π
   x ( w ))  y( w ) 

  y( w ))  x ( w ) 
  ln y( w )  + x ( w ) − 1 x ( w )  ln x ( w )  + y( w ) − 1 y( w ) 




 dw,
+


px
py




„‰Â P(x) Ë P(y) Ó·ÓÁ̇˜‡˛Ú ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÏÓ˘ÌÓÒÚ¸ ÒÔÂÍÚÓ‚ x(w) Ë y(w).
äÂÔÒÚ‡Î¸ÌÓ ‡ÒÒÚÓflÌËÂ
äÂÔÒÚ‡Î¸ÌÓ ‡ÒÒÚÓflÌË (ËÎË Í‚‡‰‡Ú ‚ÍÎˉӂÓÈ ÍÂÔÒÚ‡Î¸ÌÓÈ ÏÂÚËÍË)
CEP(x, y) ÏÂÊ‰Û Ó„Ë·‡˛˘ËÏË ÒÔÂÍÚ‡ x = x(w) Ë y = y(w) (ÔÓÎÛ˜ÂÌÌ˚ÏË ‡Î„ÓËÚÏÓÏ
LPC) ÓÔ‰ÂÎflÂÚÒfl ͇Í
1
2π
π
∫
−π
1
„‰Â c j ( z ) =
2π
2
 x(w) 
1
 ln
 dw =
2π
 y( 2 ) 
π
∫
−π
(ln x(w) − ln y(w))2 dw =
∞
∑
(c j ( x ) − c j ( y)),
j = −∞
π
∫
e iwj ln | z ( w ) | dw ÂÒÚ¸ j-È ÍÂÔÒÚ‡Î¸Ì˚È (‰ÂÈÒÚ‚ËÚÂθÌ˚È) ÍÓ˝ÙÙË-
−π
ˆËÂÌÚ z, ÔÓÎÛ˜ÂÌÌ˚È Ò ÔÓÏÓ˘¸˛ ÔÂÓ·‡ÁÓ‚‡ÌËfl îÛ¸Â ËÎË LPC).
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
317
ê‡ÒÒÚÓflÌË ˜‡ÒÚÓÚ‡-‚Á‚¯ÂÌÌÓ„Ó ÍÂÔÒÚ‡
ê‡ÒÒÚÓflÌË ˜‡ÚÓÒÚ‡-‚Á‚¯ÂÌÌÓ„Ó ÍÂÔÒÚ‡ (ËÎË ‡ÒÒÚÓflÌË ‚Á‚¯ÂÌÌÓ„Ó Ì‡ÍÎÓ̇) ÏÂÊ‰Û ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Í
∞
∑ i 2 (ci ( x ) − ci ( y))2 .
i = −∞
"ó‡ÚÓÒÚ‡" (Quefrency) Ë "ÍÂÔÒÚ" fl‚Îfl˛ÚÒfl ‡Ì‡„‡ÏχÏË ÚÂÏËÌÓ‚ "˜‡ÒÚÓÚ‡" Ë
"ÒÔÂÍÚ" ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
ê‡ÒÒÚÓflÌË ÍÂÔÒÚ‡ å‡ÚË̇ ÏÂÊ‰Û AR (‡‚ÚÓ„ÂÒÒËÓÌÌ˚ÏË) ÏÓ‰ÂÎflÏË ÓÔ‰ÂÎflÂÚÒfl ÔËÏÂÌËÚÂθÌÓ Í Ëı ÍÂÔÒÚ‡Ï ͇Í
∞
∑ i(ci ( x ) − ci ( y))2
i=0
(ÒÏ. Ó·˘Â ê‡ÒÒÚÓflÌË å‡ÚË̇ („Î. 12) ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË, Ë åÂÚË͇ å‡ÚË̇ („Î. 11) ÏÂÊ‰Û ÒÚÓ͇ÏË, ÍÓÚÓ‡fl
fl‚ÎflÂÚÒfl Â„Ó l∞-‡Ì‡ÎÓ„ÓÏ).
åÂÚË͇ ̇ÍÎÓ̇ äνÚÚ‡ ÏÂÊ‰Û ‰ËÒÍÂÚÌ˚ÏË ÒÔÂÍÚ‡ÏË x = (xi) Ë y = (y i) Ò n
͇̇θÌ˚ÏË ÙËθÚ‡ÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
n
∑ (( xi +1 − xi ) − ( yi +1 − yi ))2 .
i =1
îÓÌÓ‚˚ ‡ÒÒÚÓflÌËfl
îÓÌ – ˝ÚÓ Á‚ÛÍÓ‚ÓÈ Ò„ÏÂÌÚ, ÍÓÚÓ˚È Ó·Î‡‰‡ÂÚ Ò‚ÓËÏË ÓÒÓ·˚ÏË ‡ÍÛÒÚ˘ÂÒÍËÏË
Ò‚ÓÈÒÚ‚‡ÏË Ë fl‚ÎflÂÚÒfl ·‡ÁÓ‚ÓÈ Á‚ÛÍÓ‚ÓÈ Â‰ËÌˈÂÈ (ÒÏ. ÙÓÌÂχ, Ú.Â. ÒÂÏÂÈÒÚ‚Ó
ÙÓÌÓ‚, ÍÓÚÓ˚ ӷ˚˜ÌÓ ‚ÓÒÔËÌËχ˛ÚÒfl ̇ ÒÎÛı Í‡Í Ó‰ËÌ Á‚ÛÍ; ÍÓ΢ÂÒÚ‚Ó ÙÓÌÂÏ
‚ÂҸχ Ó·¯ËÌÓ Ò Û˜ÂÚÓÏ Ëϲ˘ËıÒfl ̇ ÁÂÏΠ6000 ‡Á΢Ì˚ı flÁ˚ÍÓ‚, ÓÚ 11 ‚
flÁ˚Í ÓÚÓÍ‡Ò ‰Ó 112 ‚ !Xoå/o≈ (flÁ˚ÍË, ̇ ÍÓÚÓ˚ı „Ó‚ÓflÚ ÓÍÓÎÓ 4000 ˜ÂÎÓ‚ÂÍ,
ÔÓÊË‚‡˛˘Ëı ‚ è‡ÔÛ‡-çÓ‚ÓÈ É‚ËÌÂÂ, Ë ‚ ÅÓÚÒ‚‡Ì ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ).
Ñ‚ÛÏfl ÓÒÌÓ‚Ì˚ÏË Í·ÒÒ‡ÏË ÙÓÌÓ‚˚ı ‡ÒÒÚÓflÌËÈ (‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‰‚ÛÏfl
ÙÓ̇ÏË ı Ë Û) fl‚Îfl˛ÚÒfl:
1) ‡ÒÒÚÓflÌËfl ̇ ÓÒÌÓ‚Â ÒÔÂÍÚÓ„‡ÏÏ, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ÏÂÓÈ ÙËÁËÍÓ‡ÍÛÒÚ˘ÂÒÍËı ‡ÒıÓʉÂÌËÈ ÏÂÊ‰Û Á‚ÛÍÓ‚˚ÏË ÒÔÂÍÚÓ„‡ÏχÏË ı Ë Û;
2) ÙÓÌÓ‚˚ ‡ÒÒÚÓflÌËfl, ÓÒÌÓ‚‡ÌÌ˚ ̇ ÔËÁ͇̇ı, ÍÓÚÓ˚ ӷ˚˜ÌÓ fl‚Îfl˛ÚÒfl
‡ÒÒÚÓflÌËÂÏ å‡Ìı˝ÚÚÂ̇
| xi − yi | ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË (xi) Ë (y i), Ô‰ÒÚ‡‚Îfl˛˘ËÏË
∑
i
ÙÓÌ˚ ı Ë Û ÓÚÌÓÒËÚÂθÌÓ Á‡‰‡ÌÌÓ„Ó Ì‡·Ó‡ ÙÓÌÂÚ˘ÂÒÍËı ÔËÁ̇ÍÓ‚ (͇Í,
̇ÔËÏÂ, ÌÓÒÓ‚ÓÈ ı‡‡ÍÚÂ Á‚Û͇, ÒÚËÍÚÛ‡, ԇ·ڇÎËÁ‡ˆËfl, ÓÍÛ„ÎÂÌËÂ).
îÓÌÂÚ˘ÂÒÍÓ ÒÎÓ‚‡ÌÓ ‡ÒÒÚÓflÌËÂ
îÓÌÂÚ˘ÂÒÍÓ ÒÎÓ‚‡ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÒÎÓ‚‡ÏË ı Ë Û – ‚Á‚¯ÂÌ̇fl
ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl, Ú.Â. ÏËÌËχθ̇fl ˆÂ̇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı ‚ Û ÔÓÒ‰ÒÚ‚ÓÏ
Á‡ÏÂÌ˚, Û‰‡ÎÂÌËfl Ë ‚ÒÚ‡‚ÍË ÙÓÌÓ‚). ëÎÓ‚Ó ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÒÚÓ͇ ÙÓÌÓ‚. ÑÎfl
‰‡ÌÌÓ„Ó ÙÓÌÓ‚Ó„Ó ‡ÒÒÚÓflÌËfl r(u, v) ‚ ÏÂʉÛ̇Ó‰ÌÓÏ ÙÓÌÂÚ˘ÂÒÍÓÏ ‡ÎÙ‡‚ËÚ Ò
‰Ó·‡‚ÎÂÌËÂÏ ÙÓ̇ 0 (Ú˯Ë̇) ˆÂ̇ Á‡ÏÂÌ˚ ÙÓ̇ u ̇ v ‡‚̇ r(u, v), ÚÓ„‰‡ ͇Í
r(u, 0) – ˆÂ̇ ‚ÒÚ‡‚ÍË ËÎË Û‰‡ÎÂÌËfl u (ÒÏ. ‡ÒÒÚÓflÌËfl ‰Îfl ÔÓÚÂËÌÓ‚˚ı ‰‡ÌÌ˚ı ̇
ÓÒÌÓ‚Â ‡ÒÒÚÓflÌËfl ÑÂÈıÓÙ‡ („Î. 23) ̇ ÏÌÓÊÂÒÚ‚Â ËÁ 20 ‡ÏËÌÓÍËÒÎÓÚ).
318
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ãËÌ„‚ËÒÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
Ç ‚˚˜ËÒÎËÚÂθÌÓÈ ÎËÌ„‚ËÒÚËÍ ÎËÌ„‚ËÒÚ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ (ËÎË ‡ÒÒÚÓflÌËÂÏ
‰Ë‡ÎÂÍÚÓÎÓ„ËË) ÏÂÊ‰Û ‰Ë‡ÎÂÍÚ‡ÏË ï Ë Y fl‚ÎflÂÚÒfl Ò‰Ì ‰Îfl ‰‡ÌÌÓÈ ‚˚·ÓÍË S
ÔÓÌflÚËÈ ÙÓÌÂÚ˘ÂÒÍÓ ÒÎÓ‚‡ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ó‰ÒÚ‚ÂÌÌ˚ÏË (Ú.Â. Ëϲ˘ËÏË
Ó‰Ë̇ÍÓ‚Ó Á̇˜ÂÌËÂ) ÒÎÓ‚‡ÏË sX Ë sY, Ô‰ÒÚ‡‚Îfl˛˘ËÏË Ó‰ÌÓ Ë ÚÓ Ê ÔÓÌflÚËÂ
s ∈ X ‚ X Ë Y ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
ê‡ÒÒÚÓflÌË ëÚÓÛ‚Â‡ (ÒÏ. http://sakla.net/concordances/index.html) ÏÂÊ‰Û Ù‡Á‡ÏË Ò
Ó‰Ë̇ÍÓ‚˚ÏË Íβ˜Â‚˚ÏË ÒÎÓ‚‡ÏË fl‚ÎflÂÚÒfl ÒÛÏÏÓÈ
ai xi , „‰Â 0 < ai < 1 Ë
∑
−n≤i ≤ +n
xi – ÓÚÌÓÒËÚÂθÌÓ ˜ËÒÎÓ ÌÂÒÓ‚Ô‡‰‡˛˘Ëı ÒÎÓ‚ ÏÂÊ‰Û Ù‡Á‡ÏË ‚ ‰‚ËÊÛ˘ÂÏÒfl ÓÍÌÂ.
î‡Á˚ Ò̇˜‡Î‡ ‚˚‡‚ÌË‚‡˛ÚÒfl ÔÓ Ó·˘ÂÏÛ Íβ˜Â‚ÓÏÛ ÒÎÓ‚Û Ì‡ ÓÒÌÓ‚Â Ò‡‚ÌÂÌËfl
Â„Ó ÍÓÌÚÂÍÒÚÌÓ„Ó ËÒÔÓθÁÓ‚‡ÌËfl; ÍÓÏ ÚÓ„Ó, ̇˷ÓΠ‰ÍÓ ÛÔÓÚ·ÎflÂÏ˚Â
ÒÎÓ‚‡ Á‡ÏÂÌfl˛ÚÒfl Ó·˘ËÏ ÔÒ‚‰ÓÁ̇ÍÓÏ.
ê‡ÒÒÚÓflÌË ÚÓ̇
íÓÌ – ÒÛ·˙ÂÍÚË‚Ì˚È ÍÓÂÎflÚ ÙÛ̉‡ÏÂÌڇθÌÓÈ ˜‡ÒÚÓÚ˚ (ÒÏ. ‚˚¯Â ¯Í‡ÎÛ
Ň͇) „ÓÏÍÓÒÚË (‚ÓÒÔËÌËχÂÏÓÈ ËÌÚÂÌÒË‚ÌÓÒÚË) Ë ÏÂÎ-¯Í‡Î˚ (‚ÓÒÔËÌËχÂÏÓÈ
‚˚ÒÓÚ˚ ÚÓ̇). åÛÁ˚͇θ̇fl ¯Í‡Î‡ Ó·˚˜ÌÓ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÎËÌÂÈÌÓ ÛÔÓfl‰Ó˜ÂÌÌÛ˛ ÒÓ‚ÓÍÛÔÌÓÒÚ¸ Á‚ÛÍÓ‚ (ÌÓÚ). ê‡ÒÒÚÓflÌË ÚÓ̇ (ËÎË ËÌÚÂ‚‡Î, ÏÛÁ˚͇θÌÓÂ
‡ÒÒÚÓflÌËÂ) – ‡ÁÏÂ Û˜‡ÒÚ͇ ÎËÌÂÈÌÓ-‚ÓÒÔËÌËχÂÏÓ„Ó ÌÂÔÂ˚‚ÌÓ„Ó ÚÓ̇, Ó„‡Ì˘ÂÌÌÓ„Ó ‰‚ÛÏfl ÚÓ̇ÏË, Í‡Í ÔÓ͇Á‡ÌÓ Ì‡ ‰‡ÌÌÓÈ ¯Í‡ÎÂ. ê‡ÒÒÚÓflÌË ÚÓ̇ ÏÂʉÛ
‰‚ÛÏfl ÔÓÒΉӂ‡ÚÂθÌ˚ÏË ÌÓÚ‡ÏË Ì‡ ¯Í‡Î ̇Á˚‚‡ÂÚÒfl ÒÚÛÔÂ̸˛ Á‚ÛÍÓfl‰‡.
ë„ӉÌfl ‚ Á‡Ô‡‰ÌÓÈ ÏÛÁ˚Í ˜‡˘Â ‚ÒÂ„Ó ÔËÏÂÌflÂÚÒfl ıÓχÚ˘ÂÒ͇fl ¯Í‡Î‡
(ÓÍÚ‡‚‡ ËÁ 12 ÌÓÚ) Ò ‡‚ÌÓÏÂÌÓÈ ÚÂÏÔÂ‡ˆËÂÈ, Ú.Â. ‡Á‰ÂÎÂÌ̇fl ̇ 12 Ó‰Ë̇ÍÓ‚˚ı
ÒÚÛÔÂÌÂÈ Ò ÒÓÓÚÌÓ¯ÂÌËÂÏ ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ÒÓÒ‰ÌËÏË ˜‡ÒÚÓÚ‡ÏË, ‡‚Ì˚Ï 12 2 .
ëÚÛÔÂ̸˛ Á‚ÛÍÓfl‰‡ ‚ ˝ÚÓÏ ÒÎÛ˜‡Â fl‚ÎflÂÚÒfl ÔÓÎÛÚÓÌ, Ú.Â. ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl
ÒÓÒ‰ÌËÏË Í·‚˯‡ÏË (˜ÂÌÓÈ Ë ·ÂÎÓÈ) ÔˇÌËÌÓ. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌÓÚ‡ÏË,
 f1
Ëϲ˘ËÏË ˜‡ÒÚÓÚ˚ f1 Ë f2 , ÒÓÒÚ‡‚ÎflÂÚ 12 log 2   ÔÓÎÛÚÓÌÓ‚.
 f 2
óËÒÎÓ MIDI (ˆËÙÓ‚ÓÈ ËÌÚÂÙÂÈÒ ‰Îfl ÏÛÁ˚͇θÌ˚ı ËÌÒÚÛÏÂÌÚÓ‚) ‰Îfl ÙÛÌf
‰‡ÏÂÌڇθÌÓÈ ˜‡ÒÚÓÚ˚ f ÓÔ‰ÂÎflÂÚÒfl Í‡Í p( f ) = 69 + 12 log 2
. ê‡ÒÒÚÓflÌËÂ
440
ÏÂÊ‰Û ÌÓÚ‡ÏË, ‚˚‡ÊÂÌÌÓ ‚ ˜ËÒ·ı MIDI, ÒÚ‡ÌÓ‚ËÚÒfl ̇ÚÛ‡Î¸ÌÓÈ ÏÂÚËÍÓÈ
|m(f1) – m(f2)| ̇ . ùÚÓ Û‰Ó·ÌÓ ‡ÒÒÚÓflÌË ÚÓ̇, ÔÓÒÍÓθÍÛ ÓÌÓ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ
ÙËÁ˘ÂÒÍÓÏÛ ‡ÒÒÚÓflÌ˲ ̇ Í·‚˯Ì˚ı ËÌÒÚÛÏÂÌÚ‡ı Ë ÔÒËıÓÎӄ˘ÂÒÍÓÏÛ
‡ÒÒÚÓflÌ˲, Í‡Í ˝ÚÓ ËÁÏÂÂÌÓ ˝ÍÒÔÂËÏÂÌڇθÌÓ Ë ÔÓÌËχÂÚÒfl ÏÛÁ˚͇ÌÚ‡ÏË.
ê‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ËÚχÏË
ÇÂÏÂÌ̇fl ¯Í‡Î‡ ËÚχ (ÏÛÁ˚͇θ̇fl ÒÚÛÍÚÛ‡), ÔÓÏËÏÓ Òڇ̉‡ÚÌÓÈ ÌÓÚÌÓÈ
Á‡ÔËÒË, Ô‰ÒÚ‡‚ÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏË ÒÔÓÒÓ·‡ÏË, ÔËÏÂÌflÂÏ˚ÏË ‚ ‚˚˜ËÒÎËÚÂθÌÓÏ
‡Ì‡ÎËÁ ÏÛÁ˚ÍË.
1. ä‡Í ·Ë̇Ì˚È ‚ÂÍÚÓ x = (x1, ..., xm), ÒÓÒÚÓfl˘ËÈ ËÁ m ‚ÂÏÂÌÌ˚ı ËÌÚÂ‚‡ÎÓ‚
(Ó‰Ë̇ÍÓ‚˚ı ̇ ‚ÂÏÂÌÌÓÈ ¯Í‡ÎÂ), „‰Â x i = 1 Ó·ÓÁ̇˜‡ÂÚ ÔÓ‰ÓÎÊËÚÂθÌÓÒÚ¸
Á‚Û˜‡ÌËfl ÌÓÚ˚, ‡ xi = 0 – Ô‡ÛÁÛ. í‡Í, ̇ÔËÏÂ, ÔflÚ¸ 12/8 ÏÂÚ˘ÂÒÍËı ‚ÂÏÂÌÌ˚ı
¯Í‡Î ÏÛÁ˚ÍË Ù·ÏÂÌÍÓ Ô‰ÒÚ‡‚ÎÂÌ˚ Í‡Í ÔflÚ¸ ·Ë̇Ì˚ı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ
‰ÎËÌ˚ 12.
2. ä‡Í ‚ÂÍÚÓ ÚÓ̇ q = (q1, ..., qn ) ‡·ÒÓβÚÌÓÈ ‚˚ÒÓÚ˚ ÚÓ̇ qi Ë ‚ÂÍÚÓ ‡ÁÌÓÒÚË
ÚÓ̇ p = (p 1 , ..., p n+ 1 ), „‰Â pi = q i+ 1 – qi Ô‰ÒÚ‡‚ÎflÂÚ ÍÓ΢ÂÒÚ‚Ó ÔÓÎÛÚÓÌÓ‚
(ÔÓÎÓÊËÚÂθÌ˚ı ËÎË ÓÚˈ‡ÚÂθÌ˚ı) ÓÚ qi ‰Ó qi+1.
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
319
3. ä‡Í ËÌÚÂ‚‡Î¸Ì˚È ‚ÂÍÚÓ ÏÂÊ‰Û ‚ÒÚÛÔÎÂÌËflÏË t = (t1, ..., tn ), ÒÓÒÚÓfl˘ËÈ ËÁ n
ËÌÚÂ‚‡ÎÓ‚ ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌ˚ÏË ‚ÒÚÛÔÎÂÌËflÏË.
4. ä‡Í ıÓÌÓÚÓÏ˘ÂÒÍÓ Ô‰ÒÚ‡‚ÎÂÌËÂ, ÍÓÚÓÓ ‚ ‚ˉ „ËÒÚÓ„‡ÏÏ˚ ÓÚÓ·‡Ê‡ÂÚ t Í‡Í ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ Í‚‡‰‡ÚÓ‚ ÒÓ ÒÚÓÓ̇ÏË t1, ..., tn; Ú‡ÍÓ ÓÚÓ·‡ÊÂÌËÂ
ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÍÛÒÓ˜ÌÓ-ÎËÌÂÈÌÛ˛ ÙÛÌÍˆË˛.
t
5. ä‡Í ‚ÂÍÚÓ ‡Á΢Ëfl ËÚÏÓ‚ r = (r1 , ..., rn–1), „‰Â ri = i +1 .
ti
èËÏÂ‡ÏË Ó·˘Ëı ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ËÚχÏË fl‚ÎflÂÚÒfl ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌËÂ,
ÏÂÚË͇ Ò‚ÓÔ‡ (ÒÏ. „Î. 11), ‡ÒÒÚÓflÌË ·Ûθ‰ÓÁÂ‡ ÏÂÊ‰Û Ëı Á‡‰‡ÌÌ˚ÏË ‚ÂÍÚÓÌ˚ÏË
Ô‰ÒÚ‡‚ÎÂÌËflÏË.
Ö‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ËÌÚÂ‚‡Î¸Ì˚ı ‚ÂÍÚÓÓ‚ ÂÒÚ¸ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ‰Îfl
‰‚Ûı ËÌÚÂ‚‡Î¸Ì˚ı ‚ÂÍÚÓÓ‚ ÏÂÊ‰Û ‚ÒÚÛÔÎÂÌËflÏË. ïÓÌÓÚÓÌÌÓ ‡ÒÒÚÓflÌËÂ
ÉÛÒÚ‡ÙÒÓ̇ fl‚ÎflÂÚÒfl ‡ÁÌӂˉÌÓÒÚ¸˛ l1 -‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ˝ÚËÏË ‚ÂÍÚÓ‡ÏË Ò
ËÒÔÓθÁÓ‚‡ÌËÂÏ ıÓÌÓÚÓÌÌÓ„Ó Ô‰ÒÚ‡‚ÎÂÌËfl.
ê‡ÒÒÚÓflÌË ÓÚÌÓ¯ÂÌËfl ËÌÚÂ‚‡ÎÓ‚ äÓÈ·–òÏÛ΂˘‡ ÓÔ‰ÂÎflÂÚÒfl ͇Í
1− n +
n −1
∑
i =1
max{ri , ri′}
.
min{ri , ri′}
„‰Â r Ë r ⬘ – ‚ÂÍÚÓ˚ ‡ÁÌÓÒÚË ËÚÏÓ‚ ‰‚Ûı ËÚÏÓ‚ (ÒÏ. Ó·‡Ú̇fl èÓ‰Ó·ÌÓÒÚ¸
êÛÊ˘ÍË, „Î. 17).
ÄÍÛÒÚ˘ÂÒÍË ‡ÒÒÚÓflÌËfl
ÑÎË̇ ‚ÓÎÌ˚ – ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ Á‚ÛÍÓ‚‡fl ‚ÓÎ̇ ÔÓıÓ‰ËÚ ‰Ó Á‡‚Â¯ÂÌËfl
ÔÓÎÌÓ„Ó ˆËÍ·. ùÚÓ ‡ÒÒÚÓflÌË ËÁÏÂflÂÚÒfl ÔÓ ÔÂÔẨËÍÛÎflÛ Í ÙÓÌÚÛ ‚ÓÎÌ˚ ‚
̇Ô‡‚ÎÂÌËË Â ‡ÒÔÓÒÚ‡ÌÂÌËfl ÏÂÊ‰Û ÔËÍÓÏ ÒËÌÛÒÓˉ‡Î¸ÌÓÈ ‚ÓÎÌ˚ Ë ÒÎÂ‰Û˛˘ËÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ÔËÍÓÏ. ÑÎËÌÛ ‚ÓÎÌ˚ β·ÓÈ ˜‡ÒÚÓÚ˚ ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸
ÔÛÚÂÏ ‰ÂÎÂÌËfl ÒÍÓÓÒÚË Á‚Û͇ (331,4 Ï/Ò Ì‡ ÛÓ‚Ì ÏÓfl) ‚ Ò‰ ̇ ÙÛ̉‡ÏÂÌڇθÌÛ˛ ˜‡ÒÚÓÚÛ.
èÓΠ‚ ‰‡Î¸ÌÂÈ ÁÓÌ – ˜‡ÒÚ¸ ÔÓÎfl ‡ÍÛÒÚ˘ÂÒÍÓÈ ‚ÓÎÌ˚, ‚ ÍÓÚÓÓÈ Á‚ÛÍÓ‚˚Â
‚ÓÎÌ˚ ÏÓ„ÛÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÔÎÓÒÍËÂ Ë Á‚ÛÍÓ‚Ó ‰‡‚ÎÂÌË ÛÏÂ̸¯‡ÂÚÒfl
Ó·‡ÚÌÓ ÔÓÔÓˆËÓ̇θÌÓ ‡ÒÒÚÓflÌ˲ ÓÚ ËÒÚÓ˜ÌË͇ Á‚Û͇. éÌÓ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ
ÛÏÂ̸¯ÂÌ˲ ÒËÎ˚ Á‚Û͇ ÔËÏÂÌÓ Ì‡ 6 ‰Å ̇ ͇ʉÓ ۉ‚ÓÂÌË ‡ÒÒÚÓflÌËfl.
èÓΠ‚ ·ÎËÊÌÂÈ ÁÓÌ – ˜‡ÒÚ¸ ÔÓÎfl ‡ÍÛÒÚ˘ÂÒÍÓÈ ‚ÓÎÌ˚ (Ó·˚˜ÌÓ Ì‡ Û‰‡ÎÂÌËË
‰‚Ûı ‰ÎËÌ ‚ÓÎÌ ÓÚ ËÒÚÓ˜ÌË͇), „‰Â ÓÚÒÛÚÒÚ‚ÛÂÚ ÔÓÒÚÓ ÓÚÌÓ¯ÂÌË ÏÂÊ‰Û ÛÓ‚ÌÂÏ
Á‚Û͇ Ë ‡ÒÒÚÓflÌËÂÏ.
ÅÎËÁÓÒÚÌ˚È ˝ÙÙÂÍÚ – ‡ÌÓχÎËfl ÌËÁÍËı ˜‡ÒÚÓÚ, ı‡‡ÍÚÂËÁÛ˛˘‡flÒfl Ëı ÛÒËÎÂÌËÂÏ ÔË ÔÓ‰ÌÂÒÂÌËË Ì‡Ô‡‚ÎÂÌÌÓ„Ó ÏËÍÓÙÓ̇ ÒÎ˯ÍÓÏ ·ÎËÁÍÓ Í ËÒÚÓ˜ÌËÍÛ
Á‚Û͇.
äËÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÓÚ ËÒÚÓ˜ÌË͇ Á‚Û͇, ̇ ÍÓÚÓÓÏ ÔflÏÓÈ
Á‚ÛÍ (ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ ÓÚ ËÒÚÓ˜ÌË͇) Ë ‚Â·ÂËÛ˛˘ËÈ Á‚ÛÍ (ÔflÏÓÈ Á‚ÛÍ,
ÓÚ‡ÊÂÌÌ˚È ÓÚ ÒÚÂÌ, ÔÓÚÓÎ͇, ÔÓ· Ë ‰.) Ó‰Ë̇ÍÓ‚˚ ÔÓ ÛÓ‚Ì˛ ËÌÚÂÌÒË‚ÌÓÒÚË.
ê‡ÒÒÚÓflÌˠ̘ۂÒÚ‚ËÚÂθÌÓÒÚË – ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË ˜Û‚ÒÚ‚ËÚÂθÌÓÒÚË
ÛθÚ‡Á‚ÛÍÓ‚Ó„Ó ‰‡Ú˜Ë͇ ·ÎËÁÓÒÚË.
ÄÍÛÒÚ˘ÂÒ͇fl ÏÂÚË͇ – ÚÂÏËÌ, ËÒÔÓθÁÛÂÏ˚È ËÌÓ„‰‡ ‰Îfl Ó·ÓÁ̇˜ÂÌËfl
ÌÂÍÓÚÓ˚ı ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û „·ÒÌ˚ÏË Á‚Û͇ÏË; ̇ÔËÏÂ, ‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl
ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ÙÓχÌÚÌ˚ı ˜‡ÒÚÓÚ ÔÓËÁÌÂÒÂÌÌÓ„Ó Ë Á‡‰‡ÌÌÓ„Ó „·ÒÌÓ„Ó Á‚Û͇
(Ì Òϯ˂‡Ú¸ Ò ÔÓÌflÚËÂÏ ‡ÍÛÒÚ˘ÂÒÍËı ÏÂÚËÍ ‚ Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË Ë
Í‚‡ÌÚÓ‚ÓÈ „‡‚ËÚ‡ˆËË, „Î. 24).
É·‚‡ 22
ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ
Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı
22.1. ëÖíà, çÖ áÄÇàëàåõÖ éí òäÄã
ëÂÚ¸ – ˝ÚÓ „‡Ù, ÓËÂÌÚËÓ‚‡ÌÌ˚È ËÎË ÌÂÓËÂÌÚËÓ‚‡ÌÌ˚È, Ò ÔÓÎÓÊËÚÂθÌ˚Ï
˜ËÒÎÓÏ (‚ÂÒÓÏ), ÔÓÒÚ‡‚ÎÂÌÌ˚Ï ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ͇ʉÓÈ ËÁ Â„Ó ‰Û„ ËÎË ·Â.
ê‡θÌ˚ ÒÎÓÊÌ˚ ÒÂÚË Ó·˚˜ÌÓ Ó·Î‡‰‡˛Ú Ó„ÓÏÌ˚Ï ÍÓ΢ÂÒÚ‚ÓÏ ‚Â¯ËÌ N Ë
fl‚Îfl˛ÚÒfl ‡ÁÂÊÂÌÌ˚ÏË, Ú.Â. Ò ÓÚÌÓÒËÚÂθÌÓ Ï‡Î˚Ï ÍÓ΢ÂÒÚ‚ÓÏ ·Â.
àÌÚÂ‡ÍÚË‚Ì˚ ÒÂÚË (àÌÚÂÌÂÚ, Web, ÒӈˇθÌ˚ ÒÂÚË Ë Ú.Ô.) ËÏÂ˛Ú ÚẨÂÌˆË˛
·˚Ú¸ ÒÂÚflÏË "ÚÂÒÌÓ„Ó ÏË‡" [Watt99], Ú.Â. ̇ıÓ‰flÚÒfl ÏÂÊ‰Û Ó·˚˜Ì˚ÏË „ÂÓÏÂÚ˘ÂÒÍËÏË ¯ÂÚ͇ÏË Ë ÒÎÛ˜‡ÈÌ˚ÏË „‡Ù‡ÏË ‚ ÒÎÂ‰Û˛˘ÂÏ ÒÏ˚ÒÎÂ: ӷ·‰‡˛Ú
·Óθ¯ËÏ ÍÓ˝ÙÙˈËÂÌÚÓÏ Í·ÒÚÂËÁ‡ˆËË (Ú.Â. ‚ÂÓflÚÌÓÒÚ¸˛ ÚÓ„Ó, ˜ÚÓ ‰‚‡ ‡Á΢Ì˚ı ÒÓÒ‰‡ ‰‡ÌÌÓÈ ‚Â¯ËÌ˚ fl‚Îfl˛ÚÒfl ÒÓÒ‰ÌËÏË) Í‡Í ¯ÂÚÍË, ÚÓ„‰‡ Í‡Í Ò‰ÌÂÂ
‡ÒÒÚÓflÌË ÔÛÚË ÏÂÊ‰Û ‰‚ÛÏfl ‚Â¯Ë̇ÏË ·Û‰ÂÚ Ï‡Î˚Ï, ÓÍÓÎÓ ln N, Í‡Í ‚ ÒÎÛ˜‡ÈÌÓÏ „‡ÙÂ.
éÒÌÓ‚Ì˚Ï ˜‡ÒÚÌ˚Ï ÒÎÛ˜‡ÂÏ ÒÂÚË ÚÂÒÌÓ„Ó ÏË‡ fl‚ÎflÂÚÒfl ÒÂÚ¸, ÌÂÁ‡‚ËÒËχfl ÓÚ
¯Í‡Î˚ [Bara01], ‚ ÍÓÚÓÓÈ ‡ÒÔ‰ÂÎÂÌË ‚ÂÓflÚÌÓÒÚÂÈ, Ò͇ÊÂÏ, ‰Îfl ‚Â¯ËÌ˚
ËÏÂÚ¸ ÒÚÂÔÂ̸ k ‡‚ÌÓ k–γ ‰Îfl ÌÂÍÓÂÈ ÔÓÎÓÊËÚÂθÌÓÈ ÍÓÌÒÚ‡ÌÚ˚ γ, ÍÓÚÓ‡fl Ó·˚˜ÌÓ
ÔË̇‰ÎÂÊËÚ ÓÚÂÁÍÛ [2, 3]. ùÚ‡ ÒÚÂÔÂÌ̇fl Á‡‚ËÒËÏÓÒÚ¸ ‚ΘÂÚ Á‡ ÒÓ·ÓÈ ÚÓ, ˜ÚÓ
Ó˜Â̸ ÌÂÏÌÓ„Ë ‚Â¯ËÌ˚, ̇Á˚‚‡ÂÏ˚ ı‡·‡ÏË (ÍÓÌÌÂÍÚÓ‡ÏË, ÒÛÔÂ-‡ÒÔ‰ÂÎËÚÂÎflÏË), fl‚Îfl˛ÚÒfl ·ÓΠ҂flÁ‡ÌÌ˚ÏË, ˜ÂÏ ‰Û„Ë ‚Â¯ËÌ˚. ê‡ÒÔ‰ÂÎÂÌËfl ÒÓ
ÒÚÂÔÂÌÌÓÈ Á‡‚ËÒËÏÓÒÚ¸˛ (ËÎË Á‡‚ËÒËÏÓÒÚ¸˛ ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË, ÚflÊÂÎ˚Ï
"ı‚ÓÒÚÓÏ") ‚ ÔÓÒÚ‡ÌÒÚ‚Â ËÎË ‚ÂÏÂÌË Ì‡·Î˛‰‡ÎËÒ¸ Û ÏÌÓ„Ëı fl‚ÎÂÌËÈ ÔËÓ‰˚
(Í‡Í ÙËÁ˘ÂÒÍËı, Ú‡Í Ë ÒӈˇθÌ˚ı).
ê‡ÒÒÚÓflÌË ÒÓ‡‚ÚÓÒÚ‚‡
ê‡ÒÒÚÓflÌË ÒÓ‡‚ÚÓÒÚ‚‡ – ˝ÚÓ ÏÂÚË͇ ÔÛÚË (http://www.ams.org/msnmain/cgd/)
„‡Ù‡ ÍÓÎÎÂÍÚË‚ÌÓ„Ó ÒÓ‡‚ÚÓÒÚ‚‡, Ëϲ˘Â„Ó ÔÓfl‰Í‡ 0,4 ÏÎÌ ‚Â¯ËÌ (‡‚ÚÓÓ‚,
ÒÓ‰Âʇ˘ËıÒfl ‚ ·‡Á ‰‡ÌÌ˚ı Mathematical Reviews), „‰Â ıÛ fl‚ÎflÂÚÒfl ·ÓÏ, ÂÒÎË
‡‚ÚÓ˚ ı Ë Û – ÒÓ‡‚ÚÓ˚ ÔÛ·ÎË͇ˆËË ËÁ Ó·˘Â„Ó ÍÓ΢ÂÒÚ‚‡ 2 ÏÎÌ, Á‡ÌÂÒÂÌÌ˚ı ‚ ˝ÚÛ
·‡ÁÛ ‰‡ÌÌ˚ı. ÇÂ¯Ë̇ ̇˷Óθ¯ÂÈ ÒÚÂÔÂÌË, 1486 ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ï‡ÚÂχÚËÍÛ èÓβ
ù‰Â¯Û; Ë̉ÂÍÒ ù‰Â¯‡ ÚÓ„Ó ËÎË ËÌÓ„Ó Ï‡ÚÂχÚË͇ – ˝ÚÓ Â„Ó ‡ÒÒÚÓflÌËÂ
ÒÓ‡‚ÚÓÒÚ‚‡ ‰Ó èÓÎfl ù‰Â¯‡.
åÂÚË͇ ÒÓ‡‚ÚÓÒÚ‚‡ Ň‡ (http://www.okland.edu/enp/barr.pdf) fl‚ÎflÂÚÒfl
‡ÒÒÚÓflÌËÂÏ ÒÓÔÓÚË‚ÎÂÌËfl (ËÁ „Î. 15) ‚ ÒÎÂ‰Û˛˘ÂÏ ‡Ò¯ËÂÌËË „‡Ù‡ ÒÓÚÛ‰Ì˘ÂÒÚ‚‡. ë̇˜‡Î‡ ÒÚ‡‚ËÚÒfl ÒÓÔÓÚË‚ÎÂÌË 1 éÏ ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ‡‚ÚÓ‡ÏË ‰Îfl
͇ʉÓÈ ÔÛ·ÎË͇ˆËË ‰‚Ûı ÒÓ‡‚ÚÓÓ‚. á‡ÚÂÏ ‰Îfl ͇ʉÓÈ ÒÓ‚ÏÂÒÚÌÓÈ ÔÛ·ÎË͇ˆËË n
n
‡‚ÚÓÓ‚, n > 2, ‰Ó·‡‚ÎflÂÚÒfl ÌÓ‚‡fl ‚Â¯Ë̇ Ë ÒÓ‰ËÌflÂÚÒfl ˜ÂÂÁ -ÓÏÌÓ ÒÓÔÓ4
ÚË‚ÎÂÌËÂ Ò Í‡Ê‰˚Ï ËÁ ÒÓ‡‚ÚÓÓ‚.
É·‚‡ 22. ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı
321
ê‡ÒÒÚÓflÌË ÒÓ-Á‚ÂÁ‰ÌÓÒÚ¸
ê‡ÒÒÚÓflÌË ÒÓ-Á‚ÂÁ‰ÌÓÒÚË – ˝ÚÓ ÏÂÚË͇ ÔÛÚË „ÓÎÎË‚Û‰ÒÍÓ„Ó „‡Ù‡, ÍÓÚÓ˚È
ËÏÂÂÚ 250 Ú˚Ò. ‚Â¯ËÌ (‡ÍÚÂÓ‚ ÔÓ ÔÂÂ˜Ì˛ ·‡Á˚ ‰‡ÌÌ˚ı ÙËθÏÓ‚ ‚ àÌÚÂÌÂÚÂ),
„‰Â ıÛ fl‚ÎflÂÚÒfl ·ÓÏ, ÂÒÎË ‡ÍÚÂ˚ ı Ë Û ÒÌËχÎËÒ¸ ‚ÏÂÒÚ ‚ Ó‰ÌÓÏ ıÛ‰ÓÊÂÒÚ‚ÂÌÌÓÏ ÍËÌÓÙËθÏÂ. ÇÂ¯Ë̇ÏË Ì‡Ë·Óθ¯Â„Ó ÔÓfl‰Í‡ fl‚Îfl˛ÚÒfl äËÒÚÓÙÂ ãË Ë
ä‚ËÌ Å˝ÍÓÌ; ̇ÔËÏÂ, ‚ Ë„ "ùÙÙÂÍÚ ä‚Ë̇ Å˝ÍÓ̇" (Six degrees of Kevin
Bacon) ËÒÔÓθÁÛÂÚÒfl Ë̉ÂÍÒ Å˝ÍÓ̇, Ú.Â. ‡ÒÒÚÓflÌË ÒÓ-Á‚ÂÁ‰ÌÓÒÚË ‰Ó ˝ÚÓ„Ó ‡ÍÚÂ‡.
Ç Í‡˜ÂÒÚ‚Â ‡Ì‡Îӄ˘Ì˚ı ÔÓÔÛÎflÌ˚ı ÔËÏÂÓ‚ Ú‡ÍËı ÒӈˇθÌ˚ı Ì Á‡‚ËÒËÏ˚ı
ÓÚ ¯Í‡Î ÒÂÚÂÈ ÏÓÊÌÓ ÔË‚ÂÒÚË „‡Ù˚ ÏÛÁ˚͇ÌÚÓ‚ (ÍÓÚÓ˚ ˄‡ÎË ‚ ÒÓÒÚ‡‚Â
Ó‰ÌÓ„Ó ‡Ì҇ϷÎfl), ·ÂÈÒ·ÓÎËÒÚÓ‚ (Ë„‡‚¯Ëı ‚ Ó‰ÌÓÈ ÍÓχ̉Â), ̇ۘÌ˚ı ÔÛ·ÎË͇ˆËÈ
(ÍÓÚÓ˚ ˆËÚËÛ˛Ú ‰Û„ ‰Û„‡), ¯‡ıχÚËÒÚÓ‚ (Ë„‡‚¯Ëı ‰Û„ Ò ‰Û„ÓÏ), „‡Ù˚
Ó·ÏÂ̇ ÔËҸχÏË, Á̇ÍÓÏÒÚ‚ ÏÂÊ‰Û ÒÚÛ‰ÂÌÚ‡ÏË ‚ ÍÓÎΉÊÂ, ˜ÎÂÌÒÚ‚‡ ‚ ÒÓ‚ÂÚÂ
‰ËÂÍÚÓÓ‚ ÍÓÏÏÂ˜ÂÒÍÓÈ Ó„‡ÌËÁ‡ˆËË, ÒÂÍÒۇθÌ˚ı ÓÚÌÓ¯ÂÌËÈ ÏÂÊ‰Û ˜ÎÂ̇ÏË
‰‡ÌÌÓÈ „ÛÔÔ˚. åÂÚË͇ ÔÛÚË ÔÓÒΉÌÂÈ ÒÂÚË Ì‡Á˚‚‡ÂÚÒfl Ò Â Í Ò Û ‡ Î ¸ Ì ˚ Ï
‡ÒÒÚÓflÌËÂÏ. ÑÛ„ËÏË ËÒÒΉÛÂÏ˚ÏË ÒÂÚflÏË, Ì Á‡‚ËÒËÏ˚ÏË ÓÚ ¯Í‡Î, fl‚Îfl˛ÚÒfl
ÒÂÚË ‡‚ˇÒÓÓ·˘ÂÌËÈ, ÒÂÚË ÒÓ˜ÂÚ‡ÌËÈ ÒÎÓ‚ ‚ flÁ˚ÍÂ, ÒÂÚ¸ ˝ÌÂ„ÂÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ˚
á‡Ô‡‰‡ ëòÄ, ÒÂÚË ‰‡Ú˜ËÍÓ‚, ÒÂÚ¸ ÌÂÈÓÌÓ‚ ˜Â‚fl, ÒÂÚË „ÂÌÌÓÈ ÍÓ˝ÍÒÔÂÒÒËË, ÒÂÚË
‡͈ËÈ ÏÂÊ‰Û ÔÓÚÂË̇ÏË Ë ÏÂÚ‡·Ó΢ÂÒÍË ÒÂÚË (ÏÂÊ‰Û ‰‚ÛÏfl ‚¢ÂÒÚ‚‡ÏË
ÒÚ‡‚ËÚÒfl ·Ó, ÂÒÎË ÏÂÊ‰Û ÌËÏË ÔÓËÒıÓ‰ËÚ ‡͈Ëfl ÔÓÒ‰ÒÚ‚ÓÏ ˝ÌÁËÏÓ‚).
éÔÂÂʇ˛˘Â ͂‡ÁË‡ÒÒÚÓflÌËÂ
Ç ÓËÂÌÚËÓ‚‡ÌÌÓÈ ÒÂÚË, ‚ ÍÓÚÓÓÈ ·ÂÌ˚ ‚ÂÒ‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ÌÂÍÓÚÓÓÈ
ÚӘ͠‚Ó ‚ÂÏÂÌË, ÓÔÂÂʇ˛˘ËÏ Í‚‡ÁË‡ÒÒÚÓflÌËÂÏ (Á‡Ô‡Á‰˚‚‡˛˘ËÏ Í‚‡ÁË‡ÒÒÚÓflÌËÂÏ) ̇Á˚‚‡ÂÚÒfl ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ÔÛÚË, ÌÓ ÚÓθÍÓ
ÒÂ‰Ë Ú‡ÍËı, ̇ ÍÓÚÓ˚ı ·ÂÌ˚ ‚ÂÒ‡ ÔÓÒΉӂ‡ÚÂθÌÓ Û‚Â΢˂‡˛ÚÒfl (ÛÏÂ̸¯‡˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ). éÔÂÂʇ˛˘Â ͂‡ÁË‡ÒÒÚÓflÌË ÔËÏÂÌflÂÚÒfl ÔË ÔÓÒÚÓÂÌËË ˝ÔˉÂÏËÓÎӄ˘ÂÒÍËı ÒÂÚÂÈ (‡ÒÔÓÒÚ‡ÌÂÌË ·ÓÎÂÁÌË ÍÓÌÚ‡ÍÚÌ˚Ï
ÒÔÓÒÓ·ÓÏ ËÎË, Ò͇ÊÂÏ, ‡ÒÔÓÒÚ‡ÌÂÌË ÂÂÒË ‚ ÂÎË„ËÓÁÌÓÏ ‰‚ËÊÂÌËË), ÚÓ„‰‡ ͇Í
Ó·‡ÚÌÓ ͂‡ÁË‡ÒÒÚÓflÌË ҂ÓÈÒÚ‚ÂÌÌÓ Ù‡ÈÎÓÓ·ÏÂÌÌ˚Ï ÒÂÚflÏ ê2ê (peer-to-peer).
ñÂÌÚ‡Î¸ÌÓÒÚ¸ ÔÓÏÂÊÛÚÓ˜ÌÓÒÚË
ÑÎfl „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) (‚ ˜‡ÒÚÌÓÒÚË, ‰Îfl ÏÂÚËÍË
ÔÛÚË „‡Ù‡) ˆÂÌÚ‡Î¸ÌÓÒÚ¸ ÔÓÏÂÊÛÚÓ˜ÌÓÒÚË ÚÓ˜ÍË x ∈ X ÓÔ‰ÂÎÂ̇ ͇Í
g( x ) =
∑
y,z ∈X
˜ËÒÎ Ó Ì‡ËÍ‡Ú˜‡È¯Ëı ( y − z ) ÔÛÚÂÈ ˜ÂÂÁ x
˜ËÒÎ Ó Ì‡ËÍ‡Ú˜‡È¯Ëı ( y − z ) ÔÛÚÂÈ
Ë ÙÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl-χÒÒ˚ ÂÒÚ¸ ÙÛÌ͈Ëfl M: ≥0 → , ÓÔ‰ÂÎÂÌ̇fl ͇Í
M ( a) =
| {y ∈ X : d ( x, y) + d ( y, z ) = a ‰Îfl ÌÂÍÓÚÓ˚ı x, y ∈ X} |
.
| {( x, z ) ∈ X × X : d ( x, z ) = a} |
ä‡Í Ô‰ÔÓ·„‡ÂÚÒfl ‚ [GOJKK02] ÏÌÓ„Ë ÌÂÁ‡‚ËÒËÏ˚ ÓÚ ¯Í‡Î ÒÂÚË Û‰Ó‚ÎÂÚ‚Ófl˛Ú ÒÚÂÔÂÌÌÓÏÛ Á‡ÍÓÌÛ g–γ (‰Îfl ‚ÂÓflÚÌÓÒÚË, ˜ÚÓ ‚Â¯Ë̇ ËÏÂÂÚ ˆÂÌÚ‡Î¸ÌÓÒÚ¸
ÔÓÏÂÊÛÚÓ˜ÌÓÒÚË g), „‰Â γ ‡‚ÌÓ 2 ËÎË ≈2,2 Ò ÙÛÌ͈ËÂÈ ‡ÒÒÚÓflÌËfl-χÒÒ˚ M(a),
ÍÓÚÓ‡fl ÎËÌÂÈ̇ ËÎË ÌÂÎËÌÂÈ̇ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. Ç ÒÎÛ˜‡Â ÎËÌÂÈÌÓÒÚË, ̇ÔËÏÂ,
M ( a)
≈ 4, 5 ‰Îfl ÏÂÚËÍË AS àÌÚÂÌÂÚ‡ Ë ≈1 ‰Îfl Í‚‡ÁËÏÂÚËÍË Web „ËÔÂÒÒ˚ÎÓÍ .
a
ê‡ÒÒÚÓflÌË ‰ÂÈÙ‡
ê‡ÒÒÚÓflÌË ‰ÂÈÙ‡ – ‡·ÒÓβÚÌÓ Á̇˜ÂÌË ‡ÁÌÓÒÚË ÏÂÊ‰Û Ì‡·Î˛‰‡ÂÏ˚ÏË
Ë Ù‡ÍÚ˘ÂÒÍËÏË ÍÓÓ‰Ë̇ڇÏË ÛÁ· ‚ NVE (‚ËÚۇθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÂÚË).
322
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
Ç ÏÓ‰ÂÎflı Ú‡ÍÓ„Ó ·Óθ¯Ó„Ó ‚ËÚۇθÌÓ„Ó Ó‰ÌÓ‡Ì„Ó‚Ó„Ó (peer-to-peer) ÔÓÒÚ‡ÌÒÚ‚‡ ÒÂÚË (̇ÔËÏÂ, ‚ ÒÂÚ‚˚ı Ë„‡ı Ò ·Óθ¯ËÏ ÍÓ΢ÂÒÚ‚ÓÏ Û˜‡ÒÚÌËÍÓ‚)
ÔÓθÁÓ‚‡ÚÂÎË Ô‰ÒÚ‡‚ÎÂÌ˚ Í‡Í ÍÓÓ‰Ë̇ÚÌ˚ ÚÓ˜ÍË Ì‡ ÔÎÓÒÍÓÒÚË (ÛÁÎ˚),
ÍÓÚÓ˚ ÏÓ„ÛÚ ÔÂÂÏ¢‡Ú¸Òfl ‰ËÒÍÂÚÌÓ ÔÓ ‚ÂÏÂÌË Ë Í‡Ê‰‡fl ËÁ ÍÓÚÓ˚ı ӷ·‰‡ÂÚ
ÁÓÌÓÈ ‚ˉËÏÓÒÚË, ̇Á˚‚‡ÂÏÓÈ Ó·Î‡ÒÚ¸˛ ËÌÚÂÂÒ‡. Ç NVE ÒÓÁ‰‡ÂÚÒfl ÒËÌÚÂÚ˘ÂÒÍËÈ
3D ÏË, ‚ ÍÓÚÓÓÏ Í‡Ê‰ÓÏÛ ÔÓθÁÓ‚‡ÚÂβ ÔËÒ‚‡Ë‚‡ÂÚÒfl ‡‚‡Ú‡‡ (‚ˉÂÓÓ·‡Á
‡·ÓÌÂÌÚ‡) ‰Îfl ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl Ò ‰Û„ËÏË ÔÓθÁÓ‚‡ÚÂÎflÏË ËÎË ÍÓÏÔ¸˛ÚÂÓÏ.
íÂÏËÌ ‡ÒÒÚÓflÌË ‰ÂÈÙ‡ ËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ ÔËÏÂÌËÚÂθÌÓ Í ÔÓÚÓÍÛ,
ÔÓıÓ‰fl˘ÂÏÛ ÒÍ‚ÓÁ¸ χÚÂˇΠ‚ ÔÓˆÂÒÒ ÔÓËÁ‚Ó‰ÒÚ‚‡ ‡‚ÚÓÔÓÍ˚¯ÂÍ.
ëÂχÌÚ˘ÂÒ͇fl ·ÎËÁÓÒÚ¸
ÑÎfl ÒÎÓ‚ ‚ ‰ÓÍÛÏÂÌÚ ËϲÚÒfl ÒËÌÚ‡ÍÒ˘ÂÒÍË ÓÚÌÓ¯ÂÌËfl ·ÎËÊÌÂ„Ó ‰ÂÈÒÚ‚Ëfl Ë
ÒÂχÌÚ˘ÂÒÍË ÍÓÂÎflˆËË ‰‡Î¸ÌÂ„Ó ‰ÂÈÒÚ‚Ëfl. éÒÌÓ‚Ì˚ÏË ÒÂÚflÏË ‰Îfl ‡·ÓÚ˚ Ò
‰ÓÍÛÏÂÌÚ‡ÏË fl‚Îfl˛ÚÒfl Web Ë ·Ë·ÎËÓ„‡Ù˘ÂÒÍË ·‡Á˚ ‰‡ÌÌ˚ı (ˆËÙÓ‚˚Â
·Ë·ÎËÓÚÂÍË, Web ·‡Á˚ ̇ۘÌ˚ı ‰‡ÌÌ˚ı Ë Ú.Ô.); ‰ÓÍÛÏÂÌÚ˚ ‚ ÌËı ‚Á‡ËÏÓÒ‚flÁ‡Ì˚
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ˜ÂÂÁ „ËÔÂÒÒ˚ÎÍË, ˆËÚËÓ‚‡ÌË ËÎË ÒÓ‡‚ÚÓÒÚ‚Ó.
äÓÏ ÚÓ„Ó, ÌÂÍÓÚÓ˚ ÒÂχÌÚ˘ÂÒÍË ‰ÂÒÍËÔÚÓ˚ (Íβ˜Â‚˚ ÒÎÓ‚‡) ÏÓ„ÛÚ
Ôˉ‡‚‡Ú¸Òfl Í ‰ÓÍÛÏÂÌÚ‡Ï ‰Îfl Ëı Ë̉ÂÍÒ‡ˆËË (Í·ÒÒËÙË͇ˆËË): ÔÓ ‚˚·‡ÌÌÓÈ
‡‚ÚÓÓÏ ÚÂÏËÌÓÎÓ„ËË, ÚËÚÛθÌ˚Ï Ì‡‰ÔËÒflÏ, Á‡„ÓÎÓ‚Í‡Ï ÊÛ̇ÎÓ‚ Ë Ú.Ô.
ëÂχÌÚ˘ÂÒ͇fl ·ÎËÁÓÒÚ¸ ÏÂÊ‰Û ‰‚ÛÏfl Íβ˜Â‚˚ÏË ÒÎÓ‚‡ÏË ı Ë Û ÂÒÚ¸ Ëı
| X ∩Y |
ÔÓ‰Ó·ÌÓÒÚ¸ í‡ÌËÏÓÚÓ
, „‰Â X Ë Y – ÏÌÓÊÂÒÚ‚‡ ‰ÓÍÛÏÂÌÚÓ‚ Ò ÔËÒ‚ÓÂÌÌ˚ÏË
| X ∪Y |
Ë̉ÂÍÒ‡ÏË ı Ë Û ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. àı ‡ÒÒÚÓflÌË Íβ˜Â‚Ó„Ó ÒÎÓ‚‡ ÓÔ‰ÂÎflÂÚÒfl ͇Í
| X∆Y |
Ë Ì fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ.
| X ∩Y |
22.2. ëÖåÄçíàóÖëäàÖ êÄëëíéüçàü Ç ëÖíÖÇõï ëíêìäíìêÄï
ëÂ‰Ë ÓÒÌÓ‚Ì˚ı ÎÂÍÒËÍÓ„‡Ù˘ÂÒÍËı ÒÂÚÂÈ (Ú‡ÍËı, ̇ÔËÏÂ, Í‡Í WordNet,
ÔÓËÒÍÓ‚‡fl ÒËÒÚÂχ Medical Search Headings, íÂÁ‡ÛÛÒ êÓÊÚ‡, ëÎÓ‚‡¸ ÒÓ‚ÂÏÂÌÌÓ„Ó
‡Ì„ÎËÈÒÍÓ„Ó flÁ˚͇ ãÓ̄χ̇) ÒÂÚ¸ WordNet fl‚ÎflÂÚÒfl ̇˷ÓΠÔÓÔÛÎflÌ˚Ï
ÎÂÍÒ˘ÂÒÍËÏ ÂÒÛÒÓÏ, ËÒÔÓθÁÛÂÏ˚Ï ‚ ÔÓˆÂÒÒ‡ı Ó·‡·ÓÚÍË ÂÒÚÂÒÚ‚ÂÌÌÓ„Ó flÁ˚͇
Ë ÍÓÏÔ¸˛ÚÂÌÓÈ ÎËÌ„‚ËÒÚËÍÂ. ëÂÚ¸ WordNet (ÒÏ. http://wordnet.princeton.edu) –
ËÌÚÂ‡ÍÚ˂̇fl ÒÎÓ‚‡̇fl ·‡Á‡ ‰‡ÌÌ˚ı, ‚ ÍÓÚÓÓÈ ÒÛ˘ÂÒÚ‚ËÚÂθÌ˚Â, „·„ÓÎ˚,
ÔË·„‡ÚÂθÌ˚Â Ë Ì‡˜Ëfl ‡Ì„ÎËÈÒÍÓ„Ó flÁ˚͇ Ó„‡ÌËÁÓ‚‡Ì˚ ‚ ÒËÌÓÌËÏ˘ÂÒÍËÂ
ÏÌÓÊÂÒÚ‚‡, ͇ʉÓ ËÁ ÍÓÚÓ˚ı Ô‰ÒÚ‡‚ÎflÂÚ Ó‰ÌÓ ·‡ÁÓ‚Ó ÎÂÍÒ˘ÂÒÍÓ ÔÓÌflÚËÂ.
Ñ‚‡ Ú‡ÍËı ÏÌÓÊÂÒÚ‚‡ ÏÓ„ÛÚ ·˚Ú¸ Ò‚flÁ‡Ì˚ ÒÂχÌÚ˘ÂÒÍË Ó‰ÌÓÈ ËÁ ÒÎÂ‰Û˛˘Ëı
Ò‚flÁÓÍ: Ò‚flÁ͇ ÒÌËÁÛ ‚‚Âı ı („ËÔÓÌËÏ) Öëíú Û („ËÔÂÓÌËÏ), Ò‚flÁ͇ Ò‚ÂıÛ ‚ÌËÁ ı
(ÏÂÓÌËÏ) ëéÑÖêÜàí Û (ıÓÎÓÌËÏ), „ÓËÁÓÌڇθ̇fl Ò‚flÁ͇, ‚˚‡Ê‡˛˘‡fl
·Óθ¯Û˛ ˜‡ÒÚ¸ ÒÓ‚ÏÂÒÚÌÓ„Ó ÛÔÓÚ·ÎÂÌËfl x Ë y (‡ÌÚÓÌËÏËfl), Ë Ú.‰. Ò‚flÁÍË Öëíú
(IS-A) Ë̉ۈËÛ˛Ú ˜‡ÒÚ˘Ì˚È ÔÓfl‰ÓÍ, ̇Á˚‚‡ÂÏ˚È IS-A Ú‡ÍÒÓÌÓÏËÂÈ. ÇÂÒËfl 2.0
WordNet ÒÓ‰ÂÊËÚ 80 000 ÔÓÌflÚËÈ ÒÛ˘ÂÒÚ‚ËÚÂθÌÓ„Ó Ë 13 500 ÔÓÌflÚËÈ „·„Ó·,
Ó„‡ÌËÁÓ‚‡ÌÌ˚ı ‚ 9 Ë 554 ÓÚ‰ÂθÌ˚ı IS-A ËÂ‡ı˘ÂÒÍËı ÒÚÛÍÚÛ˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. Ç ÔÓÎÛ˜ÂÌÌÓÏ ÓËÂÌÚËÓ‚‡ÌÌÓÏ ‡ˆËÍ΢ÌÓÏ „‡Ù ÔÓÌflÚËÈ ‰Îfl β·˚ı
‰‚Ûı ÒËÌÓÌËÏ˘ÂÒÍËı ÏÌÓÊÂÒÚ‚ (ËÎË ÔÓÌflÚËÈ) ı Ë Û ÔÛÒÚ¸ l(x, y) – ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó ÔÛÚË ÏÂÊ‰Û ÌËÏË Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÚÓθÍÓ Ò‚flÁÓÍ IS-A Ë ÔÛÒÚ¸ LPS(x, y) –
Ëı ̇ËÏÂ̸¯ËÈ Ó·˘ËÈ Ô‰¯ÂÒÚ‚Û˛˘ËÈ ˝ÎÂÏÂÌÚ (Ô‰ÓÍ) ‚ IS-A Ú‡ÍÒÓÌÓÏËË.
èÛÒÚ¸ d(x) – „ÎÛ·Ë̇ ı (Ú.Â. Â„Ó ‡ÒÒÚÓflÌË ÓÚ ÍÓÌfl ‚ IS-A Ú‡ÍÒÓÌÓÏËË) Ë ÔÛÒÚ¸
D = maxxd(x). çËÊ ÔË‚Ó‰ËÚÒfl ÔÂ˜Â̸ ÓÒÌÓ‚Ì˚ı ÒÂχÌÚ˘ÂÒÍËı ÔÓ‰Ó·ÌÓÒÚÂÈ Ë
‡ÒÒÚÓflÌËÈ.
323
É·‚‡ 22. ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı
èÓ‰Ó·ÌÓÒÚ¸ ÔÛÚË
èÓ‰Ó·ÌÓÒÚ¸ ÔÛÚË ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Í
path(x, y) = (l(x, y)) –1.
èÓ‰Ó·ÌÓÒÚ¸ ãËÍÓ͇–óÓ‰ÓÓÛ
èÓ‰Ó·ÌÓÒÚ¸ ãËÍÓ͇–óÓ‰ÓÓÛ ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Í
lch( x, y) = − ln
l ( x, y)
,
2D
Ë ‡ÒÒÚÓflÌË ÔÓÌflÚËÈ ÏÂÊ‰Û ÌËÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
l ( x, y)
.
D
èÓ‰Ó·ÌÓÒÚ¸ ÇÛ–è‡ÎÏÂ‡
èÓ‰Ó·ÌÓÒÚ¸ ÇÛ–è‡ÎÏÂ‡ ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Í
wup( x, y) =
2 d ( LPS( x, y))
.
d ( x ) + d ( y)
èÓ‰Ó·ÌÓÒÚ¸ êÂÁÌË͇
èÓ‰Ó·ÌÓÒÚ¸ êÂÁÌË͇ ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl
͇Í
res(x, y) = –ln p(LPS(x, y)),
„‰Â p(z) – ‚ÂÓflÚÌÓÒÚ¸ ‚ÒÚÂÚËÚ¸ ÔÓÌflÚË z ‚ ·Óθ¯ÓÏ Ó·˙ÂÏÂ, ‡ –ln p(z) –
ËÌÙÓχˆËÓÌÌÓ ÒÓ‰ÂʇÌË z.
èÓ‰Ó·ÌÓÒÚ¸ ãË̇
èÓ‰Ó·ÌÓÒÚ¸ ãË̇ ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Í
lin( x, y) =
2 ln p( LPS( x, y))
.
ln p( x ) + ln p( y)
ê‡ÒÒÚÓflÌË ñÁflÌfl–äÓÌ‡Ú‡
ê‡ÒÒÚÓflÌË ñÁflÌfl–äÓÌ‡Ú‡ ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Í
jcn(x, y) = 2ln p(LPS(x, y)) – (ln p(x) + ln p(y)).
èÓ‰Ó·ÌÓÒÚË ãÂÒ͇
ÉÎÓÒÒ‡ËÂÏ ÒËÌÓÌËÏ˘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ z fl‚ÎflÂÚÒfl ˝ÎÂÏÂÌÚ ˝ÚÓ„Ó ÏÌÓÊÂÒÚ‚‡,
ÍÓÚÓ˚È ÓÔ‰ÂÎflÂÚ ËÎË ÔÓflÒÌflÂÚ ÓÒÌÓ‚ÌÓ ÔÓÌflÚËÂ. èÓ‰Ó·ÌÓÒÚË ãÂÒ͇ – Ú‡ÍËÂ
ÔÓ‰Ó·ÌÓÒÚË, ÍÓÚÓ˚ ÓÔ‰ÂÎfl˛ÚÒfl Í‡Í ÙÛÌ͈Ëfl ̇ÎÓÊÂÌËfl „ÎÓÒÒ‡Ë‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ÔÓÌflÚËÈ; Ú‡Í, ̇ÔËÏÂ, ̇ÎÓÊÂÌËÂÏ „ÎÓÒÒ‡Ë‚ ̇Á˚‚‡ÂÚÒfl
‚Â΢Ë̇
2t ( x, y)
,
t ( x ) + t ( y)
„‰Â t(z) – ÍÓ΢ÂÒÚ‚Ó ÒÎÓ‚ ÒËÌÓÌËÏ˘ÂÒÍÓ„Ó ÏÌÓÊÂÒÚ‚‡ z, ‡ t(x , y) – ÍÓ΢ÂÒÚ‚Ó
Ó·˘Ëı ÒÎÓ‚ ‚ ı Ë Û.
324
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
èÓ‰Ó·ÌÓÒÚ¸ ïÂÒÚ‡–ëÂÌÚ–é̉ʇ
èÓ‰Ó·ÌÓÒÚ¸ ïÂÒÚ‡–ëÂÌÚ–é̉ʇ ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û
ÓÔ‰ÂÎflÂÚÒfl ͇Í
hso(x, y) = C – L(x, y) – ck,
„‰Â L(x, y) – ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó ÔÛÚË ÏÂÊ‰Û ı Ë Û ÔË ËÒÔÓθÁÓ‚‡ÌËË ‚ÒÂı Ò‚flÁÓÍ,
k – ÍÓ΢ÂÒÚ‚Ó ËÁÏÂÌÂÌËÈ Ì‡Ô‡‚ÎÂÌËfl ˝ÚÓ„Ó ÔÛÚË Ë C, c – ÍÓÌÒÚ‡ÌÚ˚.
L( x , y )
.
ê‡ÒÒÚÓflÌË ïÂÒÚ‡–ëÂÌÚ–é̉ʇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
k
22.3. êÄëëíéüçàü Ç àçíÖêçÖíÖ à WEB
ê‡ÒÒÏÓÚËÏ ÔÓ‰Ó·ÌÓ „‡Ù˚ ‚·-ÒÂÚË Ë Web àÌÚÂÌÂÚ‡, ÍÓÚÓ˚ ӷ·‰‡˛Ú
Ò‚ÓÈÒÚ‚ÓÏ "ÚÂÒÌÓ„Ó ÏË‡" Ë ÌÂÁ‡‚ËÒËÏÓÒÚË ÓÚ ¯Í‡Î.
àÌÚÂÌÂÚ – Ó·˘Â‰ÓÒÚÛÔ̇fl „ÎÓ·‡Î¸Ì‡fl ÍÓÏÔ¸˛ÚÂ̇fl ÒÂÚ¸, ÍÓÚÓ‡fl ÒÙÓÏËÓ‚‡Î‡Ò¸ ̇ ·‡Á ÄÔ‡ÌÂÚ (ÒÂÚË ÍÓÏÏÛÚ‡ˆËË Ô‡ÍÂÚÓ‚, ÒÓÁ‰‡ÌÌÓÈ ‚ 1969 „. ‰Îfl ÌÛʉ
åËÌËÒÚÂÒÚ‚‡ Ó·ÓÓÌ˚ ëòÄ), NSFNet, Usenet, Bitnet Ë fl‰‡ ‰Û„Ëı ÒÂÚÂÈ. Ç 1995 „.
燈ËÓ̇θÌ˚È Ì‡Û˜Ì˚È ÙÓ̉ ëòÄ ÓÚ͇Á‡ÎÒfl ÓÚ Ó·Î‡‰‡ÌËfl ÒÂÚ¸˛ àÌÚÂÌÂÚ.
Ö ÛÁ·ÏË fl‚Îfl˛ÚÒfl χ¯ÛÚËÁ‡ÚÓ˚, Ú.Â. ÛÒÚÓÈÒÚ‚‡, ÍÓÚÓ˚ ÔÂÂÒ˚·˛Ú
Ô‡ÍÂÚ˚ ‰‡ÌÌ˚ı ÔÓ ÒÂÚ‚˚Ï Í‡Ì‡Î‡Ï ÓÚ Ó‰ÌÓ„Ó ÍÓÏÔ¸˛ÚÂ‡ Í ‰Û„ÓÏÛ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÔÓÚÓÍÓÎÓ‚ IP (àÌÚÂÌÂÚ-ÔÓÚÓÍÓÎ ÏÂÊÒÂÚÂ‚Ó„Ó ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl), íëê Ë
UDP (ÔÓÚÓÍÓÎ˚ ÔÂ‰‡˜Ë ‰‡ÌÌ˚ı) Ë ÔÓÒÚÓÂÌÌ˚ı ̇‰ ÌËÏË ÔÓÚÓÍÓÎÓ‚ çííê,
Telnet, FTP Ë ÏÌÓ„Ëı ‰Û„Ëı ÔÓÚÓÍÓÎÓ‚ (Ú.Â. ÚÂıÌ˘ÂÒÍËı ÒÔˆËÙË͇ˆËÈ ÔÂ‰‡˜Ë
‰‡ÌÌ˚ı). å‡¯ÛÚËÁ‡ÚÓ˚ ‡ÁÏ¢‡˛ÚÒfl ‚ ÏÂÒÚ‡ı ÏÂÊÒÂÚ‚˚ı ¯Î˛ÁÓ‚, Ú.Â. ‚
Ú‡ÍËı ÏÂÒÚ‡ı, „‰Â ÒÓ‰ËÌfl˛ÚÒfl Ì ÏÂÌ ‰‚Ûı ÒÂÚÂÈ. ë‚flÁË, ÒÓ‰ËÌfl˛˘Ë ÛÁÎ˚ –
‡Á΢Ì˚ ÙËÁ˘ÂÒÍË ÒÓ‰ËÌËÚÂÎË, Ú‡ÍËÂ Í‡Í ÚÂÎÂÙÓÌÌ˚ ÔÓ‚Ó‰‡, ÓÔÚÓ‚ÓÎÓÍÓÌÌ˚ ͇·ÂÎË Ë ÒÔÛÚÌËÍÓ‚˚ ͇̇Î˚. Ç àÌÚÂÌÂÚ ËÒÔÓθÁÛÂÚÒfl Ô‡ÍÂÚ̇fl
ÍÓÏÏÛÚ‡ˆËfl, Ú.Â. ‰‡ÌÌ˚ (Ù‡„ÏÂÌÚËÓ‚‡ÌÌ˚Â, ÂÒÎË Ú·ÛÂÚÒfl) ÔÂÂÒ˚·˛ÚÒfl ÌÂ
ÔÓ Ô‰‚‡ËÚÂθÌÓ ÛÒÚ‡ÌÓ‚ÎÂÌÌÓÏÛ ÔÛÚË, ‡ Ò Û˜ÂÚÓÏ ÓÔÚËχθÌÓ„Ó ËÒÔÓθÁÓ‚‡ÌËfl
Ëϲ˘ÂÈÒfl ÔÓÎÓÒ˚ ˜‡ÒÚÓÚ (ÒÓ ÒÍÓÓÒÚ¸˛ ÔÂ‰‡˜Ë ËÌÙÓχˆËË ‚ ÏÎÌ ·ËÚ/Ò) Ë
ÏËÌËÏËÁ‡ˆËË ‚ÂÏÂÌË Á‡Ô‡Á‰˚‚‡ÌËfl (‚ÂÏÂÌË ‚ ÏËÎÎËÒÂÍÛ̉‡ı, ÌÂÓ·ıÓ‰ËÏÓ„Ó ‰Îfl
ÔÓÎÛ˜ÂÌËfl Á‡ÔÓÒ‡).
ä‡Ê‰ÓÏÛ ÔÓ‰Íβ˜ÂÌÌÓÏÛ Í àÌÚÂÌÂÚÛ ÍÓÏÔ¸˛ÚÂÛ Ó·˚˜ÌÓ ÔËÒ‚‡Ë‚‡ÂÚÒfl
Ë̉˂ˉۇθÌ˚È "‡‰ÂÒ", ̇Á˚‚‡ÂÏ˚È IP ‡‰ÂÒÓÏ. äÓ΢ÂÒÚ‚Ó ‚ÓÁÏÓÊÌ˚ı IP
‡‰ÂÒÓ‚ Ó„‡Ì˘ÂÌÓ ‚Â΢ËÌÓÈ 2 3 2 ≈ 4,3 ÏÎ‰. ç‡Ë·ÓΠÔÓÔÛÎflÌ˚ÏË ÔËÎÓÊÂÌËflÏË, ÔÓ‰‰ÂÊË‚‡ÂÏ˚ÏË àÌÚÂÌÂÚÓÏ, fl‚Îfl˛ÚÒfl ˝ÎÂÍÚÓÌ̇fl ÔÓ˜Ú‡, ÔÂ‰‡˜‡
Ù‡ÈÎÓ‚, Web Ë ÌÂÍÓÚÓ˚ ÏÛθÚËωˇ.
åÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ „‡Ù‡ IP ‡‰ÂÒÓ‚ àÌÚÂÌÂÚ‡ fl‚Îfl˛ÚÒfl IP ‡‰ÂÒ‡ ‚ÒÂı
ÔÓ‰Íβ˜ÂÌÌ˚ı Í àÌÚÂÌÂÚÛ ÍÓÏÔ¸˛ÚÂÓ‚; ‰‚ ‚Â¯ËÌ˚ fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË
ÓÌË ÔÓ‰Íβ˜ÂÌ˚ ̇ÔflÏÛ˛ ˜ÂÂÁ χ¯ÛÚËÁ‡ÚÓ, Ú.Â. ‰ÂÈÚ‡„‡Ïχ ÔÂ‰‡˜Ë
ÔÓıÓ‰ËÚ ÚÓθÍÓ ˜ÂÂÁ Ó‰ËÌ Ô˚ÊÓÍ (ÒÂÚ‚ÓÈ Ò„ÏÂÌÚ).
ëÂÚ¸ àÌÚÂÌÂÚ ÏÓÊÂÚ ·˚Ú¸ ‡Á·ËÚ‡ ̇ ‡‰ÏËÌËÒÚ‡ÚË‚ÌÓ ‡‚ÚÓÌÓÏÌ˚ ÒËÒÚÂÏ˚
(AS) ËÎË ‰ÓÏÂÌ˚. Ç Í‡Ê‰ÓÈ AS ‚ÌÛÚˉÓÏÂÌ̇fl χ¯ÛÚËÁ‡ˆËfl ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÔÓ
ÔÓÚÓÍÓÎÛ IGP (‚ÌÛÚÂÌÌËÈ ÔÓÚÓÍÓΠχ¯ÛÚËÁ‡ˆËË), ÚÓ„‰‡ Í‡Í ÏÂʉÓÏÂÌ̇fl
χ¯ÛÚËÁ‡ˆËfl Ó·ÂÒÔ˜˂‡ÂÚÒfl ÔÓ ÔÓÚÓÍÓÎÛ BGP (ÔÓ„‡Ì˘Ì˚È ÔÓÚÓÍÓÎ
χ¯ÛÚËÁ‡ˆËË), ÍÓÚÓ˚È ÔËÒ‚‡Ë‚‡ÂÚ ASN (16-·ËÚÓ‚˚È) ÌÓÏÂ) ͇ʉÓÈ AS. AS
„‡Ù àÌÚÂÌÂÚ‡ ËÏÂÂÚ ‚ ͇˜ÂÒÚ‚Â ‚Â¯ËÌ AS (ÔË·ÎËÁËÚÂθÌÓ 25 Ú˚Ò. ‚ 2007 „.), ‡
Â„Ó ·‡ Ô‰ÒÚ‡‚Îfl˛Ú ̇΢ˠӉÌÓ‡Ì„Ó‚˚ı BGP Ò‚flÁË ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË AS.
É·‚‡ 22. ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı
325
Web ("ÇÒÂÏË̇fl Ô‡ÛÚË̇", WWW ËÎË ‚·-ÒÂÚ¸) fl‚ÎflÂÚÒfl ÍÛÔÌÓÈ ˜‡ÒÚ¸˛
ÒÓ‰ÂʇÌËfl àÌÚÂÌÂÚ‡, ÒÓÒÚÓfl˘ÂÈ ËÁ ‚Á‡ËÏÓÒ‚flÁ‡ÌÌ˚ı ‰ÓÍÛÏÂÌÚÓ‚ (ÂÒÛÒÓ‚).
é̇ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÔÓÚÓÍÓÎÛ çííê (ÔÓÚÓÍÓÎ ÔÂ‰‡˜Ë „ËÔÂÚÂÍÒÚ‡) ÏÂʉÛ
·‡ÛÁÂÓÏ Ë ÒÂ‚ÂÓÏ, ÔÓÚÓÍÓÎÛ HTML (flÁ˚Í „ËÔÂÚÂÍÒÚÓ‚ÓÈ Ï‡ÍËÓ‚ÍË)
ÍÓ‰ËÓ‚‡ÌËfl ËÌÙÓχˆËË ‰Îfl ‰ËÒÔÎÂfl Ë URL (ÛÌËÙˈËÓ‚‡ÌÌ˚ Û͇Á‡ÚÂÎË ÂÒÛÒÓ‚), ‰‡˛˘ËÏ Â‰ËÌÒÚ‚ÂÌÌ˚È "‡‰ÂÒ" Web ÒÚ‡Ìˈ. Web ̇˜‡Î‡ Ò‚Ó ÒÛ˘ÂÒÚ‚Ó‚‡ÌËÂ
‚ Ö‚ÓÔÂÈÒÍÓÏ ˆÂÌÚ ÔÓ fl‰ÂÌ˚Ï ËÒÒΉӂ‡ÌËflÏ ‚ 1989 „. Ë ·˚· ÔÂ‰‡Ì‡ ‚
Ó·˘ÂÒÚ‚ÂÌÌÓ ÔÓθÁÓ‚‡ÌË ‚ 1993 „.
Web Ó„‡Ù – ‚ËÚۇθ̇fl ÒÂÚ¸, ÛÁÎ˚ ÍÓÚÓÓÈ fl‚Îfl˛ÚÒfl ‰ÓÍÛÏÂÌÚ‡ÏË (Ú.Â.
ÒÚ‡Ú˘Ì˚ÏË HTML ÒÚ‡Ìˈ‡ÏË ËÎË Ëı URL), ÍÓÚÓ˚ ÒÓ‰ËÌÂÌ˚ ‚ıÓ‰fl˘ËÏË ËÎË
ËÒıÓ‰fl˘ËÏË HTML „ËÔÂÒÒ˚Î͇ÏË.
äÓ΢ÂÒÚ‚Ó ÛÁÎÓ‚ Web Ó„‡Ù‡ ÒÓÒÚ‡‚ÎflÎÓ, ÔÓ ‡ÁÌ˚Ï ÓˆÂÌ͇Ï, ÏÂÊ‰Û 15 Ë
30 ÏÎ‰ ‚ 2007 „. ÅÓΠÚÓ„Ó, fl‰ÓÏ Ì‡ıÓ‰ËÚÒfl Ú‡Í Ì‡Á˚‚‡Âχfl „ÎÛ·Ó͇fl ËÎË
Ì‚ˉËχfl Web, Ú.Â. ‰ÓÒÚÛÔÌ˚ ‰Îfl ÔÓËÒ͇ ·‡Á˚ ‰‡ÌÌ˚ı (~300 Ú˚Ò.) Ò ÍÓ΢ÂÒÚ‚ÓÏ
ÒÚ‡Ìˈ (‰‡Ê ·ÂÁ Û˜ÂÚ‡ ÒÓ‰ÂʇÌËfl), Ô‰ÔÓÎÓÊËÚÂθÌÓ ‚ 500 ‡Á Ô‚˚¯‡˛˘ËÏ
ÍÓ΢ÂÒÚ‚Ó ÒÚ‡Ú˘ÂÒÍËı Web ÒÚ‡Ìˈ. ùÚË ÒÚ‡Ìˈ˚ Ì Ë̉ÂÍÒËÓ‚‡Ì˚ ÒÂ‚Â‡ÏË
ÔÓËÒ͇, Ëı URL ‰Ë̇Ï˘Ì˚Â, Ë ÔÓ˝ÚÓÏÛ ÓÌË ÏÓ„ÛÚ ·˚Ú¸ ‚˚Á‚‡Ì˚ ÚÓθÍÓ ÔflÏ˚Ï
Á‡ÔÓÒÓÏ ‚ ‡θÌÓÏ Ï‡Ò¯Ú‡·Â ‚ÂÏÂÌË.
30 ˲Ìfl 2007 „. 1 143 109 925 ÔÓθÁÓ‚‡ÚÂÎÂÈ (17,8% ÏËÓ‚ÓÈ ÔÓÔÛÎflˆËË, ‚Íβ˜‡fl
69,5% ‚ ë‚ÂÌÓÈ ÄÏÂËÍÂ Ë 39,8% ‚ Ö‚ÓÔÂ) ‚ÓÒÔÓθÁÓ‚‡ÎËÒ¸ àÌÚÂÌÂÚÓÏ.
ëÛ˘ÂÒÚ‚ÛÂÚ ÌÂÒÍÓθÍÓ ÒÓÚÂÌ Ú˚Òfl˜ ÍË·Â-ÒÓÓ·˘ÂÒÚ‚, Ú.Â. Í·ÒÚÂÓ‚ ‚Â¯ËÌ
Web Ó„‡Ù‡, „‰Â ÔÎÓÚÌÓÒÚ¸ Ò‚flÁÂÈ ÏÂÊ‰Û ˜ÎÂ̇ÏË ÒÓÓ·˘ÂÒÚ‚‡ „Ó‡Á‰Ó ‚˚¯Â
‡Ì‡Îӄ˘ÌÓ„Ó ÔÓ͇Á‡ÚÂÎfl ‰Îfl Ò‚flÁÂÈ ˜ÎÂÌÓ‚ ÒÓÓ·˘ÂÒÚ‚‡ Ò ÓÒڇθÌ˚Ï ÏËÓÏ.
äË·Â-ÒÓÓ·˘ÂÒÚ‚‡ („ÛÔÔ˚ ÍÎËÂÌÚÓ‚, Û˜‡ÒÚÌËÍË ÒӈˇθÌÓÈ ÒÂÚË, ÔÓÌflÚËfl ‚
ÚÂıÌ˘ÂÒÍÓÈ ÒÚ‡Ú¸Â Ë Ú.Ô.) Ó·˚˜ÌÓ ÍÓ̈ÂÌÚËÛ˛ÚÒfl ‚ÓÍÛ„ ÓÔ‰ÂÎÂÌÌÓÈ
ÚÂχÚËÍË Ë ÒÓ‰ÂÊ‡Ú ‰‚Û‰ÓθÌ˚È ÔÓ‰„‡Ù ı‡·Ó‚-‡‚ÚÓËÚÂÚÌ˚ı ËÒÚÓ˜ÌËÍÓ‚, ‚
ÍÓÚÓÓÏ ‚Ò ı‡·˚ (ÏÂÌ˛ Ë ÔÂ˜ÌË ÂÒÛÒÓ‚) Û͇Á˚‚‡˛Ú ̇ ‚Ò ‡‚ÚÓËÚÂÚÌ˚Â
ËÒÚÓ˜ÌËÍË (ÔÓÎÂÁÌ˚ ÒÚ‡Ìˈ˚ ÔÓ ‰‡ÌÌÓÈ ÚÂχÚËÍÂ). èËÏÂ‡ÏË ÌÓ‚˚ı ωˇ,
ÒÓÁ‰‡ÌÌ˚ı Web, fl‚Îfl˛ÚÒfl: ·ÎÓ„Ë (ÓÔÛ·ÎËÍÓ‚‡ÌÌ˚ ‚ ÒÂÚË ‰Ì‚ÌËÍË), ÇËÍËÔ‰Ëfl
(ÓÚÍ˚Ú‡fl ˝ÌˆËÍÎÓÔ‰Ëfl) Ë ÔÓÂÍÚËÛÂχfl ÍÓÌÒÓˆËÛÏÓÏ Web Ò‚flÁ¸ Ò ÏÂÚ‡‰‡ÌÌ˚ÏË.
Ç Ò‰ÌÂÏ ‚Â¯ËÌ˚ Web Ó„‡Ù‡ ËÏÂ˛Ú ‡ÁÏÂ 10 ä·ËÚ, ÒÚÂÔÂ̸ ‚˚ıÓ‰‡ 7,2 Ë
‚ÂÓflÚÌÓÒÚ¸ k–2 ÚÓ„Ó, ˜ÚÓ ÒÚÂÔÂ̸ ‚˚ıÓ‰‡ ËÎË ÒÚÂÔÂ̸ ‚ıÓ‰‡ ‡‚̇ k. èӂ‰ÂÌÌÓÂ
ËÒÒΉӂ‡ÌË [BKMR00] ·ÓΠ200 ÏÎÌ Web Ò‡Ìˈ ÔÓÁ‚ÓÎËÎÓ ÔË·ÎËÁËÚÂθÌÓ
‚˚‰ÂÎËÚ¸ ̇˷Óθ¯Û˛ Ò‚flÁÌÛ˛ ÍÓÏÔÓÌÂÌÚÛ – "fl‰Ó" ËÁ 56 ÏÎÌ ÒÚ‡Ìˈ Ë Â˘Â
44 ÏÎÌ Ò‚flÁ‡ÌÌ˚ı C fl‰ÓÏ ÒÚ‡Ìˈ (Ìӂ˘ÍÓ‚?). ÑÎfl ÒÎÛ˜‡ÈÌÓ ‚˚·‡ÌÌ˚ı ÛÁÎÓ‚ ı Ë
Û ‚ÂÓflÚÌÓÒÚ¸ ÒÛ˘ÂÒÚ‚Ó‚‡ÌËfl ÓËÂÌÚËÓ‚‡ÌÌÓÈ ˆÂÔË ÓÚ ı Í Û ·˚· ‡‚̇ 0,25 Ë
Ò‰Ìflfl ‰ÎË̇ Ú‡ÍÓÈ Í‡Ú˜‡È¯ÂÈ ˆÂÔË (ÂÒÎË Ú‡ÍÓ‚‡fl ÒÛ˘ÂÒÚ‚ÛÂÚ) ·˚· ‡‚̇ 16,
ÚÓ„‰‡ Í‡Í Ï‡ÍÒËχθ̇fl ‰ÎË̇ Í‡Ú˜‡È¯ÂÈ ˆÂÔË ‡‚Ìfl·Ҹ 28 ‚ fl‰Â Ë ·ÓΠ500 ‚Ó
‚ÒÂÏ „‡ÙÂ.
è˂‰ÂÌÌ˚ ÌËÊ ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl ÔËÏÂ‡ÏË Ï‡¯ÛÚÌ˚ı ÏÂÚËÍ ÏÂʉÛ
ı‚ÓÒÚ‡ÏË, Ú.Â. ‚Â΢Ë̇ÏË, ËÒÔÓθÁÛ˛˘ËÏËÒfl ‚ ‡Î„ÓËÚχı χ¯ÛÚËÁ‡ˆËË ‚
àÌÚÂÌÂÚ ‰Îfl Ò‡‚ÌÂÌËfl ‚ÓÁÏÓÊÌ˚ı χ¯ÛÚÓ‚. èËÏÂ‡ÏË ‰Û„Ëı Ú‡ÍËı ÏÂ
fl‚Îfl˛ÚÒfl Á‡‰ÂÈÒÚ‚Ó‚‡ÌË ÔÓÎÓÒ˚ ˜‡ÒÚÓÚ, ÒÚÓËÏÓÒÚ¸ Ò‚flÁË, ̇‰ÂÊÌÓÒÚ¸ (‚ÂÓflÚÌÓÒÚ¸ ÔÓÚÂË Ô‡ÍÂÚÌ˚ı ‰‡ÌÌ˚ı). ìÔÓÏË̇˛ÚÒfl Ú‡ÍÊ ÓÒÌÓ‚Ì˚ ÏÂÚËÍË Í‡˜ÂÒÚ‚‡,
Ò‚flÁ‡ÌÌ˚Â Ò ÍÓÏÔ¸˛ÚÂ‡ÏË.
IP ÏÂÚË͇ àÌÚÂÌÂÚ‡
IP ÏÂÚË͇ àÌÚÂÌÂÚ‡ (ËÎË Ò˜ÂÚ Ô˚ÊÍÓ‚, ÏÂÚË͇ ÔÓÚÓÍÓ· RIP, ‰ÎË̇ IP
ÔÛÚË) – ˝ÚÓ ÏÂÚË͇ ÔÛÚË ‚ IP „‡Ù àÌÚÂÌÂÚ‡, Ú.Â. ÏËÌËχθÌÓ ˜ËÒÎÓ Ô˚ÊÍÓ‚
326
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
(ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, χ¯ÛÚËÁ‡ÚÓÓ‚, Ô‰ÒÚ‡‚ÎÂÌÌ˚ı Ëı IP ‡‰ÂÒ‡ÏË), ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂ‰‡˜Ë Ô‡ÍÂÚ‡ ‰‡ÌÌ˚ı. èÓÚÓÍÓÎÓÏ RIP Ô‰ÔËÒ˚‚‡ÂÚÒfl χÍÒËχθÌÓ ‡ÒÒÚÓflÌË ‚ ÒÂÚË – 15, Ë Ì‰ÓÒÚËÊËÏÓÒÚ¸ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í ÔÛÚ¸
‰ÎËÌ˚ 16.
AS ÏÂÚË͇ àÌÚÂÌÂÚ‡
AS ÏÂÚË͇ àÌÚÂÌÂÚ‡ (ËÎË BGP-ÏÂÚË͇) – ˝ÚÓ ÏÂÚË͇ ÔÛÚË ‚ AS „‡ÙÂ
àÌÚÂÌÂÚ‡, Ú.Â. ÏËÌËχθÌÓ ˜ËÒÎÓ ISP ÌÂÁ‡‚ËÒËÏ˚ı (ÔÓÒÚ‡‚˘ËÍÓ‚ ÛÒÎÛ„ ‚ ÒÂÚË
àÌÚÂÌÂÚ), Ô‰ÒÚ‡‚ÎÂÌÌ˚ı Ò‚ÓËÏË AS, ÌÂÓ·ıÓ‰ËÏ˚ÏË ‰Îfl ÔÂÂÒ˚ÎÍË Ô‡ÍÂÚ‡
‰‡ÌÌ˚ı.
ÉÂÓ„‡Ù˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
ÉÂÓ„‡Ù˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÔÓ ‰Û„ ·Óθ¯Ó„Ó ÍÛ„‡ ̇
ÔÓ‚ÂıÌÓÒÚË áÂÏÎË ÓÚ ÍÎËÂÌÚ‡ ı (ÔÓÎÛ˜‡ÚÂθ) ‰Ó ÒÂ‚Â‡ Û (ËÒÚÓ˜ÌËÍ). é‰Ì‡ÍÓ ‚
ÒËÎÛ ˝ÍÓÌÓÏ˘ÂÒÍËı ÒÓÓ·‡ÊÂÌËÈ ÔÂ‰‡˜‡ ‰‡ÌÌ˚ı Ì ‚Ò„‰‡ ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÔÓ
Ú‡ÍÓÈ „ÂÓ‰ÂÁ˘ÂÒÍÓÈ ÎËÌËË; ̇ÔËÏÂ, ·Óθ¯‡fl ˜‡ÒÚ¸ ‰‡ÌÌ˚ı ËÁ üÔÓÌËË ‚ Ö‚ÓÔÛ
ÔÓÒÚÛÔ‡ÂÚ ˜ÂÂÁ ëòÄ.
ê‡ÒÒÚÓflÌË RTT
ê‡ÒÒÚÓflÌË RTT fl‚ÎflÂÚÒfl ‚ÂÏÂÌÂÏ ÔÓÎÌÓÈ ÔÂ‰‡˜Ë ÏÂÊ‰Û ı Ë Û ‚ ÏËÎÎËÒÂÍÛ̉‡ı, ËÁÏÂÂÌÌ˚Ï Á‡ Ô‰˚‰Û˘ËÈ ‰Â̸; (ÒÏ. [HFPMC02] Ó ‡ÁÌӂˉÌÓÒÚflı
‰‡ÌÌÓ„Ó ‡ÒÒÚÓflÌËfl Ë Ò‚flÁË Ò ‚˚¯ÂÔ˂‰ÂÌÌ˚ÏË ÚÂÏfl ÏÂÚË͇ÏË).
ê‡ÒÒÚÓflÌË ‡‰ÏËÌËÒÚ‡ÚË‚Ì˚ı ‡ÒıÓ‰Ó‚
ê‡ÒÒÚÓflÌËÂÏ ‡‰ÏËÌËÒÚ‡ÚË‚Ì˚ı ‡ÒıÓ‰Ó‚ ̇Á˚‚‡ÂÚÒfl ÌÓÏË̇θÌÓ ˜ËÒÎÓ
(ÓˆÂÌË‚‡˛˘Â ̇‰ÂÊÌÓÒÚ¸ ËÌÙÓχˆËË Ó Ï‡¯ÛÚÂ), ÔËÒ‚‡Ë‚‡ÂÏÓ ÒÂÚ¸˛
χ¯ÛÚÛ ÏÂÊ‰Û ı Ë Û. ç‡ÔËÏÂ, ÍÓÏÔ‡ÌËfl Cisco ÔËÒ‚‡Ë‚‡ÂÚ Á̇˜ÂÌËfl 0, 1, …,
200, 225 ‰Îfl ÔÓ‰Íβ˜ÂÌÌÓ„Ó ËÌÚÂÙÂÈÒ‡, ÒÚ‡Ú˘ÂÒÍÓ„Ó Ï‡¯ÛÚ‡, …, ‚ÌÛÚÂÌÌ„Ó
ÔÓÚÓÍÓ· BGP, çÂËÁ‚ÂÒÚÌÓ„Ó ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
åÂÚËÍË DRP
Ç ÒÚÛÍÚÛ ÒËÒÚÂÏÌÓ„Ó ‡‰ÏËÌËÒÚËÓ‚‡ÌËfl (DD) ÍÓÏÔ‡ÌËË Cisco ËÒÔÓθÁÛÂÚÒfl
(Ò ÔËÓËÚÂÚ‡ÏË Ë ‚ÂÒ‡ÏË) ‡ÒÒÚÓflÌË ‡‰ÏËÌËÒÚ‡ÚË‚Ì˚ı ‡ÒıÓ‰Ó‚, ÏÂÚË͇
ÒÎÛ˜‡ÈÌÓÒÚË (‚˚·Ó ÒÎÛ˜‡ÈÌÓ„Ó ÌÓÏÂ‡ ‰Îfl Í‡Ê‰Ó„Ó IP ‡‰ÂÒ‡) Ë ÏÂÚËÍË DRP
(ÔÓÚÓÍÓÎ ÔflÏÓ„Ó ÓÚÍÎË͇). åÂÚËÍË DRP Á‡Ô‡¯Ë‚‡˛Ú Û ‚ÒÂı χ¯ÛÚËÁ‡ÚÓÓ‚
Ò ÔÓÚÓÍÓÎÓÏ DRP Ó‰ÌÓ ËÁ ÒÎÂ‰Û˛˘Ëı ‡ÒÒÚÓflÌËÈ:
1) ‚ÌÂ¯Ì˛˛ ÏÂÚËÍÛ DRP, Ú.Â. ÍÓ΢ÂÒÚ‚Ó Ô˚ÊÍÓ‚ (ıÓÔÓ‚) ÔÓ ÔÓÚÓÍÓÎÛ BGP
(ÔÓ„‡Ì˘Ì˚È ÔÓÚÓÍÓΠχ¯ÛÚËÁ‡ˆËË) ÏÂÊ‰Û Á‡Ô‡¯Ë‚‡˛˘ËÏ ÛÒÎÛ„Û ÔÓθÁÓ‚‡ÚÂÎÂÏ Ë ‡„ÂÌÚÓÏ ÒÂ‚Â‡ DRP;
2) ‚ÌÛÚÂÌÌ˛˛ ÏÂÚËÍÛ DRP, Ú.Â. ÍÓ΢ÂÒÚ‚Ó Ô˚ÊÍÓ‚ ÔÓ ÔÓÚÓÍÓÎÛ IGP
(‚ÌÛÚÂÌÌËÈ ÔÓÚÓÍÓΠχ¯ÛÚËÁ‡ˆËË) ÏÂÊ‰Û ‡„ÂÌÚÓÏ ÒÂ‚Â‡ DRP Ë ·ÎËʇȯËÏ
ÔÓ„‡Ì˘Ì˚Ï Ï‡¯ÛÚËÁ‡ÚÓÓÏ Ì‡ · ‡‚ÚÓÌÓÏÌÓÈ ÒËÒÚÂÏ˚;
3) ÏÂÚËÍÛ ÒÂ‚Â‡ DRP, Ú.Â. ÍÓ΢ÂÒÚ‚Ó Ô˚ÊÍÓ‚ ÔÓ ÔÓÚÓÍÓÎÛ IGP ÏÂʉÛ
‡„ÂÌÚÓÏ ÒÂ‚Â‡ DRP Ë ‡ÒÒÓˆËËÓ‚‡ÌÌ˚Ï ÒÂ‚ÂÓÏ.
åÂÚËÍË ÚÓÏÓ„‡ÙËË ÒÂÚË
ê‡ÒÒÏÓÚËÏ ÒÂÚ¸ Ò ÙËÍÒËÓ‚‡ÌÌ˚Ï ÔÓÚÓÍÓÎÓÏ Ï‡¯ÛÚËÁ‡ˆËË, Ú.Â. ÒËθÌÓ
Ò‚flÁÌ˚È Ó„‡Ù D = (V, E) Ò Â‰ËÌÒÚ‚ÂÌÌ˚Ï ÓËÂÌÚËÓ‚‡ÌÌ˚Ï ÔÛÚÂÏ T(u , v),
‚˚·‡ÌÌ˚Ï ‰Îfl β·ÓÈ Ô‡˚ (u, v) ‚Â¯ËÌ. èÓÚÓÍÓΠχ¯ÛÚËÁ‡ˆËË ÓÔËÒ˚‚‡ÂÚÒfl
·Ë̇ÌÓÈ Ï‡ÚˈÂÈ Ï‡¯ÛÚËÁ‡ˆËË A = ((a i j)), „‰Â aij = 1, ÂÒÎË ‰Û„‡ e ∈ E Ò
Ë̉ÂÍÒÓÏ i ÔË̇‰ÎÂÊËÚ ÓËÂÌÚËÓ‚‡ÌÌÓÏÛ ÔÛÚË T(u, v) Ò Ë̉ÂÍÒÓÏ j. ï˝ÏÏËÌ„Ó‚Ó
É·‚‡ 22. ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı
327
‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÒÚÓ͇ÏË (ÒÚÓηˆ‡ÏË) χÚˈ˚ A ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ
ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ‰Û„‡ÏË (ÓËÂÌÚËÓ‚‡ÌÌ˚ÏË ÔÛÚflÏË) ÒÂÚË.
ÇÓÁ¸ÏÂÏ ‰‚ ÒÂÚË Ò Ó‰Ë̇ÍÓ‚˚ÏË Ó„‡Ù‡ÏË, ÌÓ ‡Á΢Ì˚ÏË ÔÓÚÓÍÓ·ÏË
χ¯ÛÚËÁ‡ˆËË Ò Ï‡Úˈ‡ÏË Ï‡¯ÛÚËÁ‡ˆËË A Ë A⬘ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. íÓ„‰‡ ÔÓÎÛÏÂÚË͇ ÔÓÚÓÍÓ· χ¯ÛÚËÁ‡ˆËË [Var04] ÂÒÚ¸ ̇ËÏÂ̸¯Â ı˝ÏÏËÌ„Ó‚ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ï‡ÚˈÂÈ A Ë Ï‡ÚˈÂÈ B, ÔÓÎÛ˜ÂÌÌÓÈ ËÁ ÔÛÚÂÏ A⬘ ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÒÚÓÍ Ë
ÒÚÓηˆÓ‚ (ӷ χÚˈ˚ ‡ÒÒχÚË‚‡˛ÚÒfl Í‡Í ÒÚÓÍË).
䂇ÁËÏÂÚË͇ Web „ËÔÂÒÒ˚ÎÍË
䂇ÁËÏÂÚËÍÓÈ Web „ËÔÂÒÒ˚ÎÍË (ËÎË Ò˜ÂÚ˜ËÍÓÏ ÍÎËÍÓ‚) ̇Á˚‚‡ÂÚÒfl ‰ÎË̇
Í‡Ú˜‡È¯Â„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ÔÛÚË (ÂÒÎË Ú‡ÍÓ‚Ó ÒÛ˘ÂÒÚ‚ÛÂÚ) ÏÂÊ‰Û ‰‚ÛÏfl Web
ÒÚ‡Ìˈ‡ÏË (‚Â¯Ë̇ÏË Web Ó„‡Ù‡), Ú.Â. ÏËÌËχθÌÓ ÌÂÓ·ıÓ‰ËÏÓ ˜ËÒÎÓ ÍÎËÍÓ‚
Ï˚¯ÍË ‚ ‰‡ÌÌÓÏ „‡ÙÂ.
Web Í‚‡ÁË‡ÒÒÚÓflÌË Ò‰ÌÂ„Ó ˜ËÒ· ÍÎËÍÓ‚
Web Í‚‡ÁË‡ÒÒÚÓflÌË Ò‰ÌÂ„Ó ˜ËÒ· ÍÎËÍÓ‚ ÏÂÊ‰Û ‰‚ÛÏfl Web ÒÚ‡Ìˈ‡ÏË ı Ë Û
m
z+
‚ Web Ó„‡Ù [YOI03] ÂÒÚ¸ ÏËÌËÏÛÏ
ln p i ÔÓ ‚ÒÂÏ ÓËÂÌÚËÓ‚‡ÌÌ˚Ï ÔÛÚflÏ
α
i =1
∑
x = z0 , z 1 , ..., zm = y , ÒÓ‰ËÌfl˛˘ËÏ x Ë y, „‰Â z i+ – ÒÚÂÔÂ̸ ‚˚ıÓ‰‡ ÒÚ‡Ìˈ˚ zi.
è‡‡ÏÂÚ α ‡‚ÂÌ 1 ËÎË 0,85, ÚÓ„‰‡ Í‡Í p (Ò‰Ìflfl ÒÚÂÔÂ̸ ‚˚ıÓ‰‡) ‡‚̇ 7 ËÎË 6.
Webï Í‚‡ÁË‡ÒÒÚÓflÌË ÑӉʇ–òËÓ‰Â
Webï Í‚‡ÁË‡ÒÒÚÓflÌË ÑӉʇ–òËӉ ÏÂÊ‰Û ‰‚ÛÏfl Web ÒÚ‡Ìˈ‡ÏË ı Ë Û ‚ Web
1
Ó„‡Ù ÂÒÚ¸ ˜ËÒÎÓ
, „‰Â h(x, y) – ˜ËÒÎÓ Í‡Ú˜‡È¯Ëı ÓËÂÌÚËÓ‚‡ÌÌ˚ı ÔÛÚÂÈ,
h( x , y )
ÒÓ‰ËÌfl˛˘Ëı ı Ë Û.
åÂÚËÍË Web ÔÓ‰Ó·ÌÓÒÚË
åÂÚËÍË Web ÔÓ‰Ó·ÌÓÒÚË Ó·‡ÁÛ˛Ú ÒÂÏÂÈÒÚ‚Ó Ë̉Ë͇ÚÓÓ‚, ÔËÏÂÌflÂÏ˚ı ‰Îfl
ËÁÏÂÂÌËfl ÒÚÂÔÂÌË ‚Á‡ËÏÓÒ‚flÁË (ÒÓ‰ÂʇÌËfl, ‚ Ò‚flÁflı ÒÒ˚ÎÓÍ ËÎË/Ë ËÒÔÓθÁÓ‚‡ÌËË)
ÏÂÊ‰Û ‰‚ÛÏfl Web ÒÚ‡Ìˈ‡ÏË ı Ë Û. ç‡ÔËÏÂ, ÚÂχÚ˘ÂÒÍÓ ÒıÓ‰ÒÚ‚Ó ˜‡ÒÚ˘ÌÓ
ÒÓ‚Ô‡‰‡˛˘Ëı ÚÂÏËÌÓ‚, ÒÓ‚ÏÂÒÚÌ˚ ÒÒ˚ÎÍË (ÍÓ΢ÂÒÚ‚Ó ÒÚ‡Ìˈ, „‰Â Ó·Â ‰‡˛ÚÒfl
Í‡Í „ËÔÂÒÒ˚ÎÍË), ÒÔ‡ÂÌÌÓÒÚ¸ ·Ë·ÎËÓ„‡Ù˘ÂÍËı ‰‡ÌÌ˚ı (ÍÓ΢ÂÒÚ‚Ó Ó·˘Ëı
„ËÔÂÒÒ˚ÎÓÍ) Ë ˜‡ÒÚÓÚÌÓÒÚ¸ ÒÓ‚ÏÂÒÚÌÓ„Ó ÔÓfl‚ÎÂÌËfl min{P(x | y), P (y | x)},
„‰Â P(x | y) ÂÒÚ¸ ‚ÂÓflÚÌÓÒÚ¸ ÚÓ„Ó, ˜ÚÓ ÔÓÒÂÚË‚¯ËÈ ÒÚ‡ÌËˆÛ Û ÔÓÒÂÚËÚ Ú‡ÍÊÂ
ÒÚ‡ÌËˆÛ ı.
Ç ˜‡ÒÚÌÓÒÚË, ÏÂÚËÍË ÔÓËÒÍÓ‚Ó-ˆÂÌÚ˘ÂÒÍÓ„Ó ËÁÏÂÌÂÌËfl – ÏÂÚËÍË, ËÒÔÓθÁÛÂÏ˚ ÔÓËÒÍÓ‚˚ÏË ÒÂ‚Â‡ÏË ‚ Web ÒÂÚË ‰Îfl ËÁÏÂÂÌËfl ÒÚÂÔÂÌË ‡Á΢Ëfl ÏÂʉÛ
‰‚ÛÏfl ‚ÂÒËflÏË ı Ë Û Web ÒÚ‡Ìˈ˚. ÖÒÎË X Ë Y fl‚Îfl˛ÚÒfl ÏÌÓÊÂÒÚ‚‡ÏË ‚ÒÂı ÒÎÓ‚
(ËÒÍβ˜‡fl χÍËÓ‚ÍÛ HTML) ‚ ı Ë Û ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÚÓ ÒÎÓ‚‡ÌÓ ‡ÒÒÚÓflÌËÂ
ÏÂÊ‰Û ÒÚ‡Ìˈ‡ÏË ÂÒÚ¸ ‡ÒÒÚÓflÌË чÈÒ‡, Ú.Â. ‡‚ÌÓ
| X∆Y |
2| X ∪Y |
= 1−
.
| X |+|Y |
| X |+|Y |
ÖÒÎË vx Ë vy fl‚Îfl˛ÚÒfl ‚Á‚¯ÂÌÌ˚ÏË TF-IDF (˜‡ÒÚÓÚÌÓÒÚ¸ – Ó·‡Ú̇fl ˜‡ÒÚÓÚÌÓÒÚ¸
‰ÓÍÛÏÂÌÚ‡) ‚ÂÍÚÓÌ˚ÏË Ô‰ÒÚ‡‚ÎÂÌËflÏË ı Ë Û, ÚÓ Ëı ‡ÒÒÚÓflÌË ÍÓÒËÌÛÒ‡ ÏÂʉÛ
ÒÚ‡Ìˈ‡ÏË ‰‡ÂÚÒfl ͇Í
⟨ vx , vy ⟩
1−
.
|| v x ||2 ⋅ || v y ||2
328
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
åÂÚË͇ ÔÓÚÂflÌÌÓÒÚË
èÓθÁÓ‚‡ÚÂÎË, "ÔÛÚ¯ÂÒÚ‚Û˛˘ËÂ" ÔÓ „ËÔÂÚÂÍÒÚÓ‚˚Ï ÒËÒÚÂχÏ, ÌÂ‰ÍÓ ËÒÔ˚Ú˚‚‡˛Ú ‰ÂÁÓËÂÌÚ‡ˆË˛ (ÚẨÂÌˆË˛ Í ÔÓÚÂ ˜Û‚ÒÚ‚‡ ÏÂÒÚÓÔÓÎÓÊÂÌËfl Ë
̇Ô‡‚ÎÂÌËfl ‚ ÌÂÎËÌÂÈÌÓÏ ‰ÓÍÛÏÂÌÚÂ) Ë ÍÓ„ÌËÚË‚ÌÛ˛ ÔÂ„ÛÁÍÛ (ÚÂ·Û˛ÚÒfl
‰ÓÔÓÎÌËÚÂθÌ˚ ÛÒËÎËfl Ë ÍÓ̈ÂÌÚ‡ˆËfl ‚ÌËχÌËfl ‰Îfl Ó‰ÌÓ‚ÂÏÂÌÌÓÈ ‡·ÓÚ˚ ÔÓ
ÌÂÒÍÓθÍËÏ Á‡‰‡˜‡Ï / ̇Ô‡‚ÎÂÌËflÏ). èÓθÁÓ‚‡ÚÂθ ÚÂflÂÚ Ó·˘Â Ô‰ÒÚ‡‚ÎÂÌË Ó
ÒÚÛÍÚÛ ‰ÓÍÛÏÂÌÚ‡ Ë Ò‚ÓÂÏ ‡·Ó˜ÂÏ ÔÓÒÚ‡ÌÒÚ‚Â.
åÂÚË͇ ÔÓÚÂflÌÌÓÒÚË ëÏËÚ‡ ËÁÏÂflÂÚ ˝ÚÓ Í‡Í
2
2
 n − 1 +  r − 1 ,
s 
n 
„‰Â s – Ó·˘Â ˜ËÒÎÓ ÛÁÎÓ‚, ÔÓÒ¢ÂÌÌ˚ı ‚ ıӉ ÔÓËÒ͇, n – ÍÓ΢ÂÒÚ‚Ó ‡Á΢Ì˚ı
ÛÁÎÓ‚ ÒÂ‰Ë ÌËı Ë r – ÍÓ΢ÂÒÚ‚Ó ÛÁÎÓ‚, ÍÓÚÓ˚ ÌÂÓ·ıÓ‰ËÏÓ ÔÓÒÂÚËÚ¸ ‰Îfl
‚˚ÔÓÎÌÂÌËfl Á‡‰‡˜Ë.
åÂÚËÍË ‰Ó‚ÂËfl
Ç ÍÓÏÔ¸˛ÚÂÌÓÈ ·ÂÁÓÔ‡ÒÌÓÒÚË ÏÂÚË͇ ‰Ó‚ÂËfl – ÏÂ‡ ‰Îfl ÓˆÂÌÍË ÒÂÚËÙË͇ÚÓ‚ ÏÌÓÊÂÒÚ‚‡ Ó‰ÌÓ‡Ì„Ó‚˚ı ÛÁÎÓ‚ ÒÂÚË, ‡ ‚ ÒÓˆËÓÎÓ„ËË – ÏÂ‡ ÓÔ‰ÂÎÂÌËfl
ÒÚÂÔÂÌË ‰Ó‚ÂËfl ˜ÎÂÌÓ‚ „ÛÔÔ˚ Í Ó‰ÌÓÏÛ ËÁ ÌËı. í‡Í, ̇ÔËÏÂ, ÏÂÚË͇ ‰ÓÒÚÛÔ‡ ‚
ÒËÒÚÂÏ UNIX Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÍÓÏ·Ë̇ˆË˛ ÚÓθÍÓ ÚÂı ‚ˉӂ ‰ÓÒÚÛÔ‡ Í
ÂÒÛÒÛ: ˜ÚÂÌËÂ, Á‡ÔËÒ¸ Ë ‚˚ÔÓÎÌÂÌËÂ. ÅÓΠ‰Âڇθ̇fl ÏÂÚË͇ ‰Ó‚ÂËfl Advogato
(ËÒÔÓθÁÛÂχfl ‰Îfl ‡ÌÊËÓ‚‡ÌËfl ‚ Ò‰ ‡Á‡·ÓÚ˜ËÍÓ‚ ÔÓ„‡ÏÏÌÓ„Ó Ó·ÂÒÔ˜ÂÌËfl Ò ÓÚÍ˚Ú˚ÏË ËÒıÓ‰Ì˚ÏË ÍÓ‰‡ÏË) ÓÒÌÓ‚˚‚‡ÂÚÒfl ̇ ÒËΠ‰Ó‚ÂËfl, Ó·ÂÒÔ˜˂‡ÂÏÓÈ ÚÂÏ, ˜ÚÓ Ó‰ÌÓ ÎËˆÓ ‚˚‰‡ÂÚ ÒÂÚËÙËÍ‡Ú Ó ‰Û„ÓÏ. ÑÛ„ËÏË ÔËÏÂ‡ÏË
ÒÎÛÊ‡Ú ÏÂÚËÍË ‰Ó‚ÂËfl Technorati, TrustFlow, Richardson Ë ‰., Mui Ë ‰., eBay.
åÂÚËÍË ÔÓ„‡ÏÏÌÓ„Ó Ó·ÂÒÔ˜ÂÌËfl
åÂÚË͇ ÔÓ„‡ÏÏÌÓ„Ó Ó·ÂÒÔ˜ÂÌËfl – ÏÂ‡ ͇˜ÂÒÚ‚‡ ÔÓ„‡ÏÏÌÓ„Ó Ó·ÂÒÔ˜ÂÌËfl, ı‡‡ÍÚÂËÁÛ˛˘‡fl ÛÓ‚Â̸ ÒÎÓÊÌÓÒÚË, ÔÓÌflÚÌÓÒÚË, ÔÓ‚ÂflÂÏÓÒÚË Ë ‰ÓÒÚÛÔÌÓÒÚË ÍÓ‰‡.
åÂÚË͇ ‡ıËÚÂÍÚÛ˚ – ÏÂ‡ ÓˆÂÌÍË Í‡˜ÂÒÚ‚‡ ‡ıËÚÂÍÚÛ˚ ÔÓ„‡ÏÏÌÓ„Ó
Ó·ÂÒÔ˜ÂÌËfl (‡Á‡·ÓÚÍË ÒÎÓÊÌ˚ı ÒËÒÚÂÏ ÔÓ„‡ÏÏÌÓ„Ó Ó·ÂÒÔ˜ÂÌËfl), ÍÓÚÓ‡fl
Û͇Á˚‚‡ÂÚ Ì‡ Ò‚flÁÌÓÒÚ¸ (ÒÚ˚ÍÛÂÏÓÒÚ¸ ÒÓÒÚ‡‚Ì˚ı Ó·˙ÂÍÚÓ‚), ÒˆÂÔÎÂÌË (‚ÌÛÚÂÌÌÂÂ
‚Á‡ËÏÓ‰ÂÈÒÚ‚ËÂ), ‡·ÒÚ‡ÍÚÌÓÒÚ¸, ÌÂÒÚ‡·ËθÌÓÒÚ¸ Ë Ú.Ô.
åÂÚËÍË ÎÓ͇θÌÓÒÚË
åÂÚËÍÓÈ ÎÓ͇θÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ÙËÁ˘ÂÒ͇fl ÏÂÚË͇, ËÁÏÂfl˛˘‡fl ‚
„ÎÓ·‡Î¸ÌÓÏ Ï‡Ò¯Ú‡·Â ÏÂÒÚÓÔÓÎÓÊÂÌË ÔÓ„‡ÏÏÌ˚ı ÍÓÏÔÓÌÂÌÚÓ‚, Ëı ‚˚ÁÓ‚˚ Ë
„ÎÛ·ËÌÛ ‚ÎÓÊÂÌÌ˚ı ‚˚ÁÓ‚Ó‚ ͇Í
∑ fij dij
i, j
∑ fij
,
i, j
„‰Â dij – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚˚Á˚‚‡˛˘ËÏË ÍÓÏÔÓÌÂÌÚ‡ÏË i Ë j, fij – ˜‡ÒÚÓÚ‡ ‚˚ÁÓ‚Ó‚
ÓÚ i ‰Ó j. ÖÒÎË ÍÓÏÔÓÌÂÌÚ˚ ÔÓ„‡ÏÏ˚ ÔËÏÂÌÓ Ó‰Ë̇ÍÓ‚˚ ÔÓ ‡ÁÏÂ‡Ï, ÚÓ
·ÂÂÚÒfl dij = | i – j |. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â, Í‡Í Ô‰ÎÓÊËÎË óÁ‡Ì Ë ÉÓ·, ̇‰Ó ‡Á΢‡Ú¸
ÓÔÂÂʇ˛˘Ë ‚˚ÁÓ‚˚ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Á‡Ô‡¯Ë‚‡ÂÏÓÈ ÍÓÏÔÓÌÂÌÚÛ Ë
Á‡Ô‡Á‰˚‚‡˛˘Ë (‰Û„ËÂ) ‚˚ÁÓ‚˚. èÛÒÚ¸ dij = di′ + dij′ , „‰Â di′ – ÍÓ΢ÂÒÚ‚Ó ÎËÌËÈ
329
É·‚‡ 22. ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı
ÍÓ‰‡ ÏÂÊ‰Û ‚˚ÁÓ‚ÓÏ Ë ÓÍÓ̘‡ÌËÂÏ i, ÂÒÎË ‚˚ÁÓ‚ ÓÔÂÂʇ˛˘ËÈ, Ë ÏÂÊ‰Û Ì‡˜‡ÎÓÏ i
j −1
Ë ‚˚ÁÓ‚ÓÏ, Ë̇˜Â, ÔË ˝ÚÓÏ dij′′ =
∑
Lk , ÂÒÎË ‚˚ÁÓ‚ ÓÔÂʇ˛˘ËÈ, Ë dij′′ =
k = i +1
i −1
∑
Lk ,
k = i +1
Ë̇˜Â. á‰ÂÒ¸ Lk – ÍÓ΢ÂÒÚ‚Ó ÎËÌËÈ ÍÓÏÔÓÌÂÌÚ˚ k.
ÑËÒڇ̈ËÓÌÌÓ ‰ÂÈÒÚ‚Ë (‚ ‚˚˜ËÒÎËÚÂθÌ˚ı ÔÓˆÂÒÒ‡ı)
Ç ‚˚˜ËÒÎËÚÂθÌ˚ı ÔÓˆÂÒÒ‡ı ‰ËÒڇ̈ËÓÌÌÓ ‰ÂÈÒÚ‚Ë fl‚ÎflÂÚÒfl Í·ÒÒÓÏ
ÔÓ·ÎÂÏ ÔÓ„‡ÏÏËÓ‚‡ÌËfl, ‚ ÍÓÚÓÓÏ ÒÓÒÚÓflÌË ӉÌÓÈ ˜‡ÒÚË ÔÓ„‡ÏÏÌÓÈ
ÒÚÛÍÚÛ˚ ‰‡ÌÌ˚ı ‚‡¸ËÛÂÚÒfl ËÁ-Á‡ ÚÛ‰ÌÓ‡ÒÔÓÁ̇‚‡ÂÏ˚ı ÓÔÂ‡ˆËÈ ‚ ‰Û„ÓÈ
˜‡ÒÚË ÔÓ„‡ÏÏ˚ (ÒÏ. Á‡ÍÓÌ ÑÂÏÂÚ‡, „Î. 28).
ó‡ÒÚ¸ VI
êÄëëíéüçàü
Ç ÖëíÖëíÇÖççõï çÄìäÄï
É·‚‡ 23
ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË ËÒÔÓθÁÛ˛ÚÒfl „·‚Ì˚Ï Ó·‡ÁÓÏ ‰Îfl ˆÂÎÂÈ ÙÛ̉‡ÏÂÌڇθÌÓÈ Í·ÒÒËÙË͇ˆËË, ̇ÔËÏÂ, ‰Îfl ÂÍÓÌÒÚÛ͈ËË ˝‚ÓβˆËÓÌÌÓ„Ó ‡Á‚ËÚËfl
Ó„‡ÌËÁÏÓ‚, ‚ ‚ˉ ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı ‰Â‚¸Â‚. èË Í·ÒÒ˘ÂÒÍÓÏ ÔÓ‰ıӉ ˝ÚË
‡ÒÒÚÓflÌËfl ·‡ÁËÓ‚‡ÎËÒ¸ ̇ Ò‡‚ÌËÚÂθÌÓÈ ÏÓÙÓÎÓ„ËË Ë ÙËÁËÓÎÓ„ËË. èÓ„ÂÒÒ
ÒÓ‚ÂÏÂÌÌÓÈ ÏÓÎÂÍÛÎflÌÓÈ ·ËÓÎÓ„ËË ÔÓÁ‚ÓÎËÎ ËÒÔÓθÁÓ‚‡Ú¸ ÌÛÍ·ÚˉÌ˚ Ë/ËÎË
‡ÏËÌÓÍËÒÎÓÚÌ˚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ‰Îfl ÓˆÂÌÍË ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û „Â̇ÏË,
·ÂÎ͇ÏË, „ÂÌÓχÏË, Ó„‡ÌËÁχÏË, ‚ˉ‡ÏË Ë Ú.‰.
Ñçä Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÌÛÍÎÂÓÚˉӂ (ËÎË ÍËÒÎÓÚ fl‰‡) A,
T, G Ë ë Ë ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÒÎÓ‚Ó Ì‡‰ ‡ÎÙ‡‚ËÚÓÏ ËÁ ˜ÂÚ˚Âı ·ÛÍ‚.
çÛÍÎÂÓÚˉ˚ A, G (ÒÓÍ‡˘ÂÌÌÓ ÓÚ ÒÎÓ‚ ‡‰ÂÌËÌ Ë „Û‡ÌËÌ) ̇Á˚‚‡˛ÚÒfl ÔÛË̇ÏË,
ÚÓ„‰‡ Í‡Í T, G (ÒÓÍ‡˘ÂÌÌÓ ÓÚ ÚËÏËÌ Ë ˆËÚÓÁËÌ) ̇Á˚‚‡˛ÚÒfl ÔË‡ÏˉË̇ÏË (‚ êçä
˝ÚÓ Û‡ˆËÎ U ‚ÏÂÒÚÓ í). Ñ‚Â ÌËÚË Ñçä Û‰ÂÊË‚‡˛ÚÒfl ‚ÏÂÒÚ (‚ ‚ˉ ‰‚ÓÈÌÓÈ
ÒÔË‡ÎË) Ò··˚ÏË ‚Ó‰ÓÓ‰Ì˚ÏË Ò‚flÁflÏË ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ÌÛÍÎÂÓÚˉ‡ÏË
(ÌÂÔÂÏÂÌÌÓ ÔÛËÌÓÏ Ë ÔËËÏˉËÌÓÏ) ‚ ÒÚÛÍÚÛ ÌËÚÂÈ. ùÚË Ô‡˚ ̇Á˚‚‡˛ÚÒfl
Ô‡‡ÏË ÓÒÌÓ‚‡ÌËÈ.
í‡ÌÁˈËfl – Á‡Ï¢ÂÌË ԇ˚ ÓÒÌÓ‚‡ÌËÈ Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ Ó‰Ì‡ Ô‡‡
ÔÛËÌ/ÔËfÏˉËÌ Á‡ÏÂÌflÂÚÒfl ̇ ‰Û„Û˛; ̇ÔËÏÂ, GC Á‡ÏÂÌflÂÚÒfl ̇ Äí. í‡ÌÒ‚ÂÒËfl – Á‡Ï¢ÂÌË ԇ˚ ÓÒÌÓ‚‡ÌËÈ Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ Ó‰Ì‡ Ô‡‡ ÔÛËÌ/ÔË‡ÏˉËÌ Á‡ÏÂÌflÂÚÒfl Ô‡ÓÈ ÔË‡ÏˉËÌ/ÔËËÌ ËÎË Ì‡Ó·ÓÓÚ; ̇ÔËÏÂ, GC Á‡ÏÂÌflÂÚÒfl
̇ íÄ.
åÓÎÂÍÛÎ˚ Ñçä ‚ÒÚ˜‡˛ÚÒfl (‚ fl‰ ÍÎÂÚÓÍ ˝Û͇ËÓÚ‡) ‚ ‚ˉ ‰ÎËÌÌ˚ı ÌËÚÂÈ,
ÍÓÚÓ˚ ̇Á˚‚‡˛ÚÒfl ıÓÏÓÒÓχÏË. ÅÓθ¯ËÌÒÚ‚Ó ÍÎÂÚÓÍ ˜ÂÎӂ˜ÂÒÍÓ„Ó Ó„‡ÌËÁχ ÒÓ‰ÂÊ‡Ú 23 Ô‡˚ ıÓÏÓÒÓÏ, ÔÓ Ó‰ÌÓÏÛ Ì‡·ÓÛ ËÁ 23 ıÓÏÓÒÓÏ ÓÚ Í‡Ê‰Ó„Ó Ó‰ËÚÂÎfl; „‡ÏÂÚ‡ ˜ÂÎÓ‚Â͇ (ÏÛÊÒ͇fl ÔÓÎÓ‚‡fl ÍÎÂÚ͇ ËÎË flȈÓ) ÂÒÚ¸ „‡ÔÎÓˉ,
Ú.Â. ÒÓ‰ÂÊËÚ ÚÓθÍÓ Ó‰ËÌ Ì‡·Ó ËÁ 23 ıÓÏÓÒÓÏ. ì (ÌÓχθÌ˚ı) ÏÛʘËÌ˚ Ë
ÊÂÌ˘ËÌ˚ ‡Á΢‡ÂÚÒfl ÚÓθÍÓ 23-fl Ô‡‡ ıÓÏÓÒÓÏ: XY Û ÏÛʘËÌ Ë ïï Û ÊÂÌ˘ËÌ.
ÉÂÌ – ÓÚÂÁÓÍ Ñçä, ÍÓÚÓ˚È ÍÓ‰ËÛÂÚ (ÔÓÒ‰ÒÚ‚ÓÏ Ú‡ÌÒÍËÔˆËË Ì‡ êçä Ë
ÔÓÒÎÂ‰Û˛˘Â„Ó ÔÂÂÌÓÒ‡) ·ÂÎÓÍ ËÎË ÏÓÎÂÍÛÎÛ êçä. åÂÒÚÓÔÓÎÓÊÂÌË „Â̇ ̇ „Ó
ÒÔˆˇθÌÓÈ ıÓÏÓÒÓÏ ̇Á˚‚‡ÂÚÒfl ÎÓÍÛÒÓÏ. ê‡Á΢Ì˚ ‡ÁÌӂˉÌÓÒÚË (ÒÓÒÚÓflÌËfl) „Â̇ ̇Á˚‚‡˛ÚÒfl ‡ÎÎÂÎflÏË. ÉÂÌ˚ Á‡ÌËχ˛Ú Ì ·ÓΠ2% ˜ÂÎӂ˜ÂÒÍÓÈ Ñçä;
ÙÛÌ͈ËÓ̇θÌÓÒÚ¸, ÂÒÎË Ú‡ÍÓ‚‡fl ËÏÂÂÚÒfl, ÓÒڇθÌÓÈ ˜‡ÒÚË ÌÂËÁ‚ÂÒÚ̇.
ÅÂÎÓÍ – ·Óθ¯‡fl ÏÓÎÂÍÛ·, fl‚Îfl˛˘‡flÒfl ˆÂÔÓ˜ÍÓÈ ‡ÏËÌÓÍËÒÎÓÚ; ÒÂ‰Ë ÌËı
ÔËÒÛÚÒÚ‚Û˛Ú „ÓÏÓÌ˚, ͇ڇÎËÁ‡ÚÓ˚ (˝ÌÁËÏ˚), ‡ÌÚËÚ· Ë Ú.‰. ÇÒÂ„Ó ËÏÂÂÚÒfl
20 ‡ÏËÌÓÍËÒÎÓÚ; ÚÂıÏÂ̇fl ÍÓÌÙË„Û‡ˆËfl ·ÂÎ͇ ÓÔ‰ÂÎflÂÚÒfl (ÎËÌÂÈÌÓÈ)
ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ ‡ÏËÌÓÍËÒÎÓÚ, Ú.Â. ÒÎÓ‚ÓÏ ‡ÎÙ‡‚ËÚ‡ ËÁ 20 ·ÛÍ‚.
ÉÂÌÂÚ˘ÂÒÍËÈ ÍÓ‰ ÂÒÚ¸ ÛÌË‚Â҇θÌÓ ‰Îfl (ÔÓ˜ÚË) ‚ÒÂı Ó„‡ÌËÁÏÓ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËÂ
ÏÂÊ‰Û ÌÂÍÓÚÓ˚ÏË ÍÓ‰Ó̇ÏË (Ú.Â. ÛÔÓfl‰Ó˜ÂÌÌ˚ÏË ÚÓÈ͇ÏË ÌÛÍÎÂÓÚˉӂ) Ë
20 ‡ÏËÌÓÍËÒÎÓÚ‡ÏË. éÌ ‚˚‡Ê‡ÂÚ „ÂÌÓÚËÔ (ËÌÙÓχˆË˛, ÒÓ‰Âʇ˘Û˛Òfl ‚ „Â̇ı,
Ú.Â. ‚ Ñçä) Í‡Í ÙÂÌÓÚËÔ (·ÂÎÍË). íË ÚÂÏËÌËÛ˛˘Ëı ÍÓ‰Ó̇ (UAA, UAG Ë UGA)
ÓÁ̇˜‡˛Ú ÓÍÓ̘‡ÌË ·ÂÎ͇; β·˚ ‰‚‡ ËÁ ÓÒڇθÌ˚ı 61 ÍÓ‰Ó̇ ̇Á˚‚‡˛ÚÒfl
ÒËÌÓÌËÏ˘Ì˚ÏË, ÂÒÎË ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Ó‰ÌËÏ Ë ÚÂÏ Ê ‡ÏËÌÓÍËÒÎÓÚ‡Ï.
333
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
Ç „ÂÌÓÏ Á‡ÎÓÊÂ̇ ‚Òfl „ÂÌÂÚ˘ÂÒ͇fl ÒÚÛÍÚÛ‡ ‚ˉ‡ ËÎË ÊË‚Ó„Ó Ó„‡ÌËÁχ.
ç‡ÔËÏÂ, „ÂÌÓÏ ˜ÂÎÓ‚Â͇ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ Ì‡·Ó ËÁ 23 ıÓÏÓÒÓÏ, ‚Íβ˜‡˛˘Ëı ÓÍÓÎÓ 3 ÏÎ‰ Ô‡ ÓÒÌÓ‚‡ÌËÈ Ñçä Ë Ó„‡ÌËÁÓ‚‡ÌÌ˚ı ‚ 20–25 Ú˚Ò. „ÂÌÓ‚.
åÓ‰Âθ ˝‚ÓβˆËË, ÓÔË‡˛˘‡flÒfl ̇ ·ÂÒÍÓ̘Ì˚ ‡ÎÎÂÎË (IAM) Ô‰ÔÓ·„‡ÂÚ,
˜ÚÓ ‡ÎÎÂθ ÏÓÊÂÚ ËÁÏÂÌflÚ¸Òfl ËÁ β·Ó„Ó ÍÓÌÍÂÚÌÓ„Ó ÒÓÒÚÓflÌËfl ‚ β·Ó ‰Û„Ó ÒÓÒÚÓflÌËÂ. ùÚÓ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÔÂ‚˘ÌÓÈ ÓÎË „ÂÌÂÚ˘ÂÒÍÓ„Ó ‰ÂÈÙ‡
(Ú.Â. ÒÎÛ˜‡ÈÌ˚ı ‚‡ˇˆËÈ ˜‡ÒÚÓÚ˚ „ÂÌÓ‚ ÓÚ ÔÓÍÓÎÂÌËfl Í ÔÓÍÓÎÂÌ˲), ÓÒÓ·ÂÌÌÓ
ı‡‡ÍÚÂÌÓ„Ó ‰Îfl Ì·Óθ¯Ëı ÔÓÔÛÎflˆËÈ ‚ ıӉ ÂÒÚÂÒÚ‚ÂÌÌÓ„Ó ÓÚ·Ó‡ (ÔÓ˝Ú‡ÔÌ˚ı
ÏÛÚ‡ˆËÈ). åÓ‰Âθ IAM ۉӷ̇ ‰Îfl ÔÓÎÛ˜ÂÌËfl ‰‡ÌÌ˚ı ÔÓ ‡ÎÎÓÁËÏ‡Ï (‡ÎÎÓÁËÏ –
ÙÓχ ·ÂÎ͇, ÍÓÚÓ˚È ÍÓ‰ËÓ‚‡Ì Ó‰ÌËÏ ‡ÎÎÂÎÂÏ ‚ ÍÓÌÍÂÚÌÓÏ ÎÓÍÛÒ „Â̇).
åÓ‰Âθ ˝‚ÓβˆËË, ÓÒÌÓ‚‡Ì̇fl ̇ ÔÓ˝Ú‡ÔÌ˚ı ÏÛÚ‡ˆËflı (SMM) ·ÓΠۉӷ̇ ‰Îfl
‡·ÓÚ˚ Ò ‰‡ÌÌ˚ÏË ÏËÍÓÒ‡ÚÂÎÎËÚÓ‚ (̇˷ÓΠÔÓÔÛÎflÌ˚ÏË ‚ ÔÓÒΉÌ ‚ÂÏfl).
åËÍÓÒ‡ÚÂÎÎËÚ˚ – ÒËθÌÓ ‡Á΢‡˛˘ËÂÒfl ÔÓ‚ÚÓfl˛˘ËÂÒfl ÍÓÓÚÍË ÔÓÒΉӂ‡ÚÂθÌÓÒÚË Ñçä. ó‡ÒÚÓÚ‡ Ëı ÏÛÚ‡ˆËÈ ‡‚̇ 1 ̇ 1000–10 000 ÂÔÎË͇ˆËÈ, ‡ ‰Îfl
‡ÎÎÓÁËÏÓ‚ ˝ÚÓÚ ÔÓ͇Á‡ÚÂθ ÒÓÒÚ‡‚ÎflÂÚ 1/1 000 000. é͇Á˚‚‡ÂÚÒfl, ˜ÚÓ ÏËÍÓÒ‡ÚÂÎÎËÚ˚ Ò‡ÏË ÔÓ Ò· ÒÓ‰ÂÊ‡Ú ‰ÓÒÚ‡ÚÓ˜ÌÓ ËÌÙÓχˆËË ‰Îfl ÔÓÒÚÓÂÌËfl „Â̇Îӄ˘ÂÒÍÓ„Ó ‰Â‚‡ Ó„‡ÌËÁχ. чÌÌ˚ ÏËÍÓÒ‡ÚÂÎÎËÚÓ‚ (̇ÔËÏÂ, ÔÓ ÓÚÔ˜‡Ú͇Ï
Ñçä) ÒÓÒÚÓflÚ ËÁ fl‰‡ ÔÓ‚ÚÓfl˛˘ËıÒfl ÏËÍÓÒ‡ÚÂÎÎËÚÓ‚ ‰Îfl Í‡Ê‰Ó„Ó ‡ÎÎÂÎfl.
ÑÛ„ËÏ ‡ÒÔÓÒÚ‡ÌÂÌÌ˚Ï ÏÓÎÂÍÛÎflÌ˚Ï Ï‡ÍÂÓÏ fl‚ÎflÂÚÒfl χ·fl ÒÛ·˙‰ËÌˈ‡ Ë·ÓÒÓÏÌÓÈ êçä (SSU êçä), ÔÓÒÍÓθÍÛ „ÂÌ˚ êçä Ë„‡˛Ú ÒÛ˘ÂÒÚ‚ÂÌÌÛ˛
Óθ ‰Îfl ‚˚ÊË‚‡ÌËfl β·Ó„Ó Ó„‡ÌËÁχ Ë Ëı ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÔÓ˜ÚË ÌÂ
ËÁÏÂÌfl˛ÚÒfl.
ù‚ÓβˆËÓÌÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÔÓÔÛÎflˆËflÏË (ËÎË Ú‡ÍÒÓ̇ÏË) fl‚ÎflÂÚÒfl
ÏÂÓÈ „ÂÌÂÚ˘ÂÒÍÓ„Ó ‡ÁÌÓÓ·‡ÁËfl ̇ ÓÒÌÓ‚Â ÓˆÂÌÍË ‚ÂÏÂÌË ‡ÒıÓʉÂÌËfl, Ú.Â.
‚ÂÏÂÌË, Ôӯ‰¯Â„Ó Ò ÚÂı ÔÓ, ÍÓ„‰‡ ‰‡ÌÌ˚ ÔÓÔÛÎflˆËË ÒÛ˘ÂÒÚ‚Ó‚‡ÎË Í‡Í Ó‰ÌÓ
ˆÂÎÓÂ.
îËÎÓ„ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË (ËÎË „Â̇Îӄ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ) ÏÂÊ‰Û ‰‚ÛÏfl
Ú‡ÍÒÓ̇ÏË – ‰ÎË̇ ‚ÂÚ‚Ë, Ú.Â. ÏËÌËχθÌÓ ˜ËÒÎÓ ·Â, ‡Á‰ÂÎfl˛˘Ëı Ëı ̇
ÙËÎÓ„ÂÌÂÚ˘ÂÒÍÓÏ ‰Â‚Â.
àÏÏÛÌÓÎӄ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÔÓÔÛÎflˆËflÏË – ÏÂ‡ ˝ÙÙÂÍÚË‚ÌÓÒÚË ‡͈ËÈ ‡ÌÚË„ÂÌ – ‡ÌÚËÚÂÎÓ, ÔÓ͇Á˚‚‡˛˘‡fl ˝‚ÓβˆËÓÌÌÓ ‡ÒÒÚÓflÌËÂ
ÏÂÊ‰Û ÌËÏË.
23.1. ÉÖçÖíàóÖëäàÖ êÄëëíéüçàü
Ñãü ÑÄççõï é óÄëíéíÖ ÉÖçéÇ
Ç ˝ÚÓÏ ‡Á‰ÂΠ„ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ËÒÔÓθÁÛÂÚÒfl ͇Í
ÒÔÓÒÓ· ËÁÏÂÂÌËfl ÒÚÂÔÂÌË ˝‚ÓβˆËÓÌÌÓ„Ó ‡Á΢Ëfl ÔÛÚÂÏ ÔÓ‰Ò˜ÂÚ‡ ÍÓ΢ÂÒÚ‚‡
‡ÎÎÂθÌ˚ı Á‡Ï¢ÂÌËÈ ÔÓ ÎÓÍÛÒ‡Ï.
n
èÓÔÛÎflˆËfl Ô‰ÒÚ‡‚ÎÂ̇ ‚ÂÍÚÓÓÏ ‰‚ÓÈÌÓÈ Ë̉ÂÍÒ‡ˆËË x = (xij) Ò
∑ mj
j =1
ÍÓÏÔÓÌÂÌÚ‡ÏË, „‰Â xij – ˜‡ÒÚÓÚ‡ i-„Ó ‡ÎÎÂÎfl (Ë̉ÂÍÒ ÒÓÒÚÓflÌËfl „Â̇) ÔË j-Ï ÎÓÍÛÒÂ
„Â̇ (ÔÓÎÓÊÂÌËfl „Â̇ ̇ ıÓÏÓÒÓÏÂ), mj – ÍÓ΢ÂÒÚ‚Ó ‡ÎÎÂÎÂÈ j-„Ó ÎÓÍÛÒ‡, ‡ n –
ÍÓ΢ÂÒÚ‚Ó ‡ÒÒχÚË‚‡ÂÏ˚ı ÎÓÍÛÒÓ‚.
é·ÓÁ̇˜ËÏ ˜ÂÂÁ ∑ ÒÛÏÏÛ ÔÓ ‚ÒÂÏ i Ë j. èÓÒÍÓθÍÛ xij ÂÒÚ¸ ˜‡ÒÚÓÚ‡, ÚÓ
mj
‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl x ≥ 0 Ë
∑
i =1
xij = 1.
334
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ê‡ÒÒÚÓflÌË ӷ˘Ëı ‡ÎÎÂÎÂÈ ëÚÂÙÂÌÒ‡ Ë ‰.
ê‡ÒÒÚÓflÌË ӷ˘Ëı ‡ÎÎÂÎÂÈ ëÚÂÙÂÌÒ‡ Ë ‰. ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
1−
SA( x, y)
,
SA( x ) + SA( y)
„‰Â ‰Îfl ‰‚Ûı ÓÚ‰ÂθÌ˚ı Ë̉˂ˉӂ a Ë b SA(a, b) Ó·ÓÁ̇˜‡ÂÚ ˜ËÒÎÓ Ó·˘Ëı ‡ÎÎÂÎÂÈ,
ÒÛÏÏËÓ‚‡ÌÌ˚ ÔÓ ‚ÒÂÏ n ÎÓÍÛÒ‡Ï Ë ÔÓ‰ÂÎÂÌÌÓ ̇ 2n, ÚÓ„‰‡ Í‡Í SA( x ), SA( y) Ë
SA( x, y) ÂÒÚ¸ SA(a, b), ÛÒ‰ÌÂÌÌÓ ÔÓ ‚ÒÂÏ Ô‡‡Ï (a , b) Ò Ë̉˂ˉ‡ÏË ‡ Ë b ‚
ÔÓÔÛÎflˆËflı, Ô‰ÒÚ‡‚ÎÂÌÌ˚ı Í‡Í ı Ë Û Ë ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÏÂÊ‰Û ÌËÏË.
ê‡ÒÒÚÓflÌË Dps
ê‡ÒÒÚÓflÌË Dps ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
− ln
∑ min{xij , yij} .
n
∑ mj
j −1
ê‡ÒÒÚÓflÌË è‚ÓÒÚË–é͇Ì˚–ÄÎÓÌÒÓ
ê‡ÒÒÚÓflÌË è‚ÓÒÚË–é͇Ì˚–ÄÎÓÌÒÓ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl (ÒÏ.
L 1 -ÏÂÚË͇, „Î. 1) ͇Í
∑ | xij − yij | .
2n
ê‡ÒÒÚÓflÌË êÓ‰ÊÂ‡
ê‡ÒÒÚÓflÌË êÓ‰ÊÂ‡ – ÏÂÚË͇ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË, ÓÔ‰ÂÎÂÌ̇fl ͇Í
1
2n
mj
n
∑ ∑
j =1
( xij − yij )2 .
i =1
ê‡ÒÒÚÓflÌË ıÓ‰˚ 䇂‡Î¸Ë–ëÙÓÁ‡–ù‰‚‡‰Ò‡
ê‡ÒÒÚÓflÌË ıÓ‰˚ 䇂‡Î¸Ë–ëÙÓÁ‡–ù‰‚‡‰Ò‡ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
2 2
π
mj
n
∑
1−
j =1
∑
xij yij .
i =1
ùÚÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ (ÒÏ. ‡ÒÒÚÓflÌË ïÂÎÎË̉ÊÂ‡, „Î. 17).
ê‡ÒÒÚÓflÌË ‰Û„Ë ä‡‚‡Î¸Ë–ëÙÓÁ‡
ê‡ÒÒÚÓflÌË ‰Û„Ë ä‡‚‡Î¸Ë–ëÙÓÁ‡ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
(∑
2
arccos
π
(ÒÏ. ‡ÒÒÚÓflÌË î˯Â‡, „Î. 14).
xij yij
)
335
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
ê‡ÒÒÚÓflÌË çÂfl–퇉ÊËÏ˚–í‡ÚÂÌÓ
ê‡ÒÒÚÓflÌË çÂfl–퇉ÊËÏ˚–í‡ÚÂÌÓ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑
1
xij yij .
n
åËÌËχθÌÓ „ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË çÂfl
åËÌËχθÌÓ „ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË çÂfl ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
1
( xij − yij )2 .
2n
ëڇ̉‡ÚÌÓ „ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË çÂfl
ëڇ̉‡ÚÌÓ „ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË çÂfl ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
–ln I,
„‰Â I – ÌÓχÎËÁÓ‚‡Ì̇fl ˉÂÌÚËÙË͇ˆËfl „Â̇ ÔÓ ç², ÓÔ‰ÂÎÂÌ̇fl ͇Í
⟨ x, y ⟩
(ÒÏ. ‡ÒÒÚÓflÌËfl Åı‡ÚÚ‡˜‡¸fl („Î. 14) Ë Û„ÎÓ‚‡fl ÔÓÎÛÏÂÚË͇ („Î. 17).
|| x ||2 ⋅ || y ||2
1−
∑
␹2 ‡ÒÒÚÓflÌË ë‡Ì„‚Ë
␹2 ‡ÒÒÚÓflÌË ë‡Ì„‚Ë ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
2
n
∑
( xij − yij )2
xij + xij
.
ê‡ÒÒÚÓflÌË F-ÒÚ‡ÚËÒÚËÍË
ê‡ÒÒÚÓflÌË F-ÒÚ‡ÚËÒÚËÍË ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑ ( xij − yij )2 .
2(n − ∑ xij yij )
ê‡ÒÒÚÓflÌˠ̘ÂÚÍÓ„Ó ÏÌÓÊÂÒÚ‚‡
ê‡ÒÒÚÓflÌˠ̘ÂÚÍÓ„Ó ÏÌÓÊÂÒÚ‚‡ Ñ˛·Û‡–èÂȉ‡ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË
ÓÔ‰ÂÎflÂÚÒfl ͇Í
1x ij ≠ yij
.
n
∑
∑ mj
j =1
ê‡ÒÒÚÓflÌË Ó‰ÒÚ‚‡
ê‡ÒÒÚÓflÌË Ó‰ÒÚ‚‡ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
–ln ⟨x, y⟩,
„‰Â Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ⟨x, y⟩ ̇Á˚‚‡ÂÚÒfl ÍÓ˝ÙÙˈËÂÌÚÓÏ Ó‰ÒÚ‚‡.
ê‡ÒÒÚÓflÌË êÂÈÌÓθ‰Ò‡–ÇÂÈ‡–äÓÍÂı˝Ï‡
ê‡ÒÒÚÓflÌË êÂÈÌÓθ‰Ò‡–ÇÂÈ‡–äÓÍÂı˝Ï‡ (ËÎË ‡ÒÒÚÓflÌË Ó‰ÓÒÎÓ‚ÌÓÈ)
ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
–ln(1 – θ),
336
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
„‰Â ÍÓ˝ÙÙˈËÂÌÚ Ó‰ÓÒÎÓ‚ÌÓÈ θ ‰‚Ûı Ë̉˂ˉӂ (ËÎË ‰‚Ûı ÔÓÔÛÎflˆËÈ) fl‚ÎflÂÚÒfl
‚ÂÓflÚÌÓÒÚ¸˛ ÚÓ„Ó, ˜ÚÓ ÒÎÛ˜‡ÈÌÓ ‚˚·‡ÌÌ˚È ‡ÎÎÂθ Ó‰ÌÓ„Ó Ë̉˂ˉ‡ (ËÎË „ÂÌÂÚ˘ÂÒÍÓ„Ó ÙÓ̉‡ Ó‰ÌÓÈ ÔÓÔÛÎflˆËË) ·Û‰ÂÚ Ë‰ÂÌÚ˘ÂÌ ÔÓ Ì‡ÒΉӂ‡Ì˲ (Ú.Â. ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë „ÂÌ˚ fl‚Îfl˛ÚÒfl ÙËÁ˘ÂÒÍËÏË ÍÓÔËflÏË Ó‰ÌÓ„Ó Ë ÚÓ„Ó Ê ‡ÌˆÂÒÚ‡Î¸ÌÓ„Ó
„Â̇) ÒÎÛ˜‡ÈÌÓ ‚˚·‡ÌÌÓÏÛ ‡ÎÎÂβ ‰Û„Ó„Ó. Ñ‚‡ „Â̇ ÏÓ„ÛÚ ·˚Ú¸ ˉÂÌÚ˘Ì˚ÏË ÔÓ
ÒÓÒÚÓflÌ˲ (Ú.Â. ‡ÎÎÂÎflÏË Ò Ó‰Ë̇ÍÓ‚˚Ï Ë̉ÂÍÒÓÏ), ÌÓ Ì ˉÂÌÚ˘Ì˚ÏË ÔÓ
̇ÒΉӂ‡Ì˲. äÓ˝ÙÙˈËÂÌÚ Ó‰ÓÒÎÓ‚ÌÓÈ θ ‰‚Ûı Ë̉˂ˉӂ fl‚ÎflÂÚÒfl ÍÓ˝ÙÙˈËÂÌÚÓÏ ËÌ·ˉËÌ„‡ (Ó‰ÒÚ‚ÂÌÌÓ„Ó ÒÔ‡Ë‚‡ÌËfl) Ëı ÔÓÒÎÂ‰Û˛˘Ëı ÔÓÍÓÎÂÌËÈ.
ê‡ÒÒÚÓflÌË ÉÓθ‰¯ÚÂÈ̇ Ë ‰.
ê‡ÒÒÚÓflÌË ÉÓθ‰¯ÚÂÈ̇ Ë ‰. ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
1
n
∑ (ixij − iyij )2 .
ê‡ÒÒÚÓflÌË Ò‰ÌÂ„Ó Í‚‡‰‡Ú‡
ê‡ÒÒÚÓflÌË Ò‰ÌÂ„Ó Í‚‡‰‡Ú‡ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í

n 
1
(i − j )2 xik y jk  .


n k = 1  1≤ i < j ≤ m


j
∑
∑
èÓ¯‡„Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ò‡È‚Â‡–ÅÛ‚ËÌÍÎfl
èÓ¯‡„Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ò‡È‚Â‡–ÅÛ‚ËÌÍÎfl ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
n
∑ ∑
1
n k =1
| i − j | (2 xik y jk − xik x jk − yik y jk ).
1≤ i , j ≤ m k
23.2. êÄëëíéüçàü Ñãü ÑÄççõï é Ñçä
ê‡ÒÒÚÓflÌËfl ÏÂÊ‰Û Ñçä ËÎË ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ó·˚˜ÌÓ ËÁÏÂfl˛ÚÒfl
‚ ‚ˉ Á‡Ï¢ÂÌËÈ, Ú.Â. ÏÛÚ‡ˆËÈ ÏÂÊ‰Û ÌËÏË. Ñçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ x = (x1, ..., xn) ̇‰ ‡ÎÙ‡‚ËÚÓÏ ËÁ ˜ÂÚ˚Âı ·ÛÍ‚ –
n
ÌÛÍÎÂÓÚˉӂ Ä, í, ë, G; ∑ Ó·ÓÁ̇˜‡ÂÚ
∑.
i =1
óËÒÎÓ ‡Á΢ËÈ
óËÒÎÓ ‡Á΢ËÈ Ñçä – ÔÓÒÚÓ ÏÂÚË͇ ï˝ÏÏËÌ„‡ ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË
Ñçä:
∑ 1x ≠ y .
i
i
-ê‡ÒÒÚÓflÌËÂ
-ê‡ÒÒÚÓflÌË dp ÏÂÊ‰Û Ñçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑ 1x ≠ y
i
n
i
.
337
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
çÛÍÎÂÓÚˉÌÓ ‡ÒÒÚÓflÌË ÑÊÛÍÂÒ‡–ä‡ÌÚÓ‡
çÛÍÎÂÓÚˉÌÓ ‡ÒÒÚÓflÌË ÑÊÛÍÂÒ‡–ä‡ÌÚÓ‡ ÏÂÊ‰Û Ñçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË
ÓÔ‰ÂÎflÂÚÒfl ͇Í
−
3 
4
ln 1 − d p ( x, y) ,

4 
3
„‰Â dp – -‡ÒÒÚÓflÌËÂ. ÖÒÎË ÒÍÓÓÒÚ¸ Á‡Ï¢ÂÌËfl ËÁÏÂÌflÂÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò
„‡Ïχ-‡ÒÔ‰ÂÎÂÌËÂÏ Ë ‡ fl‚ÎflÂÚÒfl Ô‡‡ÏÂÚÓÏ, ÓÔËÒ˚‚‡˛˘ËÏ ÙÓÏÛ ‡ÒÔ‰ÂÎÂÌËfl, ÚÓ „‡Ïχ-‡ÒÒÚÓflÌË ‰Îfl ÏÓ‰ÂÎË ÑÊÛÍÂÒ‡–ä‡ÌÚÓ‡ ÓÔ‰ÂÎflÂÚÒfl ͇Í
−1 / a

3a  
4

−
(
,
)
1
d
x
y
− 1 .
p



4 
3

ê‡ÒÒÚÓflÌË 퇉ÊËÏ˚–çÂfl
ê‡ÒÒÚÓflÌË 퇉ÊËÏ˚–çÂfl ÏÂÊ‰Û Ñçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
d p ( x, y) 

− b ln1 −
,

b 
„‰Â
1
b = 1 −
2 
2
 1x i = y i = j 
1
 +

n 
c

j = A, T , C , G
∑
∑
2
 1x i ≠ y i  
 

 n  
Ë
∑
1
c=
2 i, k ∈{A, T , G, C} j ≠ k
(∑ 1
(∑ 1
( x i , yi ) − ( j , k )
x i = yi = j
)(∑ 1
)
2
x i = yi = k
)
.
1
1
| {1 ≤ i ≤ n : {xi , yi} = {A, G} ËÎË {T, C}}|, Ë Q = | {1 ≤ i ≤ n :
n
n
{xi , yi} = {A, T} ËÎË {G, C}}|, Ú.Â. P Ë Q fl‚Îfl˛ÚÒfl ˜‡ÒÚÓÚ‡ÏË ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ú‡ÌÁˈËË Ë Ú‡ÌÒ‚ÂÒËË ÓÒÌÓ‚‡ÌËÈ ÏÂÊ‰Û ı Ë Û. èË‚Ó‰ËÏ˚ ÌËÊ ˜ÂÚ˚ ‡ÒÒÚÓflÌËfl
‰‡˛ÚÒfl ‚ ÚÂÏË̇ı ‚Â΢ËÌ P Ë Q.
èÛÒÚ¸
P=
ɇÏχ-‡ÒÒÚÓflÌË ÑÊË̇–çÂfl
ɇÏχ-‡ÒÒÚÓflÌË ÑÊË̇-çÂfl ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ñçä ÓÔ‰ÂÎflÂÚÒfl ͇Í
a
1
3
1 − 2 P − Q)1 / a + (1 − 2Q) −1 / a −  ,

2
2
2
„‰Â ÒÍÓÓÒÚ¸ Á‡Ï¢ÂÌËfl ‚‡¸ËÛÂÚÒfl ‚ÏÂÒÚÂ Ò „‡Ïχ-‡ÒÔ‰ÂÎÂÌËÂÏ Ë ‡ fl‚ÎflÂÚÒfl
Ô‡‡ÏÂÚÓÏ, ÓÔËÒ˚‚‡˛˘ËÏ ÙÓÏÛ ‡ÒÔ‰ÂÎÂÌËfl.
2-Ô‡‡ÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË äËÏÛ˚
2-Ô‡‡ÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË äËÏÛ˚ ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ñçä
ÓÔ‰ÂÎflÂÚÒfl ͇Í
−
1
1
ln(1 − 2 P − Q) − ln 1 − 2Q .
2
2
338
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
3-Ô‡‡ÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË í‡ÏÛ˚
3-Ô‡‡ÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË í‡ÏÛ˚ ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ñçä
ÓÔ‰ÂÎflÂÚÒfl ͇Í
P
1
− b ln1 − − Q − (1 − b) ln(1 − 2Q),


b
2
„‰Â
fx =
1
| {1 ≤ i ≤ n : xi = G ËÎË C} |,
n
fy =
+ fy − 2 fx fy .
1
| {1 ≤ i ≤ n : yi = G ËÎË C} | Ë
n
b = fx +
1
1
(ÒΉӂ‡ÚÂθÌÓ, ‰Îfl b = ) ˝ÚÓ fl‚ÎflÂÚÒfl 2-Ô‡‡ÏÂÚ˘Â2
2
ÒÍËÏ ‡ÒÒÚÓflÌËÂÏ äËÏÛ˚.
Ç ÒÎÛ˜‡Â f x = f y =
ê‡ÒÒÚÓflÌË í‡ÏÛ˚–çÂfl
ê‡ÒÒÚÓflÌË í‡ÏÛ˚–çÂfl ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ñçä ÓÔ‰ÂÎflÂÚÒfl ͇Í
−
 2f f


2 f A fG 
fR
1
fY
1
ln1 −
PAG −
PRY  − T C ln1 −
PTC −
PRY  −
fR
2 f A fG
2 fR
fY
2 fT fC
2 fY






f f f
f f f  
1
PRY  ,
−2 f R fY − A G Y − T C R  ln1 −
fR
fY  
2 f R fY


„‰Â f j =
1
2n
∑ (1x = j + 1y = j )
i
i
‰Îfl j = A, G, T, C Ë f R = fA + fG, f T + f C , ÚÓ„‰‡ ͇Í
1
| {1 ≤ i ≤ n :| {xi , yi} ∩ {A, G} =| {xi , yi} ∩ {T , C} |= 1} | (ÓÚÌÓÒËÚÂθÌÓ ˜ËÒÎÓ ‡ÁÎËn
1
˜ËÈ ‚ Ú‡ÌÒ‚ÂÒËflı). PAG = | {1 ≤ i ≤ n :| {xi , yi} = {A, G}} | (ÓÚÌÓÒËÚÂθÌÓ ˜ËÒÎÓ
n
1
Ú‡Ì‡ÁˈËÈ ‚ ÔÛË̇ı) Ë PTC = | {1 ≤ i ≤ n :| {xi , yi} = {T , C}} | (ÓÚÌÓÒËÚÂθÌÓ ˜ËÒÎÓ
n
Ú‡ÌÁˈËÈ ‚ ÔË‡ÏˉË̇ı).
PRY =
åÂÚË͇ „Ë·ˉËÁ‡ˆËË É‡ÒÓ̇ Ë ‰.
H-ÏÂ‡ ÏÂÊ‰Û ‰‚ÛÏfl n-ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ñçä ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Í
H ( x, y) = min
−n≤ k ≤ n
∑ 1x ≠ y
i
∗
i=k
,
„‰Â Ë̉ÂÍÒ˚ i + k ‚ÁflÚ˚ ÔÓ ÏÓ‰Ûβ n , ‡ y* – ‚ÂÒËfl Û Ò ÔÓÒÎÂ‰Û˛˘ÂÈ
ÍÓÏÔÎÂÏÂÌÚ‡ˆËÂÈ Ç‡ÚÒÓ̇–äË͇, Ú.Â. Ó·ÏÂÌÓÏ ÏÂÒÚ‡ÏË ‚ÒÂı A, T, G, C Ë T, A, C, G
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
Ñçä-ÍÛ· – β·Ó χÍÒËχθÌÓ ÏÌÓÊÂÒÚ‚Ó n-ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ Ñçä,
‚ ÍÓÚÓÓÏ ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë H(x , y) = 0 ‰Îfl β·˚ı ‰‚Ûı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ. åÂÚË͇ „Ë·ˉËÁ‡ˆËË É‡ÒÓ̇ Ë ‰. ÏÂÊ‰Û Ñçä-ÍÛ·‡ÏË A Ë B ÓÔ‰ÂÎflÂÚÒfl ͇Í
min H ( x, y).
x ∈A, y ∈B
339
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
23.3. êÄëëíéüçàü Ñãü ÑÄççõï é ÅÖãäÄï
ÅÂÎÍÓ‚‡fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ (ËÎË ÔÂ‚˘̇fl ·ÂÎÍÓ‚‡fl ÒÚÛÍÚÛ‡) ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ x = (x 1 , ..., xn) ̇‰ 20-·ÛÍ‚ÂÌÌ˚Ï ‡ÎÙ‡‚ËÚÓÏ ËÁ
n
20 ‚ˉӂ ‡ÏËÌÓÍËÒÎÓÚ; ∑ Ó·ÓÁ̇˜‡ÂÚ
∑.
i =1
ëÛ˘ÂÒÚ‚ÛÂÚ ÌÂÒÍÓθÍÓ ÔÓÌflÚËÈ ÔÓ‰Ó·ÌÓÒÚË/‡ÒÒÚÓflÌËfl ̇ ÏÌÓÊÂÒÚ‚Â 20 ‚ˉӂ
‡ÏËÌÓÍËÒÎÓÚ, ÍÓÚÓ˚ ÓÒÌÓ‚˚‚‡˛ÚÒfl, ̇ÔËÏÂ, ̇ ı‡‡ÍÚÂËÒÚË͇ı „ˉÓÙËθÌÓÒÚË, ÔÓÎflÌÓÒÚË, Á‡fl‰Â, ÙÓÏÂ Ë Ú.Ô. ç‡Ë·ÓΠ‚‡ÊÌÓÈ fl‚ÎflÂÚÒfl 20 × 20 χÚˈ‡
êÄå250 ÑÂÈıÓÙÙ, ÍÓÚÓ‡fl ‚˚‡Ê‡ÂÚ ÓÚÌÓÒËÚÂθÌÛ˛ ÏÛÚ‡·ÂθÌÓÒÚ¸ 20 ‚ˉӂ
‡ÏËÌÓÍËÒÎÓÚ.
ê‡ÒÒÚÓflÌË êÄå
ê‡ÒÒÚÓflÌË êÄå (ËÎË ‡ÒÒÚÓflÌË ÑÂÈıÓÙÙ–ùÍ͇, ‚Â΢Ë̇ êÄå) ÏÂʉÛ
·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÔËÌflÚ˚ı
(Ú.Â. ÛÒÚ‡‚¯ËıÒfl) ÚӘ˜Ì˚ı ÏÛÚ‡ˆËÈ Ì‡ 100 ‚ˉӂ ‡ÏËÌÓÍËÒÎÓÚ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl
ÔÂÓ·‡ÁÓ‚‡ÌËfl Ó‰ÌÓ„Ó ·ÂÎ͇ ‚ ‰Û„ÓÈ. 1 êÄå – ‰ËÌˈ‡ ˝‚ÓβˆËË; Ó̇ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ó‰ÌÓÈ ÚӘ˜ÌÓÈ ÏÛÚ‡ˆËË Ì‡ 100 ‡ÏËÌÓÍËÒÎÓÚ. êÄå Á̇˜ÂÌËfl 80, 100, 200,
250 ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ‡ÒÒÚÓflÌ˲ (‚ ÔÓˆÂÌÚ‡ı) 50, 60, 75, 92 ÏÂÊ‰Û ·ÂÎ͇ÏË.
óËÒÎÓ ·ÂÎÍÓ‚˚ı ‡Á΢ËÈ
óËÒÎÓ ·ÂÎÍÓ‚˚ı ‡Á΢ËÈ – ÔÓÒÚÓ ÏÂÚË͇ ï˝ÏÏËÌ„‡ ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË
ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË:
∑ 1x ≠ y .
i
i
ÄÏËÌÓ -‡ÒÒÚÓflÌËÂ
ÄÏËÌÓ -‡ÒÒÚÓflÌË (ËÎË ÌÂÒÍÓÂÍÚËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌËÂ) dp ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑ 1x ≠ y
i
n
i
.
ÄÏËÌÓ ‡ÒÒÚÓflÌË ÍÓÂ͈ËË èÛ‡ÒÒÓ̇
ÄÏËÌÓ ‡ÒÒÚÓflÌË ÍÓÂ͈ËË èÛ‡ÒÒÓ̇ ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Ò ÔÓÏÓ˘¸˛ ‡ÏËÌÓ -‡ÒÒÚÓflÌËfl dp ͇Í
–ln(1 – dp (x, y)).
ÄÏËÌÓ ␥-‡ÒÒÚÓflÌËÂ
ÄÏËÌÓ ␥-‡ÒÒÚÓflÌË (ËÎË ÍÓÂ͈Ëfl γ-‡ÒÒÚÓflÌËfl èÛ‡ÒÒÓ̇) ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË
ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Ò ÔÓÏÓ˘¸˛ ‡ÏËÌÓ -‡ÒÒÚÓflÌËfl dp ͇Í
a((1 − d p ( x, y)) −1 / a − 1),
„‰Â ÒÍÓÓÒÚ¸ Á‡Ï¢ÂÌËfl ‚‡¸ËÛÂÚÒfl Ò i = 1, ..., n ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò γ-‡ÒÔ‰ÂÎÂÌËÂÏ Ë a fl‚ÎflÂÚÒfl Ô‡‡ÏÂÚÓÏ, ÓÔËÒ˚‚‡˛˘Ëı ÙÓÏÛ ‡ÒÔ‰ÂÎÂÌËfl. ÑÎfl a = 2,25
Ë a = 0,65 ÔÓÎÛ˜‡ÂÏ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌËfl ÑÂÈıÓÙÙ Ë É˯Ë̇. Ç ÌÂÍÓÚÓ˚ı ÔËÎÓÊÂÌËflı ˝ÚÓ ‡ÒÒÚÓflÌËÂ Ò a = 2,25 ̇Á˚‚‡ÂÚÒfl ÔÓÒÚÓ ‡ÒÒÚÓflÌËÂÏ
ÑÂÈıÓÙÙ.
340
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ÅÂÎÍÓ‚Ó ‡ÒÒÚÓflÌË ÑÊÛÍÂÒ‡–ä‡ÌÚÓ‡
ÅÂÎÍÓ‚Ó ‡ÒÒÚÓflÌË ÑÊÛÍÂÒ‡–ä‡ÌÚÓ‡ ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Ò ÔÓÏÓ˘¸˛ ‡ÏËÌÓ -‡ÒÒÚÓflÌËfl dp ͇Í
−
19 
20
ln 1 −
d p ( x, y) .


20
19
ÅÂÎÍÓ‚Ó ‡ÒÒÚÓflÌË äËÏÛ˚
ÅÂÎÍÓ‚Ó ‡ÒÒÚÓflÌË äËÏÛ˚ ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Ò ÔÓÏÓ˘¸˛ ‡ÏËÌÓ -‡ÒÒÚÓflÌËfl dp ͇Í

d p2 ( x, y) 
− ln1 − d p ( x, y) −
.
5 

ê‡ÒÒÚÓflÌË É˯Ë̇
ê‡ÒÒÚÓflÌË É˯Ë̇ d ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Ò
ÔÓÏÓ˘¸˛ ‡ÏËÌÓ -‡ÒÒÚÓflÌËfl dp ÔÓ ÙÓÏÛÎÂ
ln(1 + 2 d ( x, y))
= 1 − d p ( x, y).
2 d ( x, y)
ê‡ÒÒÚÓflÌË k-ÏÂ‡ ù‰„‡‡
ê‡ÒÒÚÓflÌË k-ÏÂ‡ ù‰„‡‡ ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË x = (x1, ..., x m) Ë
y = (y 1 , ..., yn) ̇‰ ÒʇÚ˚Ï ‡ÏËÌÓÍËÒÎÓÚÌ˚Ï ‡ÎÙ‡‚ËÚÓÏ ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑

min{x ( a), y( a)}
 1

ln + a
,
10
min{m, n} − k + 1 




„‰Â a – β·ÓÈ k-ÏÂ (ÒÎÓ‚Ó ‰ÎËÌ˚ k ̇‰ ‚˚¯ÂÛ͇Á‡ÌÌ˚Ï ‡ÎÙ‡‚ËÚÓÏ), ÔË ˝ÚÓÏ ı(‡)
Ë Û(‡) fl‚Îfl˛ÚÒfl ÍÓ΢ÂÒÚ‚ÓÏ ÔÓfl‚ÎÂÌËÈ ‡ ‚ ı Ë Û ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‚ ‚ˉ ·ÎÓÍÓ‚
(ÌÂÔÂ˚‚Ì˚ı ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ) (ÒÏ. q-„‡Ï ÔÓ‰Ó·ÌÓÒÚ¸, „Î. 11).
23.4. ÑêìÉàÖ ÅàéãéÉàóÖëäàÖ êÄëëíéüçàü
ê‡ÒÒÚÓflÌË ÒÚÛÍÚÛ˚ êçä
èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ êçä – ÌËÚ¸ ÌÛÍÎÂÓÚˉӂ (ÓÒÌÓ‚‡ÌËÈ), Ú.Â. ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ̇‰ ‡ÎÙ‡‚ËÚÓÏ {A, C, G, U}. ÇÌÛÚË ÍÎÂÚÍË Ú‡Í‡fl ÌËÚ¸ Ò‚Ó‡˜Ë‚‡ÂÚÒfl ‚
3D ÔÓÒÚ‡ÌÒÚ‚Â ËÁ-Á‡ ÍÓÌ˙˛„‡ˆËË ÌÛÍÎÂÓÚˉÌ˚ı ÓÒÌÓ‚‡ÌËÈ (Ó·˚˜ÌÓ ˝ÚÓ Ò‚flÁË
ÚËÔ‡ A–U, G–C Ë G–U). ÇÚÓ˘̇fl ÒÚÛÍÚÛ‡ êçä fl‚ÎflÂÚÒfl, „Û·Ó „Ó‚Ófl,
ÏÌÓÊÂÒÚ‚ÓÏ ÒÔË‡ÎÂÈ (ËÎË ÔÂ˜ÌÂÏ ÒÔ‡ÂÌÌ˚ı ÓÒÌÓ‚‡ÌËÈ), ËÁ ÍÓÚÓ˚ı ÒÓÒÚÓËÚ
êçä. ùÚÛ ÒÚÛÍÚÛÛ ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ ‚ ‚ˉ ÔÎÓÒÍÓ„Ó „‡Ù‡ Ë ‰‡Ê ÍÓÌ‚ӄÓ
‰Â‚‡. íÂÚ˘̇fl ÒÚÛÍÚÛ‡ – ˝ÚÓ „ÂÓÏÂÚ˘ÂÒ͇fl ÙÓχ êçä ‚ ÔÓÒÚ‡ÌÒÚ‚Â.
ê‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ‰‚ÛÏfl êçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂ
ÏÂÊ‰Û Ëı ‚ÚÓ˘Ì˚ÏË ÒÚÛÍÚÛ‡ÏË. èËÏÂ‡ÏË Ú‡ÍËı ‡ÒÒÚÓflÌËÈ êçä ÒÎÛʇÚ:
‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl ‰Â‚‡ (Ë ‰Û„Ë ‡ÒÒÚÓflÌËfl ̇ ÍÓÌ‚˚ı ‰Â‚¸flı,
ÒÏ. „Î. 15) Ë ‡ÒÒÚÓflÌË ԇ˚ ÓÒÌÓ‚‡ÌËÈ, Ú.Â. ÏÂÚË͇ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË
ÏÂÊ‰Û ‚ÚÓ˘Ì˚ÏË ÒÚÛÍÚÛ‡ÏË, ‡ÒÒχÚË‚‡ÂÏ˚ÏË Í‡Í ÏÌÓÊÂÒÚ‚‡ ÒÔ‡ÂÌÌ˚ı
ÓÒÌÓ‚‡ÌËÈ.
341
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
èË ÍÓÏÔ¸˛ÚÂÌÓÏ (in silico) ÏÓ‰ÂÎËÓ‚‡ÌËË ˝‚ÓβˆËË êçä ÔËÒÔÓÒÓ·ÎÂÌÌÓÒÚ¸
êçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ı ÂÒÚ¸ ÏÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌË f(d(x, x T)), „‰Â f:
≥0 → ≥0 ÂÒÚ¸ ÙÛÌ͈Ëfl χүڇ·‡ Ë d(x, xT) – ÒÚÛÍÚÛÌÓ ‡ÒÒÚÓflÌË êçä
ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ ı Ë ÙËÍÒËÓ‚‡ÌÌÓÈ ÍÓÌÚÓθÌÓÈ êçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ x T.
åÂÚË͇ ̘ÂÚÍÓ ÓÔ‰ÂÎÂÌÌÓ„Ó ÔÓÎËÌÛÍÎÂÓÚˉ‡
åÂÚËÍÓÈ Ì˜ÂÚÍÓ ÓÔ‰ÂÎÂÌÌÓ„Ó ÔÓÎËÌÛÍÎÂÓÚˉ‡ (ËÎË N T V - Ï Â Ú  Ë Í Ó È)
̇Á˚‚‡ÂÚÒfl ÏÂÚË͇, Ô‰ÎÓÊÂÌ̇fl ç¸ÂÚÓ, íÓÂÒÓÏ Ë Ç‡Î¸ÍÂÁ í‡Ò‡Ì‰Â (2003) ̇
12-ÏÂÌÓÏ Â‰ËÌ˘ÌÓÏ ÍÛ·Â I12. óÂÚ˚ ÌÛÍÎÂÓÚˉ‡ U, C, A Ë G ‡ÎÙ‡‚ËÚ‡ êçä ·˚ÎË
ÍÓ‰ËÓ‚‡Ì˚ Í‡Í (1,0,0,0), (0,1,0,0), (0,0,1,0) Ë (0,0,0,1) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ÇÒ 64
‚ÓÁÏÓÊÌ˚ ÍÓ‰ÓÌÌ˚ ÚÓÈÍË „ÂÌÂÚ˘ÂÒÍÓ„Ó ÍÓ‰‡ ÏÓÊÌÓ Ò˜ËÚ‡Ú¸ ‚Â¯Ë̇ÏË
ÍÛ·‡ I 12. ëΉӂ‡ÚÂθÌÓ, β·Û˛ ÚÓ˜ÍÛ (x1, ..., x 12 ) ∈ I 12 ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ ͇Í
̘ÂÚÍÓ ÓÔ‰ÂÎÂÌÌ˚È ÍÓ‰ÓÌ, ͇ʉ‡fl ÍÓÏÔÓÌÂÌÚ‡ x i ÍÓÚÓÓ„Ó ‚˚‡Ê‡ÂÚ ÒÚÂÔÂ̸
ÔË̇‰ÎÂÊÌÓÒÚË ˝ÎÂÏÂÌÚ‡ i, 1 ≤ i ≤ 12, ̘ÂÚÍÓ ÓÔ‰ÂÎÂÌÌÓÏÛ ÏÌÓÊÂÒÚ‚Û ı.
ÇÂ¯ËÌ˚ ÍÛ·‡ ̇Á˚‚‡˛ÚÒfl ˜ÂÚÍËÏË ÏÌÓÊÂÒÚ‚‡ÏË.
NTV-ÏÂÚË͇ ÏÂÊ‰Û ‡Á΢Ì˚ÏË ÚӘ͇ÏË x, y ∈ I12 ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑ | xi − yi |
.
∑ max{xi , yi}
1≤ i ≤12
1≤ i ≤12
∑
ÑÂÒÒ Ë ãÓÍÓÚ ‰Ó͇Á‡ÎË, ˜ÚÓ
| xi − yi |
1≤ i ≤ n
∑
max{| xi |,| yi |}
fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ‚ÒÂÏ n.
1≤ i ≤ n
ç‡
n
≥0
‰‡Ì̇fl ÏÂÚË͇ ‡‚̇ 1 – s(x, y ), „‰Â s( x, y) =
∑
∑
min{xi , yi}
1≤ i ≤ n
max{xi , yi}
fl‚ÎflÂÚÒfl
1≤ i ≤ n
ÔÓ‰Ó·ÌÓÒÚ¸˛ êÛÊ˘ÍË (ÒÏ. „Î. 17).
ê‡ÒÒÚÓflÌËfl ÔÂÂÒÚÓÈÍË „ÂÌÓχ
ÉÂÌÓÏ˚ Ó‰ÒÚ‚ÂÌÌ˚ı Ó‰ÌÓıÓÏÓÒÓÏÌ˚ı ‚ˉӂ ËÎË Ó‰ÌÓıÓÏÓÒÓÏÌ˚ı Ó„‡ÌÂÎÎ
(Ú‡ÍËı Í‡Í ÏÂÎÍË ‚ËÛÒ˚ Ë ÏËÚÓıÓ̉ËË) Ô‰ÒÚ‡‚ÎÂÌ˚ ÔÓfl‰ÍÓÏ „ÂÌÓ‚ ‚‰Óθ
ıÓÏÓÒÓÏ, Ú.Â. Í‡Í ÔÂÂÒÚ‡ÌÓ‚ÍË (ËÎË ‡ÌÊËÓ‚‡ÌËfl) ‰‡ÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ n „ÓÏÓÎӄ˘Ì˚ı „ÂÌÓ‚. ÖÒÎË ÔËÌflÚ¸ ‚Ó ‚ÌËχÌË ÓËÂÌÚËÓ‚‡ÌÌÓÒÚ¸ „ÂÌÓ‚, ÚÓ ıÓÏÓÒÓÏÛ ÏÓÊÌÓ ÓÔËÒ‡Ú¸ Í‡Í ÔÂÂÒÚ‡ÌÓ‚ÍÛ ÒÓ Á̇ÍÓÏ, Ú.Â. Í‡Í ‚ÂÍÚÓ x = (x1, ..., x n ),
„‰Â | x i | – ‡Á΢Ì˚ ˜ËÒ· 1, …, n Ë Î˛·ÓÈ ˝ÎÂÏÂÌÚ x i ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÓÊËÚÂθÌ˚Ï
ËÎË ÓÚˈ‡ÚÂθÌ˚Ï. äÓθˆÂ‚˚ „ÂÌÓÏ˚ Ô‰ÒÚ‡‚ÎÂÌ˚ ÍÓθˆÂ‚˚ÏË (ÒÓ Á̇ÍÓÏ)
ÔÂÂÒÚ‡Ìӂ͇ÏË x = (x1, ..., xn), „‰Â xn+1 = x1 Ë Ú.‰.
ÑÎfl ÏÌÓÊÂÒÚ‚‡ ‡ÒÒχÚË‚‡ÂÏ˚ı ‰‚ËÊÂÌËÈ ÏÛÚ‡ˆËË ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â „ÂÌÓÏÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl Ú‡ÍËÏË „ÂÌÓχÏË ÂÒÚ¸ ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl
(ÒÏ. „Î. 11), „‰Â ÓÔÂ‡ˆËflÏË ‰‡ÍÚËÓ‚‡ÌËfl ‚˚ÒÚÛÔ‡˛Ú ˝ÚË ‰‚ËÊÂÌËfl ÏÛÚ‡ˆËË,
Ú.Â. ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ‰‚ËÊÂÌËÈ (ıÓ‰Ó‚) ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl
Ó‰ÌÓÈ ÔÂÂÒÚ‡ÌÓ‚ÍË (ÒÓ Á̇ÍÓÏ) ‚ ‰Û„Û˛.
Ç ‰ÓÔÓÎÌÂÌË (‡ Ó·˚˜ÌÓ Ë ‚ÏÂÒÚÓ) ÒÓ·˚ÚËÈ ÎÓ͇θÌÓÈ ÏÛÚ‡ˆËË, Ú‡ÍËı ͇Í
‚ÒÚ‡‚͇/Û‰‡ÎÂÌË ·ÛÍ‚ ËÎË Á‡Ï¢ÂÌËfl ÒËÏ‚ÓÎÓ‚ ‚ Ñçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚË,
‡ÒÒχÚË‚‡˛ÚÒfl ·Óθ¯Ë (Ú.Â. Á‡Ú‡„Ë‚‡˛˘Ë Á̇˜ËÚÂθÌÛ˛ ˜‡ÒÚ¸ ıÓÏÓÒÓÏ˚)
342
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ÏÛÚ‡ˆËË Ë ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ÏÂÚËÍË „ÂÌÓÏÌÓ„Ó ‰‡ÍÚËÓ‚‡ÌËfl ̇Á˚‚‡˛ÚÒfl
‡ÒÒÚÓflÌËflÏË ÔÂÂÒÚÓÈÍË „ÂÌÓÏÓ‚. àÁ-Á‡ ‰ÍÓÒÚË Ú‡ÍËı ÔÂÂÒÚÓ˜Ì˚ı ÏÛÚ‡ˆËÈ
˝ÚË ‡ÒÒÚÓflÌËfl ÚӘ̠ӈÂÌË‚‡˛ÚÒfl ËÒÚËÌÌ˚ ‡ÒÒÚÓflÌËfl „ÂÌÓÏÌÓÈ ˝‚ÓβˆËË.
éÒÌӂ̇fl ÂÓ„‡ÌËÁ‡ˆËfl „ÂÌÓÏÓ‚ (ıÓÏÓÒÓÏ) ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÔÓÒ‰ÒÚ‚ÓÏ
ËÌ‚ÂÒËÈ (Ó·‡˘ÂÌËÈ ·ÎÓÍÓ‚), Ú‡ÌÒÔÓÁˈËÈ (Ó·ÏÂ̇ ÏÂÒÚ‡ÏË ‰‚Ûı ÒÓÒ‰ÌËı
·ÎÓÍÓ‚) ‚ ÔÂÂÒÚ‡ÌÓ‚ÍÂ, ‡ Ú‡ÍÊ ËÌ‚ÂÚËÓ‚‡ÌÌÓÈ Ú‡ÌÒÔÓÁˈËË (ËÌ‚ÂÒËË ‚
ÒÓ˜ÂÚ‡ÌËË Ò Ú‡ÌÒÔÓÁˈËÂÈ) Ë ‚ÂÒËÈ ÒÓ Á̇ÍÓÏ, ÌÓ ÚÓθÍÓ ‰Îfl ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÒÓ
Á̇ÍÓÏ (‚ÂÒËfl ÒÓ Á̇ÍÓÏ ‚ ÒÓ˜ÂÚ‡ÌËË Ò ËÌ‚ÂÒËÂÈ).
éÒÌÓ‚Ì˚ÏË ‡ÒÒÚÓflÌËflÏË ÔÂÂÒÚÓÈÍË „ÂÌÓÏÓ‚ ÏÂÊ‰Û ‰‚ÛÏfl Ó‰ÌÓıÓÏÓÒÓÏÌ˚ÏË „ÂÌÓχÏË fl‚Îfl˛ÚÒfl:
– ÏÂÚË͇ ‚ÂÒËË Ë ÏÂÚË͇ ‚ÂÒËË ÒÓ Á̇ÍÓÏ (ÒÏ. „Î. 11);
– ‡ÒÒÚÓflÌË Ú‡ÌÒÔÓÁˈËË: ÏËÌËχθÌÓ ˜ËÒÎÓ Ú‡ÌÒÔÓÁˈËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl
ÔÂÓ·‡ÁÓ‚‡ÌËfl (Ô‰ÒÚ‡‚Îfl˛˘ÂÈ ÔÂÂÒÚ‡ÌÓ‚ÍË) Ó‰ÌÓ„Ó ËÁ ÌËı ‚ ‰Û„ÓÈ;
– ITT-‡ÒÒÚÓflÌËÂ: ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ËÌ‚ÂÒËÈ, Ú‡ÌÒÔÓÁˈËÈ Ë ËÌ‚ÂÚËÓ‚‡ÌÌ˚ı Ú‡ÌÒÔÓÁˈËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl Ó‰ÌÓ„Ó ËÁ ÌËı ‚ ‰Û„ÓÈ.
ÑÎfl ‰‚Ûı ÍÓθˆÂ‚˚ı ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÒÓ Á̇ÍÓÏ x = (x1, ..., x n ) Ë y = (y 1 , ..., y n )
(ÒΉӂ‡ÚÂθÌÓ, x n+1 = x1 Ë Ú.‰.) ÚӘ˜Ì˚È ‡Á˚‚ – Ú‡ÍÓ ˜ËÒÎÓ i, 1 ≤ i ≤ n, ˜ÚÓ y n+1 ≠
xj(i)+1, „‰Â ˜ËÒÎÓ j(i), 1 ≤ j(i) ≤ n, ÓÔ‰ÂÎflÂÚÒfl ËÁ ‡‚ÂÌÒÚ‚‡ y i = xj(i) . ê‡ÒÒÚÓflÌËÂ
ÚӘ˜ÌÓ„Ó ‡Á˚‚‡ (ìÓÚÂÒÓÌ–à‚ÂÌÒ–ïÓÎΖåÓ„‡Ì, 1982) ÏÂÊ‰Û „ÂÌÓχÏË,
Ô‰ÒÚ‡‚ÎÂÌÌ˚ÏË Í‡Í ı Ë Û , ‡‚ÌÓ ˜ËÒÎÛ ÚӘ˜Ì˚ı ‡Á˚‚Ó‚. ùÚÓ ‡ÒÒÚÓflÌË Ë
ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ÔÂÂÒÚ‡ÌÓ‚ÓÍ (ÏÂÚË͇ ì·χ, „Î. 11: ÏËÌËχθÌÓ
ÌÂÓ·ıÓ‰ËÏÓ ÍÓ΢ÂÒÚ‚Ó ÔÂÂÏ¢ÂÌËÈ ·ÛÍ‚, Ú.Â. Ó‰ÌÓ·ÛÍ‚ÂÌÌ˚ı Ú‡ÌÒÔÓÁˈËÈ)
ÔËÏÂÌfl˛ÚÒfl ‰Îfl ‡ÔÔÓÍÒËχˆËË ‡ÒÒÚÓflÌËÈ ÔÂÂÒÚÓÈÍË „ÂÌÓÏÓ‚.
ëËÌÚÂÌ˘ÌÓ ‡ÒÒÚÓflÌËÂ
ùÚÓ „ÂÌÓÏÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓ„ÓıÓÏÓÒÓÏÌ˚ÏË „ÂÌÓχÏË, ÍÓÚÓ˚Â
‡ÒÒχÚË‚‡˛ÚÒfl Í‡Í ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ ̇·Ó˚ ÒËÌÚÂÌ˘Ì˚ı „ÛÔÔ „ÂÌÓ‚, ‚
ÍÓÚÓ˚ı ‰‚‡ „Â̇ ÒËÌÚÂÌ˘Ì˚, ÂÒÎË ÔËÒÛÚÒÚ‚Û˛Ú ‚ Ó‰ÌÓÈ Ë ÚÓÈ Ê ıÓÏÓÒÓÏÂ.
ëËÌÚÂÌ˘ÌÓ ‡ÒÒÚÓflÌË (îÂÂÚÚ˖燉¸˛–ë‡ÌÍÓÙÙ, 1996) ÏÂÊ‰Û ‰‚ÛÏfl Ú‡ÍËÏË
„ÂÌÓχÏË fl‚ÎflÂÚÒfl ÏËÌËχθÌ˚Ï ˜ËÒÎÓÏ ÏÛÚ‡ˆËÓÌÌ˚ı ıÓ‰Ó‚ – Ú‡ÌÒÎÓ͇ˆËÈ
(Ó·ÏÂÌ „Â̇ÏË ÏÂÊ‰Û ‰‚ÛÏfl ıÓÏÓÒÓχÏË), Ó·˙‰ËÌÂÌËÈ (ÒÎËflÌËfl ‰‚Ûı ıÓÏÓÒÓÏ ‚
Ó‰ÌÛ) Ë Ù‡„ÏÂÌÚ‡ˆËÈ (‡Ò˘ÂÔÎÂÌË ӉÌÓÈ ıÓÏÓÒÓÏ˚ ̇ ‰‚Â) – ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl
ÔÂÓ·‡ÁÓ‚‡ÌËfl Ó‰ÌÓ„Ó „ÂÌÓχ ‚ ‰Û„ÓÈ. ÇÒ (‚ıÓ‰fl˘ËÂ Ë ‚˚ıÓ‰fl˘ËÂ) ıÓÏÓÒÓÏ˚
˝ÚËı ÏÛÚ‡ˆËÈ ‰ÓÎÊÌ˚ ·˚Ú¸ ÌÂÔÛÒÚ˚ÏË Ë Ì ‰ÛÔÎˈËÓ‚‡ÌÌ˚ÏË. Ç˚¯ÂÔ˂‰ÂÌÌ˚ ÚË ÏÛÚ‡ˆËÓÌÌ˚ı ıÓ‰‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ÏÂÊıÓÏÓÒÓÏÌ˚Ï ÔÂÂÒÚÓÈ͇Ï
„ÂÌÓχ, ÍÓÚÓ˚ ‚ÒÚ˜‡˛ÚÒfl „Ó‡Á‰Ó ÂÊÂ, ˜ÂÏ ‚ÌÛÚËıÓÏÓÒÓÏÌ˚Â; ÒΉӂ‡ÚÂθÌÓ, ÓÌË ‰‡˛Ú Ì‡Ï ·ÓΠ„ÎÛ·ÓÍÛ˛ ËÌÙÓχˆË˛ Ó· ËÒÚÓËË ˝‚ÓβˆËÓÌÌÓ„Ó
‡Á‚ËÚËfl.
ê‡ÒÒÚÓflÌË „ÂÌÓχ
ê‡ÒÒÚÓflÌË „ÂÌÓχ ÏÂÊ‰Û ‰‚ÛÏfl ÎÓÍÛÒ‡ÏË Ì‡ ıÓÏÓÒÓÏ fl‚ÎflÂÚÒfl ˜ËÒÎÓÏ Ô‡
ÓÒÌÓ‚‡ÌËÈ, ‡Á‰ÂÎfl˛˘Ëı Ëı ̇ ıÓÏÓÒÓÏÂ.
ê‡ÒÒÚÓflÌË ̇ „ÂÌÂÚ˘ÂÒÍÓÈ Í‡ÚÂ
ê‡ÒÒÚÓflÌË ̇ „ÂÌÂÚ˘ÂÒÍÓÈ Í‡Ú ÏÂÊ‰Û ‰‚ÛÏfl ÎÓÍÛÒ‡ÏË Ì‡ „ÂÌÂÚ˘ÂÒÍÓÈ
͇Ú – ˜‡ÒÚÓÚ‡ ÂÍÓÏ·Ë̇ˆËÈ, ‚˚‡ÊÂÌ̇fl ‚ ÔÓˆÂÌÚ‡ı; ÓÌÓ ËÁÏÂflÂÚÒfl ‚
Ò‡ÌÚËÏÓ„‡Ì‡ı Òå (ËÎË Â‰ËÌˈ‡ı „ÂÌÂÚ˘ÂÒÍÓÈ Í‡Ú˚), „‰Â 1 Òå ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ëı
ÒÚ‡ÚËÒÚ˘ÂÒÍË ÓÚÍÓÂÍÚËÓ‚‡ÌÌÓÈ ˜‡ÒÚÓÚ ÂÍÓÏ·Ë̇ˆËË 1%.
é·˚˜ÌÓ ‡ÒÒÚÓflÌË ̇ „ÂÌÂÚ˘ÂÒÍÓÈ Í‡Ú ‚ 1 Òå (ÔÓ „ÂÌÂÚ˘ÂÒÍÓÈ ¯Í‡ÎÂ)
ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÒÚÓflÌ˲ „ÂÌÓχ (ÔÓ ÙËÁ˘ÂÒÍÓÈ ¯Í‡ÎÂ) ÔÓfl‰Í‡ Ó‰ÌÓÈ Ï„‡·‡Á˚
(ÏËÎÎËÓÌ Ô‡Ì˚ı ÓÒÌÓ‚‡ÌËÈ).
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
343
åÂÚ‡·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
åÂÚ‡·Ó΢ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ (ËÎË ‡ÒÒÚÓflÌËÂÏ ÔÂÂıÓ‰‡) ÏÂÊ‰Û ˝ÌÁËχÏË
̇Á˚‚‡ÂÚÒfl ÏËÌËχθÌÓ ˜ËÒÎÓ ÏÂÚ‡·Ó΢ÂÒÍËı ÒÚ‡‰ËÈ, ‡Á‰ÂÎfl˛˘Ëı ‰‚‡ ˝ÌÁËχ
‚ ÏÂÚ‡·Ó΢ÂÒÍËı ÔÂÂıÓ‰‡ı.
ê‡ÒÒÚÓflÌË ÉẨÓ̇ Ë ‰.
ê‡ÒÒÚÓflÌË ÉẨÓ̇ Ë ‰. ÏÂÊ‰Û ‰‚ÛÏfl ‚Á‡ËÏÓ‰ÂÈÒÚ‚Û˛˘ËÏË ÓÒÌÓ‚‡ÌËflÏË,
Ô‰ÒÚ‡‚ÎÂÌÌ˚ÏË 4 × 4 χÚˈ‡ÏË Ó‰ÌÓÓ‰ÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl X Ë Y , ÓÔ‰ÂÎflÂÚÒfl ͇Í
S( XY −1 ) + S( X −1Y )
,
2
„‰Â S( M ) = l 2 + (θ / α )2 , l – ‰ÎË̇ Ú‡ÌÒÎflˆËË, θ – Û„ÓÎ ‚‡˘ÂÌËfl Ë α – ÍÓ˝ÙÙˈËÂÌÚ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl ÏÂÊ‰Û Ú‡ÌÒÎflˆËÂÈ Ë ‚‡˘ÂÌËÂÏ.
ê‡ÒÒÚÓflÌË ·ËÓÚÓÔ‡
ÅËÓÚÓÔ˚ Á‰ÂÒ¸ Ô‰ÒÚ‡‚ÎÂÌ˚ Í‡Í ·Ë̇Ì˚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË x = (x1, ..., xn),
„‰Â xi = 1 ÓÁ̇˜‡ÂÚ ÔËÒÛÚÒÚ‚Ë ‚ˉ‡ i. ê‡ÒÒÚÓflÌË ·ËÓÚÓÔ‡ (ËÎË ‡ÒÒÚÓflÌËÂ
í‡ÌËÏÓÚÓ) ÏÂÊ‰Û ·ËÓÚÓÔ‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Í
| {1 ≤ i ≤ n : xi ≠ yi} |
.
| {1 ≤ i ≤ n : xi + yi > 0} |
ê‡ÒÒÚÓflÌË ÇËÍÚÓ‡–èÛÔÛ‡
èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ‚ÒÔÎÂÒÍÓ‚ x Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ‚ÂÏÂÌÌÛ˛ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ (x1, ..., x n ) n ÒÓ·˚ÚËÈ (̇ÔËÏÂ, ÌÂÈÓÌÌ˚ı ‚ÒÔÎÂÒÍÓ‚ ËÎË ·ËÂÌËÈ
ÒÂ‰ˆ‡). ÇÂÏÂÌ̇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÓÚ‡Ê‡ÂÚ ÎË·Ó ‡·ÒÓβÚÌ˚ ‚ÂÏÂÌÌ˚Â
‰‡ÌÌ˚ ‚ÒÔÎÂÒÍÓ‚ ÎË·Ó ‚ÂÏÂÌÌ˚ ËÌÚÂ‚‡Î˚ ÏÂÊ‰Û ÌËÏË. åÓÁ„ ˜ÂÎÓ‚Â͇ ËÏÂÂÚ
ÓÍÓÎÓ 100 ÏÎ‰ ÌÂÈÓÌÓ‚ (ÌÂ‚Ì˚ı ÍÎÂÚÓÍ). çÂÈÓÌ ‡„ËÛÂÚ Ì‡ ‚ÓÁ‰ÂÈÒÚ‚Ë ÚÂÏ,
˜ÚÓ „ÂÌÂËÛÂÚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ‚ÒÔÎÂÒÍÓ‚, fl‚Îfl˛˘Û˛Òfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛
ÍÓÓÚÍËı ˝ÎÂÍÚ˘ÂÒÍËı ËÏÔÛθÒÓ‚.
ê‡ÒÒÚÓflÌË ÇËÍÚÓ‡–èÛÔÛ‡ ÏÂÊ‰Û ‰‚ÛÏfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ‚ÒÔÎÂÒÍÓ‚ ı Ë
Û – ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl Ò ˆÂÌÓÈ (Ú.Â. ÏËÌËχθ̇fl ˆÂ̇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı
‚ Û), Ò ÔËÏÂÌÂÌËÂÏ ÒÎÂ‰Û˛˘Ëı ÓÔÂ‡ˆËÈ (Ë ÒÓÔÛÚÒÚ‚Û˛˘Ëı ËÏ ˆÂÌ): ‚ÒÚ‡‚ËÚ¸
‚ÒÔÎÂÒÍ (ˆÂ̇ 1), Û‰‡ÎËÚ¸ ‚ÒÔÎÂÒÍ (ˆÂ̇ 1), ÒÏÂÒÚËÚ¸ ‚ÒÔÎÂÒÍ Ì‡ ‚Â΢ËÌÛ ‚ÂÏÂÌË t
(ˆÂ̇ qt, „‰Â q > 0 – Ô‡‡ÏÂÚ).
ÇËÍÚÓ Ë èÛÔÛ‡ Ô‰ÎÓÊËÎË ˝ÚÓ ‡ÒÒÚÓflÌË ‚ 1996 „.; ̘ÂÚÍÓ ı˝ÏÏËÌ„Ó‚Ó
‡ÒÒÚÓflÌË (ÒÏ. „Î. 11), ‚‚‰ÂÌÌÓ ‚ 2001 „., ËÒÔÓθÁÛÂÚ ˆÂÌÓ‚Û˛ ÙÛÌÍˆË˛ ÔÂÂÏ¢ÂÌËÈ, ÒÓı‡Ìfl˛˘Û˛ ÌÂ‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇.
ÑÎfl Ò‡‚ÌÂÌËfl ‡͈ËË ÔÓÔÛÎflˆËË ÌÂÈÓÌÓ‚ ̇ ‰‚‡ ‡Á΢Ì˚ı ÒÚËÏÛ·
ÔËÏÂÌflÂÚÒfl ‡ÒÒÚÓflÌË óÂÌÓ‚‡ ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ‡ÒÔ‰ÂÎÂÌËflÏË
‚ÒÔÎÂÒÍÓ‚.
ê‡ÒÒÚÓflÌË ‚ÓÒÔËflÚËfl éÎË‚˚ Ë ‰.
èÛÒÚ¸ {s1 , ..., sn} – ÏÌÓÊÂÒÚ‚Ó ÒÚËÏÛÎÓ‚ Ë ÔÛÒÚ¸ qij – ÛÒÎӂ̇fl ‚ÂÓflÚÌÓÒÚ¸ ÚÓ„Ó,
˜ÚÓ Ó·˙ÂÍÚ ‚ÓÒÔËÏÂÚ ÒÚËÏÛÎ sj, ÍÓ„‰‡ ·Û‰ÂÚ ÔÓ‰ÂÏÓÌÒÚËÓ‚‡Ì ÒÚËÏÛÎ si;
n
ÒΉӂ‡ÚÂθÌÓ, qij ≥ 0 Ë
∑ qij = 1. èÛÒÚ¸ qi – ‚ÂÓflÚÌÓÒÚ¸ ÔÓfl‚ÎÂÌËfl ÒÚËÏÛ· si.
j =1
344
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ê‡ÒÒÚÓflÌË ‚ÓÒÔËflÚËfl éÎË‚˚ Ë ‰. [OSLM04] ÏÂÊ‰Û ÒÚËÏÛ·ÏË si Ë s j ÓÔ‰ÂÎflÂÚÒfl ͇Í
1
qi + q j
n
∑
k =1
qik q jk
.
−
qi
qj
ÉËÔÓÚÂÁ‡ ‚ÂÓflÚÌÓÒÚË ‡ÒÒÚÓflÌËfl
Ç ÔÒËıÓÙËÁËÍ „ËÔÓÚÂÁ‡ ‚ÂÓflÚÌÓÒÚÌË ‡ÒÒÚÓflÌËfl Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ „ËÔÓÚÂÁÛ Ó ÚÓÏ, ˜ÚÓ ‚ÂÓflÚÌÓÒÚ¸ ‡Á΢ÂÌËfl ‰‚Ûı ÒÚËÏÛÎÓ‚ ÂÒÚ¸ (ÌÂÔÂ˚‚ÌÓ
‚ÓÁ‡ÒÚ‡˛˘‡fl) ÙÛÌ͈Ëfl ÌÂÍÓÚÓÓÈ ÒÛ·˙ÂÍÚË‚ÌÓÈ Í‚‡ÁËÏÂÚËÍË ÏÂÊ‰Û ˝ÚËÏË
ÒÚËÏÛ·ÏË [Dzha01]. ëӄ·ÒÌÓ ˝ÚÓÈ „ËÔÓÚÂÁ ڇ͇fl ÒÛ·˙ÂÍÚ˂̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ÙËÌÒÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ ÒÓ‚Ô‡‰‡ÂÚ ‚ χÎÓÏ
Ò ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ (Ú.Â. ËÌÙËÏÛÏÓÏ ‰ÎËÌ ‚ÒÂı ÔÛÚÂÈ, ÒÓ‰ËÌfl˛˘Ëı ‰‚‡
ÒÚËÏÛ·).
ëÛÔÛÊÂÒÍÓ ‡ÒÒÚÓflÌËÂ
ëÛÔÛÊÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÂÒÚ‡ÏË ÓʉÂÌËfl
ÒÛÔÛ„Ó‚ (ËÎË Ëı ÁË„ÓÚ).
àÁÓÎflˆËfl ‡ÒÒÚÓflÌËÂÏ
àÁÓÎflˆËfl ‡ÒÒÚÓflÌËÂÏ ÂÒÚ¸ ·ËÓÎӄ˘ÂÒ͇fl ÏÓ‰Âθ, Ô‰Ò͇Á˚‚‡˛˘‡fl, ˜ÚÓ
„ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË Û‚Â΢˂‡ÂÚÒfl ˝ÍÒÔÓÌÂ̈ˇθÌÓ ÔÓ
ÓÚÌÓ¯ÂÌ˲ Í „ÂÓ„‡Ù˘ÂÒÍÓÏÛ ‡ÒÒÚÓflÌ˲. í‡ÍËÏ Ó·‡ÁÓÏ, ÔÓfl‚ÎÂÌË „ËÓ̇θÌ˚ı ‡Á΢ËÈ (‡Ò) Ë ÌÓ‚˚ı ‚ˉӂ Ó·˙flÒÌflÂÚÒfl Ó„‡Ì˘ÂÌÌ˚Ï ÔÓÚÓÍÓÏ „ÂÌÓ‚ Ë
‡‰‡ÔÚË‚Ì˚Ï ‚‡¸ËÓ‚‡ÌËÂÏ. ÇÓÔÓÒ ËÁÓÎflˆËË ‡ÒÒÚÓflÌËÂÏ ËÒÒΉӂ‡ÎÒfl, ‚
˜‡ÒÚÌÓÒÚË, ̇ ÒÚÛÍÚÛ ÒÛ˘ÂÒÚ‚Û˛˘Ëı Ù‡ÏËÎËÈ (ÒÏ. ‡ÒÒÚÓflÌË ã‡ÒÍÂ‡).
ÑËÒڇ̈ËÓÌ̇fl ÏÓ‰Âθ å‡ÎÂÍÓÚ‡
ÑËÒڇ̈ËÓÌÌÓÈ ÏÓ‰Âθ˛ å‡ÎÂÍÓÚ‡ ̇Á˚‚‡ÂÚÒfl ÏË„‡ˆËÓÌ̇fl ÏÓ‰Âθ ËÁÓÎflˆËË
‡ÒÒÚÓflÌËÂÏ, ‚˚‡Ê‡Âχfl ÒÎÂ‰Û˛˘ËÏ Û‡‚ÌÂÌËÂÏ å‡ÎÂÍÓÚ‡ Á‡‚ËÒËÏÓÒÚË ‡ÎÎÂÎÂÈ
‚ ‰‚Ûı ÎÓÍÛÒ‡ı (‡ÎÎÂθÌÓÈ ‡ÒÒӈˇˆËË ËÎË Ì‡Û¯ÂÌÌÓ„Ó ·‡Î‡ÌÒ‡ Ò‚flÁÂÈ) ρd:
ρd = (1 − L) M e εd + L.
„‰Â d – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÎÓÍÛÒ‡ÏË (ÎË·Ó ‡ÒÒÚÓflÌË „ÂÌÓχ ‚ Ô‡‡ı
ÓÒÌÓ‚‡ÌËÈ, ÎË·Ó ‡ÒÒÚÓflÌË ̇ „ÂÌÂÚ˘ÂÒÍÓÈ Í‡Ú ‚ Ò‡ÌÚËÏÓ„‡Ìˉ‡ı), ε –
ÍÓÌÒÚ‡ÌÚ‡ ‰Îfl ‰‡ÌÌÓ„Ó „ËÓ̇, L = lim ρd Ë M ≤ 1 – Ô‡‡ÏÂÚ, ı‡‡ÍÚÂËÁÛ˛˘ËÈ
d →0
˜‡ÒÚÓÚÛ ÏÛÚ‡ˆËÈ.
ê‡ÒÒÚÓflÌË ã‡ÒÍÂ‡
ê‡ÒÒÚÓflÌËÂÏ ã‡ÒÍÂ‡ (êÓ‰Ë„ÂÒ–ã‡‡Î¸‰Â Ë ‰., 1989) ÏÂÊ‰Û ‰‚ÛÏfl ˜ÂÎӂ˜ÂÒÍËÏË ÔÓÔÛÎflˆËflÏË ı Ë Û, ı‡‡ÍÚÂËÁÛ˛˘ËÏËÒfl ‚ÂÍÚÓ‡ÏË ˜‡ÒÚÓÚ˚ Ù‡ÏËÎËÈ (x i)
1
Ë (y i), fl‚ÎflÂÚÒfl ˜ËÒÎÓ –ln 2Rx,y, „‰Â Rx , y =
xi yi ÂÒÚ¸ ÍÓ˝ÙÙˈËÂÌÚ ËÁÓÌËÏËË
2 i
ã‡ÒÍÂ‡. î‡ÏËθ̇fl ÒÚÛÍÚÛ‡ Ò‚flÁ‡Ì‡ Ò ËÌ·ˉËÌ„ÓÏ Ë (‚ ÓÔ‰ÂÎflÂÏ˚ı ÔÓ
ÏÛÊÒÍÓÈ ÎËÌËË Ó·˘ÂÒÚ‚‡ı) ÒÓ ÒÎÛ˜‡ÈÌ˚Ï „ÂÌÂÚ˘ÂÒÍËÏ ‰ÂÈÙÓÏ, ÏÛÚ‡ˆËflÏË Ë
ÏË„‡ˆËflÏË. î‡ÏËÎËË ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ‡ÎÎÂÎË Ó‰ÌÓ„Ó ÎÓÍÛÒ‡, Ë Ëı
‡ÒÔ‰ÂÎÂÌË ÏÓÊÂÚ ·˚Ú¸ ÔӇ̇ÎËÁËÓ‚‡ÌÓ ÔÓ ÚÂÓËË ÌÂÈÚ‡Î¸Ì˚ı ÏÛÚ‡ˆËÈ;
ËÁÓÌËÏËfl Û͇Á˚‚‡ÂÚ Ì‡ ‚ÓÁÏÓÊÌÓÒÚ¸ Ó·˘Â„Ó ÔÓËÒıÓʉÂÌËfl.
∑
345
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
åÓ‰Âθ Ù‡ÏËθÌÓ„Ó ‡ÒÒÚÓflÌËfl
åÓ‰Âθ Ù‡ÏËθÌÓ„Ó ‡ÒÒÚÓflÌËfl ·˚· ÔËÏÂÌÂ̇ ‚ [COR05] ‰Îfl ÓˆÂÌÍË
ÔÂ‰‡‚‡ÂÏÓÒÚË Ô‰ÔÓ˜ÚÂÌËfl ÓÚ Ó‰ËÚÂÎÂÈ Í ‰ÂÚflÏ Ì‡ ÓÒÌÓ‚Â ‰‡ÌÌ˚ı ÔÓ
47 ÔÓ‚Ë̈ËflÏ Ï‡ÚÂËÍÓ‚ÓÈ àÒÔ‡ÌËË ÔÛÚÂÏ Ò‡‚ÌÂÌËfl 47 × 47 χÚˈ ‡ÒÒÚÓflÌËÈ
Ù‡ÏËθÌÓ„Ó ‡ÒÒÚÓflÌËfl Ò Ï‡Úˈ‡ÏË ÔÓÚ·ËÚÂθÒÍÓ„Ó Ë ÍÛθÚÛÌÓ„Ó ‡ÒÒÚÓflÌËÈ.
ùÚË ‡ÒÒÚÓflÌËfl ÓÔ‰ÂÎflÎËÒ¸ Í‡Í l1 -‡ÒÒÚÓflÌËfl
| xi − yi | ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË
∑
i
˜‡ÒÚÓÚ˚ (x i), (y i) ÔÓ‚Ë̈ËÈ x Ë y, „‰Â zi ‰Îfl ÔÓ‚Ë̈ËË z fl‚ÎflÎÓÒ¸ ÎË·Ó ˜‡ÒÚÓÚÓÈ i-È
Ù‡ÏËÎËË (Ù‡ÏËθÌÓ ‡ÒÒÚÓflÌËÂ), ÎË·Ó ‰ÓÎÂÈ ‚ ·˛‰ÊÂÚ i-„Ó ÔÓ‰ÛÍÚ‡ (ÔÓÚ·ËÚÂθÒÍÓ ‡ÒÒÚÓflÌËÂ) ÎË·Ó (‰Îfl ÍÛθÚÛÌÓ„Ó ‡ÒÒÚÓflÌËfl) ÂÈÚËÌ„ÓÏ Ò‰Ë
̇ÒÂÎÂÌËfl i-„Ó ÍÛθÚÛÌÓ„Ó Ù‡ÍÚÓ‡ (ÍÓ˝ÙÙˈËÂÌÚ Ò‚‡‰Â·, ˜ËÚ‡ÚÂθÒ͇fl ‡Û‰ËÚÓËfl
Ë Ú.Ô.).
àÒÒΉӂ‡ÎËÒ¸ Ú‡ÍÊÂ Ë ‰Û„Ë ‡ÒÒÚÓflÌËfl (χÚˈ˚ ‡ÒÒÚÓflÌËÈ), ‚ ÚÓÏ ˜ËÒÎÂ:
– „ÂÓ„‡Ù˘ÂÒÍÓ ‡ÒÒÚÓflÌË (‚ ÍËÎÓÏÂÚ‡ı ÏÂÊ‰Û ÒÚÓÎˈ‡ÏË ‰‚Ûı ÔÓ‚Ë̈ËÈ);
– ‡ÒÒÚÓflÌË ‰ÓıÓ‰Ó‚ | m (x ) – m(y) |, „‰Â m(z) – Ò‰ÌËÈ ‰ÓıÓ‰ ̇ÒÂÎÂÌËfl ‚
ÔÓ‚Ë̈ËË z;
– ÍÎËχÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
| xi − yi |, „‰Â zi – Ò‰Ìflfl ÚÂÏÔÂ‡ÚÛ‡ ‚
∑
1≤ i ≤12
ÔÓ‚Ë̈ËË z ‚ i-Ï ÏÂÒflˆÂ;
– ÏË„‡ˆËÓÌÌÓ ‡ÒÒÚÓflÌËÂ
∑
| xi − yi |, „‰Â z i – ÔÓˆÂÌÚ Î˛‰ÂÈ (ÔÓÊË‚‡˛-
1≤ i ≤12
˘Ëı ‚ ÔÓ‚Ë̈ËË z), Ӊ˂¯ËıÒfl ‚ ÔÓ‚Ë̈ËË i.
ëÚÓ„‡fl ‚ÂÚË͇θ̇fl ÔÂ‰‡˜‡ Ô‰ÔÓ˜ÚÂÌËÈ, Ú.Â. ‚Á‡ËÏÓÒ‚flÁ¸ ÏÂÊ‰Û Ù‡ÏËÎËflÏË Ë ÔÓÚ·ËÚÂθÒÍËÏË ‡ÒÒÚÓflÌËflÏË, ·˚· ‚˚fl‚ÎÂ̇ ÚÓθÍÓ ‚ ÓÚÌÓ¯ÂÌËË
ÔÓ‰ÛÍÚÓ‚ ÔËÚ‡ÌËfl.
ÑËÒڇ̈ËÓÌ̇fl ÏÓ‰Âθ ‡Î¸ÚÛËÁχ
Ç ˝‚ÓβˆËÓÌÌÓÈ ˝ÍÓÎÓ„ËË ‡Î¸ÚÛËÁÏ ÚÓÎÍÛÂÚÒfl Í‡Í ÒÂÏÂÈÌ˚È ÓÚ·Ó ËÎË
„ÛÔÔÓ‚ÓÈ ÓÚ·Ó Ë Ò˜ËÚ‡ÂÚÒfl ÓÒÌÓ‚ÌÓÈ ‰‚ËÊÛ˘ÂÈ ÒËÎÓÈ ÔÂÂıÓ‰‡ ÓÚ Ó‰ÌÓÍÎÂÚÓ˜Ì˚ı Ó„‡ÌËÁÏÓ‚ Í ÏÌÓ„ÓÍÎÂÚÓ˜Ì˚Ï. ÑËÒڇ̈ËÓÌ̇fl ÏÓ‰Âθ ‡Î¸ÚÛËÁχ [Koel00]
Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ ‡Î¸ÚÛËÒÚ˚ ‡ÒÔÓÒÚ‡Ìfl˛ÚÒfl ÎÓ͇θÌÓ, Ú.Â. Ò Ì·Óθ¯ËÏË
‡ÒÒÚÓflÌËflÏË ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl Ë ‡ÒÒÚÓflÌËflÏË ‰ËÒÔÂÒËË ÔÓÚÓÏÒÚ‚‡, ÚÓ„‰‡ Í‡Í ‰Îfl
˝‚ÓβˆËÓÌÌÓÈ ‡͈ËË ˝„ÓËÒÚÓ‚ Ò‚ÓÈÒÚ‚ÂÌÌÓ ÒÚÂÏÎÂÌË ۂÂ΢ËÚ¸ ˝ÚË ‡ÒÒÚÓflÌËfl. èÓÏÂÊÛÚÓ˜Ì˚ ÚËÔ˚ Ôӂ‰ÂÌËfl fl‚Îfl˛ÚÒfl ÌÂÛÒÚÓȘ˂˚ÏË, Ë ˝‚ÓβˆËfl ‚‰ÂÚ
Í ÒÚ‡·ËθÌÓÈ ·ËÏÓ‰‡Î¸ÌÓÈ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ ÏÓ‰ÂÎË.
ÑËÒڇ̈ËÓÌ̇fl ÏÓ‰Âθ ·Â„‡
ÑËÒڇ̈ËÓÌÌÓÈ ÏÓ‰Âθ˛ ·Â„‡ ̇Á˚‚‡ÂÚÒfl ÏÓ‰Âθ ‡ÌÚÓÔÓ„ÂÌÂÁ‡, Ô‰ÎÓÊÂÌ̇fl
‚ [BrLi04]. ÅËÔ‰‡ÎËÁÏ (ıÓʉÂÌË ̇ ‰‚Ûı ÌÓ„‡ı) fl‚ÎflÂÚÒfl Íβ˜Â‚ÓÈ Ôӂ‰Â̘ÂÒÍÓÈ
‡‰‡ÔÚ‡ˆËÂÈ „ÓÏËÌˉӂ, ÔÓfl‚Ë‚¯ÂÈÒfl 4,5–6 ÏÎÌ ÎÂÚ Ì‡Á‡‰. é‰Ì‡ÍÓ ‡‚ÒÚ‡ÎÓÔËÚÂÍË
‚Ò ¢ ÓÒÚ‡‚‡ÎËÒ¸ ÊË‚ÓÚÌ˚ÏË. êÓ‰ Homo, ÔÓfl‚Ë‚¯ËÈÒfl ÓÍÓÎÓ 2 ÏÎÌ ÎÂÚ Ì‡Á‡‰,
ÛÊ ÛÏÂÎ ËÁ„ÓÚ‡‚ÎË‚‡Ú¸ ÔËÏËÚË‚Ì˚ ÓÛ‰Ëfl. åÓ‰Âθ Å‡Ï·Î–ãË·Âχ̇
Ó·˙flÒÌflÂÚ ˝ÚÓÚ ÔÂÂıÓ‰ Ò fl‰ÓÏ ‡‰‡ÔÚ‡ˆËÈ, ı‡‡ÍÚÂÌ˚ı ‰Îfl ·Â„‡ ̇ ·Óθ¯ËÂ
‡ÒÒÚÓflÌËfl ÔÓ Ò‡‚‡ÌÌÂ. éÌË ÔÓ͇Á˚‚‡˛Ú, Í‡Í ÔËÓ·ÂÚÂÌ̇fl ÒÔÓÒÓ·ÌÓÒÚ¸ Homo Í
‰ÎËÚÂθÌÓÏÛ ·Â„Û Ô‰ÓÔ‰ÂÎË· ÙÓÏÛ ˜ÂÎӂ˜ÂÒÍÓ„Ó Ú·, Ó·ÂÒÔ˜˂ Ò·‡Î‡ÌÒËÓ‚‡ÌÌÓ ÔÓÎÓÊÂÌË „ÓÎÓ‚˚, ÌËÁÍËÂ Ë ¯ËÓÍË ÔΘË, ÛÁÍÛ˛ „Û‰ÌÛ˛ ÍÎÂÚÍÛ,
ÍÓÓÚÍË Ô‰ÔΘ¸fl, ‰ÎËÌÌ˚ ·Â‰‡ Ë Ú.‰.
É·‚‡ 24
ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË
24.1. êÄëëíéüçàü Ç îàáàäÖ
îËÁË͇ ËÁÛ˜‡ÂÚ Ôӂ‰ÂÌËÂ Ë Ò‚ÓÈÒÚ‚‡ χÚÂËË ‚ Ò‡ÏÓÏ ¯ËÓÍÓÏ ‰Ë‡Ô‡ÁÓÌÂ, ÓÚ
ÒÛ·ÏËÍÓÒÍÓÔ˘ÂÒÍËı ˜‡ÒÚˈ, ËÁ ÍÓÚÓ˚ı ÔÓÒÚÓÂ̇ ‚Òfl Ó·˚˜Ì‡fl χÚÂËfl (ÙËÁË͇
˝ÎÂÏÂÌÚ‡Ì˚ı ˜‡ÒÚˈ), ‰Ó Ôӂ‰ÂÌËfl χÚÂˇθÌÓÈ ‚ÒÂÎÂÌÌÓÈ ‚ ˆÂÎÓÏ (ÍÓÒÏÓÎÓ„Ëfl). îËÁ˘ÂÒÍËÏË ÒË·ÏË, ‰ÂÈÒÚ‚Ë ÍÓÚÓ˚ı ÔÓfl‚ÎflÂÚÒfl ̇ ‡ÒÒÚÓflÌËË (Ú.Â.
ÓÚÚ‡ÎÍË‚‡ÌË ËÎË ÔËÚfl„Ë‚‡ÌË ·ÂÁ ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ„Ó "ÙËÁ˘ÂÒÍÓ„Ó ÍÓÌÚ‡ÍÚ‡"),
fl‚Îfl˛ÚÒfl ÒËÎ˚ fl‰ÂÌÓ„Ó Ë ÏÓÎÂÍÛÎflÌÓ„Ó ÔËÚflÊÂÌËfl, ‡ Á‡ ‡ÚÓÏÌ˚Ï ÛÓ‚ÌÂÏ –
ÒË· Úfl„ÓÚÂÌËfl (‰ÓÔÓÎÌflÂχfl, ‚ÓÁÏÓÊÌÓ, ÒËÎÓÈ ‡ÌÚË„‡‚ËÚ‡ˆËË), ÒÚ‡Ú˘ÂÒÍÓÂ
˝ÎÂÍÚ˘ÂÒÚ‚Ó Ë Ï‡„ÌÂÚËÁÏ. èÓÒΉÌË ‰‚ ÒËÎ˚ ÏÓ„ÛÚ Ó‰ÌÓ‚ÂÏÂÌÌÓ ÓÚÚ‡ÎÍË‚‡Ú¸
Ë ÔËÚfl„Ë‚‡Ú¸. Ç ‰‡ÌÌÓÈ „·‚ ˜¸ ˉÂÚ Ó Ò‡‚ÌËÚÂθÌÓ Ï‡Î˚ı ‡ÒÒÚÓflÌËflı,
‡ ‡ÒÒÚÓflÌËfl ·Óθ¯ÓÈ ÔÓÚflÊÂÌÌÓÒÚË (‚ ‡ÒÚÓÌÓÏËË Ë ÍÓÒÏÓÎÓ„ËË) ·Û‰ÛÚ ‡ÒÒχÚË‚‡Ú¸Òfl ‚ „·‚‡ı 25 Ë 26. ÇÓÓ·˘Â „Ó‚Ófl, ‡ÒÒÚÓflÌËfl, Ëϲ˘Ë ÙËÁ˘ÂÒÍËÈ
ÒÏ˚ÒÎ, ÎÂÊ‡Ú ‚ Ô‰Â·ı ÓÚ 1,6 × 10–35 Ï (‰ÎË̇ è·Ì͇) ‰Ó 7,4 × 1026 Ï (Ô‰ÔÓ·„‡ÂÏ˚ ‡ÁÏÂ˚ ̇·Î˛‰‡ÂÏÓÈ ‚ÒÂÎÂÌÌÓÈ). Ç Ì‡ÒÚÓfl˘Â ‚ÂÏfl ÚÂÓËfl ÓÚÌÓÒËÚÂθÌÓÒÚË, Í‚‡ÌÚÓ‚‡fl ÚÂÓËfl Ë Á‡ÍÓÌ˚ 縲ÚÓ̇ ÔÓÁ‚ÓÎfl˛Ú ÓÔËÒ˚‚‡Ú¸ Ë Ô‰Ò͇Á˚‚‡Ú¸
Ôӂ‰ÂÌË ÙËÁ˘ÂÒÍËı ÒËÒÚÂÏ, ËÁÏÂflÂÏ˚ı ‚ Ô‰Â·ı 10–15–1025 Ï. ÉË„‡ÌÚÒÍËÂ
ÛÒÍÓËÚÂÎË ÔÓÁ‚ÓÎfl˛Ú „ËÒÚËÓ‚‡Ú¸ ˜‡ÒÚˈ˚ ‡ÁÏÂÓÏ 10–18 Ï.
åÂı‡Ì˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
åÂı‡Ì˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÓÊÂÌË ˜‡ÒÚˈ˚ Í‡Í ÙÛÌ͈Ëfl ‚ÂÏÂÌË t. ÑÎfl ˜‡ÒÚˈ˚ Ò Ì‡˜‡Î¸ÌÓÈ ÍÓÓ‰Ë̇ÚÓÈ x 0 , ̇˜‡Î¸ÌÓÈ ÒÍÓÓÒÚ¸˛ v0 , Ë
ÔÓÒÚÓflÌÌ˚Ï ÛÒÍÓÂÌËÂÏ a ÓÌÓ Á‡‰‡ÂÚÒfl ͇Í
x ( t ) = x 0 + v0 t +
1 2
at .
2
ê‡ÒÒÚÓflÌË ‚ ÂÁÛθڇÚ ԇ‰ÂÌËfl Ò ‡‚ÌÓÏÂÌ˚Ï ÛÒÍÓÂÌËÂÏ ‡ ‰Îfl ‰ÓÒÚËÊÂÌËfl
v2
ÒÍÓÓÒÚË v ÓÔ‰ÂÎflÂÚÒfl Í‡Í x =
.
2a
ë‚Ó·Ó‰ÌÓ Ô‡‰‡˛˘Â ÚÂÎÓ – ÚÂÎÓ, ̇ ÍÓÚÓÓ ‚ Ô‡‰ÂÌËË ‚ÓÁ‰ÂÈÒÚ‚ÛÂÚ ÚÓθÍÓ
1
ÒË· Úfl„ÓÚÂÌËfl g. ê‡ÒÒÚÓflÌË ԇ‰ÂÌËfl Ú· Á‡ ‚ÂÏfl t ‡‚ÌÓ gt 2 ; ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl
2
‡ÒÒÚÓflÌËÂÏ Ò‚Ó·Ó‰ÌÓ„Ó Ô‡‰ÂÌËfl.
éÒÚ‡ÌÓ‚Ó˜ÌÓ ‡ÒÒÚÓflÌËÂ
éÒÚ‡ÌÓ‚Ó˜ÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓ ӷ˙ÂÍÚ ÔÂÂÏ¢‡ÂÚÒfl ‚
ÒÂ‰Â Ò ÒÓÔÓÚË‚ÎÂÌËÂÏ ÓÚ ËÒıÓ‰ÌÓÈ ÚÓ˜ÍË ‰Ó ÓÒÚ‡ÌÓ‚ÍË.
ÑÎfl Ó·˙ÂÍÚ‡ Ò Ï‡ÒÒÓÈ m , ‰‚ËÊÛ˘Â„ÓÒfl ‚ ÒÂ‰Â Ò ÒÓÔÓÚË‚ÎÂÌËÂÏ („‰Â ÒË·
ÚÓÏÓÊÂÌËfl ̇ ‰ËÌËˆÛ Ï‡ÒÒ˚ ÔÓÔÓˆËÓ̇θ̇ ÒÍÓÓÒÚË Ò ÍÓÌÒÚ‡ÌÚÓÈ ÔÓÔÓˆËÓ̇θÌÓÒÚË β, Ë Í‡ÍËı-ÎË·Ó ‰Û„Ëı ‚ÓÁ‰ÂÈÒÚ‚ËÈ Ì‡ ‰‡ÌÌ˚È Ó·˙ÂÍÚ ÌÂÚ),
347
É·‚‡ 24. ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË
ÔÓÎÓÊÂÌË x(t) Ú· Ò Ì‡˜‡Î¸ÌÓÈ ÍÓÓ‰Ë̇ÚÓÈ x 0 Ë Ì‡˜‡Î¸ÌÓÈ ÒÍÓÓÒÚ¸˛ v0 Á‡‰‡ÂÚÒfl
v
Í‡Í x (t ) = x 0 + 0 (1 − e −βt ). ëÍÓÓÒÚ¸ Ú· v(t ) = x ′(t ) = v0 e −βt ÛÏÂ̸¯‡ÂÚÒfl
β
ÔÓÒÚÂÔÂÌÌÓ ‰Ó ÌÛÎfl Ë ÚÂÎÓ ‰ÓÒÚË„‡ÂÚ Ï‡ÍÒËχθÌÓ„Ó ÓÒÚ‡ÌÓ‚Ó˜ÌÓ„Ó ‡ÒÒÚÓflÌËfl
x terminal = lim x (t ) = x 0 +
t →∞
v0
.
β
ÑÎfl Ò̇fl‰‡, ‚˚ÎÂÚ‚¯Â„Ó ËÁ ̇˜‡Î¸ÌÓÈ ÚÓ˜ÍË (x 0 , y0) Ò Ì‡˜‡Î¸ÌÓÈ ÒÍÓvx
ÓÒÚ¸˛ ( v x 0 , v y0 ), ÔÓÎÓÊÂÌË (x(t), y(t)) Á‡‰‡ÂÚÒfl Í‡Í x (t ) = x 0 + 0 (1 − e βt ),
β
β−g
v y0

g  v y0 −βt
y ( t ) =  y0 +
− 2  + 2 e . ÉÓËÁÓÌڇθÌÓ ÔÂÂÏ¢ÂÌË ÔÂÍ‡˘‡ÂÚÒfl
β
β 
β

ÔÓÒΠ‰ÓÒÚËÊÂÌËfl ÚÂÎÓÏ Ï‡ÍÒËχθÌÓ„Ó ÓÒÚ‡ÌÓ‚Ó˜ÌÓ„Ó ‡ÒÒÚÓflÌËfl
vx
x terminal = x 0 + 0 .
β
ŇÎÎËÒÚ˘ÂÒÍË ‡ÒÒÚÓflÌËfl
ŇÎÎËÒÚË͇ Á‡ÌËχÂÚÒfl ËÁÛ˜ÂÌËÂÏ ‰‚ËÊÂÌËfl Ò̇fl‰Ó‚, Ú.Â. ÚÂÎ, ÍÓÚÓ˚ Ô˂‰ÂÌ˚ ‚ ‰‚ËÊÂÌË (ËÎË ·Ó¯ÂÌ˚) Ò ÌÂÍÓÂÈ Ì‡˜‡Î¸ÌÓÈ ÒÍÓÓÒÚ¸˛, Ë ÍÓÚÓ˚ Á‡ÚÂÏ
ËÒÔ˚Ú˚‚‡˛Ú ‚ÓÁ‰ÂÈÒÚ‚Ë ÒËÎ Úfl„ÓÚÂÌËfl Ë ÚÓÏÓÊÂÌËfl.
ÉÓËÁÓÌڇθÌÓ ‡ÒÒÚÓflÌË ÔÓÎÂÚ‡ ̇Á˚‚‡ÂÚÒfl ‰‡Î¸ÌÓÒÚ¸˛, χÍÒËχθ̇fl
‚˚ÒÓÚ‡ ÔÓÎÂÚ‡ – ‚˚ÒÓÚÓÈ, ‡ ÔÓȉÂÌÌ˚È ÔÛÚ¸ – Ú‡ÂÍÚÓËÂÈ.
ÑÎfl Ò̇fl‰‡, ÔÛ˘ÂÌÌÓ„Ó ÒÓ ÒÍÓÓÒÚ¸˛ v0 ÔÓ‰ Û„ÎÓÏ θ, ‰‡Î¸ÌÓÒÚ¸ ÓÔ‰ÂÎflÂÚÒfl ͇Í
x(t) = v0t cos θ,
„‰Â t – ‚ÂÏfl ‰‚ËÊÂÌËfl. èÓÎ̇fl ‰‡Î¸ÌÓÒÚ¸ ̇ ÔÎÓÒÍÓÒÚË ÔË ÛÒÎÓ‚ËË Ô‡‰ÂÌËfl
Ò̇fl‰‡ ̇ ‚˚ÒÓÚÂ, Ó‰Ë̇ÍÓ‚ÓÈ Ò ‚˚ÒÓÚÓÈ ÏÂÒÚ‡ ‚˚ÒÚ·, ÒÓÒÚ‡‚ÎflÂÚ
x max =
v02 sin 2θ
,
g
ÍÓÚÓ‡fl ·Û‰ÂÚ Ï‡ÍÒËχθÌÓÈ ÔË θ = π/4. ÖÒÎË ‚˚ÒÓÚ‡ ÚÓ˜ÍË Ô‡‰ÂÌËfl ̇ ∆h ‚˚¯Â
ÚÓ˜ÍË Á‡ÔÛÒ͇, ÚÓ
x max =
v02 sin 2θ  
2 ∆hg 
1 + 1 − 2 2 
2g  
v0 sin θ 
Ç˚ÒÓÚ‡ Á‡‰‡ÂÚÒfl ͇Í
v0 sin 2 θ
2g
Ë ·Û‰ÂÚ Ï‡ÍÒËχθÌÓÈ, ÂÒÎË θ = π/2.
ÑÎË̇ ‰Û„Ë Ú‡ÂÍÚÓËË ÓÔ‰ÂÎflÂÚÒfl ͇Í
v02
(sin θ + cos 2 θgd −1 (θ)),
g
1/ 2

 .

348
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
x
„‰Â gd ( x ) =
∫
0
dt
– ÙÛÌ͈Ëfl ÉÛ‰Âχ̇. ÑÎË̇ ‰Û„Ë ·Û‰ÂÚ Ï‡ÍÒËχθÌÓÈ, ÂÒÎË
cosh t
 θ dt 
gd −1 (θ)sin θ = 
sin θ = 1 Ë ÔË·ÎËÊÂÌÌÓ ¯ÂÌË ËÏÂÂÚ ‚ˉ θ ≈ 0,9855.
 cos t 
0

∫
ê‡ÒÒÚÓflÌË ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl
ê‡ÒÒÚÓflÌË ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl ÏÂÊ‰Û ‰‚ÛÏfl ˜‡ÒÚˈ‡ÏË – ̇˷Óθ¯Â ‡ÒÒÚÓflÌËÂ
ÏÂÊ‰Û ÌËÏË ‚ ıӉ ҷÎËÊÂÌËfl, ÍÓ„‰‡ ÒÚ‡ÌÓ‚ËÚÒfl Ә‚ˉÌÓ, ˜ÚÓ ÓÌË ÔÓ‰ÓÎʇÚ
‰‚ËÊÂÌË ‚ ÚÓÏ Ê ̇Ô‡‚ÎÂÌËË Ë Ò ÚÓÈ Ê ÒÍÓÓÒÚ¸˛.
ÉËÓ‡‰ËÛÒ
ÉËÓ‡‰ËÛÒ (ËÎË ‡‰ËÛÒ ˆËÍÎÓÚÓÌÌ˚ı ÍÓη‡ÌËÈ, ‡‰ËÛÒ ã‡ÏÓ‡) – ‡‰ËÛÒ
ÍÛ„Ó‚ÓÈ Ó·ËÚ˚ Á‡flÊÂÌÌÓÈ ˜‡ÒÚˈ˚ (̇ÔËÏÂ, ËÒÔÛÒ͇ÂÏ˚ı ëÓÎ̈ÂÏ ·˚ÒÚ˚ı
˝ÎÂÍÚÓÌÓ‚), ÍÓÚÓ‡fl ‚‡˘‡ÂÚÒfl ‚ÓÍÛ„ Ò‚ÓÂ„Ó ÒÍÓθÁfl˘Â„Ó ˆÂÌÚ‡.
á‡ÍÓÌ˚ Ó·‡ÚÌÓÈ ÔÓÔÓˆËÓ̇θÌÓÒÚË Í‚‡‰‡Ú‡ ‡ÒÒÚÓflÌËfl
ê‡ÒÒÚÓflÌÌ˚È Á‡ÍÓÌ Ó·‡ÚÌ˚ı Í‚‰‡‡ÚÓ‚ – β·ÓÈ Á‡ÍÓÌ, ÛÚ‚Âʉ‡˛˘ËÈ, ˜ÚÓ
ÌÂ͇fl ÙËÁ˘ÂÒ͇fl ‚Â΢Ë̇ Ó·‡ÚÌÓ ÔÓÔÓˆËÓ̇θ̇ Í‚‡‰‡ÚÛ ‡ÒÒÚÓflÌËfl ÓÚ
ËÒÚÓ˜ÌË͇ ˝ÚÓÈ ‚Â΢ËÌ˚.
á‡ÍÓÌ ‚ÒÂÏËÌÓ„Ó Úfl„ÓÚÂÌËfl (縲ÚÓ̇–ÅÛÎΡθ‰ÛÒ‡): „‡‚ËÚ‡ˆËÓÌÌÓ ÔËÚflÊÂÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ˜Ì˚ÏË Ó·˙ÂÍÚ‡ÏË Ò Ï‡ÒÒ‡ÏË m 1 , m2 ̇ ‡ÒÒÚÓflÌËË d
ÓÔ‰ÂÎflÂÚÒfl ͇Í
mm
G 12 2 ,
d
„‰Â G – ÛÌË‚Â҇θ̇fl „‡‚ËÚ‡ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl 縲ÚÓ̇. ëÛ˘ÂÒÚ‚Ó‚‡ÌËÂ
‰ÓÔÓÎÌËÚÂθÌ˚ı ËÁÏÂÂÌËÈ ÔÓÒÚ‡ÌÒÚ‚, Ô‰·„‡ÂÏÓ å-ÚÂÓËÂÈ, ·Û‰ÂÚ
˝ÍÒÔÂËÏÂÌڇθÌÓ ÔÓ‚ÂÂÌÓ ‚ 2007 „. ̇ ÓÚÍ˚‚‡˛˘ÂÏÒfl ‚ ñÖêç ·ÎËÁ ÜÂÌ‚˚
ÅÓθ¯ÓÏ ‡‰ÓÌÌÓÏ ÍÓηȉÂ (LHC). Ç ÓÒÌÓ‚Â ˝ÍÒÔÂËÏÂÌÚ‡ ÎÂÊËÚ Ó·‡Ú̇fl
ÔÓÔÓˆËÓ̇θÌÓÒÚ¸ „‡‚ËÚ‡ˆËÓÌÌÓ„Ó ÔËÚflÊÂÌËfl ‚ n-ÏÂÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â Ë
(n – 1)-È ÒÚÂÔÂÌË ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û Ó·˙ÂÍÚ‡ÏË; ÂÒÎË ‚Ó ‚ÒÂÎÂÌÌÓÈ ÒÛ˘ÂÒÚ‚ÛÂÚ
˜ÂÚ‚ÂÚÓ ËÁÏÂÂÌËÂ, ÍÓηȉÂ‡ LHC ÔÓ͇ÊÂÚ Ó·‡ÚÌÛ˛ ÔÓÔÓˆËÓ̇θÌÓÒÚ¸
ÍÛ·Û Ï‡ÎÓ„Ó ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ˜‡ÒÚˈ‡ÏË.
á‡ÍÓÌ äÛÎÓ̇: ÒË· ÔËÚflÊÂÌËfl ËÎË ÓÚÚ‡ÎÍË‚‡ÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ˜Ì˚ÏË
Ó·˙ÂÍÚ‡ÏË Ò Á‡fl‰‡ÏË e 1 , e2 ̇ ‡ÒÒÚÓflÌËË d ÓÔ‰ÂÎflÂÚÒfl ͇Í
k
e1e2
,
d2
„‰Â k – ÔÓÒÚÓflÌ̇fl äÛÎÓ̇, Á‡‚ËÒfl˘‡fl ÓÚ Ò‰˚, ‚ ÍÓÚÓÛ˛ ÔÓ„ÛÊÂÌ˚
Á‡flÊÂÌÌ˚ ӷ˙ÂÍÚ˚. É‡‚ËÚ‡ˆËÓÌÌ˚Â Ë ˝ÎÂÍÚÓÒÚ‡Ú˘ÂÒÍË ÒËÎ˚ ‰‚Ûı ÚÂÎ,
ӷ·‰‡˛˘Ëı χÒÒ‡ÏË è·Ì͇ m P ≈ 2,176 × 10–8 Í„ Ë Â‰ËÌ˘Ì˚Ï ˝ÎÂÍÚ˘ÂÒÍËÏ
Á‡fl‰ÓÏ, Ó‰Ë̇ÍÓ‚˚ ÔÓ ‚Â΢ËÌÂ.
àÌÚÂÌÒË‚ÌÓÒÚ¸ (ÏÓ˘ÌÓÒÚ¸ ̇ ‰ËÌËˆÛ ÔÎÓ˘‡‰Ë ‚ ̇Ô‡‚ÎÂÌËË ‡ÒÔÓÒÚ‡ÌÂÌËfl) ÙÓÌÚ‡ ÒÙÂ˘ÂÒÍÓÈ ‚ÓÎÌ˚ (Ò‚ÂÚ‡, Á‚Û͇ Ë Ú.Ô.), ËÒıÓ‰fl˘ÂÈ ËÁ ÚӘ˜ÌÓ„Ó
ËÒÚÓ˜ÌË͇, Û·˚‚‡ÂÚ (ÂÒÎË Ì ÔËÌËχڸ ‚Ó ‚ÌËχÌË ÔÓÚÂË ÓÚ ÔÓ„ÎÓ˘ÂÌËfl Ë
‡ÒÒÂflÌËfl) Ó·‡ÚÌÓ ÔÓÔÓˆËÓ̇θÌÓ Í‚‡‰‡ÚÛ d2 ‡ÒÒÚÓflÌËfl d ‰Ó ˝ÚÓ„Ó ËÒÚÓ˜ÌË͇.
1
é‰Ì‡ÍÓ ‰Îfl ‡‰ËÓ‚ÓÎÌ ˝ÚÓ ÛÏÂ̸¯ÂÌË ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ .
d
É·‚‡ 24. ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË
349
чθÌÓÒÚ¸ ‰ÂÈÒÚ‚Ëfl ÙÛ̉‡ÏÂÌڇθÌ˚ı ÒËÎ
îÛ̉‡ÏÂÌڇθÌ˚ÏË ÒË·ÏË (ËÎË ‚Á‡ËÏÓ‰ÂÈÒÚ‚ËflÏË) fl‚Îfl˛ÚÒfl ÒË· Úfl„ÓÚÂÌËfl,
˝ÎÂÍÚÓχ„ÌËÚ̇fl ÒË·, Ò··˚Â Ë ÒËθÌ˚ fl‰ÂÌ˚ ÒËÎ˚. чθÌÓÒÚ¸ ‰ÂÈÒÚ‚Ëfl ÒËÎ˚
Ò˜ËÚ‡ÂÚÒfl ÍÓÓÚÍÓÈ, ÂÒÎË Ó̇ Ò··ÂÂÚ (ÔË·ÎËʇÂÚÒfl Í 0) ˝ÍÒÔÓÌÂ̈ˇθÌÓ, ÔÓ
ÏÂ ۂÂ΢ÂÌËfl d. ä‡Í ˝ÎÂÍÚÓχ„ÌËÚ̇fl, Ú‡Í Ë „‡‚ËÚ‡ˆËÓÌ̇fl ÒËÎ˚ fl‚Îfl˛ÚÒfl
ÒË·ÏË ·ÂÒÍÓ̘ÌÓÈ ‰‡Î¸ÌÓÒÚË ‰ÂÈÒÚ‚Ëfl, ÔÓ‰˜ËÌfl˛˘ËÏËÒfl Á‡ÍÓÌ‡Ï Ó·‡ÚÌÓÈ
ÔÓÔÓˆËÓ̇θÌÓÒÚË Í‚‡‰‡Ú‡ ‡ÒÒÚÓflÌËfl. óÂÏ ÏÂ̸¯Â ‡ÒÒÚÓflÌËÂ, ÚÂÏ ·Óθ¯Â
˝ÌÂ„Ëfl. ä‡Í Ò··‡fl, Ú‡Í Ë ÒËθ̇fl fl‰ÂÌ˚ ÒËÎ˚ ‰ÂÈÒÚ‚Û˛Ú Ì‡ Ó˜Â̸ ·ÎËÁÍËı
‡ÒÒÚÓflÌËflı (ÓÍÓÎÓ 10–18 Ë 10–15 Ï), Ó„‡Ì˘ÂÌÌ˚ı ÔË̈ËÔÓÏ ÌÂÓÔ‰ÂÎÂÌÌÓÒÚË.
ç‡ ÒÛ·‡ÚÓÏÌ˚ı ‡ÒÒÚÓflÌËflı ‚ ÚÂÓËË Í‚‡ÌÚÓ‚Ó„Ó ÔÓÎfl ÒËθÌ˚Â Ë Ò··˚Â
‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl ÓÔËÒ˚‚‡˛ÚÒfl Ó‰ÌÓÈ Ë ÚÓÈ Ê ÒÓ‚ÓÍÛÔÌÓÒÚ¸˛ ÙÓÏÛÎ, ÌÓ Ò ‡ÁÌ˚ÏË
ÍÓÌÒÚ‡ÌÚ‡ÏË; ÔË Ó˜Â̸ ·Óθ¯Ëı ˝ÌÂ„Ëflı ÓÌË ÔÓ˜ÚË ÒÓ‚Ô‡‰‡˛Ú.
чθÌËÈ ÔÓfl‰ÓÍ
îËÁ˘ÂÒ͇fl ÒËÒÚÂχ ӷ·‰‡ÂÚ Ò‚ÓÈÒÚ‚ÓÏ ‰‡Î¸ÌÂ„Ó ÔÓfl‰Í‡, ÂÒÎË Û‰‡ÎÂÌÌ˚ ‰Û„
ÓÚ ‰Û„‡ ˜‡ÒÚË Ó‰ÌÓ„Ó Ë ÚÓ„Ó Ê ӷ‡Áˆ‡ ‰ÂÏÓÌÒÚËÛ˛Ú ÍÓÂÎËÓ‚‡ÌÌÓÂ
Ôӂ‰ÂÌËÂ. ç‡ÔËÏÂ, ‚ ÍËÒڇηı Ë ÌÂÍÓÚÓ˚ı ÊˉÍÓÒÚflı ÔÓÎÓÊÂÌË ӉÌÓ„Ó Ë
ÒÓÒ‰ÌËı Ò ÌËÏ ‡ÚÓÏÓ‚ ÓÔ‰ÂÎflÂÚ ÔÓÎÓÊÂÌË ‚ÒÂı ‰Û„Ëı ‡ÚÓÏÓ‚. èËÏÂ‡ÏË
‰‡Î¸ÌÓ„Ó ÔÓfl‰Í‡ fl‚Îfl˛ÚÒfl Ò‚ÂıÚÂÍÛ˜ÂÒÚ¸ Ë Ì‡Ï‡„Ì˘ÂÌÌÓÒÚ¸ ‚ Ú‚Â‰˚ı Ú·ı,
‚ÓÎÌ˚ ÔÎÓÚÌÓÒÚË Á‡fl‰‡, Ò‚ÂıÔÓ‚Ó‰ËÏÓÒÚ¸. ÅÎËÊÌËÈ ÔÓfl‰ÓÍ – ˝ÚÓ ÔÂ‚˚È ËÎË
‚ÚÓÓÈ ·ÎËʇȯË ÒÓÒÂ‰Ë ‰‡ÌÌÓ„Ó ‡ÚÓχ. íӘ̠„Ó‚Ófl, ÒËÒÚÂχ ӷ·‰‡ÂÚ
Ò‚ÓÈÒÚ‚ÓÏ ‰‡Î¸ÌÂ„Ó ÔÓfl‰Í‡, Í‚‡Áˉ‡Î¸ÌÂ„Ó ÔÓfl‰Í‡ ËÎË fl‚ÎflÂÚÒfl ‡ÁÛÔÓfl‰Ó˜ÂÌÌÓÈ, ÂÒÎË ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÙÛÌ͈Ëfl ÍÓÂÎflˆËË Û·˚‚‡ÂÚ Ì‡ ·Óθ¯Ëı
‡ÒÒÚÓflÌËflı, ‰Ó ÍÓÌÒÚ‡ÌÚ˚, ‰Ó ÌÛÎfl ÔÓÎËÌÓÏˇθÌÓ ËÎË ‰Ó ÌÛÎfl ˝ÍÒÔÓÌÂ̈ˇθÌÓ
(ÒÏ. ᇂËÒËÏÓÒÚ¸ ÓÚ ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË, „Î. 28).
ÑËÒڇ̈ËÓÌÌÓ ‰ÂÈÒÚ‚Ë (‚ ÙËÁËÍÂ)
ÑËÒڇ̈ËÓÌÌÓ ‰ÂÈÒÚ‚Ë – ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ë ÏÂÊ‰Û ‰‚ÛÏfl Ó·˙ÂÍÚ‡ÏË ‚ ÔÓÒÚ‡ÌÒÚ‚Â ·ÂÁ Û˜‡ÒÚËfl ËÁ‚ÂÒÚÌÓ„Ó ÔÓÒ‰ÌË͇. ùÈ̯ÚÂÈÌ ËÒÔÓθÁÓ‚‡Î ÚÂÏËÌ
‰ËÒڇ̈ËÓÌÌÓ "ÔËÁ‡˜ÌÓ ‰ÂÈÒÚ‚ËÂ" ‰Îfl Í‚‡ÌÚÓ‚Ó„Ó ÏÂı‡Ì˘ÂÒÍÓ„Ó ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl (͇Í, ̇ÔËÏÂ, Á‡ˆÂÔÎÂÌËfl Ë Í‚‡ÌÚÛÏÌÓÈ ÌÂÎÓ͇θÌÓÒÚË), ÍÓÚÓÓÂ
fl‚ÎflÂÚÒfl Ï„ÌÓ‚ÂÌÌ˚Ï, ÌÂÁ‡‚ËÒËÏÓ ÓÚ ‡ÒÒÚÓflÌËfl (ÒÏ. èË̈ËÔ ÎÓ͇θÌÓÒÚË, „Î. 28).
Ç 2004 „. áÂÎÎËÌ„Â Ë ‰. ÔÓ‚ÂÎË ˝ÍÒÔÂËÏÂÌÚ ÔÓ ÚÂÎÂÔÓÚ‡ˆËË (̇ ‡ÒÒÚÓflÌËÂ
600 Ï) ÌÂÍÓÚÓÓÈ Í‚‡ÌÚÓ‚ÓÈ ËÌÙÓχˆËË – Ò‚ÓÈÒÚ‚‡ ÔÓÎflËÁ‡ˆËË ÙÓÚÓ̇ – „Ó
Ô‡ÌÓÏÛ Ó·˙ÂÍÚÛ ‚Ó ‚Á‡ËÏÓ‰ÂÈÒÚ‚Û˛˘ÂÈ Ô‡ ÙÓÚÓÌÓ‚. èË ˝ÚÓÏ, Ӊ̇ÍÓ, ÒËθÌÓÈ
ÌÂÎÓ͇θÌÓÒÚË, Ú.Â. ËÁÏÂËÏÓ„Ó ‰ËÒڇ̈ËÓÌÌÓ„Ó ‰ÂÈÒÚ‚Ëfl (Ò‚ÂıÒ‚ÂÚÓ‚Ó„Ó
‡ÒÔÓÒÚ‡ÌÂÌËfl ‡θÌÓÈ ÙËÁ˘ÂÒÍÓÈ ËÌÙÓχˆËË) Ì ̇·Î˛‰‡ÎÓÒ¸, ‰‡, ÒÓ·ÒÚ‚ÂÌÌÓ, Ë Ì ÓÊˉ‡ÎÓÒ¸.
ëÔÓÌÓ ҇ÏÓ ÔÓ Ò· (‚ ÒËÎÛ ÚÓ„Ó ˜ÚÓ ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡ ÂÒÚ¸ χÍÒËÏÛÏ) ÌÂÍ‚‡ÌÚÓ‚Ó ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ë ̇ ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË ÔËÓ·ÂÚ‡ÂÚ ÒÚ‡ÚÛÒ Ï‡„Ë̇θÌÓ„Ó ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÔÓ·ÎÂÏ "‰ËÒڇ̈ËÓÌÌÓ„Ó ÏÂÌڇθÌÓ„Ó ‰ÂÈÒÚ‚Ëfl" (ÚÂÎÂÔ‡ÚËfl, Ô‰‚ˉÂÌËÂ, ÔÒËıÓÍËÌÂÁ Ë Ú.Ô.). é‰Ì‡ÍÓ, ÂÒÎË ËÌÚÛËÚË‚ÌÓ Ô‰˜Û‚ÒÚ‚ËÂ
èÂÌÓÛÁ‡, ˜ÚÓ ÏÓÁ„ ˜ÂÎÓ‚Â͇ ËÒÔÓθÁÛÂÚ Í‚‡ÌÚÛÏÌ˚ ÏÂı‡Ì˘ÂÒÍË ÔÓˆÂÒÒ˚,
‚ÂÌÓ, ÚÓ Ú‡Í‡fl "ÌÂÎÓ͇θ̇fl ÚÂÎÂÔ‡Ú˘ÂÒ͇fl" ÔÂ‰‡˜‡ Ô‰ÒÚ‡‚ÎflÂÚÒfl
‚ÓÁÏÓÊÌÓÈ.
íÂÏËÌ ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ë ̇ χÎÓÈ ‰‡Î¸ÌÓÒÚË Ú‡ÍÊ ËÒÔÓθÁÛÂÚÒfl ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ÔÂ‰‡˜Ë ‰ËÒڇ̈ËÓÌÌÓ„Ó ‰ÂÈÒÚ‚Ëfl ͇ÍÓÈ-ÎË·Ó Ï‡ÚÂˇθÌÓÈ Ò‰ÓÈ ËÁ
Ó‰ÌÓÈ ÚÓ˜ÍË ‚ ‰Û„Û˛ Ò ÓÔ‰ÂÎÂÌÌÓÈ ÒÍÓÓÒÚ¸˛, Á‡‚ËÒfl˘ÂÈ ÓÚ Ò‚ÓÈÒÚ‚ Ò‰˚.
äÓÏ ÚÓ„Ó, ‚ ӷ·ÒÚË ı‡ÌÂÌËfl ËÌÙÓχˆËË ÚÂÏËÌÓÏ ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ë ‚ ·ÎËÊÌÂÏ
ÔÓΠӷÓÁ̇˜‡ÂÚÒfl ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ë ̇ Ó˜Â̸ χÎ˚ı ‡ÒÒÚÓflÌËflı Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ
ÚÂıÌÓÎÓ„ËË Ò͇ÌËÛ˛˘ÂÈ „ÓÎÓ‚ÍË.
350
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ê‡ÒÒÚÓflÌË Ô˚Ê͇
è˚ÊÓÍ – ‰Ë̇Ï˘ÂÒÍÓ ‚ÓÁ‰ÂÈÒÚ‚Ë ̇ ·Óθ¯ÓÈ, ÔÓ ‡ÚÓÏÌÓÈ ¯Í‡ÎÂ, ‰‡Î¸ÌÓÒÚË,
„ÛÎËÛ˛˘Â ‰ËÙÙÛÁ˲ Ë ˝ÎÂÍÚÓÔÓ‚Ó‰ÌÓÒÚ¸. í‡Í, ̇ÔËÏÂ, ÓÍËÒÎÂÌË Ñçä
(ÔÓÚÂfl Ó‰ÌÓ„Ó ˝ÎÂÍÚÓ̇) ÔÓÓʉ‡ÂÚ ‡‰Ë͇θÌ˚È Í‡ÚËÓÌ, ÍÓÚÓ˚È ÏÓÊÂÚ
ÏË„ËÓ‚‡Ú¸ ̇ ·Óθ¯Ó ‡ÒÒÚÓflÌË (·ÓΠ20 ÌÏ), ÍÓÚÓÓ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ Ô˚Ê͇ ÏÂÊ‰Û Ò‡ÈÚ‡ÏË ("Ô˚„‡Ú¸" ÓÚ Ó‰ÌÓÈ ÍÓÏ·Ë̇ˆËË Í ‰Û„ÓÈ), ÔÂʉÂ
˜ÂÏ ÓÌ ·Û‰ÂÚ ÔÓÈÏ‡Ì ‡͈ËÂÈ Ò ‚Ó‰ÓÈ.
ÉÎÛ·Ë̇ ÔÓÌËÍÌÓ‚ÂÌËfl
ÉÎÛ·ËÌÓÈ ÔÓÌËÍÌÓ‚ÂÌËfl ‚¢ÂÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓ ÔÓÌË͇ÂÚ ÒÎÛ˜‡È̇fl ˝ÎÂÍÚÓχ„ÌËÚ̇fl ‡‰Ë‡ˆËfl. ÉÎÛ·Ë̇ ÒÍËÌ-ÒÎÓfl Á‡ÔËÒ˚‚‡ÂÚÒfl ͇Í
c
,
2πσµω
„‰Â c – ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡, σ – Û‰Âθ̇fl ˝ÎÂÍÚÓÔÓ‚Ó‰ÌÓÒÚ¸, µ – ÔÓÌˈ‡ÂÏÓÒÚ¸ Ë ω –
Û„ÎÓ‚‡fl ˜‡ÒÚÓÚ‡.
ÑÎË̇ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ ÍÓ„ÂÂÌÚÌÓÒÚË
ÑÎË̇ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ ÍÓ„ÂÂÌÚÌÓÒÚË – ‡ÒÒÚÓflÌË ‡ÒÔÓÒÚ‡ÌÂÌËfl ÓÚ
ÍÓ„ÂÂÌÚÌÓ„Ó ËÒÚÓ˜ÌË͇ ‰Ó ̇˷ÓΠۉ‡ÎÂÌÌÓÈ ÚÓ˜ÍË, „‰Â ˝ÎÂÍÚÓχ„ÌËÚ̇fl
‚ÓÎ̇ ¢ ÒÓı‡ÌflÂÚ ÒÔˆËÙ˘ÂÒÍÛ˛ ÒÚÂÔÂ̸ ÍÓ„ÂÂÌÚÌÓÒÚË. чÌÌÓ ÔÓÌflÚËÂ
ËÒÔÓθÁÛÂÚÒfl ‚ ÚÂıÌËÍ ‰‡Î¸ÌÂÈ Ò‚flÁË (Ó·˚˜ÌÓ ‚ ÒËÒÚÂχı ÓÔÚ˘ÂÒÍÓÈ Ò‚flÁË) Ë
ÒËÌıÓÚÓÌÌ˚ı ÛÒÚÓÈÒÚ‚‡ı Ò ÂÌÚ„ÂÌÓ‚ÒÍÓÈ ÓÔÚËÍÓÈ (ÒÓ‚ÂÏÂÌÌ˚ ÒËÌıÓÚÓÌÌ˚ ËÒÚÓ˜ÌËÍË Ó·ÂÒÔ˜˂‡˛Ú ‚ÂҸχ ‚˚ÒÓÍÛ˛ ÍÓ„ÂÂÌÚÌÓÒÚ¸ ÂÌÚ„ÂÌÓ‚ÒÍËı
ÎÛ˜ÂÈ). ÑÎË̇ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ ÍÓ„ÂÂÌÚÌÓÒÚË ÒÓÒÚ‡‚ÎflÂÚ ÓÍÓÎÓ 20 ÒÏ, 100 Ï Ë
100 ÍÏ ‰Îfl „ÂÎËÈ-ÌÂÓÌÓ‚˚ı, ÔÓÎÛÔÓ‚Ó‰ÌËÍÓ‚˚ı Ë ‚ÓÎÓÍÓÌÌ˚ı ·ÁÂÓ‚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ (ÒÏ. ‰ÎË̇ ‚ÂÏÂÌÌÓÈ ÍÓ„ÂÂÌÚÌÓÒÚË, ÍÓÚÓ‡fl ÓÔËÒ˚‚‡ÂÚ ÒÓÓÚÌÓ¯ÂÌËÂ
ÏÂÊ‰Û Ò˄̇·ÏË, ̇·Î˛‰‡ÂÏ˚ÏË ‚ ‡ÁÌ˚ ÏÓÏÂÌÚ˚ ‚ÂÏÂÌË).
ÑÎË̇ ÒÏ˚͇ÌËfl
ÑÎfl Ò‚ÂıÚÂÍÛ˜ÂÈ ÊˉÍÓÒÚË ‰ÎËÌÓÈ ÒÏ˚͇ÌËfl fl‚ÎflÂÚÒfl ‰ÎË̇, ̇ ÔÓÚflÊÂÌËË
ÍÓÚÓÓÈ ‚ÓÎÌÓ‚‡fl ÙÛÌ͈Ëfl ÏÓÊÂÚ ËÁÏÂÌflÚ¸Òfl, ÔÓ‰ÓÎʇfl Ô‰ÂθÌÓ ÛÏÂ̸¯‡Ú¸
˝ÌÂ„˲.
ÑÎfl ÍÓ̉ÂÌÒ‡ÚÓ‚ ÅÓÁ–ùÈ̯ÚÂÈ̇ ‰ÎË̇ ÒÏ˚͇ÌËfl – ÔÓ„‡Ì˘̇fl ӷ·ÒÚ¸
Ò ¯ËËÌÓÈ, ̇ ÔÓÚflÊÂÌËË ÍÓÚÓÓÈ ÔÎÓÚÌÓÒÚ¸ ‚ÂÓflÚÌÓÒÚË ÍÓ̉ÂÌÒ‡Ú‡ Ò‚Ó‰ËÚÒfl
Í ÌÛβ.
éÔÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
Ç ÓÔÚ˘ÂÒÍËı Ë ÚÂÎÂÍÓÏÏÛÌË͇ˆËÓÌÌ˚ı ÒËÒÚÂχı Ò‚flÁË ÓÔÚ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ
(ËÎË ÓÔÚ˘ÂÒÍÓÈ ‰ÎËÌÓÈ ÔÛÚË) ̇Á˚‚‡ÂÚÒfl ÔÓȉÂÌÌÓ ҂ÂÚÓÏ ‡ÒÒÚÓflÌËÂ:
ÔÓËÁ‚‰ÂÌË ÙËÁ˘ÂÒÍÓÈ ‰ÎËÌ˚ ÔÛÚË ‚ Ò‰ ̇ ÔÓ͇Á‡ÚÂθ ÔÂÎÓÏÎÂÌËfl ˝ÚÓÈ
Ò‰˚. èÓ ÔË̈ËÔÛ îÂχ Ò‚ÂÚ ‚Ò„‰‡ ‡ÒÔÓÒÚ‡ÌflÂÚÒfl ÔÓ Ì‡ËÍ‡Ú˜‡È¯ÂÏÛ
ÓÔÚ˘ÂÒÍÓÏÛ ÔÛÚË.
ÑÎfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÌÂÔÂ˚‚Ì˚ı ÒÎÓ‚ Ò ÔÓ͇Á‡ÚÂÎÂÏ ÔÂÎÓÏÎÂÌËfl n(s)
Í‡Í ÙÛÌ͈ËË ‡ÒÒÚÓflÌËfl s ÓÔÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË Á‡ÔËÒ˚‚‡ÂÚÒfl ͇Í
∫ n(s) ds.
C
351
É·‚‡ 24. ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË
ÑÎfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ‰ËÒÍÂÚÌ˚ı ÒÎÓ‚ Ò ÔÓ͇Á‡ÚÂÎflÏË ÔÂÎÓÏÎÂÌËfl ni Ë
ÚÓ΢ËÌ˚ si ÓÔÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ‡‚ÌÓ
N
δ
∑ ni si = k0 ,
i =1
„‰Â δ – Ò‰‚Ë„ ÔÓ Ù‡ÁÂ Ë k 0 – ‰ÎË̇ ‚ÓÎÌ˚ ‚ ‚‡ÍÛÛÏÂ.
ÄÍÛÒÚ˘ÂÒ͇fl ÏÂÚË͇
Ç ‡ÍÛÒÚËÍ ‡ÍÛÒÚ˘ÂÒ͇fl (ËÎË Á‚ÛÍÓ‚‡fl) ÏÂÚË͇ ı‡‡ÍÚÂËÁÛÂÚ Ò‚ÓÈÒÚ‚‡
‡ÒÔÓÒÚ‡ÌÂÌËfl Á‚Û͇ ‚ ÍÓÌÍÂÚÌ˚ı Ò‰‡ı: ‚ÓÁ‰ÛıÂ, ‚Ó‰Â Ë Ú.Ô.
Ç Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË Ë Í‚‡ÌÚÓ‚ÓÈ „‡‚ËÚ‡ˆËË Ó̇ ı‡‡ÍÚÂËÁÛÂÚ
Ò‚ÓÈÒÚ‚‡ ‡ÒÔÓÒÚ‡ÌÂÌËfl Ò˄̇· ‚ ‰‡ÌÌÓÈ ‡Ì‡ÎÓ„Ó‚ÓÈ ÏÓ‰ÂÎË (ÓÚÌÓÒËÚÂθÌÓ
ÙËÁËÍË ÒʇÚÓÈ Ï‡ÚÂËË), „‰Â, ̇ÔËÏÂ, ‡ÒÔÓÒÚ‡ÌÂÌË Ò͇ÎflÌÓ„Ó ÔÓÎfl ‚
ËÒÍË‚ÎÂÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â-‚ÂÏÂÌË ÏÓ‰ÂÎËÛÂÚÒfl (ÒÏ. ‰Îfl ÔËÏÂ‡ ËÒÒΉӂ‡ÌËfl
[BLV05] ‡ÒÔÓÒÚ‡ÌÂÌËÂÏ Á‚Û͇ ‚ ‰‚ËÊÛ˘ÂÈÒfl ÊˉÍÓÒÚË ËÎË Á‡Ï‰ÎÂÌËÂÏ Ò‚ÂÚ‡ ‚
‰‚ËÊÛ˘ÂÈÒfl ‰Ë˝ÎÂÍÚ˘ÂÒÍÓÈ ÊˉÍÓÒÚË ËÎË ‚ Ò‚ÂıÚÂÍÛ˜ÂÈ ÊˉÍÓÒÚË (Í‚‡Á˘‡ÒÚˈ˚ ‚ Í‚‡ÌÚÓ‚ÓÈ ÊˉÍÓÒÚË) Ë Ú.Ô. èÓıÓʉÂÌË Ò˄̇· ˜ÂÂÁ ‡ÍÛÒÚ˘ÂÒÍÛ˛
ÏÂÚËÍÛ ËÁÏÂÌflÂÚ Ò‡ÏÛ ÏÂÚËÍÛ; ̇ÔËÏÂ, ‡ÒÔÓÒÚ‡ÌÂÌË Á‚Û͇ ‚ ‚ÓÁ‰Û¯ÌÓÈ
Ò‰ ‚˚Á˚‚‡ÂÚ ÔÂÂÏ¢ÂÌË ‚ÓÁ‰Ûı‡ Ë ÔË‚Ó‰ËÚ Í ÎÓ͇θÌÓÏÛ ËÁÏÂÌÂÌ˲
ÒÍÓÓÒÚË Á‚Û͇. í‡Í‡fl ˝ÙÙÂÍÚ˂̇fl (Ú.Â. ˉÂÌÚËÙˈËÛÂχfl ÔÓ Â ˝ÙÙÂÍÚÛ)
ÏÂÚË͇ ãÓÂ̈‡ (ÒÏ. „Î. 7) „ÛÎËÛÂÚ ‚ÏÂÒÚÓ ÙÓÌÓ‚ÓÈ ÏÂÚËÍË ‡ÒÔÓÒÚ‡ÌÂÌËÂ
ÍÓη‡ÌËÈ: ‚ӂΘÂÌÌ˚ ‚ ÔÂÚÛ·‡ˆËË ˜‡ÒÚˈ˚ ÔÂÂÏ¢‡˛ÚÒfl ÔÓ „ÂÓ‰ÂÁ˘ÂÒÍËÏ
˝ÚÓÈ ÏÂÚËÍË.
àÏÂÌÌÓ, ÂÒÎË ÊˉÍÓÒÚ¸ fl‚ÎflÂÚÒfl ·‡ÓÚÓÔÌÓÈ Ë Ì‚flÁÍÓÈ, ‡ ÔÓÚÓÍ ·ÂÁ‚Ëı‚˚Ï,
ÚÓ ‡ÒÔÓÒÚ‡ÌÂÌË Á‚Û͇ ÓÔËÒ˚‚‡ÂÚÒfl ‡ÍÛÒÚ˘ÂÒÍÓÈ ÏÂÚËÍÓÈ, ÍÓÚÓ‡fl Á‡‚ËÒËÚ ÓÚ
ÔÎÓÚÌÓÒÚË ρ ÔÓÚÓ͇, ‚ÂÍÚÓ‡ ÒÍÓÓÒÚË v ÔÓÚÓ͇ Ë ÎÓ͇θÌÓÈ ÒÍÓÓÒÚË s Á‚Û͇ ‚
ÊˉÍÓÒÚË. é̇ ÏÓÊÂÚ ·˚Ú¸ ‚˚‡ÊÂ̇ Í‡Í ‡ÍÛÒÚ˘ÂÒÍËÈ ÚÂÌÁÓ
 −( s 2 − v 2 ) M
ρ
g = g(t, x ) = L
s 
M
 −v
−vT 
L ,

13 
„‰Â 13 – ‰ËÌ˘̇fl 3 × 3 χÚˈ‡ Ë v = || v ||. ÄÍÛÒÚ˘ÂÒÍËÈ ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ
ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ͇Í
ds 2 =
ρ
ρ
( −( s 2 − v 2 ) dt 2 − 2 v dx dt + ( dx )2 ) = ( − s 2 dt 2 + ( dx − v dt )2 ).
s
s
ë˄̇ÚÛ‡ ˝ÚÓÈ ÏÂÚËÍË ‡‚̇ (3, 1), Ú.Â. Ó̇ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ãÓÂ̈‡.
ÖÒÎË ÒÍÓÓÒÚ¸ ÊˉÍÓÒÚË ÒÚ‡ÌÓ‚ËÚÒfl Ò‚ÂıÁ‚ÛÍÓ‚ÓÈ, ÚÓ Á‚ÛÍÓ‚˚ ‚ÓÎÌ˚ ÛÊ ÌÂ
ÏÓ„ÛÚ ‚ÓÁ‚‡ÚËÚ¸Òfl ̇Á‡‰, Ú.Â. ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂ͇fl ÌÂχfl ‰˚‡, ‡ÍÛÒÚ˘ÂÒÍËÈ ‡Ì‡ÎÓ„
˜ÂÌÓÈ ‰˚˚.
éÔÚ˘ÂÒÍË ÏÂÚËÍË Ú‡ÍÊ ËÒÔÓθÁÛ˛ÚÒfl ‚ ‡Ì‡ÎÓ„Ó‚ÓÏ Ô‰ÒÚ‡‚ÎÂÌËË „‡‚ËÚ‡ˆËË Ë ÚÂıÌË͇ı ˝ÙÙÂÍÚË‚Ì˚ı ÏÂÚËÍ; ÓÌË ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Ô‰ÒÚ‡‚ÎÂÌ˲ „‡‚ËÚ‡ˆËÓÌÌÓ„Ó ÔÓÎfl Í‡Í ˝Í‚Ë‚‡ÎÂÌÚÌÓÈ ÓÔÚ˘ÂÒÍÓÈ Ò‰˚, „‰Â χ„ÌËÚ̇fl ÔÓÌˈ‡ÂÏÓÒÚ¸
‡‚̇ ˝ÎÂÍÚ˘ÂÒÍÓÈ.
åÂÚ˘ÂÒ͇fl ÚÂÓËfl „‡‚ËÚ‡ˆËË
åÂÚ˘ÂÒ͇fl ÚÂÓËfl „‡‚ËÚ‡ˆËË Ô‰ÔÓ·„‡ÂÚ ÒÛ˘ÂÒÚ‚Ó‚‡ÌË ÒËÏÏÂÚ˘ÌÓÈ
ÏÂÚËÍË (‡ÒÒχÚË‚‡ÂÏÓÈ Í‡Í Ò‚ÓÈÒÚ‚Ó Ò‡ÏÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡), ÍÓÚÓÓÈ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Ï‡ÚÂËfl Ë Ì„‡‚ËÚ‡ˆËÓÌÌ˚ ÔÓÎfl. ùÚË ÚÂÓËË ‡Á΢‡˛ÚÒfl ÔÓ ÚËÔÛ
352
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
‰ÓÔÓÎÌËÚÂθÌ˚ı „‡‚ËÚ‡ˆËÓÌÌ˚ı ÔÓÎÂÈ, Ò͇ÊÂÏ, ‚ Á‡‚ËÒËÏÓÒÚË ËÎË ÌÂÁ‡‚ËÒËÏÓÒÚË
ÓÚ ÏÂÒÚÓÔÓÎÓÊÂÌËfl Ë/ËÎË ÒÍÓÓÒÚË ÎÓ͇θÌ˚ı ÒËÒÚÂÏ. é‰ÌÓÈ ËÁ Ú‡ÍËı Ë fl‚ÎflÂÚÒfl
Ó·˘‡fl ÚÂÓËfl ÓÚÌÓÒËÚÂθÌÓÒÚË; Ó̇ ‡ÒÒχÚË‚‡ÂÚ ÚÓθÍÓ Ó‰ÌÓ „‡‚ËÚ‡ˆËÓÌÌÓÂ
ÔÓÎÂ, Ò‡ÏÛ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌÛ˛ ÏÂÚËÍÛ, Ë ÔÓ‰˜ËÌflÂÚÒfl ˝È̯ÚÂÈÌÓ‚ÒÍÓÏÛ
‰ËÙÙÂÂ̈ˇθÌÓÏÛ Û‡‚ÌÂÌ˲ Ò ˜‡ÒÚÌ˚ÏË ÔÓËÁ‚Ó‰Ì˚ÏË. ùÏÔË˘ÂÒÍËÏ ÔÛÚÂÏ
·˚ÎÓ ÓÔ‰ÂÎÂÌÓ, ˜ÚÓ, ÔÓÏËÏÓ ÍÓÌÙÓÏÌÓ ÔÎÓÒÍÓÈ Ò͇ÎflÌÓÈ ÚÂÓËË çÓ‰ÒÚÂχ
(1913), β·‡fl ‰Û„‡fl ÏÂÚ˘ÂÒ͇fl ÚÂÓËfl „‡‚ËÚ‡ˆËË ÔË‚ÌÓÒËÚ ‰ÓÔÓÎÌËÚÂθÌ˚Â
„‡‚ËÚ‡ˆËÓÌÌ˚ ÔÓÎfl.
䂇ÌÚÓ‚˚ ÏÂÚËÍË
䂇ÌÚÓ‚‡fl ÏÂÚË͇ – Ó·˘ËÈ ÚÂÏËÌ, ËÒÔÓθÁÛÂÏ˚È ‰Îfl ÏÂÚËÍË, Ò ÔÓÏÓ˘¸˛
ÍÓÚÓÓÈ Ô‰ÔÓ·„‡ÂÚÒfl ÓÔËÒ‡Ú¸ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ÔÓ Í‚‡ÌÚÓ‚ÓÈ ¯Í‡Î (Ú.Â.
ÔÓfl‰Í‡ ‰ÎËÌ˚ è·Ì͇ lP). ùÍÒÚ‡ÔÓÎËÛfl ‡Ò˜ÂÚ˚ Í‡Í Í‚‡ÌÚÓ‚ÓÈ ÏÂı‡ÌËÍË, Ú‡Í Ë
Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË, ÏÂÚ˘ÂÒ͇fl ÒÚÛÍÚÛ‡ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË
ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÍÓη‡ÌËfl ‚‡ÍÛÛχ Ò ‚ÂҸχ ‚˚ÒÓÍÓÈ ˝ÌÂ„ËÂÈ (1019 É˝Ç,
ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ Ï‡ÒÒ è·Ì͇ mP), ˜ÚÓ ÒÓÁ‰‡ÂÚ ˜ÂÌ˚ ‰˚˚ Ò ‡‰ËÛÒ‡ÏË ÔÓfl‰Í‡
lP. èÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ÒÚ‡ÌÓ‚ËÚÒfl "Í‚‡ÌÚÓ‚ÓÈ ÔÂÌÓÈ" Ò ÏÓ˘Ì˚ÏË ‰ÂÙÓχˆËflÏË Ë
ÚÛ·ÛÎÂÌÚÌÓÒÚ¸˛. éÌÓ ÚÂflÂÚ „·‰ÍÛ˛ ÌÂÔÂ˚‚ÌÛ˛ ÒÚÛÍÚÛÛ (̇·Î˛‰‡ÂÏÛ˛ ̇
χÍÓÒÍÓÔ˘ÂÒÍÓÏ ÛÓ‚ÌÂ), ËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl, Ë ÒÚ‡ÌÓ‚ËÚÒfl ‰ËÒÍÂÚÌ˚Ï,
Ù‡ÍڇθÌ˚Ï, ̉ËÙÙÂÂ̈ËÛÂÏ˚Ï: ̇ ÛÓ‚Ì ‚Â΢ËÌ˚ lP ÔÓËÒıÓ‰ËÚ ‡Á˚‚
ÙÛÌ͈ËÓ̇θÌÓ„Ó ËÌÚ„‡Î‡ ‚ Í·ÒÒ˘ÂÒÍËı Û‡‚ÌÂÌËflı ÔÓÎfl.
èËÏÂ˚ Í‚‡ÌÚÓ‚Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ô‰ÒÚ‡‚ÎÂÌ˚ ÍÓÏÔ‡ÍÚÌ˚Ï
Í‚‡ÌÚÓ‚˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ êËÙÙÂÎfl, ÏÂÚËÍÓÈ îÛ·ËÌË–òÚÛ‰Ë Ì‡
Í‚‡ÌÚÓ‚˚ı ÒÓÒÚÓflÌËflı, ÒÚ‡ÚËÒÚ˘ÂÒÍÓÈ „ÂÓÏÂÚËÂÈ Ì˜ÂÚÍÓ ÓÔ‰ÂÎÂÌÌ˚ı χÒÒ
[ReRo01] Ë Í‚‡ÌÚÓ‚‡ÌËÂÏ ÏÂÚ˘ÂÒÍÓ„Ó ÍÓÌÛÒ‡ („Î. 1) [IsKuPe90].
䂇ÌڇθÌ˚ ‡ÒÒÚÓflÌËfl
䂇ÌڇθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û Í‚‡ÌÚÓ‚˚ÏË ÒÓÒÚÓflÌËflÏË, Ô‰ÒÚ‡‚ÎÂÌÌ˚ÏË ‚ ‚ˉ ÓÔÂ‡ÚÓÓ‚ ÔÎÓÚÌÓÒÚË (Ú.Â. ÔÓÎÓÊËÚÂθÌ˚ı
ÓÔÂ‡ÚÓÓ‚ Ò Â‰ËÌ˘Ì˚Ï ÒΉÓÏ) ‚ ÍÓÏÔÎÂÍÒÌÓÏ ÔÓÂÍÚË‚ÌÓÏ ÔÓÒÚ‡ÌÒڂ ̇‰
·ÂÒÍÓ̘ÌÓÏÂÌ˚Ï „Ëθ·ÂÚÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. Ö„Ó m-ÏÂÌ˚È ‚‡ˇÌÚ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ m-ÍÛ·ËÚÓ‚˚Ï Í‚‡ÌÚÛÏÌ˚Ï ÒÓÒÚÓflÌËflÏ, Ô‰ÒÚ‡‚ÎÂÌÌ˚Ï 2m × 2m χÚˈ‡ÏË ÔÎÓÚÌÓÒÚË.
èÛÒÚ¸ X Ó·ÓÁ̇˜‡ÂÚ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÓÔÂ‡ÚÓÓ‚ ÔÎÓÚÌÓÒÚË ‚ ‰‡ÌÌÓÏ „Ëθ·ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â. ÑÎfl ‰‚Ûı ‰‡ÌÌ˚ı Í‚‡ÌÚÛÏÌ˚ı ÒÓÒÚÓflÌËÈ, Ô‰ÒÚ‡‚ÎÂÌÌ˚ı
ÓÔÂ‡ÚÓ‡ÏË ÔÎÓÚÌÓÒÚË x, y ∈ X, ÛÔÓÏflÌÂÏ ÒÎÂ‰Û˛˘Ë ‡ÒÒÚÓflÌËfl ̇ X.
åÂÚË͇ ÌÓÏ˚ ÉËθ·ÂÚ‡–òÏˉڇ (ÒÏ. „Î. 13) ‡‚̇
Tr(( x − y)2 ), „‰Â
|| A ||2 = Tr( At A) ÂÒÚ¸ ÌÓχ ÉËθ·ÂÚ‡–òÏˉڇ ÓÔÂ‡ÚÓ‡ A.
åÂÚË͇ ÒΉӂÓÈ ÌÓÏ˚ (ÒÏ. „Î. 12) ‡‚̇ || x – y ||, „‰Â || A ||tr = Tr ( AT A) ÂÒÚ¸
ÒΉӂ‡fl ÌÓχ ÓÔÂ‡ÚÓ‡ A. å‡ÍÒËχθ̇fl ‚ÂÓflÚÌÓÒÚ¸ ÚÓ„Ó, ˜ÚÓ Ò ÔÓÏÓ˘¸˛
1
Í‚‡ÌÚÓ‚Ó„Ó ËÁÏÂÂÌËfl ÏÓÊÌÓ ·Û‰ÂÚ ÓÚ΢ËÚ¸ x ÓÚ y, ‡‚̇ || x − y ||tr .
2
ê‡ÒÒÚÓflÌË ÅÛÂÒ‡ ‡‚ÌÓ
2(1 − Tr (( xy x )2 )) (ÒÏ. åÂÚË͇ ÅÛÂÒ‡, „Î. 7).
ÑÓÒÚÓ‚Â̇fl ÔÓ‰Ó·ÌÓÒÚ¸ ‡‚̇ Tr (( xy x )2 )).
ê‡ÒÒÚÓflÌË ɇ‰‰Â‡ ‡‚ÌÓ inf{λ ∈ [0, 1]: (1 – λ) x + λx' = (1 – λ) x + λx'; x'y' ∈ X}.
Ç ‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË, X fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎ˚Ï, Ú.Â. λx + (1 – λ) y ∈ X ‚ÒflÍËÈ ‡Á, ÍÓ„‰‡
x, y ∈ X Ë λ ∈ (0, 1).
É·‚‡ 24. ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË
353
èËÏÂ‡ÏË ‰Û„Ëı ‡ÒÒÚÓflÌËÈ, ÔËÏÂÌflÂÏ˚ı ‚ ˝ÚÓÈ Ó·Î‡ÒÚË, fl‚Îfl˛ÚÒfl ÏÂÚË͇
ÌÓÏ˚ îÓ·ÂÌËÛÒ‡ (ÒÏ. „Î. 12), ÏÂÚË͇ ëÓ·Ó΂‡ (ÒÏ. „Î. 13), ÏÂÚË͇ åÓÌʇ–
ä‡ÌÚÓӂ˘‡ (ÒÏ. „Î. 21).
24.2. êÄëëíéüçàü Ç ïàåàà
éÒÌÓ‚Ì˚ ıËÏ˘ÂÒÍË ‚¢ÂÒÚ‚‡ fl‚Îfl˛ÚÒfl ËÓÌÌ˚ÏË (Ú.Â. ÒÍÂÔÎÂÌ˚ ËÓÌÌ˚ÏË
Ò‚flÁflÏË), ÏÂÚ‡Î΢ÂÒÍËÏË (·Óθ¯ËÏË ÒÚÛÍÚÛ‡ÏË Ò ÔÎÓÚÌÓÈ ÛÔ‡ÍÓ‚ÍÓÈ
ÍËÒÚ‡Î΢ÂÒÍÓÈ ¯ÂÚÍË, ÒÍÂÔÎÂÌÌ˚ÏË ÏÂÚ‡Î΢ÂÒÍËÏË Ò‚flÁflÏË), „Ë„‡ÌÚÒÍËÏË
ÍÓ‚‡ÎÂÌÚÌ˚ÏË (͇Í, ̇ÔËÏÂ, ‡ÎχÁ˚ Ë „‡ÙËÚ˚) ËÎË ÏÓÎÂÍÛÎflÌ˚ÏË (χÎ˚ÏË
ÍÓ‚‡ÎÂÌÚÌ˚ÏË). åÓÎÂÍÛÎ˚ ÒÓÒÚÓflÚ ËÁ ÓÔ‰ÂÎÂÌÌÓ„Ó ÍÓ΢ÂÒÚ‚‡ ‡ÚÓÏÓ‚,
ÒÍÂÔÎÂÌÌ˚ı ÏÂÊ‰Û ÒÓ·ÓÈ ÍÓ‚‡ÎÂÌÚÌ˚ÏË Ò‚flÁflÏË; Ëı ‡ÁÏÂ˚ ÍÓηβÚÒfl ÓÚ
χÎ˚ı (Ó‰ÌÓ‡ÚÓÏÌ˚ı ÏÓÎÂÍÛÎ ‰ÍËı „‡ÁÓ‚) ‰Ó „Ë„‡ÌÚÒÍËı ÏÓÎÂÍÛÎ (ÚËÔ‡
ÔÓÎËÏÂÓ‚ ËÎË Ñçä). åÂʇÚÓÏÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ‡ÚÓχÏË – ‡ÒÒÚÓflÌËÂ
(‚ ‡Ì„ÒÚÂχı ËÎË ÔËÍÓÏÂÚ‡ı) ÏÂÊ‰Û Ëı fl‰‡ÏË.
ÄÚÓÏÌ˚È ‡‰ËÛÒ
䂇ÌÚÓ‚‡fl ÏÂı‡ÌË͇ Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ ‡ÚÓÏ Ì fl‚ÎflÂÚÒfl ¯‡ÓÏ Ò ˜ÂÚÍÓ
Ó·ÓÁ̇˜ÂÌÌ˚ÏË „‡Ìˈ‡ÏË. ëÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‡ÚÓÏÌ˚È ‡‰ËÛÒ ÓÔ‰ÂÎflÂÚÒfl ͇Í
‡ÒÒÚÓflÌË ÓÚ fl‰‡ ‡ÚÓχ ‰Ó ̇˷ÓΠÒÚ‡·ËθÌÓ„Ó ˝ÎÂÍÚÓ̇, Ó·‡˘‡˛˘Â„ÓÒfl ̇
Ó·ËÚ ‚ÓÍÛ„ ‡ÚÓχ, ̇ıÓ‰fl˘Â„ÓÒfl ‚ Û‡‚Ìӂ¯ÂÌÌÓÏ ÒÓÒÚÓflÌËË. ÄÚÓÏÌ˚Â
‡‰ËÛÒ˚ Ô‰ÒÚ‡‚Îfl˛Ú ÒÓ·ÓÈ ‡ÁÏÂ˚ ÓÚ‰ÂθÌ˚ı, ˝ÎÂÍÚ˘ÂÒÍË ÌÂÈÚ‡Î¸Ì˚ı
‡ÚÓÏÓ‚, ̇ ÍÓÚÓ˚ Ì ‚ÓÁ‰ÂÈÒÚ‚Û˛Ú ÌË͇ÍË ҂flÁË.
ÄÚÓÏÌ˚ ‡‰ËÛÒ˚ ‡ÒÒ˜ËÚ˚‚‡˛ÚÒfl ÔÓ ‡ÒÒÚÓflÌËflÏ ıËÏ˘ÂÒÍÓÈ Ò‚flÁË, ÂÒÎË
‡ÚÓÏ˚ ˝ÎÂÏÂÌÚ‡ Ó·‡ÁÛ˛Ú Ò‚flÁË; ‚ ËÌ˚ı ÒÎÛ˜‡flı (̇ÔËÏÂ, ‰Îfl ‰ÍËı „‡ÁÓ‚)
ËÒÔÓθÁÛ˛ÚÒfl ÚÓθÍÓ ‡‰ËÛÒ˚ LJÌ-‰Â-LJ‡Î¸Ò‡.
ÄÚÓÏÌ˚ ‡‰ËÛÒ˚ Û‚Â΢˂‡˛ÚÒfl ‰Îfl ÚÂı ˝ÎÂÏÂÌÚÓ‚, ÍÓÚÓ˚ ‡ÒÔÓÎÓÊÂÌ˚
ÌËÊ ÔÓ ÒÚÓηˆÛ (ËÎË Î‚Â ÔÓ ÒÚÓÍÂ) èÂËӉ˘ÂÒÍÓÈ Ú‡·Îˈ˚ åẨÂ΂‡.
ê‡ÒÒÚÓflÌË ıËÏ˘ÂÒÍÓÈ Ò‚flÁË
ê‡ÒÒÚÓflÌË ıËÏ˘ÂÒÍÓÈ Ò‚flÁË (ËÎË ‰ÎË̇ Ò‚flÁË) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û fl‰‡ÏË ‰‚Ûı
Ò‚flÁ‡ÌÌ˚ı ‡ÚÓÏÓ‚. í‡Í, ̇ÔËÏÂ, ÚËÔÓ‚˚ÏË ‡ÒÒÚÓflÌËflÏË Ò‚flÁË ‰Îfl Û„ÎÂÓ‰Û„ÎÂÓ‰ËÒÚ˚ı Ò‚flÁÂÈ ‚ Ó„‡Ì˘ÂÒÍÓÈ ÏÓÎÂÍÛΠfl‚Îfl˛ÚÒfl 1,53, 1,34 Ë 1,20 Å ‰Îfl
Ó‰ËÌÓ˜ÌÓÈ, ‰‚ÓÈÌÓÈ Ë ÚÓÈÌÓÈ Ò‚flÁÂÈ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
Ç Á‡‚ËÒËÏÓÒÚË ÓÚ ÚËÔ‡ Ò‚flÁË ˝ÎÂÏÂÌÚ‡ Â„Ó ‡ÚÓÏÌ˚È ‡‰ËÛÒ Ì‡Á˚‚‡ÂÚÒfl ÍÓ‚‡ÎÂÌÚÌ˚Ï ËÎË ÏÂÚ‡Î΢ÂÒÍËÏ. åÂÚ‡Î΢ÂÒÍËÈ ‡‰ËÛÒ ‡‚ÂÌ ÔÓÎÓ‚ËÌ ÏÂÚ‡Î΢ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl, Ú.Â. ̇ËÏÂ̸¯Â„Ó fl‰ÂÌÓ„Ó ‡ÒÒÚÓflÌËfl ‚ ÏÂÚ‡Î΢ÂÒÍÓÏ
ÍËÒÚ‡ÎΠ(ÔÎÓÚÌÓ ÛÔ‡ÍÓ‚‡ÌÌÓÈ ÍËÒÚ‡Î΢ÂÒÍÓÈ ¯ÂÚÍ ÏÂÚ‡Î΢ÂÒÍÓ„Ó
˝ÎÂÏÂÌÚ‡).
äÓ‚‡ÎÂÌÚÌ˚ ‡‰ËÛÒ˚ ‡ÚÓÏÓ‚ (˝ÎÂÏÂÌÚÓ‚, Ó·‡ÁÛ˛˘Ëı ÍÓ‚‡ÎÂÌÚÌ˚ ҂flÁË)
‡ÒÒ˜ËÚ˚‚‡˛ÚÒfl ÔÓ ‡ÒÒÚÓflÌËÂÏ ıËÏ˘ÂÒÍÓÈ Ò‚flÁË ÏÂÊ‰Û Ô‡‡ÏË ‡ÚÓÏÓ‚,
Ò‚flÁ‡ÌÌ˚ı ÍÓ‚‡ÎÂÌÚÌÓ: ˝ÚË ‡ÒÒÚÓflÌËfl Ò‚flÁË ‡‚Ì˚ ÒÛÏÏ ÍÓ‚‡ÎÂÌÚÌ˚ı ‡‰ËÛÒÓ‚
‰‚Ûı ‡ÚÓÏÓ‚. ÖÒÎË ‰‚‡ ‡ÚÓχ fl‚Îfl˛ÚÒfl Ó‰ÌÓÚËÔÌ˚ÏË, ÚÓ Ëı ÍÓ‚‡ÎÂÌÚÌ˚È ‡‰ËÛÒ
‡‚ÂÌ ÔÓÎÓ‚ËÌ Ëı ‡ÒÒÚÓflÌËfl ıËÏ˘ÂÒÍÓÈ Ò‚flÁË. äÓ‚‡ÎÂÌÚÌ˚ ‡‰ËÛÒ˚ ‰Îfl
˝ÎÂÏÂÌÚÓ‚, ‡ÚÓÏ˚ ÍÓÚÓ˚ı Ì ÏÓ„ÛÚ Ò‚flÁ˚‚‡Ú¸Òfl ‰Û„ Ò ‰Û„ÓÏ, ‚˚˜ËÒÎfl˛ÚÒfl
ÔÓÒ‰ÒÚ‚ÓÏ ÍÓÏ·ËÌËÓ‚‡ÌËfl ‚ ‡Á΢Ì˚ı ÏÓÎÂÍÛ·ı, ‡‰ËÛÒÓ‚ ÚÂı ‡ÚÓÏÓ‚,
ÍÓÚÓ˚ ҂flÁ˚‚‡˛ÚÒfl, Ò ‡ÒÒÚÓflÌËÂÏ ıËÏ˘ÂÒÍÓÈ Ò‚flÁË ÏÂÊ‰Û Ô‡‡ÏË ‡ÚÓÏÓ‚
‡Á΢Ì˚ı ÚËÔÓ‚.
354
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
äÓÌÚ‡ÍÚÌÓ ‡ÒÒÚÓflÌË LJÌ-‰Â-LJ‡Î¸Ò‡
èË ËÁÛ˜ÂÌËË ÏÂÊÏÓÎÂÍÛÎflÌ˚ı ‡ÒÒÚÓflÌËÈ ‡ÚÓÏ˚ ‡ÒÒÏÓÚË‚‡˛ÚÒfl ͇Í
Ú‚Â‰˚ ÒÙÂ˚. è‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ÒÙÂ˚ ‰‚Ûı ÒÓÒ‰ÌËı ÌÂÒ‚flÁ‡ÌÌ˚ı ‡ÚÓÏÓ‚
(‚ ÒÓÔË͇҇˛˘ËıÒfl ÏÓÎÂÍÛ·ı ËÎË ‡ÚÓχı), Î˯¸ ͇҇˛ÚÒfl ‰Û„ ‰Û„‡. ëΉӂ‡ÚÂθÌÓ, Ëı ÏÂʇÚÓÏÌÓ ‡ÒÒÚÓflÌËÂ, ̇Á˚‚‡ÂÏÓ ÍÓÌÚ‡ÍÚÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ç‡Ì‰Â-LJ‡Î¸Ò‡, fl‚ÎflÂÚÒfl ÒÛÏÏÓÈ ‡‰ËÛÒÓ‚, ̇Á˚‚‡ÂÏ˚ı ‡‰ËÛÒ‡ÏË Ç‡Ì-‰Â-LJ‡Î¸Ò‡,
Ëı Ú‚Â‰˚ı ÒÙÂ. ꇉËÛÒ Ç‡Ì-‰Â-LJ‡Î¸Ò‡ ‰Îfl Û„ÎÂÓ‰‡ ÒÓÒÚ‡‚ÎflÂÚ 1,7 Å, ÚÓ„‰‡ ͇Í
Â„Ó ÍÓ‚‡ÎÂÌÚÌ˚È ‡‰ËÛÒ – 0,76 Å. äÓÌÚ‡ÍÚÌÓ ‡ÒÒÚÓflÌË LJÌ-‰Â-LJ‡Î¸Ò‡
ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ "Ò··ÓÈ Ò‚flÁË", ÍÓ„‰‡ ÒËÎ˚ ÓÚÚ‡ÎÍË‚‡ÌËfl ˝ÎÂÍÚÓÌÌ˚ı Ó·ÓÎÓ˜ÂÍ
Ô‚˚¯‡˛Ú ÒËÎ˚ ãÓ̉Ó̇ (˝ÎÂÍÚÓÒÚ‡Ú˘ÂÒÍÓ„Ó ÔËÚfl„Ë‚‡ÌËfl).
åÂÊËÓÌÌÓ ‡ÒÒÚÓflÌËÂ
àÓÌ – ˝ÚÓ ‡ÚÓÏ, ӷ·‰‡˛˘ËÈ ÔÓÎÓÊËÚÂθÌ˚Ï ËÎË ÓÚˈ‡ÚÂθÌ˚Ï Á‡fl‰ÓÏ.
åÂÊËÓÌÌÓ ‡ÒÒÚÓflÌË ÂÒÚ¸ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚ‡ÏË ‰‚Ûı ÒÓÒ‰ÌËı (Ò‚flÁ‡ÌÌ˚ı)
ËÓÌÓ‚. àÓÌÌ˚È ‡‰ËÛÒ ‡ÒÒ˜ËÚ˚‚‡ÂÚÒfl ÔÓ ‡ÒÒÚÓflÌ˲ ËÓÌÌÓÈ Ò‚flÁË ‚ ‡θÌ˚ı
ÏÓÎÂÍÛ·ı Ë ÍËÒڇηı.
àÓÌÌ˚È ‡‰ËÛÒ Í‡ÚËÓÌÓ‚ (ÔÓÎÓÊËÚÂθÌ˚ı ËÓÌÓ‚, ̇ÔËÏÂ, ̇ÚËfl Na+)
ÏÂ̸¯Â ‡ÚÓÏÌÓ„Ó ‡‰ËÛÒ‡ ‡ÚÓÏÓ‚, ËÁ ÍÓÚÓ˚ı ÓÌË ‚˚¯ÎË, ÚÓ„‰‡ Í‡Í ‡ÌËÓÌ˚
(ÓÚˈ‡ÚÂθÌ˚ ËÓÌ˚, ̇ÔËÏÂ, ıÎÓ‡ Cl– ) ÔÓ ‡ÁÏÂÛ ·Óθ¯Â ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı
‡ÚÓÏÓ‚.
ÉˉÓ‰Ë̇Ï˘ÂÒÍËÈ ‡‰ËÛÒ
ÉˉÓ‰Ë̇Ï˘ÂÒÍËÈ ‡‰ËÛÒ ÏÓÎÂÍÛÎ˚ ‚ ÏÓÏÂÌÚ ‰ËÙÙÛÁËË ‚ ‡ÒÚ‚Ó fl‚ÎflÂÚÒfl
„ËÔÓÚÂÚ˘ÂÒÍËÏ ‡‰ËÛÒÓÏ Ú‚Â‰ÓÈ ÒÙÂ˚, ÍÓÚÓ‡fl ‡ÒÚ‚ÓflÂÚÒfl Ò ÚÓÈ ÊÂ
ÒÍÓÓÒÚ¸˛.
чθÌÓÒÚ¸ ‰ÂÈÒÚ‚Ëfl ÏÓÎÂÍÛÎflÌ˚ı ÒËÎ
åÓÎÂÍÛÎflÌ˚ ÒËÎ˚ (ËÎË ÒËÎ˚ ÏÂÊÏÓÎÂÍÛÎflÌÓ„Ó ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl) ‚Íβ˜‡˛Ú ‚
Ò·fl ÒÎÂ‰Û˛˘Ë ˝ÎÂÍÚÓχ„ÌËÚÌ˚ ÒËÎ˚: ËÓÌ̇fl Ò‚flÁ¸ (Á‡fl‰), ‚Ó‰ÓӉ̇fl Ò‚flÁ¸
(·ËÔÓÎfl̇fl), ‰‚Ûı‰ËÔÓθÌÓ ‚Á‡ËÏÓ‰ÂÈÒÚ‚ËÂ, ÒËÎ˚ ãÓ̉Ó̇ (ÔËÚfl„Ë‚‡˛˘‡fl
ÒÓÒÚ‡‚Îfl˛˘‡fl ÒËΠLJÌ-‰Â-LJ‡Î¸Ò‡) Ë ÒÚÂ˘ÂÒÍÓ„Ó ÓÚÚ‡ÎÍË‚‡ÌËfl (ÓÚÚ‡ÎÍË‚‡˛˘‡fl
ÒÓÒÚ‡‚Îfl˛˘‡fl ÒËΠLJÌ-‰Â-LJ‡Î¸Ò‡). ÖÒÎË ‡ÒÒÚÓflÌË (ÏÂÊ‰Û ‰‚ÛÏfl ÏÓÎÂÍÛ·ÏË
ËÎË ‡ÚÓχÏË) ‡‚ÌÓ d, ÚÓ (ÓÔ‰ÂÎÂÌÓ ˝ÍÒÔÂËÏÂÌڇθÌÓ) ÙÛÌ͈Ëfl ÔÓÚÂ̈ˇθÌÓÈ
˝ÌÂ„ËË P Ó·‡ÚÌÓ ÔÓÔÓˆËÓ̇θ̇ dn Ò n = 1, 3, 3, 6, 12 ‰Îfl ÔflÚË ‚˚¯ÂÔ˂‰ÂÌÌ˚ı ÒËÎ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. чθÌÓÒÚ¸ (ËÎË ‡‰ËÛÒ) ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl Ò˜ËÚ‡ÂÚÒfl
ÍÓÓÚÍÓÈ, ÂÒÎË P ·˚ÒÚÓ ÔË·ÎËʇÂÚÒfl Í 0 ÔÓ ÏÂ ۂÂ΢ÂÌËfl d. é̇ Ú‡ÍÊÂ
̇Á˚‚‡ÂÚÒfl ÍÓÓÚÍÓÈ, ÂÒÎË ‡‚̇ Ì Ô‚ÓÒıÓ‰ËÚ 3 Å; ÒΉӂ‡ÚÂθÌÓ, ÍÓÓÚÍÓÈ
fl‚ÎflÂÚÒfl ÚÓθÍÓ ‰‡Î¸ÌÓÒÚ¸ ÒÚÂ˘ÂÒÍÓ„Ó ÓÚÚ‡ÎÍË‚‡ÌËfl (ÒÏ. ‰‡Î¸ÌÓÒÚ¸ ‰ÂÈÒÚ‚Ëfl
ÙÛ̉‡ÏÂÌڇθÌ˚ı ÒËÎ).
ç‡ÔËÏÂ: ‰Îfl ÔÓÎË˝ÎÂÍÚÓÎËÚ˘ÂÒÍËı ‡ÒÚ‚ÓÓ‚ ‰‡Î¸ÌÓ‰ÂÈÒÚ‚Û˛˘‡fl ËÓÌ̇fl
ÒË· ‚Ó‰‡-‡ÒÚ‚ÓËÚÂθ ÒÓÔÂÌ˘‡ÂÚ Ò ÏÂ̸¯ÂÈ ÔÓ ‰‡Î¸ÌÓÒÚË Ò‚flÁÛ˛˘ÂÈ ÒËÎÓÈ
‚Ó‰‡-‚Ó‰‡ (‚Ó‰ÓӉ̇fl Ò‚flÁ¸).
ïËÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
ê‡Á΢Ì˚ ıËÏ˘ÂÒÍË ÒËÒÚÂÏ˚ (‰ËÌ˘Ì˚ ÏÓÎÂÍÛÎ˚, Ëı Ù‡„ÏÂÌÚ˚, ÍËÒÚ‡ÎÎ˚, ÔÓÎËÏÂ˚, Í·ÒÚÂ˚) ıÓÓ¯Ó Ô‰ÒÚ‡‚Îfl˛ÚÒfl ‚ ‚ˉ „‡ÙÓ‚, Û ÍÓÚÓ˚ı
‚Â¯ËÌ˚ (Ò͇ÊÂÏ, ‡ÚÓÏ˚, ÏÓÎÂÍÛÎ˚, ‰ÂÈÒÚ‚Û˛˘ËÂ Í‡Í ÏÓÌÓÏÂ˚, Ù‡„ÏÂÌÚ˚
ÏÓÎÂÍÛÎ) Ò‚flÁ‡Ì˚ ·‡ÏË – ıËÏ˘ÂÒÍËÏË Ò‚flÁflÏË, ÏÂÊÏÓÎÂÍÛÎflÌ˚ÏË ‚Á‡ËÏÓ‰ÂÈÒÚ‚ËflÏË Ç‡Ì-‰Â-LJ‡Î¸Ò‡, ‚Ó‰ÓÓ‰ÌÓÈ Ò‚flÁ¸˛, ÔÛÚflÏË ‡͈ËÈ Ë Ú.Ô.
Ç Ó„‡Ì˘ÂÒÍÓÈ ıËÏËË ÏÓÎÂÍÛÎflÌ˚È „‡Ù G(x ) = (V(x), E(x)) – „‡Ù, Ô‰ÒÚ‡‚Îfl˛˘ËÈ ÏÓÎÂÍÛÎÛ x Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ ‚Â¯ËÌ˚ v ∈ V(x) fl‚Îfl˛ÚÒfl ‡ÚÓχÏË,
355
É·‚‡ 24. ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË
‡ ·‡ e ∈ E(x) ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Ò‚flÁflÏ ˝ÎÂÍÚÓÌÌ˚ı Ô‡. óËÒÎÓ ÇËÌÂ‡ ÏÓÎÂÍÛÎ˚
‡‚ÌÓ ÔÓÎÓ‚ËÌ ÒÛÏÏ˚ ‚ÒÂı ÔÓÔ‡Ì˚ı ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ‚Â¯Ë̇ÏË Ëı
ÏÓÎÂÍÛÎflÌÓ„Ó „‡Ù‡.
ÇÖ-χÚˈ‡ (Ò‚flÁÂÈ Ë ˝ÎÂÍÚÓÌÓ‚) ÏÓÎÂÍÛÎ˚ x ÂÒÚ¸ | V(x) | × | V(x) |-χÚˈ‡
((eij(x))), „‰Â e ij(x) – ˜ËÒÎÓ Ò‚Ó·Ó‰Ì˚ı ÌÂÓ·Ó·˘ÂÌÌ˚ı ‚‡ÎÂÌÚÌÓÒÚ¸˛ ˝ÎÂÍÚÓÌÓ‚
‡ÚÓχ Ai Ë ‰Îfl i ≠ j, e ij(x) = eji(x) = 1, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ Ò‚flÁ¸ ÏÂÊ‰Û ‡ÚÓχÏË Ai Ë Aj, Ë
eij(x) = eji(x) = 0, Ë̇˜Â.
ÑÎfl ‰‚Ûı ÏÓÎÂÍÛÎ x Ë y ÒÚÂıËÓÏÂÚ˘ÂÒÍÓ„Ó ÒÓÒÚ‡‚‡ (Ú.Â. Ò Ó‰Ë̇ÍÓ‚˚Ï
ÍÓ΢ÂÒÚ‚ÓÏ ‡ÚÓÏÓ‚) ıËÏ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ñ‡„Û̉ÊË–ì„Ë ÏÂÊ‰Û ÌËÏË
fl‚ÎflÂÚÒfl ıÂÏÏËÌ„Ó‚‡ ÏÂÚË͇
∑
| eij ( x ) − eij ( y) |,
1≤ i , j ≤| V |
Ë ıËÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌË èÓÒÔ˯‡Î‡–䂇¯Ì˘ÍË ÏÂÊ‰Û ÌËÏË ‚˚‡Ê‡ÂÚÒfl ͇Í
min
P
∑
| eij ( x ) − eP(i ) P( j ) ( y) |,
1≤ i, j ≤| V |
„‰Â P – β·‡fl ÔÂÂÒÚ‡Ìӂ͇ ‡ÚÓÏÓ‚.
Ç˚¯ÂÔ˂‰ÂÌÌÓ ‡ÒÒÚÓflÌË ‡‚ÌÓ | E( x ) | + | E( y) | −2 | E( x, y) |, „‰Â E(x , y) –
ÏÌÓÊÂÒÚ‚Ó ·Â χÍÒËχθÌÓ„Ó Ó·˘Â„Ó ÔÓ‰„‡Ù‡ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â Ì Ë̉ۈËÓ‚‡ÌÌÓ„Ó) ÏÓÎÂÍÛÎflÌ˚ı „‡ÙÓ‚ G(x) Ë G(y) (ÒÏ. ê‡ÒÒÚÓflÌË áÂÎËÌÍË, „Î. 15 Ë
ê‡ÒÒÚÓflÌË å‡ı‡ÎÓÌÓ·ËÒ‡, „Î. 17).
ê‡ÒÒÚÓflÌË ‡͈ËË èÓÒÔ˯‡Î‡–䂇¯Ì˘ÍË, ÔÓÒÚ‡‚ÎÂÌÌÓ ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËÂ
ÏÓÎÂÍÛÎflÌÓÏÛ ÔÂÓ·‡ÁÓ‚‡Ì˲ x → y, ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ ˝ÎÂÏÂÌÚ‡Ì˚ı
ÔÂÓ·‡ÁÓ‚‡ÌËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ô‚‡˘ÂÌËfl G(x) ‚ G(y).
RMS åÓÎÂÍÛÎflÌ˚È ‡‰ËÛÒ
RMS åÓÎÂÍÛÎflÌ˚È ‡‰ËÛÒ (ËÎË ‡‰ËÛÒ ‚‡˘ÂÌËfl) – Ò‰ÌÂÍ‚‡‰‡Ú˘ÌÓÂ
‡ÒÒÚÓflÌË ‡ÚÓÏÓ‚ ‚ ÏÓÎÂÍÛΠÓÚ Ëı Ó·˘Â„Ó ˆÂÌÚ‡ ÚflÊÂÒÚË; ˝ÚÓÚ ‡‰ËÛÒ
ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑ d02i
1≤ i ≤ n
n +1
=
∑ ∑ dij2
i
j
(n + 1)2
,
„‰Â n – ÍÓ΢ÂÒÚ‚Ó ‡ÚÓÏÓ‚, d0i – ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË i-„Ó ‡ÚÓχ ÓÚ ˆÂÌÚ‡ ÚflÊÂÒÚË
ÏÓÎÂÍÛÎ˚ (‚ ÍÓÌÍÂÚÌÓÈ ÍÓÌÙË„Û‡ˆËË), ‡ dij – ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û i-Ï Ë jÏ ‡ÚÓχÏË.
ë‰ÌËÈ ÏÓÎÂÍÛÎflÌ˚È ‡‰ËÛÒ
ë‰ÌËÈ ÏÓÎÂÍÛÎflÌ˚È ‡‰ËÛÒ – ˜ËÒÎÓ
ri
, „‰Â n – ÍÓ΢ÂÒÚ‚Ó ‡ÚÓÏÓ‚ ‚
n
xij
∑
ÏÓÎÂÍÛÎÂ, ‡ ri – ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË -„Ó ‡ÚÓχ ÓÚ „ÂÓÏÂÚ˘ÂÒÍÓ„Ó ˆÂÌÚ‡
ÏÓÎÂÍÛÎ˚ (Á‰ÂÒ¸ x ij fl‚ÎflÂÚÒfl i-È ‰Â͇ÚÓ‚ÓÈ ÍÓÓ‰Ë̇ÚÓÈ j-„Ó ‡ÚÓχ).
j
n
É·‚‡ 25
ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË,
„ÂÓÙËÁËÍÂ Ë ‡ÒÚÓÌÓÏËË
25.1. êÄëëíéüçàü Ç ÉÖéÉêÄîàà à ÉÖéîàáàäÖ
ê‡ÒÒÚÓflÌË ·Óθ¯Ó„Ó ÍÛ„‡
ê‡ÒÒÚÓflÌË ·Óθ¯Ó„Ó ÍÛ„‡ (ËÎË ÒÙÂ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ, ÓÚÓ‰ÓÏ˘ÂÒÍÓÂ
‡ÒÒÚÓflÌËÂ) fl‚ÎflÂÚÒfl ̇ËÍ‡Ú˜‡È¯ËÏ ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÚӘ͇ÏË ı Ë Û Ì‡ ÁÂÏÌÓÈ
ÔÓ‚ÂıÌÓÒÚË, ËÁÏÂÂÌÌÓ ‚‰Óθ ÔÛÚË Ì‡ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË. ùÚÓ ‰ÎË̇ ‰Û„Ë
·Óθ¯Ó„Ó ÍÛ„‡, ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ ÚÓ˜ÍË ı Ë Û Ì‡ ÒÙÂ˘ÂÒÍÓÈ ÏÓ‰ÂÎË Ô·ÌÂÚ˚.
èÛÒÚ¸ δ1 Ë φ1 fl‚Îfl˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ¯ËÓÚÓÈ Ë ‰Ó΄ÓÚÓÈ x, ‡ δ 2 Ë φ2 –
‡Ì‡Îӄ˘Ì˚ÏË Ô‡‡ÏÂÚ‡ÏË y; ÔÛÒÚ¸ r – ‡‰ËÛÒ áÂÏÎË. íÓ„‰‡ ‡ÒÒÚÓflÌË ·Óθ¯Ó„Ó
ÍÛ„‡ ‡‚ÌÓ
r arccos(sin δ1 sin δ 2 + cos δ1 cos δ 2 cos(φ1 − φ 2 )).
ÑÎfl ÒÙÂ˘ÂÒÍËı ÍÓÓ‰ËÌ‡Ú (θ, φ), „‰Â φ – ‡ÁËÏÛڇθÌ˚È Û„ÓÎ Ë θ – ÍÓ·ÚËÚ¸˛‰‡
(‰ÓÔÓÎÌÂÌ̇fl ¯ËÓÚ‡) ‡ÒÒÚÓflÌË ·Óθ¯Ó„Ó ÍÛ„‡ ÏÂÊ‰Û x = (θ1, φ1) Ë y = (θ2, φ2)
‡‚ÌÓ
r arccos(cos θ1 cos θ 2 + sin θ1 sin θ 2 cos(φ1 − φ 2 )).
ÑÎfl φ1 = φ2 ‚˚¯ÂÔ˂‰ÂÌ̇fl ÙÓÏÛ· ÒÓÍ‡˘‡ÂÚÒfl ‰Ó r | θ1 – θ2 |.
ëÙÂÓˉ‡Î¸Ì˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË
ÁÂÏÌÓÈ ÔÓ‚ÂıÌÓÒÚË ‚ ÒÙÂÓˉ‡Î¸ÌÓÈ ÏÓ‰ÂÎË Ô·ÌÂÚ˚. áÂÏÎfl ÔÓ Ò‚ÓÂÈ ÙÓÏÂ
·Óθ¯Â ÔÓıÓʇ ̇ ÒÔβÒÌÛÚ˚È ÒÙÂÓˉ Ò Ï‡ÍÒËχθÌ˚ÏË Á̇˜ÂÌËflÏË ‡‰ËÛÒÓ‚
ÍË‚ËÁÌ˚ 6336 ÍÏ Ì‡ ˝Í‚‡ÚÓÂ Ë 6399 ÍÏ Ì‡ ÔÓÎ˛Ò‡ı.
ãÓÍÒÓ‰ÓÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
ãÓÍÒÓ‰Óχ (ÛÏ·) – ÍË‚‡fl ÔÓ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË, ÔÂÂÒÂ͇˛˘‡fl ͇ʉ˚È
ÏÂË‰Ë‡Ì ÔÓ‰ Ó‰Ë̇ÍÓ‚˚Ï Û„ÎÓÏ. ùÚÓ ÔÛÚ¸, ÔË ÍÓÚÓÓÏ ÒÓı‡ÌflÂÚÒfl ÔÓÒÚÓflÌÌÓÂ
̇Ô‡‚ÎÂÌË ÔÓ ÍÓÏÔ‡ÒÛ.
ãÓÍÒÓ‰ÓÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË Ì‡ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË ÔÓ ÎÓÍÒÓ‰ÓÏÂ, ÒÓ‰ËÌfl˛˘ÂÈ Ëı. éÌÓ ÌËÍÓ„‰‡ Ì ·˚‚‡ÂÚ ÍÓӘ ÔÛÚË
ÔÓ ‰Û„ ·Óθ¯Ó„Ó ÍÛ„‡.
åÓÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‰ÎË̇ ÎÓÍÒÓ‰ÓÏ˚ ÒÓ‰ËÌfl˛˘ÂÈ Î˛·˚ ‰‚‡
ÏÂÒÚ‡ ̇ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË, ‚˚‡ÊÂÌ̇fl ‚ ÏÓÒÍËı ÏËÎflı. é‰Ì‡ ÏÓÒ͇fl ÏËÎfl
‡‚̇ 1852 Ï.
ê‡ÒÒÚÓflÌË ÍÓÌÚËÌÂÌڇθÌÓ„Ó ¯Âθه
ëÚ‡Ú¸fl 76 äÓÌ‚Â̈ËË ééç ÔÓ ÏÓÒÍÓÏÛ Ô‡‚Û (1999) ÓÔ‰ÂÎflÂÚ ÍÓÌÚËÌÂÌڇθÌ˚È ¯Âθ٠ÔË·ÂÊÌÓ„Ó „ÓÒÛ‰‡ÒÚ‚‡ (Â„Ó ÒÛ‚ÂÂÌÌÓ ‚·‰ÂÌËÂ) Í‡Í ÏÓÒÍÓÂ
‰ÌÓ Ë Ì‰‡ ÔÓ‰‚Ó‰Ì˚ı ‡ÈÓÌÓ‚, ÔÓÒÚË‡˛˘ËıÒfl Á‡ Ô‰ÂÎ˚ Â„Ó ÚÂËÚÓˇθÌÓ„Ó ÏÓfl ̇ ‚ÒÂÏ ÔÓÚflÊÂÌËË ÂÒÚÂÒÚ‚ÂÌÌÓ„Ó ÔÓ‰ÓÎÊÂÌËfl Â„Ó ÒÛıÓÔÛÚÌÓÈ
ÚÂËÚÓËË ‰Ó ‚̯ÌÂÈ „‡Ìˈ˚ ÔÓ‰‚Ó‰ÌÓÈ ÓÍ‡ËÌ˚ χÚÂË͇. äÓÌ‚Â̈ËÂÈ
ÛÒÚ‡ÌÓ‚ÎÂÌÓ, ˜ÚÓ ‡ÒÒÚÓflÌË ÍÓÌÚËÌÂÌڇθÌÓ„Ó ¯Âθه, Ú.Â. ‰‡Î¸ÌÓÒÚ¸ ÓÚ ËÒıÓ‰-
É·‚‡ 25. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË, „ÂÓÙËÁËÍÂ Ë ‡ÒÚÓÌÓÏËË
357
Ì˚ı ÎËÌËÈ, ÓÚ ÍÓÚÓ˚ı ÓÚÏÂflÂÚÒfl ¯ËË̇ ÚÂËÚÓˇθÌÓ„Ó ÏÓfl, ‰Ó ‚˚¯ÂÛ͇Á‡ÌÌÓÈ „‡Ìˈ˚, ‰ÓÎÊÌÓ Ì‡ıÓ‰ËÚ¸Òfl ‚ Ô‰Â·ı 200–350 ÏÓÒÍËı ÏËθ, ‡ Ú‡ÍÊÂ
Ô‰ÔËÒ‡Ì˚ Ô‡‚Ë· (ÔÓ˜ÚË) ÚÓ˜ÌÓ„Ó Â„Ó ÓÔ‰ÂÎÂÌËfl.
ëÚ‡Ú¸ÂÈ 47 ˝ÚÓÈ Ê äÓÌ‚Â̈ËË Ó·ÛÒÎÓ‚ÎÂÌÓ, ˜ÚÓ ‰Îfl „ÓÒÛ‰‡ÒÚ‚-‡ıËÔ·„Ó‚
ÓÚÌÓ¯ÂÌË ÔÎÓ˘‡‰Ë ‚Ó‰ÌÓÈ ÔÓ‚ÂıÌÓÒÚË (ÒÛ‚ÂÂÌÌÓ ‚·‰ÂÌËÂ) Í ÔÎÓ˘‡‰Ë Ëı
ÒÛ¯Ë, ‚Íβ˜‡fl ‡ÚÓÎÎ˚, ÒÓÒÚ‡‚ÎflÂÚ ÓÚ 1 : 1 ‰Ó 9 : 1 Ë ‚˚‡·ÓÚ‡Ì˚ Ô‡‚Ë· ÔËÏÂÌËÚÂθÌÓ Í ÍÓÌÍÂÚÌ˚Ï ÒÎÛ˜‡flÏ.
ê‡ÒÒÚÓflÌËfl ‡‰ËÓÒ‚flÁË
ê‡ÒÒÚÓflÌË „ÓËÁÓÌÚ‡ – ‡ÒÒÚÓflÌË ̇ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË, ̇ ÍÓÚÓÓ ‡ÒÔÓÒÚ‡ÌflÂÚÒfl Ôflχfl ‚ÓÎ̇; ‚ ÂÁÛθڇÚ ÓÚ‡ÊÂÌËfl ‚ÓÎÌ ÓÚ ‡ÚÏÓÒÙÂ˚ ˝ÚÓ ‡ÒÒÚÓflÌËÂ
ÏÓÊÂÚ Ô‚˚¯‡Ú¸ ‰‡Î¸ÌÓÒÚ¸ ÔflÏÓÈ ‚ˉËÏÓÒÚË. Ç ÚÂ΂ˉÂÌËË ‡ÒÒÚÓflÌËÂÏ „ÓËÁÓÌÚ‡ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ‰Ó ̇˷ÓΠۉ‡ÎÂÌÌÓÈ ÚÓ˜ÍË Ì‡ ÔÓ‚ÂıÌÓÒÚË
áÂÏÎË, ̇ıÓ‰fl˘ÂÈÒfl ‚ Ô‰Â·ı ‚ˉËÏÓÒÚË ÔÂ‰‡˛˘ÂÈ ‡ÌÚÂÌÌ˚.
áÓ̇ ÏÓΘ‡ÌËfl – ̇ËÏÂ̸¯Â ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓÏ Ó·ÂÒÔ˜˂‡ÂÚÒfl ÔËÂÏ
‡‰ËÓÒ˄̇· (ÓÔ‰ÂÎÂÌÌÓÈ ˜‡ÒÚÓÚ˚) ÓÚ ÔÂ‰‡Ú˜Ë͇ ÔÓÒÎÂ Â„Ó ÓÚ‡ÊÂÌËfl
(Ô˚Ê͇) ÓÚ ËÓÌÓÒÙÂ˚.
ê‡ÒÒÚÓflÌË ÔflÏÓÈ ‚ˉËÏÓÒÚË – ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ÔÓıÓ‰ËÚ ‡‰ËÓÒ˄̇ΠÓÚ
Ó‰ÌÓÈ ‡ÌÚÂÌÌ˚ Í ‰Û„ÓÈ ÔË ÛÒÎÓ‚ËË, ˜ÚÓ ‡ÌÚÂÌÌ˚ ̇ıÓ‰flÚÒfl ‚ ÔflÏÓÈ ‚ˉËÏÓÒÚË Ë
̇ ÔÛÚË ‡‰ËÓÒ˄̇· ÌÂÚ ÌË͇ÍËı ÔÂÔflÚÒÚ‚ËÈ. àÏÂÌÌÓ, ‡‰ËÓ‚ÓÎÌ˚ ÏÓ„ÛÚ
‡ÒÔÓÒÚ‡ÌflÚ¸Òfl Ë Á‡ „ÓËÁÓÌÚ, ÔÓÒÍÓθÍÛ ÓÌË ‚Á‡ËÏÓ‰ÂÈÒÚ‚Û˛Ú Ò ÁÂÏÌÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛ Ë/ËÎË ËÓÌÓÒÙÂÓÈ.
èË ËÒÔÓθÁÓ‚‡ÌËË ‰‚Ûı ‡‰ËÓ˜‡ÒÚÓÚ (̇ÔËÏÂ, 12,5 Ë 25 ÍɈ ‚ ÏÓÒÍÓÈ Ò‚flÁË)
‡ÒÒÚÓflÌË ÙÛÌ͈ËÓ̇θÌÓÈ ÒÓ‚ÏÂÒÚËÏÓÒÚË Ë ‡ÒÒÚÓflÌË ‡ÁÌÂÒÂÌËfl ÒÓÒ‰ÌËı
͇̇ÎÓ‚ (˜‡ÒÚÓÚ) ÓÔ‰ÂÎfl˛Ú ‰‡Î¸ÌÓÒÚ¸, ̇ ÍÓÚÓÓÈ ‚Ò ÔËÂÏÌËÍË ·Û‰ÛÚ ÔËÌËχڸ Ò˄̇Î˚ ÔÂ‰‡Ú˜ËÍÓ‚ Ë ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË ÏÂʉÛ
ÛÁÍÓÔÓÎÓÒÌ˚Ï ÔÂ‰‡Ú˜ËÍÓÏ Ë ¯ËÓÍÓÔÓÎÓÒÌ˚Ï ÔËÂÏÌËÍÓÏ, Ò ÚÂÏ ˜ÚÓ·˚ ËÁ·Âʇڸ ÔÓÏÂı.
DX Ó·ÓÁ̇˜‡ÂÚ Ì‡ ÒÎ˝Ì„Â ‡‰ËÓβ·ËÚÂÎÂÈ (Ë ‚ ÏÓÁflÌÍÂ) ‰‡Î¸ÌËÈ ÔËÂÏ;
‡·ÓÚ‡Ú¸ ‚ ÂÊËÏ DX – ˝ÚÓ ‚ÂÒÚË ‡‰ËÓÓ·ÏÂÌ Ì‡ ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË (‰Îfl ˜Â„Ó
ÌÂÓ·ıÓ‰ËÏ˚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ÛÒËÎËÚÂÎË ÏÓ˘ÌÓÒÚË).
ÑÓÔÛÒ͇ÂÏÓ ‡ÒÒÚÓflÌËÂ
Ç ÍÓÏÔ¸˛ÚÂÌÓÈ „ÂÓËÌÙÓχˆËÓÌÌÓÈ ÒËÒÚÂÏ (GIS) ‰ÓÔÛÒÚËÏ˚Ï ‡ÒÒÚÓflÌËÂÏ
fl‚ÎflÂÚÒfl χÍÒËχθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, ÍÓÚÓÓ ÛÒڇ̇‚ÎË‚‡ÂÚÒfl
Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ Ó·ÂÒÔ˜˂‡Î‡Ò¸ ÍÓÂ͈Ëfl ÏÂÚ‚˚ı ÁÓÌ Ë ÔÓχıÓ‚
(Á‡ÙËÍÒËÓ‚‡ÌÌ˚ ‚ÏÂÒÚ ÎËÌËË) ÔÓ ÏÂ ÚÓ„Ó Í‡Í ÓÌË Ó͇Á˚‚‡˛ÚÒfl ‚ ‡Ï͇ı
‰ÓÔÛÒ͇ÂÏÓ„Ó ‡ÒÒÚÓflÌËfl.
ê‡ÒÒÚÓflÌË ̇ ͇ÚÂ
ê‡ÒÒÚÓflÌË ̇ ͇Ú – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË Ì‡ ͇Ú (Ì ÔÛÚ‡Ú¸ Ò
‡ÒÒÚÓflÌËÂÏ ÓÚÓ·‡ÊÂÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÎÓÍÛÒ‡ÏË Ì‡ „ÂÌÂÚ˘ÂÒÍÓÈ Í‡ÚÂ.
ÉÓËÁÓÌڇθÌÓ ‡ÒÒÚÓflÌË ÓÔ‰ÂÎflÂÚÒfl ÛÏÌÓÊÂÌËÂÏ ‡ÒÒÚÓflÌËfl ̇ ͇Ú ̇
 χүڇ·.
ÉÓËÁÓÌڇθÌÓ ‡ÒÒÚÓflÌËÂ
ÉÓËÁÓÌڇθÌÓ ‡ÒÒÚÓflÌË (‡ÒÒÚÓflÌË ̇ ÏÂÒÚÌÓÒÚË) – ‡ÒÒÚÓflÌË ̇ ÔÎÓÒÍÓÒÚË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, Í‡Í ËÁÓ·‡ÊÂÌÓ Ì‡ ͇Ú (·ÂÁ Û˜ÂÚ‡ ÓÒÓ·ÂÌÌÓÒÚÂÈ
ÂθÂÙ‡ ÏÂÒÚÌÓÒÚË ÏÂÊ‰Û ˝ÚËÏË ÚӘ͇ÏË). ê‡Á΢‡˛Ú ‰‚‡ ÚËÔ‡ „ÓËÁÓÌڇθÌÓ„Ó
‡ÒÒÚÓflÌËfl: ÔflÏÓÎËÌÂÈÌÓ ‡ÒÒÚÓflÌË (‰ÎË̇ ÓÚÂÁ͇ ÔflÏÓÈ, ÒÓ‰ËÌfl˛˘ÂÈ
358
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
‰‡ÌÌ˚ ÚÓ˜ÍË, ËÁÏÂÂÌ̇fl ‚ χүڇ·Â ͇Ú˚) Ë ‡ÒÒÚÓflÌË ÔÛÚ¯ÂÒÚ‚Ëfl (‰ÎË̇
Í‡Ú˜‡È¯Â„Ó Ï‡¯ÛÚ‡ ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, ËÁÏÂÂÌ̇fl ‚ χүڇ·Â ͇Ú˚ Ò
Û˜ÂÚÓÏ ÒÛ˘ÂÒÚ‚Û˛˘Ëı ‰ÓÓ„, ÂÍ Ë Ú.Ô.).
ç‡ÍÎÓÌÌÓ ‡ÒÒÚÓflÌËÂ
ç‡ÍÎÓÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ (ËÎË Ì‡ÍÎÓÌÌÓÈ ‰‡Î¸ÌÓÒÚ¸˛) ̇Á˚‚‡ÂÚÒfl (‚ ÓÚ΢ˠÓÚ
ËÒÚËÌÌÓ „ÓËÁÓÌڇθÌÓ„Ó ËÎË ‚ÂÚË͇θÌÓ„Ó) ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË,
ËÁÏÂÂÌÌÓÂ Ò Û˜ÂÚÓÏ Ì‡ÍÎÓ̇.
ê‡ÒÒÚÓflÌË ‰‚ËÊÂÌËfl ÔÓ ‰ÓÓ„Â
ê‡ÒÒÚÓflÌËÂÏ ‰‚ËÊÂÌËfl ÔÓ ‰ÓÓ„Â (ËÎË Ù‡ÍÚ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ, ÍÓÎÂÒÌ˚Ï
‡ÒÒÚÓflÌËÂÏ, ‰ÓÓÊÌ˚Ï ‡ÒÒÚÓflÌËÂÏ) ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË (̇ÔËÏÂ, „ÓÓ‰‡ÏË)
ÌÂÍÓÚÓÓ„Ó „ËÓ̇ ̇Á˚‚‡ÂÚÒfl ‰ÎË̇ Í‡Ú˜‡È¯ÂÈ ‰ÓÓ„Ë, ÒÓ‰ËÌfl˛˘ÂÈ ˝ÚË
ÚÓ˜ÍË. èÓÒÍÓθÍÛ ˜‡˘Â ‚ÒÂ„Ó ËÁÏÂËÚ¸ Ù‡ÍÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË Ì Ô‰ÒÚ‡‚ÎflÂÚÒfl
‚ÓÁÏÓÊÌ˚Ï, Ó·˚˜ÌÓ ËÒÔÓθÁÛ˛ÚÒfl ÓˆÂÌÓ˜Ì˚ ‡ÒÒÚÓflÌËfl. ùÏÔË˘ÂÒÍË ‰‡ÌÌ˚Â
ÔÓ͇Á˚‚‡˛Ú, ˜ÚÓ ‡ÒÒÚÓflÌË ‰‚ËÊÂÌËfl ÔÓ ‰ÓÓ„Â Á‡˜‡ÒÚÛ˛ fl‚ÎflÂÚÒfl ÎËÌÂÈÌÓÈ
ÙÛÌ͈ËÂÈ ‡ÒÒÚÓflÌËfl ·Óθ¯Ó„Ó ÍÛ„‡; ‚ „ÓÓ‰‡ı ò‚ˆËË ÏÓÊÌÓ Ò˜ËÚ‡Ú¸, ˜ÚÓ
‰ÓÓÊÌÓ ‡ÒÒÚÓflÌË ÔË·ÎËÁËÚÂθÌÓ ‡‚ÌÓ 1,25 · d, „‰Â d – ‡ÒÒÚÓflÌË ·Óθ¯Ó„Ó
ÍÛ„‡. Ç ëòÄ Ú‡ÍÓÈ ÏÌÓÊËÚÂθ ‡‚ÂÌ ÔËÏÂÌÓ 1,15 ‚ ̇Ô‡‚ÎÂÌËË Ò ‚ÓÒÚÓ͇ ̇
Á‡Ô‡‰ Ë ÔËÏÂÌÓ 1,21 ‚ ̇Ô‡‚ÎÂÌËË Ò Ò‚Â‡ ̇ ˛„.
çËÊ Ô˂‰ÂÌ˚ ÌÂÍÓÚÓ˚ Ó‰ÒÚ‚ÂÌÌ˚ ÔÓÌflÚËfl.
ÇÂÏfl ‰‚ËÊÂÌËfl ÏÂÊ‰Û Ó·˙ÂÍÚ‡ÏË; „ÓÓ‰Ò͇fl ‰ÓÓÊ̇fl ÒÂÚ¸ 20 ÍÛÔÌÂȯËı
„ÓÓ‰Ó‚ ÉÂχÌËË fl‚ÎflÂÚÒfl ·ÂÁχүڇ·ÌÓÈ ËÏÂÌÌÓ ‰Îfl ˝ÚÓÈ ÏÂ˚ (‚ÓÁÏÓÊÌÓ,
̇˷ÓΠ·ÎËÁÍÓÈ ‰Îfl ‚Ó‰ËÚÂÎÂÈ).
éÙˈˇθÌÓ ‡ÒÒÚÓflÌË – ÔËÁ̇ÌÌÓ ‡ÒÒÚÓflÌË ÂÁ‰˚ ̇ ‡‚ÚÓÏÓ·ËΠÏÂʉÛ
‰‚ÛÏfl ÔÛÌÍÚ‡ÏË, ÍÓÚÓÓ ËÒÔÓθÁÛÂÚÒfl ‰Îfl ‡Ò˜ÂÚ‡ ÔÛÚË Ë ÓÔ·Ú˚ Á‡ ÔÂ‚ÓÁÍÛ
(Ì ÔÛÚ‡Ú¸ Ò ‡ÒÒÚÓflÌËÂÏ ÒÚÓËÏÓÒÚË ÒËÒÚÂÏÌÓ„Ó ‡‰ÏËÌËÒÚËÓ‚‡ÌËfl ‚ àÌÚÂÌÂÚÂ).
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓ˜ÚÓ‚˚ÏË Ë̉ÂÍÒ‡ÏË (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ˝ÚÓ ÔÓ˜ÚÓ‚˚ Ë
ÚÂÎÂÙÓÌÌ˚ ÍÓ‰˚ „ÓÓ‰Ó‚) – ‡Ò˜ÂÚÌÓ ‡ÒÒÚÓflÌË ÂÁ‰˚ ̇ ‡‚ÚÓÏÓ·ËΠ(ËÎË ‚ÂÏfl
ÂÁ‰˚ ̇ ‡‚ÚÓÏÓ·ËÎÂ) ÏÂÊ‰Û ‰‚ÛÏfl ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ÔÛÌÍÚ‡ÏË.
ê‡ÒÒÚÓflÌË åÓıÓ
ê‡ÒÒÚÓflÌË åÓıÓ – ‡ÒÒÚÓflÌË ÓÚ ÚÓ˜ÍË Ì‡ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË ‰Ó „‡Ìˈ˚
‡Á‰Â· ‰‚Ûı Ò‰ ÔÓ åÓıÓÓ‚Ë˜Ë˜Û (ËÎË ÒÂÈÒÏ˘ÂÒÍÓÈ „‡Ìˈ˚ åÓıÓӂ˘˘‡)
ÔÓ‰ ˝ÚÓÈ ÚÓ˜ÍÓÈ. É‡ÌˈÂÈ ‡Á‰Â· ‰‚Ûı Ò‰ ÔÓ åÓıÓÓ‚Ë˜Ë˜Û Ì‡Á˚‚‡ÂÚÒfl „‡Ìˈ‡
ÏÂÊ‰Û ıÛÔÍÓÈ ‚ÂıÌÂÈ ˜‡ÒÚ¸˛ ÁÂÏÌÓÈ ÍÓ˚ Ë ·ÓΠ„Ófl˜ÂÈ Ë Ïfl„ÍÓÈ Ï‡ÌÚËÂÈ.
ê‡ÒÒÚÓflÌË åÓıÓ ÒÓÒÚ‡‚ÎflÂÚ ÔÓfl‰Í‡ 5–10 ÍÏ ÔÓ‰ ‰ÌÓÏ Ó͇̇ Ë 35–65 ÍÏ ‚ „ÎÛ·¸
χÚÂËÍÓ‚ („ÎÛ·Ó˜‡È¯‡fl ‚ ÏË Ô¢Â‡ äÛ·Â‡-ÇÓÓ̸fl ̇ 䇂͇Á – 2,14 ÍÏ,
„ÎÛ·Ó˜‡È¯‡fl ¯‡ıÚ‡ ̇ ÁÓÎÓÚ˚ı ÔËËÒ͇ı "Western Deep Levels", ûÄê – ÓÍÓÎÓ 4 ÍÏ
Ë Ò‚Âı„ÎÛ·Ó͇fl ·ÛÓ‚‡fl ¯‡ıÚ‡ ̇ äÓθÒÍÓÏ ÔÓÎÛÓÒÚÓ‚Â – 12,3 ÍÏ). íÂÏÔÂ‡ÚÛ‡
Ó·˚˜ÌÓ ÔÓ‰ÌËχÂÚÒfl ̇ Ó‰ËÌ „‡‰ÛÒ Ì‡ ͇ʉ˚ 33 Ï „ÎÛ·ËÌ˚. üÔÓÌÒÍÓ ËÒÒΉӂ‡ÚÂθÒÍÓ ·ÛÓ‚Ó ÒÛ‰ÌÓ "íËͲ" ("Chikyu") ‚ ÔÂËÓ‰ Ò ÒÂÌÚfl·fl 2007 „. ̇˜‡ÎÓ
ÓÒÛ˘ÂÒÚ‚ÎflÚ¸ ·ÛÂÌË ‚ 200 ÍÏ ÓÚ ÔÓ·ÂÂʸfl „. 燄Ófl ̇ „ÎÛ·ËÌÛ ‰Ó ÒÂÈÒÏ˘ÂÒÍÓÈ
„‡Ìˈ˚ åÓıÓӂ˘˘‡.
å‡ÌÚËfl áÂÏÎË ÔÓÒÚË‡ÂÚÒfl ÓÚ ÒÂÈÒÏ˘ÂÒÍÓÈ „‡Ìˈ˚ åÓıÓӂ˘˘‡ ‰Ó „‡Ìˈ˚ ÏÂÊ‰Û Ï‡ÌÚËÂÈ Ë fl‰ÓÏ Ì‡ „ÎÛ·ËÌ ÓÍÓÎÓ 2890 ÍÏ. å‡ÌÚËfl áÂÏÎË ‡Á‰ÂÎflÂÚÒfl
̇ ‚ÂıÌ˛˛ Ë ÌËÊÌ˛˛ χÌÚËË, „‡Ìˈ‡ ÏÂÊ‰Û ÍÓÚÓ˚ÏË ÔÓıÓ‰ËÚ Ì‡ „ÎÛ·ËÌÂ
ÓÍÓÎÓ 660 ÍÏ. ÑÛ„Ë ÒÂÈÒÏ˘ÂÒÍË „‡Ìˈ˚ ÓÚϘ‡˛ÚÒfl ̇ „ÎÛ·Ë̇ı 60–90 ÍÏ
(„‡Ìˈ‡ ï˝ÎÂ), 50–150 ÍÏ („‡Ìˈ‡ ÉÛÚÚÂÌ·Â„‡), 220 ÍÏ („‡Ìˈ‡ ãÂχ̇), 410 ÍÏ,
520 ÍÏ Ë 710 ÍÏ.
É·‚‡ 25. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË, „ÂÓÙËÁËÍÂ Ë ‡ÒÚÓÌÓÏËË
359
ê‡ÒÒÚÓflÌËfl ‚ ÒÂÈÒÏÓÎÓ„ËË
áÂÏ̇fl ÍÓ‡ ÒÓÒÚÓËÚ ËÁ ÚÂÍÚÓÌ˘ÂÒÍËı ÔÎËÚ, ÍÓÚÓ˚ ÔÂÂÏ¢‡˛ÚÒfl (̇
ÌÂÒÍÓθÍÓ Ò‡ÌÚËÏÂÚÓ‚ ‚ „Ó‰) ÔÓ‰ ‚ÓÁ‰ÂÈÒÚ‚ËÂÏ ÚÂÔÎÓ‚ÓÈ ÍÓÌ‚Â͈ËË ÓÚ „ÎÛ·ËÌÌÓÈ
χÌÚËË Ë ÒËÎ Úfl„ÓÚÂÌËfl. ä‡fl ˝ÚËı ÔÎËÚ Ó·˚˜ÌÓ ‰‡‚flÚ ‰Û„ ̇ ‰Û„‡, Ë ËÌÓ„‰‡ ÂÁÍÓ
ÒÏ¢‡˛ÚÒfl ÓÚÌÓÒËÚÂθÌÓ ‰Û„ ‰Û„‡. áÂÏÎÂÚflÒÂÌËÂ, Ú.Â. ‚ÌÂÁ‡ÔÌÓ (‚ Ú˜ÂÌËÂ
ÌÂÒÍÓθÍËı ÒÂÍÛ̉) ‰‚ËÊÂÌË ËÎË ‰ÓʇÌË áÂÏÎË, ‚˚Á‚‡ÌÌÓ ÂÁÍËÏ ‚˚Ò‚Ó·ÓʉÂÌËÂÏ ÔÓÒÚÂÔÂÌÌÓ Ì‡ÍÓÔÎÂÌÌÓ„Ó Ì‡ÔflÊÂÌËfl, ̇˜Ë̇fl Ò 1906 „. ‡ÒÒχÚË‚‡ÎÓÒ¸
Í‡Í Ó·‡ÁÓ‚‡ÌË ‡ÁÎÓχ (‚ÌÂÁ‡ÔÌÓ ÔÓfl‚ÎÂÌËÂ, Ó·‡ÁÓ‚‡ÌË ‡ÍÚË‚Ì˚ı ˆÂÌÚÓ‚ Ë
‡ÒÔÓÒÚ‡ÌÂÌË ÌÓ‚˚ı Ú¢ËÌ Ë Ò‰‚Ë„Ó‚) ÔÓ Ô˘ËÌ ÛÔÛ„Ó„Ó ‚ÓÒÒÚ‡ÌÓ‚ÎÂÌËfl
ÔÓÒΠ‰ÂÙÓχˆËË. é‰Ì‡ÍÓ Ò 1996 „. ÁÂÏÎÂÚflÒÂÌË ‡ÒÒχÚË‚‡ÂÚÒfl ‚ ÍÓÌÚÂÍÒÚÂ
ÒÍÓθÊÂÌËfl ÚÂÍÚÓÌ˘ÂÒÍËı ÔÎËÚ ‚‰Óθ ÛÊ ÒÛ˘ÂÒÚ‚Û˛˘Ëı ‡ÁÎÓÏÓ‚ ËÎË ÒÚ˚ÍÓ‚
ÏÂÊ‰Û ÌËÏË Í‡Í ÂÁÛÎ¸Ú‡Ú ÔÂ˚‚ËÒÚÓ„Ó Ò‰‚Ë„‡ ÔÓÓ‰ ‚ ÛÒÎÓ‚Ëflı ÙË͈ËÓÌÌÓÈ
ÌÂÒÚ‡·ËθÌÓÒÚË. ëÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÁÂÏÎÂÚflÒÂÌË ÔÓËÒıÓ‰ËÚ, ÍÓ„‰‡ ‰Ë̇Ï˘ÂÒÍÓÂ
ÚÂÌË ÒÚ‡ÌÓ‚ËÚÒfl ÏÂ̸¯Â ÒÚ‡Ú˘ÂÒÍÓ„Ó ÚÂÌËfl. Ñ‚ËÊÛ˘‡flÒfl „‡Ìˈ‡ ӷ·ÒÚË
ÒÍÓθÊÂÌËfl ̇Á˚‚‡ÂÚÒfl ÙÓÌÚÓÏ ‡Á˚‚‡. é·˚˜ÌÓ Ô‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ Ò‰‚Ë„ –
˝ÚÓ ÓÔ‰ÂÎÂÌ̇fl ÔÓ‚ÂıÌÓÒÚ¸ ̇Ô‡‚ÎÂÌÌÓ„Ó ÔÓ Í‡Ò‡ÚÂθÌÓÈ Ò͇˜Í‡ ÒÏ¢ÂÌËÈ,
Á‡Íβ˜ÂÌÌ˚ı ‚ ÔÓÒÎÓÈÍ ÛÔÛ„ÓÈ ÍÓ˚.
90% ÁÂÏÎÂÚflÒÂÌËÈ ËÏÂ˛Ú ÚÂÍÚÓÌ˘ÂÒÍÛ˛ ÔËÓ‰Û, Ӊ̇ÍÓ ÓÌË ÏÓ„ÛÚ Ú‡ÍÊÂ
·˚Ú¸ ÂÁÛθڇÚÓÏ ‚ÛÎ͇Ì˘ÂÒÍÓ„Ó ËÁ‚ÂÊÂÌËfl, fl‰ÂÌÓ„Ó ‚Á˚‚‡, ÒÚÓËÚÂθÒÚ‚‡
ÍÛÔÌ˚ı ÔÎÓÚËÌ ËÎË „ÓÌ˚ı ‡·ÓÚ. ëË· ÁÂÏÎÂÚflÒÂÌËfl ÏÓÊÂÚ ËÁÏÂflÚ¸Òfl
„ÎÛ·ËÌÓÈ Ó˜‡„‡ ÁÂÏÎÂÚflÒÂÌËfl, ÒÍÓÓÒÚ¸˛ ÒÏ¢ÂÌËfl, ËÌÚÂÌÒË‚ÌÓÒÚ¸˛ (ÔÓ ÏÓ‰ËÙˈËÓ‚‡ÌÌÓÈ ¯Í‡Î åÂ͇ÎÎË ˝ÙÙÂÍÚÓ‚ ÁÂÏÎÂÚflÒÂÌËÈ, ‚Â΢ËÌÓÈ, ÛÒÍÓÂÌËÂÏ
(ÓÒÌÓ‚ÌÓÈ Ù‡ÍÚÓ ‡ÁÛ¯ÂÌËfl) Ë Ú.Ô. ëË· ÁÂÏÎÂÚflÒÂÌËfl ÔÓ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ
¯Í‡Î êËıÚÂ‡ ‡ÒÒ˜ËÚ˚‚‡ÂÚÒfl Ò Û˜ÂÚÓÏ ‡ÏÔÎËÚÛ‰˚ Ë ˜‡ÒÚÓÚ˚ Û‰‡Ì˚ı ‚ÓÎÌ,
ÍÓÚÓ˚ „ËÒÚËÛ˛ÚÒfl ÒÂÈÒÏÓ„‡ÙÓÏ, ̇ÒÚÓÂÌÌ˚Ï Ì‡ ˝ÔˈÂÌÚ‡Î¸ÌÓ ‡ÒÒÚÓflÌËÂ. ì‚Â΢ÂÌË ÒËÎ˚ ÁÂÏÎÂÚflÒÂÌËfl ̇ 0,1 ·‡Î· ÔÓ ¯Í‡Î êËıÚÂ‡ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ
10-Í‡ÚÌÓÏÛ Û‚Â΢ÂÌ˲ ‡ÏÔÎËÚÛ‰˚ ‚ÓÎÌ; ̇˷Óθ¯ÂÈ Á‡„ËÒÚËÓ‚‡ÌÌÓÈ ‚Â΢ËÌÓÈ fl‚ÎflÂÚÒfl 9,5 ·‡ÎÎÓ‚ (ÁÂÏÎÂÚflÒÂÌË ‚ óËÎË ‚ 1960 „.).
åÓ‰ÂÎË Á‡ÚÛı‡ÌËfl ÍÓη‡ÌËÈ ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ‡ÒÒÚÓflÌËfl, ËÒÔÓθÁÛÂÏ˚ ÔË
ÔÓÂÍÚËÓ‚‡ÌËË ÒÂÈÒÏÓÒÚÓÈÍËı ÒÓÓÛÊÂÌËÈ (Á‰‡ÌËÈ Ë ÏÓÒÚÓ‚), Ó·˚˜ÌÓ ÓÒÌÓ‚˚‚‡˛ÚÒfl ̇ Ô‡‡ÏÂÚ‡ı Á‡ÚÛı‡ÌËfl ÛÒÍÓÂÌËfl ÔË Û‚Â΢ÂÌËË ‡ÒÒÚÓflÌËfl ÏÂʉÛ
ËÒÚÓ˜ÌËÍÓÏ Ë Ó·˙ÂÍÚÓÏ, Ú.Â. ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÒÂÈÒÏÓÎӄ˘ÂÒÍÓÈ Òڇ̈ËÂÈ Ë
ÍËÚ˘ÂÒÍÓÈ (‰Îfl ÍÓÌÍÂÚÌÓÈ ÏÓ‰ÂÎË) "ˆÂÌÚ‡Î¸ÌÓÈ" ÚÓ˜ÍÓÈ ÁÂÏÎÂÚflÒÂÌËfl.
èÓÒÚÂȯÂÈ ÏÓ‰Âθ˛ fl‚ÎflÂÚÒfl „ËÔÓˆÂÌÚ (ËÎË Ó˜‡„), Ú.Â. ÚӘ͇ ‚ÌÛÚË áÂÏÎË,
ÓÚÍÛ‰‡ ËÒıÓ‰ËÚ ÁÂÏÎÂÚflÒÂÌË (Ò̇˜‡Î‡ ‚ÓÁÌË͇˛Ú ÍÓη‡ÌËfl, Á‡ÚÂÏ ÔÓËÒıÓ‰ËÚ
ÒÂÈÒÏ˘ÂÒÍËÈ ‡Á˚‚ ËÎË Ì‡˜Ë̇ÂÚÒfl ÔÓ‰‚ËÊ͇). ùÔˈÂÌÚÓÏ Ì‡Á˚‚‡ÂÚÒfl ÚӘ͇ ̇
ÔÓ‚ÂıÌÓÒÚË áÂÏÎË ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ Ì‡‰ „ËÔÓˆÂÌÚÓÏ. è˂‰ÂÌ̇fl ÌËÊÂ
ÚÂÏËÌÓÎÓ„Ëfl Ú‡ÍÊ ËÒÔÓθÁÛÂÚÒfl ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ‰Û„Ëı ͇ڇÒÚÓÙ, Ú‡ÍËı ͇Í
Ô‡‰ÂÌË ËÎË ‚Á˚‚ fl‰ÂÌÓÈ ·Ó„ÓÎÓ‚ÍË, ÏÂÚÂÓËÚ‡ ËÎË ÍÓÏÂÚ˚, Ӊ̇ÍÓ ‰Îfl ‚ÓÁ‰Û¯Ì˚ı ‚Á˚‚Ó‚ ÚÂÏËÌ „ËÔÓˆÂÌÚ ÓÚÌÓÒËÚÒfl Í ÚӘ̇͠ ÁÂÏÌÓÈ ÔÓ‚ÂıÌÓÒÚË
ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ ÔÓ‰ ‚Á˚‚ÓÏ. чΠÔË‚Ó‰ËÚÒfl ÔÂ˜Â̸ ÓÒÌÓ‚Ì˚ı ÒÂÈÒÏÓÎӄ˘ÂÒÍËı ‡ÒÒÚÓflÌËÈ.
ÉÎÛ·Ë̇ Ó˜‡„‡ ÁÂÏÎÂÚflÒÂÌËfl – ‡ÒÒÚÓflÌË ÏÂÊ‰Û „ËÔÓˆÂÌÚÓÏ Ë ˝ÔˈÂÌÚÓÏ;
Ò‰Ìflfl „ÎÛ·Ë̇ Ó˜‡„‡ ÁÂÏÎÂÚflÒÂÌËfl ÒÓÒÚ‡‚ÎflÂÚ 100–300 ÍÏ.
ÉËÔÓˆÂÌÚ‡Î¸ÌÓ ‡ÒÒÚÓflÌËÂ: ‡ÒÒÚÓflÌË ÓÚ ÒÂÈÒÏÓÒڇ̈ËË ‰Ó „ËÔÓˆÂÌÚ‡.
ùÔˈÂÌÚ‡Î¸ÌÓ ‡ÒÒÚÓflÌË (ËÎË ‡ÒÒÚÓflÌË ÁÂÏÎÂÚflÒÂÌËfl) – ‡ÒÒÚÓflÌË ·Óθ¯Ó„Ó ÍÛ„‡ ÓÚ ÒÂÈÒÏÓÒڇ̈ËË ‰Ó ˝ÔˈÂÌÚ‡.
ê‡ÒÒÚÓflÌË ÑÊÓÈÌÂ‡-ÅÛ‡ – ‡ÒÒÚÓflÌË ÓÚ ÒÂÈÒÏÓÒڇ̈ËË ‰Ó ·ÎËʇȯÂÈ ÚÓ˜ÍË
̇ ÁÂÏÌÓÈ ÔÓ‚ÂıÌÓÒÚË, ‡ÒÔÓÎÓÊÂÌÌÓÈ Ì‡‰ ÔÓ‚ÂıÌÓÒÚ¸˛ ‡Á˚‚‡, Ú.Â. ‚ÒÔÓÓÚÓÈ
˜‡ÒÚ¸˛ ÔÎÓÒÍÓÒÚË ÚÂÍÚÓÌ˘ÂÒÍÓ„Ó Ì‡Û¯ÂÌËfl.
360
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ê‡ÒÒÚÓflÌË ‡ÁÎÓχ – ‡ÒÒÚÓflÌË ÓÚ ÒÂÈÒÏÓÒڇ̈ËË ‰Ó ·ÎËʇȯÂÈ ÚÓ˜ÍË Ì‡
ÔÓ‚ÂıÌÓÒÚË ‡ÁÎÓχ.
ê‡ÒÒÚÓflÌË ÒÂÈÒÏÓ„ÂÌÌÓÈ „ÎÛ·ËÌ˚ – ‡ÒÒÚÓflÌË ÓÚ ÒÂÈÒÏÓÒڇ̈ËË ‰Ó ·ÎËʇȯÂÈ ÚÓ˜ÍË ÔÓ‚ÂıÌÓÒÚË ‡Á˚‚‡ ‚ Ô‰Â·ı ÒÂÈÒÏÓ„ÂÌÌÓÈ ÁÓÌ˚, Ú.Â. „ÎÛ·ËÌ˚
‚ÓÁÏÓÊÌ˚ı Ó˜‡„Ó‚ ÁÂÏÎÂÚflÒÂÌËÈ; Ó·˚˜ÌÓ ˝ÚÓ 8–12 ÍÏ.
äÓÏ ÚÓ„Ó, ËÒÔÓθÁÛ˛ÚÒfl ‡ÒÒÚÓflÌËfl ÓÚ ÒÂÈÒÏÓÒڇ̈ËË ‰Ó:
– ˆÂÌÚ‡ ‚˚·ÓÒ‡ ÒÚ‡Ú˘ÂÒÍÓÈ ˝ÌÂ„ËË Ë ˆÂÌÚ‡ ÒÚ‡Ú˘ÂÒÍÓÈ ‰ÂÙÓχˆËË ÔÎÓÒÍÓÒÚË ÚÂÍÚÓÌ˘ÂÒÍÓ„Ó Ò‰‚Ë„‡;
– ÚÓ˜ÍË Ì‡ ÔÓ‚ÂıÌÓÒÚË Ò Ï‡ÍÒËχθÌÓÈ Ï‡ÍÓÒÂÈÒÏ˘ÂÒÍÓÈ ËÌÚÂÌÒË‚ÌÓÒÚ¸˛,
Ú.Â. χÍÒËχθÌ˚Ï ÛÒÍÓÂÌËÂÏ „ÛÌÚ‡ (ÏÓÊÂÚ Ì ÒÓ‚Ô‡‰‡Ú¸ Ò ˝ÔˈÂÌÚÓÏ);
– ˝ÔˈÂÌÚ‡, Ú‡ÍÓÂ, ̇ ÍÓÚÓÓÏ Ó·˙ÂÏÌ˚ ‚ÓÎÌ˚, ÓÚ‡Ê‡˛˘ËÂÒfl ÓÚ ÒÂÈÒÏ˘ÂÒÍÓÈ „‡Ìˈ˚ åÓıÓ (‡Á‰ÂÎ ÏÂÊ‰Û ÍÓÓÈ Ë Ï‡ÌÚËÂÈ), ‚˚Á˚‚‡˛Ú ·ÓΠÁ̇˜ËÚÂθÌ˚ ÍÓη‡ÌËfl „ÛÌÚ‡, ˜ÂÏ ‚ÚÓ˘Ì˚ ‚ÓÎÌ˚ (̇Á˚‚‡ÂÚÒfl ÍËÚ˘ÂÒÍËÏ
‡ÒÒÚÓflÌËÂÏ åÓıÓ);
– ËÒÚÓ˜ÌËÍÓ‚ ¯Ûχ Ë ÔÓÏÂı: Ó͇ÌÓ‚, ÓÁÂ, ÂÍ, ÊÂÎÂÁÌ˚ı ‰ÓÓ„, Á‰‡ÌËÈ.
ê‡ÒÒÚÓflÌË ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌÓÈ Ò‚flÁË ÏÂÊ‰Û ‰‚ÛÏfl ÁÂÏÎÂÚflÒÂÌËflÏË ı
Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Í
d 2 ( x , y ) + C | t x − t y |2 ,
„‰Â d(x, y) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ëı ˝ÔˈÂÌÚ‡ÏË ËÎË „ËÔÓˆÂÌÚ‡ÏË, | tx – ty | –
‡Á΢ˠÔÓ ‚ÂÏÂÌË Ë ë – χүڇ·Ì‡fl ÍÓÌÒÚ‡ÌÚ‡, ÌÂÓ·ıÓ‰Ëχfl ‰Îfl ÍÓÂÎflˆËË
‡ÒÒÚÓflÌËfl d(x, y) Ë ‚ÂÏÂÌË.
ÑÛ„ÓÈ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌÓÈ ÏÂÓÈ ‰Îfl ͇ڇÒÚÓÙ˘ÂÒÍËı ÒÓ·˚ÚËÈ
fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌË ã‡Ì‰ÂÌ‡Û ÏÂÊ‰Û Û‡„‡Ì‡ÏË (‰Îfl Û‡„‡ÌÓ‚, ̇Í˚‚‡˛˘Ëı
ÍÓÌÍÂÚÌ˚È ‡ÏÂË͇ÌÒÍËÈ ¯Ú‡Ú). éÌÓ ‡‚ÌÓ ÔÓÚflÊÂÌÌÓÒÚË ·Â„ӂÓÈ ÎËÌËË
‰‡ÌÌÓ„Ó ¯Ú‡Ú‡, ÔÓ‰ÂÎÂÌÌÓÈ Ì‡ ÍÓ΢ÂÒÚ‚Ó Û‡„‡ÌÓ‚, Û‰‡‡Ï ÍÓÚÓ˚ı ¯Ú‡Ú ÔÓ‰‚Â„Òfl Ò 1899 „.
25.2. êÄëëíéüçàü Ç Äëíêéçéåàà
íÂÏËÌÓÏ Ì·ÂÒÌ˚È Ó·˙ÂÍÚ (ËÎË Ì·ÂÒÌÓ ÚÂÎÓ) Ó·ÓÁ̇˜‡˛ÚÒfl Ú‡ÍË ‡ÒÚÓÌÓÏ˘ÂÒÍË ӷ˙ÂÍÚ˚, Í‡Í Á‚ÂÁ‰˚ Ë Ô·ÌÂÚ˚. ç·ÂÒ̇fl ÒÙÂ‡ – ÔÓÂ͈Ëfl Ì·ÂÒÌ˚ı
Ó·˙ÂÍÚÓ‚ ̇ Ëı ͇ÊÛ˘ÂÂÒfl ÔÓÎÓÊÂÌË ̇ Ì·Ó҂Ӊ ÔË Ì‡·Î˛‰ÂÌËË Ò áÂÏÎË.
ç·ÂÒÌ˚È ˝Í‚‡ÚÓ – ÔÓÂ͈Ëfl ÁÂÏÌÓ„Ó ˝Í‚‡ÚÓ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ. èÓÎ˛Ò‡ÏË
ÏË‡ ̇Á˚‚‡˛ÚÒfl ÔÓÂ͈ËË ë‚ÂÌÓ„Ó Ë ûÊÌÓ„Ó ÔÓβÒÓ‚ áÂÏÎË Ì‡ Ì·ÂÒÌÓÈ
ÒÙÂÂ. ç·ÂÒÌ˚Ï ÏÂˉˇÌÓÏ (˜‡ÒÓ‚˚Ï ÍÛ„ÓÏ) Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ fl‚ÎflÂÚÒfl
·Óθ¯ÓÈ ÍÛ„ Ì·ÂÒÌÓÈ ÒÙÂ˚, ÔÓıÓ‰fl˘ËÈ ˜ÂÂÁ ‰‡ÌÌ˚È Ó·˙ÂÍÚ Ë ÔÓβÒ˚ ÏË‡.
ùÍÎËÔÚË͇ – ÔÂÂÒ˜ÂÌË ÔÎÓÒÍÓÒÚË, ÒÓ‰Âʇ˘ÂÈ Ó·ËÚÛ áÂÏÎË, Ò Ì·ÂÒÌÓÈ
ÒÙÂÓÈ: ‰Îfl ̇·Î˛‰‡ÚÂÎfl Ò áÂÏÎË Ó̇ ‚ˉËÚÒfl Í‡Í ÔÛÚ¸, ÔÓ ÍÓÚÓÓÏÛ ëÓÎ̈Â
ÔÂÂÏ¢‡ÂÚÒfl ÔÓ Ì·ÓÒ‚Ó‰Û ‚ Ú˜ÂÌË „Ó‰‡. íÓ˜ÍÓÈ ‚ÂÒÂÌÌÂ„Ó ‡‚ÌÓ‰ÂÌÒÚ‚Ëfl
̇Á˚‚‡ÂÚÒfl Ӊ̇ ËÁ ‰‚Ûı ÚÓ˜ÂÍ Ì·ÂÒÌÓÈ ÒÙÂ˚, ‚ ÍÓÚÓÓÈ Ì·ÂÒÌ˚È ˝Í‚‡ÚÓ
ÔÂÂÒÂ͇ÂÚÒfl Ò ÔÎÓÒÍÓÒÚ¸˛ ˝ÍÎËÔÚËÍË: ˝ÚÓ ÔÓÎÓÊÂÌË ëÓÎ̈‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂ ‚
ÏÓÏÂÌÚ ‚ÂÒÂÌÌÂ„Ó ‡‚ÌÓ‰ÂÌÒÚ‚Ëfl.
ÉÓËÁÓÌÚ – ÎËÌËfl, "ÓÚ‰ÂÎfl˛˘‡fl" ÌÂ·Ó ÓÚ áÂÏÎË. é̇ ‰ÂÎËÚ ÌÂ·Ó Ì‡ ‚ÂıÌ˛˛
ÔÓÎÛÒÙÂÛ, ÍÓÚÓÛ˛ Ï˚ ‚ˉËÏ, Ë ÌËÊÌ˛˛ ÔÓÎÛÒÙÂÛ, ÍÓÚÓÛ˛ Ï˚ ̇·Î˛‰‡Ú¸ ÌÂ
ÏÓÊÂÏ. èÓÎ˛Ò ‚ÂıÌÂÈ ÔÓÎÛÒÙÂ˚ (ÚӘ͇ Ì·ÓÒ‚Ó‰‡ ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ Ì‡‰ „ÓÎÓ‚ÓÈ)
̇Á˚‚‡ÂÚÒfl ÁÂÌËÚÓÏ, ÔÓÎ˛Ò ÌËÊÌÂÈ ÔÓÎÛÒÙÂ˚ – ̇‰ËÓÏ.
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ‡ÒÚÓÌÓÏ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ Ó‰ÌÓ„Ó
Ì·ÂÒÌÓ„Ó Ú· ‰Ó ‰Û„Ó„Ó (ËÁÏÂÂÌÌÓ ‚ Ò‚ÂÚÓ‚˚ı „Ó‰‡ı, Ô‡ÒÂ͇ı ËÎË ‡ÒÚÓ-
É·‚‡ 25. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË, „ÂÓÙËÁËÍÂ Ë ‡ÒÚÓÌÓÏËË
361
ÌÓÏ˘ÂÒÍËı ‰ËÌˈ‡ı). ë‰Ì ‡ÒÒÚÓflÌË ÏÂÊ‰Û Á‚ÂÁ‰‡ÏË (‚ „‡Î‡ÍÚË͇ı,
ÔÓ‰Ó·Ì˚ı ̇¯ÂÈ) ÒÓÒÚ‡‚ÎflÂÚ ÌÂÒÍÓθÍÓ Ò‚ÂÚÓ‚˚ı ÎÂÚ. ë‰Ì ‡ÒÒÚÓflÌË ÏÂʉÛ
„‡Î‡ÍÚË͇ÏË (‚ ÒÓÁ‚ÂÁ‰ËË) ‡‚ÌflÂÚÒfl ÔËÏÂÌÓ 20 Ëı ‰Ë‡ÏÂÚ‡Ï, Ú.Â. ÌÂÒÍÓθÍËÏ
Ï„‡Ô‡ÒÂ͇Ï.
òËÓÚ‡
Ç ÒÙÂ˘ÂÒÍËı ÍÓÓ‰Ë̇ڇı (r, θ, φ) ¯ËÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË δ
ÓÚ ıÛ-ÔÎÓÒÍÓÒÚË (ÙÛ̉‡ÏÂÌڇθÌÓÈ ÔÎÓÒÍÓÒÚË) ‰Ó Ó·˙ÂÍÚ‡, ËÁÏÂÂÌÌÓ ÓÚ Ì‡˜‡Î‡
ÍÓÓ‰Ë̇Ú; δ = 90° – θ, „‰Â θ – ÍÓ·ÚËÚ¸˛‰‡ (‰ÓÔÓÎÌÂÌË ¯ËÓÚ˚).
Ç „ÂÓ„‡Ù˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË Í‡ÚÓ„‡Ù˘ÂÒÍÓÈ ÒËÒÚÂÏÂ
ÍÓÓ‰Ë̇Ú) ¯ËÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÓÚ ˝Í‚‡ÚÓ‡ áÂÏÎË ‰Ó Ó·˙ÂÍÚ‡, ËÁÏÂÂÌÌÓ ÓÚ ˆÂÌÚ‡ áÂÏÎË. òËÓÚ‡ ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı ÓÚ –90° (ûÊÌ˚È
ÔÓβÒ) ‰Ó +90° (ë‚ÂÌ˚È ÔÓβÒ). è‡‡ÎÎÂÎË – ÎËÌËË ÔÓÒÚÓflÌÌÓÈ ¯ËÓÚ˚.
Ç ‡ÒÚÓÌÓÏËË Ì·ÂÒÌÓÈ ¯ËÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl ¯ËÓÚ‡ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇
Ì·ÂÒÌÓÈ ÒÙÂ ÓÚ ÔÂÂÒ˜ÂÌËfl ÙÛ̉‡ÏÂÌڇθÌÓÈ ÔÎÓÒÍÓÒÚË Ò Ì·ÂÒÌÓÈ ÒÙÂÓÈ,
‚˚‡ÊÂÌ̇fl ‚ ÓÔ‰ÂÎÂÌÌÓÈ ÒËÒÚÂÏ Ì·ÂÒÌ˚ı ÍÓÓ‰Ë̇Ú. Ç ˝Í‚‡ÚÓˇθÌÓÈ
ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ÙÛ̉‡ÏÂÌڇθÌÓÈ ÔÎÓÒÍÓÒÚ¸˛ fl‚ÎflÂÚÒfl ÔÎÓÒÍÓÒÚ¸ ÁÂÏÌÓ„Ó
˝Í‚‡ÚÓ‡, ‚ ˝ÍÎËÔÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú – ÔÎÓÒÍÓÒÚ¸ ˝ÍÎËÔÚËÍË; ‚ „‡Î‡ÍÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú – ÔÎÓÒÍÓÒÚ¸ åΘÌÓ„Ó èÛÚË; ‚ ÒËÒÚÂÏ „ÓËÁÓÌڇθÌ˚ı ÍÓÓ‰ËÌ‡Ú – „ÓËÁÓÌÚ Ì‡·Î˛‰‡ÚÂÎfl. ç·ÂÒ̇fl ¯ËÓÚ‡ ËÁÏÂflÂÚÒfl ‚
„‡‰ÛÒ‡ı.
ÑÓ΄ÓÚ‡
Ç ÒÙÂ˘ÂÒÍËı ÍÓÓ‰Ë̇ڇı (r, θ, φ) ‰Ó΄ÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË φ ‚
ıÛ-ÔÎÓÒÍÓÒÚË ÓÚ ı-ÓÒË ‰Ó ÔÂÂÒ˜ÂÌËfl ·Óθ¯Ó„Ó ÍÛ„‡, ÔÓıÓ‰fl˘Â„Ó ˜ÂÂÁ Ó·˙ÂÍÚ,
Ò ıÛ-ÔÎÓÒÍÓÒÚ¸˛.
Ç „ÂÓ„‡Ù˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË Í‡ÚÓ„‡Ù˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰Ë̇Ú) ‰Ó΄ÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌËÂ, ËÁÏÂÂÌÌÓ ‚ ̇Ô‡‚ÎÂÌËË Ì‡
‚ÓÒÚÓÍ ‚‰Óθ ˝Í‚‡ÚÓ‡ áÂÏÎË ÓÚ „Ë̂˘ÒÍÓ„Ó ÏÂˉˇ̇ (ËÎË ÌÛÎÂ‚Ó„Ó ÏÂˉˇ̇)
‰Ó ÔÂÂÒ˜ÂÌËfl Ò ÏÂˉˇÌÓÏ, ÔÓıÓ‰fl˘ËÏ ˜ÂÂÁ Ó·˙ÂÍÚ. ÑÓ΄ÓÚ‡ ËÁÏÂflÂÚÒfl ‚
„‡‰ÛÒ‡ı ÓÚ 0° ‰Ó 360°. åÂË‰Ë‡Ì – ·Óθ¯ÓÈ ÍÛ„, ÔÓıÓ‰fl˘ËÈ ˜ÂÂÁ ë‚ÂÌ˚È Ë
ûÊÌ˚È ÔÓβÒ˚ áÂÏÎË; ÏÂˉˇÌ˚ fl‚Îfl˛ÚÒfl ÎËÌËflÏË ÔÓÒÚÓflÌÌÓÈ ‰Ó΄ÓÚ˚.
Ç ‡ÒÚÓÌÓÏËË Ì·ÂÒÌÓÈ ‰Ó΄ÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl ‰Ó΄ÓÚ‡ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇
Ì·ÂÒÌÓÈ ÒÙÂÂ, ËÁÏÂÂÌ̇fl ‚ ̇Ô‡‚ÎÂÌËË Ì‡ ‚ÓÒÚÓÍ ‚‰Óθ ÔÂÂÒ˜ÂÌËfl ÙÛ̉‡ÏÂÌڇθÌÓÈ ÔÎÓÒÍÓÒÚË Ò Ì·ÂÒÌÓÈ ÒÙÂÓÈ ‚ ‰‡ÌÌÓÈ ÒËÒÚÂÏ Ì·ÂÒÌ˚ı ÍÓÓ‰Ë̇Ú
ÓÚ ‚˚·‡ÌÌÓÈ ÙËÍÒËÓ‚‡ÌÌÓÈ ÚÓ˜ÍË. Ç ˝Í‚‡ÚÓˇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰Ë̇Ú
ÙÛ̉‡ÏÂÌڇθÌÓÈ ÔÎÓÒÍÓÒÚ¸˛ fl‚ÎflÂÚÒfl ÔÎÓÒÍÓÒÚ¸ ÁÂÏÌÓ„Ó ˝Í‚‡ÚÓ‡; ‚ ˝ÍÎËÔÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú – ÔÎÓÒÍÓÒÚ¸ ˝ÍÎËÔÚËÍË; ‚ „‡Î‡ÍÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú – ÔÎÓÒÍÓÒÚ¸ åΘÌÓ„Ó èÛÚË Ë ‚ „ÓËÁÓÌڇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú – „ÓËÁÓÌÚ Ì‡·Î˛‰‡ÚÂÎfl. ç·ÂÒ̇fl ‰Ó΄ÓÚ‡ ËÁÏÂflÂÚÒfl ‚ ‰ËÌˈ‡ı ‚ÂÏÂÌË.
äÓ·ÚËÚ¸˛‰‡
Ç ÒÙÂ˘ÂÒÍËı ÍÓÓ‰Ë̇ڇı (r, θ , φ ) ÍÓ·ÚËÚ¸˛‰ÓÈ (‰ÓÔÓÎÌÂÌËÂÏ ¯ËÓÚ˚)
̇Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÓÚ δ-ÓÒË ‰Ó Ó·˙ÂÍÚ‡, ËÁÏÂÂÌÌÓ ÓÚ Ì‡˜‡Î‡
ÍÓÓ‰Ë̇Ú; θ = 90° – δ, „‰Â δ – ¯ËÓÚ‡.
Ç „ÂÓ„‡Ù˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË Í‡ÚÓ„‡Ù˘ÂÒÍÓÈ ÒËÒÚÂÏÂ
ÍÓÓ‰ËÌ‡Ú ÍÓ·ÚËÚÛ‰ÓÈ (‰ÓÔÓÎÌÂÌËÂÏ ¯ËÓÚ˚) ̇Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÓÚ
ë‚ÂÌÓ„Ó ÔÓÎ˛Ò‡ áÂÏÎË ‰Ó Ó·˙ÂÍÚ‡, ËÁÏÂÂÌÌÓ ÓÚ ˆÂÌÚ‡ áÂÏÎË. äÓ·ÚËÚÛ‰‡
ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı.
362
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ëÍÎÓÌÂÌËÂ
Ç ˝Í‚‡ÚÓˇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË „ÂÓˆÂÌÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰Ë̇Ú) ÒÍÎÓÌÂÌËÂÏ δ ̇Á˚‚‡ÂÚÒfl Ì·ÂÒ̇fl ¯ËÓÚ‡ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ
ÒÙÂÂ, ËÁÏÂÂÌ̇fl ÓÚ Ì·ÂÒÌÓ„Ó ˝Í‚‡ÚÓ‡. ëÍÎÓÌÂÌË ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı
ÓÚ –90 ‰Ó +90°.
èflÏÓ ‚ÓÒıÓʉÂÌËÂ
Ç ˝Í‚‡ÚÓˇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË „ÂÓˆÂÌÚ˘ÂÒÍÓÈ ÒËÒÚÂÏÂ
ÍÓÓ‰Ë̇Ú), ÔË‚flÁ‡ÌÌÓÈ Í Á‚ÂÁ‰‡Ï, ÔflÏ˚Ï ‚ÓÒıÓʉÂÌËÂÏ R A ̇Á˚‚‡ÂÚÒfl
Ì·ÂÒ̇fl ‰Ó΄ÓÚ‡ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ, ËÁÏÂÂÌ̇fl ‚ ̇Ô‡‚ÎÂÌËË
̇ ‚ÓÒÚÓÍ ‚‰Óθ Ì·ÂÒÌÓ„Ó ˝Í‚‡ÚÓ‡ ÓÚ ÚÓ˜ÍË ‚ÂÒÂÌÌÂ„Ó ‡‚ÌÓ‰ÂÌÒÚ‚Ëfl ‰Ó ÔÂÂÒ˜ÂÌËfl Ò ˜‡ÒÓ‚˚Ï ÍÛ„ÓÏ Ó·˙ÂÍÚ‡. èflÏÓ ‚ÓÒıÓʉÂÌË ËÁÏÂflÂÚÒfl ‚ ‰ËÌˈ‡ı
‚ÂÏÂÌË (˜‡Ò‡ı, ÏËÌÛÚ‡ı Ë ÒÂÍÛ̉‡ı), ÔË ˝ÚÓÏ Ó‰ËÌ ˜‡Ò ‡‚ÂÌ ÔËÏÂÌÓ 15°.
ÇÂÏfl, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl Ó‰ÌÓ„Ó ÔÓÎÌÓ„Ó ÔÂËÓ‰‡ ÔˆÂÒÒËË ‡‚ÌÓ‰ÂÌÒÚ‚Ëfl,
̇Á˚‚‡ÂÚÒfl è·ÚÓÌ˘ÂÒÍËÏ „Ó‰ÓÏ (ËÎË ÇÂÎËÍËÏ „Ó‰ÓÏ); ÓÌ ‰ÎËÚÒfl ÔËÏÂÌÓ
257 ÒÚÓÎÂÚËÈ Ë ÌÂÁ̇˜ËÚÂθÌÓ ÒÓÍ‡˘‡ÂÚÒfl. чÌÌ˚È ˆËÍÎ ËÏÂÂÚ ‚‡ÊÌÓ Á̇˜ÂÌËÂ
‰Îfl ͇ÎẨ‡fl å‡Èfl Ë ‚ ‡ÒÚÓÎÓ„ËË.
ó‡ÒÓ‚ÓÈ Û„ÓÎ
Ç ˝Í‚‡ÚÓˇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË „ÂÓˆÂÌÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰Ë̇Ú), ÔË‚flÁ‡ÌÌÓÈ Í áÂÏÎÂ, ˜‡ÒÓ‚˚Ï Û„ÎÓÏ Ì‡Á˚‚‡ÂÚÒfl Ì·ÂÒ̇fl ‰Ó΄ÓÚ‡
Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ, ËÁÏÂÂÌ̇fl ÔÓ Ì·ÂÒÌÓÏÛ ˝Í‚‡ÚÓÛ ÓÚ
ÏÂˉˇ̇ ̇·Î˛‰‡ÚÂÎfl ‰Ó ÔÂÂÒ˜ÂÌËfl Ò ˜‡ÒÓ‚˚Ï ÍÛ„ÓÏ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡.
ó‡ÒÓ‚ÓÈ Û„ÓÎ ËÁÏÂflÂÚÒfl ‚ ‰ËÌˈ‡ı ‚ÂÏÂÌË (˜‡Ò‡ı, ÏËÌÛÚ‡ı Ë ÒÂÍÛ̉‡ı). éÌ
ÔÓ͇Á˚‚‡ÂÚ ‚ÂÏfl, ËÒÚÂͯÂÂ Ò ÏÓÏÂÌÚ‡ ÔÓÒΉÌÂ„Ó ÔÂÂÒ˜ÂÌËfl Ì·ÂÒÌ˚Ï Ó·˙ÂÍÚÓÏ ÏÂˉˇ̇ ̇·Î˛‰‡ÚÂÎfl (‰Îfl ÔÓÎÓÊËÚÂθÌÓ„Ó ˜‡ÒÓ‚Ó„Ó Û„Î‡), ËÎË ‚ÂÏfl
ÒÎÂ‰Û˛˘Â„Ó ÔÂÂÒ˜ÂÌËfl (‰Îfl ÓÚˈ‡ÚÂθÌÓ„Ó ˜‡ÒÓ‚Ó„Ó Û„Î‡).
èÓÎflÌÓ ‡ÒÒÚÓflÌËÂ
Ç ˝Í‚‡ÚÓˇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË „ÂÓˆÂÌÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰Ë̇Ú) ÔÓÎflÌ˚Ï ‡ÒÒÚÓflÌËÂÏ PD ̇Á˚‚‡ÂÚÒfl ÍÓ·ÚËÚ¸˛‰‡ (‰ÓÔÓÎÌÂÌË ¯ËÓÚ˚)
Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡, Ú.Â. ì„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÓÚ Ì·ÂÒÌÓ„Ó ÔÓÎ˛Ò‡ ‰Ó Ì·ÂÒÌÓ„Ó
Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ. èÓ‰Ó·ÌÓ ÚÓÏÛ, Í‡Í ÒÍÎÓÌÂÌË δ ËÁÏÂflÂÚÒfl ÓÚ
Ì·ÂÒÌÓ„Ó ˝Í‚‡ÚÓ‡: PD = 90° ± δ. èÓÎflÌÓ ‡ÒÒÚÓflÌË ‚˚‡Ê‡ÂÚÒfl ‚ „‡‰ÛÒ‡ı, Ë
Â„Ó ‚Â΢Ë̇ Ì ÏÓÊÂÚ ·˚Ú¸ ·Óθ¯Â 90°. é·˙ÂÍÚ Ì‡ Ì·ÂÒÌÓÏ ˝Í‚‡ÚÓ ËÏÂÂÚ
ÔÓÎflÌÓ ‡ÒÒÚÓflÌË PD = 90°.
ùÍÎËÔÚ˘ÂÒ͇fl ¯ËÓÚ‡
Ç ˝ÍÎËÔÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ˝ÍÎËÔÚ˘ÂÒÍÓÈ ¯ËÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl
Ì·ÂÒ̇fl ¯ËÓÚ‡ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ, ËÁÏÂÂÌ̇fl ÓÚ ÔÎÓÒÍÓÒÚË
˝ÍÎËÔÚËÍË. ùÍÎËÔÚ˘ÂÒ͇fl ¯ËÓÚ‡ ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı.
ùÍÎËÔÚ˘ÂÒ͇fl ‰Ó΄ÓÚ‡
Ç ˝ÍÎËÔÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ˝ÍÎËÔÚ˘ÂÒÍÓÈ ‰Ó΄ÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl
Ì·ÂÒ̇fl ‰Ó΄ÓÚ‡ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ, ËÁÏÂÂÌ̇fl ‚ ̇Ô‡‚ÎÂÌËË
̇ ‚ÓÒÚÓÍ ÔÓ ÔÎÓÒÍÓÒÚË ˝ÍÎËÔÚËÍË ÓÚ ÚÓ˜ÍË ‚ÂÒÂÌÌÂ„Ó ‡‚ÌÓ‰ÂÌÒÚ‚Ëfl. ùÍÎËÔÚ˘ÂÒ͇fl ‰Ó΄ÓÚ‡ ËÁÏÂflÂÚÒfl ‚ ‰ËÌˈ‡ı ‚ÂÏÂÌË.
Ç˚ÒÓÚ‡
Ç „ÓËÁÓÌڇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ‚˚ÒÓÚ‡ ALT – Ì·ÂÒ̇fl ¯ËÓÚ‡ Ó·˙ÂÍÚ‡
ÓÚÌÓÒËÚÂθÌÓ „ÓËÁÓÌÚ‡. é̇ ‰ÓÔÓÎÌflÂÚ ÁÂÌËÚÌ˚È Û„ÓÎ ZA: ALT = 90° – ZA. Ç˚ÒÓÚ‡
ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı.
É·‚‡ 25. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË, „ÂÓÙËÁËÍÂ Ë ‡ÒÚÓÌÓÏËË
363
ÄÁËÏÛÚ
Ç „ÓËÁÓÌڇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ‡ÁËÏÛÚÓÏ Ì‡Á˚‚‡ÂÚÒfl Ì·ÂÒ̇fl ‰Ó΄ÓÚ‡
Ó·˙ÂÍÚ‡, ËÁÏÂÂÌ̇fl ‚ ̇Ô‡‚ÎÂÌËË Ì‡ ‚ÓÒÚÓÍ ÔÓ „ÓËÁÓÌÚÛ ÓÚ ÔÓÎflÌÓÈ ÚÓ˜ÍË.
ÄÁËÏÛÚ ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı ÓÚ 0° ‰Ó 360°.
áÂÌËÚÌ˚È Û„ÓÎ
Ç „ÓËÁÓÌڇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ÁÂÌËÚÌ˚Ï Û„ÎÓÏ Z A ̇Á˚‚‡ÂÚÒfl
ÍÓ·ÚËÚ¸˛‰‡ (‰ÓÔÓÎÌÂÌË ¯ËÓÚ˚) Ó·˙ÂÍÚ‡, ËÁÏÂÂÌ̇fl ÓÚ ÁÂÌËÚ‡.
ãÛÌÌÓ ‡ÒÒÚÓflÌËÂ
ãÛÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÎÛÌÓÈ Ë ‰Û„ËÏ
Ì·ÂÒÌ˚Ï Ó·˙ÂÍÚÓÏ.
ê‡ÒÒÚÓflÌË ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚
ê‡ÒÒÚÓflÌËÂÏ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ Ú· χÒÒ˚ m,
̇ıÓ‰fl˘Â„ÓÒfl ̇ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚÂ, ‰Ó Ú· χÒÒ˚ å ‚ ÙÓÍÛÒ Ó·ËÚ˚. ùÚÓ
‡ÒÒÚÓflÌË Á‡‰‡ÂÚÒfl ͇Í
a(1 − e 2 )
,
1 + e cos θ
„‰Â ‡ – ·Óθ¯‡fl ÔÓÎÛÓÒ¸,  – ˝ÍÒˆÂÌÚËÒËÚÂÚ Ë θ – Ó·ËڇθÌ˚È Û„ÓÎ.
ÅÓθ¯‡fl ÔÓÎÛÓÒ¸ ‡ ˝ÎÎËÔÒ‡ (ËÎË ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚) ‡‚̇ ÔÓÎÓ‚ËÌ ÂÂ
·Óθ¯ÓÈ ÓÒË; ˝ÚÓ Ò‰Ì (ÓÚÌÓÒËÚÂθÌÓ ˝ÍÒˆÂÌÚ˘ÂÒÍÓÈ ‡ÌÓχÎËË) ‡ÒÒÚÓflÌËÂ
˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚. ë‰Ì ‡ÒÒÚÓflÌË ÓÚÌÓÒËÚÂθÌÓ ËÒÚËÌÌÓÈ ‡ÌÓχÎËË
fl‚ÎflÂÚÒfl χÎÓÈ ÔÓÎÛÓÒ¸˛, Ú.Â. ÔÓÎÓ‚ËÌÓÈ Ï‡ÎÓÈ ÓÒË ˝ÎÎËÔÒ‡ (ËÎË ˝ÎÎËÔÚ˘ÂÒÍÓÈ
Ó·ËÚ˚). ùÍÒˆÂÌÚËÒËÚÂÚ Â ˝ÎÎËÔÒ‡ (ËÎË ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚) – ˝ÚÓ ÓÚÌÓ¯Âc
ÌË ÔÓÎÓ‚ËÌ˚ ‡ÒÒÚÓflÌËfl c ÏÂÊ‰Û ÙÓÍÛÒ‡ÏË Ë ·Óθ¯ÓÈ ÔÓÎÛÓÒ¸˛ ‡: e = .
a
r −r
ÑÎfl ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚ e = + − , „‰Â r + – ‡ÒÒÚÓflÌË ‡ÔÓ‡ÔÒˉ˚ Ë r– – ‡Òr+ + r−
ÒÚÓflÌË ÔÂˇÔÒˉ˚.
ê‡ÒÒÚÓflÌË ÔÂˇÔÒˉ˚
ê‡ÒÒÚÓflÌËÂÏ ÔÂˇÔÒˉ˚ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË r– χÍÒËχθÌÓ„Ó Ò·ÎËÊÂÌËfl
Ú· χÒÒ˚ m Ò Ï‡ÒÒÓÈ å, ‚ÓÍÛ„ ÍÓÚÓÓÈ ÓÌÓ ‚‡˘‡ÂÚÒfl ÔÓ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚÂ.
r− = a(1 − e), „‰Â a – ·Óθ¯‡fl ÔÓÎÛÓÒ¸ Ë e – ˝ÍÒˆÂÌÚËÒËÚÂÚ.
èÂË„ÂÈ – ÔÂˇÔÒˉ‡ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚ ‚ÓÍÛ„ áÂÏÎË. èÂË„ÂÎËÈ – ÔÂˇÔÒˉ‡ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚ ‚ÓÍÛ„ ëÓÎ̈‡. èÂˇÒÚËÈ – ÚӘ͇ Ó·ËÚ˚ ‰‚ÓÈÌÓÈ
Á‚ÂÁ‰ÌÓÈ ÒËÒÚÂÏ˚ ‚ ÏÓÏÂÌÚ Ï‡ÍÒËχθÌÓ„Ó Ò·ÎËÊÂÌËfl Á‚ÂÁ‰.
ê‡ÒÒÚÓflÌË ‡ÔÓ‡ÔÒˉ˚
ê‡ÒÒÚÓflÌËÂÏ ‡ÔÓ‡ÔÒˉ˚ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË r– ̇˷Óθ¯Â„Ó Û‰‡ÎÂÌËfl Ú·
χÒÒ˚ m ÓÚ Ú· χÒÒ˚ å, ‚ÓÍÛ„ ÍÓÚÓÓÈ ÓÌÓ ‚‡˘‡ÂÚÒfl ÔÓ ˝ÎÎËÔÚ˘ÂÒÍÓÈ
Ó·ËÚÂ. r+ = a(1 + e), „‰Â ‡ – ·Óθ¯‡fl ÔÓÎÛÓÒ¸ Ë Â – ˝ÍÒˆÂÌÚËÒËÚÂÚ.
ÄÔÓ„ÂÈ – ‡ÔÓ‡ÔÒˉ‡ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚ ‚ÓÍÛ„ áÂÏÎË. ÄÙÂÎËÈ – ‡ÔÓ‡ÔÒˉ‡
˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚ ‚ÓÍÛ„ ëÓÎ̈‡. ÄÔÓ‡ÒÚËÈ – ÚӘ͇ Ó·ËÚ˚ ‰‚ÓÈÌÓÈ Á‚ÂÁ‰ÌÓÈ ÒËÒÚÂÏ˚ ‚ ÏÓÏÂÌÚ Ï‡ÍÒËχθÌÓ„Ó Û‰‡ÎÂÌËfl ÏÂÊ‰Û Á‚ÂÁ‰‡ÏË.
àÒÚËÌ̇fl ‡ÌÓχÎËfl
àÒÚËÌÌÓÈ ‡ÌÓχÎËÂÈ Ì‡Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÚÓ˜ÍË Ì‡ Ó·ËÚ ÔÓÒÎÂ
ÔÓıÓʉÂÌËfl ÚÓ˜ÍË ÔÂˇÔÒˉ˚, ËÁÏÂÂÌÌÓ ‚ „‡‰ÛÒ‡ı.
364
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
á‡ÍÓÌ íËÚËÛÒ‡-ÅÓ‰Â
á‡ÍÓÌ íËÚËÛÒ‡-ÅӉ fl‚ÎflÂÚÒfl ˝ÏÔË˘ÂÒÍËÏ (¢ Ì‰ÓÒÚ‡ÚÓ˜ÌÓ ıÓÓ¯Ó Ó·˙flÒÌÂÌÌ˚Ï) Á‡ÍÓÌÓÏ, ‡ÔÔÓÍÒËÏËÛ˛˘ËÏ Ò‰Ì Ô·ÌÂÚ‡ÌÓ ‡ÒÒÚÓflÌË ÓÚ ëÓÎ̈‡
3k + 4
(Ú.Â. Ó·ËڇθÌÛ˛ ·Óθ¯Û˛ ÔÓÎÛÓÒ¸ Ô·ÌÂÚ˚) ͇Í
AU (‡ÒÚÓÌÓÏ˘ÂÒÍËı
10
‰ËÌˈ). á‰ÂÒ¸ 1 AU Ó·ÓÁ̇˜‡ÂÚ Ò‰Ì Ô·ÌÂÚ‡ÌÓ ‡ÒÒÚÓflÌË ÓÚ ëÓÎ̈‡ ‰Ó
áÂÏÎË (Ú.Â. ÓÍÓÎÓ 1,5 × 108 ÍÏ ≈ 8,3 ÍÏ Ò‚ÂÚÓ‚˚ı ÏËÌÛÚ˚) Ë k = 0, 2 0 , 21 , 2 2 ,
2 3 , 2 4 , 2 5 , 2 6 , 2 7 ‰Îfl åÂÍÛËfl, ÇÂÌÂ˚, áÂÏÎË, å‡Ò‡, ñÂÂ˚ (ÍÛÔÌÂȯËÈ ‡ÒÚÂÓˉ ‡ÒÚÂÓˉÌÓ„Ó ÔÓflÒ‡), ûÔËÚÂ‡, ë‡ÚÛ̇, ì‡Ì‡, èÎÛÚÓ̇. èË ˝ÚÓÏ çÂÔÚÛÌ ÌÂ
ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‰‡ÌÌÓÏÛ Á‡ÍÓÌÛ – ÏÂÒÚÓ çÂÔÚÛ̇ ( k = 27 ) Á‡ÌËχÂÚ èÎÛÚÓÌ.
ê‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‰ÓÏËÌËÛ˛˘ËÏ ÚÂÎÓÏ Ë ÒÔÛÚÌËÍÓÏ
ê‡ÒÒÏÓÚËÏ ‰‚‡ Ì·ÂÒÌ˚ı Ú·: ‰ÓÏËÌËÛ˛˘Â å Ë ÏÂ̸¯Â m (ÒÔÛÚÌËÍ Ì‡
Ó·ËÚ ‚ÓÍÛ„ å, ËÎË ‚ÚÓ˘̇fl Á‚ÂÁ‰‡, ËÎË ÔÓÎÂÚ‡˛˘‡fl ÍÓÏÂÚ‡).
ë‰ÌËÏ ‡ÒÒÚÓflÌËÂÏ fl‚ÎflÂÚÒfl Ò‰Ì ‡ËÙÏÂÚ˘ÂÒÍÓ χÍÒËχθÌÓ„Ó Ë
ÏËÌËχθÌÓ„Ó ‡ÒÒÚÓflÌËÈ Ú· m ÓÚ Ú· å.
èÛÒÚ¸ ρM, ρm Ë RM, Rm Ó·ÓÁ̇˜‡˛Ú ÔÎÓÚÌÓÒÚË Ë ‡‰ËÛÒ˚ ÚÂÎ å Ë m. íÓ„‰‡
Ô‰ÂÎÓÏ êÓ¯‡ Ô‡˚ (M, m) ̇Á˚‚‡ÂÚÒfl χÍÒËχθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË, ‚
‡Ï͇ı ÍÓÚÓÓ„Ó ÔÓËÒıÓ‰ËÚ ‡ÁÛ¯ÂÌË m ÔÓ‰ ‚ÓÁ‰ÂÈÒÚ‚ËÂÏ ÔËÎË‚ÓÓ·‡ÁÛ˛˘Ëı
ÒËÎ å, Ô‚ÓÒıÓ‰fl˘Ëı ‚ÌÛÚÂÌÌË „‡‚ËÚ‡ˆËÓÌÌ˚ ÒËÎ˚ m. чÌÌÓ ‡ÒÒÚÓflÌËÂ
ρ
ρ
‡‚ÌÓ RM 3 2 M ≈ 1, 26 RM 3 M , ÂÒÎË fl‚ÎflÂÚÒfl Ú‚Â‰˚Ï ÒÙÂ˘ÂÒÍËÏ ÚÂÎÓÏ Ë
ρm
ρm
ρM
, ÂÒÎË ÚÂÎÓ m fl‚ÎflÂÚÒfl ÊˉÍËÏ. è‰ÂÎ êÓ¯‡ ËÏÂÂÚ
ρm
ÒÏ˚ÒÎ ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌ Ô‚˚¯‡ÂÚ Á̇˜ÂÌË RM. è‰ÂÎ êÓ¯‡ ËÏÂÂÚ
Á̇˜ÂÌËfl 0,8RM, 1,49RM Ë 2,8RM ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‰Îfl Ô‡ ëÓÎ̈–áÂÏÎfl, áÂÏÎfl–ãÛ̇
Ë áÂÏÎfl–ÍÓÏÂÚ‡. ÇÂÓflÚÌÓÈ Ô˘ËÌÓÈ ÔÓfl‚ÎÂÌËfl ÍÓΈ ë‡ÚÛ̇ Ïӄ· ÒÚ‡Ú¸ „Ó
ÎÛ̇, ÍÓÚÓ‡fl Ò·ÎËÁË·Ҹ Ò ë‡ÚÛÌÓÏ, Ô‚˚ÒË‚ Ò‚ÓÈ Ô‰ÂÎ êÓ¯‡.
èÛÒÚ¸ d(m, M) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û m Ë M, ‡ Sm Ë SM – χÒÒ˚ m Ë M. íÓ„‰‡ ÒÙÂ‡
ïËη ‰Îfl m ‚ ÔËÒÛÚÒÚ‚ËË å ÂÒÚ¸ ‡ÔÔÓÍÒËχˆËfl „‡‚ËÚ‡ˆËÓÌÌÓÈ ÒÙÂ˚ ‚ÎËflÌËfl
S
m ‚ ÛÒÎÓ‚Ëflı ‚ÓÁÏÛ˘‡˛˘Â„Ó ‚ÎËflÌËfl å. Ö ‡‰ËÛÒ ÔËÏÂÌÓ ‡‚ÂÌ d ( m, M )3 m .
3SM
ç‡ÔËÏÂ, ‡‰ËÛÒ ÒÙÂ˚ ïËη ‰Îfl áÂÏÎË ‡‚ÂÌ 0,01 AU; ãÛ̇, Û‰‡ÎÂÌ̇fl ̇
0,0025 AU ÓÚ áÂÏÎË, ÔÓÎÌÓÒÚ¸˛ ̇ıÓ‰ËÚÒfl ‚ Ô‰Â·ı ÒÙÂ˚ ïËη áÂÏÎË.
è‡Û (M, m) ÏÓÊÌÓ Óı‡‡ÍÚÂËÁÓ‚‡Ú¸ ÔÓÒ‰ÒÚ‚ÓÏ ÔflÚË ÚÓ˜ÂÍ ã‡„‡Ìʇ L i,
1 ≤ i ≤ 5, „‰Â ÚÂڸ Á̇˜ËÚÂθÌÓ ÏÂ̸¯Â ÚÂÎÓ (̇ÔËÏÂ, ÍÓÒÏ˘ÂÒÍËÈ ‡ÔÔ‡‡Ú)
ËÏÂÂÚ ÓÚÌÓÒËÚÂθÌÓ ÒÚ‡·ËθÌÓ ÒÓÒÚÓflÌËÂ, ÔÓÒÍÓθÍÛ Â„Ó ˆÂÌÚÓ·ÂÊ̇fl ÒË·
‡‚̇ ÒÛÏχÌÓÈ ÒËΠÔËÚflÊÂÌËfl å Ë m. í‡ÍËÏË ÚӘ͇ÏË ·Û‰ÛÚ ÒÎÂ‰Û˛˘ËÂ:
– L1, L2 Ë L 3 , ÎÂʇ˘Ë ̇ ÔflÏÓÈ, ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ ˆÂÌÚ˚ å Ë m Ú‡Í, ˜ÚÓ
d ( L3 , m) = 2 d ( M , m), d ( M , L2 ) = d ( M , L1 ) + d ( m, L2 ) Ë d ( L1 , m) = d ( m, L2 );
– L4 Ë L 5 , ÔË̇‰ÎÂʇ˘Ë Ó·ËÚ m ‚ÓÍÛ„ å Ë Ó·‡ÁÛ˛˘Ë ‡‚ÌÓÒÚÓÓÌÌËÂ
ÚÂÛ„ÓθÌËÍË Ò ˆÂÌÚ‡ÏË å Ë m . ùÚË ‰‚ ÚÓ˜ÍË fl‚Îfl˛ÚÒfl ̇˷ÓΠÒÚ‡·ËθÌ˚ÏË;
͇ʉ‡fl ËÁ ÌËı ÒÓÒÚ‡‚ÎflÂÚ Ò å Ë m ˜‡ÒÚÌÓ ¯ÂÌË (ÔÓ͇ ÌÂ¯ÂÌÌÓÈ) „‡‚ËÚ‡ˆËÓÌÌÓÈ Á‡‰‡˜Ë ÚÂı ÚÂÎ. ÇÓÁÌËÍÌÓ‚ÂÌË ãÛÌ˚ Ô‰ÔÓ·„‡ÂÚÒfl Í‡Í ÒΉÒÚ‚ËÂ
·ÓÍÓ‚Ó„Ó Û‰‡‡ ÔÓ áÂÏΠωÎÂÌÌÓ ÔË·ÎËÁË‚¯Â„ÓÒfl ËÁ ÚÓ˜ÍË ã‡„‡Ìʇ L4 ‚
ÒËÒÚÂÏ ëÓÎ̈–áÂÏÎfl Ô·ÌÂÚÓˉ‡ ‡ÁÏÂÓÏ Ò å‡Ò.
ÒÓÒÚ‡‚ÎflÂÚ ÓÍÓÎÓ 2, 423 RM 3
É·‚‡ 26
ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË
Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
26.1. êÄëëíéüçàü Ç äéëåéãéÉàà
ÇÒÂÎÂÌ̇fl ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÔÓÎÌ˚È ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌÓÈ ÍÓÌÚËÌÛÛÏ,
‚ ÍÓÚÓÓÏ Ï˚ ÒÛ˘ÂÒÚ‚ÛÂÏ ‚ÏÂÒÚ ÒÓ ‚ÒÂÈ Á‡Íβ˜ÂÌÌÓÈ ‚ ÌÂÏ ˝ÌÂ„ËÂÈ Ë
‚¢ÂÒÚ‚ÓÏ.
äÓÒÏÓÎÓ„Ëfl Á‡ÌËχÂÚÒfl ËÁÛ˜ÂÌËÂÏ ÍÛÔÌÓχүڇ·ÌÓÈ ÒÚÛÍÚÛ˚ ‚ÒÂÎÂÌÌÓÈ.
ëÔˆËÙ˘ÂÒÍËÏË ÔÓ·ÎÂχÏË ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÚÂχÚËÍË fl‚Îfl˛ÚÒfl ËÁÓÚÓÔËfl
‚ÒÂÎÂÌÌÓÈ (‚ ÍÛÔÌÂȯÂÏ Ï‡Ò¯Ú‡·Â ‚ÒÂÎÂÌ̇fl Ô‰ÒÚ‡‚ÎflÂÚÒfl Ó‰Ë̇ÍÓ‚ÓÈ ÔÓ ‚ÒÂÏ
̇Ô‡‚ÎÂÌËflÏ, Ú.Â. ËÌ‚‡ˇÌÚÌÓÈ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ‚‡˘ÂÌËflÏ), Ó‰ÌÓÓ‰ÌÓÒÚ¸
‚ÒÂÎÂÌÌÓÈ (β·˚ ËÁÏÂflÂÏ˚ ҂ÓÈÒÚ‚‡ ‚ÒÂÎÂÌÌÓÈ Ó‰Ë̇ÍÓ‚˚ ÔÓ‚Ò˛‰Û, Ú.Â.
ËÌ‚‡ˇÌÚÌ˚ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÔÂÂÌÓÒ‡Ï), ÔÎÓÚÌÓÒÚ¸ ‚ÒÂÎÂÌÌÓÈ, ÒÓ‡ÁÏÂÌÓÒÚ¸
‚¢ÂÒÚ‚‡ Ë ‡ÌÚ˂¢ÂÒÚ‚‡, ‡ Ú‡ÍÊ ËÒÚÓ˜ÌËÍ ÍÓη‡ÌËÈ ÔÎÓÚÌÓÒÚË ‚ „‡Î‡ÍÚË͇ı.
Ç 1929 „. ·Î ÓÚÍ˚Î, ˜ÚÓ „‡Î‡ÍÚËÍË Ó·Î‡‰‡˛Ú ÔÓÎÓÊËÚÂθÌ˚Ï Í‡ÒÌ˚Ï
ÒÏ¢ÂÌËÂÏ, Ú.Â. ‚Ò „‡Î‡ÍÚËÍË, Á‡ ËÒÍβ˜ÂÌËÂÏ ÌÂÒÍÓθÍËı ·ÎËÁÎÂʇ˘Ëı „‡Î‡ÍÚËÍ
ÚËÔ‡ Ä̉Óω˚, Û‰‡Îfl˛ÚÒfl ÓÚ åΘÌÓ„Ó èÛÚË. àÒıÓ‰fl ËÁ ÔË̈ËÔ‡ äÓÔÂÌË͇
(Ó ÚÓÏ, ˜ÚÓ Ï˚ Ì ̇ıÓ‰ËÏÒfl ‚ ÓÒÓ·ÓÏ ÏÂÒÚ ‚ÒÂÎÂÌÌÓÈ), ÏÓÊÌÓ Á‡Íβ˜ËÚ¸, ˜ÚÓ ‚ÒÂ
„‡Î‡ÍÚËÍË Ú‡ÍÊ ۉ‡Îfl˛ÚÒfl ‰Û„ ÓÚ ‰Û„‡, Ú.Â. Ï˚ ÊË‚ÂÏ ‚ ‰Ë̇Ï˘ÂÒÍÓÏ,
‡Ò¯Ëfl˛˘ÂÏÒfl ÏËÂ Ë ˜ÂÏ ‰‡Î¸¯Â ÓÚ Ì‡Ò Ì‡ıÓ‰ËÚÒfl „‡Î‡ÍÚË͇, ÚÂÏ ·˚ÒÚ Ó̇
‰‚ËÊÂÚÒfl (˝ÚÓ Ì‡Á˚‚‡ÂÚÒfl ÚÂÔÂ¸ Á‡ÍÓÌÓÏ ï‡··Î‡ (Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl). èÓÚÓÍÓÏ
·Î‡ ‰‚ËÊÂÌË ̇Á˚‚‡ÂÚÒfl Ó·˘Â ‡Á·Â„‡ÌË „‡Î‡ÍÚËÍ Ë ÒÍÓÔÎÂÌËÈ „‡Î‡ÍÚËÍ ‚
ÂÁÛθڇÚ ‡Ò¯ËÂÌËfl ‚ÒÂÎÂÌÌÓÈ. éÌÓ ÔÓËÒıÓ‰ËÚ ÔÓ ‡‰Ë‡Î¸Ì˚Ï Ì‡Ô‡‚ÎÂÌËflÏ
ÓÚ Ì‡·Î˛‰‡ÚÂÎfl Ë ÔÓ‰˜ËÌflÂÚÒfl Á‡ÍÓÌÛ Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl. ɇ·ÍÚËÍË ÏÓ„ÛÚ
ÔÂÓ‰Ó΂‡Ú¸ ˝ÚÓ ‡Ò¯ËÂÌË ‚ χүڇ·‡ı, ÏÂ̸¯Ëı, ˜ÂÏ ÒÍÓÔÎÂÌËfl „‡Î‡ÍÚËÍ,
Ӊ̇ÍÓ ÒÍÓÔÎÂÌËfl „‡Î‡ÍÚËÍ ‚Ò„‰‡ ·Û‰ÛÚ ÒÚÂÏËÚ¸Òfl Í ‡Á·Â„‡Ì˲ ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò
Á‡ÍÓÌÓÏ Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl.
Ç ÍÓÒÏÓÎÓ„ËË ÔÂӷ·‰‡˛˘ÂÈ Ì‡Û˜ÌÓÈ ÚÂÓËÂÈ Ó ‚ÓÁÌËÍÌÓ‚ÂÌËË Ë ÙÓÏÂ
‚ÒÂÎÂÌÌÓÈ fl‚ÎflÂÚÒfl ÚÂÓËfl "·Óθ¯Ó„Ó ‚Á˚‚‡". 燷β‰ÂÌË ÚÓ„Ó, ˜ÚÓ „‡Î‡ÍÚËÍË
͇ÊÛÚÒfl Û‰‡Îfl˛˘ËÏËÒfl ‰Û„ ÓÚ ‰Û„‡, ÏÓÊÌÓ ÒÓ‚ÏÂÒÚËÚ¸ Ò Ó·˘ÂÈ ÚÂÓËÂÈ
ÓÚÌÓÒËÚÂθÌÓÒÚË Ë ˝ÍÒÚ‡ÔÓÎËÓ‚‡Ú¸ ÒÓÒÚÓflÌË ‚ÒÂÎÂÌÌÓÈ ‚ Ó·‡ÚÌÓÏ ÓÚÒ˜ÂÚÂ
‚ÂÏÂÌË. éÒÌÓ‚‡ÌÌ˚ ̇ ˝ÚÓÈ ÏÂÚÓ‰ËÍ ÔÓÒÚÓÂÌËfl ÔÓ͇Á˚‚‡˛Ú, ˜ÚÓ ÔÓ ÏÂÂ
Û‰‡ÎÂÌËfl ‚ ÔÓ¯ÎÓ ‚ÒÂÎÂÌ̇fl ÒÚ‡ÌÓ‚ËÚÒfl ÔÎÓÚÌÂÂ Ë Â ÚÂÏÔÂ‡ÚÛ‡ Û‚Â΢˂‡ÂÚÒfl. Ç ÍÓ̘ÌÓÏ ËÚÓ„Â ‚ÓÁÌË͇ÂÚ „‡‚ËÚ‡ˆËÓÌ̇fl ÒËÌ„ÛÎflÌÓÒÚ¸, ÔË ÍÓÚÓÓÈ
‚Ò ‡ÒÒÚÓflÌËfl Ò‚Ó‰flÚÒfl Í ÌÛβ, ‡ ‰‡‚ÎÂÌËÂ Ë ÚÂÏÔÂ‡ÚÛ‡ ‚ÓÁ‡ÒÚ‡˛Ú ‰Ó
·ÂÒÍÓ̘ÌÓÒÚË. íÂÏËÌ "·Óθ¯ÓÈ ‚Á˚‚" ËÒÔÓθÁÛÂÚÒfl ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ÌÂÍÓÈ
„ËÔÓÚÂÚ˘ÂÒÍÓÈ ÚÓ˜ÍË ‚Ó ‚ÂÏÂÌË, ÍÓ„‰‡ ̇·Î˛‰‡ÂÏÓ ̇˜‡ÎÓÒ¸ ‡Ò¯ËÂÌË ‚ÒÂÎÂÌÌÓÈ. ç‡ ÓÒÌÓ‚Â Ôӂ‰ÂÌÌ˚ı ËÁÏÂÂÌËÈ Ô‡‡ÏÂÚÓ‚ ‡Ò¯ËÂÌËfl ‚ ̇ÒÚÓfl˘ÂÂ
‚ÂÏfl Ô‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ‚ÓÁ‡ÒÚ ‚ÒÂÎÂÌÌÓÈ ‡‚ÂÌ 13,7 ± 0,2 ÏÎ‰ ÎÂÚ. ùÚÓÚ
ÔÂËÓ‰ ‰ÓÎÊÂÌ ·˚Ú¸ ·Óθ¯Â, ÂÒÎË ‡Á·Â„‡ÌËÂ, Í‡Í Ô‰ÔÓ·„‡ÎÓÒ¸ ̉‡‚ÌÓ, ˉÂÚ Ò
ÛÒÍÓÂÌËÂÏ. ÑÓÙ‡Ò Ì‡ ÓÒÌÓ‚Â ‰‡ÌÌ˚ı Ó· ÓÚÌÓÒËÚÂθÌÓÏ ÒÓ‰ÂʇÌËË Û‡Ì‡ Ë ÚÓËfl
‚ ıÓ̉ËÚÓ‚˚ı ÏÂÚÂÓËÚ‡ı Ô‰ÔÓÎÓÊËÎ [Dau05], ˜ÚÓ ‚ÒÂÎÂÌ̇fl ÒÛ˘ÂÒÚ‚ÛÂÚ ÛÊÂ
14,5 ± 2 ÏÎ‰ ÎÂÚ.
366
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
Ç ÍÓÒÏÓÎÓ„ËË (ËÎË, ÚÓ˜ÌÂÂ, ‚ ÍÓÒÏÓ„‡ÙËË, ̇ÛÍ ӷ ËÁÏÂÂÌËË ‚ÒÂÎÂÌÌÓÈ)
ÒÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓ„Ó ÒÔÓÒÓ·Ó‚ ‰Îfl ÓÔ‰ÂÎÂÌËfl ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË,
ÔÓÒÍÓθÍÛ ‚ ÛÒÎÓ‚Ëflı ‡Ò¯Ëfl˛˘ÂÈÒfl ‚ÒÂÎÂÌÌÓÈ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‰‚ËÊÛ˘ËÏËÒfl
Ó·˙ÂÍÚ‡ÏË ÔÓÒÚÓflÌÌÓ ËÁÏÂÌfl˛ÚÒfl, Ë ‰Îfl ̇·Î˛‰‡ÚÂÎÂÈ Ì‡ áÂÏΠÒÏÓÚÂÚ¸ ‚‰‡Î¸
ÓÁ̇˜‡ÂÚ ÒÏÓÚÂÚ¸ ‚ ÔÓ¯ÎÓÂ. é·˙‰ËÌfl˛˘ËÏ Ù‡ÍÚÓÓÏ ÔË ˝ÚÓÏ fl‚ÎflÂÚÒfl ÚÓ,
˜ÚÓ ‚Ò ÏÂ˚ ‡ÒÒÚÓflÌËÈ Ú‡Í ËÎË Ë̇˜Â ÓˆÂÌË‚‡˛Ú ‡Á‰ÂÎÂÌË ÏÂÊ‰Û ÒÓ·˚ÚËflÏË
ÔÓ ‡‰Ë‡Î¸ÌÓ ÌÛ΂˚Ï Ú‡ÂÍÚÓËflÏ, Ú.Â. Ú‡ÂÍÚÓËflÏ ÙÓÚÓÌÓ‚, Á‡Í‡Ì˜Ë‚‡˛˘ËıÒfl
‚ ÚӘ̇͠·Î˛‰ÂÌËfl. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÍÓÒÏÓÎӄ˘ÂÒÍÓ ‡ÒÒÚÓflÌË – ˝ÚÓ
‡ÒÒÚÓflÌËÂ, ‚˚ıÓ‰fl˘Â ‰‡ÎÂÍÓ Á‡ Ô‰ÂÎ˚ ̇¯ÂÈ „‡Î‡ÍÚËÍË.
ÉÂÓÏÂÚËfl ‚ÒÂÎÂÌÌÓÈ ÓÔ‰ÂÎflÂÚÒfl fl‰ÓÏ ÍÓÒÏÓÎӄ˘ÂÒÍËı Ô‡‡ÏÂÚÓ‚:
Ô‡‡ÏÂÚÓÏ ‡Ò¯ËÂÌËfl (ËÎË ÍÓ˝ÙÙˈËÂÌÚÓÏ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl) ‡, ÍÓÌÒÚ‡ÌÚÓÈ
·Î‡ ç, ÔÎÓÚÌÓÒÚ¸˛ ρ Ë ÍËÚ˘ÂÒÍÓÈ ÔÎÓÚÌÓÒÚ¸˛ ρcrit (ÔÎÓÚÌÓÒÚ¸˛, Ó·ÛÒÎÓ‚ÎË‚‡˛˘ÂÈ ÔÂÍ‡˘ÂÌË ‡Ò¯ËÂÌËfl ‚ÒÂÎÂÌÌÓÈ Ë, ‚ ÍÓ̘ÌÓÏ Ò˜tÚÂ,  ӷ‡ÚÌ˚È
ÍÓηÔÒ), ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ Λ, ÍË‚ËÁÌÓÈ ‚ÒÂÎÂÌÌÓÈ k. åÌÓ„Ë ËÁ ˝ÚËı
‚Â΢ËÌ ÏÓ„ÛÚ ·˚Ú¸ Ò‚flÁ‡Ì˚ ÏÂÊ‰Û ÒÓ·ÓÈ Ô‰ÔÓÎÓÊÂÌËflÏË ‚ ‡Ï͇ı ÍÓÌÍÂÚÌÓÈ
ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÏÓ‰ÂÎË. ç‡Ë·ÓΠӷ˘ËÏË ÍÓÒÏÓÎӄ˘ÂÒÍËÏË ÏÓ‰ÂÎflÏË
fl‚Îfl˛ÚÒfl ÓÚÍ˚Ú‡fl Ë Á‡Í˚Ú‡fl ÍÓÒÏÓÎӄ˘ÂÒÍË ÏÓ‰ÂÎË îˉχÌ̇–ãÂÏÂÚ‡ Ë
ÍÓÒÏÓÎӄ˘ÂÒ͇fl ÏÓ‰Âθ ùÈ̯ÚÂÈ̇-‰Â ëËÚÚÂ‡ (ÒÏ. Ú‡ÍÊ ÍÓÒÏÓÎӄ˘ÂÒ͇fl
ÏÓ‰Âθ ùÈ̯ÚÂÈ̇, ÍÓÒÏÓÎӄ˘ÂÒ͇fl ÏÓ‰Âθ ‰Â ëËÚÚÂ‡, ÍÓÒÏÓÎӄ˘ÂÒ͇fl
ÏÓ‰Âθ ù‰‰ËÌÚÓ̇-ãÂÏÂÚ‡). äÓÒÏÓÎӄ˘ÂÒ͇fl ÏÓ‰Âθ ùÈ̯ÚÂÈ̇–‰Â ëËÚÚÂ‡
ËÒıÓ‰ËÚ ËÁ ÚÓ„Ó, ˜ÚÓ ‚ÒÂÎÂÌ̇fl fl‚ÎflÂÚÒfl Ó‰ÌÓÓ‰ÌÓÈ, ËÁÓÚÓÔÌÓÈ, ËÏÂÂÚ ÔÓÒÚÓflÌÌÛ˛ ÍË‚ËÁÌÛ Ò ÌÛ΂ÓÈ ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ Λ Ë ‰‡‚ÎÂÌËÂÏ ê. ÑÎfl ÔÓÒ1 3
8
2
1  9GM  / 2 / 3
ÚÓflÌÌÓÈ Ï‡ÒÒ˚ ‚ÒÂÎÂÌÌÓÈ å H 2 = πGρ, t = H −1 , a =
t , „‰Â
RC  2 
3
3
G = 6,67 × 10–11 Ï3 /Í„–1/Ò–2 – „‡‚ËÚ‡ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl, RC =| k |−1 / 2 – ‡·ÒÓβÚÌÓ Á̇˜ÂÌË ‡‰ËÛÒ‡ ÍË‚ËÁÌ˚ Ë t – ‚ÓÁ‡ÒÚ ‚ÒÂÎÂÌÌÓÈ.
è‡‡ÏÂÚ ‡Ò¯ËÂÌËfl a = a (t) fl‚ÎflÂÚÒfl ÍÓ˝ÙÙˈËÂÌÚÓÏ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl,
Ò‚flÁ˚‚‡˛˘ËÏ ‡ÁÏÂ ‚ÒÂÎÂÌÌÓÈ R = R(t) ‚Ó ‚ÂÏÂÌË t Ò ‡ÁÏÂÓÏ ‚ÒÂÎÂÌÌÓÈ
R0 = R(t0 ) ‚Ó ‚ÂÏÂÌË t0 , ÔÓ Í‡ÍÓÏÛ R = aR0 . Ç Ì‡ÒÚÓfl˘Â ‚ÂÏfl Â„Ó Ó·˚˜ÌÓ
‡ÒÒχÚË‚‡˛Ú ·ÂÁ‡ÁÏÂÌ˚Ï Ò a(tobser) = 1, „‰Â tobser – ÚÂÍÛ˘ËÈ ‚ÓÁ‡ÒÚ ‚ÒÂÎÂÌÌÓÈ.
äÓÌÒÚ‡ÌÚ‡ ·Î‡ ç – ÍÓ˝ÙÙˈËÂÌÚ ÔÓÔÓˆËÓ̇θÌÓÒÚË ÏÂÊ‰Û ÒÍÓÓÒÚ¸˛
‡Ò¯ËÂÌËfl v Ë ‡ÁÏÂ‡ÏË ‚ÒÂÎÂÌÌÓÈ R, Ú.Â. v = HR. ùÚÓ ‡‚ÂÌÒÚ‚Ó ‚˚‡Ê‡ÂÚ Á‡ÍÓÌ
a ′(t )
·Î‡ (Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl) Ò ÍÓÌÒÚ‡ÌÚÓÈ ï‡··Î‡ H =
. íÂÍÛ˘Â Á̇˜ÂÌËÂ
a( t )
ÍÓÌÒÚ‡ÌÚ˚ ·Î‡, ÔÓ Ì‰‡‚ÌËÏ ÓˆÂÌ͇Ï, ‡‚ÌÓ H 0 = 71 ± 4 ÍÏÒ–1 åÔÍ –1 , „‰Â
ÌËÊÌËÈ Ë̉ÂÍÒ 0 ÓÁ̇˜‡ÂÚ ÒÓ‚ÂÏÂÌÌÛ˛ ˝ÔÓıÛ, Ú‡Í Í‡Í ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ç
ËÁÏÂÌflÂÚÒfl ÒÓ ‚ÂÏÂÌÂÏ. ÇÂÏfl ·Î‡ Ë ‡ÒÒÚÓflÌË ·Î‡ ÓÔ‰ÂÎfl˛ÚÒfl ͇Í
1
c
tH =
Ë DH =
(Á‰ÂÒ¸ Ò – ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
H0
H0
èÎÓÚÌÓÒÚ¸ χÒÒ˚ ρ (‡‚̇fl ρ0 ‚ ̇ÒÚÓfl˘Û˛ ˝ÔÓıÛ) Ë Á̇˜ÂÌË ÍÓÒÏÓÎӄ˘ÂÍÓÈ
ÔÓÒÚÓflÌÌÓÈ Λ fl‚Îfl˛ÚÒfl ‰Ë̇Ï˘ÂÒÍËÏË ı‡‡ÍÚÂËÒÚË͇ÏË ‚ÒÂÎÂÌÌÓÈ. àı ÏÓÊÌÓ
8πGρ0
,
ÔÂÓ·‡ÁÓ‚‡Ú¸ ‚ ·ÂÁ‡ÁÏÂÌ˚ ԇ‡ÏÂÚ˚ ÔÎÓÚÌÓÒÚË ΩM Ë Ω Λ: Í‡Í Ω M =
3 H03
Λ
ΩΛ =
. íÂÚËÈ Ô‡‡ÏÂÚ ÔÎÓÚÌÓÒÚË Ω R ËÁÏÂflÂÚ "ÍË‚ËÁÌÛ ÔÓÒÚ‡ÌÒÚ‚‡" Ë
3 H03
ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂÌ ËÁ ÓÚÌÓ¯ÂÌËfl Ω M + ΩΛ + ΩR = 1.
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
367
ùÚËÏË Ô‡‡ÏÂÚ‡ÏË ‚ ÔÓÎÌÓÈ ÏÂ ÓÔ‰ÂÎflÂÚÒfl „ÂÓÏÂÚËfl ‚ÒÂÎÂÌÌÓÈ, ÂÒÎË Ó̇
Ó‰ÌÓӉ̇, ËÁÓÚÓÔ̇ Ë ÔÂËÏÛ˘ÂÒÚ‚ÂÌÌÓ Ï‡ÚÂˇθ̇.
ëÍÓÓÒÚ¸ „‡Î‡ÍÚËÍË ËÁÏÂflÂÚÒfl ÔÓ ‰ÓÔÎÂÓ‚ÒÍÓÏÛ Ò‰‚Ë„Û, Ú.Â. ˝ÙÙÂÍÚÛ ÔÓ
Ù‡ÍÚÛ ËÁÏÂÌÂÌËfl ‰ÎËÌ˚ ‚ÓÎÌ˚ ËÒÔÛÒ͇ÂÏÓ„Ó Ò‚ÂÚÓ‚Ó„Ó ËÁÎÛ˜ÂÌËfl ‚ Á‡‚ËÒËÏÓÒÚË
ÓÚ ‰‚ËÊÂÌËfl ËÒÚÓ˜ÌË͇. êÂÎflÚË‚ËÒÚÒ͇fl ÙÓχ ‰ÓÔÎÂÓ‚ÒÍÓ„Ó Ò‰‚Ë„‡ ÒÛ˘ÂÒÚ‚ÛÂÚ
‰Îfl Ó·˙ÂÍÚÓ‚, ‰‚ËÊÛ˘ËıÒfl Ò Ó˜Â̸ ·Óθ¯ÓÈ ÒÍÓÓÒÚ¸˛: Ó̇ ‚˚‡Ê‡ÂÚÒfl ͇Í
λ obser
c+v
=
, „‰Â λ emit – ‰ÎË̇ ËÒÔÛÒ͇ÂÏÓÈ ‚ÓÎÌ˚ Ë λobser – Ò‰‚ËÌÛÚ‡fl ̇·Î˛c−v
λ emit
‰‡Âχfl ‰ÎË̇ ‚ÓÎÌ˚. ê‡ÁÌˈ‡ ‰ÎËÌ ‚ÓÎÌ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÌÂÔÓ‰‚ËÊÌÓÏÛ ËÒÚÓ˜ÌËÍÛ
̇Á˚‚‡ÂÚÒfl Í‡ÒÌ˚Ï ÒÏ¢ÂÌËÂÏ (ÂÒÎË ËÒÚÓ˜ÌËÍ Û‰‡ÎflÂÚÒfl) Ë Ó·ÓÁ̇˜‡ÂÚÒfl ·ÛÍ‚ÓÈ z. êÂÎflÚË‚ËÒÚÒÍÓ Í‡ÒÌÓ ÒÏ¢ÂÌË z ‰Îfl ˜‡ÒÚˈ˚ Á‡ÔËÒ˚‚‡ÂÚÒfl ͇Í
∆λ obser λ obser
c+v
z=
=
−1 =
− 1.
c−v
λ emit
λ emit
äÓÒÏÓÎӄ˘ÂÒÍÓ Í‡ÒÌÓ ÒÏ¢ÂÌË ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ Ò‚flÁ‡ÌÓ Ò Ô‡‡ÏÂÚÓÏ
a(tobser )
‡Ò¯ËÂÌËfl a = a(t ) : z + 1 =
. á‰ÂÒ¸ a(tobser ) fl‚ÎflÂÚÒfl Á̇˜ÂÌËÂÏ Ô‡‡ÏÂÚ‡
a(temit )
‡Ò¯ËÂÌËfl ‚ ÔÂËÓ‰ ̇·Î˛‰ÂÌËfl ÔËıÓ‰fl˘Â„Ó ÓÚ Ó·˙ÂÍÚ‡ Ò‚ÂÚ‡, ‡ temit – Á̇˜ÂÌËÂÏ Ô‡‡ÏÂÚ‡ ‡Ò¯ËÂÌËfl ‚ ÔÂËÓ‰ Â„Ó ËÁÎÛ˜ÂÌËfl.
ê‡ÒÒÚÓflÌË ·Î‡
ê‡ÒÒÚÓflÌË ·Î‡ ÂÒÚ¸ ÍÓÌÒÚ‡ÌÚ‡
DH =
c
= 4220 åÔÍ ≈ 1, 3 × 10 6 Ï ≈ 1,377 × 1010 Ò‚ÂÚÓ‚˚ı ÎÂÚ,
H0
„‰Â Ò – ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡ Ë H0 = 71 ± 4 ÍÏÒ–1 åÔÍ–1 – ÍÓÌÒÚ‡ÌÚ‡ ·Î‡.
ùÚÓ ‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó ÍÓÒÏ˘ÂÒÍÓ„Ó Ò‚ÂÚÓ‚Ó„Ó „ÓËÁÓÌÚ‡, ÍÓÚÓ˚Ï
Ó·ÓÁ̇˜‡ÂÚÒfl Í‡È ‚ˉËÏÓÈ ‚ÒÂÎÂÌÌÓÈ, Ú.Â. ‡‰ËÛÒ ÒÙÂ˚, ˆÂÌÚÓÏ ÍÓÚÓÓÈ
fl‚ÎflÂÚÒfl áÂÏÎfl, ÔÓÚflÊÂÌÌÓÒÚ¸˛ ÓÍÓÎÓ 13,7 ÏÎ‰ Ò‚ÂÚÓ‚˚ı ÎÂÚ. ùÚÓ ‡ÒÒÚÓflÌËÂ
˜‡ÒÚÓ Ì‡Á˚‚‡˛Ú ÂÚÓÒÔÂÍÚË‚Ì˚Ï ‡ÒÒÚÓflÌËÂÏ, ÔÓÒÍÓθÍÛ ‡ÒÚÓÌÓÏ˚, ̇·Î˛‰‡˛˘Ë ۉ‡ÎÂÌÌ˚ ӷ˙ÂÍÚ˚, Ù‡ÍÚ˘ÂÒÍË "ÒÏÓÚflÚ Ì‡Á‡‰" ‚ ËÒÚÓ˲ ‚ÒÂÎÂÌÌÓÈ.
ÑÎfl Ì·Óθ¯Ó„Ó v/c ËÎË Ï‡ÎÓ„Ó ‡ÒÒÚÓflÌËfl d ‚ ‡Ò¯Ëfl˛˘ÂÈÒfl ‚ÒÂÎÂÌÌÓÈ
ÒÍÓÓÒÚ¸ ÔÓÔÓˆËÓ̇θ̇ ‡ÒÒÚÓflÌ˲ Ë ‚Ò ÏÂ˚ ‡ÒÒÚÓflÌËÈ, ̇ÔËÏÂ
‡ÒÒÚÓflÌË ۄÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡, ÙÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ Ë Ú.Ô., ÒıÓ‰flÚÒfl Í
Ó‰ÌÓÏÛ Á̇˜ÂÌ˲. ÇÁfl‚ ÎËÌÂÈÌÛ˛ ‡ÔÔÓÍÒËχˆË˛, ÔÓÎÛ˜ËÏ d = zDH, „‰Â z – Í‡ÒÌÓÂ
ÒÏ¢ÂÌËÂ. é‰Ì‡ÍÓ ˝Ú‡ ÙÓÏÛ· ÒÔ‡‚‰ÎË‚‡ ÚÓθÍÓ ‰Îfl Ì·Óθ¯Ëı Á̇˜ÂÌËÈ
Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl.
ê‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl
Ç Òڇ̉‡ÚÌÓÈ ÏÓ‰ÂÎË "·Óθ¯Ó„Ó ‚Á˚‚‡" ËÒÔÓθÁÛ˛ÚÒfl ÍÓÓ‰Ë̇Ú˚ ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl, „‰Â ÔÓÒÚ‡ÌÒÚ‚ÂÌ̇fl ÒËÒÚÂχ ÍÓÓ‰ËÌ‡Ú ÔË‚flÁ‡Ì‡ Í Ò‰ÌÂÏÛ
ÏÂÒÚÓÔÓÎÓÊÂÌ˲ „‡Î‡ÍÚËÍ. í‡Í‡fl ÒËÒÚÂχ ÍÓÓ‰ËÌ‡Ú ÔÓÁ‚ÓÎflÂÚ ÔÂÌ·˜¸
Ô‡‡ÏÂÚ‡ÏË ‚ÂÏÂÌË Ë ‡Ò¯ËÂÌËfl ‚ÒÂÎÂÌÌÓÈ, Ë ÙÓχ ÔÓÒÚ‡ÌÒÚ‚‡ ÏÓÊÂÚ ·˚Ú¸
Ô‰ÒÚ‡‚ÎÂ̇ Í‡Í ÔÓÒÚ‡ÌÒÚ‚ÂÌ̇fl „ËÔÂÔÓ‚ÂıÌÓÒÚ¸ Ò ÔÓÒÚÓflÌÌ˚Ï ÍÓÒÏÓÎӄ˘ÂÒÍËÏ ‚ÂÏÂÌÂÏ.
ê‡ÒÒÚÓflÌËÂÏ ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl (ËÎË ÍÓÓ‰Ë̇ÚÌ˚Ï ‡ÒÒÚÓflÌËÂÏ, ÍÓÒÏÓÎӄ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ χ ) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ‚ ÍÓÓ‰Ë̇ڇı ÒÓ‚ÏÂÒÚÌÓ„Ó
‰‚ËÊÂÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË ‚ ÔÓÒÚ‡ÌÒÚ‚Â ‚ Ó‰ÌÓ Ë ÚÓ Ê ÍÓÒÏÓÎӄ˘ÂÒÍÓÂ
‚ÂÏfl, Ú.Â. ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÒÓÒ‰ÌËÏË Ó·˙ÂÍÚ‡ÏË ‚Ó ‚ÒÂÎÂÌÌÓÈ, ÍÓÚÓÓÂ
368
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ÓÒÚ‡ÂÚÒfl ÌÂËÁÏÂÌÌ˚Ï ÓÚÌÓÒËÚÂθÌÓ ˝ÔÓıË, ÂÒÎË Ó·‡ Ó·˙ÂÍÚ‡ ‰‚ËÊÛÚÒfl ‚ ÔÓÚÓÍÂ
·Î‡. ùÚÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË ËÁÏÂÂÌÌÓ χүڇ·ÌÓÈ ÎËÌÂÈÍÓÈ ‚ ÏÓÏÂÌÚ
Ëı ̇·Î˛‰ÂÌËfl (ÒÓ·ÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌËÂ), ‰ÂÎÂÌÌÓ ̇ ÓÚÌÓ¯ÂÌË ÍÓ˝ÙÙˈËÂÌÚÓ‚
χүڇ·ËÓ‚‡ÌËfl ‚ÒÂÎÂÌÌÓÈ ‚ ËÒıÓ‰Ì˚È ÚÂÍÛ˘ËÈ ÔÂËÓ‰˚. àÌ˚ÏË ÒÎÓ‚‡ÏË, ˝ÚÓ
ÒÓ·ÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌËÂ, ÛÏÌÓÊÂÌÌÓ ̇ (1 + z), „‰Â z – Í‡ÒÌÓ ÒÏ¢ÂÌËÂ:
dcomov ( x, y) = d proper ( x, y) ⋅
a(tobser )
= d proper ( x, y) ⋅ (1 + z ).
a(temit )
ÇÓ ‚ÂÏfl tobser, Ú.Â. ‚ ̇ÒÚÓfl˘Û˛ ˝ÔÓıÛ, a = a(tobser) = 1 Ë d = dproper, Ú.Â. ‡ÒÒÚÓflÌËÂ
ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÒÓÒ‰ÌËÏË ÒÓ·˚ÚËflÏË (Ò ·ÎËÁÍËÏË Á̇˜ÂÌËflÏË
Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl ËÎË ‡ÒÒÚÓflÌËfl) fl‚ÎflÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ ÏÂʉÛ
ÌËÏË. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ‰Îfl ÍÓÒÏÓÎӄ˘ÂÒÍÓ„Ó ‚ÂÏÂÌË t ‚˚ÔÓÎÌflÂÚÒfl ‡‚ÂÌÒÚ‚Ó
d proper
dcomov =
.
a( t )
èÓÎÌÓ ‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl ÔÓ ÎËÌËË ÔflÏÓÈ ‚ˉËÏÓÒÚË DC ÓÚ
áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡ ‡ÒÒ˜ËÚ˚‚‡ÂÚÒfl ÔÓÒ‰ÒÚ‚ÓÏ ËÌÚ„ËÓ‚‡ÌËfl
·ÂÒÍÓ̘ÌÓ Ï‡Î˚ı dcomov(x, y) ÏÂÊ‰Û ÒÓÒ‰ÌËÏË ÒÓ·˚ÚËflÏË ‚‰Óθ ÎÛ˜‡ ‚ÂÏÂÌË,
̇˜Ë̇fl Ò ‚ÂÏÂÌË temit, ÍÓ„‰‡ Ò‚ÂÚ ·˚Î ËÁÎÛ˜ÂÌ Ó·˙ÂÍÚÓÏ, ‰Ó ÏÓÏÂÌÚ‡ tobser, ÍÓ„‰‡
ÓÒÛ˘ÂÒÚ‚ÎflÎÓÒ¸ ̇·Î˛‰ÂÌË ӷ˙ÂÍÚ‡:
t obser
DC =
∫
t emit
cdt
.
a( t )
ç‡ flÁ˚Í Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl ‡ÒÒÚÓflÌË D C ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡
‡ÒÒ˜ËÚ˚‚‡ÂÚÒfl ÔÓÒ‰ÒÚ‚ÓÏ ËÌÚ„ËÓ‚‡ÌËfl ·ÂÒÍÓ̘ÌÓ Ï‡Î˚ı dcomov (x, y)
ÏÂÊ‰Û ÒÓÒ‰ÌËÏË ÒÓ·˚ÚËflÏË ‚‰Óθ ‡‰Ë‡Î¸ÌÓ„Ó ÎÛ˜‡ ‚ÂÏÂÌË ÓÚ z = 0 ‰Ó Ó·˙ÂÍz
Ú‡:
DC = DH
dz
∫ E( z ) ,
„‰Â D H ÂÒÚ¸ ‡ÒÒÚÓflÌË ·Î‡, Ë E( z ) = (Ω M (1 + z )3 +
0
+ Ω R (1 + z )2 + Ω Λ )1 / 2 .
Ç ÌÂÍÓÚÓÓÏ ÒÏ˚ÒΠ‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl fl‚ÎflÂÚÒfl ÙÛ̉‡ÏÂÌڇθÌÓÈ ÏÂÓÈ ‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË, ÔÓÒÍÓθÍÛ ‚Ò ‰Û„Ë ‡ÒÒÚÓflÌËfl ÏÓ„ÛÚ
·˚Ú¸ ‚˚‡ÊÂÌ˚ ˜ÂÂÁ Ì„Ó.
ëÓ·ÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌËÂ
ëÓ·ÒÚ‚ÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ (ËÎË ÙËÁ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ, Ó‰Ë̇Ì˚Ï ‡ÒÒÚÓflÌËÂÏ) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÒÓÒ‰ÌËÏË ÒÓ·˚ÚËflÏË ‚ ÒËÒÚÂÏÂ, ‚
ÍÓÚÓÓÈ ÓÌË ÔÓËÒıÓ‰flÚ ‚ Ó‰ÌÓ ‚ÂÏfl. ùÚÓ ‡ÒÒÚÓflÌË ·Û‰ÂÚ ËÁÏÂflÚ¸Òfl χүڇ·ÌÓÈ ÎËÌÂÈÍÓÈ ‚ ÏÓÏÂÌÚ Ì‡·Î˛‰ÂÌËfl. ëΉӂ‡ÚÂθÌÓ, ‰Îfl ÍÓÒÏÓÎӄ˘ÂÒÍÓ„Ó
‚ÂÏÂÌË t ‚˚ÔÓÎÌflÂÚÒfl ‡‚ÂÌÒÚ‚Ó
dproper(x, y) = dcomov · a(t),
„‰Â dcomov – ‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl Ë a (t) – ÍÓ˝ÙÙˈËÂÌÚ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl.
Ç ÒÓ‚ÂÏÂÌÌÛ˛ ˝ÔÓıÛ (Ú.Â. ‚Ó ‚ÂÏfl tobser) ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë a = a(tobser) = 1 Ë
dproper = dcomov. í‡ÍËÏ Ó·‡ÁÓÏ, ÒÓ·ÒÚ‚ÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ‰‚ÛÏfl ÒÓÒ‰ÌËÏË
ÒÓ·˚ÚËflÏË (Ú.Â. ÒÓ·˚ÚËflÏË Ò ·ÎËÁÍËÏË Á̇˜ÂÌËflÏË Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl ËÎË ‡ÒÒÚÓflÌËfl) fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ Ï˚ ·Û‰ÂÏ ËÁÏÂflÚ¸ ÎÓ͇θÌÓ ÏÂÊ‰Û ‰‚ÛÏfl
ÒÓ·˚ÚËflÏË Ò„ӉÌfl, ÂÒÎË ˝ÚË ‰‚ ÚÓ˜ÍË Ò‚flÁ‡Ì˚ ÔÓÚÓÍÓÏ ï‡··Î‡.
369
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
ê‡ÒÒÚÓflÌË ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl
ê‡ÒÒÚÓflÌËÂÏ ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl (ËÎË ‡ÒÒÚÓflÌËÂÏ ÒÓ‚ÏÂÒÚÌÓ„Ó ÔÓÔÂ˜ÌÓ„Ó ‰‚ËÊÂÌËfl, ÒÓ‚ÂÏÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Û„ÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡) D M ̇Á˚‚‡ÂÚÒfl
‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡, ÍÓÚÓÓ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÓÚÌÓ¯ÂÌËÂ
‡ÍÚۇθÌÓÈ ÔÓÔÂ˜ÌÓÈ ÒÍÓÓÒÚË (‚ ‡ÒÒÚÓflÌËË ÔÓ ‚ÂÏÂÌË) Ó·˙ÂÍÚ‡ Í Â„Ó
ÒÓ·ÒÚ‚ÂÌÌÓÏÛ ‰‚ËÊÂÌ˲ (‚ ‡‰Ë‡Ì‡ı Á‡ ‰ËÌËˆÛ ‚ÂÏÂÌË). éÌÓ ‚˚‡Ê‡ÂÚÒfl ͇Í

 DH

DM =  DC ,

 DH

1
sinh( Ω R DC / DH ),
ΩR
Ω R > 0,
Ω R = 0,
1
sin ( | Ω R | DC / DH ), Ω R < 0,
ΩR
„‰Â D H – ‡ÒÒÚÓflÌË ·Î‡ Ë D C – ‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl ÔÓ ÎËÌËË
ÔflÏÓÈ ‚ˉËÏÓÒÚË. ÑÎfl Ω Λ = 0 ÒÛ˘ÂÒÚ‚ÛÂÚ ‡Ì‡ÎËÚ˘ÂÒÍÓ ¯ÂÌË (z – Í‡ÒÌÓÂ
ÒÏ¢ÂÌËÂ):
DM = DH
2(2 − Ω M (1 − z ) − (2 − Ω M ) 1 + Ω M z )
Ω 2M (1 + z )
.
ê‡ÒÒÚÓflÌË ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl DM ÒÓ‚Ô‡‰‡ÂÚ Ò ‡ÒÒÚÓflÌËÂÏ ÒÓ‚ÏÂÒÚÌÓ„Ó
‰‚ËÊÂÌËfl ÔÓ ÎËÌËË ÔflÏÓÈ ‚ˉËÏÓÒÚË DC ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÍË‚ËÁ̇
‚ÒÂÎÂÌÌÓÈ ‡‚̇ ÌÛβ. ê‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÒÓ·˚ÚËflÏË
ÔË Ó‰Ë̇ÍÓ‚˚ı Í‡ÒÌÓÏ ÒÏ¢ÂÌËË ËÎË ‡ÒÒÚÓflÌËË, ÌÓ ‡ÁÌÂÒÂÌÌ˚ÏË ÔÓ Ì·ÓÒ‚Ó‰Û
̇ ÌÂÍÓÚÓ˚È Û„ÓÎ δθ, ‡‚ÌÓ DMδθ.
D
ê‡ÒÒÚÓflÌË D M Ò‚flÁ‡ÌÓ Ò ÙÓÚÓÏÂÚ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ DL Í‡Í DM = L Ë Ò
1+ z
‡ÒÒÚÓflÌËÂÏ Û„ÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡ DA Í‡Í DM = (1 + z ) DA .
îÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
îÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË D L ÂÒÚ¸ ‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó
Ó·˙ÂÍÚ‡, ÓÔ‰ÂÎflÂÏÓ ÓÚÌÓ¯ÂÌËÂÏ ÏÂÊ‰Û Ì‡·Î˛‰‡ÂÏ˚Ï ÔÓÚÓÍÓÏ S Ë flÍÓÒÚ¸˛ L:
DL =
L
.
4πS
чÌÌÓ ‡ÒÒÚÓflÌË ҂flÁ‡ÌÓ Ò ‡ÒÒÚÓflÌËÂÏ ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl DM ͇Í
DL = (1 + z ) DM Ë ‡ÒÒÚÓflÌËÂÏ Û„ÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡ D L Í‡Í DL = (1 + z )2 DA , „‰Â z –
Í‡ÒÌÓ ÒÏ¢ÂÌËÂ.
îÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ۘËÚ˚‚‡ÂÚ ÚÓ Ó·ÒÚÓflÚÂθÒÚ‚Ó, ˜ÚÓ Ì‡·Î˛‰‡Âχfl
Ò‚ÂÚËÏÓÒÚ¸ ÓÒ··ÎÂ̇ Ù‡ÍÚÓ‡ÏË ÂÎflÚË‚ËÒÚÒÍÓ„Ó Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl Ë ‰ÓÔÎÂÓ‚ÒÍÓ„Ó Ò‰‚Ë„‡ ËÁÎÛ˜ÂÌËfl, ͇ʉ˚È ËÁ ÍÓÚÓ˚ı ‰‡ÂÚ (1 + z) – ÓÒ··ÎÂÌËÂ:
Lobser =
Lemit
(1 + z )2
ëÍÓÂÍÚËÓ‚‡ÌÌÓ ÙÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË DL′ ÓÔ‰ÂÎflÂÚÒfl ͇Í
D
DL′ = L .
1+ z
370
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
åÓ‰Ûθ ‡ÒÒÚÓflÌËfl
 D 
åÓ‰ÛÎ˛Ò ‡ÒÒÚÓflÌËfl DM ÓÔ‰ÂÎflÂÚÒfl Í‡Í DM = 5 ln L  , „‰Â DL – ÙÓÚÓ 10 pc 
ÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ. åÓ‰ÛÎ˛Ò ‡ÒÒÚÓflÌËfl – ‡ÁÌÓÒÚ¸ ÏÂÊ‰Û ‡·ÒÓβÚÌÓÈ
‚Â΢ËÌÓÈ Ë Ì‡·Î˛‰‡ÂÏÓÈ ‚Â΢ËÌÓÈ ‡ÒÚÓÌÓÏ˘ÂÒÍÓ„Ó Ó·˙ÂÍÚ‡. åÓ‰ÛβÒ˚
‡ÒÒÚÓflÌËÈ Ó·˚˜ÌÓ ËÒÔÓθÁÛ˛ÚÒfl ‰Îfl ‚˚‡ÊÂÌËfl ‡ÒÒÚÓflÌËÈ ‰Ó ‰Û„Ëı „‡Î‡ÍÚËÍ.
í‡Í, ̇ÔËÏÂ, ÏÓ‰ÛÎ˛Ò ‡ÒÒÚÓflÌËfl „‡Î‡ÍÚËÍË ÅÓθ¯Ó„Ó å‡„ÂηÌÓ‚‡ é·Î‡Í‡
ÒÓÒÚ‡‚ÎflÂÚ 18,5; „‡Î‡ÍÚËÍË Ä̉Óω‡ – 24,5; ÒÍÓÔÎÂÌË Ñ‚˚ ËÏÂÂÚ ÏÓ‰ÛβÒ
‡ÒÒÚÓflÌËfl, ‡‚Ì˚È 31,7.
ê‡ÒÒÚÓflÌË ۄÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡
ê‡ÒÒÚÓflÌËÂÏ Û„ÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡ (ËÎË ‡ÒÒÚÓflÌËÂÏ Û„ÎÓ‚ÓÈ ÔÓÚflÊÂÌÌÓÒÚË) D A
̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡, ÓÔ‰ÂÎÂÌÌÓ ͇Í
ÓÚÌÓ¯ÂÌË ÙËÁ˘ÂÒÍÓ„Ó ÔÓÔÂ˜ÌÓ„Ó ‡ÁÏÂ‡ Ó·˙ÂÍÚ‡ Í Â„Ó Û„ÎÓ‚ÓÏÛ ‡ÁÏÂÛ
(‚ ‡‰Ë‡Ì‡ı). éÌÓ ËÒÔÓθÁÛÂÚÒfl ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl Û„ÎÓ‚˚ı ‡Á‰ÂÎÂÌËÈ ‚ ÚÂÎÂÒÍÓÔ˘ÂÒÍËı ËÁÓ·‡ÊÂÌËflı ‚ ÒÓ·ÒÚ‚ÂÌÌ˚ ‡Á‰ÂÎÂÌËfl ËÒÚÓ˜ÌË͇. ëÔˆËÙË͇ ˝ÚÓ„Ó
‡ÒÒÚÓflÌËfl ÒÓÒÚÓËÚ ‚ ÚÓÏ, ˜ÚÓ ÓÌÓ Ì ۂÂ΢˂‡ÂÚÒfl ·ÂÒÍÓ̘ÌÓ ÔË z →∞, ÓÌÓ
̇˜Ë̇ÂÚ ÛÏÂ̸¯‡Ú¸Òfl ÔË z ~1, Ë ÔÓÒΠ˝ÚÓ„Ó ·ÓΠۉ‡ÎÂÌÌ˚ ӷ˙ÂÍÚ˚ ‚ˉflÚÒfl
Í‡Í Ëϲ˘Ë ·Óθ¯Ë ۄÎÓ‚˚ ‡ÁÏÂ˚. ê‡ÒÒÚÓflÌË ۄÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡ Ò‚flÁ‡ÌÓ Ò
D
‡ÒÒÚÓflÌËÂÏ ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl D M Í‡Í DA = M Ë ÙÓÚÓÏÂÚ˘ÂÒÍËÏ
1+ z
‡ÒÒÚÓflÌËÂÏ DL ͇Í
DL
DA =
,
(1 + z )2
„‰Â z – Í‡ÒÌÓ ÒÏ¢ÂÌËÂ.
ÖÒÎË ‡ÒÒÚÓflÌË ۄÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡ ÓÒÌÓ‚‡ÌÓ Ì‡ Ô‰ÒÚ‡‚ÎÂÌËË ‰Ë‡ÏÂÚ‡ Ó·˙ÂÍÚ‡ Í‡Í ÔÓËÁ‚‰ÂÌËfl ۄ· Ë ‡ÒÒÚÓflÌËfl (Û„ÓÎ × ‡ÒÒÚÓflÌËÂ), ÚÓ ‡ÒÒÚÓflÌË ÔÎÓ˘‡‰Ë
ÓÔ‰ÂÎflÂÚÒfl ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ ËÁ Ô‰ÒÚ‡‚ÎÂÌËfl ÔÎÓ˘‡‰Ë Ó·˙ÂÍÚ‡ Í‡Í ÔÓËÁ‚‰ÂÌËfl ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ„Ó Û„Î‡ Ë Í‚‡‰‡Ú‡ ‡ÒÒÚÓflÌËfl (ÚÂÎÂÒÌ˚È Û„ÓÎ × ‡ÒÒÚÓflÌË 2 ).
ê‡ÒÒÚÓflÌË ҂ÂÚÓ‚Ó„Ó ÔÛÚË
ê‡ÒÒÚÓflÌËÂÏ Ò‚ÂÚÓ‚Ó„Ó ÔÛÚË (ËÎË ‡ÒÒÚÓflÌËÂÏ ‚ÂÏÂÌË Ò‚ÂÚÓ‚Ó„Ó ÔÛÚË) Dlt
̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡, ÓÔ‰ÂÎÂÌÌÓ ͇Í
Dlt = c(tobser − temit ), „‰Â tobser – ‚ÂÏfl, ÍÓ„‰‡ Ó·˙ÂÍÚ Ì‡·Î˛‰‡ÎÒfl, Ë temit – ‚ÂÏfl,
ÍÓ‰‡ Ò‚ÂÚ ·˚Î ËÁÎÛ˜ÂÌ Ó·˙ÂÍÚÓÏ.
ùÚÓ ‡ÒÒÚÓflÌË ËÒÔÓθÁÛÂÚÒfl ‰ÍÓ, ÔÓÒÍÓθÍÛ ‚ÂҸχ ÚÛ‰ÌÓ ÓÔ‰ÂÎËÚ¸ ‚ÂÏfl
temit – ‚ÓÁ‡ÒÚ ‚ÒÂÎÂÌÌÓÈ ‚ ÏÓÏÂÌÚ ËÁÎÛ˜ÂÌËfl Ò‚ÂÚ‡, ÍÓÚÓ˚È Ï˚ ‚ˉËÏ.
ê‡ÒÒÚÓflÌË ԇ‡Î·ÍÒ‡
ê‡ÒÒÚÓflÌËÂÏ Ô‡‡Î·ÍÒ‡ D P ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó
Ó·˙ÂÍÚ‡, ÓÔ‰ÂÎÂÌÌÓ ËÁÏÂÂÌËÂÏ Ô‡‡Î·ÍÒÓ‚, Ú.Â. ͇ÊÛ˘ËıÒfl ËÁÏÂÌÂÌËÈ ÔÓÎÓÊÂÌËfl Ó·˙ÂÍÚ‡ ̇ Ì·Ó҂Ӊ ‚ ÂÁÛθڇÚ ÔÂÂÏ¢ÂÌËfl ̇·Î˛‰‡ÚÂÎfl Ò áÂÏÎÂÈ
‚ÓÍÛ„ ëÓÎ̈‡.
äÓÒÏÓÎӄ˘ÂÒÍËÈ Ô‡‡Î·ÍÒ ËÁÏÂflÂÚÒfl Í‡Í ‡ÁÌÓÒÚ¸ Û„ÎÓ‚ ÎËÌËË ‚ˉËÏÓÒÚË
Ó·˙ÂÍÚ‡ ËÁ ‰‚Ûı ÍÓ̘Ì˚ı ÚÓ˜ÂÍ ‰Ë‡ÏÂÚ‡ Ó·ËÚ˚ áÂÏÎË, ÍÓÚÓ‡fl ËÒÔÓθÁÛÂÚÒfl ‚
͇˜ÂÒÚ‚Â ÓÔÓÌÓÈ ÎËÌËË. ÑÎfl ‰‡ÌÌÓÈ ÓÔÓÌÓÈ ÎËÌËË Ô‡‡Î·ÍÒ α – β Á‡‚ËÒËÚ ÓÚ
‡ÒÒÚÓflÌËfl Ë, Á̇fl Â„Ó Ë ‰ÎËÌÛ ÓÔÓÌÓÈ ÎËÌËË (‰‚ ‡ÒÚÓÌÓÏ˘ÂÒÍË ‰ËÌˈ˚ AU,
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
371
„‰Â AU ≈ 150 ÏÎÌ ÍÏ – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ëÓÎ̈ÂÏ Ë áÂÏÎÂÈ), ‡ÒÒÚÓflÌË ‰Ó Á‚ÂÁ‰˚
ÏÓÊÌÓ ‚˚˜ËÒÎËÚ¸ ÔÓ ÙÓÏÛÎÂ
2
DP =
,
α −β
„‰Â D P – ‚˚‡ÊÂÌÓ ‚ Ô‡ÒÂ͇ı, ‡ α Ë β – ‚ ‡ÍÒÂÍÛ̉‡ı.
Ç ‡ÒÚÓÌÓÏËË "Ô‡‡Î·ÍÒ" ÓÁ̇˜‡ÂÚ Ó·˚˜ÌÓ „Ó‰Ó‚ÓÈ Ô‡‡Î·ÍÒ , ÍÓÚÓ˚È
fl‚ÎflÂÚÒfl ‡ÁÌˈÂÈ ‚ ۄ·ı ̇·Î˛‰ÂÌËfl Á‚ÂÁ‰˚ ÒÓ ÒÚÓÓÌ˚ áÂÏÎË Ë ÒÓ ÒÚÓÓÌ˚
ëÓÎ̈‡. ëÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌË ‰Ó Á‚ÂÁ‰˚ (‚ Ô‡ÒÂ͇ı) ÓÔ‰ÂÎflÂÚÒfl ͇Í
1
DP =
p
äËÌÂχÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
äËÌÂχÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ‰Ó „‡Î‡ÍÚ˘ÂÒÍÓ„Ó ËÒÚÓ˜ÌË͇, ÍÓÚÓÓÂ
ÓÔ‰ÂÎflÂÚÒfl ËÁ ‚‡˘ÂÌËfl „‡Î‡ÍÚËÍË, ÍÓ„‰‡ ËÁ‚ÂÒÚ̇ ‡‰Ë‡Î¸Ì‡fl ÒÍÓÓÒÚ¸ ËÒÚÓ˜ÌË͇. çÂÓ‰ÌÓÁ̇˜ÌÓÒÚ¸ ÍËÌÂχÚ˘ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl ‚ÓÁÌË͇ÂÚ (ÚÓθÍÓ ‚ ̇¯ÂÈ
„‡Î‡ÍÚËÍÂ), ÔÓÒÍÓθÍÛ ‚‰Óθ ‰‡ÌÌÓÈ ÎËÌËË ‚ˉËÏÓÒÚË Í‡Ê‰Ó Á̇˜ÂÌË ‡‰Ë‡Î¸ÌÓÈ
ÒÍÓÓÒÚË ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‰‚ÛÏ ‡ÒÒÚÓflÌËflÏ Ó‰Ë̇ÍÓ‚Ó Û‰‡ÎÂÌÌ˚ı ÓÚ ÚÓ˜ÍË Í‡Ò‡ÌËfl.
чÌ̇fl ÔÓ·ÎÂχ ¯‡ÂÚÒfl ‰Îfl ÌÂÍÓÚÓ˚ı „‡Î‡ÍÚ˘ÂÒÍËı „ËÓÌÓ‚ ÔÓÒ‰ÒÚ‚ÓÏ
ËÁÏÂÂÌËfl Ëı ÒÔÂÍÚ‡ ÔÓ„ÎÓ˘ÂÌËfl ‚ ÚÓÏ ÒÎÛ˜‡Â, ÂÒÎË ÏÂÊ‰Û Ì‡·Î˛‰‡ÚÂÎÂÏ Ë
„ËÓÌÓÏ ËÏÂÂÚÒfl ÏÂÊÁ‚ÂÁ‰ÌÓ ӷ·ÍÓ.
ê‡ÒÒÚÓflÌËÂ, ‡‰‡‡
ê‡ÒÒÚÓflÌËÂÏ, ‡‰‡‡ D R ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡, ËÁÏÂÂÌÌÓÂ Ò ÔÓÏÓ˘¸˛ ‡‰‡‡.
ꇉËÓÎÓ͇ˆËÓÌÌ˚È Ò˄̇Π– Ó·˚˜ÌÓ ‚˚ÒÓÍÓ˜‡ÒÚÓÚÌ˚È ‡‰ËÓËÏÔÛθÒ, ÔÓÒ˚·ÂÏ˚È ‚ Ú˜ÂÌË ÍÓÓÚÍÓ„Ó ÔÓÏÂÊÛÚ͇ ‚ÂÏÂÌË. èË ‚ÒÚÂ˜Â Ò ÔÓ‚Ó‰fl˘ËÏ
Ó·˙ÂÍÚÓÏ ‰ÓÒÚ‡ÚÓ˜ÌÓ ÍÓ΢ÂÒÚ‚Ó ˝ÌÂ„ËË ÓÚ‡Ê‡ÂÚÒfl ÓÚ ÌÂ„Ó Ó·‡ÚÌÓ Ë ÔËÌËχÂÚÒfl ‡‰ËÓÎÓ͇ˆËÓÌÌÓÈ ÒËÒÚÂÏÓÈ. èÓÒÍÓθÍÛ ‡‰ËÓ‚ÓÎÌ˚ ‚ ‚ÓÁ‰Ûı ‡ÒÔÓÒÚ‡Ìfl˛ÚÒfl Ô‡ÍÚ˘ÂÒÍË Ò ÚÓÈ Ê ÒÍÓÓÒÚ¸˛, ˜ÚÓ Ë ‚ ‚‡ÍÛÛÏÂ, ‡ÒÒÚÓflÌË D R ‰Ó
ӷ̇ÛÊÂÌÌÓ„Ó Ó·˙ÂÍÚ‡ ÏÓÊÌÓ ‚˚˜ËÒÎËÚ¸ ÔÓ ‚ÂÏÂÌÌÓÏÛ ËÌÚÂ‚‡ÎÛ t ÏÂʉÛ
ÔÂ‰‡ÌÌ˚Ï Ë ‚ÓÁ‚‡ÚË‚¯ËÏÒfl ËÏÔÛθ҇ÏË ÔÓ ÙÓÏÛÎÂ
DR =
1
ct,
2
„‰Â Ò – ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡.
ãÂÒÚÌˈ‡ ÍÓÒÏÓÎӄ˘ÂÒÍËı ‡ÒÒÚÓflÌËÈ
ÑÎfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ‰Ó ‡ÒÚÓÌÓÏ˘ÂÒÍËı Ó·˙ÂÍÚÓ‚ ËÒÔÓθÁÛÂÚÒfl Ò‚Ó„Ó
Ó‰‡ "ÎÂÒÚÌˈ‡" ‡Á΢Ì˚ı ÏÂÚÓ‰Ó‚; ͇ʉ˚È ËÁ ÌËı Ó·ÂÒÔ˜˂‡ÂÚ ‚˚˜ËÒÎÂÌËfl
ÚÓθÍÓ ‰Îfl Ó„‡Ì˘ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ‡ÒÒÚÓflÌËÈ, ‡ ͇ʉ˚È ÏÂÚÓ‰, ËÒÔÓθÁÛÂÏ˚È
‰Îfl ·Óθ¯Ëı ‡ÒÒÚÓflÌËÈ, ·‡ÁËÛÂÚÒfl ̇ ‰‡ÌÌ˚ı, ÔÓÎÛ˜ÂÌÌ˚ı ‚ ıӉ Ô‰˚‰Û˘Ëı
˝Ú‡ÔÓ‚.
àÒıÓ‰ÌÓÈ ÚÓ˜ÍÓÈ fl‚ÎflÂÚÒfl Á̇ÌË ‡ÒÒÚÓflÌËfl ÓÚ áÂÏÎË ‰Ó ëÓÎ̈‡; ˝ÚÓ ‡ÒÒÚÓflÌË ̇Á˚‚‡ÂÚÒfl ‡ÒÚÓÌÓÏ˘ÂÒÍÓÈ Â‰ËÌˈÂÈ (AU) Ë ‡‚ÌÓ ÔËÏÂÌÓ 150 ÏÎÌ ÍÏ.
äÓÔÂÌËÍ ·˚Î ÔÂ‚˚Ï, ÍÚÓ Ò‰Â·Π(Dobovolutionibus, 1543) ÔË·ÎËÁËÚÂθÌÛ˛ ÏÓ‰Âθ CÓÎ̘ÌÓÈ ÒËÒÚÂÏ˚, ÓÒÌÓ‚˚‚‡flÒ¸ ̇ ‰‡ÌÌ˚ı, ÔÓÎÛ˜ÂÌÌ˚ı ‚ ‰‚ÌË ‚ÂÏÂ̇.
ê‡ÒÒÚÓflÌËfl ‚ÌÛÚË CÓÎ̘ÌÓÈ ÒËÒÚÂÏ˚ ËÁÏÂfl˛ÚÒfl ÔÓÒ‰ÒÚ‚ÓÏ Ò‡‚ÌÂÌËfl ‚ÂÏÂÌÌ˚ı ËÌÚÂ‚‡ÎÓ‚ ÏÂÊ‰Û ËÁÎÛ˜‡ÂÏ˚ÏË ‡‰ËÓÎÓ͇ˆËÓÌÌ˚ÏË ‡‰ËÓËÏÔÛθ҇ÏË Ë Ëı
ÓÚ‡ÊÂÌËflÏË ÓÚ Ô·ÌÂÚ ËÎË ‡ÒÚÂÓˉӂ. ëÓ‚ÂÏÂÌÌ˚ ÏÓ‰ÂÎË ÓÚ΢‡˛ÚÒfl ‚˚ÒÓÍÓÈ ÚÓ˜ÌÓÒÚ¸˛ ËÁÏÂÂÌËÈ.
372
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ëÎÂ‰Û˛˘‡fl ÒÚÛÔÂ̸͇ ÎÂÒÚÌˈ˚ ‚Íβ˜‡ÂÚ ‚ Ò·fl ÔÓÒÚ˚ „ÂÓÏÂÚ˘ÂÒÍËÂ
ÏÂÚÓ‰˚; ÓÌË ÔÓÁ‚ÓÎfl˛Ú ÔÓ‰‚ËÌÛÚ¸Òfl ‚ÔÂ‰ ̇ ÌÂÒÍÓθÍÓ ÒÓÚÂÌ Ò‚ÂÚÓ‚˚ı ÎÂÚ.
ê‡ÒÒÚÓflÌË ‰Ó ·ÎËʇȯËı Á‚ÂÁ‰ ÏÓÊÂÚ ·˚Ú¸ ËÁÏÂÂÌÓ Ò ÔÓÏÓ˘¸˛ Ëı Ô‡‡Î·ÍÒÓ‚;
ËÒÔÓθÁÛfl Ó·ËÚÛ áÂÏÎË ‚ ͇˜ÂÒÚ‚Â ÓÔÓÌÓÈ ÎËÌËË, ‡ÒÒÚÓflÌË ‰Ó Á‚ÂÁ‰ ÏÓÊÌÓ
ÓÔ‰ÂÎËÚ¸ ÏÂÚÓ‰ÓÏ Úˇ̄ÛÎflˆËË. чÌÌ˚È ÏÂÚÓ‰ ËÏÂÂÚ ÔÓ„¯ÌÓÒÚ¸ ÓÍÓÎÓ 1% ̇
‰‡Î¸ÌÓÒÚË ‰Ó 50 Ò‚ÂÚÓ‚˚ı ÎÂÚ Ë ÓÍÓÎÓ 10% ̇ ‰‡Î¸ÌÓÒÚË ‰Ó 500 Ò‚ÂÚÓ‚˚ı ÎÂÚ.
ç‡ ÓÒÌÓ‚Â ‰‡ÌÌ˚ı, ÔÓÎÛ˜ÂÌÌ˚ı „ÂÓÏÂÚ˘ÂÒÍËÏË ÏÂÚÓ‰‡ÏË Ë ‰ÓÔÓÎÌÂÌÌ˚ı
ÙÓÚÓÏÂÚËÂÈ (Ú.Â. ËÁÏÂÂÌËÂÏ Ô‡‡ÏÂÚÓ‚ flÍÓÒÚË) Ë ÒÔÂÍÚÓÒÍÓÔËÂÈ, ÏÓÊÌÓ
‰ÓÒÚË„ÌÛÚ¸ ÒÎÂ‰Û˛˘ÂÈ ÒÚÛÔÂ̸ÍË Í Á‚ÂÁ‰‡Ï, ‡ÒÔÓÎÓÊÂÌÌ˚Ï Ì‡ÒÚÓθÍÓ ‰‡ÎÂÍÓ, ˜ÚÓ
Ëı Ô‡‡Î·ÍÒ˚ ÔÓ͇ ¢ Ì ÔÓ‰‰‡˛ÚÒfl ËÁÏÂÂÌËflÏ. èÓÒÍÓθÍÛ flÍÓÒÚ¸ Û·˚‚‡ÂÚ
ÔÓÔÓˆËÓ̇θÌÓ Í‚‡‰‡ÚÛ ‡ÒÒÚÓflÌËfl, Ï˚ ÏÓÊÂÏ, ÂÒÎË ËÁ‚ÂÒÚÌ˚ ‡·ÒÓβÚ̇fl
flÍÓÒÚ¸ Á‚ÂÁ‰˚ (Ú.Â.  flÍÓÒÚ¸ ̇ Òڇ̉‡ÚÌÓÏ ÓÔÓÌÓÏ ‡ÒÒÚÓflÌËË 10 ÔÍ) Ë ÂÂ
‚ˉËχfl flÍÓÒÚ¸ (Ú.Â. ËÒÚËÌ̇fl flÍÓÒÚ¸, ̇·Î˛‰‡Âχfl ̇ áÂÏÎÂ), Ò͇Á‡Ú¸, ͇Í
‰‡ÎÂÍÓ ÓÚ Ì‡Ò Ì‡ıÓ‰ËÚÒfl ˝Ú‡ Á‚ÂÁ‰‡. ÑÎfl ÓÔ‰ÂÎÂÌËfl ‡·ÒÓβÚÌÓÈ flÍÓÒÚË ÏÓÊÌÓ
‚ÓÒÔÓθÁÓ‚‡Ú¸Òfl ‰Ë‡„‡ÏÏÓÈ ÉÂˆ¯ÔÛÌ„‡–ê‡ÒÒ·: Á‚ÂÁ‰˚ Ó‰Ë̇ÍÓ‚Ó„Ó ÚËÔ‡
ËÏÂ˛Ú Ó‰Ë̇ÍÓ‚Û˛ flÍÓÒÚ¸; ÒΉӂ‡ÚÂθÌÓ, ÂÒÎË ËÁ‚ÂÒÚÂÌ ÚËÔ Á‚ÂÁ‰˚ (ÔÓ ˆ‚ÂÚÛ
Ë/ËÎË ÒÔÂÍÚÛ), ÏÓÊÌÓ ‡ÒÒ˜ËÚ‡Ú¸ ‡ÒÒÚÓflÌË ‰Ó Ì ÏÂÚÓ‰ÓÏ Ò‡‚ÌÂÌËfl  ‚ˉËÏÓÈ
flÍÓÒÚË Ò ‡·ÒÓβÚÌÓÈ; ÔÓÒΉÌflfl ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜Â̇ ËÁ „ÂÓÏÂÚ˘ÂÒÍËı
Ô‡‡Î·ÍÒÓ‚ ÒÓÒ‰ÌËı Á‚ÂÁ‰.
ÑÎfl ÓÔ‰ÂÎÂÌËfl ¢ ·Óθ¯Ëı ‡ÒÒÚÓflÌËÈ ‚Ó ‚ÒÂÎÂÌÌÓÈ Ú·ÛÂÚÒfl ‰ÓÔÓÎÌËÚÂθÌ˚È ˝ÎÂÏÂÌÚ: Òڇ̉‡ÚÌ˚ ҂˜Ë, Ú.Â. ÌÂÒÍÓθÍÓ ÚËÔÓ‚ ÍÓÒÏÓÎӄ˘ÂÒÍËı
Ó·˙ÂÍÚÓ‚, ‰Îfl ÍÓÚÓ˚ı ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ Ëı ‡·ÒÓβÚÌÛ˛ flÍÓÒÚ¸ Ì Á̇fl
‡ÒÒÚÓflÌËfl ‰Ó ÌËı. èÂ‚˘Ì˚ÏË Òڇ̉‡ÚÌ˚ÏË Ò‚Â˜‡ÏË fl‚Îfl˛ÚÒfl ˆÂÙÂˉ˚. éÌË
ÔÂËӉ˘ÂÒÍË ËÁÏÂÌfl˛Ú Ò‚ÓË ‡ÁÏÂ˚ Ë ÚÂÏÔÂ‡ÚÛÛ. ëÛ˘ÂÒÚ‚ÛÂÚ Ò‚flÁ¸ ÏÂʉÛ
flÍÓÒÚ¸˛ ˝ÚËı ÔÛθÒËÛ˛˘Ëı Á‚ÂÁ‰ Ë ÔÂËÓ‰ÓÏ Ëı ÍÓη‡ÌËÈ, Ë ˝ÚÛ ‚Á‡ËÏÓÒ‚flÁ¸
ÏÓÊÌÓ ËÒÔÓθÁÓ‚‡Ú¸ ‰Îfl ÓÔ‰ÂÎÂÌËfl Ëı ‡·ÒÓβÚÌÓÈ flÍÓÒÚË. ñÂÙÂˉ˚ ÏÓÊÌÓ
̇ÈÚË Ì‡ Û‰‡ÎÂÌËË ‰Ó ÒÍÓÔÎÂÌËfl Ñ‚˚ (60 ÏÎÌ Ò‚ÂÚÓ‚˚ı ÎÂÚ). ֢ ӉÌËÏ ÚËÔÓÏ
Òڇ̉‡ÚÌÓÈ Ò‚Â˜Ë (‚ÚÓ˘Ì˚ Òڇ̉‡ÚÌ˚ ҂˜Ë), ÍÓÚÓ˚ fl˜Â ˆÂÙÂˉ Ë
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÏÓ„ÛÚ ËÒÔÓθÁÓ‚‡Ú¸Òfl ‰Îfl ÓÔ‰ÂÎÂÌËfl ‡ÒÒÚÓflÌËÈ ‰Ó „‡Î‡ÍÚËÍ,
̇ıÓ‰fl˘ËıÒfl ̇ Û‰‡ÎÂÌËË ‰‡Ê ÒÓÚÂÌ ÏËÎÎËÓÌÓ‚ Ò‚ÂÚÓ‚˚ı ÎÂÚ, fl‚Îfl˛ÚÒfl ÒÛÔÂÌÓ‚˚Â Ë ˆÂÎ˚ „‡Î‡ÍÚËÍË.
ÑÎfl ‰ÂÈÒÚ‚ËÚÂθÌÓ ·Óθ¯Ëı ‡ÒÒÚÓflÌËÈ (ÒÓÚÂÌ ÏËÎÎËÓÌÓ‚ ËÎË ‰‡Ê ÏËÎΡ‰Ó‚
Ò‚ÂÚÓ‚˚ı ÎÂÚ) ËÒÔÓθÁÛ˛ÚÒfl ÍÓÒÏÓÎӄ˘ÂÒÍÓ Í‡ÒÌÓ ÒÏ¢ÂÌËÂ Ë Á‡ÍÓÌ Í‡ÒÌÓ„Ó
ÒÏ¢ÂÌËfl (Á‡ÍÓÌ ï‡··Î‡). é‰Ì‡ÍÓ Ì ÒÓ‚ÒÂÏ flÒÌÓ, ˜ÚÓ Ò˜ËÚ‡Ú¸ Á‰ÂÒ¸ "‡ÒÒÚÓflÌËÂÏ",
Ë ‚ ÍÓÒÏÓÎÓ„ËË ÒÛ˘ÂÒÚ‚Û˛Ú ÌÂÒÍÓθÍÓ ‡ÁÌӂˉÌÓÒÚÂÈ ‡ÒÒÚÓflÌËÈ (ÙÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ, ‡ÒÒÚÓflÌË ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl, ‡ÒÒÚÓflÌË ۄÎÓ‚Ó„Ó
‰Ë‡ÏÂÚ‡ Ë ‰.).
ÑÎfl ‡ÁÌ˚ı ÒËÚÛ‡ˆËÈ ‚ ÍÓÒÏÓÎÓ„ËË ÔËÏÂÌfl˛ÚÒfl Ò‡Ï˚ ‡ÁÌÓÓ·‡ÁÌ˚ Ë
ÒÔˆËÙ˘ÂÒÍË ÒÔÓÒÓ·˚ ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ, ̇ÔËÏÂ ‡ÒÒÚÓflÌË ÓÚ‡ÊÂÌÌÓ„Ó
Ò‚ÂÚ‡, ‡ÒÒÚÓflÌË ‡‰‡‡ ÅÓ̉Ë, ‡ÒÒÚÓflÌË ÚËÔ‡ RR ãË˚, ‡ Ú‡ÍÊ ‡ÒÒÚÓflÌËfl
‚ÂÍÓ‚Ó„Ó, ÒÚ‡ÚËÒÚ˘ÂÒÍÓ„Ó Ë ÒÔÂÍÚ‡Î¸ÌÓ„Ó Ô‡‡Î·ÍÒÓ‚.
26.2. êÄëëíéüçàü Ç íÖéêàà éíçéëàíÖãúçéëíà
èÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ÔÓ åËÌÍÓ‚ÒÍÓÏÛ (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó åËÌÍÓ‚ÒÍÓ„Ó, ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ÔÓ ãÓÂ̈Û, ÔÎÓÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl) – Ó·˚˜Ì‡fl „ÂÓÏÂÚ˘ÂÒ͇fl ÏÓ‰Âθ ‰Îfl ÒÔˆˇθÌÓÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ùÈ̯ÚÂÈ̇. Ç Ú‡ÍÓÈ
ÏÓ‰ÂÎË ÚË Ó·˚˜Ì˚ı ËÁÏÂÂÌËfl ÔÓÒÚ‡ÌÒÚ‚‡ ‰ÓÔÓÎÌfl˛ÚÒfl Ó‰ÌËÏ ËÁÏÂÂÌËÂÏ
‚ÂÏÂÌË Ë ‚Ò ‚ÏÂÒÚ ӷ‡ÁÛ˛Ú ˜ÂÚ˚ÂıÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl 1,3 ‚ ÓÚÒÛÚÒÚ‚Ë Úfl„ÓÚÂÌËfl.
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
373
ÇÂÍÚÓ˚ ‚ 1,3 ̇Á˚‚‡˛ÚÒfl 4-‚ÂÍÚÓ‡ÏË (ËÎË ÒÓ·˚ÚËflÏË). éÌË ÏÓ„ÛÚ ·˚Ú¸
Á‡ÔËÒ‡Ì˚ Í‡Í (Òt, x, y, z), „‰Â ÔÂ‚‡fl ÍÓÏÔÓÌÂÌÚ‡ ̇Á˚‚‡ÂÚÒfl ‚ÂÏÂÌÌÓÔÓ‰Ó·ÌÓÈ
ÍÓÏÔÓÌÂÌÚÓÈ (Ò – ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡ Ë t – ‚ÂÏfl), ÚÓ„‰‡ Í‡Í ‰Û„Ë ÚË ÍÓÏÔÓÌÂÌÚ˚
̇Á˚‚‡˛ÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ÏË ÍÓÏÔÓÌÂÌÚ‡ÏË. Ç ÒÙÂ˘ÂÒÍËı ÍÓÓ‰Ë̇ڇı ˝ÚË
‚ÂÍÚÓ˚ Á‡ÔËÒ˚‚‡Ú¸Òfl Í‡Í (Òt, r, θ, φ). Ç ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ÒÙÂ˘ÂÒÍËÂ
ÍÓÓ‰Ë̇Ú˚ ÂÒÚ¸ ÒËÒÚÂχ ÍË‚ÓÎËÌÂÈÌ˚ı ÍÓÓ‰ËÌ‡Ú (Òt, r, θ, φ), „‰Â Ò – ÒÍÓÓÒÚ¸
Ò‚ÂÚ‡, t – ‚ÂÏfl, r – ‡‰ËÛÒ, Ôӂ‰ÂÌÌ˚È ËÁ ̇˜‡Î‡ ÍÓÓ‰ËÌ‡Ú ‚ ‰‡ÌÌÛ˛ ÚÓ˜ÍÛ Ò
0 ≤ r < ∞ , φ – ‡ÁËÏÛڇθÌ˚È Û„ÓÎ ‚ ıÛ-ÔÎÓÒÍÓÒÚË ÓÚ ı-ÓÒË ËÁÏÂÂÌÌ˚È Ò 0 ≤
≤ ϕ < 2π (‰Ó΄ÓÚ‡), ‡ θ – ÔÓÎflÌ˚È Û„ÓÎ, ËÁÏÂÂÌÌ˚È ÓÚ z-ÓÒË Ò 0 ≤ θ ≤ π (‰ÓÔÓÎÌÂÌË ¯ËÓÚ˚). 4-ÇÂÍÚÓ˚ Í·ÒÒËÙˈËÛ˛ÚÒfl ÔÓ Á̇ÍÛ Í‚‡‰‡Ú‡ Ëı ÌÓÏ˚
|| v ||2 = ⟨ v, v⟩ = c 2 t 2 − x 2 − y 2 − z 2 .
éÌË fl‚Îfl˛ÚÒfl ‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚ÏË, ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÔÓ‰Ó·Ì˚ÏË Ë ËÁÓÚÓÔÌ˚ÏË, ÂÒÎË Í‚‡‰‡Ú˚ Ëı ÌÓÏ˚ ÔÓÎÓÊËÚÂθÌ˚, ÓÚˈ‡ÚÂθÌ˚ ËÎË ‡‚Ì˚ ÌÛβ
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
åÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÓÚÓÔÌ˚ı ‚ÂÍÚÓÓ‚ Ó·‡ÁÛ˛Ú Ò‚ÂÚÓ‚ÓÈ ÍÓÌÛÒ. ÖÒÎË ËÒÍβ˜ËÚ¸ ̇˜‡ÎÓ ÍÓÓ‰Ë̇Ú, ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÏÓÊÌÓ ‡Á‰ÂÎËÚ¸ ̇ ÚË Ó·Î‡ÒÚË: ӷ·ÒÚË
‡·ÒÓβÚÌÓ„Ó ·Û‰Û˘Â„Ó Ë ‡·ÒÓβÚÌÓ„Ó ÔÓ¯ÎÓ„Ó, ÔÓÔ‡‰‡˛˘Ë ‚ Ò‚ÂÚÓ‚ÓÈ ÍÓÌÛÒ,
ÚÓ˜ÍË ÍÓÚÓ˚ı Ò‚flÁ‡Ì˚ Ò Ì‡˜‡ÎÓÏ ÍÓÓ‰ËÌ‡Ú ‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚ÏË ‚ÂÍÚÓ‡ÏË Ò
ÔÓÎÓÊËÚÂθÌ˚ÏË ËÎË ÓÚˈ‡ÚÂθÌ˚ÏË Á̇˜ÂÌËflÏË ÍÓÓ‰Ë̇Ú˚ ‚ÂÏÂÌË ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, Ë Ó·Î‡ÒÚ¸ ‡·ÒÓβÚÌÓ„Ó Ì·˚ÚËfl, ‚˚Ô‡‰‡˛˘Û˛ ËÁ Ò‚ÂÚÓ‚Ó„Ó ÍÓÌÛÒ‡,
ÚÓ˜ÍË ÍÓÚÓÓÈ Ò‚flÁ‡Ì˚ Ò Ì‡˜‡ÎÓÏ ÍÓÓ‰ËÌ‡Ú ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÔÓ‰Ó·Ì˚ÏË ‚ÂÍÚÓ‡ÏË.
åËÓ‚‡fl ÎËÌËfl Ó·˙ÂÍÚ‡ – ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÒÓ·˚ÚËÈ, Ó·ÓÁ̇˜‡˛˘‡fl ‚ÂÏÂÌÌÛ˛ ËÒÚÓ˲ Ó·˙ÂÍÚ‡. åËÓ‚‡fl ÎËÌËfl ÔÓ͇Á˚‚‡ÂÚ ÔÛÚ¸ ‰‡ÌÌÓÈ ÚÓ˜ÍË ‚ ÔÓÒÚ‡ÌÒÚ‚Â åËÌÍÓ‚ÒÍÓ„Ó. ùÚÓ Ó‰ÌÓÏÂ̇fl ÍË‚‡fl, Ô‰ÒÚ‡‚ÎÂÌ̇fl ÍÓÓ‰Ë̇ڇÏË Í‡Í
ÙÛÌ͈Ëfl Ó‰ÌÓ„Ó Ô‡‡ÏÂÚ‡. åËÓ‚‡fl ÎËÌËfl fl‚ÎflÂÚÒfl ‚ÂÏÂÌÌÓÔÓ‰Ó·ÌÓÈ ÍË‚ÓÈ ‚
ÔÓÒÚ‡ÌÒÚ‚Â-‚ÂÏÂÌË, Ú.Â. ‚ β·ÓÈ ÚӘ͠ ͇҇ÚÂθÌ˚È ‚ÂÍÚÓ fl‚ÎflÂÚÒfl
‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚Ï ˜ÂÚ˚ÂıÏÂÌ˚Ï 3-‚ÂÍÚÓÓÏ. ÇÒ ÏËÓ‚˚ ÎËÌËË ÔÓÔ‡‰‡˛Ú
Ò‚ÂÚÓ‚ÓÈ ÍÓÌÛÒ, Ó·‡ÁÓ‚‡ÌÌ˚È ËÁÓÚÓÔÌ˚ÏË ÍË‚˚ÏË, Ú.Â. ÍË‚˚ÏË, ͇҇ÚÂθÌ˚Â
‚ÂÍÚÓ˚ ÍÓÚÓ˚ı fl‚Îfl˛ÚÒfl ËÁÓÚÓÔÌ˚ÏË 4-‚ÂÍÚÓ‡ÏË, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ‰‚ËÊÂÌ˲ Ò‚ÂÚ‡ Ë ‰Û„Ëı ˜‡ÒÚˈ Ò ÌÛ΂ÓÈ Ï‡ÒÒÓÈ ÔÓÍÓfl.
åËÓ‚˚ ÎËÌËË ˜‡ÒÚˈ Ò ÔÓÒÚÓflÌÌÓÈ ÒÍÓÓÒÚ¸˛ (‰Û„ËÏË ÒÎÓ‚‡ÏË, Ò‚Ó·Ó‰ÌÓ
Ô‡‰‡˛˘Ëı ˜‡ÒÚˈ) ̇Á˚‚‡˛ÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏË. Ç ÔÓÒÚ‡ÌÒÚ‚Â åËÌÍÓ‚ÒÍÓ„Ó ÓÌË
fl‚Îfl˛ÚÒfl ÔflÏ˚ÏË ÎËÌËflÏË.
ÉÂÓ‰ÂÁ˘ÂÒ͇fl ‚ ÔÓÒÚ‡ÌÒÚ‚Â åËÌÍÓ‚ÒÍÓ„Ó, ÒÓ‰ËÌfl˛˘‡fl ‰‚‡ ‰‡ÌÌ˚ı ÒÓ·˚ÚËfl ı
Ë Û, fl‚ÎflÂÚÒfl Ò‡ÏÓÈ ‰ÎËÌÌÓÈ ÍË‚ÓÈ ËÁ ‚ÒÂı ÏËÓ‚˚ı ÎËÌËÈ, ÒÓ‰ËÌfl˛˘Ëı ‰‚‡ ˝ÚË
ÒÓ·˚ÚËfl. ùÚÓ ÒΉÛÂÚ ËÁ Ó·‡ÚÌÓ„Ó ÌÂ‡‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇ (ËÎË ÌÂ‡‚ÂÌÒÚ‚‡
‚ÂÏÂÌË ùÈ̯ÚÂÈ̇)
|| x + y || ≥ || x || + || y ||,
‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò ÍÓÚÓ˚Ï ‚ÂÏÂÌÌÓÔӉӷ̇fl ÍË‚‡fl, ÒÓ‰ËÌfl˛˘‡fl ‰‚‡ ÒÓ·˚ÚËfl,
‚Ò„‰‡ ÍÓӘ ÒÓ‰ËÌfl˛˘ÂÈ Ëı ‚ÂÏÂÌÌÓÔÓ‰Ó·ÌÓÈ „ÂÓ‰ÂÁ˘ÂÒÍÓÈ, Ú.Â. ÒÓ·ÒÚ‚ÂÌÌÓÂ
‚ÂÏfl ˜‡ÒÚˈ˚, Ò‚Ó·Ó‰ÌÓ ‰‚Ë„‡˛˘ÂÈÒfl ÓÚ ı Í Û, Ô‚˚¯‡ÂÚ ÒÓ·ÒÚ‚ÂÌÌÓ ‚ÂÏfl
β·ÓÈ ‰Û„ÓÈ ˜‡ÒÚˈ˚, ˜¸fl ÏËÓ‚‡fl ÎËÌËfl ÒÓ‰ËÌflÂÚ ˝ÚË ÒÓ·˚ÚËfl. чÌÌ˚È Ù‡ÍÚ
Ó·˚˜ÌÓ Ì‡Á˚‚‡˛Ú Ô‡‡‰ÓÍÒÓÏ ·ÎËÁ̈ӂ.
èÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl – ˜ÂÚ˚fiıÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, ÍÓÚÓÓ fl‚ÎflÂÚÒfl Ó·˚˜ÌÓÈ Ï‡ÚÂχÚ˘ÂÒÍÓÈ ÏÓ‰Âθ˛ ‰Îfl Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ùÈ̯ÚÂÈ̇.
á‰ÂÒ¸ ÚË ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ ÍÓÏÔÓÌÂÌÚ˚ Ë Ó‰Ì‡ ‚ÂÏÂÌÌÓÔӉӷ̇fl ÍÓÏÔÓÌÂÌÚ‡
374
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
Ó·‡ÁÛ˛Ú ˜ÂÚ˚ÂıÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ÔË Ì‡Î˘ËË „‡‚ËÚ‡ˆËË. É‡‚ËÚ‡ˆËfl fl‚ÎflÂÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÓÏ „ÂÓÏÂÚ˘ÂÒÍËı Ò‚ÓÈÒÚ‚ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË, Ë ÔË
̇΢ËË „‡‚ËÚ‡ˆËË „ÂÓÏÂÚËfl ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË ËÒÍË‚ÎÂ̇. ëΉӂ‡ÚÂθÌÓ,
ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl fl‚ÎflÂÚÒfl ˜ÂÚ˚ÂıÏÂÌ˚Ï ËÒÍË‚ÎÂÌÌ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ, ‰Îfl
ÍÓÚÓÓ„Ó Í‡Ò‡ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‚ β·ÓÈ ÚӘ͠ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó åËÌÍÓ‚ÒÍÓ„Ó, Ú.Â. ÔÒ‚‰ÓËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ Ò Ò˄̇ÚÛÓÈ (1, 3).
Ç Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË „‡‚ËÚ‡ˆËfl ÓÔËÒ˚‚‡ÂÚÒfl Ò‚ÓÈÒÚ‚‡ÏË ÎÓ͇θÌÓÈ „ÂÓÏÂÚËË ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË. Ç ˜‡ÒÚÌÓÒÚË, „‡‚ËÚ‡ˆËÓÌÌÓ ÔÓΠÏÓÊÂÚ
·˚Ú¸ ÔÓÒÚÓÂÌÓ Ò ÔÓÏÓ˘¸˛ ÏÂÚ˘ÂÒÍÓ„Ó ÚÂÌÁÓ‡, ÍÓÚÓ˚È ÍÓ΢ÂÒÚ‚ÂÌÌÓ
ÓÔËÒ˚‚‡ÂÚ „ÂÓÏÂÚ˘ÂÒÍË ҂ÓÈÒÚ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË, Ú‡ÍËÂ Í‡Í ‡ÒÒÚÓflÌËÂ,
ÔÎÓ˘‡‰¸ Ë Û„ÓÎ. å‡ÚÂËfl ÓÔËÒ˚‚‡ÂÚÒfl Ò ÔÓÏÓ˘¸˛  ÚÂÌÁÓ‡ ˝ÌÂ„ËË Ì‡ÔflÊÂÌËfl – ‚Â΢ËÌ˚, ı‡‡ÍÚÂËÁÛ˛˘ÂÈ ÔÎÓÚÌÓÒÚ¸ Ë ‰‡‚ÎÂÌË χÚÂËË. ëË· ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl ÏÂÊ‰Û Ï‡ÚÂËÂÈ Ë „‡‚ËÚ‡ˆËÂÈ ÓÔ‰ÂÎflÂÚÒfl ÔÓÒÚÓflÌÌÓÈ ÒËÎ˚ ÚflÊÂÒÚË.
ì‡‚ÌÂÌËÂÏ ÔÓÎfl ùÈ̯ÚÂÈ̇ ̇Á˚‚‡ÂÚÒfl Û‡‚ÌÂÌË ӷ˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË, ÍÓÚÓÓ ÓÔËÒ˚‚‡ÂÚ, Í‡Í Ï‡ÚÂËfl ÒÓÁ‰‡ÂÚ ÒËÎÛ Úfl„ÓÚÂÌËfl Ë Ì‡Ó·ÓÓÚ, ͇Í
ÒË· Úfl„ÓÚÂÌËfl ‚ÓÁ‰ÂÈÒÚ‚ÛÂÚ Ì‡ χÚÂ˲. ê¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇
fl‚ÎflÂÚÒfl ÌÂ͇fl ÏÂÚË͇ ùÈ̯ÚÂÈ̇, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ‰‡ÌÌÓÈ Ï‡ÒÒÂ Ë ‡ÒÔ‰ÂÎÂÌÌÓ„Ó ‰‡‚ÎÂÌËfl χÚÂËË.
óÂ̇fl ‰˚‡ – χÒÒË‚Ì˚È ‡ÒÚÓÙËÁ˘ÂÒÍËÈ Ó·˙ÂÍÚ, ÍÓÚÓ˚È (ÚÂÓÂÚ˘ÂÒÍË)
‚ÓÁÌË͇ÂÚ ÔË ÍÓηÔÒ ÌÂÈÚÓÌÌÓÈ Á‚ÂÁ‰˚. ëËÎ˚ Úfl„ÓÚÂÌËfl ˜ÂÌÓÈ ‰˚˚
̇ÒÚÓθÍÓ ‚ÂÎËÍË, ˜ÚÓ ÔÂÓ‰Ó΂‡˛Ú ‰‡Ê ‰‡‚ÎÂÌË ÌÂÈÚÓÌÓ‚, Ë Ó·˙ÂÍÚ ÒÚfl„Ë‚‡ÂÚÒfl ‚ ÚÓ˜ÍÛ (̇Á˚‚‡ÂÏÛ˛ ÒËÌ„ÛÎflÌÓÒÚ¸˛). чÊ ҂ÂÚ Ì ÏÓÊÂÚ ÔÂÓ‰ÓÎÂÚ¸
ÒËÎÛ ÔËÚflÊÂÌËfl ˜ÂÌÓÈ ‰˚˚ ‚ Ô‰Â·ı Ú‡Í Ì‡Á˚‚‡ÂÏÓ„Ó ‡‰ËÛÒ‡ ò‚‡ˆ˜‡È艇
(ËÎË „‡‚ËÚ‡ˆËÓÌÌÓ„Ó ‡‰ËÛÒ‡) ˜ÂÌÓÈ ‰˚˚. çÂÁ‡flÊÂÌÌ˚ ˜ÂÌ˚ ‰˚˚ Ò
ÌÛ΂˚Ï Û„ÎÓ‚˚Ï ÏÓÏÂÌÚÓÏ Ì‡Á˚‚‡˛ÚÒfl ˜ÂÌ˚ÏË ‰˚‡ÏË ò‚‡ˆ˜‡È艇. çÂÁ‡flÊÂÌÌ˚ ˜ÂÌ˚ ‰˚˚ Ò ÌÂÌÛ΂˚Ï Û„ÎÓ‚˚Ï ÏÓÏÂÌÚÓÏ Ì‡Á˚‚‡˛ÚÒfl ˜ÂÌ˚ÏË
‰˚‡ÏË äÂ‡. ç‚‡˘‡˛˘ËÂÒfl Á‡flÊÂÌÌ˚ ˜ÂÌ˚ ‰˚˚ ̇Á˚‚‡˛ÚÒfl ˜ÂÌ˚ÏË
‰˚‡ÏË êÂÈÒÒÌÂ‡–çÓ‰ÒÚÓχ. á‡flÊÂÌÌ˚ ‚‡˘‡˛˘ËÂÒfl ˜ÂÌ˚ ‰˚˚ ̇Á˚‚‡˛ÚÒfl ˜ÂÌ˚ÏË ‰˚‡ÏË äÂ‡–ç¸˛Ï‡Ì‡. ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ÏÂÚËÍË ÓÔËÒ˚‚‡˛Ú,
Í‡Í ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ËÒÍË‚ÎflÂÚÒfl χÚÂËÂÈ ‚ ÔËÒÛÚÒÚ‚ËË ˝ÚËı ˜ÂÌ˚ı ‰˚.
ÑÓÔÓÎÌËÚÂθÌÛ˛ ËÌÙÓχˆË˛ ÏÓÊÌÓ Ì‡ÈÚË, ̇ÔËÏÂ, ‚ [Wein72].
åÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó
åÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó – ÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇, ÓÔ‰ÂÎflÂχfl ̇ ÔÓÒÚ‡ÌÒÚ‚Â åËÌÍÓ‚ÒÍÓ„Ó 1,3, Ú.Â. ̇ ˜ÂÚ˚ÂıÏÂÌÓÏ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ
ÔÓÒÚ‡ÌÒÚ‚Â, ÍÓÚÓÓ ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÔÒ‚‰Ó‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Ò
Ò˄̇ÚÛÓÈ (1, 3). é̇ ÓÔ‰ÂÎflÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ
1
0
(( gij )) = 
0

0
0
−1
0
0
0
0
−1
0
0 
0 
.
0 

−1
ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ds2 Ë ˝ÎÂÏÂÌÚ ds ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌÓ„Ó ËÌÚÂ‚‡Î‡
‰‡ÌÌÓÈ ÏÂÚËÍË Á‡‰‡˛ÚÒfl ͇Í
ds 2 = c 2 dt 2 − dx 2 − dy 2 − dz 2 .
Ç ÒÙÂ˘ÂÒÍËı ÍÓÓ‰Ë̇ڇı (ct, r, θ , φ ) Ï˚ ÔÓÎÛ˜‡ÂÏ ds 2 = c 2 dt 2 − dr 2 −
− r 2 dθ 2 − r 2 sin 2 θdφ 2 .
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
375
èÒ‚‰Ó‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó 1,3 Ò Ò˄̇ÚÛÓÈ (3,1) Ë ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = − c 2 dt 2 + dx 2 + dy 2 + dz 2
ÏÓÊÂÚ Ú‡ÍÊ ËÒÔÓθÁÓ‚‡Ú¸Òfl Í‡Í ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌ̇fl ÏÓ‰Âθ ÒÔˆˇθÌÓÈ
ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ùÈ̯ÚÂÈ̇. é·˚˜ÌÓ Ò˄̇ÚÛ‡ (1, 3) ËÒÔÓθÁÛÂÚÒfl ‚
ÙËÁËÍ ˝ÎÂÏÂÌÚ‡Ì˚ı ˜‡ÒÚˈ, ‡ Ò˄̇ÚÛ‡ (3, 1) – ‚ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË.
åÂÚË͇ ãÓÂ̈‡
åÂÚËÍÓÈ ãÓÂ̈‡ (ËÎË ÎÓÂ̈‚ÓÈ ÏÂÚËÍÓÈ) ̇Á˚‚‡ÂÚÒfl ÔÒ‚‰ÓËχÌÓ‚‡
ÏÂÚË͇ Ò Ò˄̇ÚÛÓÈ (1, p).
ãÓÂÌˆÂ‚Ó ÏÌÓ„ÓÓ·‡ÁË – ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ ãÓÂ̈‡.
àÒÍË‚ÎÂÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ÏÓÊÂÚ ·˚Ú¸
ÒÏÓ‰ÂÎËÓ‚‡ÌÓ Í‡Í ÎÓÂÌˆÂ‚Ó ÏÌÓ„ÓÓ·‡ÁË å Ò Ò˄̇ÚÛÓÈ (1, 3). èÓÒÚ‡ÌÒÚ‚Ó
åËÌÍÓ‚ÒÍÓ„Ó 1,3 Ò ÔÎÓÒÍÓÈ ÏÂÚËÍÓÈ åËÌÍÓ‚ÒÍÓ„Ó fl‚ÎflÂÚÒfl ÏÓ‰Âθ˛ ÔÎÓÒÍÓ„Ó
ÎÓÂ̈‚‡ ÏÌÓ„ÓÓ·‡ÁËfl.
Ç ÎÓÂ̈‚ÓÈ „ÂÓÏÂÚËË Ó·˚˜ÌÓ ËÒÔÓθÁÛÂÚÒfl ÒÎÂ‰Û˛˘Â ÔÓÌflÚË ‡ÒÒÚÓflÌËfl.
ÑÎfl ÒÔflÏÎflÂÏÓÈ Ì ÔÓÒÚ‡ÌÒÚ‚ÓÔÓ‰Ó·ÌÓÈ ÍË‚ÓÈ γ: [0, 1] → M ‚ ÔÓÒÚ‡ÌÒÚ‚Â1
‚ÂÏÂÌË å ‰ÎË̇ ÍË‚ÓÈ γ ÓÔ‰ÂÎflÂÚÒfl Í‡Í l( γ ) =
∫
0
−
dγ dγ
,
dt. ÑÎfl ÔÓÒÚdt dt
‡ÌÒÚ‚ÂÌÌÓÔÓ‰Ó·ÌÓÈ ÍË‚ÓÈ l(γ) = 0. íÓ„‰‡ ‡ÒÒÚÓflÌË ãÓÂ̈‡ ÏÂÊ‰Û ‰‚ÛÏfl
ÚӘ͇ÏË p, q ∈ M ÓÔ‰ÂÎflÂÚÒfl ͇Í
sup l( γ ),
γ ∈Γ
ÂÒÎË p Ɱ q, Ú.Â., ÂÒÎË ÏÌÓÊÂÒÚ‚Ó Γ Ì‡Ô‡‚ÎÂÌÌ˚ı ‚ ·Û‰Û¯Â Ì ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÔÓ‰Ó·Ì˚ı ÍË‚˚ı ÓÚ  ‰Ó q fl‚ÎflÂÚÒfl ÌÂÔÛÒÚ˚Ï. Ç ÓÒڇθÌ˚ı ÒÎÛ˜‡flı ‡ÒÒÚÓflÌËÂ
ãÓÂ̈‡ ‡‚ÌflÂÚÒfl 0.
ê‡ÒÒÚÓflÌË ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË
ÑÎfl ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË (M4 , g) ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌ̇fl ‡ÙÙËÌ̇fl Ô‡‡ÏÂÚËÁ‡ˆËfl s → γ(s) ‰Îfl Í‡Ê‰Ó„Ó Ò‚ÂÚÓ‚Ó„Ó ÎÛ˜‡ (Ú.Â. ËÁÓÚÓÔÌÓÈ „ÂÓ‰ÂÁ˘ÂÒÍÓÈ), ÔÓıÓ‰fl˘Â„Ó ˜ÂÂÁ ÒÓ·˚ÚË ̇·Î˛‰ÂÌËfl obser, Ú‡ÍÓ ˜ÚÓ γ(0) = obser Ë
dγ
g , Uobser  = 1, „‰Â U obser – 4-ÒÍÓÓÒÚ¸ ̇·Î˛‰‡ÚÂÎfl ‚ obser (Ú.Â. ‚ÂÍÚÓ Ò
 dt

g(Uobser , Uobser ) = −1).
Ç Ú‡ÍÓÏ ÒÎÛ˜‡Â ‡ÒÒÚÓflÌËÂÏ ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË Ì‡Á˚‚‡ÂÚÒfl
‡ÙÙËÌÌ˚È Ô‡‡ÏÂÚ s, ‡ÒÒχÚË‚‡ÂÏ˚È ‚ ͇˜ÂÒÚ‚Â ÏÂ˚ ‡ÒÒÚÓflÌËfl.
ê‡ÒÒÚÓflÌË ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË fl‚ÎflÂÚÒfl ÏÓÌÓÚÓÌÌ˚Ï, Û‚Â΢˂‡˛˘ËÏÒfl ‚‰Óθ Í‡Ê‰Ó„Ó ÎÛ˜‡; ÓÌÓ ÒÓ‚Ô‡‰‡ÂÚ ‚ ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÓÍÂÒÚÌÓÒÚË
pobser Ò Â‚ÍÎˉӂ˚Ï ‡ÒÒÚÓflÌËÂÏ ‚ ÔÓÍÓfl˘ÂÈÒfl ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú U obser.
äËÌÂχÚ˘ÂÒ͇fl ÏÂÚË͇
ÑÎfl Á‡‰‡ÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ï ÍËÌÂχÚ˘ÂÒÍÓÈ ÏÂÚËÍÓÈ (ËÎË ‚ÂÏÂÌÌÓÔÓ‰Ó·ÌÓÈ
ÏÂÚËÍÓÈ) fl‚ÎflÂÚÒfl ڇ͇fl ÙÛÌ͈Ëfl τ: X × X → ≥0 , ˜ÚÓ ‰Îfl ‚ÒÂı x, y, z ∈ X ËϲÚ
ÏÂÒÚÓ ÛÒÎÓ‚Ëfl:
1) τ(x, x) = 0;
2) ÂÒÎË τ(x, y) > 0 ÚÓ τ(y, x) (‡ÌÚËÒËÏÏÂÚËfl);
3) ÂÒÎË τ(x , y ), τ(y, z) > 0 ÚÓ τ(x, z) > τ(x, y ) + τ(y , z) (Ó·‡ÚÌÓ ÌÂ‡‚ÂÌÒÚ‚Ó
ÚÂÛ„ÓθÌË͇).
376
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
èÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ï ÒÓÒÚÓËÚ ËÁ ÒÓ·˚ÚËÈ x = (x 0 , x 1 ), „‰Â
x0 ∈ Ó·˚˜ÌÓ fl‚ÎflÂÚÒfl ‚ÂÏÂÌÂÏ, ‡ x 1 ∈ – ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚Ï ÏÂÒÚÓÔÓÎÓÊÂÌËÂÏ ÒÓ·˚ÚËfl ı. çÂ‡‚ÂÌÒÚ‚Ó τ(x, y) > 0 ÓÁ̇˜‡ÂÚ Ó·ÛÒÎÓ‚ÎÂÌÌÓÒÚ¸, Ú.Â. ı ÏÓÊÂÚ
‚ÎËflÚ¸ ̇ Û; Ó·˚˜ÌÓ ÓÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌÓ ÌÂ‡‚ÂÌÒÚ‚Û y 0 > x0 Ë Á̇˜ÂÌË τ(x, y) > 0
ÏÓÊÂÚ Ò˜ËÚ‡Ú¸Òfl ̇˷Óθ¯ËÏ (ÔÓÒÍÓθÍÛ Á‡‚ËÒËÚ ÓÚ ÒÍÓÓÒÚË) ÒÓ·ÒÚ‚ÂÌÌ˚Ï
(Ú.Â. ÒÛ·˙ÂÍÚË‚Ì˚Ï) ‚ÂÏÂÌÂÏ ‰‚ËÊÂÌËfl ÓÚ ı ‰Ó Û.
ÖÒÎË ÒËÎÓÈ Úfl„ÓÚÂÌËfl ÏÓÊÌÓ ÔÂÌ·˜¸, ÚÓ ËÁ ÌÂ‡‚ÂÌÒÚ‚‡ τ(x, y) > 0 ÒΉÛÂÚ,
˜ÚÓ y0 − x 0 ≥ || y1 − x1 ||2 Ë τ( x, y) = (( y0 − x 0 ) p − || y1 − x1 ||2p )1 / p (Í‡Í ‚‚‰ÂÌÓ ÅÛÁÂχÌÓÏ ‚ 1967 „.) fl‚ÎflÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ˜ËÒÎÓÏ. ÑÎfl p ≈ 2 ÓÌÓ ÒÓ‚ÏÂÒÚËÏÓ Ò
̇·Î˛‰ÂÌËflÏË ÒÔˆˇθÌÓÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË.
äËÌÂχÚ˘ÂÒ͇fl ÏÂÚË͇ Ì fl‚ÎflÂÚÒfl Ó·˚˜ÌÓÈ ‚ ̇¯ÂÏ ÔÓÌËχÌËË ÏÂÚËÍÓÈ Ë
ÌËÍ‡Í Ì ҂flÁ‡Ì‡ Ò ÍËÌÂχÚ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ ‚ ‡ÒÚÓÌÓÏËË.
ê‡ÒÒÚÓflÌË ãÓÂ̈‡–åËÌÍÓ‚ÒÍÓ„Ó
ê‡ÒÒÚÓflÌËÂÏ ãÓÂ̈‡–åËÌÍÓ‚ÒÍÓ„Ó Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ n (ËÎË Cn), ÓÔ‰ÂÎÂÌÌÓ ͇Í
n
| x1 − y1 |2 −
∑ | xi − yi |2 .
i−2
ɇÎËÎÂÂ‚Ó ‡ÒÒÚÓflÌËÂ
ɇÎËÎÂÂ‚Ó ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
| x1 – y1 |,
ÂÒÎË x 1 ≠ y1, Ë Í‡Í
( x 2 − y2 )2 + ... + ( x n − yn )2 ,
ÂÒÎË x1 = y1. èÓÒÚ‡ÌÒÚ‚Ó n, Ò̇·ÊÂÌÌÓ „‡ÎË΂˚Ï ‡ÒÒÚÓflÌËÂÏ, ̇Á˚‚‡ÂÚÒfl
„‡ÎË΂˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÑÎfl n = 4 ÓÌÓ fl‚ÎflÂÚÒfl χÚÂχÚ˘ÂÒÍÓÈ ÏÓ‰Âθ˛ ‰Îfl
ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË Í·ÒÒ˘ÂÒÍÓÈ ÏÂı‡ÌËÍË ÔÓ É‡ÎËβ–縲ÚÓÌÛ, ‚ ÍÓÚÓÓÏ
‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÒÓ·˚ÚËflÏË, ÔÓËÒıÓ‰fl˘ËÏË ‚ ÚӘ͇ı p Ë q ‚ ÏÓÏÂÌÚ˚
‚ÂÏÂÌË t1 Ë t2, ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‚ÂÏÂÌÌÓÈ ËÌÚÂ‚‡Î |t1 – t2|, ÚÓ„‰‡ Í‡Í ‚ ÒÎÛ˜‡Â
Ó‰ÌÓ‚ÂÏÂÌÌÓÒÚË ˝ÚËı ÒÓ·˚ÚËÈ ÓÌÓ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚӘ͇ÏË p
Ëq
åÂÚË͇ ùÈ̯ÚÂÈ̇
Ç Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË, ÍÓÚÓ‡fl ÓÔËÒ˚‚‡ÂÚ, Í‡Í Ï‡ÚÂËfl ËÒÍË‚ÎflÂÚ
ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏÂÌfl, ÏÂÚË͇ ùÈ̯ÚÂÈ̇ ÂÒÚ¸ ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇
Rij −
gij R
2
+ Λgij =
8πG
Tij ,
c4
Ú.Â. ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ((gij)) Ò Ò˄̇ÚÛÓÈ (1, 3), ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÈ ‰‡ÌÌÓÈ Ï‡ÒÒ Ë
gij R
‡ÒÔ‰ÂÎÂÌ˲ ‰‡‚ÎÂÌËfl ‚¢ÂÒÚ‚‡. á‰ÂÒ¸ Eij = Rij −
+ Λgij – ÚÂÌÁÓ ÍË‚ËÁÌ˚
2
ùÈ̯ÚÂÈ̇, R ij – ÚÂÌÁÓ ÍË‚ËÁÌ˚ ê˘˜Ë, R – Ò͇Îfl ‚Â΢ËÌÓÈ ê˘˜Ë, Λ –
ÍÓÒÏÓÎӄ˘ÂÒ͇fl ÔÓÒÚÓflÌ̇fl, G – „‡‚ËÚ‡ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl Ë Tij – ÚÂÌÁÓ
˝ÌÂ„ËË Ì‡ÔflÊÂÌËfl. èÛÒÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó (‚‡ÍÛÛÏ) ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÒÎÛ˜‡˛
ÌÛÎÂ‚Ó„Ó ÚÂÌÁÓ‡ ê˘˜Ë: Rij = 0.
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
377
ëÚ‡Ú˘ÂÒ͇fl ÏÂÚË͇ ùÈ̯ÚÂÈ̇ ‰Îfl Ó‰ÌÓÓ‰ÌÓÈ Ë ËÁÓÚÓÔÌÓÈ ‚ÒÂÎÂÌÌÓÈ
Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = − dt 2 +
dr 2
+ r 2 ( dθ 2 + sin 2 θdφ 2 ),
(1 − kr 2 )
„‰Â k – ÍË‚ËÁ̇ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË Ë ÍÓ˝ÙÙˈËÂÌÚ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl ‡‚ÂÌ 1.
åÂÚË͇ ‰Â ëËÚÚÂ‡
åÂÚËÍÓÈ ‰Â ëËÚÚÂ‡ ̇Á˚‚‡ÂÚÒfl χÍÒËχθÌÓ ÒËÏÏÂÚ˘ÌÓ ‚‡ÍÛÛÏÌÓÂ
¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ò ÔÓÎÓÊËÚÂθÌÓÈ ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ Λ, ÓÔ‰ÂÎÂÌÌÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
Λ
t
3 ( dr 2
ds 2 = dt 2 + e 2
+ r 2 dθ 2 + r 2 sin 2 θdφ 2 ).
ÅÂÁ ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ (Ú.Â. ÔË Λ = 0) ̇˷ÓΠÒËÏÏÂÚ˘Ì˚Ï
¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‚ ‚‡ÍÛÛÏ fl‚ÎflÂÚÒfl ÔÎÓÒ͇fl ÏÂÚË͇
åËÌÍÓ‚ÒÍÓ„Ó.
åÂÚË͇ ‡ÌÚË-‰Â ëËÚÚÂ‡ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÓÚˈ‡ÚÂθÌÓÏÛ Á̇˜ÂÌ˲ Λ.
åÂÚË͇ ò‚‡ˆ˜‡È艇
åÂÚË͇ ò‚‡ˆ˜‡È艇 – ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó
ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ) ‚ÓÍÛ„ ÒÙÂ˘ÂÒÍË ÒËÏÏÂÚ˘ÌÓ„Ó ‡ÒÔ‰ÂÎÂÌËfl χÒÒ˚;
‰‡Ì̇fl ÏÂÚË͇ ‰‡ÂÚ ÓÔËÒ‡ÌË ‚ÒÂÎÂÌÌÓÈ ‚ÓÍÛ„ ˜ÂÌÓÈ ‰˚˚ Ò ‰‡ÌÌÓÈ Ï‡ÒÒÓÈ, ËÁ
ÍÓÚÓÓÈ Ì‚ÓÁÏÓÊÌÓ ËÁ‚ΘÂÌË ˝ÌÂ„ËË. ùÚ‡ ÏÂÚË͇ ·˚· ÔÓÎÛ˜Â̇ ä. ò‚‡ˆ˜‡Èθ‰ÓÏ ‚ 1916 „., ‚ÒÂ„Ó ˜ÂÂÁ ÌÂÒÍÓθÍÓ ÏÂÒflˆÂ‚ ÔÓÒΠÓÔÛ·ÎËÍÓ‚‡ÌËfl Û‡‚ÌÂÌËfl
ÔÓÎfl ùÈ̯ÚÂÈ̇, Ë Òڇ· ÔÂ‚˚Ï ÚÓ˜Ì˚Ï ¯ÂÌËÂÏ ‰‡ÌÌÓ„Ó Û‡‚ÌÂÌËfl.
ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl ͇Í
rg 

1
ds 2 = 1 −  c 2 dt 2 −
dr 2 − r 2 ( dθ 2 + sin 2 θdφ 2 ),
rg 

r

1 − 

r
2Gm
– ‡‰ËÛÒ ò‚‡ˆ˜‡È艇, m – χÒÒ‡ ˜ÂÌÓÈ ‰˚˚ Ë G – „‡‚ËÚ‡c2
ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl.
чÌÌÓ ¯ÂÌË ‰ÂÈÒÚ‚ËÚÂθÌÓ ÚÓθÍÓ ‰Îfl ‡‰ËÛÒÓ‚, ÍÓÚÓ˚ ·Óθ¯Â rg ,
ÔÓÒÍÓθÍÛ ÔË r =rg Ï˚ ÔÓÎÛ˜‡ÂÏ ÍÓÓ‰Ë̇ÚÌÛ˛ ÒËÌ„ÛÎflÌÓÒÚ¸. чÌÌÓÈ ÔÓ·ÎÂÏ˚
ÏÓÊÌÓ ËÁ·Âʇڸ ÔÓÒ‰ÒÚ‚ÓÏ Ô˂‰ÂÌËfl Í ‰Û„ËÏ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌ˚Ï
ÍÓÓ‰Ë̇ڇÏ, ÍÓÚÓ˚ ̇Á˚‚‡˛ÚÒfl ÍÓÓ‰Ë̇ڇÏË äÛÒ͇·–óÂÍÂÂÒ‡. èË r → +∞
ÏÂÚË͇ ò‚‡ˆ¯Ë艇 ÒÚÂÏËÚÒfl Í ÏÂÚËÍ åËÌÍÓ‚ÒÍÓ„Ó.
„‰Â rg =
åÂÚË͇ äÛÒ͇·–óÂÍÂÂÒ‡
åÂÚË͇ äÛÒ͇·–óÂÍÂÂÒ‡ ÂÒÚ¸ ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl
ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ) ‚ÓÍÛ„ ÒÚ‡Ú˘ÂÒÍÓ„Ó ÒÙÂ˘ÂÒÍË ÒËÏÏÂÚ˘ÌÓ„Ó
‡ÒÔ‰ÂÎÂÌËfl χÒÒ˚, Á‡‰‡ÌÌÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
r
rg  rg  2 − r
ds = 4   e g (c 2 dt ′ 2 − dr ′ 2 ) − r 2 ( dθ 2 + sin 2 θdφ 2 ),
r  R
2
378
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
2Gm
– ‡‰ËÛÒ ò‚‡ˆ˜‡È艇, m – χÒÒ‡ ˜ÂÌÓÈ ‰˚˚, G – „‡‚ËÚ‡ˆËÓÌ̇fl
c2
ÔÓÒÚÓflÌ̇fl, R – ÔÓÒÚÓflÌ̇fl, Ë ÍÓÓ‰Ë̇Ú˚ äÛÒ͇·–óÂÍÂÂÒ‡ (t⬘, r⬘, θ, φ) ÔÓÎÛ˜ÂÌ˚ ËÁ ÒÙÂ˘ÂÒÍËı ÍÓÓ‰ËÌ‡Ú (ct, r, θ, φ) Ò ÔÓÏÓ˘¸˛ ÔÂÓ·‡ÁÓ‚‡ÌËfl äÛÒ͇·–
„‰Â rg =
r
r
 r ct ′
 ct 
óÂÍÂÂÒ‡ r ′ − ct ′ = R2 − 1 e g ,
= tgh
.
r′
 rg

 2 rg 
àÏÂÌÌÓ, ÏÂÚË͇ äÛÒ͇·–óÂÍÂÂÒ‡ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ò‚‡ˆ˜‡È艇, Á‡ÔËÒ‡ÌÌÓÈ ‚ ÍÓÓ‰Ë̇ڇı äÛÒ͇·–óÂÍÂÂÒ‡. é̇ ÔÓ͇Á˚‚‡ÂÚ, ˜ÚÓ ÒËÌ„ÛÎflÌÓÒÚ¸
ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË ‚ ÏÂÚËÍ ò‚‡ˆ˜‡È艇 Û ‡‰ËÛÒ‡ ò‚‡ˆ˜‡È艇 r g ÌÂ
fl‚ÎflÂÚÒfl ‡θÌÓÈ ÙËÁ˘ÂÒÍÓÈ ÒËÌ„ÛÎflÌÓÒÚ¸˛.
2
2
åÂÚË͇ äÓÚÚÎÂ‡
åÂÚËÍÓÈ äÓÚÚÎÂ‡ ̇Á˚‚‡ÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓ ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl
ùÈ̯ÚÂÈ̇ ‰Îfl ÒÙÂ˘ÂÒÍÓ„Ó ÒËÏÏÂÚ˘ÌÓ„Ó ‚‡ÍÛÛχ Ò ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ Λ. ùÚ‡ ÏÂÚË͇ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
−1

2 m Λr 2  2 
2 m Λr 2 
ds 2 = −1 −
−
dt
+
1
−
−
dr 2 + r 2 ( dθ 2 + sin 2 θdφ 2 ).

r
3 
r
3 


é̇ ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ ÏÂÚËÍÓÈ ò‚‡ˆ‡È艇-‰Â ëËÚÚÂ‡ ‰Îfl Λ > 0 Ë ÏÂÚËÍÓÈ
ò‚‡ˆ¯Ë艇–‡ÌÚË-‰Â ëËÚÚÂ‡ ‰Îfl Λ < 0.
åÂÚË͇ ê‡ÈÒÒÌÂ‡–çÓ‰ÒÚÓχ
åÂÚË͇ ê‡ÈÒÒÌÂ‡-çÓ‰ÒÚÓχ – ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl
ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ) ‚ÓÍÛ„ ÒÙÂ˘ÂÒÍË ÒËÏÏÂÚ˘ÌÓ„Ó ‡ÒÔ‰ÂÎÂÌËfl
χÒÒ˚ ‚ ÔËÒÛÚÒÚ‚ËË Á‡fl‰‡; ‰‡Ì̇fl ÏÂÚË͇ ‰‡ÂÚ Ì‡Ï Ô‰ÒÚ‡‚ÎÂÌË ‚ÒÂÎÂÌÌÓÈ
‚ÓÍÛ„ ˜ÂÌÓÈ ‰˚˚ Ò Á‡fl‰ÓÏ.
ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ‰‡ÌÌÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl ͇Í
−1

2m e2  2 
2m e2 
ds 2 = 1 −
+ 2  dt − 1 −
+ 2  dr 2 − r 2 ( dθ 2 + sin 2 θdφ 2 ),
r
r
r 
r 


„‰Â m – χÒÒ‡ ‰˚˚,  – Á‡fl‰ ( < m); Á‰ÂÒ¸ ËÒÔÓθÁÓ‚‡Ì˚ ‰ËÌˈ˚ ËÁÏÂÂÌËfl, ‚
ÍÓÚÓ˚ı ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡ Ò Ë „‡‚ËÚ‡ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl G ‡‚Ì˚ ‰ËÌˈÂ.
åÂÚË͇ äÂ‡
åÂÚË͇ äÂ‡ (ËÎË ÏÂÚË͇ äÂ‡–ò‡È艇) ÂÒÚ¸ ÚÓ˜ÌÓ ¯ÂÌË Û‡‚ÌÂÌËfl
ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ) ‚ÓÍÛ„ ÓÒÂÒËÏÏÂÚ˘ÌÓ„Ó
‚‡˘‡˛˘Â„ÓÒfl ‡ÒÔ‰ÂÎÂÌËfl χÒÒ˚; ˝Ú‡ ÏÂÚË͇ ‰‡ÂÚ Ì‡Ï Ô‰ÒÚ‡‚ÎÂÌË ‚ÒÂÎÂÌÌÓÈ ‚ÓÍÛ„ ‚‡˘‡˛˘ÂÈÒfl ˜ÂÌÓÈ ‰˚˚.
ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl (‚ ÙÓÏ ÅÓÈÂ‡–ãË̉͂ËÒÚ‡ ) ͇Í
 dr 2

2 mr
ds 2 = ρ2 
+ dθ 2  + (r 2 + a 2 )sin 2 θdφ 2 − dt 2 + 2 ( a sin 2 θdφ − dt )2 ,
∆
ρ


„‰Â ρ2 = r 2 + a 2 cos 2 θ Ë ∆ = r 2 − 2 mr + a 2 . á‰ÂÒ¸ m – χÒÒ‡ ˜ÂÌÓÈ ‰˚˚, Ë ‡ –
Û„ÎÓ‚‡fl ÒÍÓÓÒÚ¸, ËÁÏÂÂÌ̇fl Ò ÔÓÁˈËË Û‰‡ÎÂÌÌÓ„Ó Ì‡·Î˛‰‡ÚÂÎfl.
é·Ó·˘ÂÌË ÏÂÚËÍË äÂ‡ ‰Îfl Á‡flÊÂÌÌÓÈ ˜ÂÌÓÈ ‰˚˚ ËÁ‚ÂÒÚÌÓ Í‡Í ÏÂÚË͇
äÂ‡–ç¸˛Ï‡Ì‡. äÓ„‰‡ a = 0, ÏÂÚË͇ äÂ‡ ÒÚ‡ÌÓ‚ËÚÒfl ÏÂÚËÍÓÈ ò‚‡ˆ˜‡È艇.
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
379
åÂÚË͇ äÂ‡–ç¸˛Ï‡Ì‡
åÂÚË͇ äÂ‡–ç¸˛Ï‡Ì‡ ÂÒÚ¸ ÚÓ˜ÌÓÂ, ‰ËÌÒÚ‚ÂÌÌÓÂ Ë ÔÓÎÌÓ ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ) ‚ÓÍÛ„ ÓÒÂÒËÏÏÂÚ˘ÌÓ„Ó ‚‡˘‡˛˘Â„ÓÒfl ‡ÒÔ‰ÂÎÂÌËfl χÒÒ˚ ‚ ÔËÒÛÚÒÚ‚ËË Á‡fl‰‡; ‰‡Ì̇fl
ÏÂÚË͇ ‰‡ÂÚ Ô‰ÒÚ‡‚ÎÂÌË ‚ÒÂÎÂÌÌÓÈ ‚ÓÍÛ„ ‚‡˘‡˛˘ÂÈÒfl Á‡‡ÊÂÌÌÓÈ ˜ÂÌÓÈ
‰˚˚.
ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ‚̯ÌÂÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl ͇Í
ds 2 = −
∆
sin 2 θ 2
ρ2 2
2
2
2
2
(
dt
−
a
sin
θ
d
φ
)
+
((
r
+
a
)
d
φ
−
adt
)
+
dr + ρ2 dθ 2 ,
∆
ρ2
ρ2
„‰Â ρ2 = r 2 + a 2 cos 2 θ Ë ∆ = r 2 − 2 mr + a 2 + e 2 . á‰ÂÒ¸ m – χÒÒ‡ ˜ÂÌÓÈ ‰˚˚,  – ÂÂ
Á‡fl‰ Ë ‡ – Û„ÎÓ‚‡fl ÒÍÓÓÒÚ¸. äÓ„‰‡ e = 0, ÏÂÚË͇ äÂ‡–ç¸˛Ï‡Ì‡ ÒÚ‡ÌÓ‚ËÚÒfl
ÏÂÚËÍÓÈ äÂ‡.
ëÚ‡Ú˘̇fl ËÁÓÚÓÔ̇fl ÏÂÚË͇
ëÚ‡Ú˘̇fl ËÁÓÚÓÔ̇fl ÏÂÚË͇ – ̇˷ÓΠӷ˘Â ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl
ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ); ˝Ú‡ ÏÂÚË͇ ‰‡ÂÚ Ô‰ÒÚ‡‚ÎÂÌËÂ
ÒÚ‡Ú˘ÌÓ„Ó ËÁÓÚÓÔÌÓ„Ó „‡‚ËÚ‡ˆËÓÌÌÓ„Ó ÔÓÎfl. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ‰‡ÌÌÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl ͇Í
ds 2 = B(r )dt 2 − A(r )dr 2 − r 2 ( dθ 2 + sin 2 θdφ 2 ),
„‰Â B(r) Ë A(r) – ÔÓËÁ‚ÓθÌ˚ ÙÛÌ͈ËË.
åÂÚË͇ ù‰‰ËÌ„ÚÓ̇–êÓ·ÂÚÒÓ̇
åÂÚË͇ ù‰‰ËÌ„ÚÓ̇–êÓ·ÂÚÒÓ̇ – Ó·Ó·˘ÂÌË ÏÂÚËÍË ò‚‡ˆ˜‡È艇 ‚ Ô‰ÔÓÎÓÊÂÌËË, ˜ÚÓ Ï‡ÒÒ‡ m, „‡‚ËÚ‡ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl G Ë ÔÎÓÚÌÓÒÚ¸ ρ ËÁÏÂÌfl˛ÚÒfl
ÔÓ‰ ‚ÓÁ‰ÂÈÒÚ‚ËÂÏ ÌÂËÁ‚ÂÒÚÌ˚ı ·ÂÁ‡ÁÏÂÌ˚ı Ô‡‡ÏÂÚÓ‚ α, β Ë γ (ÍÓÚÓ˚ ‡‚Ì˚ 1
‚ Û‡‚ÌÂÌËË ÔÓÎfl ùÈ̯ÚÂÈ̇).
ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl ͇Í


mG
mG  2
mG
ds 2 = 1 − 2α
+ 2(β − αγ )
+ ... dt 2 − 1 + 2 γ
+ ... dr 2 −




r
r
r


− r 2 ( dθ 2 + sin 2 θdφ 2 ).
åÂÚË͇ ÑʇÌËÒ‡–ç¸˛Ï‡Ì‡–ÇËÌÍÛ‡
åÂÚË͇ ÑʇÌËÒ‡–ç¸˛Ï‡Ì‡–ÇËÌÍÛ‡ ÂÒÚ¸ ̇˷ÓΠӷ˘Â ÒÙÂ˘ÂÒÍË ÒËÏÏÂÚ˘ÌÓ ÒÚ‡Ú˘ÌÓÂ Ë ‡ÒËÏÔÚÓÚ˘ÂÒÍË ÔÎÓÒÍÓ ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇,
ÒÓÔflÊÂÌÌÓÂ Ò ·ÂÁχÒÒÓ‚˚Ï Ò͇ÎflÌ˚Ï ÔÓÎÂÏ. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ‰‡ÌÌÓÈ ÏÂÚËÍË
Á‡‰‡ÂÚÒfl ͇Í
γ


2m 
2m 
2
ds 2 = −1 −
 dt + 1 −

γr 
γr 


−γ

2m 
dr 2 + 1 −

γr 

1− γ
r 2 ( dθ 2 + sin 2 θdφ 2 ),
„‰Â m Ë γ – ÔÓÒÚÓflÌÌ˚Â. ÑÎfl γ = 1 ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ ò‚‡ˆ˜‡È艇. Ç ˝ÚÓÏ ÒÎÛ˜‡Â
Ò͇ÎflÌÓ ÔÓΠfl‚ÎflÂÚÒfl ÌÛ΂˚Ï.
åÂÚË͇ êÓ·ÂÚÒÓ̇–ìÓÎÍÂ‡
åÂÚË͇ êÓ·ÂÚÒÓ̇–ìÓÎÍÂ‡ (ËÎË ÏÂÚË͇ îˉχ̇–ãÂÏÂÚ‡–êÓ·ÂÚÒÓ̇ìÓÎÍÂ‡) ÂÒÚ¸ ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ËÁÓÚÓÔÌÓÈ Ë Ó‰ÌÓÓ‰ÌÓÈ
380
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
‚ÒÂÎÂÌÌÓÈ Ò ÔÓÒÚÓflÌÌÓÈ ÔÎÓÚÌÓÒÚ¸˛ Ë ÔÂÌ·ÂÊËÏÓ Ï‡Î˚Ï ‰‡‚ÎÂÌËÂÏ; ‰‡Ì̇fl
ÓÔËÒ˚‚‡ÂÚ ÔÂËÏÛ˘ÂÒÚ‚ÂÌÌÓ Ï‡ÚÂˇθÌÛ˛ ‚ÒÂÎÂÌÌÛ˛, Á‡ÔÓÎÌÂÌÌÛ˛ Ô˚θ˛ ·ÂÁ
‰‡‚ÎÂÌËfl. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Ó·˚˜ÌÓ Á‡ÔËÒ˚‚‡ÂÚÒfl ‚ ÒÙÂ˘ÂÒÍËı
ÍÓÓ‰Ë̇ڇı (Òt, r, θ, φ):
 dr 2
2
2
2
2 
ds 2 = c 2 dt 2 − a(t )2 ⋅ 
2 + r ⋅ ( dθ + sin θdφ ) ,
 1 − kr

„‰Â a(t) – ÍÓ˝ÙÙˈËÂÌÚ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl Ë k – ÍË‚ËÁ̇ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË.
ÑÎfl ÎËÌÂÈÌÓ„Ó ˝ÎÂÏÂÌÚ‡ ÒÛ˘ÂÒÚ‚ÛÂÚ Ë ‰Û„‡fl ÙÓχ:
ds 2 = c 2 dt 2 − a(t )2 ⋅ ( dr ′ 2 + r˜ 2 ⋅ ( dθ 2 + sin 2 θdφ 2 )),
„‰Â r⬘ Ó·ÓÁ̇˜‡ÂÚ ‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl Ò ÔÓÁˈËË Ì‡·Î˛‰‡ÚÂÎfl Ë r̃ –
‡ÒÒÚÓflÌË ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl, Ú.Â. r˜ = RC sinh (r ′ / RC ) ËÎË r⬘, ËÎË RC sinh(r⬘/RC )
‰Îfl ÓÚˈ‡ÚÂθÌÓÈ, ÌÛ΂ÓÈ ËÎË ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, „‰Â
RC = 1 / | k | ÂÒÚ¸ ‡·ÒÓβÚÌÓ Á̇˜ÂÌË ‡‰ËÛÒ‡ ÍË‚ËÁÌ˚.
åÂÚËÍË ÅˇÌÍË
åÂÚËÍË ÅˇÌÍË – ¯ÂÌËfl Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÍÓÒÏÓÎӄ˘ÂÒÍËı
ÏÓ‰ÂÎÂÈ, ÍÓÚÓ˚ ËÏÂ˛Ú ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ Ó‰ÌÓÓ‰Ì˚ ۘ‡ÒÚÍË, ËÌ‚‡ˇÌÚÌ˚Â
ÓÚÌÓÒËÚÂθÌÓ ‚ÓÁ‰ÂÈÒÚ‚Ëfl ÚÂıÏÂÌ˚ı „ÛÔÔ ãË, Ú.Â. ‰ÂÈÒÚ‚ËÚÂθÌ˚ ˜ÂÚ˚ÂıÏÂÌ˚ ÏÂÚËÍË Ò ÚÂıÏÂÌÓÈ „ÛÔÔÓÈ ËÁÓÏÂÚËÈ, Ú‡ÌÁËÚË‚ÌÓÈ Ì‡ 3-ÔÓ‚ÂıÌÓÒÚflı. èËÏÂÌflfl Í·ÒÒËÙË͇ˆË˛ ÅˇÌÍË ÚÂıÏÂÌ˚ı ‡Î„· ãË Ì‡‰ ‚ÂÍÚÓÌ˚ÏË
ÔÓÎflÏË äËÎÎËÌ„‡, Ï˚ ÔÓÎÛ˜‡ÂÏ ‰Â‚flÚ¸ ÚËÔÓ‚ ÏÂÚËÍ ÅˇÌÍË.
ä‡Ê‰‡fl ÏÓ‰Âθ ÅˇÌÍË Ç ÓÔ‰ÂÎflÂÚ Ú‡ÌÁËÚË‚ÌÛ˛ „ÛÔÔÛ G B ̇ ÌÂÍÓÚÓÓÏ
ÚÂıÏÂÌÓÏ Ó‰ÌÓÒ‚flÁÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË å; Ú‡ÍËÏ Ó·‡ÁÓÏ, Ô‡‡ („‰Â G – χÍÒËχθ̇fl „ÛÔÔ‡, ‚ÓÁ‰ÂÈÒÚ‚Û˛˘‡fl ̇ ï Ë ÒÓ‰Âʇ˘‡fl ëB ) ÂÒÚ¸ Ӊ̇ ËÁ ‚ÓÒ¸ÏË
ÏÓ‰ÂθÌ˚ı „ÂÓÏÂÚËÈ íÂÒÚÓ̇, ÂÒÎË M/G⬘ fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ‰Îfl ‰ËÒÍÂÚÌÓÈ
ÔÓ‰„ÛÔÔ˚ G⬘ „ÛÔÔ˚ G. Ç ˜‡ÒÚÌÓÒÚË, ÚËÔ IX ÅˇÌÍË ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÏÓ‰ÂθÌÓÈ
„ÂÓÏÂÚËË S3 .
åÂÚË͇ ÅˇÌÍË ÚËÔ‡ I ÂÒÚ¸ ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ‡ÌËÁÓÚÓÔÌÓÈ Ó‰ÌÓÓ‰ÌÓÈ ‚ÒÂÎÂÌÌÓÈ, Á‡‰‡ÌÌÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = − dt 2 + a(t )2 dx 2 + b(t )2 dy 2 + c(t )2 dz 2 ,
„‰Â ÙÛÌ͈ËË a(t), b(t) Ë c(t) ÓÔ‰ÂÎÂÌ˚ Û‡‚ÌÂÌËÂÏ ùÈ̯ÚÂÈ̇.
ùÚ‡ ÏÂÚË͇ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÔÎÓÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚Ï Û˜‡ÒÚ͇Ï, Ú.Â. fl‚ÎflÂÚÒfl
Ó·Ó·˘ÂÌËÂÏ ÏÂÚËÍË êÓ·ÂÚÒÓ̇–ìÓÎÍÂ‡.
åÂÚË͇ ÅˇÌÍË ÚËÔ‡ IX (ËÎË ÏÂÚË͇ åËÍÒχÒÚÂ‡) ı‡‡ÍÚÂËÁÛÂÚÒfl ÒÎÓÊÌÓÈ
‰Ë̇ÏËÍÓÈ Ôӂ‰ÂÌËfl ‚·ÎËÁË ÒËÌ„ÛÎflÌÓÒÚÂÈ Â ÍË‚ËÁÌ˚.
åÂÚË͇ ä‡ÒÌÂ‡
åÂÚË͇ ä‡ÒÌÂ‡ – Ӊ̇ ËÁ ÏÂÚËÍ ÅˇÌÍË ÚËÔ‡ I, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ‚‡ÍÛÛÏÌ˚Ï
¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ‡ÌËÁÓÚÓÔÌÓÈ Ó‰ÌÓÓ‰ÌÓÈ ‚ÒÂÎÂÌÌÓÈ,
ÓÔ‰ÂÎÂÌÌ˚Ï ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = − dt 2 + t 2 p1 dx 2 + t 2 p2 dy 2 + t 2 p3 dz 2 ,
„‰Â p1 + p2 + p3 = p12 + p22 + p32 = 1.
381
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
åÂÚËÍÛ ä‡ÒÌÂ‡ ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Ë̇˜Â ͇Í
(
ds 2 = − dt 2 + t 2 / 3 t
1 / 3 cos( φ + π / 3)
dx 2 + t
1 / 3 cos( φ − π / 3)
)
dy 2 + t −1 / 3 cos φ dz 2 .
Ç ˝ÚÓÏ ÒÎÛ˜‡Â Ó̇ ̇Á˚‚‡ÂÚÒfl ÍÛ„ÓÏ ä‡ÒÌÂ‡.
é‰Ì‡ ËÁ ÏÂÚËÍ ä‡ÒÌÂ‡, ˜‡ÒÚÓ Ì‡Á˚‚‡Âχfl ͇ÒÌÂ-ÔÓ‰Ó·ÌÓÈ ÏÂÚËÍÓÈ,
Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = − dt 2 + t 2 q ( dx 2 + dy 2 ) + t 2 − 4 q dz 2 .
ÄÒËÏÏÂÚ˘̇fl ÏÂÚË͇ ä‡ÒÌÂ‡ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = −
dt 2 dx 2
+
+ tdy 2 + tdz 2 .
t
t
åÂÚË͇ ä‡ÌÚÓ‚ÒÍÓ„Ó–ë‡ıÒ‡
åÂÚË͇ ä‡ÌÚÓ‚ÒÍÓ„Ó–ë‡ıÒ‡ – Ó‰ÌÓ ËÁ ¯ÂÌËÈ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇,
Á‡‰‡‚‡ÂÏÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = − dt 2 + a(t )2 dz 2 + b(t )2 ( dθ 2 + sin θdφ 2 ),
„‰Â ÙÛÌ͈ËË a(t) Ë b(t) ÓÔ‰ÂÎfl˛ÚÒfl Û‡‚ÌÂÌËÂÏ ùÈ̯ÚÂÈ̇. ùÚÓ Â‰ËÌÒÚ‚ÂÌ̇fl
Ó‰ÌÓӉ̇fl ÏÓ‰Âθ ·ÂÁ ÚÂıÏÂÌÓÈ Ú‡ÌÁËÚË‚ÌÓÈ ÔÓ‰„ÛÔÔ˚.
Ç ˜‡ÒÚÌÓÒÚË, ÏÂÚË͇ ä‡ÌÚÓ‚ÒÍÓ„Ó–ë‡ıÒ‡ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = − dt 2 + e 2
Λl
dz 2 +
1
( dθ 2 + sin 2 θdφ 2 )
Λ
ÓÔËÒ˚‚‡ÂÚ ‚ÒÂÎÂÌÌÛ˛ Ò ‰‚ÛÏfl ÒÙÂ˘ÂÒÍËÏË ËÁÏÂÂÌËflÏË, ÒÓı‡Ìfl˛˘ËÏË Ò‚ÓË
‡ÁÏÂ˚ ‚ ıӉ ÍÓÒÏ˘ÂÒÍÓÈ ˝‚ÓβˆËË, Ë ÚÂÚ¸ËÏ ËÁÏÂÂÌËÂÏ, ‡Ò¯Ëfl˛˘ËÏÒfl
˝ÍÒÔÓÌÂ̈ˇθÌÓ.
åÂÚË͇ GCSS
åÂÚË͇ GCSS (Ó·˘‡fl ˆËÎË̉˘ÂÒÍË ÒËÏÏÂÚ˘̇fl ÒÚ‡ˆËÓ̇̇fl ÏÂÚË͇) –
¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, Á‡‰‡‚‡ÂÏÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = − fdt 2 + 2 kdtdφ + e µ ( dr 2 + dz 2 ) + ldφ 2 ,
„‰Â ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ‡Á‰ÂÎÂÌÓ Ì‡ ‰‚ ӷ·ÒÚË: ‚ÌÛÚÂÌÌ˛˛ (Ò 0 ≤ r ≤ R) Í
ˆËÎË̉˘ÂÒÍÓÈ ÔÓ‚ÂıÌÓÒÚË Ò ‡‰ËÛÒÓÏ R, ˆÂÌÚËÓ‚‡ÌÌÓÈ ‚‰Óθ ÓÒË z, Ë
‚ÌÂ¯Ì˛˛ (Ò R ≤ r < ∞). á‰ÂÒ¸ f, k, µ Ë l fl‚Îfl˛ÚÒfl ÙÛÌ͈ËflÏË ÚÓθÍÓ ÓÚ r, –∞ < t,
z < ∞, 0 ≤ φ ≤ 2π, „ËÔÂÔÓ‚ÂıÌÓÒÚË φ = 0 Ë φ = 2π ÓÚÓʉÂÒÚ‚ÎÂÌ˚.
åÂÚË͇ ã¸˛ËÒ‡
åÂÚË͇ ã¸˛ËÒ‡ – ÒÚ‡ˆËÓ̇̇fl ˆËÎË̉˘ÂÒÍË ÒËÏÏÂÚ˘̇fl ÏÂÚË͇,
ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡
(‚‡ÍÛÛχ) ‚Ó ‚̯ÌÂÈ Ó·Î‡ÒÚË ˆËÎË̉˘ÂÒÍÓÈ ÔÓ‚ÂıÌÓÒÚË. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ
‰‡ÌÌÓÈ ÏÂÚËÍË ËÏÂÂÚ ÙÓÏÛ
ds 2 = − fdt 2 + 2 kdtdφ − e µ ( dr 2 + dz 2 ) + ldφ 2 ,
„‰Â
f = ar − n +1 −
c 2 n +1
r2
r
,
k
=
−
Af
,
l
=
− A 2 f , e µ = f 1 / 2( n 2 −1)
f
n2 a
Ò
A=
cr n +1
+ b.
naf
382
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
èÓÒÚÓflÌÌ˚Â Ë Ò ÏÓ„ÛÚ ·˚Ú¸ ÎË·Ó ‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË, ÎË·Ó ÍÓÏÔÎÂÍÒÌ˚ÏË, Ë
ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ¯ÂÌËfl ÔË̇‰ÎÂÊ‡Ú Í·ÒÒÛ ÇÂÈ· ËÎË Í·ÒÒÛ ã¸˛ËÒ‡. Ç ÔÓÒΉÌÂÏ ÒÎÛ˜‡Â ÏÂÚ˘ÂÒÍË ÍÓ˝ÙÙˈËÂÌÚ˚ ËÏÂ˛Ú ‚ˉ f = r ( a12 − b12 ) cos( m ln r ) +
+ 2 ra1b1 sin( m ln r ), k = − r ( a1a2 − b1b2 ) cos( m ln r ) − r ( a1b2 − a2 b1 )sin( m ln r ), l = − r ( a22 −
− b22 ) cos ( m ln r ) − 2 ra2 b2 sin( m ln r ), e µ = r −1 / 2( m 2 +1) , „‰Â m, a1 , a2 , b1 Ë b2 – ‰ÂÈÒÚ‚ËÚÂθÌ˚ ÔÓÒÚÓflÌÌ˚Â Ò a1b2 − a2 b1 = 1. í‡ÍË ÏÂÚËÍË ÒÓÒÚ‡‚Îfl˛Ú ÔӉͷÒÒ Í·ÒÒ‡
ä‡ÒÌÂ‡-ÔÓ‰Ó·Ì˚ı ÏÂÚËÍ.
åÂÚË͇ Ç‡Ì ëÚÓÍÛχ
åÂÚË͇ Ç‡Ì ëÚÓÍÛχ – ÒÚ‡ˆËÓ̇ÌÓ ˆËÎË̉˘ÂÒÍË ÒËÏÏÂÚ˘ÌÓ ¯ÂÌËÂ
Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ) Ò ÊÂÒÚÍÓ ‚‡˘‡˛˘ËÏÒfl ·ÂÒÍÓ̘ÌÓ ‰ÎËÌÌ˚Ï Ô˚΂˚Ï ˆËÎË̉ÓÏ. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ
ÏÂÚËÍË ‰Îfl ‚ÌÛÚÂÌÌÓÒÚË ˆËÎË̉‡ Á‡‰‡ÂÚÒfl (‚ ÒÓ‚ÏÂÒÚÌÓ ‰‚ËÊÛ˘ËıÒfl, Ú.Â.
ÒÓ‚ÏÂÒÚÌÓ ‚‡˘‡˛˘ËıÒfl ÍÓÓ‰Ë̇ڇı) ͇Í
ds 2 = − dt 2 + 2 ar 2 dtdφ + e − a
2 2
r
( dr 2 + dz 2 ) + r 2 (1 − a 2 r 2 )dφ 2 ,
„‰Â 0 ≤ r ≤ R, R – ‡‰ËÛÒ ˆËÎË̉‡ Ë ‡ – Û„ÎÓ‚‡fl ÒÍÓÓÒÚ¸ ˜‡ÒÚˈ Ô˚ÎË. ëÛ˘ÂÒÚ‚ÛÂÚ
ÚË ‚‡ˇÌÚ‡ ‚̯ÌËı ¯ÂÌËÈ ‰Îfl ‚‡ÍÛÛχ (Ú.Â. ÏÂÚËÍ ã¸˛ËÒ‡), ÍÓÚÓ˚Â
̇ıÓ‰flÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò ‚ÌÛÚÂÌÌËÏË ¯ÂÌËflÏË Ë Á‡‚ËÒflÚ ÓÚ Ï‡ÒÒ˚ Ô˚ÎË Ì‡
‰ËÌËˆÛ ‰ÎËÌ˚ ‚ÌÛÚÂÌÌÂ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ÒÎÛ˜‡È χÎÓÈ Ï‡ÒÒ˚, ÌÛ΂ÓÈ ÒÎÛ˜‡È Ë
ÛθÚ‡ÂÎflÚË‚ËÒÚÒÍËÈ ÒÎÛ˜‡È). èË ÌÂÍÓÚÓ˚ı ÛÒÎÓ‚Ëflı (̇ÔËÏÂ, ÂÒÎË ar > 1)
‰ÓÔÛÒ͇ÂÚÒfl ÒÛ˘ÂÒÚ‚Ó‚‡ÌË Á‡ÏÍÌÛÚ˚ı ‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚ı ÍË‚˚ı (Ë, ÒΉӂ‡ÚÂθÌÓ, ÔÛÚ¯ÂÒÚ‚Ëfl ‚Ó ‚ÂÏÂÌË).
åÂÚË͇ ã‚Ë-óË‚ËÚ‡
åÂÚË͇ ã‚Ë-óË‚ËÚ‡ fl‚ÎflÂÚÒfl ÒÚ‡Ú˘Ì˚Ï ˆËÎË̉˘ÂÒÍË ÒËÏÏÂÚ˘Ì˚Ï ¯ÂÌËÂÏ ‰Îfl ‚‡ÍÛÛχ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ, Á‡‰‡ÌÌ˚Ï
(‚ ÙÓÏ ÇÂÈÎfl) ͇Í
ds 2 = − r 4 σ dt 2 + r 4 σ ( 2 σ −1) ( dr 2 + dz 2 ) + C −2 r 2 − 4 σ dφ,
„‰Â ÔÓÒÚÓflÌ̇fl ë ÓÚÌÓÒËÚÒfl Í ‰ÂÙˈËÚÛ Û„Î‡, ‡ Ô‡‡ÏÂÚ σ ËÌÚÂÔÂÚËÛÂÚÒfl ‚
ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò Ì¸˛ÚÓÌÓ‚ÒÍÓÈ ‡Ì‡ÎÓ„ËÂÈ ¯ÂÌËfl ã‚˖óË‚ËÚ‡: ˝ÚÓ „‡‚ËÚ‡ˆËÓÌÌÓ ÔÓΠ·ÂÒÍÓ̘ÌÓÈ Ó‰ÌÓÓ‰ÌÓÈ ÎËÌÂÈÌÓÈ Ï‡ÒÒ˚ (·ÂÒÍÓ̘Ì˚È ÔÓ‚Ó‰) Ò
1
ÎËÌÂÈÌÓÈ ÔÎÓÚÌÓÒÚ¸˛ χÒÒ˚ σ. Ç ÒÎÛ˜‡Â σ = − , C = 1 ‰‡ÌÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ
2
ÔÂÓ·‡ÁÓ‚‡Ú¸ ÎË·Ó ‚ ÔÎÓÒÍÛ˛ ÒËÏÏÂÚ˘ÌÛ˛ ÏÂÚËÍÛ í‡Û·‡, ÎË·Ó ‚ ÏÂÚËÍÛ
êÓ·ËÌÒÓ̇-íÓÚχ̇.
åÂÚË͇ ÇÂÈÎfl-è‡Ô‡ÔÂÚÛ
åÂÚËÍÓÈ ÇÂÈÎfl-è‡Ô‡ÔÂÚÛ Ì‡Á˚‚‡ÂÚÒfl ÒÚ‡ˆËÓ̇ÌÓ ÓÒÂÒËÏÏÂÚ˘ÌÓ ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ‚˚‡ÊÂÌÌÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = Fdt 2 − e µ ( dz 2 + dr 2 ) − Ldφ 2 − 2 Kdφdt,
„‰Â F, K, L Ë µ fl‚Îfl˛ÚÒfl ÙÛÌ͈ËflÏË ÚÓθÍÓ r Ë z, LF + K2 = r2 , ∞ < t, z < ∞, 0 ≤ r < ∞ Ë
0 ≤ φ ≤ 2π, „ËÔÂÔÓ‚ÂıÌÓÒÚË φ = 0 Ë φ – 2π ÓÚÓʉÂÒÚ‚ÎÂÌ˚.
è˚΂‡fl ÏÂÚË͇ ÅÓÌÌÓ‡
è˚΂‡fl ÏÂÚË͇ ÅÓÌÌÓ‡ fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ë
Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÓÒÂÒËÏÏÂÚ˘ÌÛ˛ ÏÂÚËÍÛ, ÍÓÚÓ‡fl ÓÔËÒ˚‚‡ÂÚ Ó·Î‡ÍÓ ÊÂÒÚÍÓ
383
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
‚‡˘‡˛˘ËıÒfl ˜‡ÒÚˈ Ô˚ÎË, ‰‚ËÊÛ˘ËıÒfl ÔÓ ÍÓθˆÂ‚˚Ï „ÂÓ‰ÂÁ˘ÂÒÍËÏ ‚ÓÍÛ„ z-ÓÒË
‚ „ËÔÂÔÎÓÒÍÓÒÚflı z = const. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl ͇Í
ds 2 = dt 2 + (r 2 − n 2 )dφ 2 + 2 ndtdφ + e µ ( dr 2 + dz 2 ),
„‰Â ‚ ÒÓ‚ÏÂÒÚÌÓ ‰‚ËÊÛ˘ËıÒfl (Ú.Â. ÒÓ‚ÏÂÒÚÌÓ ‚‡˘‡˛˘ËıÒfl) ÍÓÓ‰Ë̇ڇı ÅÓÌÌÓ‡
2 hr 2
h 2 r 2 ( r 2 − 8z 2 ) 2
n = 3 ,µ =
, R = r 2 + z 2 Ë h – Ô‡‡ÏÂÚ ‚‡˘ÂÌËfl. èÓ ÏÂ ÚÓ„Ó
R
2 R8
Í‡Í R → ∞, ÏÂÚ˘ÂÒÍË ÍÓ˝ÙÙˈËÂÌÚ˚ ÒÚÂÏflÚÒfl Í Á̇˜ÂÌËflÏ åËÌÍÓ‚ÒÍÓ„Ó.
åÂÚË͇ ÇÂÈÎfl
åÂÚË͇ ÇÂÈÎfl fl‚ÎflÂÚÒfl Ó·˘ËÏ ÒÚ‡Ú˘Ì˚Ï ÓÒÂÒËÏÏÂÚ˘Ì˚Ï ‚‡ÍÛÛÏÌ˚Ï
¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ‚˚‡ÊÂÌÌ˚Ï ‚ ͇ÌÓÌ˘ÂÒÍËı ÍÓÓ‰Ë̇ڇı
ÇÂÈÎfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = e 2 λ dt 2 − e 2 λ (e 2 µ ( dr 2 + dz 2 ) + r 2 dφ 2 ),
∂ 2 λ 1 ∂λ ∂ 2 λ
+ ⋅
+
= 0,
∂r 2 r ∂r ∂z 2
„‰Â λ Ë µ fl‚Îfl˛ÚÒfl ÙÛÌ͈ËflÏË ÚÓθÍÓ r Ë z, Ú‡ÍËÏË ˜ÚÓ
 ∂2λ ∂2λ 
∂µ
∂λ ∂λ
∂µ
Ë
= 2r
.
= r
−
∂r
∂r ∂z
∂r
∂z 
 ∂r
åÂÚË͇ áËÔÓÈ-ÇÛıËÁ‡
åÂÚË͇ áËÔÓÈ-ÇÛıËÁ‡ (ËÎË γ-ÏÂÚË͇) – ÏÂÚË͇ Ç˝ÈÎfl, ÔÓÎÛ˜ÂÌ̇fl ‰Îfl
e
2λ
γ
 R + R2 − 2 m 
 ( R1 + R2 + 2 m)( R1 + R2 − 2 m) 
2µ
= 1
 , e =

4 R1 R2
 R1 + R2 + 2 m 


γ2
, „‰Â R12 = r 2 + ( z − m)2 ,
R22 = r 2 + ( z + m)2 . á‰ÂÒ¸ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ì¸˛ÚÓÌÓ‚Û ÔÓÚÂ̈ˇÎÛ ÎËÌÂÈÌÓ„Ó ÓÚÂÁ͇
ÔÎÓÚÌÓÒÚË γ/2 Ë ‰ÎËÌ˚ 2m, ÒËÏÏÂÚ˘ÌÓ ‡ÒÔ‰ÂÎÂÌÌÓÏÛ ‚‰Óθ z-ÓÒË. ëÎÛ˜‡È γ = 1
ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÏÂÚËÍ ò‚‡ˆ˜‡È艇, ÒÎÛ˜‡Ë γ > 1 (γ < 1) ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ÒʇÚÓÏÛ
(‡ÒÚflÌÛÚÓÏÛ) ÒÙÂÓˉÛ, ‡ ‰Îfl γ = 0 Ï˚ ÔÓÎÛ˜ËÏ ÔÎÓÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl
åËÌÍÓ‚ÒÍÓ„Ó.
åÂÚË͇ ÔflÏÓÈ ‚‡˘‡˛˘ÂÈÒfl ÒÚÛÌ˚
åÂÚË͇ ÔflÏÓÈ ‚‡˘‡˛˘ÂÈÒfl ÒÚÛÌ˚ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = −( dt − adφ)2 + dz 2 + dr 2 + k 2 r 2 dφ 2 ,
„‰Â ‡ Ë k > 0 – ÔÓÒÚÓflÌÌ˚Â. é̇ ÓÔËÒ˚‚‡ÂÚ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ‚ÓÍÛ„ ÔflÏÓÈ
‚‡˘‡˛˘ÂÈÒfl ‚ÓÍÛ„ ÒÓ·ÒÚ‚ÂÌÌÓÈ ÓÒË ÒÚÛÌ˚. èÓÒÚÓflÌ̇fl k Ò‚flÁ‡Ì‡ Ò Ï‡ÒÒÓÈ
ÒÚÛÌ˚ ̇ ‰ËÌËˆÛ ‰ÎËÌ˚ µ Í‡Í k = 1 – 4µ, Ë ÔÓÒÚÓflÌ̇fl ‡ fl‚ÎflÂÚÒfl ÏÂÓÈ ‚‡˘ÂÌËfl
ÒÚÛÌ˚ ‚ÓÍÛ„ ÒÓ·ÒÚ‚ÂÌÌÓÈ ÓÒË. ÑÎfl a = 0 Ë k = 1 Ï˚ ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ
åËÌÍÓ‚ÒÍÓ„Ó ‚ ˆËÎË̉˘ÂÒÍËı ÍÓÓ‰Ë̇ڇı.
åÂÚË͇ íÓÏËχÚÒÛ-ë‡ÚÓ
åÂÚË͇ íÓÏËχÚÒÛ-ë‡ÚÓ [ToSa73] – Ӊ̇ ËÁ ÏÂÚËÍ ·ÂÒÍÓ̘ÌÓ„Ó ÒÂÏÂÈÒÚ‚‡
¯ÂÌËÈ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ‚‡˘‡˛˘ËıÒfl χÒÒ, ͇ʉ‡fl ËÁ ÍÓÚÓ˚ı
ËÏÂÂÚ ÙÓÏÛ ξ = U/W, „‰Â U Ë W Ë fl‚Îfl˛ÚÒfl ÏÌÓ„Ó˜ÎÂ̇ÏË. Ç ÔÓÒÚÂȯÂÏ ¯ÂÌËË
2
U = p 2 ( x 4 − 1) + q 2 ( y 4 − 1) − 2ipqxy( x 2 − y 2 ), W = 2 px ( x 2 − 1) − 2iqy(1 − y 2 ), „‰Â p +
384
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
+ q 2 = 1. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ‰Îfl ‰‡ÌÌÓ„Ó ¯ÂÌËfl Á‡‰‡ÂÚÒfl ͇Í
ds 2 = Σ −1 ((αdt + βdφ)2 − r 2 ( γdt + δdφ)2 ) −
„‰Â α = p 2 ( x 2 − 1)2 + q 2 (1 − y 2 )2 , β = −
Σ
( dz 2 + dr 2 ),
p ( x − y 2 )4
4
2
2q
W ( p 2 ( x 2 − 1)( x 2 − y 2 ) + 2( px + 1)W ), γ =
p
= −2 pq( x 2 − y 2 ), δ = α + 4(( x 2 − 1) + ( x 2 + 1)( px + 1)), Σ = αδ − βγ = | U + W |2 .
åÂÚË͇ Éfi‰ÂÎfl
åÂÚË͇ Éfi‰ÂÎfl – ÚÓ˜ÌÓ ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ò ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ ‰Îfl ‚‡˘‡˛˘ÂÈÒfl ‚ÒÂÎÂÌÌÓÈ, ‚˚‡ÊÂÌÌÓ ÎËÌÂÈÌ˚Ï
˝ÎÂÏÂÌÚÓÏ
ds 2 = −( dt 2 + C(r )dφ)2 + D2 (r )dφ 2 + dr 2 + dz 2 ,
„‰Â (t, r, φ, z ) – Ó·˚˜Ì˚ ˆËÎË̉˘ÂÒÍË ÍÓÓ‰Ë̇Ú˚. ÇÒÂÎÂÌ̇fl ÔÓ Éfi‰Âβ fl‚4Ω
mr
1
ÎflÂÚÒfl Ó‰ÌÓÓ‰ÌÓÈ, ÂÒÎË C(r ) = 2 sinh 2   , D(r ) = sinh( mr ), „‰Â m Ë Ω –


2
m
m
ÔÓÒÚÓflÌÌ˚Â. ÇÒÂÎÂÌ̇fl Éfi‰ÂÎfl Ô‰ÔÓ·„‡ÂÚ ‚ÓÁÏÓÊÌÓÒÚ¸ Á‡ÏÍÌÛÚ˚ı ‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚ı ÍË‚˚ı Ë ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÔÛÚ¯ÂÒÚ‚ËÈ ‚Ó ‚ÂÏÂÌË. çÂÓ·ıÓ‰ËÏ˚Ï
ÛÒÎÓ‚ËÂÏ ÓÚÒÛÚÒÚ‚Ëfl Ú‡ÍËı ÍË‚˚ı fl‚ÎflÂÚÒfl ÛÒÎÓ‚Ë m2 > 4Ω2.
äÓÌÙÓÏÌÓ ÒÚ‡ˆËÓ̇̇fl ÏÂÚË͇
äÓÌÙÓÏÌÓ ÒÚ‡ˆËÓ̇Ì˚ÏË ÏÂÚË͇ÏË Ì‡Á˚‚‡˛ÚÒfl ÏÓ‰ÂÎË „‡‚ËÚ‡ˆËÓÌÌ˚ı
ÔÓÎÂÈ, ÍÓÚÓ˚ ÌÂÁ‡‚ËÒËÏ˚ ÓÚ ‚ÂÏÂÌË Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó Ó·˘Â„Ó ÍÓÌÙÓÏÌÓ„Ó
ÏÌÓÊËÚÂÎfl. ÖÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÌÂÍÓÚÓ˚ „ÎÓ·‡Î¸Ì˚ ÛÒÎÓ‚Ëfl „ÛÎflÌÓÒÚË,
ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ‰ÓÎÊÌÓ ·˚Ú¸ ÔÓËÁ‚‰ÂÌËÂÏ × M3 Ò (ı‡ÛÒ‰ÓÙÓ‚˚Ï Ë
Ô‡‡-ÍÓÏÔ‡ÍÚÌ˚Ï) ÚÂıÏÂÌ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ M3 , ‡ ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ÏÂÚËÍË
Á‡‰‡ÂÚÒfl ͇Í
ds 2 = e 2 f ( t , x ) ( −( dt +
∑ φµ ( x )dxµ )2 + ∑ gµν ( x )dxµ dx ν ),
µ
µ, ν
„‰Â µ, ν = 1, 2, 3. äÓÌÙÓÏÌ˚È Ù‡ÍÚÓ e2f Ì ‚ÓÁ‰ÂÈÒÚ‚ÛÂÚ Ì‡ ËÁÓÚÓÔÌ˚Â
„ÂÓ‰ÂÁ˘ÂÒÍËÂ, Á‡ ËÒÍβ˜ÂÌËÂÏ Ëı Ô‡‡ÏÂÚËÁ‡ˆËË, Ú.Â. ÔÛÚË ÎÛ˜ÂÈ Ò‚ÂÚ‡ ÔÓÎÌÓÒÚ¸˛ ÓÔ‰ÂÎfl˛ÚÒfl ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ g =
gµν ( x )dxµ dx ν Ë 1-ÙÓÏÓÈ
φ=
∑µ φµ ( x )dxµ ̇ M 3.
∑ µ, ν
Ç ˝ÚÓÏ ÒÎÛ˜‡Â ÙÛÌ͈Ëfl f ̇Á˚‚‡ÂÚÒfl ÔÓÚÂ̈ˇÎÓÏ Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl, ÏÂÚË͇
g – ÏÂÚËÍÓÈ îÂχ Ë 1-ÙÓχ φ – 1-ÙÓÏÓÈ îÂχ.
ÑÎfl ÒÚ‡Ú˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË „ÂÓ‰ÂÁ˘ÂÒÍË ÏÂÚËÍË îÂχ fl‚Îfl˛ÚÒfl ÔÓÂ͈ËflÏË ÌÛ΂˚ı „ÂÓ‰ÂÁ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË.
Ç ˜‡ÒÚÌÓÒÚË, ÒÙÂ˘ÂÒÍË ÒËÏÏÂÚ˘Ì˚Â Ë ÒÚ‡Ú˘Ì˚ ÏÂÚËÍË, ‚Íβ˜‡fl ÏÓ‰ÂÎË
Ì ‚‡˘‡˛˘ËıÒfl Á‚ÂÁ‰ Ë ˜ÂÌ˚ı ‰˚, ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ı ‚ÓÓÌÓÍ, ÏÓÌÓÔÓÎÂÈ
Ó‰ÌÓÔÓβÒÌ˚ı ÁÓÌ, „ÓÎ˚ı ÒËÌ„ÛÎflÌÓÒÚÂÈ Ë (·ÓÁÓÌÌ˚ı ËÎË ÙÂÏËÓÌÌ˚ı) Á‚ÂÁ‰,
Á‡‰‡˛ÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = e 2 f ( r ) ( − dt 2 + S(r )2 dr 2 + R(r )2 ( dθ 2 + sin 2 θdφ 2 )).
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
385
á‰ÂÒ¸ 1-ÙÓχ φ Ó·‡˘‡ÂÚÒfl ‚ ÌÛθ, Ë ÏÂÚË͇ îÂχ g ÔËÓ·ÂÚ‡ÂÚ ÓÒÓ·˚È ‚ˉ
g = S(r )2 dr 2 + R(r )2 ( dθ 2 + sin 2 θdφ 2 ).
í‡Í, ̇ÔËÏÂ, ÍÓÌÙÓÏÌ˚È Ù‡ÍÚÓ e2f(r) ÏÂÚËÍË ò‚‡ˆ˜‡È艇 ‡‚ÂÌ 1 −
2m
,
r
‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÂÚË͇ îÂχ ÔËÓ·ÂÚ‡ÂÚ ‚ˉ
2 m  −2 
2 m  −1 2
g = 1 −
1−
r ( dθ 2 + sin θdφ 2 ).

r  
r 
åÂÚË͇ pp-‚ÓÎÌ˚
åÂÚË͇ pp-‚ÓÎÌ˚ fl‚ÎflÂÚÒfl ÚÓ˜Ì˚Ï ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ‚
ÍÓÚÓÓÏ ‡‰Ë‡ˆËfl ‡ÒÔÓÒÚ‡ÌflÂÚÒfl ÒÓ ÒÍÓÓÒÚ¸˛ Ò‚ÂÚ‡. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ
ÏÂÚËÍË Á‡‰‡ÂÚÒfl (‚ ÍÓÓ‰Ë̇ڇı ÅËÌÍχ̇) ͇Í
ds 2 = H (u, x, y)du 2 + 2 dudv + dx 2 + dy 2 ,
„‰Â ç – β·‡fl „·‰Í‡fl ÙÛÌ͈Ëfl.
ç‡Ë·ÓΠ‚‡ÊÌ˚Ï Í·ÒÒÓÏ ÓÒÓ·Ó ÒËÏÏÂÚ˘Ì˚ı pp-‚ÓÎÌ fl‚Îfl˛ÚÒfl ÏÂÚËÍË
ÔÎÓÒÍËı ‚ÓÎÌ, Û ÍÓÚÓ˚ı ç Í‚‡‰‡Ú˘ÌÓ.
åÂÚË͇ ÎÛ˜‡ ÅÓÌÌÓ‡
åÂÚË͇ ÎÛ˜‡ ÅÓÌÌÓ‡ fl‚ÎflÂÚÒfl ÚÓ˜Ì˚Ï ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇,
ÏÓ‰ÂÎËÛ˛˘ËÏ ·ÂÒÍÓ̘ÌÓ ‰ÎËÌÌ˚È ÔflÏÓÈ ÎÛ˜ Ò‚ÂÚ‡. ùÚÓ ÔËÏÂ ÏÂÚËÍË
pp-‚ÓÎÌ˚.
ÇÌÛÚÂÌÌflfl ˜‡ÒÚ¸ ¯ÂÌËfl (‚Ó ‚ÌÛÚÂÌÌÂÈ Ó·Î‡ÒÚË ‡‚ÌÓÏÂÌÓ ÔÎÓÒÍÓÈ ‚ÓÎÌ˚,
Ëϲ˘ÂÈ ÙÓÏÛ Ú‚Â‰Ó„Ó ˆËÎË̉‡) ÓÔ‰ÂÎflÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = −8πmr 2 du 2 − 2 dudv + dr 2 + r 2 dθ 2 ,
„‰Â –∞ < u, ν < ∞, 0 < r < r0 Ë –π < θ < π. ùÚÓ ¯ÂÌË ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl ͇Í
ÌÂÍÓ„ÂÂÌÚÌÓ ˝ÎÂÍÚÓχ„ÌËÚÌÓ ËÁÎÛ˜ÂÌËÂ.
Ç̯Ìflfl ˜‡ÒÚ¸ ¯ÂÌËfl ÓÔ‰ÂÎflÂÚÒfl ͇Í
ds 2 = −8πmr02 (1 + 2 log(r / r0 ))du 2 − 2 dudv + dr 2 + r 2 dθ 2 ,
„‰Â –∞ < u, ν < ∞, r0 < r < ∞ Ë –π < θ < π.
ãÛ˜ ÅÓÌÌÓ‡ ÏÓÊÌÓ Ó·Ó·˘ËÚ¸, ‡ÒÒχÚË‚‡fl ÌÂÒÍÓθÍÓ Ô‡‡ÎÎÂθÌ˚ı ÎÛ˜ÂÈ,
‡ÒÔÓÒÚ‡Ìfl˛˘ËıÒfl ‚ Ó‰ÌÓÏ Ì‡Ô‡‚ÎÂÌËË.
åÂÚË͇ ÔÎÓÒÍÓÈ ‚ÓÎÌ˚
åÂÚË͇ ÔÎÓÒÍÓÈ ‚ÓÎÌ˚ fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‚
‚‡ÍÛÛÏÂ Ë Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = 2 dwdu + 2 f (u)( x 2 + y 2 ) du 2 − dx 2 − dy 2 .
é̇ fl‚ÎflÂÚÒfl ÍÓÌÙÓÏÌÓ ÔÎÓÒÍÓÈ Ë ÓÔËÒ˚‚‡ÂÚ ‚ ÔÓΠ˜ËÒÚÓÈ ‡‰Ë‡ˆËË.
èÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ÔËÏÂÌËÚÂθÌÓ Í ˝ÚÓÈ ÏÂÚËÍ ̇Á˚‚‡ÂÚÒfl ÔÎÓÒÍÓÈ „‡‚ËÚ‡ˆËÓÌÌÓÈ ‚ÓÎÌÓÈ. чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ÔËÏÂÓÏ ÏÂÚËÍË pp-‚ÓÎÌ˚.
386
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
åÂÚË͇ ÇËÎÒ‡
åÂÚË͇ ÇËÎÒ‡ – ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ‚˚‡ÊÂÌÌÓ ÎËÌÂÈÌ˚Ï
˝ÎÂÏÂÌÚÓÏ
ds 2 = 2 xdwdu − 2 wdudx + (2 f (u) x ( x 2 + y 2 ) − w 2 )du 2 − dx 2 − dy 2 .
é̇ fl‚ÎflÂÚÒfl ÍÓÌÙÓÏÌÓ ÔÎÓÒÍÓÈ Ë ÓÔËÒ˚‚‡ÂÚ ÔÓΠ˜ËÒÚÓÈ ‡‰Ë‡ˆËË, ÍÓÚÓÓÂ
Ì fl‚ÎflÂÚÒfl ÔÎÓÒÍÓÈ ‚ÓÎÌÓÈ.
åÂÚË͇ äÛÚ‡Ò‡-å‡ÍËÌÚÓ¯‡
åÂÚË͇ äÛÚ‡Ò‡-å‡ÍËÌÚÓ¯‡ fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇,
‚˚‡ÊÂÌÌ˚Ï ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = 2( ax + b)dwdu − 2 awdudx + (2 f (u)( ax + b)( x 2 + y 2 ) − a 2 w 2 )du 2 − dx 2 − dy 2 .
é̇ fl‚ÎflÂÚÒfl ÍÓÌÙÓÏÌÓ ÔÎÓÒÍÓÈ Ë ÓÔËÒ˚‚‡ÂÚ ÔÓΠ˜ËÒÚÓÈ ‡‰Ë‡ˆËË, ÍÓÚÓÓ ‚
Ó·˘ÂÏ ÒÎÛ˜‡Â Ì fl‚ÎflÂÚÒfl ÔÎÓÒÍÓÈ ‚ÓÎÌÓÈ. èË ‡ = 0 Ë b = 0 ÔÓÎÛ˜ËÏ ÏÂÚËÍÛ
ÔÎÓÒÍÓÈ ‚ÓÎÌ˚, ‡ ÔË ‡ = 0 Ë b = 0 – ÏÂÚËÍÛ ÇËÎÒ‡.
åÂÚË͇ ù‰„‡‡-ã˛‰‚Ë„‡
åÂÚË͇ ù‰„‡‡-ã˛‰‚Ë„‡ fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇,
‚˚‡ÊÂÌÌ˚Ï ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = 2( ax + b)dwdu − 2 awdudx +
+ (2 f (u)( ax + b)( g(u) y + h(u) + x 2 + y 2 ) − a 2 w 2 )du 2 − dx 2 − dy 2 .
é̇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÏÂÚËÍË äÛÚ‡Ò‡-å‡ÍËÌÚÓ¯‡. ùÚÓ Ì‡Ë·ÓΠӷ˘‡fl
ÏÂÚË͇, ÓÔËÒ˚‚‡˛˘‡fl ÍÓÌÙÓÏÌÓ ÔÎÓÒÍÓ ÔÓΠ˜ËÒÚÓÈ ‡‰Ë‡ˆËË, ÍÓÚÓÓ ‚
Ó·˘ÂÏ ÒÎÛ˜‡Â Ì fl‚ÎflÂÚÒfl ÔÎÓÒÍÓÈ ‚ÓÎÌÓÈ. ÖÒÎË ËÒÍβ˜ËÚ¸ ÔÎÓÒÍË ‚ÓÎÌ˚, ÚÓ Ó̇
·Û‰ÂÚ ËÏÂÚ¸ ‚ˉ
ds 2 = 2 xdwduu − 2 wdudx + (2 f (u) x ( g(u) y + h(u) + x 2 + y 2 ) − w 2 )du 2 − dx 2 − dy 2 .
åÂÚË͇ ËÁÎÛ˜ÂÌËfl ÅÓ̉Ë
åÂÚË͇ ËÁÎÛ˜ÂÌËfl ÅÓÌ‰Ë ÓÔËÒ˚‚‡ÂÚ ‡ÒËÏÔÚÓÚ˘ÂÒÍÛ˛ ÙÓÏÛ ‡‰Ë‡ˆËÓÌÌÓ„Ó
¯ÂÌËfl Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ÍÓÚÓ‡fl Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
V
ds 2 = − e 2β − U 2 r 2 e 2 γ  du 2 −
r

−2 e 2β dudr − 2Ur 2 e 2 γ dudθ + r 2 (e 2 γ dθ 2 + e 2 γ sin 2 θdθ 2 ),
„‰Â u – ‚ÂÏfl Á‡Ô‡Á‰˚‚‡ÌËfl, r – ÙÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π Ë
U , V, β , γ fl‚Îfl˛ÚÒfl ÙÛÌ͈ËflÏË u , r Ë θ. ùÚ‡ ÏÂÚË͇ ËÒÔÓθÁÛÂÚÒfl ‚ ÚÂÓËË
„‡‚ËÚ‡ˆËÓÌÌ˚ı ‚ÓÎÌ.
åÂÚË͇ í‡Û·‡–çì행 ëËÚÚÂ‡
åÂÚË͇ í‡Û·‡–çìí–‰ÂëËÚÚÂ‡ fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚Ï (Ú.Â.
ËχÌÓ‚˚Ï) ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ò ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ
Λ, Á‡‰‡ÌÌ˚Ï ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 =
r 2 − L2 2
L2 ∆
r 2 − L2
2
dr + 2
d
ψ
cos
θ
d
φ
+
( dθ 2 + sin 2 θdφ 2 ),
+
(
)
4∆
4
r − L2
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
387
Λ 4
1
L + 2 L2 r 2 − r 4  , L Ë M – Ô‡‡ÏÂÚ˚, Ë θ, φ, ψ – Û„Î˚
4
3 
ùÈÎÂ‡. ÖÒÎË Λ = 0, ÚÓ Ï˚ ÔÓÎÛ˜ËÏ ÏÂÚËÍÛ í‡Û·‡-çìí, ËÒÔÓθÁÛfl ÌÂÍÓÚÓ˚Â
ÛÒÎÓ‚Ëfl „ÛÎflÌÓÒÚË.
„‰Â ∆ = r 2 2 Mr + L2 +
åÂÚË͇ ù„ۘ˖ï‡ÌÒÓ̇–‰Â ëËÚÚÂ‡
åÂÚË͇ ù„ۘ˖ï‡ÌÒÓ̇–‰Â ëËÚÚÂ‡ fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚Ï
(Ú.Â. ËχÌÓ‚˚Ï) ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ò ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ Λ, Á‡‰‡ÌÌ˚Ï ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
−1

a 4 Λr 2 
r2 
a 4 Λr 2 
ds = 1 − 4 −
dr 2 + 1 − 4 −
(dψ + cos θdφ)2 +


6 
4 
6 
r
r

2
+
r2
( dθ 2 + sin 2 θdφ 2 ),
4
„‰Â ‡ – Ô‡‡ÏÂÚ, ‡ θ, φ, ψ – Û„Î˚ ùÈÎÂ‡. ÖÒÎË Λ = 0, ÚÓ ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ ù„ۘ˖
ï‡ÌÒÓ̇.
åÂÚË͇ ÏÓÌÓÔÓÎÂÈ Å‡ËÓÎ˚–ÇËÎÂÌÍË̇
åÂÚË͇ ÏÓÌÓÔÓÎÂÈ Å‡ËÓÎ˚-ÇËÎÂÌÍË̇ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds 2 = − dt 2 + dr 2 + k 2 r 2 ( dθ 2 + sin 2 θdφ 2 )
Ò ÔÓÒÚÓflÌÌÓÈ k > 1. èË r = 0 ‚ÓÁÌË͇˛Ú ‰ÂÙˈËÚ ÚÂÎÂÒÌÓ„Ó Û„Î‡ Ë ÒËÌ„ÛÎflÌÓÒÚ¸;
π
ÔÎÓÒÍÓÒÚ¸ t = const, θ =
ËÏÂÂÚ „ÂÓÏÂÚ˲ ÍÓÌÛÒ‡. чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl
2
ÔËÏÂÓÏ ÍÓÌ˘ÂÒÍÓÈ ÒËÌ„ÛÎflÌÓÒÚË; Ó̇ ÏÓÊÂÚ ·˚Ú¸ ËÒÔÓθÁÓ‚‡Ì‡ ‚ ͇˜ÂÒÚ‚Â
ÏÓ‰ÂÎË ‰Îfl ÏÓÌÓÔÓÎÂÈ (Ó‰ÌÓÔÓβÒÌ˚ı ÁÓÌ), ÍÓÚÓ˚ ÏÓ„ÛÚ ÒÛ˘ÂÒÚ‚Ó‚‡Ú¸ ‚Ó
‚ÒÂÎÂÌÌÓÈ.
凄ÌËÚÌ˚È ÏÓÌÓÔÓθ ÂÒÚ¸ „ËÔÓÚÂÚ˘ÂÒÍËÈ ËÁÓÎËÓ‚‡ÌÌ˚È Ï‡„ÌËÚÌ˚È ÔÓβÒ
"χ„ÌËÚ Ò Ó‰ÌËÏ ÔÓβÒÓÏ". íÂÓÂÚ˘ÂÒÍË Ô‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ Ú‡ÍÓ fl‚ÎÂÌËÂ
ÏÓÊÂÚ ‚˚Á˚‚‡Ú¸Òfl ÏÂθ˜‡È¯ËÏË ˜‡ÒÚˈ‡ÏË, ÔÓ‰Ó·Ì˚ÏË ˝ÎÂÍÚÓÌ‡Ï ËÎË ÔÓÚÓ̇Ï, ÍÓÚÓ˚ ÔÓfl‚Îfl˛ÚÒfl ‚ ÂÁÛθڇÚ ÚÓÔÓÎӄ˘ÂÒÍËı ‰ÂÙÂÍÚÓ‚ ÚÓ˜ÌÓ Ú‡Í ÊÂ,
Í‡Í Ë ÍÓÒÏ˘ÂÒÍË ÒÚÛÌ˚, Ӊ̇ÍÓ ÔÓ‰Ó·Ì˚ı ˜‡ÒÚˈ ÔÓ͇ ‚ ÔËӉ Ì ̇ȉÂÌÓ.
åÂÚË͇ ÅÂÚÓÚÚË–êÓ·ËÌÒÓ̇
åÂÚË͇ ÅÂÚÓÚÚË–êÓ·ËÌÒÓ̇ fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇
‰Îfl ‚ÒÂÎÂÌÌÓÈ Ò ‡‚ÌÓÏÂÌ˚Ï Ï‡„ÌËÚÌ˚Ï ÔÓÎÂÏ. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË
Á‡‰‡ÂÚÒfl ͇Í
ds 2 = Q 2 ( − dt 2 + sin 2 tdw 2 + dθ 2 + sin 2 θdφ 2 ).
„‰Â Q – ÔÓÒÚÓflÌ̇fl, t ∈ [0, π], w ∈ ( −∞, +∞), θ ∈[0, π] Ë φ ∈[0, 2 π].
åÂÚË͇ åÓËÒ‡–íÓ̇
åÂÚË͇ åÓËÒ‡–íÓ̇ – ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ ‚ÓÓÌÍË Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
2 Φ( w )
ds 2 = e
c2
c 2 dt 2 − dw 2 − r ( w )2 ( dθ 2 + sin 2 θdφ 2 ),
388
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
„‰Â w ∈ ( −∞, +∞), r – ÙÛÌ͈Ëfl ÓÚ w, ÍÓÚÓ‡fl ‰ÓÒÚË„‡ÂÚ ÏËÌËχθÌÓ„Ó Á̇˜ÂÌËfl
·Óθ¯Â„Ó ÌÛÎfl ÔË ÌÂÍÓÚÓÓÈ ÍÓ̘ÌÓÈ ‚Â΢ËÌ w , Ë î(w) – „‡‚ËÚ‡ˆËÓÌÌ˚È
ÔÓÚÂ̈ˇÎ, Ó·ÛÒÎÓ‚ÎÂÌÌ˚È „ÂÓÏÂÚËÂÈ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË.
èÓÒÚ‡ÌÒÚ‚ÂÌ̇fl ‚ÓÓÌ͇ – „ËÔÓÚÂÚ˘ÂÒ͇fl "ÚÛ·‡" ‚ ÔÓÒÚ‡ÌÒÚ‚Â, ÒÓ‰ËÌfl˛˘‡fl Û‰‡ÎÂÌÌ˚ ‰Û„ ÓÚ ‰Û„‡ ÚÓ˜ÍË ‚ÒÂÎÂÌÌÓÈ. ÑÎfl ÒÛ˘ÂÒÚ‚Ó‚‡ÌËfl ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ı ‚ÓÓÌÓÍ Ú·ÛÂÚÒfl ÌÂÓ·˚˜Ì˚È Ï‡ÚÂË‡Î Ò ÓÚˈ‡ÚÂθÌÓÈ ˝ÌÂ„ÂÚ˘ÂÒÍÓÈ
ÔÎÓÚÌÓÒÚ¸˛, ˜ÚÓ·˚ ‚ÓÓÌÍË ‚Ò ‚ÂÏfl ·˚ÎË ÓÚÍ˚Ú˚.
åÂÚË͇ åËÒÌÂ‡
åÂÚË͇ åËÒÌÂ‡ – ÏÂÚË͇, Ô‰ÒÚ‡‚Îfl˛˘‡fl ‰‚ ˜ÂÌ˚ ‰˚˚. åËÒÌÂ ÒÙÓÏÛÎËÓ‚‡Î ‚ 1960 „. ÏÂÚÓ‰ËÍÛ ÓÔËÒ‡ÌËfl ÏÂÚËÍË, Ò‚flÁ˚‚‡˛˘ÂÈ Ô‡Û ˜ÂÌ˚ı ‰˚
‚ ÒÓÒÚÓflÌËË ÔÓÍÓfl, ÊÂ· ÍÓÚÓ˚ı ÒÓ‰ËÌÂÌ˚ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ ‚ÓÓÌÍÓÈ.
ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Á‡ÔËÒ˚‚‡ÂÚÒfl ‚ ‚ˉÂ
ds 2 = − dt 2 + ψ 4 ( dx 2 + dy 2 + dz 2 ),
„‰Â ÍÓÌÙÓÏÌ˚È Ù‡ÍÚÓ ψ Á‡‰‡ÂÚÒfl ͇Í
N
ψ=
∑
n=−N
1
sin h(µ 0 n)
1
x + y + ( z + coth(µ 0 n))2
2
2
.
è‡‡ÏÂÚ µ0 fl‚ÎflÂÚÒfl ÏÂÓÈ ÓÚÌÓ¯ÂÌËfl χÒÒ˚ Í ‡ÒÒÚÓflÌ˲ ÏÂÊ‰Û ÊÂ·ÏË
(˝Í‚Ë‚‡ÎÂÌÚÌÓ, ÏÂÓÈ ‡ÒÒÚÓflÌËfl ÔÂÚÎË Ì‡ ÔÓ‚ÂıÌÓÒÚË, ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ Ó‰ÌÓ
ÊÂÎÓ Ë ‚˚ıÓ‰fl˘ÂÈ ËÁ ‰Û„Ó„Ó). è‰ÂÎ ÒÛÏÏËÓ‚‡ÌËfl N ÒÚÂÏËÚÒfl Í ·ÂÒÍÓ̘ÌÓÒÚË.
íÓÔÓÎÓ„Ëfl ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË åËÒÌÂ‡ ‡Ì‡Îӄ˘̇ Ô‡ ‡ÒËÏÔÚÓÚ˘ÂÒÍË
ÔÎÓÒÍËı ÎËÒÚÓ‚, ÒÓ‰ËÌÂÌÌ˚ı ÌÂÒÍÓθÍËÏË ÏÓÒÚ‡ÏË ùÈ̯ÚÂÈ̇–êÓÛÁÂ̇.
Ç ÔÓÒÚÂȯÂÏ ÒÎÛ˜‡Â ÔÓÒÚ‡ÌÒÚ‚Ó åËÒÌÂ‡ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ‰‚ÛÏÂÌÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÚÓÔÓÎÓ„ËÂÈ × S1, ‚ ÍÓÚÓÓÏ Ò‚ÂÚ ÔÓÒÚÂÔÂÌÌÓ ÓÚÍÎÓÌflÂÚÒfl ÔÓ ÏÂÂ
‰‚ËÊÂÌËfl ‚Ó ‚ÂÏÂÌË Ë ÔÓÒΠÓÔ‰ÂÎÂÌÌÓÈ ÚÓ˜ÍË ËÏÂÂÚ Á‡ÏÍÌÛÚ˚ ‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚ ÍË‚˚Â.
åÂÚË͇ ÄÎÍÛ·¸Â‡
åÂÚË͇ ÄÎÍÛ·¸Â‡ – ¯ÂÌË Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ô‰ÒÚ‡‚Îfl˛˘ÂÂ
‰‚ËÊÂÌË ÔÓ ÔË̈ËÔÛ ‰ÂÙÓχˆËË ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË, ‰ÓÔÛÒ͇˛˘ÂÂ
ÒÛ˘ÂÒÚ‚Ó‚‡ÌË Á‡ÏÍÌÛÚ˚ı ‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚ı ÍË‚˚ı. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ̇Û¯‡ÂÚÒfl
ÚÓθÍÓ ÂÎflÚË‚ËÒÚÒÍËÈ ÔË̈ËÔ, ÒÛÚ¸ ÍÓÚÓÓ„Ó ÒÓÒÚÓËÚ ‚ ÚÓÏ, ˜ÚÓ ‰‚ËÊÂÌË ‚
ÍÓÒÏÓÒ ÏÓÊÂÚ ÓÒÛ˘ÂÒÚ‚ÎflÚ¸Òfl Ò Î˛·ÓÈ ÒÍÓÓÒÚ¸˛, ÒÍÓθ Û„Ó‰ÌÓ ·ÎËÁÍÓÈ, ÌÓ ÌÂ
‡‚ÌÓÈ Ë Ì Ô‚˚¯‡˛˘ÂÈ ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡. èÓÒÚÓÂÌË ÄÎÍÛ·¸Â‡ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ
‚‡Ô-‰‚ËÊÂÌ˲ ‚ ÚÓÏ ÒÏ˚ÒÎÂ, ˜ÚÓ ÔÂ‰ ÍÓÒÏ˘ÂÒÍËÏ ÍÓ‡·ÎÂÏ ÔÓËÒıÓ‰ËÚ
Ò‚ÂÚ˚‚‡ÌË ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË, ‡ Á‡ ÍÓ‡·ÎÂÏ – ‡Ò¯ËÂÌËÂ, ˜ÂÏ ÍÓÒÏ˘ÂÒÍÓÏÛ ÍÓ‡·Î˛ ÒÓÓ·˘‡ÂÚÒfl ÒÍÓÓÒÚ¸, ÍÓÚÓ‡fl ÏÓÊÂÚ Á̇˜ËÚÂθÌÓ Ô‚˚¯‡Ú¸
ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Û‰‡ÎÂÌÌ˚Ï Ó·˙ÂÍÚ‡Ï, ‚ ÚÓ ‚ÂÏfl Í‡Í Ì‡ ÎÓ͇θÌÓÏ
ÛÓ‚Ì ÒÍÓÓÒÚ¸ ÍÓ‡·Îfl ÌËÍÓ„‰‡ Ì ·Û‰ÂÚ ·Óθ¯Â ÒÍÓÓÒÚË Ò‚ÂÚ‡.
ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË ËÏÂÂÚ ‚ˉ
ds 2 = − dt 2 + ( dx − vf (r )dt )2 + dy 2 + dz 2 ,
„‰Â v =
dx s (t )
͇ÊÛ˘‡flÒfl ÒÍÓÓÒÚ¸ ÍÓÒÏ˘ÂÒÍÓ„Ó ÍÓ‡·Îfl Ò ‰‚Ë„‡ÚÂÎÂÏ ‰ÂÙÓdt
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
389
χˆËË ÔÓÒÚ‡ÌÒÚ‚‡, xs(t) – Ú‡ÂÍÚÓËfl ÍÓÒÏ˘ÂÒÍÓ„Ó ÍÓ‡·Îfl ‚‰Óθ ÍÓÓ‰Ë̇Ú˚ ı
(ÔË ˝ÚÓÏ ‡‰Ë‡Î¸Ì‡fl ÍÓÓ‰Ë̇ڇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í r = (( x − x s (t ))2 + y 2 + z 2 )1 / 2 ),
Ë f(r) – ÔÓËÁ‚Óθ̇fl ÙÛÌ͈Ëfl, ÔÓ‰˜ËÌÂÌ̇fl „‡Ì˘Ì˚Ï ÛÒÎÓ‚ËflÏ: f = 1 ÔË r = 0
(ÏÂÒÚÓÔÓÎÓÊÂÌË ÍÓÒÏ˘ÂÒÍÓ„Ó ÍÓ‡·Îfl) Ë f = 0 ‚ ·ÂÒÍÓ̘ÌÓÒÚË.
Ç‡˘‡˛˘‡flÒfl ë-ÏÂÚË͇
Ç‡˘‡˛˘‡flÒfl ë -ÏÂÚË͇ fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËÈ ùÈ̯ÚÂÈ̇–å‡ÍÒ‚Âη, ÍÓÚÓÓ ÓÔËÒ˚‚‡ÂÚ ‰‚ ÔÓÚË‚ÓÔÓÎÓÊÌÓ Á‡flÊÂÌÌ˚ ˜ÂÌ˚ ‰˚˚, ‡Á·Â„‡˛˘ËÂÒfl Ò ‡‚ÌÓÏÂÌ˚Ï ÛÒÍÓÂÌËÂÏ ‚ ‡ÁÌ˚ ÒÚÓÓÌ˚ ‰Û„ ÓÚ ‰Û„‡. ãËÌÂÈÌ˚È
˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË ËÏÂÂÚ ‚ˉ
 dy 2

dx 2
ds 2 = A −2 ( x + y) −2 
+
+ k −2 G( X )dφ 2 − k 2 A 2 F( y)dt 2  ,
 F ( y ) G( x )

„‰Â F( y) = −1 + y 2 − 2 mAy 3 + e 2 A 2 y 4 , G( x ) = 1 − x 2 − 2 mAx 3 − e 2 A 2 x 4 , m, e Ë A – Ô‡‡ÏÂÚ˚, Ò‚flÁ‡ÌÌ˚Â Ò Ï‡ÒÒÓÈ, Á‡fl‰ÓÏ Ë ÛÒÍÓÂÌËÂÏ ˜ÂÌ˚ı ‰˚, ‡ k – ÔÓÒÚÓflÌ̇fl,
ÓÔ‰ÂÎÂÌ̇fl ÛÒÎÓ‚ËflÏË „ÛÎflÌÓÒÚË.
ùÚÛ ÏÂÚËÍÛ Ì ÒΉÛÂÚ ÔÛÚ‡Ú¸ Ò ë-ÏÂÚËÍÓÈ ‚ „Î. 11.
åÂÚË͇ å‡ÈÂÒ‡–èÂË
åÂÚËÍÓÈ å‡ÈÂÒ‡–èÂË ÓÔËÒ˚‚‡ÂÚÒfl ÔflÚËÏÂ̇fl ‚‡˘‡˛˘‡flÒfl ˜Â̇fl ‰˚‡.
Ö ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ Á‡‰‡ÂÚÒfl ͇Í
ds 2 = − dt 2 +
+
2m
( dt − a sin 2 θdφ − b cos 2 θdψ )2 +
ρ2
ρ2 2
dr + ρ2 dθ 2 + (r 2 + a 2 )sin 2 θdφ 2 + (r 2 + b 2 ) cos 2 θdψ 2 ,
R2
„‰Â ρ2 = r 2 + a 2 cos 2 θ + b 2 sin 2 θ Ë R 2 =
(r 2 + a 2 ) (r 2 + b 2 ) − 2 mr 2
.
r2
åÂÚË͇ ä‡ÎÛÁ˚–äÎÂÈ̇
åÂÚË͇ ä‡ÎÛÁ˚–äÎÂÈ̇ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‚ ÏÓ‰ÂÎË ä‡ÎÛÁ˚-äÎÂÈ̇ ÔflÚËÏÂÌÓ„Ó (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÌÓ„ÓÏÂÌÓ„Ó) ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË, Ô‰̇Á̇˜ÂÌÌÓÈ
Ó·˙‰ËÌËÚ¸ Í·ÒÒ˘ÂÒÍÛ˛ „‡‚ËÚ‡ˆË˛ Ò ˝ÎÂÍÚÓχ„ÌÂÚËÁÏÓÏ.
ä‡ÎÛÁ‡ ‚˚Ò͇Á‡Î ‚ 1919 „. ˉ² Ó ÚÓÏ, ˜ÚÓ ÂÒÎË ÚÂÓ˲ ùÈ̯ÚÂÈ̇ Ó ˜ËÒÚÓÈ
„‡‚ËÚ‡ˆËË ‡ÒÔÓÒÚ‡ÌËÚ¸ ̇ ÔflÚËÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl, ÚÓ Û‡‚ÌÂÌËfl ÔÓÎfl
ùÈ̯ÚÂÈ̇ ÏÓÊÌÓ ‡Á‰ÂÎËÚ¸ ̇ Ó·˚˜ÌÓ ˜ÂÚ˚ÂıÏÂÌÓ „‡‚ËÚ‡ˆËÓÌÌÓ ÚÂÌÁÓÌÓ ÔÓÎÂ Ë ‰ÓÔÓÎÌËÚÂθÌÓ ‚ÂÍÚÓÌÓ ÔÓÎÂ, ÍÓÚÓÓ ˝Í‚Ë‚‡ÎÂÌÚÌÓ Û‡‚ÌÂÌ˲
å‡ÍÒ‚Âη ‰Îfl ˝ÎÂÍÚÓχ„ÌËÚÌÓ„Ó ÔÓÎfl ÔÎ˛Ò ‰ÓÔÓÎÌËÚÂθÌÓ Ò͇ÎflÌÓ ÔÓÎÂ
(ËÁ‚ÂÒÚÌÓÂ Í‡Í "‡Ò¯ËÂÌËÂ"), ˝Í‚Ë‚‡ÎÂÌÚÌÓ ·ÂÁχÒÒÓ‚ÓÏÛ Û‡‚ÌÂÌ˲ äÎÂÈ̇–
ÉÓ‰Ó̇.
äÎÂÈÌ Ô‰ÔÓÎÓÊËÎ ‚ 1926 „., ˜ÚÓ ÔflÚÓ ËÁÏÂÂÌË ËÏÂÂÚ ÍÛ„Ó‚Û˛ ÚÓÔÓÎӄ˲,
Ú‡ÍÛ˛ ˜ÚÓ ÔflÚ‡fl ÍÓÓ‰Ë̇ڇ fl‚ÎflÂÚÒfl ÔÂËӉ˘ÌÓÈ Ë ‰ÓÔÓÎÌËÚÂθÌÓ ËÁÏÂÂÌËÂ
ÒÍÛ˜ÂÌÓ ‰Ó ÌÂ̇·Î˛‰‡ÂÏÓ„Ó ‡ÁÏÂ‡. ÄθÚÂ̇ÚË‚Ì˚Ï Ô‰ÔÓÎÓÊÂÌËÂÏ fl‚ÎflÂÚÒfl
ÚÓ, ˜ÚÓ ‰ÓÔÓÎÌËÚÂθÌÓ ËÁÏÂÂÌË (‰ÓÔÓÎÌËÚÂθÌ˚ ËÁÏÂÂÌËfl) fl‚ÎflÂÚÒfl
‡Ò¯ËÂÌÌ˚Ï. í‡ÍÓÈ ÔÓ‰ıÓ‰ ‡Ì‡Îӄ˘ÂÌ ˜ÂÚ˚ÂıÏÂÌÓÈ ÏÓ‰ÂÎË – ‚Ò ËÁÏÂÂÌËfl
fl‚Îfl˛ÚÒfl ‡Ò¯ËÂÌÌ˚ÏË Ë ÔÂ‚Ó̇˜‡Î¸ÌÓ Ó‰Ë̇ÍÓ‚˚ÏË, ‡ Ò˄̇ÚÛ‡ ËÏÂÂÚ ÙÓÏÛ
(p, 1).
390
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
Ç ÏÓ‰ÂÎË ‡Ò¯ËÂÌÌÓ„Ó ‰ÓÔÓÎÌËÚÂθÌÓ„Ó ËÁÏÂÂÌËfl 5-ÏÂÌÛ˛ ÏÂÚËÍÛ ‚ÒÂÎÂÌÌÓÈ ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ‚ ÌÓχθÌ˚ı „‡ÛÒÒÓ‚˚ı ÍÓÓ‰Ë̇ڇı ‚ ‚ˉÂ
ds 2 = −( dx5 )2 + λ2 ( x5 )
∑ ηαβ dxα dxβ ,
α,β
„‰Â ηαβ fl‚ÎflÂÚÒfl ˜ÂÚ˚ÂıÏÂÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ Ë η2 ( x5 ) – ÔÓËÁ‚Óθ̇fl
ÙÛÌ͈Ëfl ÔflÚÓÈ ÍÓÓ‰Ë̇Ú˚.
åÂÚË͇ èÓÌÒ ‰Â ãÂÓ̇
åÂÚË͇ èÓÌÒ ‰Â ãÂÓ̇ – 5-ÏÂ̇fl ÏÂÚË͇, Á‡‰‡Ì̇fl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ
ds = l dt − (t / t0 ) pl
2
2
2
2
2p
p −1
( dx 2 + dy 2 + dz 2 ) −
t2
dl 2 ,
( p − 1)2
„‰Â l – ÔflÚ‡fl (ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÔӉӷ̇fl) ÍÓÓ‰Ë̇ڇ. ùÚ‡ ÏÂÚË͇ ÓÔËÒ˚‚‡ÂÚ
ÔflÚËÏÂÌ˚È ‚‡ÍÛÛÏ, ÌÓ Ì fl‚ÎflÂÚÒfl ÔÎÓÒÍÓÈ.
ó‡ÒÚ¸ VII
êÄëëíéüçàü
Ç êÖÄãúçéå åàêÖ
É·‚‡ 27
åÂ˚ ‰ÎËÌ˚ Ë ¯Í‡Î˚
Ç ‰‡ÌÌÓÈ „·‚ ÔË‚Ó‰ËÚÒfl ËÁ·‡Ì̇fl ËÌÙÓχˆËfl ÔÓ Ì‡Ë·ÓΠ‚‡ÊÌ˚Ï Â‰ËÌˈ‡Ï
‰ÎËÌ˚ Ë Ô‰ÒÚ‡‚ÎÂÌ Ì‡ flÁ˚Í ‰ÎËÌ ÔÂ˜Â̸ fl‰‡ ËÌÚÂÂÒÌ˚ı Ó·˙ÂÍÚÓ‚.
27.1. åÖêõ Ñãàçõ
éÒÌÓ‚Ì˚ÏË ÒËÒÚÂχÏË ËÁÏÂÂÌËfl ‰ÎËÌ˚ fl‚Îfl˛ÚÒfl: ÏÂÚ˘ÂÒ͇fl, "ËÏÔÂÒ͇fl"
(‡Ì„ÎËÈÒ͇fl Ë ‡ÏÂË͇ÌÒ͇fl), flÔÓÌÒ͇fl, Ú‡ÈÒ͇fl, ÍËÚ‡ÈÒ͇fl ËÏÔÂÒ͇fl, ÒÚ‡ÓÛÒÒ͇fl, ‰‚ÌÂËÏÒ͇fl, ‰‚Ì„˜ÂÒ͇fl, ·Ë·ÎÂÈÒ͇fl, ‡ÒÚÓÌÓÏ˘ÂÒ͇fl, ÏÓÒ͇fl Ë
ÔÓÎË„‡Ù˘ÂÒ͇fl.
ëÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓ„Ó ‰Û„Ëı ÒÔˆˇÎËÁËÓ‚‡ÌÌ˚ı ¯Í‡Î ‰ÎËÌ˚; ̇ÔËÏÂ, ‰Îfl
ËÁÏÂÂÌËfl Ó‰Âʉ˚, ‡ÁÏÂÓ‚ Ó·Û‚Ë, ͇ÎË·Ó‚ (‚ÌÛÚÂÌÌËı ‰Ë‡ÏÂÚÓ‚ ÒÚ‚ÓÎÓ‚
Ó„ÌÂÒÚÂθÌÓ„Ó ÓÛÊËfl, ÔÓ‚Ó‰Ó‚, ˛‚ÂÎËÌ˚ı ÍÓΈ), ‡ÁÏÂÓ‚ ‡·‡ÁË‚Ì˚ı ÍÛ„Ó‚, ÚÓ΢ËÌ˚ ÏÂÚ‡Î΢ÂÒÍËı ÎËÒÚÓ‚ Ë Ú.Ô. åÌÓ„Ë ‰ËÌˈ˚ ËÁÏÂÂÌËÈ ÒÎÛÊ‡Ú ‰Îfl
‚˚‡ÊÂÌËfl ÓÚÌÓÒËÚÂθÌ˚ı ËÎË Ó·‡ÚÌ˚ı ‡ÒÒÚÓflÌËÈ.
åÂʉÛ̇Ӊ̇fl ÏÂÚ˘ÂÒ͇fl ÒËÒÚÂχ
åÂʉÛ̇Ӊ̇fl ÏÂÚ˘ÂÒ͇fl ÒËÒÚÂχ (ËÎË ÒÓÍ‡˘ÂÌÌÓ ÒËÒÚÂχ ëà) fl‚ÎflÂÚÒfl
ÒÓ‚ÂÏÂÌÌ˚Ï ‚‡ˇÌÚÓÏ ÏÂÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ˚ ‰ËÌˈ, ÛÒÚ‡ÌÓ‚ÎÂÌÌ˚ı ÏÂʉÛ̇Ó‰Ì˚Ï Òӄ·¯ÂÌËÂÏ (åÂÚ˘ÂÒ͇fl ÍÓÌ‚Â̈Ëfl, ÔÓ‰ÔËÒ‡Ì̇fl 20 χfl 1875 „.),
ÍÓÚÓ˚Ï ·˚· ÓÔ‰ÂÎÂ̇ Îӄ˘ÂÒ͇fl Ë ‚Á‡ËÏÓÒ‚flÁ‡Ì̇fl ÓÒÌÓ‚‡ ‰Îfl ‚ÒÂı ËÁÏÂÂÌËÈ ‚ ̇ÛÍÂ, ÔÓÏ˚¯ÎÂÌÌÓÒÚË Ë ÍÓÏÏÂˆËË. Ç ÓÒÌÓ‚Â ÒËÒÚÂÏ˚ Á‡ÎÓÊÂÌ˚ ÒÂϸ
ÓÒÌÓ‚Ì˚ı ‰ËÌˈ, ÍÓÚÓ˚ ҘËÚ‡˛ÚÒfl ‚Á‡ËÏÓÁ‡‚ËÒËÏ˚ÏË.
1. ÑÎË̇: ÏÂÚ (Ï) – ‡‚̇ ‡ÒÒÚÓflÌ˲, ÔÓıÓ‰ËÏÓÏÛ Ò‚ÂÚÓÏ ‚ ‚‡ÍÛÛÏ Á‡
1/299792458 ‰ÓÎÂÈ ÒÂÍÛ̉˚.
2. ÇÂÏfl: ÒÂÍÛ̉‡ (Ò).
3. å‡ÒÒ‡: ÍËÎÓ„‡ÏÏ (Í„).
4. íÂÏÔÂ‡ÚÛ‡: äÂθ‚ËÌ (ä).
5. ëË· ÚÓ͇: ‡ÏÔÂ (Ä).
6. ëË· Ò‚ÂÚ‡: ͇̉· (͉).
7. äÓ΢ÂÒÚ‚Ó ‚¢ÂÒÚ‚‡: ÏÓθ (ÏÓθ).
èÂ‚Ó̇˜‡Î¸ÌÓ, 26 χÚ‡ 1791 „., ,metre ÏÂÚ ÔÓ-Ù‡ÌˆÛÁÒÍË ·˚Î ÓÔ‰ÂÎÂÌ Í‡Í
1/10 000 000 ˜‡ÒÚ¸ ‡ÒÒÚÓflÌËfl ÓÚ ë‚ÂÌÓ„Ó ÔÓÎ˛Ò‡ áÂÏÎË ‰Ó ˝Í‚‡ÚÓ‡ ÔÓ
Ô‡ËÊÒÍÓÏÛ ÏÂˉˇÌÛ. Ç 1799 „. Òڇ̉‡ÚÌ˚Ï ÏÂÚÓÏ ÒڇΠÔ·ÚËÌÓ‚Ó-ËˉË‚˚È
ÒÚÂÊÂ̸ ÏÂÚÓ‚ÓÈ ‰ÎËÌ˚ ("‡ıË‚Ì˚È ÏÂÚ"), ı‡ÌË‚¯ËÈÒfl ‚Ó Ù‡ÌˆÛÁÒÍÓÏ „ÓÓ‰Â
ë‚ (ÔË„ÓÓ‰ è‡Ëʇ) Ë ÒÎÛÊË‚¯ËÈ ‰Îfl β·Ó„Ó Ê·˛˘Â„Ó ˝Ú‡ÎÓÌÓÏ ‰Îfl
Ò‡‚ÌÂÌËfl Ò ÒÓ·ÒÚ‚ÂÌÌ˚Ï ËÁÏÂËÚÂθÌ˚Ï ËÌÒÚÛÏÂÌÚÓÏ. (ǂ‰ÂÌ̇fl ‚ 1793 „.
ÏÂÚ˘ÂÒ͇fl ÒËÒÚÂχ ·˚· ̇ÒÚÓθÍÓ ÌÂÔÓÔÛÎfl̇, ˜ÚÓ ç‡ÔÓÎÂÓÌÛ Ô˯ÎÓÒ¸
ÓÚ͇Á‡Ú¸Òfl ÓÚ ÌÂÂ, Ë î‡ÌˆËfl ‚ÌÓ‚¸ ‚ÂÌÛ·Ҹ Í ÏÂÚÛ ÚÓθÍÓ ‚ 1837 „.). Ç 1960 „.
˝Ú‡ÎÓÌÌ˚È ÏÂÚ ·˚Î ÓÙˈˇθÌÓ ÔË‚flÁ‡Ì Í ‰ÎËÌ ‚ÓÎÌ˚.
É·‚‡ 27. åÂ˚ ‰ÎËÌ˚ Ë ¯Í‡Î˚
393
åÂÚËÁ‡ˆËfl
åÂÚËÁ‡ˆËfl – ÔÓˆÂÒÒ ÔÂÂıÓ‰‡ Í åÂʉÛ̇Ó‰ÌÓÈ ÏÂÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ (ëç).
éÌ Â˘Â Ì Á‡‚Â¯ÂÌ (ÓÒÓ·ÂÌÌÓ ‚ ëòÄ Ë ÇÂÎËÍÓ·ËÚ‡ÌËË). éÙˈˇθÌÓ ÔÓ͇ ¢Â
ÚÓθÍÓ ëòÄ, ãË·ÂËfl Ë å¸flÌχ Ì ÔÂ¯ÎË Ì‡ ÒËÒÚÂÏÛ ëà. í‡Í, ̇ÔËÏÂ, ‚
ëòÄ Ì‡ ‰ÓÓÊÌ˚ı Á͇̇ı ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ‡ÒÒÚÓflÌËÈ ËÒÔÓθÁÛ˛ÚÒfl ÚÓθÍÓ ÏËÎË.
Ç˚ÒÓÚ˚ ‚ ‡‚ˇˆËË ‰‡˛ÚÒfl, Í‡Í Ô‡‚ËÎÓ, ‚ ÙÛÚ‡ı; ̇ ÙÎÓÚ ËÒÔÓθÁÛ˛ÚÒfl ÏÓÒÍËÂ
ÏËÎË Ë ÛÁÎ˚. ê‡Á¯‡˛˘‡fl ÒÔÓÒÓ·ÌÓÒÚ¸ ÛÒÚÓÈÒÚ‚ ‚˚‚Ó‰‡ ‰‡ÌÌ˚ı Á‡˜‡ÒÚÛ˛
Û͇Á˚‚‡ÂÚÒfl ‚ ÍÓ΢ÂÒÚ‚Â ÚÓ˜ÂÍ Ì‡ ‰˛ÈÏ (dpi).
í‚Â‰‡fl ÏÂÚË͇ ÓÁ̇˜‡ÂÚ ÔËÏÂÌÂÌË ÏÂÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ˚ Ò Ò‡ÏÓ„Ó Ì‡˜‡Î‡ Ë
ÒÓÓÚ‚ÂÚÒÚ‚ËÂ, ̇ÒÍÓθÍÓ ˝ÚÓ ÔËÂÏÎÂÏÓ, ÏÂʉÛ̇Ó‰Ì˚Ï ‡ÁÏÂ‡Ï Ë Òڇ̉‡Ú‡Ï.
åfl„͇fl ÏÂÚË͇ ÓÁ̇˜‡ÂÚ ÛÏÌÓÊÂÌË ̇ ÍÓ˝ÙÙˈËÂÌÚ ÔÂÓ·‡ÁÓ‚‡ÌËfl
ÍÓ΢ÂÒÚ‚‡ ‰˛ÈÏÓ‚ – ÙÛÌÚÓ‚ Ë ÓÍÛ„ÎÂÌË ÂÁÛθڇڇ ‰Ó ÔËÂÏÎÂÏÓÈ ÒÚÂÔÂÌË
ÚÓ˜ÌÓÒÚË; Ú‡ÍËÏ Ó·‡ÁÓÏ, ÔË Ïfl„ÍÓÈ ÏÂÚËÁ‡ˆËË ‡ÁÏÂ˚ Ô‰ÏÂÚÓ‚ Ì ËÁÏÂÌfl˛ÚÒfl. ÄÏÂË͇ÌÒ͇fl ÏÂÚ˘ÂÒ͇fl ÒËÒÚÂχ Ô‰ÔÓ·„‡ÂÚ ÔÂÓ·‡ÁÓ‚‡ÌË Ú‡‰ËˆËÓÌÌ˚ı ‰ËÌˈ ‚ ‰ÂÒflÚ˘ÌÛ˛ ÒËÒÚÂÏÛ, ËÒÔÓθÁÛÂÏÛ˛ ‚ ÏÂÚ˘ÂÒÍÓÈ ÒËÒÚÂÏÂ.
í‡ÍËÏË „Ë·ˉÌ˚ÏË Â‰ËÌˈ‡ÏË ËÏÔÂÒÍÓÈ ÒËÒÚÂÏ˚ Ë ÒËÒÚÂÏ˚ ëà, ÔËÏÂÌflÂÏ˚ÏË
‚ Ïfl„ÍÓÈ ÏÂÚËÁ‡ˆËË, fl‚Îfl˛ÚÒfl, ̇ÔËÏÂ, ÍËÎÓfl‰ (914,4 Ï), ÍËÎÓÙÛÚ (304,8 Ï),
ÏËθ ËÎË ÏËÎÎË ‰˛ÈÏ (24,5 ÏËÍÓÌ) Ë ÏËÍÓ‰˛ÈÏ (25,4 ̇ÌÓÏÂÚÓ‚).
êÓ‰ÒÚ‚ÂÌÌ˚ ÏÂÚÛ ÚÂÏËÌ˚
Ç ‰ÓÔÓÎÌÂÌËÂ Í ÒËÒÚÂÏÌ˚Ï Â‰ËÌˈ‡Ï ‰ÎËÌ˚ ÌËÊ Ô‰ÒÚ‡‚ÎÂÌÓ ·Óθ¯Ó ÒÂÏÂÈÒÚ‚Ó ÌÂχÚÂχÚ˘ÂÒÍËı ÚÂÏËÌÓ‚ ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ‰ÎËÌ˚.
åÂÚ ‚ ÔÓ˝ÁËË (ËÎË Í‡‰Â̈Ëfl): ËÚÏ˘ÂÒ͇fl ÙÓχ, ÒÎÛʇ˘‡fl ÏÂÓÈ ËÚÏËÍË,
ÎËÌ„‚ËÒÚ˘ÂÒÍÓÈ ‡ÁÏÂÂÌÌÓÒÚË Á‚ÛÍÓ‚Ó„Ó Ó·‡Á‡ ÒÚËıÓÚ‚ÓÂÌËfl. ÉËÔÂÏÂÚ – ˝ÚÓ
˜‡ÒÚ¸ ÒÚËı‡, ÒÓ‰Âʇ˘‡fl Î˯ÌËÈ ÒÎÓ„.
åÂÚ ‚ ÏÛÁ˚Í (ËÎË ËÚÏ): ‡ÁÏÂÂÌÌÓÒÚ¸ ËÚÏ˘ÂÒÍÓ„Ó ËÒÛÌ͇ ÏÛÁ˚͇θÌÓÈ
ÒÚÓÍË, ‰ÂÎÂÌË ÍÓÏÔÓÁˈËË Ì‡ ‡‚Ì˚ ÔÓ ‚ÂÏÂÌË ˜‡ÒÚË Ë ‰‡Î¸ÌÂȯ Ëı
‡Á·ËÂÌËÂ. àÁÓÏÂÚËfl – ËÒÔÓθÁÓ‚‡ÌË ËÏÔÛθÒÓ‚ (ÌÂÔÂ˚‚ÌÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÔÂËӉ˘ÂÒÍËı Í‡ÚÍÓ‚ÂÏÂÌÌ˚ı ‚ÓÁ‰ÂÈÒÚ‚ËÈ) ·ÂÁ ͇ÍÓÈ-ÎË·Ó ÛÔÓfl‰Ó˜ÂÌÌÓÒÚË, ‡ ÔÓÎËÏÂÚËfl – ËÒÔÓθÁÓ‚‡ÌË ‰‚Ûı ÏÂÚÓ‚ Ó‰ÌÓ‚ÂÏÂÌÌÓ.
åÂÚÓÏÂÚ ‚ ωˈËÌ – ËÌÒÚÛÏÂÌÚ ‰Îfl ËÁÏÂÂÌËfl ‡ÁÏÂ‡ χÚÍË. Ç Ì‡ËÏÂÌÓ‚‡ÌËflı ‡Á΢Ì˚ı ËÁÏÂËÚÂθÌ˚ı ËÌÒÚÛÏÂÌÚÓ‚ ‚ ÍÓ̈ ÒÎÓ‚‡ ÔËÒÛÚÒÚ‚ÛÂÚ
ÚÂÏËÌ ÏÂÚ.
åÂÚ˘ÂÒ͇fl ÂÈ͇ – ˝ÏÔË˘ÂÒÍÓ Ô‡‚ËÎÓ ‰Îfl ÔË·ÎËÊÂÌÌ˚ı ÔÓ‰Ò˜ÂÚÓ‚ ̇
ÓÒÌÓ‚Â Ôӂ҉̂ÌÓÈ Ô‡ÍÚËÍË, ̇ÔËÏÂ, ÒÚÓÓ̇ ÒÔ˘˜ÌÓ„Ó ÍÓӷ͇ ‡‚̇ 5 ÒÏ,
‡ 1 ÍÏ – ÔËÏÂÌÓ 10 ÏËÌÛÚ ıÓ‰¸·˚.
éÚÏÂË‚‡ÌË – ÚÂÏËÌ, ˝Í‚Ë‚‡ÎÂÌÚÌ˚È ËÁÏÂÂÌ˲; ÏËÍÓÏÂÚËfl – ËÁÏÂÂÌËÂ
ÔÓ‰ ÏËÍÓÒÍÓÔÓÏ.
åÂÚÓÎÓ„Ëfl – ̇ۘ̇fl ‰ËÒˆËÔÎË̇, ËÒÒÎÂ‰Û˛˘‡fl ÔÓÌflÚË ËÁÏÂÂÌËfl.
åÂÚÓÌÓÏËfl – ËÌÒÚÛÏÂÌڇθÌÓ ËÁÏÂÂÌË ‚ÂÏÂÌË.
åÂÚÓÒÓÙËfl – ÍÓÒÏÓÎÓ„Ëfl, ÓÒÌÓ‚‡Ì̇fl ̇ ÒÚÓ„Ó ˜ËÒÎÓ‚˚ı ÒÓÓÚ‚ÂÚÒÚ‚Ëflı.
ÄÎÎÓÏÂÚËfl – ̇Û͇ Ó· ËÁÏÂÌÂÌËË ÔÓÔÓˆËÈ ‡Á΢Ì˚ı ˜‡ÒÚÂÈ Ó„‡ÌËÁχ ‚
ÔÓˆÂÒÒ ÓÒÚ‡.
ÄıÂÓÏÂÚËfl – ̇Û͇ Ó ÚÓ˜ÌÓÏ ‰‡ÚËÓ‚‡ÌËË ‡ıÂÓÎӄ˘ÂÒÍËı ̇ıÓ‰ÓÍ, ÓÚÌÓÒfl˘ËıÒfl Í ‰‡ÎÂÍÓÏÛ ÔÓ¯ÎÓÏÛ Ë Ú.Ô.
àÁÓÏÂÚÓÔËfl – Ó‰Ë̇ÍÓ‚ÓÒÚ¸ ÂÙ‡ÍˆËË ‚ Ó·ÓËı „·Á‡ı.
àÁÓÏÂÚ˘ÂÒÍÓ ÛÔ‡ÊÌÂÌË – ÛÔ‡ÊÌÂÌËÂ Ò ÙËÁ˘ÂÒÍÓÈ Ì‡„ÛÁÍÓÈ Ì‡ Ï˚¯ˆ˚,
ÍÓ„‰‡ ÒË· ÔËÍ·‰˚‚‡ÂÚÒfl Í ÒÚ‡Ú˘ÌÓÏÛ Ó·˙ÂÍÚÛ.
àÁÓÏÂÚ˘ÂÒ͇fl ˜‡ÒÚˈ‡ – ‚ËÛÒ, ÍÓÚÓ˚È (‚ ÒÓÒÚÓflÌËË Í‡ÔÒˉ‡ ‚ËËÓ̇)
ӷ·‰‡ÂÚ ËÍÓÒ‡˝‰‡Î¸ÌÓÈ ÒËÏÏÂÚËÂÈ.
394
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
àÁÓÏÂÚ˘ÂÒÍËÈ ÔÓˆÂÒÒ – ÚÂÏÓ‰Ë̇Ï˘ÂÒÍËÈ ÔÓˆÂÒÒ ÔË ÔÓÒÚÓflÌÌÓÏ
Ó·˙ÂÏÂ.
àÁÓÏÂÚ˘ÂÒ͇fl ÔÓÂ͈Ëfl – Ô‰ÒÚ‡‚ÎÂÌË ÚÂıÏÂÌ˚ı Ó·˙ÂÍÚÓ‚ ‚ ‰‚Ûı
ËÁÏÂÂÌËflı, ‚ ÍÓÚÓÓÏ Û„Î˚ ÏÂÊ‰Û ÚÂÏfl ÓÒflÏË ÔÓÂ͈ËË Ó‰Ë̇ÍÓ‚˚ ËÎË ‡‚Ì˚
2π
.
3
àÁÓÏÂÚ˘ÂÒ͇fl ÒËÒÚÂχ ÍËÒÚ‡ÎÎÓ‚ – Í۷˘ÂÒ͇fl ÍËÒÚ‡ÎÎÓ„‡Ù˘ÂÒ͇fl
ÒËÒÚÂχ.
åÂÚ˘ÂÒ͇fl ‡ÒËÏÏÂÚËfl ÍËÒÚ‡Î΢ÂÒÍÓÈ ¯ÂÚÍË – ÒËÏÏÂÚËfl ·ÂÁ Û˜ÂÚ‡
‡ÒÔÓÎÓÊÂÌËfl ‡ÚÓÏÓ‚ ‚ ·‡ÁËÒÌÓÈ ÍÎÂÚÍÂ.
åÂÚ˘ÂÒÍË ÏÂ˚ ‰ÎËÌ˚
äËÎÓÏÂÚ (ÍÏ) = 1000 ÏÂÚÓ‚ = 10 3 Ï.
åÂÚ (Ï) = 10 ‰ÂˆËÏÂÚÓ‚ = 100 Ï.
шËÏÂÚ (‰Ï) = 10 Ò‡ÌÚËÏÂÚÓ‚ = 10 –1 Ï.
ë‡ÌÚËÏÂÚ (ÒÏ) = 10 ÏËÎÎËÏÂÚÓ‚ = 10–2 Ï.
åËÎÎËÏÂÚ (ÏÏ) = 1000 ÏËÍÓÏÂÚÓ‚ = 10–3 Ï.
åËÍÓÏÂÚ (ËÎË ÏËÍÓÌ, µ) = 1000 ̇ÌÓÏÂÚÓ‚ = 10 –6 Ï.
ç‡ÌÓÏÂÚ (ÌÏ) = 10 Å = 10–9 Ï.
ÑÎËÌ˚ 103t Ï, t = –8, –7, ..., –1,1,..., 7, 8 Û͇Á˚‚‡˛ÚÒfl Ò ÔËÒÚ‡‚͇ÏË: ÈÓÍÚÓ, ˆÂÔÚÓ,
‡ÚÚÓ, ÙÂÏÚÓ, ÔËÍÓ, ̇ÌÓ, ÏËÍÓ, ÏËÎÎË, ÍËÎÓ, Ï„‡, „Ë„‡, ÚÂ‡, ÔÂÚ‡, ˝ÍÒ‡, ˆÂÚÚ‡,
ÈÓÚÚ‡ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
àÏÔÂÒÍË ÏÂ˚ ‰ÎËÌ˚
àÏÔÂÒÍËÏË ÏÂ‡ÏË ‰ÎËÌ˚ (Ò΄͇ ÛÔÓfl‰Ó˜ÂÌÌ˚ÏË ÏÂʉÛ̇Ó‰Ì˚Ï Òӄ·¯ÂÌËÂÏ ÓÚ 1 ˲Îfl 1959 „.) fl‚Îfl˛ÚÒfl ÒÎÂ‰Û˛˘ËÂ:
– ÎË„‡ = 3 ÏËÎË;
– (‡ÏÂË͇ÌÒ͇fl „ÂÓ‰ÂÁ˘ÂÒ͇fl) ÏËÎfl = 5280 ÙÛÚÓ‚ ≈ 1609,347 Ï;
– ÏÂʉÛ̇Ӊ̇fl ÏËÎfl = 1609,344 Ï;
– fl‰ = 3 ÙÛÚ‡ = 0,9144 Ï;
– ÙÛÚ = 12 ‰˛ÈÏÓ‚ = 0,3048 Ï;
– ‰˛ÈÏ = 2,54 ÒÏ (‰Îfl Ó„ÌÂÒÚÂθÌÓ„Ó ÓÛÊËfl, ͇ÎË·);
– ÎËÌËfl = 1/12 ‰˛Èχ;
– ‡„‡Ú = 1/14 ‰˛Èχ;
– ÏËÍË = 1/200 ‰˛Èχ;
– ÏËÎ (·ËÚ‡ÌÒ͇fl Ú˚Òfl˜Ì‡fl) =1/1000 ‰˛Èχ (Ï Ë Î fl‚ÎflÂÚÒfl Ú‡ÍÊ ۄÎÓ‚ÓÈ
ÏÂÓÈ π/3200 ≈ 0,01 ‡‰Ë‡Ì‡).
ëÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍÊ ÒÚ‡ËÌÌ˚ ÏÂ˚: fl˜ÏÂÌÌÓ ÁÂÌÓ – 1/3 ‰˛Èχ; ԇΈ –
3/4 ‰˛Èχ; ·‰Ó̸ – 3 ‰˛Èχ; Û͇ – 4 ‰˛Èχ; ¯‡ÙÚÏÂÌÚ – 6 ‰˛ÈÏÓ‚, Ôfl‰¸ –
9 ‰˛ÈÏÓ‚, ÎÓÍÓÚ¸ – 18 ‰˛ÈÏÓ‚.
ÑÓÔÓÎÌËÚÂθÌÓ ËϲÚÒfl ÏÂ˚ ÁÂÏÎÂÏÂÌÓÈ ˆÂÔË: Ù‡ÎÓÌ„ = 10 ˜ÂÈÌÓ‚ = 1/8 ÏËÎË; ˜ÂÈÌ = 100 ÎËÌÍÓ‚ = 66 ÙÛÚÓ‚; ¯ÌÛ = 20 ÙÛÚÓ‚; Ó‰ (ËÎË ÔÓθ) = 16,5 ÙÛÚÓ‚;
ÎËÌÍ = 7,92 ‰˛ÈÏÓ‚. åËÎfl, Ù‡ÎÓÌ„ Ë Ò‡ÊÂ̸ (6 ÙÛÚÓ‚) ÔÓËÁÓ¯ÎË ÓÚ ÌÂÒÍÓθÍÓ
·ÓΠÍÓÓÚÍËı „ÂÍÓ-ËÏÒÍËı ÏËÎÂÈ, ÒÚ‡‰ËÈ Ë Ó„ËÈ, ÛÔÓÏË̇ÂÏ˚ı ‚ çÓ‚ÓÏ
ᇂÂÚÂ.
ÅË·ÎÂÈÒÍËÏË ÏÂ‡ÏË ‡Ì‡Îӄ˘ÌÓ„Ó ÚËÔ‡ ·˚ÎË: ÎÓÍÓÚ¸ Ë Â„Ó ÔÓËÁ‚Ó‰Ì˚Â
‰ËÌˈ˚, Í‡ÚÌ˚ 4, 1/2, 1/6 Ë 1/24, ̇Á˚‚‡ÂÏ˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ò‡ÊÂ̸˛, Ôfl‰¸˛,
·‰Ó̸˛ Ë Ô‡Î¸ˆÂÏ. èË ˝ÚÓÏ ·‡ÁÓ‚‡fl ‰ÎË̇ ·Ë·ÎÂÈÒÍÓ„Ó ÎÓÍÚfl ÓÒÚ‡ÂÚÒfl ÌÂËÁ‚ÂÒÚÌÓÈ; ‚ ̇ÒÚÓfl˘Â ‚ÂÏfl Ô‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ Ó̇ ÒÓÒÚ‡‚ÎflÂÚ ÓÍÓÎÓ 17,6 ‰˛ÈÏÓ‚
‰Îfl Ó·˘ÂÈ (ËÒÔÓθÁÛÂÏÓÈ ‚ ÍÓÏÏÂˆËË) ÏÂ˚ ÎÓÍÚfl Ë ÓÍÓÎÓ 20–22 ‰˛ÈÏÓ‚ ‰Îfl
É·‚‡ 27. åÂ˚ ‰ÎËÌ˚ Ë ¯Í‡Î˚
395
ÓÙˈˇθÌÓ„Ó ËÒÔÓθÁÓ‚‡ÌËfl (ÔËÏÂÌflÎÒfl ‚ ÒÚÓËÚÂθÒÚ‚Â). í‡ÎÏۉ˘ÂÒÍËÈ
ÎÓÍÓÚ¸ ‡‚ÂÌ 56,02 ÒÏ, Ú.Â. ÌÂÒÍÓθÍÓ ‰ÎËÌÌ 22 ‰˛ÈÏÓ‚.
ä‡Í Û͇Á‡ÌÓ Ì‡ http://en.wikipedia.org/wiki/List_of_Strange_units_of_measurement,
ÒÚ‡ËÌ̇fl ‰ËÌˈ‡ ‰ÎËÌ˚, ̇Á˚‚‡‚¯‡flÒfl ‰ËÒڇ̈ËÂÈ Ë ‡‚̇fl 221763 ‰˛ÈχÏ
(ÓÍÓÎÓ 5633 Ï), ÓÔ‰ÂÎfl·Ҹ ‚ÂҸχ ÌÂÓ·˚˜ÌÓ, Í‡Í ‡‚̇fl 3 ÏËÎË + 3 Ù‡ÎÓÌ„‡ +
+ 9 ˜ÂÈÌÓ‚ + 3 Ó‰‡ + 9 ÙÛÚÓ‚ + 9 ¯‡ÙÚÏÂÌÚÓ‚ + 9 ÛÍ + 9 fl˜ÏÂÌÌ˚ı ÁÂÂÌ.
ÑÎfl Ó·ÓÁ̇˜ÂÌËfl ‡ÁÏÂÓ‚ χÚÂËË Ë Ó‰Âʉ˚ ËÒÔÓθÁÛ˛ÚÒfl ÒÚ‡˚ ‰ËÌˈ˚:
ÛÎÓÌ – 40 fl‰Ó‚; ÎÓÍÓÚ¸ – 5/4 fl‰‡; „ÓΉ – 3/2 fl‰‡; ˜ÂÚ‚ÂÚ¸ (ËÎË Ô fl ‰ ¸) –
1/4 fl‰‡; ԇΈ – 1/8 fl‰‡; ÌÓ„ÓÚ¸ – 1/16 fl‰‡.
åÓÒÍË ‰ËÌˈ˚ ‰ÎËÌ˚
åÓÒÍË ‰ËÌˈ˚ ‰ÎËÌ˚ (ÔËÏÂÌflÂÏ˚ ڇÍÊÂ Ë ‚ ‚ÓÁ‰Û¯ÌÓÈ Ì‡‚Ë„‡ˆËË):
– ÏÓÒ͇fl ÎË„‡ = 3 ÏÓÒÍËı ÏËÎË;
– ÏÓÒ͇fl ÏËÎfl = 1852 Ï;
– „ÂÓ„‡Ù˘ÂÒ͇fl ÏËÎfl 1852 Ï (Ò‰Ì ‡ÒÒÚÓflÌË ̇ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË,
Ô‰ÒÚ‡‚ÎÂÌÌÓ ӉÌÓÈ ÏËÌÛÚÓÈ ¯ËÓÚ˚);
– ͇·ÂθÚÓ‚ = 120 Ò‡ÊÂÌÂÈ = 720 ÙÛÚÓ‚ = 219,456 Ï;
– ÍÓÓÚÍËÈ Í‡·ÂθÚÓ‚ = 1/10 ÏÓÒÍÓÈ ÏËÎË 608 ÙÛÚÓ‚;
Ò‡ÊÂ̸ = 6 ÙÛÚÓ‚.
ÅÛχÊÌ˚ ÙÓχÚ˚ åéë
Ç ¯ËÓÍÓ ËÒÔÓθÁÛÂÏÓÈ ÒËÒÚÂÏ ·ÛχÊÌ˚ı ÙÓχÚÓ‚ åéë ÓÚÌÓ¯ÂÌË ‚˚ÒÓÚ˚
ÎËÒÚ‡ Í Â„Ó ¯ËËÌ fl‚ÎflÂÚÒfl ÓÚÌÓ¯ÂÌËÂÏ ãËıÚÂÌ·Â„‡, Ú.Â. 2. ëËÒÚÂχ ‚Íβ˜‡ÂÚ ‚ Ò·fl ÙÓχÚ˚ An, Bn Ë (ËÒÔÓθÁÛÂÏ˚È ‰Îfl ÍÓÌ‚ÂÚÓ‚) ÙÓÏ‡Ú ën Ò 0 ≤ n ≤ 10
Ë ¯ËËÌÓÈ ÎËÒÚ‡ 2 −1 / 4 − n / 2 , 2 − n / 2 Ë 2 −1 / 8 − n / 2 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ÇÒ ‡ÁÏÂ˚ Û͇Á‡Ì˚
‚ ÏÂÚ‡ı, Ë ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÔÎÓ˘‡‰¸ An ‡‚̇ 2 –n Ï2 . éÌË ÓÍÛ„Îfl˛ÚÒfl Ë Ó·˚˜ÌÓ
‚˚‡Ê‡˛ÚÒfl ‚ ÏËÎÎËÏÂÚ‡ı, ̇ÔËÏÂ, ÙÓÏ‡Ú Ä4 – 210 × 297, ‡ ÙÓÏ‡Ú Ç7
(ËÒÔÓθÁÛÂÏ˚È Ú‡ÍÊ ‰Îfl Ô‡ÒÔÓÚÓ‚ ‚ÓÔÂÈÒÍËı ÒÚ‡Ì Ë ëòÄ) ËÏÂÂÚ ‡ÁÏÂ˚
88 × 125.
èÓÎË„‡Ù˘ÂÒÍË ‰ËÌˈ˚ ‰ÎËÌ˚
èÛÌÍÚ (PostScript) = 1/72 ‰˛Èχ = 100 „ÛÚÂÌ·Â„Ó‚ = 3,527777778 ÒÏ.
èÛÌÍÚ (íÂï) (ËÎË ÔÛÌÍÚ ÔËÌÚÂ‡) = 1/72,27 ‰˛Èχ = 3,514598035 ÒÏ.
èÛÌÍÚ (ÄíÄ) = 3,514598 ÒÏ.
äÛ (flÔÓÌÒ͇fl) (ËÎË Q, ˜ÂÚ‚ÂÚ¸) = 2,5 ÒÏ.
èÛÌÍÚ (ÑˉÓ) = 1/72 Ù‡ÌˆÛÁÒÍÓ„Ó ÍÓÓ΂ÒÍÓ„Ó ‰˛Èχ = 3,761 ÒÏ Ë ˆËˆÂÓ =
= 12 ÔÛÌÍÚÓ‚ ÑˉÓ.
èË͇ (PostScript, íÂï ËÎË ÄíÄ) = 12 ÔÛÌÍÚÓ‚ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÒËÒÚÂÏÂ.
í‚ËÔ = 1/20 ÔÛÌÍÚ‡ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÒËÒÚÂÏÂ.
é˜Â̸ χÎ˚ ‰ËÌˈ˚ ‰ÎËÌ˚
ÄÌ„ÒÚÂÏ (Å) = 10–10 Ï.
ÄÌ„ÒÚÂÏ Á‚ÂÁ‰‡ (ËÎË Â‰ËÌˈ‡ ÅÂ‰Â̇): Å ≈ 1,0000148 ‡Ì„ÒÚÂÏ (ËÒÔÓθÁÛÂÚÒfl Ò
1965 „. ‰Îfl ËÁÏÂÂÌËfl ‰ÎËÌ ‚ÓÎÌ ÂÌÚ„ÂÌÓ‚ÒÍÓ„Ó Ë „‡Ïχ ËÁÎÛ˜ÂÌËfl, ‡ Ú‡ÍÊ ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ‡ÚÓχÏË ‚ ÍËÒڇηı).
ï ‰ËÌˈ‡ (ËÎË ÁË„·‡ÌÓ‚‡ ‰ËÌˈ‡) ≈ 1,0021 × 10–13 Ï (‡Ì ËÒÔÓθÁÓ‚‡Î‡Ò¸ ‰Îfl
ËÁÏÂÂÌËfl ‰ÎËÌ ‚ÓÎÌ ÂÌÚ„ÂÌÓ‚ÒÍÓ„Ó Ë „‡Ïχ ËÁÎÛ˜ÂÌËfl).
ÅÓ (‡ÚÓÏ̇fl ‰ËÌˈ‡ ‰ÎËÌ˚): α 0, Ò‰ÌËÈ ‡‰ËÛÒ ≈ 5,291772 × 10–11 Ï Ó·ËÚ˚
˝ÎÂÍÚÓ̇ ‡ÚÓχ ‚Ó‰ÓÓ‰‡ (‚ ÏÓ‰ÂÎË ÅÓ‡).
396
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
h
è˂‰ÂÌ̇fl ÍÓÏÔÚÓÌÓ‚Ò͇fl ‰ÎË̇ ‚ÓÎÌ˚ ˝ÎÂÍÚÓ̇ (Ú.Â.
) ‰Îfl χÒÒ˚
mc
r
˝ÎÂÍÚÓ̇ me : λ C = αα 0 ≈ 3, 862 × 10 −13 Ï, „‰Â ˙ – Ô˂‰ÂÌ̇fl (Ú.Â. ‰ÂÎÂÌ̇fl ̇ 2π)
1
ÔÓÒÚÓflÌ̇fl è·Ì͇, Ò – ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡ Ë α ≈
– ÔÓÒÚÓflÌ̇fl ÚÓÌÍÓÈ
137
ÒÚÛÍÚÛ˚.
r
ä·ÒÒ˘ÂÒÍËÈ ‡‰ËÛÒ ˝ÎÂÍÚÓ̇: re : αλ C = α 2 α 0 ≈ 2, 81794 × 10 −15 Ï.
äÓÏÔÚÓÌÓ‚Ò͇fl ‰ÎË̇ ‚ÓÎÌ˚ ÔÓÚÓ̇: ≈ 1,32141 × 10–15 Ï; ·Óθ¯‡fl ˜‡ÒÚ¸ ËÁÏÂÂÌËÈ ‰ÎËÌ ‚ ıӉ ˝ÍÒÔÂËÏÂÌÚÓ‚, Ò‚flÁ‡ÌÌ˚ı Ò ÙÛ̉‡ÏÂÌڇθÌ˚ÏË fl‰ÂÌ˚ÏË
ÒË·ÏË, fl‚ÎflÂÚÒfl  Í‡ÚÌ˚ÏË.
hG
ÑÎË̇ è·Ì͇ (̇ËÏÂ̸¯‡fl ÙËÁ˘ÂÒ͇fl ‰ÎË̇): lP =
≈ 1, 6162 × 10 −35 Ï,
c3
„‰Â G – ÛÌË‚Â҇θ̇fl „‡‚ËÚ‡ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl 縲ÚÓ̇. é̇ fl‚ÎflÂÚÒfl Ú‡ÍÊÂ
Ô˂‰ÂÌÌÓÈ ÍÓÏÔÚÓÌÓ‚ÒÍÓÈ ‰ÎËÌÓÈ ‚ÓÎÌ˚ Ë ÔÓÎÓ‚ËÌÓÈ ‡‰ËÛÒ‡ ò‚‡ˆ˜‡È艇 ‰Îfl
l
hc
χÒÒ˚ è·Ì͇ mP =
≈ 2, 176 × 10 −8 Í„ . ÇÂÏfl è·Ì͇ t p = P ≈ 5, 4 × 10 −44 c.
c
c3
38
43
9
àÏÂÌÌÓ, 10 lP ≈ 1 ÏËΠëòÄ, 10 t P ≈ 54 c Ë 10 mP ≈ 21, 76 Í„ , Ú.Â. ·ÎËÁÍÓ
Í 1 ڇ·ÌÚÛ (26 Í„ ÒÂ·‡, ÏÂ‡ ‚ÂÒ‡ ‚ Ñ‚ÌÂÈ ÉˆËË). äÓÚÂÎÎ
(http://planck.com/humanscale.htm) Ô‰ÎÓÊËÎ "ÔÓÒÚÏÂÚ˘ÂÒÍËÈ" ‚‡ˇÌÚ ‡‰‡ÔÚËÓ‚‡ÌÌÓÈ ÔÓ‰ ˜ÂÎÓ‚Â͇ ÒËÒÚÂÏ˚ ‰ËÌˈ è·Ì͇ ̇ ÓÒÌÓ‚Â ÚÂı ‚˚¯ÂÛ͇Á‡ÌÌ˚ı
‰ËÌˈ, ̇Á‚‡‚ Ëı (Ô·ÌÍÓ‚ÒÍËÏË) ÏËÎÂÈ, ÏËÌÛÚÓÈ Ë Ú‡Î‡ÌÚÓÏ.
ÄÒÚÓÌÓÏ˘ÂÒÍË ‰ËÌˈ˚ ‰ÎËÌ˚
ê‡ÒÒÚÓflÌË ·Î‡ („‡Ìˈ‡ ÍÓÒÏ˘ÂÒÍÓ„Ó Ò‚ÂÚÓ‚Ó„Ó „ÓËÁÓÌÚ‡) ‡‚̇
c
DH =
≈ 4, 22 ÔÍ ≈ 13, 7 Ò‚ÂÚÓ‚˚ı „Ë„‡ÎÂÚ (ËÒÔÓθÁÛÂÚÒfl ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflH0
1
ÌËÈ d > åÔÍ ‚ ÚÂÏË̇ı Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl z: d = zD H, ÂÒÎË z ≤ 1, Ë
2
( z + 1)2 − 1
d=
DH , Ë̇˜Â).
( z + 1)2 + 1
ÉË„‡Ô‡ÒÂÍ (ÉÔÍ) = 103 Ï„‡Ô‡ÒÂÍÓ‚ (åÔÍ).
·Î (ËÎË Ò‚ÂÚÓ„Ë„‡„Ó‰, Ò‚ÂÚÓ‚ÓÈ „Ë„‡„Ó‰, Ò‚ÂÚÓ‚ÓÈ Ga) = 109 (ÏÎ‰) Ò‚ÂÚÓ‚˚ı
ÎÂÚ ≈ 306,595 åÔÍ.
儇ԇÒÂÍ = 10 3 ÍËÎÓÔ‡ÒÂÍÓ‚ ≈ 3,262 MLY (ÏÎÌ Ò‚. ÎÂÚ).
MLY (ÏËÎÎËÓÌ Ò‚ÂÚÓ‚˚ı ÎÂÚ) = 106 (ÏÎÌ) Ò‚. ÎÂÚ.
äËÎÓÔ‡ÒÂÍ = 10 3 Ô‡ÒÂÍÓ‚.
648000
è‡ÒÂÍ =
AU (‡ÒÚÓÌÓÏ˘ÂÒÍËı ‰ËÌˈ, ‡.Â.) ≈ 3,261624 Ò‚. „Ó‰‡
π
≈ 3,08568 × 1016 Ï (‡ÒÒÚÓflÌË ÓÚ ‚ÓÓ·‡Ê‡ÂÏÓÈ Á‚ÂÁ‰˚, ÍÓ„‰‡ ÔflÏ˚Â, Ôӂ‰ÂÌÌ˚ ÓÚ Ì ‰Ó áÂÏÎË Ë ‰Ó ëÓÎ̈‡, Ó·‡ÁÛ˛Ú Ï‡ÍÒËχθÌ˚È Û„ÓÎ, Ú.Â. Ô‡‡Î·ÍÒ,
‚Â΢ËÌÓÈ ‚ ÒÂÍÛ̉Û).
ë‚ÂÚÓ‚ÓÈ „Ó‰ ≈ 9,46073 × 1015 Ï ≈ 5,2595 × 105 Ò‚ÂÚÓ‚˚ı ÏËÌÛÚ ≈ π × 107 (‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ‚ ‚‡ÍÛÛÏ ҂ÂÚ ÔÓıÓ‰ËÚ Á‡ Ó‰ËÌ „Ó‰; ËÒÔÓθÁÛÂÚÒfl ‰Îfl ËÁÏÂÂÌËfl
‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û Á‚ÂÁ‰‡ÏË).
É·‚‡ 27. åÂ˚ ‰ÎËÌ˚ Ë ¯Í‡Î˚
397
ëÔ‡Ú (ÛÒÚ‡‚¯‡fl ‰ËÌˈ‡) ≈ 1012 Ï ≈ 6,6846 AU (‡ÒÚÓÌÓÏ˘ÂÒÍËı ‰ËÌˈ).
ÄÒÚÓÌÓÏ˘ÂÒ͇fl ‰ËÌˈ‡ (AU) = 1,49597871 × 10 11 Ï ≈ 8,32 Ò‚ÂÚÓ‚˚ı ÏËÌÛÚ˚
(Ò‰Ì ‡ÒÒÚÓflÌË ÏÂÊ‰Û áÂÏÎÂÈ Ë ëÓÎ̈ÂÏ; ËÒÔÓθÁÛÂÚÒfl ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ‚ Ô‰Â·ı CÓÎ̘ÌÓÈ ÒËÒÚÂÏ˚).
ë‚ÂÚÓ‚‡fl ÒÂÍÛ̉‡ ≈ 2,998 × 108 Ï.
èËÍÓÔ‡ÒÂÍ ≈ 30,86 ÍÏ (ÒÏ. Ú‡ÍÊ ‰Û„Ë Á‡·‡‚Ì˚ ‰ËÌˈ˚, ͇Í, ̇ÔËÏÂ,
ÏËÍÓÒÚÓÎÂÚË ≈ 52,5 ÏËÌÛÚ˚, Ó·˚˜Ì‡fl ÔÓ‰ÓÎÊËÚÂθÌÓÒÚ¸ ‰ÓÍ·‰‡, Ë Ì‡ÌÓÒÚÓÎÂÚË ≈ π ÒÂÍÛ̉).
27.2. òäÄãõ îàáàóÖëäàï Ñãàç
Ç ‰‡ÌÌÓÏ ‡Á‰ÂΠ‡ÒÒχÚË‚‡ÂÚÒfl ̇·Ó ‡Á΢Ì˚ı ÔÓfl‰ÍÓ‚ ‚Â΢ËÌ˚ ‰ÎËÌ,
‚˚‡ÊÂÌÌ˚ı ‚ ÏÂÚ‡ı.
1,616 × 10–35 – ‰ÎË̇ è·Ì͇ (̇ËÏÂ̸¯‡fl ‚ÓÁÏÓÊ̇fl ÙËÁ˘ÂÒ͇fl ‰ÎË̇): ̇
˝ÚÓÈ ¯Í‡Î ÓÊˉ‡ÂÚÒfl ̇΢ˠ"Í‚‡ÌÚÛÏÌÓÈ ÔÂÌ˚" (ÏÓ˘ÌÓ ËÒÍË‚ÎÂÌËÂ Ë ÚÛ·ÛÎÂ̈Ëfl ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË, ÌÂÚ „·‰ÍÓÈ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ „ÂÓÏÂÚËË); ‰ÓÏËÌËÛ˛˘ËÏË ÒÚÛÍÚÛ‡ÏË fl‚Îfl˛ÚÒfl χÎ˚ (ÏÌÓ„ÓÒ‚flÁÌ˚Â) ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ ‚ÓÓÌÍË Ë ÔÛÁ˚Ë, ‚ÓÁÌË͇˛˘ËÂ Ë ËÒ˜ÂÁ‡˛˘ËÂ.
10–34 – ‰ÎË̇ Ô‰ÔÓ·„‡ÂÏÓÈ ÒÚÛÌ˚: å-ÚÂÓËfl Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ ‚Ò ÒËÎ˚ Ë
‚Ò 25 ˝ÎÂÏÂÌÚ‡Ì˚ı ˜‡ÒÚˈ Ó·˙flÒÌfl˛ÚÒfl ‚Ë·‡ˆËÂÈ Ú‡ÍËı ÒÚÛÌ Ë ÒÚÂÏËÚÒfl
Ó·˙‰ËÌËÚ¸ Í‚‡ÌÚÓ‚Û˛ ÏÂı‡ÌËÍÛ Ò Ó·˘ÂÈ ÚÂÓËÂÈ ÓÚÌÓÒËÚÂθÌÓÒÚË.
10–24 = 1 ÈÓÍÚÓÏÂÚ.
10–21 = 1 ˆÂÔÚÓÏÂÚ.
10–18 = 1 ‡ÚÚÓÏÂÚ: ӷ·ÒÚ¸ Ò··˚ı fl‰ÂÌ˚ı ÒËÎ, ‡ÁÏÂ Í‚‡͇.
10–15 = 1 ÙÂÏÚÓÏÂÚ (·˚‚¯‡fl ÙÂÏË).
1,3 × 10–15 – ӷ·ÒÚ¸ ·Óθ¯Ëı fl‰ÂÌ˚ı ÒËÎ, fl‰‡ Ò‰ÌËı ‡ÁÏÂÓ‚.
10–12 = 1 ÔËÍÓÏÂÚ (‡Ì ̇Á˚‚‡ÎÒfl ·ËÍÓÌ ËÎË ÒÚ˄χ): ‡ÒÒÚÓflÌË ÏÂʉÛ
‡ÚÓÏÌ˚ÏË fl‰‡ÏË ‚ ·ÂÎ˚ı ͇ÎËÍÓ‚˚ı Á‚ÂÁ‰‡ı.
10–11 – ‰ÎË̇ ‚ÓÎÌ˚ ̇˷ÓΠÊÂÒÚÍÓ„Ó (ÍÓÓÚÍÓ‚ÓÎÌÓ‚Ó„Ó) ÂÌÚ„ÂÌÓ‚ÒÍÓ„Ó
ËÁÎÛ˜ÂÌËfl Ë Ì‡Ë·Óθ¯‡fl ‰ÎË̇ ‚ÓÎÌ˚ „‡Ïχ ËÁÎÛ˜ÂÌËfl.
5 × 10–11 – ‰Ë‡ÏÂÚ ̇ËÏÂ̸¯Â„Ó ‡ÚÓχ (‚Ó‰ÓÓ‰‡ ç); 1,5 × 10–10 – ‰Ë‡ÏÂÚ
̇ËÏÂ̸¯ÂÈ ÏÓÎÂÍÛÎ˚ (‚Ó‰ÓÓ‰ H 2 ).
10–10 = 1 ‡Ì„ÒÚÂÏ – ‰Ë‡ÏÂÚ ÚËÔÓ‚Ó„Ó ‡ÚÓχ, Ô‰ÂÎ ‡Á¯‡˛˘ÂÈ ÒÔÓÒÓ·ÌÓÒÚË
˝ÎÂÍÚÓÌÌÓ„Ó ÏËÍÓÒÍÓÔ‡.
1,54 × 10–10 – ‰ÎË̇ ÚËÔÓ‚ÓÈ ÍÓ‚‡ÎÂÌÚÌÓÈ Ò‚flÁË (ë–ë).
10–9 = 1 ̇ÌÓÏÂÚ – ‰Ë‡ÏÂÚ ÚËÔÓ‚ÓÈ ÏÓÎÂÍÛÎ˚.
2 × 10–9 – ‰Ë‡ÏÂÚ ÒÔË‡ÎË Ñçä.
10 –8 – ‰ÎË̇ ‚ÓÎÌ˚ ̇˷ÓΠÏfl„ÍÓ„Ó ÂÌÚ„ÂÌÓ‚ÒÍÓ„Ó ËÁÎÛ˜ÂÌËfl Ë Ò‡ÏÓ„Ó
Í‡ÈÌÂ„Ó ÛθÚ‡ÙËÓÎÂÚÓ‚Ó„Ó ËÁÎÛ˜ÂÌËfl.
1,1 × 10–8 – ‰Ë‡ÏÂÚ ÔËÓ̇ (̇ËÏÂ̸¯ÂÈ ·ËÓÎӄ˘ÂÒÍÓÈ ÒÛ˘ÌÓÒÚË, ÒÔÓÒÓ·ÌÓÈ Í
Ò‡ÏÓ‚ÓÒÔÓËÁ‚‰ÂÌ˲).
4,5 × 10–8 – ̇ËÏÂ̸¯‡fl ‰Âڇθ ÍÓÏÔ¸˛ÚÂÌÓÈ ÏËÍÓÒıÂÏ˚ ‚ 2007 „.
9 × 10–8 – ‚ËÛÒ ËÏÏÛÌÓ‰ÂÙˈËÚ‡ ˜ÂÎÓ‚Â͇ (Çàó); ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ‡ÁÏÂ˚
ËÁ‚ÂÒÚÌ˚ı ‚ËÛÒÓ‚ ÍÓηβÚÒfl ‚ Ô‰Â·ı ÓÚ 2 × 10–8 (‡‰ÂÌÓ‡ÒÒÓˆËËÓ‚‡ÌÌ˚e ‚ËÛÒ˚) ‰Ó 8 × 10–7 (ÏËÏË‚ËÛÒ).
10–7: ‡ÁÏÂ ıÓÏÓÒÓÏ˚, χÍÒËχθÌ˚È ‡ÁÏÂ ˜‡ÒÚˈ˚, ÍÓÚÓ‡fl ÏÓÊÂÚ ÔÓÈÚË
˜ÂÂÁ ıËÛ„˘ÂÒÍÛ˛ χÒÍÛ.
398
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
2 × 10–7: Ô‰ÂÎ ‡Á¯‡˛˘ÂÈ ÒÔÓÒÓ·ÌÓÒÚË ÓÔÚ˘ÂÒÍÓ„Ó ÏËÍÓÒÍÓÔ‡.
3,8–7,4 × 10–7 : ‰ÎË̇ ‚ÓÎÌ˚ ‚ˉËÏÓ„Ó („·ÁÓÏ ˜ÂÎÓ‚Â͇) Ò‚ÂÚ‡, Ú.Â. ˆ‚ÂÚÓ‚ÓÈ
ÒÔÂÍÚ ÓÚ ÙËÓÎÂÚÓ‚Ó„Ó ‰Ó Í‡ÒÌÓ„Ó.
10–6 = 1 ÏËÍÓÏÂÚ (·˚‚¯ËÈ ÏËÍÓÌ).
10–6–10–5: ‰Ë‡ÏÂÚ ÚËÔÓ‚ÓÈ ·‡ÍÚÂËË; ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ‡ÁÏÂ˚ ËÁ‚ÂÒÚÌ˚ı (Ì ̇ıÓ‰fl˘ËıÒfl ‚ ÒÓÒÚÓflÌËË ÔÓÍÓfl) ·‡ÍÚÂËÈ ÍÓηβÚÒfl ‚ Ô‰Â·ı ÓÚ 1,5 × 10–7
(ÏËÍÓÔ·Áχ „ÂÌËÚ‡ÎËÛÏ: "ÏËÌËχθ̇fl ÍÎÂÚ͇") ‰Ó 7 × 10–4 ("ëÂ̇fl ÊÂϘÛÊË̇
ç‡ÏË·ËË" – Thiomargarita of Namibia).
7 × 10–6: ‰Ë‡ÏÂÚ fl‰‡ ÚËÔÓ‚ÓÈ ˝Û͇ËÓÚÌÓÈ ÍÎÂÚÍË.
8 × 10–6: Ò‰ÌËÈ ‰Ë‡ÏÂÚ ˜ÂÎӂ˜ÂÒÍÓ„Ó ‚ÓÎÓÒ‡ (ÍÓηÎÂÚÒfl ÓÚ 1,8 × 10–6 ‰Ó
18 × 10–6).
10–5: ÚËÔÓ‚ÓÈ ‡ÁÏÂ ͇ÔÎË ‚Ó‰˚ (ÚÛχÌ, ‚Ó‰fl̇fl Ô˚θ, ӷ·ÍÓ).
10–5, 1,5 × 10–5 Ë 2 × 10–5: ‰Ë‡ÏÂÚ˚ ‚ÓÎÓÍÓÌ ıÎÓÔ͇, ¯ÂÎ͇ Ë ¯ÂÒÚË.
2 × 10–4: ÔË·ÎËÁËÚÂθÌÓ ÌËÊÌËÈ Ô‰ÂÎ ‡Á΢ÂÌËfl Ô‰ÏÂÚ‡ ˜ÂÎӂ˜ÂÒÍËÏ
„·ÁÓÏ.
5 × 10–4: ‰Ë‡ÏÂÚ ˜ÂÎӂ˜ÂÒÍÓÈ flȈÂÍÎÂÚÍË, ÏËÍÓÔÓˆÂÒÒÓ MEMS (ÏËÍÓχ¯ËÌ̇fl ÚÂıÌÓÎÓ„Ëfl).
10–3 = 1 ÏËÎÎËÏÂÚ: Í‡ÈÌflfl ‰ÎË̇ ‚ÓÎÌ˚ ËÌÙ‡Í‡ÒÌÓ„Ó ‰Ë‡Ô‡ÁÓ̇.
5 × 10–3: ‰ÎË̇ Ò‰ÌÂ„Ó Í‡ÒÌÓ„Ó ÏÛ‡‚¸fl; ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ‡ÁÏÂ˚ ̇ÒÂÍÓÏ˚ı
̇ıÓ‰flÚÒfl ‚ Ô‰Â·ı ÓÚ 1,7 × 10–4 (̇ÂÁ‰ÌËÍ Ï„‡Ù‡„χ – Megaphragma caribea) ‰Ó
3,6 × 10–1 (Ô‡ÎÓ˜ÌËÍ – Pharnacia kirbyi).
2Gm
8,9 × 10–3: ‡‰ËÛÒ ò‚‡ˆ˜‡È艇 ( 2 – ̇ËÏÂ̸¯ËÈ Ô‰ÂÎ, ÔÓÒΠÍÓÚÓÓ„Ó
c
χÒÒ‡ m ÍÓηÔÒËÛÂÚ ‚ ˜ÂÌÛ˛ ‰˚Û) ‰Îfl áÂÏÎË.
–2
10 = 1 Ò‡ÌÚËÏÂÚ.
10–1 = 1 ‰ÂˆËÏÂÚ: ‰ÎËÌ˚ ‚ÓÎÌ˚ Ò‡ÏÓÈ ÌËÁÍÓÈ ˜‡ÒÚÓÚ˚ ÏËÍÓ‚ÓÎÌÓ‚Ó„Ó ÒÔÂÍÚ‡
Ë Ò‡ÏÓÈ ‚˚ÒÓÍÓÈ ˜‡ÒÚÓÚ˚ ‰Ë‡Ô‡ÁÓ̇ ìÇó (ÛθÚ‡‚˚ÒÓÍËı ˜‡ÒÚÓÚ), 3 ÉɈ.
1 ÏÂÚ: ‰ÎË̇ ‚ÓÎÌ˚ Ò‡ÏÓÈ ÌËÁÍÓÈ ˜‡ÒÚÓÚ˚ ìÇó ‰Ë‡Ô‡ÁÓ̇ Ë Ò‡ÏÓÈ ‚˚ÒÓÍÓÈ
˜‡ÒÚÓÚ˚ ‰Ë‡Ô‡ÁÓ̇ éÇó (Ó˜Â̸ ‚˚ÒÓÍËı ˜‡ÒÚÓÚ), 300 åɈ.
1,435: Òڇ̉‡Ú̇fl ÍÓÎÂfl ÊÂÎÂÁÌÓ‰ÓÓÊÌÓ„Ó ÔÛÚË.
2,77–3,44: ‰ÎË̇ ‚ÓÎÌ˚ ¯ËÓÍӂ¢‡ÚÂθÌÓ„Ó ìäÇ ‡‰ËӉˇԇÁÓ̇ Ò ˜‡ÒÚÓÚÌÓÈ
ÏÓ‰ÛÎflˆËÂÈ Ò˄̇·, 108–87 åɈ.
5,5 Ë 30,1: ÓÒÚ Ò‡ÏÓ„Ó ‚˚ÒÓÍÓ„Ó ÊË‚ÓÚÌÓ„Ó (ÊË‡Ù‡) Ë ‰ÎË̇ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó
ÊË‚ÓÚÌÓ„Ó („ÓÎÛ·Ó„Ó ÍËÚ‡).
10 = 1 ‰Â͇ÏÂÚ: ‰ÎË̇ ‚ÓÎÌ˚ Ò‡ÏÓÈ ÌËÊÌÂÈ ˜‡ÒÚÓÚ˚ ‰Ë‡Ô‡ÁÓ̇ ‚˚ÒÓÍËı ‡‰ËÓ˜‡ÒÚÓÚ (Çó) Ë Ò‡ÏÓÈ ‚˚ÒÓÍÓÈ ˜‡ÒÚÓÚ˚ ÍÓÓÚÍÓ‚ÓÎÌÓ‚Ó„Ó (äÇ) ‰Ë‡Ô‡ÁÓ̇, 30 åɈ.
26: ҇χfl ‚˚ÒÓ͇fl (ËÁÏÂÂÌ̇fl) Ó͇ÌÒ͇fl ‚ÓÎ̇. èË ˝ÚÓÏ ‡Ò˜ÂÚ̇fl ‚˚ÒÓÚ‡
‚ÓÎÌ˚ Ï„‡ˆÛ̇ÏË, ‚˚Á‚‡ÌÌÓ„Ó 65 ÏÎÌ ÎÂÚ Ì‡Á‡‰ ÒÚÓÎÍÌÓ‚ÂÌËÂÏ áÂÏÎË Ò ‡ÒÚÂÓˉÓÏ ä-í, ‚ ÂÁÛθڇÚ ÍÓÚÓÓ„Ó, ‚ÂÓflÚÌÓ, ÔÓ„Ë·ÎË ‚Ò ‰ËÌÓÁ‡‚˚, ÒÓÒÚ‡‚Ë·
ÓÍÓÎÓ 1 ÍÏ.
100 = 1 „ÂÍÚÓÏÂÚ: ‰ÎË̇ ‚ÓÎÌ˚ Ò‡ÏÓÈ ÌËÁÍÓÈ ˜‡ÒÚÓÚ˚ äÇ ‰Ë‡Ô‡ÁÓ̇ Ë Ò‡Ï‡fl
‚˚ÒÓ͇fl ˜‡ÒÚÓÚ‡ Ò‰Ì‚ÓÎÌÓ‚Ó„Ó (ëÇ) ‰Ë‡Ô‡ÁÓ̇, 3 åɈ.
115,5: ‚˚ÒÓÚ‡ Ò‡ÏÓ„Ó ‚˚ÒÓÍÓ„Ó ‚ ÏË ‰Â‚‡, ͇ÎËÙÓÌËÈÒÍÓ„Ó Ï‡ÏÓÌÚÓ‚Ó„Ó
‰Â‚‡.
137, 300, 508 Ë 541: ‚˚ÒÓÚ˚ ÇÂÎËÍÓÈ ÔË‡Ïˉ˚ ‚ ÉËÁÂ, ùÈÙÂ΂ÓÈ ·‡¯ÌË,
Ì·ÓÒÍ·‡ í‡È·˝È 101 (Ò‡ÏÓ„Ó ‚˚ÒÓÍÓ„Ó Á‰‡ÌËfl ̇ 2007 „.) Ë ç·ÓÒÍ·‡ ë‚Ó·Ó‰˚,
ÍÓÚÓ˚È Ô‰ÔÓ·„‡ÂÚÒfl ÔÓÒÚÓËÚ¸ ̇ ÏÂÒÚ ·˚‚¯Â„Ó ÍÓÏÔÎÂÍÒ‡ ÇÒÂÏËÌÓ„Ó
ÚÓ„Ó‚Ó„Ó ˆÂÌÚ‡.
É·‚‡ 27. åÂ˚ ‰ÎËÌ˚ Ë ¯Í‡Î˚
399
187–555: ‰ÎË̇ ‚ÓÎÌ˚ ¯ËÓÍӂ¢‡ÚÂθÌÓ„Ó ‰Ë‡Ô‡ÁÓ̇ ˜‡ÒÚÓÚ Ò ‡ÏÔÎËÚÛ‰ÌÓÈ
ÏÓ‰ÛÎflˆËÂÈ, 1600–540 ÍɈ.
340: ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓ ÔÂÂÏ¢‡ÂÚÒfl Á‚ÛÍ ‚ ‡ÚÏÓÒÙÂ Á‡ Ó‰ÌÛ ÒÂÍÛ̉Û.
103 = 1 ÍËÎÓÏÂÚ.
2,95 × 103: ‡‰ËÛÒ ò‚‡ˆ˜‡È艇 ‰Îfl ëÓÎ̈‡.
3,79 × 103: Ò‰Ìflfl „ÎÛ·Ë̇ Ó͇ÌÓ‚.
104 : ‰ÎË̇ ‚ÓÎÌ˚ Ò‡ÏÓÈ ÌËÊÌÂÈ ‡‰ËÓ˜‡ÒÚÓÚ˚ ëÇ ‰Ë‡Ô‡ÁÓ̇, 300 ÍɈ.
8,8 × 103 Ë 10,9 × 103: ‚˚ÒÓÚ‡ Ò‡ÏÓÈ ‚˚ÒÓÍÓÈ „Ó˚ ù‚ÂÂÒÚ Ë „ÎÛ·Ë̇ ÇÔ‡‰ËÌ˚
åË̉‡Ì‡Ó.
5 × 104 = 50 ÍÏ: χÍÒËχθÌÓ ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓÏ ÏÓÊÌÓ Û‚Ë‰ÂÚ¸ Ô·Ïfl
ÒÔ˘ÍË (ÏËÌËÏÛÏ 10 ÙÓÚÓÌÓ‚ ‰ÓÒÚË„‡˛Ú ÒÂÚ˜‡ÚÍË „·Á‡ ‚ Ú˜ÂÌË 0,1 Ò).
1,11 × 105 = 111 ÍÏ: Ó‰ËÌ „‡‰ÛÒ ¯ËÓÚ˚ ̇ áÂÏÎÂ.
1,5 × 104–1,5 × 107: ‰Ë‡Ô‡ÁÓÌ ˜‡ÒÚÓÚ ÒÎ˚¯ËÏÓ„Ó ˜ÂÎÓ‚ÂÍÓÏ Á‚Û͇ (20 Ɉ–208 ÍɈ).
1,69 × 105: ‰ÎË̇ „ˉÓÚÂıÌ˘ÂÒÍÓ„Ó ÚÛÌÌÂÎfl Ñ·‚˝ (縲-âÓÍ), Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó ‚ ÏËÂ.
2 × 105 : ‰ÎË̇ ‚ÓÎÌ˚ (‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓ‰Ó¯‚‡ÏË ÔÓÒΉӂ‡ÚÂθÌ˚ı ‚ÓÎÌ)
ÚËÔÓ‚Ó„Ó ˆÛ̇ÏË.
4,83 × 105: ‰Ë‡ÏÂÚ Í‡ÚÂ‡ áÂÏÎË ìËÎÍÒ‡ (ÄÌÚ‡ÍÚË͇), Ó·‡ÁÓ‚‡‚¯Â„ÓÒfl
250 ÏÎÌ ÎÂÚ Ì‡Á‡‰ ‚ ÂÁÛθڇÚ ԇ‰ÂÌËfl Ì·ÂÒÌÓ„Ó Ú·; Ò‡Ï˚È ·Óθ¯ÓÈ ËÁ ̇ȉÂÌÌ˚ı ̇ áÂÏΠ(Ô‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ˝Ú‡ ͇ڇÒÚÓÙ‡ ÔÓ‚ÎÂÍ· Á‡ ÒÓ·ÓÈ Ï‡ÒÒÓ‚ÓÂ
ÛÌ˘ÚÓÊÂÌË ÊËÁÌË ‚ ÔÂÏÒÍËÈ ÔÂËÓ‰); Ò˜ËÚ‡ÂÚÒfl Ú‡ÍÊÂ, ˜ÚÓ ÒÚÓÎÍÌÓ‚ÂÌË áÂÏÎË
Ò „ËÔÓÚÂÚ˘ÂÒÍËÏ Ô·ÌÂÚÓˉÓÏ "íÂÈfl", ÔÓ ‡ÁÏÂ‡Ï ÒıÓ‰Ì˚Ï Ò å‡ÒÓÏ (ÚÂÓËfl
"ÅÓθ¯Ó„Ó ÇÒÔÎÂÒ͇"), ÔË‚ÂÎÓ 4533 ÏÎ‰ ÎÂÚ Ì‡Á‡‰ Í Ó·‡ÁÓ‚‡Ì˲ ãÛÌ˚.
106 = 1 Ï„‡ÏÂÚ.
3,48 × 106: ‰Ë‡ÏÂÚ ãÛÌ˚.
5 × 106 : ‰Ë‡ÏÂÚ LHS 4033, ̇ËÏÂ̸¯ÂÈ ËÁ‚ÂÒÚÌÓÈ Á‚ÂÁ‰˚ – ·ÂÎÓ„Ó Í‡ÎË͇.
6,4 × 106 Ë 6,65 × 106: ‰ÎË̇ ÇÂÎËÍÓÈ äËÚ‡ÈÒÍÓÈ ëÚÂÌ˚ Ë ‰ÎË̇ ÂÍË çËÎ.
1,28 × 107 Ë 4,01 × 107 : ‰Ë‡ÏÂÚ áÂÏÎË ‚ ˝Í‚‡ÚÓˇθÌÓÈ ÁÓÌÂ Ë ‰ÎË̇ ˝Í‚‡ÚÓ‡
áÂÏÎË.
3,84 × 108: Ó·ËڇθÌÓ ‡ÒÒÚÓflÌË ãÛÌ˚ ÓÚ áÂÏÎË.
109 = 1 „Ë„‡ÏÂÚ.
1,39 × 109: ‰Ë‡ÏÂÚ ëÓÎ̈‡.
5,8 × 1010: Ó·ËڇθÌÓ ‡ÒÒÚÓflÌË åÂÍÛËfl.
1,496 × 1011 (1 ‡ÒÚÓÌÓÏ˘ÂÒ͇fl ‰ËÌˈ‡, AU): Ò‰Ì ‡ÒÒÚÓflÌË ÏÂÊ‰Û áÂÏÎÂÈ
Ë ëÓÎ̈ÂÏ (Ó·ËڇθÌÓ ‡ÒÒÚÓflÌË áÂÏÎË).
5,7 × 1011: ‰ÎË̇ ̇˷Óθ¯Â„Ó Ì‡·Î˛‰‡ÂÏÓ„Ó ÍÓÏÂÚÌÓ„Ó ı‚ÓÒÚ‡ (ÍÓÏÂÚ˚ ïÛ‡ÍÛÚ‡ÍÂ, ë/1996 Ç2).
1012 = 1 ÚÂ‡ÏÂÚ (·˚‚¯ËÈ ÒÔ‡Ú).
2,9 × 1012 ≈ 7 AU: ‰Ë‡ÏÂÚ Ò‡ÏÓÈ ·Óθ¯ÓÈ ËÁ‚ÂÒÚÌÓÈ Ò‚Âı„Ë„‡ÌÚÒÍÓÈ Á‚ÂÁ‰˚ VY
Canis Majoris.
4,5 × 1012 ≈ 30 AU: Ó·ËڇθÌÓ ‡ÒÒÚÓflÌË çÂÔÚÛ̇.
30–50 AU: ‡ÒÒÚÓflÌË ÓÚ ëÓÎ̈‡ ‰Ó ‡ÒÚÂÓˉÌÓ„Ó ÔÓflÒ‡ äÛËÔÂ‡.
1015 = 1 ÔÂÚ‡ÏÂÚ.
50 000–100 000 AU: ‡ÒÒÚÓflÌË ÓÚ ëÓÎ̈‡ ‰Ó ӷ·͇ éÓÚ‡ (Ô‰ÔÓ·„‡ÂÏÓÂ
ÒÙÂ˘ÂÒÍÓ ÒÍÓÔÎÂÌË ÍÓÏÂÚ).
3,99 × 10 16 = 266715 AU = 4,22 Ò‚. „Ó‰‡ = 1,3 ÔÍ: ‡ÒÒÚÓflÌË ‰Ó ·ÎËʇȯÂÈ Í
ëÓÎÌˆÛ Á‚ÂÁ‰˚ èÓÍÒËχ ñÂÌÚ‡‚‡.
400
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
1018 = 1 ˝ÍÒ‡ÏÂÚ.
1,57 × 1018 ≈ 50,9 ÔÍ: ‡ÒÒÚÓflÌË ‰Ó Ò‚ÂıÌÓ‚ÓÈ 1987Ä.
9.46 × 1018 ≈ 306,6 ÔÍ Ò‚. ÎÂÚ: ‰Ë‡ÏÂÚ „‡Î‡ÍÚ˘ÂÒÍÓ„Ó ‰ËÒ͇ ̇¯ÂÈ „‡Î‡ÍÚËÍË
åΘÌ˚È èÛÚ¸.
2,62 × 1020 ≈ 8,5 ÍÔÍ Ò‚. ÎÂÚ): ‡ÒÒÚÓflÌË ÓÚ ëÓÎ̈‡ ‰Ó „‡Î‡ÍÚ˘ÂÒÍÓ„Ó ˆÂÌÚ‡ (‚
ÒÓÁ‚ÂÁ‰ËË ëÚÂθˆ‡ Ä * ).
3,98 × 1020 ≈ 12,9 ÍÔÍ: ‡ÒÒÚÓflÌË ‰Ó ·ÎËʇȯÂÈ Í‡ÎËÍÓ‚ÓÈ „‡Î‡ÍÚËÍË ÅÓθ¯Ó„Ó èÒ‡.
1021 = 1 ÁÂÚÚ‡ÏÂÚ.
2,23 × 1022 – 725 ÍÔÍ: ‡ÒÒÚÓflÌË ‰Ó íÛχÌÌÓÒÚË Ä̉Óω˚, ·ÎËʇȯÂÈ ÍÛÔÌÓÈ „‡Î‡ÍÚËÍË.
5 × 1022 = 1,6 MÔÍ: ‰Ë‡ÏÂÚ åÂÒÚÌÓÈ „ÛÔÔ˚ „‡Î‡ÍÚËÍ.
5,7 × 1023 = 60 ÏÎÌ Ò‚. ÎÂÚ: ‡ÒÒÚÓflÌË ‰Ó ÒÓÁ‚ÂÁ‰Ëfl Ñ‚˚, ·ÎËÊ‡È¯Â„Ó ÍÛÔÌÓ„Ó
ÒÍÓÔÎÂÌËfl (ÍÓÚÓÓ fl‚ÎflÂÚÒfl ‰ÓÏËÌËÛ˛˘ËÏ ‚ åÂÒÚÌÓÏ Ò‚ÂıÒÍÓÔÎÂÌËË Ë ‚
ÍÓÚÓÓÏ ·˚ÎË Ó·Ì‡ÛÊÂÌ˚ ÔÂ‚‡fl „‡Î‡ÍÚË͇ ÚÂÏÌÓÈ Ï‡ÚÂËË Ë ÔÂ‚˚Â
‚Ì„‡Î‡ÍÚ˘ÂÒÍË Á‚ÂÁ‰˚).
1024 = 1 ÈÓÚÚ‡ÏÂÚ.
2 × 1024 = 60 åÔÍ: ‰Ë‡ÏÂÚ åÂÒÚÌÓ„Ó Ò‚ÂıÒÍÓÔÎÂÌËfl (ËÎË ë‚ÂıÒÍÓÔÎÂÌËfl
Ñ‚˚).
2,36 × 1024 = 250 ÏÎÌ Ò‚. ÎÂÚ: ‡ÒÒÚÓflÌË ‰Ó ÇÂÎËÍÓ„Ó ‡ÚÚ‡ÍÚÓ‡ („‡‚ËÚ‡ˆËÓÌÌÓÈ ‡ÌÓχÎËË ‚ åÂÒÚÌÓÏ Ò‚ÂıÒÍÓÔÎÂÌËË).
500 ÏÎÌ Ò‚. ÎÂÚ: ‰ÎË̇ ÇÂÎËÍÓÈ ëÚÂÌ˚ „‡Î‡ÍÚËÍ Ë ‡Î¸Ù‡ ÔÛÁ˚ÂÈ ãËχ̇, Ò‡Ï˚ı
·Óθ¯Ëı ̇·Î˛‰‡ÂÏ˚ı ÒÛÔÂÒÚÛÍÚÛ ‚Ó ‚ÒÂÎÂÌÌÓÈ (ÔÓÒÚ‡ÌÒÚ‚Ó ‚˚„Îfl‰ËÚ ÚÂÏ
·ÓΠ‡‚ÌÓÏÂÌ˚Ï, ˜ÂÏ ÍÛÔÌ χүڇ·).
12 080 ÏÎÌ Ò‚. ÎÂÚ = 3704 åÔÍ: ‡ÒÒÚÓflÌË ‰Ó ̇˷ÓΠۉ‡ÎÂÌÌÓ„Ó ËÁ‚ÂÒÚÌÓ„Ó
Í‚‡Á‡‡ SDSS J1148 + 5251 (Í‡ÒÌÓ ÒÏ¢ÂÌË 6,43, ‚ ÚÓ ‚ÂÏfl Í‡Í 6,5 fl‚ÎflÂÚÒfl
Ô‰ÔÓÎÓÊËÚÂθÌÓ "ÒÚÂÌÓÈ Ì‚ˉËÏÓÒÚË" ‰Îfl ‚ˉËÏÓ„Ó Ò‚ÂÚ‡).
1,3 × 1026 = 13,7 Ò‚. „Ë„‡ÎÂÚ = 4,22 ÉÔÍ: ‡ÒÒÚÓflÌË (‡ÒÒ˜ËÚ‡ÌÌÓÂ Ò ÔÓÏÓ˘¸˛
ÁÓ̉‡ ÏËÍÓ‚ÓÎÌÓ‚ÓÈ ‡ÌËÁÓÚÓÔËË ìËÎÍËÌÒÓ̇), ÔÓȉÂÌÌÓ ÙÓÌÓ‚˚Ï ÍÓÒÏ˘Âc
ÒÍËÏ ËÁÎÛ˜ÂÌËÂÏ Ò ÏÓÏÂÌÚ‡ "ÅÓθ¯Ó„Ó ‚Á˚‚‡" (‡‰ËÛÒ ï‡··Î‡ DH =
, ÍÓÒÏËH0
˜ÂÒÍËÈ Ò‚ÂÚÓ‚ÓÈ „ÓËÁÓÌÚ, ‚ÓÁ‡ÒÚ ‚ÒÂÎÂÌÌÓÈ). ë Û˜ÂÚÓÏ ÚÓ„Ó ˜ÚÓ ˝ÚÓ ˜ËÒÎÓ ËÏÂÂÚ
ÔÓfl‰ÓÍ ‡‰ËÛÒ‡ ò‚‡ˆ˜‡È艇 ‰Îfl χÒÒ˚ ‚ÒÂÎÂÌÌÓÈ, ÌÂÍÓÚÓ˚ ÙËÁËÍË ‡ÒÒχÚË‚‡˛Ú ‚Ò˛ ‚ÒÂÎÂÌÌÛ˛ Í‡Í „Ë„‡ÌÚÒÍÛ˛ ‚‡˘‡˛˘Û˛Òfl ˜ÂÌÛ˛ ‰˚Û. чÌÌÓ ˜ËÒÎÓ
1
–56
ËÏÂÂÚ Ú‡ÍÊ ÔÓfl‰ÓÍ
ÒÏ –
(ÂÒÎË ÍÓÒÏÓÎӄ˘ÂÒ͇fl ÔÓÒÚÓflÌ̇fl Λ ≈ 1,36 × 10
Λ
2 ), ˜ÚÓ ÌÂÍÓÚÓ˚ ۘÂÌ˚ ҘËÚ‡˛Ú χÍÒËχθÌÓÈ ‰ÎËÌÓÈ ÔÓ‰Ó·ÌÓ ÏËÌËχθÌÓÈ
‰ÎËÌ è·Ì͇.
7,4 × 1026: Ì˚̯Ì ‡ÒÒÚÓflÌË (ÒÓ‚ÏÂÒÚÌÓ„Ó) ‰‚ËÊÂÌËfl ‰Ó Í‡fl ̇·Î˛‰‡ÂÏÓÈ
‚ÒÂÎÂÌÌÓÈ (‡ÁÏÂ˚ ̇·Î˛‰‡ÂÏÓÈ ‚ÒÂÎÂÌÌÓÈ Ô‚˚¯‡˛Ú ‰ÎËÌÛ ‡‰ËÛÒ‡ ·Î‡,
ÔÓÒÍÓθÍÛ ‚ÒÂÎÂÌ̇fl ÔÓ‰ÓÎʇÂÚ ‡Ò¯ËflÚ¸Òfl). ëӄ·ÒÌÓ ÚÂÓËË Ô‡‡ÎÎÂθÌ˚ı
‚ÒÂÎÂÌÌ˚ı, Ô‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ Ì‡ Û‰‡ÎÂÌËË ÔÓfl‰Í‡ 1010
ˉÂÌÚ˘̇fl ÍÓÔËfl ̇¯ÂÈ ‚ÒÂÎÂÌÌÓÈ.
118
Ï ÒÛ˘ÂÒÚ‚ÛÂÚ ‰Û„‡fl,
É·‚‡ 28
çÖåÄíÖåÄàóÖëäàÖ
à éÅêÄáçõÖ áçÄóÖçàü êÄëëíéüçàü
28.1. êÄëëíéüçàü, ëÇüáÄççõÖ ë éíóìÜÑÖççéëíúû
èË·ÎËÁËÚÂθÌ˚ ‡ÒÒÚÓflÌËfl ÔÓ ¯Í‡Î ˜ÂÎÓ‚Â͇
ê‡ÒÒÚÓflÌË ÛÍË – ‡ÒÒÚÓflÌË (ÓÍÓÎÓ 0,7 Ï, Ú.Â. Ú‡Í Ì‡Á˚‚‡ÂÏӠ΢ÌÓ ‡ÒÒÚÓflÌËÂ), ÍÓÚÓÓ Ô‰ÛÔÂʉ‡ÂÚ Ù‡ÏËθflÌÓÒÚ¸ ËÎË ÍÓÌÙÎËÍÚ (‡Ì‡ÎÓ„‡ÏË fl‚Îfl˛ÚÒfl ËڇθflÌÒÍÓ bracio, ÚÛˆÍËÈ pik Ë ÒÚ‡ÓÛÒÒ͇fl Ò‡ÊÂ̸). ê‡ÒÒÚÓflÌË ‰ÓÒfl„‡ÌËfl – ‡ÁÌˈ‡ ÏÂÊ‰Û Ô‰ÂÎÓÏ ‰ÓÒfl„‡ÂÏÓÒÚË Ë ‡ÒÒÚÓflÌËÂÏ ÛÍË.
ê‡ÒÒÚÓflÌË Ô΂͇ – ‚ÂҸχ ÍÓÓÚÍÓ ‡ÒÒÚÓflÌËÂ.
ê‡ÒÒÚÓflÌË ÓÍË͇ – ÍÓÓÚÍÓÂ, ΄ÍÓ ‰ÓÒfl„‡ÂÏÓ ‡ÒÒÚÓflÌËÂ.
ê‡ÒÒÚÓflÌË ۉ‡‡ – ‡ÒÒÚÓflÌËÂ, ‚ Ô‰Â·ı ÍÓÚÓÓ„Ó Ó·˙ÂÍÚ ÏÓÊÂÚ ·˚Ú¸ ‰ÓÒfl„‡ÂÏ ‰Îfl ̇ÌÂÒÂÌËfl Û‰‡‡.
ê‡ÒÒÚÓflÌË ·ÓÒ͇ ͇ÏÌfl ËÁÏÂflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÔËÏÂÌÓ 25 Ò‡ÊÂÌÂÈ
(46 Ï).
ê‡ÒÒÚÓflÌË ÒÎ˚¯ËÏÓÒÚË „ÓÎÓÒ‡ – ‰‡Î¸ÌÓÒÚ¸, ‚ Ô‰Â·ı ÍÓÚÓÓÈ ÏÓÊÂÚ ·˚Ú¸
ÛÒÎ˚¯‡Ì ˜ÂÎӂ˜ÂÒÍËÈ „ÓÎÓÒ.
ê‡ÒÒÚÓflÌË Ô¯ÍÓÏ – ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ӷ˚˜ÌÓ ÏÓÊÌÓ (‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ÍÓÌÍÂÚÌÓÈ ÒËÚÛ‡ˆËË) ÔÓÈÚË Ô¯ÍÓÏ. í‡Í, ̇ÔËÏÂ, ‚ ÌÂÍÓÚÓ˚ı ¯ÍÓ·ı ÇÂÎËÍÓ·ËÚ‡ÌËË ‡ÒÒÚÓflÌË 2 Ë 3 ÏËÎË Ò˜ËÚ‡ÂÚÒfl ÌÓχÚË‚Ì˚Ï ‡ÒÒÚÓflÌËÂÏ ıÓ‰¸·˚
Ô¯ÍÓÏ ‰Îfl ‰ÂÚÂÈ ‚ ‚ÓÁ‡ÒÚ ‰Ó Ë ÔÓÒΠ11 ÎÂÚ.
ê‡ÒÒÚÓflÌËfl ÏÂÊ‰Û Î˛‰¸ÏË
Ç ‡·ÓÚ ïÓη [Hall69] Ô‰·„‡ÂÚÒfl ‚ ÒÙÂ ÏÂÊ΢ÌÓÒÚÌ˚ı ÙËÁ˘ÂÒÍËı ÓÚÌÓ¯ÂÌËÈ ÏÂÊ‰Û Î˛‰¸ÏË ‚˚‰ÂÎËÚ¸ ÒÎÂ‰Û˛˘Ë ˜ÂÚ˚ ÁÓÌ˚: ËÌÚËÏÌÓÈ ·ÎËÁÓÒÚË –
‰Îfl Ó·˙flÚËÈ Ë ‡Á„Ó‚Ó‡ ¯ÂÔÓÚÓÏ (15–45 ÒÏ), ‡ÒÒÚÓflÌˠ΢ÌÓÈ ·ÎËÁÓÒÚË – ‰Îfl
‡Á„Ó‚Ó‡ Ò ıÓÓ¯ËÏË ‰ÛÁ¸flÏË (45–120 ÒÏ), ‡ÒÒÚÓflÌË ÒӈˇθÌÓ„Ó ÍÓÌÚ‡ÍÚ‡ –
‰Îfl ·ÂÒ‰˚ ÒÓ Á̇ÍÓÏ˚ÏË (1,2–3,6 Ï) Ë ‡ÒÒÚÓflÌË ӷ˘ÂÒÚ‚ÂÌÌÓÈ ‰ËÒڇ̈ËË – ‰Îfl
ÔÛ·Î˘Ì˚ı ‚˚ÒÚÛÔÎÂÌËÈ (·ÓΠ3,6 Ï). ä‡ÍÓ ËÁ ˝ÚËı ÔÓÍÒÂÏ˘ÂÒÍËı ‡ÒÒÚÓflÌËÈ
·Û‰ÂÚ ÔËÂÏÎÂÏ˚Ï ‚ ÍÓÌÍÂÚÌÓÈ ÒӈˇθÌÓÈ ÒËÚÛ‡ˆËË, ÓÔ‰ÂÎflÂÚÒfl ÍÛθÚÛÓÈ,
ÔÓÎÓÏ Ë Î˘Ì˚ÏË Ô‰ÔÓ˜ÚÂÌËflÏË ˜ÂÎÓ‚Â͇. ç‡ÔËÏÂ, ‚ ËÒ·ÏÒÍËı ÒÚ‡Ì‡ı
·ÎËÁÍËÈ ÍÓÌÚ‡ÍÚ (̇ıÓʉÂÌË ‚ Ó‰ÌÓÏ ÔÓÏ¢ÂÌËË ËÎË ÛÍÓÏÌÓÏ ÏÂÒÚÂ) ÏÂʉÛ
ÏÛʘËÌÓÈ Ë ÊÂÌ˘ËÌÓÈ ‰ÓÔÛÒ͇ÂÚÒfl ÚÓθÍÓ ‚ ÔËÒÛÚÒÚ‚ËË Ëı χı‡Ï‡ (ÒÛÔÛ„‡ ËÎË
͇ÍÓ„Ó-ÌË·Û‰¸ Îˈ‡ ÚÓ„Ó Ê ÔÓ·, ËÎË ÌÂÒÓ‚Â¯ÂÌÌÓÎÂÚÌÂ„Ó Îˈ‡ ÔÓÚË‚ÓÔÓÎÓÊÌÓ„Ó ÔÓ·). ÑÎfl Ò‰ÌÂ„Ó Ô‰ÒÚ‡‚ËÚÂÎfl Á‡Ô‡‰ÌÓÈ ˆË‚ËÎËÁ‡ˆËË Â„Ó Î˘Ì˚Ï
ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ò˜ËÚ‡ÂÚÒfl ‡ÒÒÚÓflÌË ÒÔÂÂ‰Ë 70 ÒÏ, ÒÁ‡‰Ë – 40 ÒÏ Ë 60 ÒÏ Ò Î˛·Ó„Ó ·Ó͇.
èӂ‰ÂÌË β‰ÂÈ, ÓÔ‰ÂÎflÂÏÓ ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÌËÏË, ÏÓÊÌÓ ËÁÏÂflÚ¸,
̇ÔËÏÂ, ‡ÒÒÚÓflÌËÂÏ ÚÓÏÓÊÂÌËfl (ÍÓ„‰‡ Ó·˙ÂÍÚ ÓÒڇ̇‚ÎË‚‡ÂÚÒfl, ÔÓÒÍÓθÍÛ
‰‡Î¸ÌÂȯ ҷÎËÊÂÌË ‚˚Á˚‚‡ÂÚ Û ÌÂÂ/ÌÂ„Ó ˜Û‚ÒÚ‚Ó ÌÂÎÓ‚ÍÓÒÚË) ËÎË ÔÓ͇Á‡ÚÂÎÂÏ
ÔË·ÎËÊÂÌËfl, Ú.Â. ÔÓˆÂÌÚÌ˚Ï ÓÚÌÓ¯ÂÌËÂÏ ¯‡„Ó‚, ҉·ÌÌ˚ı ‰Îfl ÒÓÍ‡˘ÂÌËfl
ÏÂÊ΢ÌÓÒÚÌÓ„Ó ‡ÒÒÚÓflÌËfl, Í Ó·˘ÂÏÛ ÍÓ΢ÂÒÚ‚Û ¯‡„Ó‚.
402
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ì„ÎÓ‚˚ ‡ÒÒÚÓflÌËfl ‚ ÓÒ‡ÌÍ β‰ÂÈ – ËÁÏÂÂÌ̇fl ‚ „‡‰ÛÒ‡ı ÓËÂÌÚ‡ˆËfl ‚ ÔÓÒÚ‡ÌÒÚ‚Â ÔÓÎÓÊÂÌËfl ÔΘÂÈ Ó‰ÌÓ„Ó ˜ÂÎÓ‚Â͇ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ‰Û„ÓÏÛ; ÔÓÎÓÊÂ=
ÌË ‚ÂıÌÂÈ ˜‡ÒÚË ÚÛÎӂˢ‡ „Ó‚Ófl˘Â„Ó ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÒÎÛ¯‡ÚÂβ (̇ÔËÏÂ,
̇ıÓ‰ËÚ¸Òfl ÎˈÓÏ Í ÌÂÏÛ ËÎË Ó·‡˘‡Ú¸Òfl ‚ ÒÚÓÓÌÛ); ÔÓÎÓÊÂÌË ÍÓÔÛÒ‡ „Ó‚Ófl˘Â„Ó ÓÚÌÓÒËÚÂθÌÓ ÍÓÔÛÒ‡ ÒÎÛ¯‡˛˘Â„Ó, ËÁÏÂÂÌÌÓ ‚ ‚ÂÚË͇θÌÓÈ ÔÎÓÒÍÓÒÚË,
ÍÓÚÓ‡fl ‡Á‰ÂÎflÂÚ ÚÂÎÓ Ì‡ ‰‚ ÔÓÎÓ‚ËÌ˚ (ÔÂÂ‰Ì˛˛ Ë Á‡‰Ì˛˛). чÌÌÓ ‡ÒÒÚÓflÌËÂ
ÔÓÁ‚ÓÎflÂÚ ÒÛ‰ËÚ¸ Ó ÚÓÏ, Í‡Í ˜ÂÎÓ‚ÂÍ ÓÚÌÓÒËÚÒfl Í ÓÍÛʇ˛˘ËÏ Â„Ó Î˛‰flÏ: ‚ÂıÌflfl
˜‡ÒÚ¸ ÚÛÎӂˢ‡ ÌÂÔÓËÁ‚ÓθÌÓ ‡Á‚Ó‡˜Ë‚‡ÂÚÒfl ‚ ÒÚÓÓÌÛ ÓÚ ÚÂı, ÍÚÓ Ì Ì‡‚ËÚÒfl
ËÎË ‚ ÒÎÛ˜‡Â ‡ÁÌӄ·ÒËÈ.
ùÏÓˆËÓ̇θÌÓ ‡ÒÒÚÓflÌËÂ
ùÏÓˆËÓ̇θÌÓ ‡ÒÒÚÓflÌË (ËÎË ÔÒËı˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ) ÔÓ͇Á˚‚‡ÂÚ ÒÚÂÔÂ̸
˝ÏÓˆËÓ̇θÌÓÈ ÓÚÒÚ‡ÌÂÌÌÓÒÚË (ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ˜ÂÎÓ‚ÂÍÛ, „ÛÔÔ β‰ÂÈ ËÎË
ÒÓ·˚ÚËflÏ), ÓÚ˜ÛʉÂÌÌÓÒÚ¸ Ë ‡‚ÌӉۯˠÔÓÒ‰ÒÚ‚ÓÏ Á‡ÏÍÌÛÚÓÒÚË Ë ÌÂÓ·˘ËÚÂθÌÓÒÚË.
ò͇· ÒӈˇθÌÓÈ ‰ËÒڇ̈ËË ÅÓ„‡‰ÛÒ‡ ‚ ‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË ËÁÏÂflÂÚ ÌÂ
ÒӈˇθÌ˚Â, ‡ ËÏÂÌÌÓ Ú‡ÍË ‡ÒÒÚÓflÌËfl; ÔÓ ‰‡ÌÌÓÈ ¯Í‡Î ‡Á΢‡˛ÚÒfl ÒÎÂ‰Û˛˘ËÂ
‚ÓÒÂϸ „‡‰‡ˆËÈ "˜ÛʉÓÒÚË" ‰Îfl ÂÒÔÓ̉ÂÌÚÓ‚ – Ô‰ÒÚ‡‚ËÚÂÎÂÈ ‰Û„Ëı ˝ÚÌ˘ÂÒÍËı
„ÛÔÔ Ë „ÓÚÓ‚ÌÓÒÚ¸ Í ‚Á‡ËÏÓ‰ÂÈÒڂ˲ Ò ÌËÏË ‚ ÚÓÏ ËÎË ËÌÓÏ Í‡˜ÂÒÚ‚Â: ÏÓ„ÎË ·˚
ÔÓÓ‰ÌËÚ¸Òfl, ÏÓ„ÎË ·˚ ÔËÌflÚ¸ „ÓÒÚÂÏ ‚ ‰ÓÏÂ, ÏÓ„ÎË ·˚ ÊËÚ¸ ÒÓÒ‰flÏË, ÏÓ„ÎË ·˚
ÊËÚ¸ ‚ ·ÎËʇȯÂÈ ÓÍÂÒÚÌÓÒÚË, ÏÓ„ÎË ·˚ ÊËÚ¸ ‚ Ó‰ÌÓÏ „ÓÓ‰Â, Ì Ê·ÎË ·˚
ÊËÚ¸ ‚ Ó‰ÌÓÏ „ÓÓ‰Â, ‚˚Ò·ÎË ·˚, Û·ËÎË ·˚. ÑÓ‰‰ Ë çÂıÌ‚‡ÒËfl ‚ 1954 „. ÔÓÒÚ‡‚ËÎË
t
‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ‚ÓÒ¸ÏË ÛÓ‚ÌflÏ ¯Í‡Î˚ ÅÓ„‡‰‡ ‚ÓÁ‡ÒÚ‡˛˘Ë ‡ÒÒÚÓflÌËfl 10 Ï,
0 ≤ t ≤ 7.
ùÙÙÂÍÚ ÒÓÒ‰ÒÚ‚‡ – ÚẨÂ̈Ëfl β‰ÂÈ ˝ÏÓˆËÓ̇θÌÓ Ò·ÎËʇڸÒfl, ‚ÒÚÛÔ‡Ú¸ ‚ ‰ÛÊÂÒÍË ËÎË ÓχÌÚ˘ÂÒÍË ÓÚÌÓ¯ÂÌËfl Ò ÚÂÏË, ÍÚÓ Ì‡ıÓ‰ËÚÒfl ·ÎËÊÂ Í ÌËÏ (ÙËÁ˘ÂÒÍË Ë ÔÒËıÓÎӄ˘ÂÒÍË), Ú.Â. c ÚÂÏË, Ò ÍÂÏ ÓÌË ˜‡ÒÚÓ ‚ÒÚ˜‡˛ÚÒfl. ìÓÎÏÒÎË Ô‰ÎÓÊËÎ Ò˜ËÚ‡Ú¸, ˜ÚÓ ˝ÏÓˆËÓ̇θ̇fl ‚ӂΘÂÌÌÓÒÚ¸ ÒÓÍ‡˘‡ÂÚÒfl Í‡Í d −1 / 2 ÔÓ ÏÂÂ
Û‚Â΢ÂÌËfl ÒÛ·˙ÂÍÚË‚ÌÓ„Ó ‡ÒÒÚÓflÌËfl d.
ëӈˇθ̇fl ‰ËÒڇ̈Ëfl
Ç ÒÓˆËÓÎÓ„ËË ÒӈˇθÌÓÈ ‰ËÒڇ̈ËÂÈ Ì‡Á˚‚‡ÂÚÒfl ÒÚÂÔÂ̸ ÓÚÒÚ‡ÌÂÌÌÓÒÚË
ÓÚ‰ÂθÌ˚ı Îˈ ËÎË „ÛÔÔ Î˛‰ÂÈ ÓÚ Û˜‡ÒÚËfl ‚ ÊËÁÌË ‰Û„ ‰Û„‡; ÒÚÂÔÂ̸ ÔÓÌËχÌËfl Ë ÚÂÒ̇fl Ò‚flÁ¸, ı‡‡ÍÚÂËÁÛ˛˘Ë Î˘Ì˚Â Ë ÒӈˇθÌ˚ ÓÚÌÓ¯ÂÌËfl ‚ ˆÂÎÓÏ.
чÌÌÓ ÔÓÌflÚË ·˚ÎÓ ‚‚‰ÂÌÓ ëËÏÏÂÎÓÏ ‚ 1903 „.; ÔÓ Â„Ó ÏÌÂÌ˲, ÒӈˇθÌ˚Â
ÙÓÏ˚ fl‚Îfl˛ÚÒfl ÒÚ‡·ËθÌ˚ÏË ËÚÓ„‡ÏË ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÒÛ·˙ÂÍÚÓÏ Ë Ó·˙ÂÍÚÓÏ
(ÍÓÚÓ˚È, ‚ Ò‚Ó˛ Ó˜Â‰¸, fl‚ÎflÂÚÒfl ‡Á‰ÂÎÂÌËÂÏ Ò‡ÏÓ„Ó Ò·fl).
éÚÒ˜ÂÚ ÔÓ ¯Í‡Î ÒӈˇθÌ˚ı ‡ÒÒÚÓflÌËÈ ÅÓ„‡‰ÛÒ‡ (ÒÏ. ˝ÏÓˆËÓ̇θÌÓ ‡ÒÒÚÓflÌËÂ) ‚‰ÂÚÒfl Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ ÓÚ‚ÂÚ˚ ‰Îfl ͇ʉÓÈ ˝ÚÌ˘ÂÒÍÓÈ/‡ÒÓ‚ÓÈ „ÛÔÔ˚ ÛÒ‰Ìfl˛ÚÒfl ÔÓ ‚ÒÂÏ ÂÒÔÓ̉ÂÌÚ‡Ï, ˜ÚÓ ‰‡ÂÚ Ì‡Ï ÔÓ͇Á‡ÚÂθ RDQ (ÍÓ˝ÙÙˈËÂÌÚ ‡ÒÓ‚Ó„Ó ‡ÒÒÚÓflÌËfl) ‚ Ô‰Â·ı ÓÚ 1,00 ‰Ó 8,00.
èËÏÂÓÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ÏÓ‰ÂÎÂÈ fl‚Îfl˛ÚÒfl: [Aker97], ÓÔ‰ÂÎfl˛˘ËÈ
‡„ÂÌÚ‡ ı Í‡Í Ô‡Û (ı1, ı2 ) ˜ËÒÂÎ, „‰Â ı1 Ô‰ÒÚ‡‚ÎflÂÚ ËÒıÓ‰ÌÓÂ, Ú.Â. Û̇ÒΉӂ‡ÌÌÓÂ, ÒӈˇθÌÓ ÔÓÎÓÊÂÌËÂ, Ë ı 2 – ÔÓÎÓÊÂÌËÂ, ÍÓÚÓÓ Ô‰ÔÓÎÓÊËÚÂθÌÓ
·Û‰ÂÚ Á‡ÌflÚÓ ‚ ·Û‰Û˘ÂÏ. Ä„ÂÌÚ ı ‚˚·Ë‡ÂÚ Á̇˜ÂÌË ı2 , Ò ÚÂÏ ˜ÚÓ·˚ χÍÒËÏËÁËÓ‚‡Ú¸
f ( x1 ) +
∑
y≠ x
e
,
(h + | x1 − y1 | ) ( g + | x 2 − y1 | )
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
403
„‰Â e, h, g – Ô‡‡ÏÂÚ˚, f(x1) – ÒÓ·ÒÚ‚ÂÌ̇fl ÒÚÓËÏÓÒÚ¸ ı Ë | x1 − y1 | | x 2 − y1 | –
Û̇ÒΉӂ‡Ì̇fl Ë ÔËÓ·ÂÚÂÌ̇fl ÒӈˇθÌ˚ ‰ËÒڇ̈ËË ı ‰Ó β·Ó„Ó ‡„ÂÌÚ‡ Û
(Ò ÒӈˇθÌ˚Ï ÔÓÎÓÊÂÌËÂÏ Û1 ) ÍÓÌÍÂÚÌÓ„Ó Ó·˘ÂÒÚ‚‡.
ëÓˆËÓ-ÍÛθÚÛÌ˚ ‰ËÒڇ̈ËË êÛÏÏÂÎfl
èÓ ÓÔ‰ÂÎÂÌ˲ êÛÏÏÂÎfl [Rumm76], ÓÒÌÓ‚Ì˚ÏË ÒӈˇθÌÓ-ÍÛθÚÛÌ˚ÏË
‰ËÒڇ̈ËflÏË ÏÂÊ‰Û ‰‚ÛÏfl β‰¸ÏË fl‚Îfl˛ÚÒfl ÒÎÂ‰Û˛˘ËÂ.
1. ã˘̇fl ‰ËÒڇ̈Ëfl – Ú‡ÍÓ ‡ÒÒÚÓflÌËÂ, ÒÓÍ‡˘‡fl ÍÓÚÓÓ β‰Ë ̇˜Ë̇˛Ú
‚ÚÓ„‡Ú¸Òfl ̇ ÚÂËÚÓ˲ ΢ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‰Û„ ‰Û„‡.
2. èÒËıÓÎӄ˘ÂÒ͇fl ‰ËÒڇ̈Ëfl – ‚ÓÒÔËÌËχÂÏÓ ‡Á΢ˠÏÓÚË‚‡ˆËÈ, ÚÂÏÔÂ‡ÏÂÌÚÓ‚, ÒÔÓÒÓ·ÌÓÒÚÂÈ, ̇ÒÚÓÂÌËÈ Ë ÒÓÒÚÓflÌËÈ (‚Íβ˜‡fl ÓÚ‰ÂθÌÓÈ Í‡Ú„ÓËÂÈ
ËÌÚÂÎÎÂÍÚۇθÌÛ˛ ‰ËÒÚ‡ÌˆË˛).
3. ÑËÒڇ̈Ëfl ËÌÚÂÂÒÓ‚ – ‚ÓÒÔËÌËχÂÏÓ ‡Á΢ˠ‚ Ê·ÌËflı, Ò‰ÒÚ‚‡ı Ë
ˆÂÎflı (‚Íβ˜‡fl ˉÂÓÎӄ˘ÂÒÍÛ˛ ‰ËÒÚ‡ÌˆË˛ ÔÓ ÒӈˇθÌÓ-ÔÓÎËÚ˘ÂÒÍËÏ ÔÓ„‡ÏχÏ).
4. ÄÙÙËÌ̇fl ‰ËÒڇ̈Ëfl – ÒÚÂÔÂ̸ ÒËÏÔ‡ÚËË, ‡ÒÔÓÎÓÊÂÌËfl ËÎË ÔË‚flÁ‡ÌÌÓÒÚË
ÏÂÊ‰Û ‰‚ÛÏfl β‰¸ÏË.
5. ÑËÒڇ̈Ëfl ÒӈˇθÌ˚ı ‡ÚË·ÛÚÓ‚ – ‡Á΢ˠ‚ ‰ÓıÓ‰‡ı Ë Ó·‡ÁÓ‚‡ÌËË, ‡ÒÓ‚˚Â Ë ÒÂÍÒۇθÌ˚ ‡Á΢Ëfl, ‡Á΢Ëfl ‚ ÔÓÙÂÒÒËÓ̇θÌÓÈ ‰ÂflÚÂθÌÓÒÚË Ë Ú.Ô.
6. ÑËÒڇ̈Ëfl ÒÚ‡ÚÛÒ‡ – ‡Á΢ˠ‚ ·Î‡„ÓÒÓÒÚÓflÌËË, ÏÓ„Û˘ÂÒÚ‚Â Ë ÔÂÒÚËÊÂ
(‚Íβ˜‡fl ‰ËÒÚ‡ÌˆË˛ ‚·ÒÚË).
7. ä·ÒÒÓ‚‡fl ‰ËÒڇ̈Ëfl – ÒÚÂÔÂ̸ Ó·˘Â„Ó ‡‚ÚÓËÚÂÚÌÓ„Ó Ô‚ÓÒıÓ‰ÒÚ‚‡ Ó‰ÌÓ„Ó
Îˈ‡ ̇‰ ‰Û„ËÏ, ̇ıÓ‰fl˘ËÏÒfl ‚ Â„Ó ÔÓ‰˜ËÌÂÌËË.
8. äÛθÚÛ̇fl ‰ËÒڇ̈Ëfl – ‡Á΢Ëfl ÔÓÌËχÌËfl ÒÏ˚Ò·, Á̇˜ÂÌËÈ Ë ÌÓÏ, ÓÚÓ·‡ÊÂÌÌ˚ ‚ ÙËÎÓÒÓÙÒÍÓ-ÂÎË„ËÓÁÌ˚ı ÛÒÚ‡Ìӂ͇ı, ̇ÛÍÂ, ˝Ú˘ÂÒÍËı ÌÓχı,
flÁ˚ÍÂ Ë ËÁÓ·‡ÁËÚÂθÌÓÏ ËÒÍÛÒÒÚ‚Â.
äÛθÚÛÌÓ ‡ÒÒÚÓflÌËÂ
Ç ‡·ÓÚ [KoSi88] ÍÛθÚÛÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÒÚ‡Ì‡ÏË x = ( x1 ,..., x5 )
Ë y = ( y1 ,..., y5 ) (Ó·˚˜ÌÓ ˝ÚÓ ëòÄ) ÔÓÎÛ˜‡ÂÚÒfl ‚ ‚ˉ ÒÎÂ‰Û˛˘Â„Ó Ó·Ó·˘ÂÌÌÓ„Ó
Ë̉ÂÍÒ‡:
5
( xi − yi )2
,
5Vi
i =1
∑
„‰Â V i – ÓÚÍÎÓÌÂÌË Ë̉ÂÍÒ‡ i, ‡ Ò‡ÏË Ë̉ÂÍÒ˚ ÔÓ ÏÂÚÓ‰ËÍ [Hofs80] Ó·ÓÁ̇˜‡˛Ú:
1) ‡ÒÒÚÓflÌË ‚·ÒÚË;
2) Ô‰ÓÚ‚‡˘ÂÌË ÌÂÛ‚ÂÂÌÌÓÒÚË (ÒÚÂÔÂ̸ Ó˘Û˘ÂÌËfl ˜ÎÂ̇ÏË Ó‰ÌÓÈ ÍÛθÚÛ˚
Û„ÓÁ˚ ÓÚ ÌÂÓÔ‰ÂÎÂÌÌ˚ı ËÎË ÌÂËÁ‚ÂÒÚÌ˚ı ÒËÚÛ‡ˆËÈ);
3) Ë̉˂ˉۇÎËÁÏ ÔÓÚË‚ ÍÓÎÎÂÍÚË‚ËÁχ;
4) ÏÛÊÂÒÚ‚ÂÌÌÓÒÚ¸ ÔÓÚË‚ ÊÂÌÒÚ‚ÂÌÌÓÒÚË;
5) ÍÓÌÙۈˇÌÒÍËÈ ‰Ë̇ÏËÁÏ (Óı‚‡Ú˚‚‡ÂÚ ‰Ó΄ÓÒÓ˜Ì˚Â Ë Í‡ÚÍÓÒÓ˜Ì˚ ÛÒÚ‡ÌÓ‚ÍË).
ì͇Á‡ÌÌÓ ‚˚¯Â ‡ÒÒÚÓflÌË ‚·ÒÚË ËÁÏÂflÂÚ ÚÓ, ̇ÒÍÓθÍÓ Ó·Î˜ÂÌÌ˚ ÏÂ̸¯ÂÈ ‚·ÒÚ¸˛ ˜ÎÂÌ˚ Û˜ÂʉÂÌËÈ Ë Ó„‡ÌËÁ‡ˆËÈ ‚ ÒÚ‡Ì ÓÊˉ‡˛Ú Ë ÔËÁ̇˛Ú
ÌÂ‡‚ÌÓ ‡ÒÔ‰ÂÎÂÌË ‚·ÒÚË, Ú.Â. ̇ÒÍÓθÍÓ ‚˚ÒÓ͇ ÍÛθÚÛ‡ Û‚‡ÊÂÌËfl Í ‚·ÒÚË.
í‡Í, ̇ÔËÏÂ, ã‡ÚËÌÒ͇fl ÄÏÂË͇ Ë üÔÓÌËfl ÔÓ ˝ÚËÏ ÔÓ͇Á‡ÚÂÎflÏ Ì‡ıÓ‰flÚÒfl ‚
ÒÂ‰ËÌ ¯Í‡Î˚.
404
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ê‡ÒÒÚÓflÌË ˝ÙÙÂÍÚË‚ÌÓÈ ÚÓ„Ó‚ÎË
ê‡ÒÒÚÓflÌË ˝ÙÙÂÍÚË‚ÌÓÈ ÚÓ„Ó‚ÎË ÏÂÊ‰Û ÒÚ‡Ì‡ÏË ı Ë Û Ò Ì‡ÒÂÎÂÌËÂÏ x1 ,..., x m
Ë y1 ,..., yn ÓÒÌÓ‚Ì˚ı Ëı „ÓÓ‰ÒÍËı ‡„ÎÓÏÂ‡ˆËÈ ÓÔ‰ÂÎflÂÚÒfl ‚ ‡·ÓÚ [HeMa02] ͇Í

xi

Σ
 1≤ i ≤ m 1≤ t ≤ m x i
∑
1
∑
1≤ j ≤ n
r
dijr  ,
Σ1≤ i ≤ m yi 
yj
„‰Â dij – ‚Á‡ËÏÌÓ ‡ÒÒÚÓflÌË (‚ ÍËÎÓÏÂÚ‡ı) ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ‡„ÎÓÏÂ‡ˆËÈ Ë
r – ÏÂ‡ ˜Û‚ÒÚ‚ËÚÂθÌÓÒÚË ÚÓ„Ó‚˚ı ÔÓÚÓÍÓ‚ ÚÓ„Ó‚ÎË Í dij .
Ç Í‡˜ÂÒÚ‚Â ‚ÌÛÚÂÌÌÂ„Ó ‡ÒÒÚÓflÌËfl ÒÚ‡Ì˚, ËÁÏÂfl˛˘Â„Ó Ò‰Ì ‡ÒÒÚÓflÌËÂ
ÏÂÊ‰Û ÔÓËÁ‚Ó‰ËÚÂÎflÏË Ë ÔÓÚ·ËÚÂÎflÏË, Ô‰·„‡ÂÚÒfl ËÒÔÓθÁÓ‚‡Ú¸ ‚Â΢ËÌÛ
ÔÎÓ˘‡‰¸
0, 67
(ÒÏ. [HeMa02]).
π
íÂıÌÓÎӄ˘ÂÒÍË ‡ÒÒÚÓflÌËfl
íÂıÌÓÎӄ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ‰‚ÛÏfl ÙËχÏË fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂ
(Ó·˚˜ÌÓ ˝ÚÓ χ 2 ËÎË ‡ÒÒÚÓflÌË ÍÓÒËÌÛÒ‡) ÏÂÊ‰Û Ëı ÔÓÚÙÂÎflÏË Ô‡ÚÂÌÚÓ‚, Ú.Â.
‚ÂÍÚÓ‡ÏË ÍÓ΢ÂÒÚ‚‡ ÔÓÎÛ˜ÂÌÌ˚ı Ô‡ÚÂÌÚÓ‚ ‚ ÚÂıÌÓÎӄ˘ÂÒÍËı (Ó·˚˜ÌÓ 36) ÔӉ͇Ú„ÓËflı. ÑÛ„Ë ËÁÏÂÂÌËfl ÓÒÌÓ‚‡Ì˚ ̇ ÍÓ΢ÂÒÚ‚Â ÒÒ˚ÎÓÍ Ì‡ Ô‡ÚÂÌÚ˚, ÒÓ‡‚ÚÓÒÍË ‡Á‡·ÓÚÍË Ë Ú.Ô.
äÓ„ÌËÚË‚ÌÓ ‡ÒÒÚÓflÌË É‡ÌÒÚ˝Ì‰‡ ÏÂÊ‰Û ‰‚ÛÏfl ÍÓÏÔ‡ÌËflÏË – ‡ÒÒÚÓflÌËÂ
µ ( A ∆ B)
µ ( A ∩ B)
òÚÂÈÌı‡ÛÒ‡
= 1−
ÏÂÊ‰Û Ëı ÚÂıÌÓÎӄ˘ÂÒÍËÏË ÔÓÙËÎflÏË
µ ( A ∪ B)
µ ( A ∪ B)
(̇·Ó‡ÏË Ë‰ÂÈ) Ä Ë Ç , ‡ÒÒχÚË‚‡ÂÏ˚ÏË Í‡Í ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡
Ò ÏÂÓÈ (Ω, Ä, µ).
ùÍÓÌÓÏ˘ÂÒ͇fl ÏÓ‰Âθ éÎÒcÓ̇ ÓÔ‰ÂÎflÂÚ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (I, d)
‚ÒÂı ˉÂÈ (ÔÓ‰Ó·ÌÓ ˜ÂÎӂ˜ÂÒÍÓÏÛ Ï˚¯ÎÂÌ˲), „‰Â I ⊂ n+ , Ò ÌÂÍÓÚÓ˚Ï ËÌÚÂÎÎÂÍÚۇθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ d. á‡ÏÍÌÛÚÓÂ, Ó„‡Ì˘ÂÌÌÓÂ Ë Ò‚flÁÌÓ ÏÌÓÊÂÒÚ‚Ó Á̇ÌËÈ Ar ⊂ I ‡Ò¯ËflÂÚÒfl ‚ Ú˜ÂÌË ‚ÂÏÂÌË t. çÓ‚˚ ˝ÎÂÏÂÌÚ˚ Ó·˚˜ÌÓ fl‚Îfl˛ÚÒfl
‚˚ÔÛÍÎ˚ÏË ÍÓÏ·Ë̇ˆËflÏË Ô‰˚‰Û˘Ëı: Ó·ÌÓ‚ÎÂÌËflÏË ‚ ÔÓˆÂÒÒ ÔÓÒÚÂÔÂÌÌÓ„Ó
ÚÂıÌÓÎӄ˘ÂÒÍÓ„Ó ÒÓ‚Â¯ÂÌÒÚ‚Ó‚‡ÌËfl. Ç ËÒÍβ˜ËÚÂθÌ˚ı ÒÎÛ˜‡flı ÔÓËÒıÓ‰flÚ
ÓÚÍ˚ÚËfl (ÒÏ¢ÂÌËfl Ô‡‡‰Ë„Ï˚ äÛ̇). Ä̇Îӄ˘ÌÓ ÔÓÌflÚË Ï˚ÒÎÂÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χÚÂˇÎËÁÓ‚‡ÌÌÓ„Ó ÏÂÌڇθÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ˉÂÈ/Á̇ÌËÈ Ë ‚Á‡ËÏÓÓÚÌÓ¯ÂÌËÈ ÏÂÊ‰Û ÌËÏË ‚ ÔÓˆÂÒÒ Ï˚¯ÎÂÌËfl) ËÒÔÓθÁÓ‚‡ÎË ëÛÏË, ïÓË Ë é¯Û„‡
‚ 1997 „. ‰Îfl ÍÓÏÔ¸˛ÚÂÌÓ„Ó ÏÓ‰ÂÎËÓ‚‡ÌËfl Ï˚ÒÎËÚÂθÌÓÈ ‡·ÓÚ˚ Ò ÚÂÍÒÚÓÏ; ËÏË
·˚· Ô‰ÎÓÊÂ̇ ÒËÒÚÂχ ÓÚÓ·‡ÊÂÌËfl ÚÂÍÒÚÓ‚˚ı Ó·˙ÂÍÚÓ‚ ‚ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡ı.
ùÍÓÌÓÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌË è‡Ú· ÏÂÊ‰Û ‰‚ÛÏfl ÒÚ‡Ì‡ÏË – ‚ÂÏfl (˜ËÒÎÓ ÎÂÚ),
ÍÓÚÓÓ ÔÓÚ·ÛÂÚÒfl ÓÚÒÚ‡˛˘ÂÈ ÒÚ‡Ì ‰Îfl ‚˚ıÓ‰‡ ̇ ÚÓÚ Ê ÛÓ‚Â̸ ‰ÓıÓ‰Ó‚ ̇
‰Û¯Û ̇ÒÂÎÂÌËfl, ͇ÍÓÈ ËÏÂÂÚ ‚ ̇ÒÚÓfl˘Â ‚ÂÏfl ‡Á‚ËÚ‡fl ÒÚ‡Ì‡. íÂıÌÓÎӄ˘ÂÒÍÓÂ
‡ÒÒÚÓflÌË îÛÍۘ˖ë‡ÚÓ ÏÂÊ‰Û ÒÚ‡Ì‡ÏË – ‚ÂÏfl (˜ËÒÎÓ ÎÂÚ), ÌÂÓ·ıÓ‰ËÏÓ ÓÚÒÚ‡˛˘ÂÈ ÒÚ‡Ì ‰Îfl ÒÓÁ‰‡ÌËfl ‡Ì‡Îӄ˘ÌÓÈ ÚÂıÌÓÎӄ˘ÂÒÍÓÈ ÒÚÛÍÚÛ˚, ÍÓÚÓÓÈ
ӷ·‰‡ÂÚ ‚ ‰‡ÌÌ˚È ÏÓÏÂÌÚ ‡Á‚ËÚ‡fl ÒÚ‡Ì‡. éÒÌÓ‚Ì˚Ï ‰ÓÔÛ˘ÂÌËÂÏ ÔÓÔÛÎflÌÓÈ
„ËÔÓÚÂÁ˚ ÍÓÌ‚Â„Â̈ËË fl‚ÎflÂÚÒfl ÚÓ, ˜ÚÓ ÚÂıÌÓÎӄ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl
ÒÚ‡Ì‡ÏË ÏÂ̸¯Â, ˜ÂÏ ˝ÍÓÌÓÏ˘ÂÒÍÓÂ.
Ç ˝ÍÓÌÓÏËÍ ÔÓËÁ‚Ó‰ÒÚ‚‡ ÚÂıÌÓÎÓ„Ëfl ÏÓ‰ÂÎËÛÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó Ô‡ (ı, Û),
m
„‰Â x ∈ m
+ fl‚ÎflÂÚÒfl ‚ÂÍÚÓÓÏ Á‡Ú‡Ú, ‡ y ∈ + – ‚ÂÍÚÓÓÏ ‚˚ÔÛÒ͇ Ë ı ÏÓÊÂÚ
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
405
ÔÓËÁ‚Ó‰ËÚ¸ Û. í‡ÍÓ ÏÌÓÊÂÒÚ‚Ó í ‰ÓÎÊÌÓ Û‰Ó‚ÎÂÚ‚ÓflÚ¸ ÛÒÎÓ‚ËflÏ Òڇ̉‡ÚÌÓÈ
˝ÍÓÌÓÏ˘ÂÒÍÓÈ Á‡ÍÓÌÓÏÂÌÓÒÚË. îÛÌ͈Ëfl ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ÚÂıÌÓÎӄ˘ÂÒÍÓ„Ó
‡ÒÒÚÓflÌËfl Á‡Ú‡Ú/‚˚ÔÛÒ͇ ı, Û ‚ (Á‡Ô·ÌËÓ‚‡ÌÌÓÏ Ë ‡Ò˜ÂÚÌÓÏ) ̇Ô‡‚ÎÂÌËË
( − d x , d y ) ∈ −m × +m ‚˚‡ÊÂ̇ Í‡Í sup{k ≥ 0 : (( x − kd x ), ( y + kd y )) ∈ T}. îÛÌ͈Ëfl ‡Òy


ÒÚÓflÌËfl ‚˚ÔÛÒ͇ òÂÔ‡‰‡ Á‡ÔËÒ˚‚‡ÂÚÒfl Í‡Í sup k ≥ 0 :  x,  ∈ T  . É‡Ìˈ‡ fs(x)


k


ÂÒÚ¸ χÍÒËχθÌ˚È ‰ÓÔÛÒÚËÏ˚È ‚˚ÔÛÒÍ ÔÓ‰Û͈ËË ÔË ‰‡ÌÌ˚ı Á‡Ú‡Ú‡ı ı ‚ ÛÒÎÓ‚Ëflı ÍÓÌÍÂÚÌÓÈ ÒËÒÚÂÏ˚ ËÎË „Ó‰‡ s. ê‡ÒÒÚÓflÌË ‰Ó „‡Ìˈ˚ ÚÓ˜ÍË ÔÓËÁ‚Ó‰ÒÚ‚‡
g ( x)
( y = gs ( x ), x ) ÒÓÒÚ‡‚ÎflÂÚ s
. à̉ÂÍÒ å‡ÎÏÍ‚ËÒÚ‡ ‰Îfl ËÁÏÂÂÌËfl ËÁÏÂÌÂÌËfl
fs ( x )
ÒÓ‚ÓÍÛÔÌÓÈ ÔÓËÁ‚Ó‰ËÚÂθÌÓÒÚË Ù‡ÍÚÓÓ‚ ÔÓËÁ‚Ó‰ÒÚ‚‡ ÏÂÊ‰Û ÔÂËÓ‰‡ÏË s Ë s'
g′ ( x)
(ËÎË Ò‡‚ÌÂÌËfl Ò ‰Û„ÓÈ Â‰ËÌˈÂÈ ‚ ÚÓ Ê ‚ÂÏfl) ËÏÂÂÚ ‚ˉ s
. íÂÏËÌ ‡Òfs ( x )
ÒÚÓflÌË ‰Ó „‡Ìˈ˚ ËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ ‰Îfl Ó·‡˘ÂÌËfl ÒÓ‚ÓÍÛÔÌÓÈ ÔÓËÁ‚Ó‰ËÚÂθÌÓÒÚË Ù‡ÍÚÓÓ‚ ÔÓËÁ‚Ó‰ÒÚ‚‡ ÍÓÌÍÂÚÌÓÈ ÔÓÏ˚¯ÎÂÌÌÓÒÚË (ËÎË ÇÇè ̇
Ó‰ÌÓ„Ó ‡·ÓÚ‡˛˘Â„Ó ‚ ÍÓÌÍÂÚÌÓÈ ÒÚ‡ÌÂ) ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÒÛ˘ÂÒÚ‚Û˛˘ÂÏÛ
χÍÒËÏÛÏÛ (‚ ͇˜ÂÒÚ‚Â „‡Ìˈ˚ Ó·˚˜ÌÓ ·ÂÛÚÒfl ëòÄ).
ëÏÂÚ¸ ‡ÒÒÚÓflÌËfl
ëÏÂÚ¸ ‡ÒÒÚÓflÌËfl, Ú‡Í Ì‡Á˚‚‡ÂÚÒfl ‡‚ÚÓËÚÂÚ̇fl ÍÌË„‡ [Cair01], ‚ ÍÓÚÓÓÈ
ÛÚ‚Âʉ‡ÂÚÒfl, ˜ÚÓ ‚ÓβˆËfl ‚ ÒÙÂ ÚÂÎÂÍÓÏÏÛÌË͇ˆËÈ (àÌÚÂÌÂÚ, ÏÓ·Ëθ̇fl
ÚÂÎÂÙÓÌËfl, ˆËÙÓ‚Ó ÚÂ΂ˉÂÌËÂ Ë Ú.Ô.) Ô˂· Í "ÒÏÂÚË ‡ÒÒÚÓflÌËfl" Ë ÔÓӉ˷ ÙÛ̉‡ÏÂÌڇθÌ˚ ÔÂÂÏÂÌ˚: ÚÂıÒÏÂÌÌÛ˛ ‡·ÓÚÛ, ÒÌËÊÂÌË ̇ÎÓ„Ó‚, ‚ÓÁ‚˚¯ÂÌË ‡Ì„ÎËÈÒÍÓ„Ó flÁ˚͇, ‡ÛÚÒÓÒËË (Ô˂ΘÂÌË ‚̯ÌËı ÂÒÛÒÓ‚ ‰Îfl ¯ÂÌËfl ‚ÌÛÚÂÌÌËı Á‡‰‡˜), ÌÓ‚˚ ‚ÓÁÏÓÊÌÓÒÚË ÍÓÌÚÓÎfl Á‡ ‰ÂflÚÂθÌÓÒÚ¸˛ Ô‡‚ËÚÂθÒÚ‚‡, ‡Ò¯ËÂÌË „‡Ê‰‡ÌÒÍÓÈ Ò‚flÁË Ë Ú.Ô. Ç ÒÙÂ ÏÂʉÛ̇Ó‰Ì˚ı ÓÚÌÓ¯ÂÌËÈ Á‡ÏÂÚÌÓ ‚ÓÁÓÒ· ‰ÓÎfl Ó·˘ÂÌËfl ̇ ·Óθ¯Ëı ‡ÒÒÚÓflÌËflı. é‰Ì‡ÍÓ "ÒÏÂÚ¸ ‡ÒÒÚÓflÌËfl" ÒÔÓÒÓ·ÒÚ‚Ó‚‡Î‡ Ó‰ÌÓ‚ÂÏÂÌÌÓ Ë ÒÓ‚Â¯ÂÌÒÚ‚Ó‚‡Ì˲ ÏÂÚÓ‰Ó‚ ÛÔ‡‚ÎÂÌËfl ̇
‡ÒÒÚÓflÌËË, Ë ÒÓÒ‰ÓÚÓ˜ÂÌ˲ ˝ÎËÚ˚ ‚ „ÓÓ‰‡ı "ÏÓÎÓ˜ÌÓ„Ó ÔÓflÒ‡".
Ä̇Îӄ˘Ì˚Ï Ó·‡ÁÓÏ [Ferg03] Ô‡ÓıÓ‰˚ Ë ÚÂ΄‡Ù (Í‡Í ÊÂÎÂÁÌ˚ ‰ÓÓ„Ë
‡Ì¸¯Â Ë ‡‚ÚÓÏÓ·ËÎË ÔÓÁÊÂ) ÔË‚ÂÎË ‚ÒΉ Á‡ Ô‡‰ÂÌËÂÏ ÒÚÓËÏÓÒÚË Ú‡ÌÒÔÓÚÌ˚ı
ÔÂ‚ÓÁÓÍ Í "ÎË͂ˉ‡ˆËË ‡ÒÒÚÓflÌËfl" ‚ XIX Ë XX ‚‚. Ç Â˘Â ·ÓΠ‰‡ÎÂÍÓÏ ÔÓ¯ÎÓÏ, Í‡Í Ò‚Ë‰ÂÚÂθÒÚ‚Û˛Ú ‡ıÂÓÎӄ˘ÂÒÍË ‰‡ÌÌ˚ (ÓÍÓÎÓ 140 Ú˚Ò. ÎÂÚ Ì‡Á‡‰),
ÔÓfl‚Ë·Ҹ „ÛÎfl̇fl ÏÂÌÓ‚‡fl ÚÓ„Ó‚Îfl ̇ ·Óθ¯Ëı ‡ÒÒÚÓflÌËflı, ‡ ËÁÓ·ÂÚÂÌËÂ
ÏÂÚ‡ÚÂθÌÓ„Ó ÓÛÊËfl (ÓÍÓÎÓ 40 Ú˚Ò. ÎÂÚ Ì‡Á‡‰) ÔÓÁ‚ÓÎËÎÓ ˜ÂÎÓ‚ÂÍÛ Û·Ë‚‡Ú¸ ÍÛÔÌÛ˛ ‰Ë˜¸ (Ë ‰Û„Ëı β‰ÂÈ), ̇ıÓ‰flÒ¸ ̇ ·ÂÁÓÔ‡ÒÌÓÏ Û‰‡ÎÂÌËË.
é‰Ì‡ÍÓ ‚ ̇ÒÚÓfl˘Â ‚ÂÏfl ÒÓ‚ÂÏÂÌÌ˚ ÚÂıÌÓÎÓ„ËË Á‡ÚÏËÎË ‡ÒÒÚÓflÌË ÚÓθÍÓ
ÚÂÏ, ˜ÚÓ Á̇˜ËÚÂθÌÓ ÒÓÍ‡ÚËÎÓÒ¸ ‚ÂÏfl ÔÛÚË ‰Ó Ó·˙ÂÍÚ‡ ̇Á̇˜ÂÌËfl. Ç ‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË ‡ÒÒÚÓflÌËfl (ÍÛθÚÛÌÓÂ, ÔÓÎËÚ˘ÂÒÍÓÂ, „ÂÓ„‡Ù˘ÂÒÍÓÂ Ë ˝ÍÓÌÓÏ˘ÂÒÍÓÂ) ¢ Ì ÛÚ‡ÚËÎË Ò‚ÓÂÈ Á̇˜ËÏÓÒÚË, ̇ÔËÏÂ, ÔË ‚˚‡·ÓÚÍ ÒÚ‡Ú„ËË
ÍÓÏÔ‡ÌËË Ì‡ ‡Á‚Ë‚‡˛˘ËıÒfl ˚Ì͇ı, ‚ ‚ÓÔÓÒ‡ı ÔÓÎËÚ˘ÂÒÍÓÈ Î„ËÚËÏÌÓÒÚË Ë Ú.Ô.
åÓ‡Î¸Ì‡fl ‰ËÒڇ̈Ëfl
åÓ‡Î¸Ì‡fl ‰ËÒڇ̈Ëfl – ÏÂ‡ ÏÓ‡Î¸ÌÓÈ Ë̉ËÙÙÂÂÌÚÌÓÒÚË ËÎË ÒÓÔÂÂÊË‚‡ÌËfl
ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Ó‰ÌÓÏÛ ˜ÂÎÓ‚ÂÍÛ, „ÛÔÔ β‰ÂÈ ËÎË ÒÓ·˚ÚËflÏ.
ÑËÒڇ̈ËËÓ‚‡ÌË – ‡Á‰ÂÎÂÌË ‚Ó ‚ÂÏÂÌË ËÎË ÔÓÒÚ‡ÌÒÚ‚Â, ÒÌËʇ.ott ÒÓÔÂÂÊË‚‡ÌËÂ, ÍÓÚÓÓ ˜ÂÎÓ‚ÂÍ ÏÓ„ ·˚ ËÒÔ˚Ú˚‚‡Ú¸ Í ÒÚ‡‰‡ÌËflÏ ‰Û„Ëı, Ú.Â. Û‚Â΢˂‡˘Â ÏÓ‡Î¸ÌÛ˛ ‰ËÒÚ‡ÌˆË˛. íÂÏËÌ ‰ËÒڇ̈ËÓ‚‡ÌË ËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ (‚ ÍÌË-
406
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
„‡ı ä‡ÌÚÓ‡) ‰Îfl ÔÒËıÓÎӄ˘ÂÒÍÓÈ ı‡‡ÍÚÂËÒÚËÍË Á‡ÏÍÌÛÚÓÈ Î˘ÌÓÒÚË: ·ÓflÁ̸
·ÎËÁÍËı ÓÚÌÓ¯ÂÌËÈ Ë Ó·flÁ‡ÚÂθÒÚ‚ (Û·ÂʉÂÌÌ˚ ıÓÎÓÒÚflÍË, ÓÍÓ‚˚ ÊÂÌ˘ËÌ˚
Ë Ú.Ô.).
ÑËÒڇ̈ËÓ‚‡ÌËÂ, Ò‚flÁ‡ÌÌÓÂ Ò ÚÂıÌÓÎÓ„ËÂÈ
íÂÓËfl ÏÓ‡Î¸ÌÓ„Ó ‰ËÒڇ̈ËÓ‚‡ÌËfl ÛÚ‚Âʉ‡ÂÚ, ˜ÚÓ ÚÂıÌÓÎÓ„Ëfl ÒÔÓÒÓ·ÒÚ‚ÛÂÚ
Ô‰‡ÒÔÓÎÓÊÂÌÌÓÒÚË Í Ì½Ú˘ÂÒÍÓÏÛ Ôӂ‰ÂÌ˲ ÚÂÏ, ˜ÚÓ ÙÓÏËÛÂÚ ÏÓ‡Î¸ÌÛ˛
‰ËÒÚ‡ÌˆË˛ ÏÂÊ‰Û ‰ÂÈÒÚ‚ËÂÏ Ë ÏÓ‡Î¸ÌÓÈ ÓÚ‚ÂÚÒÚ‚ÂÌÌÓÒÚ¸˛ Á‡ Ì„Ó.
蘇ÚÌ˚ ÚÂıÌÓÎÓ„ËË ‡Á‰ÂÎËÎË Î˛‰ÂÈ Ì‡ ÓÚ‰ÂθÌ˚ ÒËÒÚÂÏ˚ Ò‚flÁË Ë ‰ËÒڇ̈ËÓ‚‡ÎË Ëı ÓÚ Ó·˘ÂÌËfl ÎˈÓÏ Í ÎˈÛ, ÊË‚Ó„Ó ‡Á„Ó‚Ó‡ Ë ÔËÍÓÒÌÓ‚ÂÌËfl. íÂ΂ˉÂÌË Á‡‰ÂÈÒÚ‚ÛÂÚ Ì‡¯Ë ÒÎÛıÓ‚˚Â Ó˘Û˘ÂÌËfl Ë ‰Â·ÂÚ ‡ÒÒÚÓflÌË ÏÂÌ ‰Ó‚β˘ËÏ Ù‡ÍÚÓÓÏ, Ӊ̇ÍÓ ÔË ˝ÚÓÏ ÛÒËÎËdftn ÍÓ„ÌËÚË‚ÌÓ ‰ËÒڇ̈ËÓ‚‡ÌËÂ: c˛ÊÂÚ
Ë ËÁÓ·‡ÊÂÌË Ì ÒÚ˚ÍÛ˛ÚÒfl Ò ÔÓÒÚ‡ÌÒÚ‚ÓÏ/ÏÂÒÚÓÔÓÎÓÊÂÌËÂÏ Ë ‚ÂÏÂÌÂÏ/Ô‡ÏflÚ¸˛. ùÚÓ ‰ËÒڇ̈ËÓ‚‡ÌË Ì ÛÏÂ̸¯ËÎÓÒ¸ Ò ‚̉ÂÌËÂÏ ÍÓÏÔ¸˛ÚÂÌÓÈ ÚÂıÌËÍË, ıÓÚfl ËÌÚÂ‡ÍÚË‚ÌÓÒÚ¸ ‚ÓÁÓÒ·. ÉÓ‚Ófl ÒÎÓ‚‡ÏË ï‡ÌÚÂ‡, ÚÂıÌÓÎÓ„Ëfl Î˯¸
ÔÓ-ÌÓ‚ÓÏÛ ÂÓ„‡ÌËÁÓ‚‡Î‡ ÒÓ‰ÂʇÌË ‡ÒÒÚÓflÌËfl ÍÓÏÏÛÌË͇ˆËË, ÔÓÒÍÓθÍÛ Â„Ó
Ú‡ÍÊ ÒΉÛÂÚ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÔÓÒÚ‡ÌÒÚ‚Ó ÏÂÊ‰Û ÔÓÌËχÌËÂÏ Ë ÌÂÔÓÌËχÌËÂÏ. ãË͂ˉ‡ˆËfl ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ı ·‡¸ÂÓ‚ ÛÏÂ̸¯‡ÂÚ ÚÓθÍÓ ˝ÍÓÌÓÏ˘ÂÒÍËÂ,
ÌÓ ÌËÍ‡Í Ì ÒӈˇθÌ˚Â Ë ÍÓ„ÌËÚË‚Ì˚ ‡ÒÒÚÓflÌËfl.
ë ‰Û„ÓÈ ÒÚÓÓÌ˚, ÏÓ‰Âθ ÔÒËıÓÎӄ˘ÂÒÍÓ„Ó ‰ËÒڇ̈ËÓ‚‡ÌËfl [Well86] Ò‚flÁ˚‚‡ÂÚ Ò˲ÏËÌÛÚÌÓÒÚ¸ Ó·˘ÂÌËfl Ò ÍÓ΢ÂÒÚ‚ÓÏ ËÌÙÓχˆËÓÌÌ˚ı ͇̇ÎÓ‚: ÒÂÌÒÓÌ˚Â
Ó˘Û˘ÂÌËfl ÛÏÂ̸¯‡˛ÚÒfl ‚ ÔÓ„ÂÒÒË‚ÌÓÈ ÔÓÔÓˆËË, ÔÓ ÏÂ ÚÓ„Ó Í‡Í Î˛‰Ë ÔÂÂıÓ‰flÚ ÓÚ Î˘ÌÓ„Ó Ó·˘ÂÌËfl Í Ó·˘ÂÌ˲ ÔÓ ÚÂÎÂÙÓÌÛ, ‚ˉÂÓÙÓÌÛ ˝ÎÂÍÚÓÌÌÓÈ ÔÓ˜ÚÂ.
é·˘ÂÌË ˜ÂÂÁ àÌÚÂÌÂÚ ËÏÂÂÚ ÚẨÂÌˆË˛ Í ÓÚÒÂË‚‡Ì˲ Ò˄̇ÎÓ‚, ‚ ı‡‡ÍÚÛËÁÛ˛˘Ëı ÒӈˇθÌ˚È ÒÏ˚ÒÎ ËÎË Î˘Ì˚ ÓÚÌÓ¯ÂÌËfl. äÓÏ ÚÓ„Ó, ÓÚÒÛÚÒÚ‚Ë ÌÂωÎÂÌÌÓÈ ÓÚ‚ÂÚÌÓÈ ‡͈ËË ÒÓ·ÂÒ‰ÌË͇, Ó·ÛÒÎÓ‚ÎÂÌÌÓ ÓÒÓ·ÂÌÌÓÒÚflÏË ˝ÎÂÍÚÓÌÌÓÈ
ÔÓ˜Ú˚, ‚‰ÂÚ Í ‚ÂÏÂÌÌ˚Ï ÌÂÒÓ‚Ô‡‰ÂÌËflÏ Ë ÏÓÊÂÚ ‚˚Á‚‡Ú¸ ˜Û‚ÒÚ‚Ó ËÁÓÎËÓ‚‡ÌÌÓÒÚË. ç‡ÔËÏÂ, ÏÓ‡Î¸Ì˚Â Ë ÔÓÁ̇‚‡ÚÂθÌ˚ ÔÓÒΉÒÚ‚Ëfl ‰ËÒڇ̈ËÓ‚‡ÌËfl
‚ ÔÓˆÂÒÒ ӷۘÂÌËfl ‚ ÂÊËÏ ÓÌ·ÈÌ ‰Ó ÒËı ÔÓ ÓÒÚ‡˛ÚÒfl ÌÂËÁÛ˜ÂÌÌ˚ÏË.
í‡Ì͈҇ËÓÌ̇fl ‰ËÒڇ̈Ëfl
í‡Ì͈҇ËÓÌ̇fl ‰ËÒڇ̈Ëfl – ‚ÓÓ·‡Ê‡Âχfl ÒÚÂÔÂ̸ ‡Á‰ÂÎÂÌÌÓÒÚË ‚ ıÓ‰Â
‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl ÏÂÊ‰Û ÒÚÛ‰ÂÌÚ‡ÏË Ë ÔÂÔÓ‰‡‚‡ÚÂÎflÏË Ë ‚ÌÛÚË Í‡Ê‰ÓÈ „ÛÔÔ˚
ÒÛ·˙ÂÍÚÓ‚. чÌ̇fl ‰ËÒڇ̈Ëfl ÒÓÍ‡˘‡ÂÚÒfl ÔË Ì‡Î˘ËË ‰Ë‡ÎÓ„‡ (Ô‰̇ÏÂÂÌÌÓ„Ó
ÔÓÎÓÊËÚÂθÌÓ„Ó ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl Ò ˆÂθ˛ ÛÎÛ˜¯ÂÌËfl ÔÓÌËχÌËfl), ‡ Ú‡ÍÊ ÔË
Ô‰ÓÒÚ‡‚ÎÂÌËË Ó·Û˜‡ÂÏÓÏÛ ·Óθ¯ÂÈ Ò‚Ó·Ó‰˚ ‰ÂÈÒÚ‚Ëfl Ë ÏÂÌ Ô‰ÓÔ‰ÂÎÂÌÌÓÈ
ÒÚÛÍÚÛ˚ Ó·‡ÁÓ‚‡ÚÂθÌÓÈ ÔÓ„‡ÏÏ˚. чÌÌÓ ÔÓÌflÚË ·˚ÎÓ ‚‚‰ÂÌÓ åÛÓÏ ‚
1993 „. ‚ ͇˜ÂÒÚ‚Â Ô‡‡‰Ë„Ï˚ Ó·Û˜ÂÌËfl ̇ ‡ÒÒÚÓflÌËË.
ê‡ÒÒÚÓflÌË ‰ËÒڇ̈Ëfl
ê‡ÒÒÚÓflÌË ‰ËÒڇ̈Ëfl – ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ï‡ÒÒË‚ÓÏ ËÌÙÓχˆËË, „ÂÌÂËÛÂÏ˚Ï ÒËÒÚÂÏÓÈ ‡ÍÚË‚ÌÓ„Ó ·ËÁÌÂÒ-‡Ì‡ÎËÁ‡ (Business Intelligence), Ë ÏÌÓÊÂÒÚ‚ÓÏ
‰ÂÈÒÚ‚ËÈ, ÔËÂÏÎÂÏ˚ı ‰Îfl ÍÓÌÍÂÚÌÓÈ ‰ÂÎÓ‚ÓÈ ÒËÚÛ‡ˆËË. ê‡ÒÒÚÓflÌË ‰ËÒڇ̈Ëfl
‰ÂÈÒÚ‚Ëfl fl‚ÎflÂÚÒfl ÏÂÓÈ ÛÒËÎËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÛflÒÌÂÌËfl ËÌÙÓχˆËË Ë
‚ÓÁ‰ÂÈÒÚ‚Ëfl ˝ÚÓÈ ËÌÙÓχˆËË Ì‡ ÔÓÒÎÂ‰Û˛˘Ë ‰ÂÈÒÚ‚Ëfl. é̇ ÏÓÊÂÚ ‚˚‡Ê‡Ú¸Òfl ‚
ÙËÁ˘ÂÒÍÓÏ ‡ÒÒÚÓflÌËË ÏÂÊ‰Û ÓÚÓ·‡Ê‡ÂÏÓÈ ËÌÙÓχˆËÂÈ Ë ÛÔ‡‚ÎflÂÏ˚Ï
‰ÂÈÒÚ‚ËÂÏ.
ÄÌÚËÌÓÏËfl ‡ÒÒÚÓflÌËfl
ÄÌÚËÌÓÏËfl ‡ÒÒÚÓflÌËfl, Í‡Í Ó̇ ·˚· ‚‚‰Â̇ ‚ [Bull12] ‰Îfl ÒÙÂ˚ ˝ÒÚÂÚ˘ÂÒÍËı
Ó˘Û˘ÂÌËÈ ÁËÚÂÎÂÈ Ë ‡ÍÚÂ‡, Á‡Íβ˜‡ÂÚÒfl ‚ ÚÓÏ, ˜ÚÓ ÓÌË Ó·‡ ‰ÓÎÊÌ˚ ̇ÈÚË Ú‡ÍÛ˛
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
407
Ô‡‚ËθÌÛ˛ ˝ÏÓˆËÓ̇θÌÛ˛ ‰ËÒÚ‡ÌˆË˛ (Ì ÒÎ˯ÍÓÏ ‚ӂΘÂÌÌÛ˛ Ë Ì ÒÎ˯ÍÓÏ
·ÂÒÒÚ‡ÒÚÌÛ˛), ˜ÚÓ·˚ ·˚Ú¸ ‚ ÒÓÒÚÓflÌËË Ú‚ÓËÚ¸ ËÎË ÓˆÂÌË‚‡Ú¸ ËÒÍÛÒÒÚ‚Ó. ùÚÛ ÚÓÌÍÛ˛ ÎËÌ˲ ‡Á‰Â· ÏÂÊ‰Û Ó·˙ÂÍÚË‚ÌÓÒÚ¸˛ Ë ÒÛ·˙ÂÍÚË‚ÌÓÒÚ¸˛ ÏÓÊÌÓ Î„ÍÓ ÔÂÒÚÛÔËÚ¸, Ë ‚Â΢Ë̇ Ò‡ÏÓÈ ‰ËÒڇ̈ËË ÏÓÊÂÚ ÒÓ ‚ÂÏÂÌÂÏ ËÁÏÂÌflÚ¸Òfl.
ùÒÚÂÚ˘ÂÒ͇fl ‰ËÒڇ̈Ëfl – ÒÚÂÔÂ̸ ˝ÏÓˆËÓ̇θÌÓÈ ‚ӂΘÂÌÌÓÒÚË Ë̉˂ˉÛÛχ,
ÍÓÚÓ˚È, „Îfl‰fl ̇ ÔÓËÁ‚‰ÂÌË ËÒÍÛÒÒÚ‚‡, Ó͇Á˚‚‡ÂÚÒfl ÔÓ‰ Â„Ó ‚Ô˜‡ÚÎÂÌËÂÏ.
Ç Í‡˜ÂÒÚ‚Â ÔËÏÂ‡ Ú‡ÍÓÈ ‰ËÒڇ̈ËË ÏÓÊÌÓ ÔË‚ÂÒÚË ÔÂÒÔÂÍÚË‚Û ÁËÚÂÎfl ‚ Á‡ÎÂ
ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Ô‰ÒÚ‡‚ÎÂÌ˲ ̇ ÒˆÂÌÂ, ÔÒËıÓÎӄ˘ÂÒÍÓÂ Ë ˝ÏÓˆËÓ̇θÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÂÍÒÚÓÏ Ë ˜ËÚ‡ÚÂÎÂÏ, ‰ËÒÚ‡ÌˆË˛ ÏÂÊ‰Û ‡ÍÚÂÓÏ Ë Óθ˛, Í‡Í Ó̇
Ú‡ÍÚÛÂÚÒfl ‚ Ú‡Ú‡Î¸ÌÓÈ ÒËÒÚÂÏ ëÚ‡ÌËÒ·‚ÒÍÓ„Ó.
LJˇÌÚ˚ ‡ÌÚËÌÓÏËË ‡ÒÒÚÓflÌËfl ÔÓfl‚Îfl˛ÚÒfl ‚ ÍËÚ˘ÂÒÍÓÏ Ï˚¯ÎÂÌËË: ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂÓ·ıÓ‰ËÏÓÒÚ¸ ÛÒÚ‡ÌÓ‚ËÚ¸ ÓÔ‰ÂÎÂÌÌÛ˛ ˝ÏÓˆËÓ̇θÌÛ˛ Ë ËÌÚÂÎÎÂÍÚۇθÌÛ˛ ‰ËÒÚ‡ÌˆË˛ ÏÂÊ‰Û Ò‡ÏËÏ ÒÓ·ÓÈ Ë Ë‰ÂÂÈ, ˜ÚÓ·˚ ËÏÂÚ¸ ‚ÓÁÏÓÊÌÓÒÚ¸ ·ÓΠÚÓ˜ÌÓÈ ÓˆÂÌÍË Â Á̇˜ËÏÓÒÚË. ÑÛ„ÓÈ ‚‡ˇÌÚ ‡ÒÒχÚË‚‡ÂÚÒfl ‚ Ô‡‡‰ÓÍÒ ‰ÓÏËÌËÓ‚‡ÌËfl: ‰ËÒڇ̈Ëfl Ë Ò‚flÁ¸ (http://www.leatherpage.com/rscurrent.htm/).
àÒÚÓ˘ÂÒ͇fl ‰ËÒڇ̈Ëfl ÔÓ ÚÂÏËÌÓÎÓ„ËË [Tail04] fl‚ÎflÂÚÒfl ÔÓÎÓÊÂÌËÂÏ, ÍÓÚÓÓ ËÒÚÓËÍ Á‡ÌËχÂÚ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Ò‚ÓËÏ Ó·˙ÂÍÚ‡Ï – ‰‡ÎÂÍÛ˛, ·ÎËÁÍÛ˛ ËÎË
„‰Â-ÌË·Û‰¸ ÏÂÊ‰Û ÌËÏË; ˝ÚÓ – ‚ÓÓ·‡ÊÂÌËÂ, ÔÓÒ‰ÒÚ‚ÓÏ ÍÓÚÓÓ„Ó ÊË‚ÓÈ ÛÏ ËÒÚÓË͇, ‚ÒÚ˜‡fl ËÌÂÚÌÓÂ Ë Ì‚ÓÒÒÚ‡ÌÓ‚ËÏÓÂ, ÒÚÂÏËÚÒfl Ô‰ÒÚ‡‚ËÚ¸ χÚÂˇÎ˚
‡θÌÓ ÊË‚˚ÏË. ÄÌÚËÌÓÏËfl ‡ÒÒÚÓflÌËfl Á‰ÂÒ¸ ‚ÌÓ‚¸ ÔÓfl‚ÎflÂÚÒfl ‚ ÚÓÏ, ˜ÚÓ ËÒÚÓËÍË Ó·‡˘‡˛ÚÒfl Í ÔÓ¯ÎÓÏÛ Ì ÚÓθÍÓ ËÌÚÂÎÎÂÍÚۇθÌÓ, ÌÓ Ë ÔÂÂÊË‚‡˛Ú ÏÓ‡Î¸ÌÛ˛ Ë ˝ÏÓˆËÓ̇θÌÛ˛ ‚ӂΘÂÌÌÓÒÚ¸. îÓχθÌ˚ ҂ÓÈÒÚ‚‡ ËÒÚÓ˘ÂÒÍËı
ÔËÒ‡ÌËÈ Á‡˜‡ÒÚÛ˛ Ó͇Á˚‚‡˛ÚÒfl ÔÓ‰ ‚ÎËflÌËÂÏ Ëı ˝ÏÓˆËÓ̇θÌ˚ı, ˉÂÓÎӄ˘ÂÒÍËı Ë
ÍÓ„ÌËÚË‚Ì˚ı ÛÒÚ‡ÌÓ‚ÓÍ.
ëÏÂÊÌÓÈ ÔÓ·ÎÂÏÓÈ fl‚ÎflÂÚÒfl ÚÓ, ̇ÒÍÓθÍÓ ·Óθ¯ÓÈ ‰ÓÎÊ̇ ·˚Ú¸ ‰ËÒڇ̈Ëfl
ÏÂÊ‰Û Î˛‰¸ÏË Ë Ëı ÔÓ¯Î˚Ï, ˜ÚÓ·˚ ˜ÂÎÓ‚ÂÍ ÓÒÚ‡‚‡ÎÒfl ÔÒËıÓÎӄ˘ÂÒÍË ÔËÒÔÓÒÓ·ÎÂÌÌ˚Ï Í ÊËÁÌË. îÂȉ ÔÓ͇Á‡Î, ˜ÚÓ Á‡˜‡ÒÚÛ˛ ÏÂÊ‰Û Ì‡ÏË Ë ‰ÂÚÒÚ‚ÓÏ Ú‡ÍÓÈ
‰ËÒڇ̈ËË Ì ÒÛ˘ÂÒÚ‚ÛÂÚ.
çÂÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó äËÒÚ‚ÓÈ
èÓ ÏÌÂÌ˲ äËÒÚ‚ÓÈ (1980), ÓÒÌÓ‚Ì˚ ÔÒËıӇ̇ÎËÚ˘ÂÒÍË ‡Á΢Ëfl ‚˚‡Ê‡˛ÚÒfl ‚ ÚÂÏË̇ı ÔÂ-˝‰ËÔÓ‚‡ ËÎË ˝‰ËÔÓ‚‡ ‡ÒÔÂÍÚÓ‚ ‡Á‚ËÚËfl ΢ÌÓÒÚË. èËÁ̇ÍË
Ò‡Ïӂβ·ÎÂÌÌÓÒÚË Ë Á‡‚ËÒËÏÓÒÚË ÓÚ Ï‡ÚÂË, ‡Ì‡ı˘ÂÒÍËı ÏÓÚË‚Ó‚ Ôӂ‰ÂÌËfl,
ÔÓÎËÏÓÙ˘ÂÒÍËÈ ˝ÓÚÓ„ÂÌˈËÁÏ Ë ÔÂ‚˘Ì˚ ÔÓˆÂÒÒ˚ ı‡‡ÍÚÂÌ˚ ‰Îfl Ô½‰ËÔÓ‚ÓÈ Ó„‡ÌËÁ‡ˆËË. ëÓÔÂÌ˘ÂÒÚ‚Ó Ë ÓÚÓʉÂÒÚ‚ÎÂÌËÂ Ò ÓÚˆÓÏ, ÒÔˆËÙ˘ÂÒÍË Ë
ÏÓÚË‚‡ˆËË Ôӂ‰ÂÌËfl, Ù‡Î΢ÂÒÍËÈ ˝ÓÚÓ„ÂÌˈËÁÏ, ‚ÚÓ˘Ì˚ ÔÓˆÂÒÒ˚ ·ÓÎÂÂ
ı‡‡ÍÚÂÌ˚ ‰Îfl ˝‰ËÔÓ‚ÓÈ ÓËÂÌÚ‡ˆËË. äËÒÚ‚‡ ÓÔËÒ˚‚‡ÂÚ ÔÂ-˝‰ËÔÓ‚Û ÊÂÌÒÍÛ˛
Ù‡ÁÛ Í‡Í Ó·‚Ó·ÍË‚‡˛˘Â ‡ÏÓÙÌÓ ÌÂÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ıÓ‡ è·ÚÓ̇),
ÍÓÚÓÓ ӉÌÓ‚ÂÏÂÌÌÓ Ë ÍÓÏËÚ, Ë Û„ÓʇÂÚ; ÓÌÓ Ú‡ÍÊ ÓÔ‰ÂÎflÂÚ Ë Ó„‡Ì˘˂‡ÂÚ ÚÓʉÂÒÚ‚ÂÌÌÓÒÚ¸ Ò‡ÏÓÏÛ Ò·Â. èË ˝ÚÓÏ ˝‰ËÔÓ‚Û ÏÛÊÒÍÛ˛ Ù‡ÁÛ Ó̇ ı‡‡ÍÚÂËÁÛÂÚ Í‡Í ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ÚÓÔÓÒ ÄËÒÚÓÚÂÎfl); ÒÓ·ÒÚ‚ÂÌ̇fl ΢ÌÓÒÚ¸ Ë ÓÚÌÓ¯ÂÌˠ΢ÌÓÒÚË Í ÔÓÒÚ‡ÌÒÚ‚Û ·ÓΠÚÓ˜ÌÓ Ë Í‡˜ÂÒÚ‚ÂÌÌÓ ÓÔ‰ÂÎÂÌ˚ ‚ ÚÓÔÓÒÂ. äËÒÚ‚‡ ÛÚ‚Âʉ‡ÂÚ Ú‡ÍÊÂ, ˜ÚÓ ÍÓÌË ÒÂÏËÓÚ˘ÂÒÍÓ„Ó ÔÓˆÂÒÒ‡
ÎÂÊ‡Ú ‚ ÊÂÌÒÍÓÏ Î˷ˉÓ, ÔÂ-˝‰ËÔÓ‚ÓÈ ˝ÌÂ„ËË, ÍÓÚÓÛ˛ ÌÂÓ·ıÓ‰ËÏÓ Ì‡Ô‡‚ÎflÚ¸ ‚
ÛÒÎÓ ÒӈˇθÌÓ„Ó ÒÔÎÓ˜ÂÌËfl.
ÑÂβÁÂ Ë ÉÛ‡ÚÚ‡Ë (1980) ‡Á‰ÂÎËÎË Ò‚ÓË ÏÛθÚËÔÎÂÚÌÓÒÚË (ÒÂÚË, ÏÌÓ„ÓÓ·‡ÁËfl, ÔÓÒÚ‡ÌÒÚ‚‡) ̇ ·ÓÓÁ‰˜‡Ú˚ (ÏÂÚ˘ÂÒÍËÂ, ËÂ‡ı˘ÂÒÍËÂ, ˆÂÌÚËÓ‚‡ÌÌ˚Â
Ë ˜ËÒÎÓ‚˚Â) Ë „·‰ÍË (ÌÂÏÂÚ˘ÂÒÍËÂ, ÍÓÌ‚˚Â Ë ‡ˆÂÌÚËÓ‚‡ÌÌ˚Â, ÍÓÚÓ˚Â
Á‡ÌËχ˛Ú ÔÓÒÚ‡ÌÒÚ‚Ó ·ÂÁ ͇ÍÓ„Ó-ÎË·Ó Û˜ÂÚ‡ Ë ÏÓ„ÛÚ ·˚Ú¸ ËÒÒΉӂ‡Ì˚ ÚÓθÍÓ
"ÌÓ„‡ÏË").
408
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ùÚË Ù‡ÌˆÛÁÒÍË ÔÓÒÚÒÚÛÍÚÛ‡ÎËÒÚ˚ ËÒÔÓθÁÓ‚‡ÎË ÏÂÚ‡ÙÓÛ ÌÂÏÂÚ˘ÂÒÍËÈ
ÚÓ˜ÌÓ Ú‡Í ÊÂ, Í‡Í ÔÒËıӇ̇ÎËÚËÍ ã‡Í‡Ì ÒËÒÚÂχÚ˘ÂÒÍË ÔÓθÁÓ‚‡ÎÒfl ÚÓÔÓÎӄ˘ÂÒÍÓÈ ÚÂÏËÌÓÎÓ„ËÂÈ. Ç ˜‡ÒÚÌÓÒÚË, ÓÌ Ô‰ÒÚ‡‚ÎflÎ ÔÓÒÚ‡ÌÒÚ‚Ó J (ÓÚ Ù‡ÌˆÛÁÒÍÓ„Ó Jouissance) ÒÂÍÒۇθÌ˚ı ÓÚÌÓ¯ÂÌËÈ Í‡Í Ó„‡Ì˘ÂÌÌÓ ÏÂÚ˘ÂÒÍÓÂ
ÔÓÒÚ‡ÌÒÚ‚Ó.
ÇÓÁ‚‡˘‡flÒ¸ Í Ï‡ÚÂχÚËÍÂ, ÌÂÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ – ˝ÚÓ ÍÓ‚‡ˇÌÚ̇fl ÔÓËÁ‚Ӊ̇fl ÏÂÚ˘ÂÒÍÓ„Ó ÚÂÌÁÓ‡. é̇ ÏÓÊÂÚ ·˚Ú¸ ÌÂÌÛ΂ÓÈ ‰Îfl ÔÒ‚‰ÓËχÌÓ‚˚ı
ÏÂÚËÍ Ë Ó·‡˘‡Ú¸Òfl ‚ ÌÛθ ‰Îfl ËχÌÓ‚˚ı ÏÂÚËÍ.
ê‡ÒÒÚÓflÌË ëËÏÓÌ˚ ÇÂÈθ
"ê‡ÒÒÚÓflÌËÂ" – ˝ÚÓ Á‡„ÓÎÓ‚ÓÍ ÙËÎÓÒÓÙÒÍÓ-ÚÂÓÎӄ˘ÂÒÍÓ„Ó ˝ÒÒ ëËÏÓÌ˚ ÇÂÈθ
ËÁ  ÍÌË„Ë "Ç ÓÊˉ‡ÌËË ÅÓ„‡" (縲-âÓÍ: èÛÚχÌ, 1951). é̇ Ò‚flÁ˚‚‡ÂÚ Î˛·Ó‚¸
ÅÓ„‡ Ò ‡ÒÒÚÓflÌËÂÏ; Ú‡ÍËÏ Ó·‡ÁÓÏ, Â„Ó ÓÚÒÛÚÒÚ‚Ë ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl ͇Í
ÔËÒÛÚÒÚ‚ËÂ: "β·Ó ‡Á˙‰ËÌÂÌË ÂÒÚ¸ Ò‚flÁ¸" (ÏÂÚ‡ÍÒ˛ è·ÚÓ̇). ëÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÛÚ‚Âʉ‡ÂÚ Ó̇, ‡ÒÔflÚË ïËÒÚ‡ (̇˷Óθ¯‡fl β·Ó‚¸/‡ÒÒÚÓflÌËÂ) ·˚ÎÓ ÌÂÓ·ıÓ‰ËÏÓ "‰Îfl ÚÓ„Ó, ˜ÚÓ·˚ Ï˚ ÒÏÓ„ÎË ÓÒÓÁ̇ڸ ‡ÒÒÚÓflÌË ÓÚ Ì‡Ò ‰Ó ÅÓ„‡..., ÔÓÒÍÓθÍÛ Ï˚ Ì ÓÒÓÁ̇ÂÏ ‡ÒÒÚÓflÌËÂ, ÍÓÏÂ Í‡Í ÔÓ ÌËÒıÓ‰fl˘ÂÈ ÎËÌËË" (ÒÏ. ÔÓÌflÚËfl
ãÛˇÌÒÍÓÈ Í‡··‡Î˚ ˆËψÛÏ ("Ò‡ÏÓÒÓÍ‡˘ÂÌËÂ" ÅÓ„‡), "‡Á·ËÂÌË ÒÓÒÛ‰Ó‚" (ÁÎÓ
Í‡Í ÒË· ‡ÁÓ·˘ÂÌËfl, ÍÓÚÓÓ ÛÚ‡ÚËÎÓ Ò‚Ó˛ ÙÛÌÍˆË˛ ‡ÁÓ·˘ÂÌËfl Ë Ô‚‡ÚËÎÓÒ¸ ‚ ˜ÂÂÔÍË).
ÇÁflÚ¸ Ú‡ÍÊ ÔÂÒÌ˛ "àÁ‰‡ÎÂ͇", ̇ÔËÒ‡ÌÌÛ˛ ûÎËÂÈ ÉÓΉ, ‚ ÍÓÚÓÓÈ ÔÓÂÚÒfl Ó
ÅÓ„Â, ÍÓÚÓ˚È Ì‡·Î˛‰‡ÂÚ Á‡ ̇ÏË, Ë Ó ÚÓÏ, ͇Í, ÌÂÒÏÓÚfl ̇ ‡ÒÒÚÓflÌË (ÙËÁ˘ÂÒÍÓÂ Ë ˝ÏÓˆËÓ̇θÌÓÂ), ËÒ͇ʇ˛˘Â ‚ÓÒÔËflÚËÂ, ‚ ̇¯ÂÏ ÏË ¢ ÓÒڇθ ÏÂÒÚÓ
‰Îfl ÏË‡ Ë Î˛·‚Ë.
ç·ÂÒÌ˚ ‡ÒÒÚÓflÌËfl 낉ÂÌ·Ó„‡
àÁ‚ÂÒÚÌ˚È Û˜ÂÌ˚È Ë Ï˜ڇÚÂθ 낉ÂÌ·Ó„ ‚ Ò‚ÓÂÏ „·‚ÌÓÏ Úۉ "ç·ÂÒ‡
Ë Ä‰" (ãÓ̉ÓÌ, 1952, ÔÂ‚Ó ËÁ‰‡ÌË ̇ ·ÚËÌÒÍÓÏ flÁ˚Í ‚ 1758 „.) ÛÚ‚Âʉ‡ÂÚ
(ÒÏ. „Î. 22 "èÓÒÚ‡ÌÒÚ‚Ó Ì‡ Ì·ÂÒ‡ı", Ò. 191–199), ˜ÚÓ "‡ÒÒÚÓflÌËfl Ë Ú‡ÍËÏ Ó·‡ÁÓÏ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡ıÓ‰flÚÒfl ‚ ÔÓÎÌÓÈ Á‡‚ËÒËÏÓÒÚË ÓÚ ‚ÌÛÚÂÌÌÂ„Ó ÒÓÒÚÓflÌËfl ‡Ì„ÂÎÓ‚". Ñ‚ËÊÂÌË ̇ Ì·ÂÒ‡ı – Î˯¸ ËÁÏÂÌÂÌË ˝ÚÓ„Ó ÒÓÒÚÓflÌËfl, ÍÓ„‰‡ ‰ÎË̇ ÔÛÚË ËÁÏÂflÂÚÒfl Ê·ÌËÂÏ Ë‰Û˘Â„Ó, ‡ Ò·ÎËÊÂÌË ÓÚ‡Ê‡ÂÚ ÒıÓÊÂÒÚ¸ ÒÓÒÚÓflÌËÈ. Ç ‰ÛıÓ‚ÌÓÈ ÒÙÂÂ Ë Á‡„Ó·ÌÓÈ ÊËÁÌË, Ò˜ËÚ‡ÂÚ ÓÌ, "‚ÏÂÒÚÓ ‡ÒÒÚÓflÌËÈ Ë ÔÓÒÚ‡ÌÒÚ‚‡ ÒÛ˘ÂÒÚ‚Û˛Ú ÚÓθÍÓ ÒÓÒÚÓflÌËfl Ë Ëı ËÁÏÂÌÂÌËfl".
ê‡ÒÒÚÓflÌË ‰‡ÎÂÍÓ„Ó ·ÎËÁÍÓ„Ó
ê‡ÒÒÚÓflÌË ‰‡ÎÂÍÓ„Ó ·ÎËÁÍÓ„Ó – ̇Á‚‡ÌË ÔÓ„‡ÏÏ˚ ÑÓχ ÏËÓ‚˚ı ÍÛθÚÛ
‚ ÅÂÎËÌÂ, ÍÓÚÓ‡fl Ô‰ÒÚ‡‚ÎflÂÚ Ô‡ÌÓ‡ÏÛ ÒÓ‚ÂÏÂÌÌÓ„Ó ÔÓÁˈËÓÌËÓ‚‡ÌËfl ‚ÒÂı
ıÛ‰ÓÊÌËÍÓ‚ Ë‡ÌÒÍÓ„Ó ÔÓËÒıÓʉÂÌËfl. èËÏÂ‡ÏË ‡Ì‡Îӄ˘ÌÓ„Ó ËÒÔÓθÁÓ‚‡ÌËfl
ÚÂÏË̇ ‡ÒÒÚÓflÌËfl ‚ ÒÓ‚ÂÏÂÌÌÓÈ ÔÓÔ-ÍÛθÚÛ fl‚Îfl˛ÚÒfl: "Some Near Distance"
(„‰Â-ÚÓ ·ÎËÁÍÓ) – ̇Á‚‡ÌË ıÛ‰ÓÊÂÒÚ‚ÂÌÌÓÈ ‚˚ÒÚ‡‚ÍË å‡͇ ã¸˛ËÒ‡ (ÅËθ·‡Ó,
2003), "A Near Distance" (·ÎËÁÍÓ ‡ÒÒÚÓflÌËÂ) – ·ÛχÊÌ˚È ÍÓÎÎ‡Ê èÂΠî‡È̇
(縲-âÓÍ, 1961), "Quiet Distance" (ÚËıÓ ‡ÒÒÚÓflÌËÂ) – ıÛ‰ÓÊÂÒÚ‚ÂÌ̇fl ÂÔÓ‰Û͈Ëfl ù‰‰‡ å·, "Distance" (‡ÒÒÚÓflÌËÂ) – flÔÓÌÒÍËÈ ÍËÌÓÙËÎ¸Ï ïËÓ͇ÁÛ äÓ‰˚
(2001), "The Distance" (˝ÚÓ ‡ÒÒÚÓflÌËÂ) – ‡Î¸·ÓÏ ‡ÏÂË͇ÌÒÍÓÈ ÓÍ-„ÛÔÔ˚ "ëÂ·fl̇fl ÔÛÎfl", "Near Distance" (·ÎËÁÍÓ ‡ÒÒÚÓflÌËÂ) – ÏÛÁ˚͇θ̇fl ÍÓÏÔÓÁˈËfl óÂÌ
ûË (縲-âÓÍ, 1988), "Near Distance" (·ÎËÁÍÓ ‡ÒÒÚÓflÌËÂ) – ÎË˘ÂÒ͇fl ÔÂÒÌfl
χ̘ÂÒÚÂÒÍÓ„Ó Í‚‡ÚÂÚ‡ "è¸˛ÂÒÒÂÌÒÂ".
íÂÏËÌ˚ ·ÎËÊÌ ‡ÒÒÚÓflÌËÂ Ë ‰‡Î¸Ì ‡ÒÒÚÓflÌË ڇÍÊ ËÒÔÓθÁÛ˛ÚÒfl ‚
ÓÙڇθÏÓÎÓ„ËË Ë ‰Îfl ̇ÒÚÓÈÍË ÌÂÍÓÚÓ˚ı ÒÂÌÒÓÌ˚ı ÛÒÚÓÈÒÚ‚.
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
409
àÁ˜ÂÌËfl Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ "·ÎËÊÌ„Ó-‰‡Î¸Ì„Ó" ‡ÒÒÚÓflÌËÈ
"ãÛ˜¯Â ÒÓÒ‰ ‚·ÎËÁË, ÌÂÊÂÎË ·‡Ú ‚‰‡ÎË" (ÅË·ÎËfl).
"ã˛‰Ë ËÒÔ˚Ú˚‚‡˛Ú ÒÓ˜Û‚ÒÚ‚Ë ÚÓθÍÓ ÍÓ„‰‡ ÒÚ‡‰‡ÌËfl ͇ÊÛÚÒfl ËÏ ·ÎËÁÍËÏË;
·Â‰ÒÚ‚Ëfl, ÓÚÒÚÓfl˘Ë ÓÚ ÌËı ̇ ‰ÂÒflÚÍË Ú˚Òfl˜ ÎÂÚ ‚ ÔÓ¯ÎÓÏ ËÎË ‚ ·Û‰Û˘ÂÏ, β‰Ë
Ô‰˜Û‚ÒÚ‚Ó‚‡Ú¸ Ì ÏÓ„ÛÚ Ë ÎË·Ó Ì ÒÓÒÚ‡‰‡˛Ú, ÎË·Ó ‚Ó ‚ÒflÍÓÏ ÒÎÛ˜‡Â Ì ËÒÔ˚Ú˚‚‡˛Ú ÒÓËÁÏÂËÏÓ„Ó ÒÓ˜Û‚ÒÚ‚Ëfl" (ÄËÒÚÓÚÂθ).
"èÛÚ¸ ‰Ó΄‡ ÎÂÊËÚ ‚ ÚÓÏ, ˜ÚÓ ·ÎËÁÍÓ, ‡ ˜ÂÎÓ‚ÂÍ Ë˘ÂÚ Â„Ó ‚ ÚÓÏ, ˜ÚÓ ‰‡ÎÂÍÓ"
(åÂ̈ËÈ).
"ç ‚„Îfl‰˚‚‡ÈÒfl ‚ ·ÎËÁÍÓÂ, ÂÒÎË ÒÏÓÚ˯¸ ‚‰‡Î¸" (ù‚ËÔˉËÈ).
"ïÓÓ¯ËÏ Ô‡‚ËÚÂθÒÚ‚Ó ·Û‰ÂÚ ÚÓ„‰‡, ÍÓ„‰‡ ÚÂ, ÍÚÓ ·ÎËÁÍÓ, ·Û‰ÛÚ Ò˜‡ÒÚÎË‚˚,
‡ ÚÂ, ÍÚÓ ‰‡ÎÂÍÓ, Á‡ËÌÚÂÂÒÛ˛ÚÒfl" (äÓÌÙÛˆËÈ).
"ä‡Í‡fl ‰ÓÓ„‡", – ÒÔÓÒËÎ fl χÎÂ̸ÍÓ„Ó Ï‡Î¸˜Ë͇, Òˉfl˘Â„Ó ÓÍÓÎÓ ÔÂÂÍÂÒÚ͇, – "‚‰ÂÚ ‚ „ÓÓ‰?" "ùÚ‡", – ÓÚ‚ÂÚËÎ ÓÌ, – "Ó̇ ÍÓÓÚ͇fl, ÌÓ ‰ÎËÌ̇fl, ‡ Ú‡ – ‰ÎËÌ̇fl, ÌÓ ÍÓÓÚ͇fl". ü ÔÓ¯ÂÎ ÔÓ ÚÓÈ, ˜ÚÓ "ÍÓÓÚ͇fl, ÌÓ ‰ÎËÌ̇fl". äÓ„‰‡ fl ÔÓ‰Ó¯ÂÎ Í
„ÓÓ‰Û, fl ӷ̇ÛÊËÎ, ˜ÚÓ ÓÌ ·˚Î ÓÍÛÊÂÌ Ò‡‰‡ÏË Ë Ó„ÓÓ‰‡ÏË. ÇÂÌÛ‚¯ËÒ¸ Í Ï‡Î¸˜ËÍÛ, fl Ò͇Á‡Î ÂÏÛ: "ë˚Ì ÏÓÈ, ‡Á‚ Ú˚ Ì „Ó‚ÓËÎ ÏÌÂ, ˜ÚÓ ˝Ú‡ ‰ÓÓ„‡ ÍÓÓÚ͇fl?"
à ÓÌ ÓÚ‚ÂÚËÎ: "Ä ‡Á‚ fl Ì Ò͇Á‡Î Ú· ڇÍÊÂ: "ÌÓ ‰ÎËÌ̇fl"? ü ÔÓˆÂÎÓ‚‡Î „Ó
„ÓÎÓ‚Û Ë Ò͇Á‡Î: "똇ÒÚÎË‚ Ú˚, Ó àÁ‡Ëθ, ‚Ò ‚˚ ÏÛ‰˚Â, Ë ÏÓÎÓ‰˚Â, Ë ÒÚ‡˚Â"
(ùÛ·ËÌ, í‡ÎÏÛ‰).
èÓÓÍÛ åÛı‡ÏÏÂ‰Û ÔËÔËÒ˚‚‡˛Ú ÒÎÓ‚‡: "ç‡ËÏÂ̸¯ËÏ ‚ÓÁ̇„‡Ê‰ÂÌËÂÏ ‰Îfl
β‰ÂÈ ‚ ‡˛ ·Û‰ÂÚ ÔËÒÚ‡ÌË˘Â Ò 80 000 ÒÎÛ„ Ë 72 ÊÂ̇ÏË, ̇‰ ÍÓÚÓ˚Ï ‚ÓÁ‚˚¯‡ÂÚÒfl ÍÛÔÓÎ, ÛÍ‡¯ÂÌÌ˚È ÊÂϘۄÓÏ, ‡Í‚‡Ï‡Ë̇ÏË Ë Û·Ë̇ÏË, Ú‡ÍÓÈ Ê ¯ËËÌ˚,
Í‡Í ‡ÒÒÚÓflÌË ÓÚ Äθ-Ñʇ·ËÈfl (ÔË„ÓÓ‰ чχÒ͇) ‰Ó ë‡Ì˚ (âÂÏÂÌ)" (ËÚ,
àÒ·ÏÒ͇fl Ú‡‰ËˆËfl).
"çÂÚ Ì‡ÒÚÓθÍÓ ·Óθ¯Ó„Ó Ô‰ÏÂÚ‡, …ÍÓÚÓ˚È Ì‡ ·Óθ¯ÓÏ ‡ÒÒÚÓflÌËË Ì ͇Á‡ÎÒfl ·˚ ÏÂ̸¯Â, ˜ÂÏ Ï‡ÎÂ̸ÍËÈ Ô‰ÏÂÚ ‚·ÎËÁË" (ãÂÓ̇‰Ó ‰‡ ÇË̘Ë).
"ç˘ÚÓ Ì ÔÓÁ‚ÓÎflÂÚ áÂÏΠ‚˚„Îfl‰ÂÚ¸ Ú‡ÍÓÈ ÔÓÒÚÓÌÓÈ, Í‡Í ‰ÛÁ¸fl ̇ ‡ÒÒÚÓflÌËË; ËÏÂÌÌÓ ÓÌË ÒÓÒÚ‡‚Îfl˛Ú ¯ËÓÚ˚ Ë ‰Ó΄ÓÚ˚" (ÉÂÌË Ñ˝‚ˉ íÓÓ).
èÂ‚˚È Á‡ÍÓÌ „ÂÓ„‡ÙËË íÓηÂ‡: ‚Ò ҂flÁ‡ÌÓ ÏÂÊ‰Û ÒÓ·ÓÈ, ÌÓ ·ÓΠ·ÎËÁÍËÂ
Ô‰ÏÂÚ˚ ·ÓΠ҂flÁ‡Ì˚, ˜ÂÏ ‰‡Î¸ÌËÂ. èË̈ËÔ ·ÎËÁÓÒÚË (ËÎË ÔË̈ËÔ Ì‡ËÏÂ̸¯Ëı ÛÒËÎËÈ): ‰Îfl Ëϲ˘Â„ÓÒfl ‡ÒÔ‰ÂÎÂÌËfl Ó‰Ë̇ÍÓ‚Ó Ê·ÌÌ˚ı ÏÂÒÚ ˜‡˘Â ‚Ò„Ó
‚˚·Ë‡Ú¸Òfl ·Û‰ÂÚ Ò‡ÏÓ ·ÎËÁÍÓÂ.
Ç ÙËÁËÍ ÔË̈ËÔ ÎÓ͇θÌÓÒÚË ùÈ̯ÚÂÈ̇ ÛÚ‚Âʉ‡ÂÚ: Û‰‡ÎÂÌÌ˚ ӷ˙ÂÍÚ˚ ÌÂ
ÏÓ„ÛÚ ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ ‚ÎËflÚ¸ ‰Û„ ̇ ‰Û„‡, Ó·˙ÂÍÚ ÔÓ‰‚ÂÊÂÌ ÔflÏÓÏÛ ‚ÎËflÌ˲
ÚÓθÍÓ ÒÓ ÒÚÓÓÌ˚ Ó·˙ÂÍÚÓ‚ ‚ ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓÈ ·ÎËÁÓÒÚË.
Ç Ó·Î‡ÒÚË ÔÓ„‡ÏÏËÓ‚‡ÌËfl Á‡ÍÓÌ ÑÂÏÂÚ˚ ïÓη̉‡ ÒÓ‰ÂÊËÚ ÛÒÚ‡ÌÓ‚ÍÛ
‚ ÓÚÌÓ¯ÂÌËË ÒÚËÎfl ÔÓ„‡ÏÏËÓ‚‡ÌËfl "Ó·‡˘‡Ú¸Òfl ÚÓθÍÓ Í ·ÎËʇȯËÏ ‰ÛÁ¸flÏ"
(Ó·˙ÂÍÚ‡Ï, "ÚÂÒÌÓ" Ò‚flÁ‡ÌÌ˚Ï Ò ‰‡ÌÌ˚Ï Ó·˙ÂÍÚÓÏ) Ë Í‡Ê‰˚È Ó·˙ÂÍÚ ‰ÓÎÊÂÌ ËÏÂÚ¸
Ó„‡Ì˘ÂÌÌÛ˛ ËÌÙÓχˆË˛ Ó ‰Û„Ëı.
28.2. êÄëëíéüçàÖ áêàíÖãúçéÉé Çéëèêàüíàü
ê‡ÒÒÚÓflÌËfl ‚ˉËÏÓÒÚË
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û Á‡˜Í‡ÏË (ËÎË ÏÂÊÎËÌÁÓ‚Ó ‡ÒÒÚÓflÌËÂ): ‚ ÓÙڇθÏÓÎÓ„ËË
‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚ‡ÏË Á‡˜ÍÓ‚ ‰‚Ûı „·Á ÔË Ô‡‡ÎÎÂθÌ˚ı ÓÒflı ‚ËÁËÓ‚‡ÌËfl.
é·˚˜ÌÓ 2,5 ‰˛Èχ (6,35 ÒÏ).
éÒÚÓÚ‡ ÁÂÌËfl (·ÎËÊÌflfl) – ÒÔÓÒÓ·ÌÓÒÚ¸ „·Á‡ ‡Á΢‡Ú¸ ÙÓÏÛ Ô‰ÏÂÚ‡ Ë Â„Ó
‰ÂÚ‡ÎË Ì‡ ·ÎËÁÍÓÏ ‡ÒÒÚÓflÌËË ÔÓfl‰Í‡ 40 ÒÏ; ÓÒÚÓÚ‡ ÁÂÌËfl (‰‡Î¸Ìflfl) – ÒÔÓÒÓ·ÌÓÒÚ¸ „·Á‡ ‰Â·ڸ ˝ÚÓ Ì‡ ·Óθ¯ÂÏ ‡ÒÒÚÓflÌËË ÔÓfl‰Í‡ 6 Ï.
410
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
éÔÚ˘ÂÒÍË ÔË·Ó˚ ‰Îfl ‡·ÓÚ˚ Ò ·ÎËÁÍËÏË Ô‰ÏÂÚ‡ÏË ÒÎÛÊ‡Ú ‰Îfl Û‚Â΢ÂÌËfl ËÁÓ·‡ÊÂÌËfl Ô‰ÏÂÚ‡ Ë Ô˜‡ÚË; ÓÔÚ˘ÂÒÍË ÔË·Ó˚ ‰Îfl ‡·ÓÚ˚ Ò Ô‰ÏÂÚ‡ÏË Ì‡ ‡ÒÒÚÓflÌËË ÒÎÛÊ‡Ú ‰Îfl ÔË·ÎËÊÂÌËfl Û‰‡ÎÂÌÌ˚ı Ó·˙ÂÍÚÓ‚ (ÓÚ ÚÂı ÏÂÚÓ‚ Ë ‰‡Î¸¯Â).
ÅÎËÁÍÓ ‡ÒÒÚÓflÌËÂ: ‚ ÓÙڇθÏÓÎÓ„ËË ˝ÚÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÎÓÒÍÓÒÚ¸˛
Ó·˙ÂÍÚ‡ Ë ÔÎÓÒÍÓÒÚ¸˛ Ó˜ÍÓ‚.
ê‡ÒÒÚÓflÌË ‚Â¯ËÌ˚: ‚ ÓÙڇθÏÓÎÓ„ËË ‡ÒÒÚÓflÌË ÏÂÊ‰Û ӄӂˈÂÈ Ë ÔÎÓÒÍÓÒÚ¸˛ Ó˜ÍÓ‚.
ÅÂÒÍÓ̘ÌÓ ‡ÒÒÚÓflÌËÂ: ‚ ÓÙڇθÏÓÎÓ„ËË ‡ÒÒÚÓflÌË ÔÓfl‰Í‡ 20 ÙÛÚÓ‚ (6,1 Ï)
Ë ·ÓÎÂÂ; ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl Ú‡Í, ÔÓÒÍÓθÍÛ ÔÓÔ‡‰‡˛˘Ë ‚ „·Á ÎÛ˜Ë ÓÚ Ó·˙ÂÍÚ‡, ̇ıÓ‰fl˘Â„ÓÒfl ̇ ˝ÚÓÏ Û‰‡ÎÂÌËË, Ô‡ÍÚ˘ÂÒÍË Ô‡‡ÎÎÂθÌ˚, ‡Ì‡Îӄ˘ÌÓ ÎÛ˜‡Ï, ÔËıÓ‰fl˘ËÏ ËÁ ÚÓ˜ÍË ‚ ·ÂÒÍÓ̘ÌÓÒÚË. ÑËÒڇ̈ËÓÌÌÓ ÁÂÌË – ÁËÚÂθÌÓ ‚ÓÒÔËflÚË ӷ˙ÂÍÚÓ‚, ̇ıÓ‰fl˘ËıÒfl ̇ Û‰‡ÎÂÌËË Ì ÏÂÌ 6 Ï ÓÚ Ì‡·Î˛‰‡ÚÂÎfl.
ì„ÎÓ‚Ó ‡ÒÒÚÓflÌË „·Á‡ – ‡ÔÂÚ˛‡ ۄ·, Ó·‡ÁÛÂÏÓ„Ó ÎËÌËflÏË, Ôӂ‰ÂÌÌ˚ÏË ÓÚ „·Á‡ Í ‰‚ÛÏ Ó·˙ÂÍÚ‡Ï.
ê‡ÒÒÚÓflÌË RPV (ËÎË ÚÓ˜ÍË ÒıÓʉÂÌËfl ‚ ÔÓÍÓÂ) – ‡ÒÒÚÓflÌËÂ, ÔË ÍÓÚÓÓÏ
„·Á‡ ̇˜Ë̇˛Ú ÒıÓ‰ËÚ¸Òfl (Ò‰‚Ë„‡Ú¸Òfl Í ÔÂÂÌÓÒˈÂ), ÍÓ„‰‡ ÓÚÒÛÚÒÚ‚ÛÂÚ Í‡ÍÓÈÎË·Ó ·ÎËÁÍËÈ Ó·˙ÂÍÚ, ‚˚Á˚‚‡˛˘ËÈ Ú‡ÍÓ ÒıÓʉÂÌËÂ. éÌÓ ÒÓÒÚ‡‚ÎflÂÚ ‚ Ò‰ÌÂÏ
45 ‰˛ÈÏÓ‚ (1,14 Ï), ÂÒÎË ÒÏÓÚÂÚ¸ ÔflÏÓ, Ë ÛÏÂ̸¯‡ÂÚÒfl ‰Ó 35 ‰˛ÈÏÓ‚ (0,89 Ï),
ÂÒÎË ÒÏÓÚÂÚ¸ ‚ÌËÁ ÔÓ‰ Û„ÎÓÏ 30°.
ë ÚÓ˜ÍË ÁÂÌËfl ˝„ÓÌÓÏËÍË ÔË ÔÓ‰ÓÎÊËÚÂθÌÓÈ ‡·ÓÚÂ Ò ÍÓÏÔ¸˛ÚÂÓÏ
ÂÍÓÏẨÛÂÚÒfl ‚˚‰ÂÊË‚‡Ú¸ ‡ÒÒÚÓflÌË RPV ‰Ó ˝Í‡Ì‡, ˜ÚÓ·˚ ÏËÌËÏËÁËÓ‚‡Ú¸
̇ÔflÊÂÌË „·Á.
ê‡ÒÒÚÓflÌË ҂ӷӉÌÓÈ ‡ÍÍÓÏÓ‰‡ˆËË (ËÎË ÚӘ͇ ‡ÍÍÓÏÓ‰‡ˆËË ‚ ÔÓÍÓÂ, ‡ÒÒÚÓflÌË RPA) – ‡ÒÒÚÓflÌË ‰Ó ÚÓ˜ÍË, ̇ ÍÓÚÓÛ˛ ÙÓÍÛÒËÛ˛ÚÒfl „·Á‡, ÍÓ„‰‡ ÌÂÚ
ÍÓÌÍÂÚÌÓ„Ó Ô‰ÏÂÚ‡ ̇·Î˛‰ÂÌËfl.
îÓÍÛÒÌ˚ ‡ÒÒÚÓflÌËfl
ꇷӘ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÓÚ ÔÂ‰ÌÂÈ ÎËÌÁ˚ ÏËÍÓÒÍÓÔ‡ ‰Ó Ó·˙ÂÍÚ‡ ÔË
Ô‡‚ËθÌÓÈ ÙÓÍÛÒËÓ‚Í ÔË·Ó‡.
ê‡ÒÒÚÓflÌË ‰Ó Ó·˙ÂÍÚ‡ – ‡ÒÒÚÓflÌË ÓÚ Ó·˙ÂÍÚË‚‡ ͇ÏÂ˚ ‰Ó ÙÓÚÓ„‡ÙËÛÂÏÓ„Ó Ó·˙ÂÍÚ‡, Ú.Â. Ó·˙ÂÍÚ‡, ̇ ÍÓÚÓ˚È Ì‡‚Ó‰ËÚÒfl ÙÓÍÛÒ.
ê‡ÒÒÚÓflÌË ËÁÓ·‡ÊÂÌËfl – ‡ÒÒÚÓflÌË ÓÚ Ó·˙ÂÍÚË‚‡ ‰Ó ËÁÓ·‡ÊÂÌËfl (͇ÚËÌÍË
̇ ˝Í‡ÌÂ); ÂÒÎË ÏÂÊ‰Û Ó·˙ÂÍÚÓÏ Ë ˝Í‡ÌÓÏ ‡ÁÏ¢‡ÂÚÒfl Û‚Â΢ËÚÂθ̇fl ÎËÌÁ‡, ÚÓ
ÒÛÏχ ‚Â΢ËÌ, Ó·‡ÚÌ˚ı ‡ÒÒÚÓflÌ˲ ‰Ó Ó·˙ÂÍÚ‡ Ë ‡ÒÒÚÓflÌ˲ ËÁÓ·‡ÊÂÌËfl,
‡‚ÌÓ ‚Â΢ËÌÂ, Ó·‡ÚÌÓÈ ÙÓÍÛÒÌÓÏÛ ‡ÒÒÚÓflÌ˲.
îÓÍÛÒÌÓ ‡ÒÒÚÓflÌË (ÙÓ͇θ̇fl ‰ÎË̇): ‡ÒÒÚÓflÌË ÓÚ ÓÔÚ˘ÂÒÍÓ„Ó ˆÂÌÚ‡
ÎËÌÁ˚ (ËÎË ËÁÓ„ÌÛÚÓ„Ó ÁÂ͇·) ‰Ó ÚÓ˜ÍË ÙÓÍÛÒ‡ (‰Ó ËÁÓ·‡ÊÂÌËfl). Ö„Ó Ó·‡Ú̇fl
‚Â΢Ë̇, ËÁÏÂÂÌ̇fl ‚ ÏÂÚ‡ı, ̇Á˚‚‡ÂÚÒfl ‰ËÓÔÚËÂÈ Ë ËÒÔÓθÁÛÂÚÒfl ‚ ͇˜ÂÒÚ‚Â
‰ËÌˈ˚ ËÁÏÂÂÌËfl (ÓÔÚ˘ÂÒÍÓÈ) ÒËÎ˚ ÎËÌÁ˚.
ÉÎÛ·Ë̇ ÂÁÍÓÒÚË – ‡ÒÒÚÓflÌË ÔÂ‰ Ó·˙ÂÍÚÓÏ Ë ÔÓÁ‡‰Ë Ó·˙ÂÍÚ‡, ̇ıÓ‰fl˘ÂÂÒfl ‚
ÙÓÍÛÒÂ, Ú.Â. ÁÓ̇ Ò ‰ÓÔÛÒÚËÏÓÈ Ì˜ÂÚÍÓÒÚ¸˛ ËÁÓ·‡ÊÂÌËfl.
ÉËÔÂÙÓ͇θÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÓÚ Ó·˙ÂÍÚË‚‡ ‰Ó ·ÎËʇȯÂÈ ÚÓ˜ÍË
(„ËÔÂÙÓ͇θÌÓÈ ÚÓ˜ÍË), ÍÓÚÓ‡fl ̇ıÓ‰ËÚÒfl ‚ ÙÓÍÛÒ ÔË Ì‡‚‰ÂÌËË Ì‡ ·ÂÒÍÓ̘ÌÓÒÚ¸; ‰‡Î ˝ÚÓÈ ÚÓ˜ÍË ‚Ò ӷ˙ÂÍÚ˚ ÓÔ‰ÂÎÂÌ˚ flÒÌÓ Ë ˜ÂÚÍÓ. ùÚÓ Ò‡ÏÓ ·ÎËÁÍÓÂ
‡ÒÒÚÓflÌËÂ, Á‡ Ô‰Â·ÏË ÍÓÚÓÓ„Ó „ÎÛ·Ë̇ ÂÁÍÓÒÚË ÒÚ‡ÌÓ‚ËÚÒfl ·ÂÒÍÓ̘ÌÓÈ
(ÒÏ. ·ÂÒÍÓ̘ÌÓ ‡ÒÒÚÓflÌË ‚ˉËÏÓÒÚË).
îÂÌÓÏÂÌ˚ ‡ÁÏÂ‡-‡ÒÒÚÓflÌËfl
á‡ÍÓÌÓÏ ‡ÁÏÂ‡-‡ÒÒÚÓflÌËfl ùÏÏÂÚ‡ ÓÔ‰ÂÎÂÌÓ, ˜ÚÓ ËÁÓ·‡ÊÂÌË ̇ ÒÂÚ˜‡ÚÍ „·Á‡ fl‚ÎflÂÚÒfl ÔÓÔÓˆËÓ̇θÌ˚Ï ÔÓ ‚ÓÒÔËÌËχÂÏÓÏÛ ‡ÁÏÂÛ (͇ÊÛ˘ÂÈÒfl
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
411
‚˚ÒÓÚÂ) ‚ÓÒÔËÌËχÂÏÓÏÛ ‡ÒÒÚÓflÌ˲ ‰Ó ÔÓ‚ÂıÌÓÒÚË, ̇ ÍÓÚÓÛ˛ ÓÌÓ ÔÓˆËÛÂÚÒfl. ùÚÓÚ Á‡ÍÓÌ ÓÒÌÓ‚˚‚‡ÂÚÒfl ̇ ÚÓÏ Ù‡ÍÚÂ, ˜ÚÓ ‚ÓÒÔËÌËχÂÏ˚È ‡ÁÏÂ Ó·˙ÂÍÚ‡
Û‰‚‡Ë‚‡ÂÚÒfl ͇ʉ˚È ‡Á, ÍÓ„‰‡ ‚ÓÒÔËÌËχÂÏÓ ‡ÒÒÚÓflÌË ÓÚ Ì‡·Î˛‰‡ÚÂÎfl ‰ÂÎËÚÒfl ÔÓÔÓÎ‡Ï Ë, ̇ӷÓÓÚ. á‡ÍÓÌÓÏ ùÏÏÂÚ‡ Ó·˙flÒÌflÂÚÒfl Ú‡ÍÊ ÔÓÒÚÓflÌÒÚ‚Ó Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl, Ú.Â. ÚÓ„Ó, ˜ÚÓ ‡ÁÏÂ Ó·˙ÂÍÚ‡ ‚ÓÒÔËÌËχÂÚÒfl Í‡Í ‚Â΢Ë̇ ÔÓÒÚÓflÌ̇fl, ÌÂÒÏÓÚfl ̇ ËÁÏÂÌÂÌË ËÁÓ·‡ÊÂÌËfl ̇ ÒÂÚ˜‡ÚÍ (ÔÓ ÏÂ ۉ‡ÎÂÌËfl
Ó·˙ÂÍÚ˚, Ò Û˜ÂÚÓÏ ‚ËÁۇθÌÓÈ ÔÂÒÔÂÍÚË‚˚, ͇ÊÛÚÒfl ‚Ò ÏÂ̸¯Â Ë ÏÂ̸¯Â).
ëӄ·ÒÌÓ „ËÔÓÚÂÁ ËÌ‚‡ˇÌÚÌÓÒÚË ‡ÁÏÂ‡-‡ÒÒÚÓflÌËfl ÒÓÓÚÌÓ¯ÂÌË ‚ÓÒÔËÌËχÂÏÓ„Ó ‡ÁÏÂ‡ Ë ‚ÓÒÔËÌËχÂÏÓ„Ó ‡ÒÒÚÓflÌËfl fl‚ÎflÂÚÒfl ڇ̄ÂÌÒÓÏ ÙËÁ˘ÂÒÍÓ„Ó
‚ËÁۇθÌÓ„Ó Û„Î‡. Ç ˜‡ÒÚÌÓÒÚË, Ó·˙ÂÍÚ˚, ÍÓÚÓ˚ ͇ÊÛÚÒfl ·ÎËÊÂ, ‰ÓÎÊÌ˚ Ú‡ÍÊ Ë
‚˚„Îfl‰ÂÚ¸ ÏÂ̸¯Â. é‰Ì‡ÍÓ ‚ ÓÚÌÓ¯ÂÌËË ÎÛÌÌÓÈ ËÎβÁËË Ï˚ ËÏÂÂÏ Ô‡‡‰ÓÍÒ ‡ÁÏÂ‡-‡ÒÒÚÓflÌËfl. ë ãÛÌÓÈ (ÚÓ˜ÌÓ Ú‡Í ÊÂ, Í‡Í Ë Ò ëÓÎ̈ÂÏ) ËÎβÁËfl Á‡Íβ˜‡ÂÚÒfl ‚
ÚÓÏ, ˜ÚÓ, ÌÂÒÏÓÚfl ̇ ÔÓÒÚÓflÌÒÚ‚Ó Â ‚ËÁۇθÌÓ„Ó Û„Î‡ (ÔËÏÂÌÓ 0,52°), ‡ÁÏÂ˚
ãÛÌ˚, ̇ıÓ‰fl˘ÂÈÒfl ̇‰ ÛÓ‚ÌÂÏ „ÓËÁÓÌÚ‡, ÏÓ„ÛÚ Í‡Á‡Ú¸Òfl ‚ 2 ‡Á‡ ·Óθ¯Â, ˜ÂÏ
‡ÁÏÂ˚ ãÛÌ˚, ̇ıÓ‰fl˘ÂÈÒfl ‚ ÁÂÌËÚÂ. ëÛÚ¸ ˝ÚÓÈ ËÎβÁËË Â˘Â Ì ‰Ó ÍÓ̈‡ ÔÓÌflÚ̇;
Ӊ̇ ËÁ Ô‰ÔÓ·„‡ÂÏ˚ı Ô˘ËÌ ÍÓ„ÌËÚ˂̇fl: ‡ÁÏÂ˚ ãÛÌ˚ ‚ ÁÂÌËڠ̉ÓÓˆÂÌË‚‡˛ÚÒfl, ÔÓÒÍÓθÍÛ Ó̇ ‚ÓÒÔËÌËχÂÚÒfl Í‡Í ÔË·ÎËʇ˛˘ËÈÒfl Ó·˙ÂÍÚ.
ç‡Ë·ÓΠӷ˘ËÏ ÒÎÛ˜‡ÂÏ ÓÔÚ˘ÂÒÍÓÈ ËÎβÁËË fl‚ÎflÂÚÒfl ËÒ͇ÊÂÌË ‡ÁÏÂÓ‚
ËÎË ‰ÎËÌ˚; ̇ÔËÏÂ, ËÎβÁËË å˛ÎÎÂ‡–ãÂÈÂ‡, ë‡Ì‰Â‡ Ë èÓÌÁÓ.
ùÙÙÂÍÚ ÒËÏ‚Ó΢ÂÒÍÓÈ ‰ËÒڇ̈ËË
Ç ÔÒËıÓÎÓ„ËË ÏÓÁ„ ÓÒÛ˘ÂÒÚ‚ÎflÂÚ Ò‡‚ÌÂÌË ‰‚Ûı ÍÓ̈ÂÔˆËÈ (ËÎË Ó·˙ÂÍÚÓ‚) ÚÂÏ
ÚÓ˜ÌÂÂ Ë ·˚ÒÚÂÂ, ˜ÂÏ ·Óθ¯Â ÓÌË ‡Á΢‡˛ÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÏ ËÁÏÂÂÌËË.
ëÛ·˙ÂÍÚË‚ÌÓ ‡ÒÒÚÓflÌËÂ
ëÛ·˙ÂÍÚË‚ÌÓ ‡ÒÒÚÓflÌË (ËÎË ÍÓ„ÌËÚË‚ÌÓ ‡ÒÒÚÓflÌËÂ) – Ï˚ÒÎÂÌÌÓ Ô‰ÒÚ‡‚ÎÂÌË ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ‡ÒÒÚÓflÌËfl, ÒÙÓÏËÓ‚‡ÌÌË ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ÒӈˇθÌÓ„Ó, ÍÛθÚÛÌÓ„Ó Ë Ó·˘Â„Ó ÊËÁÌÂÌÌÓ„Ó ÓÔ˚Ú‡ Ë̉˂ˉÛÛχ. é¯Ë·ÍË ÍÓ„ÌËÚË‚ÌÓ„Ó ‡ÒÒÚÓflÌËfl ‚ÓÁÌË͇˛Ú ÎË·Ó ÔÓ Ô˘ËÌ ÓÚÒÛÚÒÚ‚Ëfl ÍÓ‰ËÓ‚‡ÌËfl/ı‡ÌÂÌËfl
ËÌÙÓχˆËË Ó ‰‚Ûı ÚӘ͇ı ‚ Ó‰ÌÓÈ Ë ÚÓÈ Ê ‚ÂÚ‚Ë Ô‡ÏflÚË, ÎË·Ó ËÁ-Á‡ ӯ˷ÍË
‚˚ÁÓ‚‡ ˝ÚÓÈ ËÌÙÓχˆËË. ç‡ÔËÏÂ, ‰ÎË̇ ÔÛÚË Ò ÏÌÓ„Ó˜ËÒÎÂÌÌ˚ÏË ÔÓ‚ÓÓÚ‡ÏË Ë
ÓËÂÌÚË‡ÏË Ó·˚˜ÌÓ ÔÂÂÓˆÂÌË‚‡ÂÚÒfl.
ù„ÓˆÂÌÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
Ç ÔÒËıÓÙËÁËÓÎÓ„ËË ˝„ÓˆÂÌÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‚ÓÒÔËÌËχÂÏÓ ‡·ÒÓβÚÌÓ ‡ÒÒÚÓflÌË ÓÚ Î˘ÌÓÒÚË (̇·Î˛‰‡ÚÂÎfl ËÎË ÒÎÛ¯‡ÚÂÎfl) ‰Ó
Ó·˙ÂÍÚ‡ ËÎË ‡Á‰‡ÊËÚÂÎfl (̇ÔËÏÂ, ËÒÚÓ˜ÌË͇ Á‚Û͇). ä‡Í Ô‡‚ËÎÓ, ‚ËÁۇθÌÓÂ
˝„ÓˆÂÌÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ӈÂÌË‚‡ÂÚÒfl ÍÓӘ ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ÙËÁ˘ÂÒÍÓ„Ó
‡ÒÒÚÓflÌËfl ‰Ó Û‰‡ÎÂÌÌ˚ı Ó·˙ÂÍÚÓ‚ Ë ‰ÎËÌÌ ‰Ó ·ÎËÁÍËı. èË ÁËÚÂθÌÓÏ ‚ÓÒÔËflÚËË ÔÓÒÚ‡ÌÒÚ‚Ó ‰ÂÈÒÚ‚Ëfl Ó·˙ÂÍÚ‡ Óı‚‡Ú˚‚‡ÂÚ 1–30 Ï; ÏÂ̸¯ÂÂ Ë ·Óθ¯Â ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡˛ÚÒfl ΢Ì˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ë ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÔÂÒÔÂÍÚË‚˚
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
ùÍÁÓˆÂÌÚ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‚ÓÒÔËÌËχÂÏÓ ÓÚÌÓÒËÚÂθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ó·˙ÂÍÚ‡ÏË.
éËÂÌÚË˚ ‰Îfl ÓˆÂÌÍË ‡ÒÒÚÓflÌËfl
éËÂÌÚË˚ ‰Îfl ÓˆÂÌÍË ‡ÒÒÚÓflÌËfl – ÓËÂÌÚË˚, ËÒÔÓθÁÛÂÏ˚ ‰Îfl ÓˆÂÌÍË
˝„ÓˆÂÌÚ˘ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl.
ÑÎfl ÒÎÛ¯‡ÚÂÎfl Ò ÙËÍÒËÓ‚‡ÌÌ˚Ï ÏÂÒÚÓÔÓÎÓÊÂÌËÂÏ „·‚Ì˚ÏË ‡ÍÛÒÚ˘ÂÒÍËÏË
ÓËÂÌÚË‡ÏË ‰Îfl ÓˆÂÌÍË ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl: ËÌÚÂÌÒË‚ÌÓÒÚ¸ (̇ ÓÚÍ˚ÚÓÏ ‚ÓÁ‰Ûı Ó̇ Ô‡‰‡ÂÚ Ì‡ 5 ‰Å ‰Îfl Í‡Ê‰Ó„Ó Û‰‚ÓÂÌËfl ‡ÒÒÚÓflÌËfl (ÒÏ. ÄÍÛÒÚ˘ÂÒÍË ‡Ò-
412
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ÒÚÓflÌËfl, „Î. 21)), ÒÓÓÚÌÓ¯ÂÌË ÔflÏÓÈ Í ÓÚ‡ÊÂÌÌÓÈ ˝ÌÂ„ËË (ÔË Ì‡Î˘ËË Á‚ÛÍÓÓÚ‡Ê‡˛˘Ëı ÔÓ‚ÂıÌÓÒÚÂÈ), ÒÔÂÍÚ‡Î¸Ì˚Â Ë ÒÚÂÂÓÙÓÌ˘ÂÒÍË ‡Á΢Ëfl .
ÑÎfl ̇·Î˛‰‡ÚÂÎfl ÓÒÌÓ‚Ì˚ÏË ‚ËÁۇθÌ˚ÏË ÓËÂÌÚË‡ÏË ‰Îfl ÓˆÂÌÍË ‡ÒÒÚÓflÌËfl
fl‚Îfl˛ÚÒfl:
– ÓÚÌÓÒËÚÂθÌ˚È ‡ÁÏÂ, ÓÚÌÓÒËÚÂθ̇fl flÍÓÒÚ¸, Ò‚ÂÚ Ë ÚÂ̸;
– ‚˚ÒÓÚ‡ ‚ ÔÓΠÁÂÌËfl (‰Îfl ÒÎÛ˜‡Â‚ ÔÎÓÒÍËı ÔÓ‚ÂıÌÓÒÚÂÈ, ÎÂʇ˘Ëı ÌËÊ ÛÓ‚Ìfl „·Á, ·ÓΠۉ‡ÎÂÌÌ˚ ӷ˙ÂÍÚ˚ ͇ÊÛÚÒfl ‚˚¯Â);
– ËÌÚÂÔÓÁˈËfl (ÍÓ„‰‡ Ó‰ËÌ Ó·˙ÂÍÚ ˜‡ÒÚ˘ÌÓ Á‡„Ó‡ÊË‚‡ÂÚ ‚ˉ ̇ ‰Û„ÓÈ);
– ·ËÌÓÍÛÎflÌ˚ ‡ÒıÓʉÂÌËfl, ÒıÓʉÂÌË (‚ Á‡‚ËÒËÏÓÒÚË ÓÚ Û„Î‡ ÓÔÚ˘ÂÒÍÓÈ ÓÒË
„·Á), ‡ÍÍÓÏÓ‰‡ˆËfl (ÒÓÒÚÓflÌË ÙÓÍÛÒËÓ‚ÍË „·Á);
– ‚ÓÁ‰Û¯Ì‡fl ÔÂÒÔÂÍÚË‚‡ (Ó·˙ÂÍÚ˚ ̇ ‡ÒÒÚÓflÌËË ÒÚ‡‚flÚÒfl ·ÓΠ„ÓÎÛ·˚ÏË Ë
·Î‰Ì˚ÏË), ÔÓÚÛÒÍÌÂÌË ÓÚ ‡ÒÒÚÓflÌËfl (Ó·˙ÂÍÚ˚ ̇ ‡ÒÒÚÓflÌËË ÏÂÌ ÍÓÌÚ‡ÒÚÌ˚ Ë Ëı Ó˜ÂÚ‡ÌËfl ·ÓΠ‡ÁÏ˚Ú˚);
– ÔÂÒÔÂÍÚË‚‡ ‰‚ËÊÂÌËfl (ÒÚ‡ˆËÓ̇Ì˚È Ó·˙ÂÍÚ ‚ÓÒÔËÌËχÂÚÒfl ‰‚ËÊÛ˘ËÏÒfl
̇·Î˛‰‡ÚÂÎÂÏ Í‡Í Ô·‚ÌÓ ÔÓÎÂÚ‡˛˘ËÈ ÏËÏÓ Ì„Ó).
чΠÔË‚Ó‰flÚÒfl ÌÂÍÓÚÓ˚ ÚÂıÌ˘ÂÒÍË ÔËÂÏ˚, ËÒÔÓθÁÛ˛˘Ë Û͇Á‡ÌÌ˚Â
‚˚¯Â ÓËÂÌÚË˚ ‰Îfl ÒÓÁ‰‡ÌËfl ÓÔÚ˘ÂÒÍËı ËÎβÁËÈ ‰Îfl ÁËÚÂÎÂÈ:
– ÚÛÏ‡Ì ‡ÒÒÚÓflÌËfl: ˝ÎÂÏÂÌÚ ÚÂıÏÂÌÓÈ ÍÓÏÔ¸˛ÚÂÌÓÈ „‡ÙËÍË ‰Îfl ÒÓÁ‰‡ÌËfl
˝ÙÙÂÍÚ‡ ‡ÁÏ˚ÚÓÒÚË (Á‡ÚÛχÌË‚‡ÌËfl) Ó·˙ÂÍÚÓ‚ ÔÓ ÏÂ Ëı Û‰‡ÎÂÌËfl ÓÚ Í‡ÏÂ˚;
– ÔËÌÛ‰ËÚÂθ̇fl ÔÂÒÔÂÍÚË‚‡: ÍËÌÂχÚÓ„‡Ù˘ÂÒÍËÈ ÔËÂÏ, ‰Â·˛˘ËÈ Ú‡Í,
˜ÚÓ·˚ Ó·˙ÂÍÚ˚ ͇Á‡ÎËÒ¸ ·ÓΠ‰‡ÎÂÍËÏË ËÎË Ì‡Ó·ÓÓÚ ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ Ëı
ÏÂÒÚÓÔÓÎÓÊÂÌËfl ÓÚÌÓÒËÚÂθÌÓ Í‡ÏÂ˚ Ë ‰Û„ ‰Û„‡.
äËÌÓÒ˙ÂÏÍË, Ò‚flÁ‡ÌÌ˚Â Ò ‡ÒÒÚÓflÌËÂÏ
äËÌÓÒ˙ÂÏ͇ – ˝ÚÓ ÙËθÏÓ‚˚ χÚÂˇÎ˚, ÓÚÒÌflÚ˚Â Ò ÏÓÏÂÌÚ‡ ̇˜‡Î‡ ‡·ÓÚ˚
͇ÏÂ˚ (ÔÓ ÍÓχ̉ ÂÊËÒÒÂ‡ "ÏÓÚÓ") Ë ‰Ó ÏÓÏÂÌÚ‡  ÓÒÚ‡ÌÓ‚ÍË (ÔÓ ÍÓχ̉Â
"ÒÌflÚÓ").
éÒÌÓ‚Ì˚ÏË Í‡‰‡ÏË, Ò‚flÁ‡ÌÌ˚ÏË Ò ‡ÒÒÚÓflÌËÂÏ (̇ÒÚÓÈ͇ÏË Í‡ÏÂ˚), fl‚Îfl˛ÚÒfl:
– Ò˙ÂÏ͇ Ó·˘ËÏ Ô·ÌÓÏ: ͇‰˚ ‚ ̇˜‡Î ˝ÔËÁÓ‰‡, Ò ÔÓÏÓ˘¸˛ ÍÓÚÓ˚ı ÛÒڇ̇‚ÎË‚‡ÂÚÒfl ÏÂÒÚÓ ‰ÂÈÒÚ‚Ëfl Ë/ËÎË ‚ÂÏfl ÒÛÚÓÍ;
– Ò˙ÂÏ͇ ‰‡Î¸ÌËÏ Ô·ÌÓÏ: ͇‰˚, ÒÌflÚ˚Â Ò ‡ÒÒÚÓflÌËfl Ì ÏÂÌ 50 ÙÛÚÓ‚
(45,72 Ï) ÓÚ ÏÂÒÚ‡ ‰ÂÈÒÚ‚Ëfl;
– Ò‰ÌËÈ Ô·Ì: ͇‰˚, ÒÌflÚ˚Â Ò ‡ÒÒÚÓflÌËfl 5–15 fl‰Ó‚ (4,57–13,75 Ï), ‚Íβ˜‡fl
ˆÂÎËÍÓÏ Ì·Óθ¯Û˛ „ÛÔÔÛ, ÔÓ͇Á „ÛÔÔ˚ β‰ÂÈ/Ó·˙ÂÍÚÓ‚ ÓÚÌÓÒËÚÂθÌÓ ÓÍÂÒÚÌÓÒÚÂÈ;
– ÍÛÔÌ˚È Ô·Ì: ͇‰˚, ÔÓ͇Á˚‚‡˛˘Ë ‡ÍÚÂ‡ Ò ÛÓ‚Ìfl ¯ÂË Ë ‚˚¯Â ËÎË Ó·˙ÂÍÚ
Ò ‡Ì‡Îӄ˘ÌÓ ·ÎËÁÍÓ„Ó ‡ÒÒÚÓflÌËfl;
– ‰‚ÓÈÌÓÈ Ô·Ì: ͇‰˚, ÒÌflÚ˚Â Ò ‰‚ÛÏfl β‰¸ÏË Ì‡ ÔÂ‰ÌÂÏ Ô·ÌÂ;
– ‚ÒÚ‡‚͇: ‚ÒÚ‡‚ÎÂÌÌ˚ ͇‰˚ (Ó·˚˜ÌÓ ÍÛÔÌ˚Ï Ô·ÌÓÏ) ‰Îfl ·ÓΠ‰ÂڇθÌÓ„Ó
ÔÓ͇Á‡ Ó·˙ÂÍÚ‡.
ê‡ÒÒÚÓflÌËfl ‚ ÒÚÂÂÓÒÍÓÔËË
é‰ÌËÏ ËÁ ÒÔÓÒÓ·Ó‚ ÔÓÎÛ˜ÂÌËfl ÚÂıÏÂÌÓ„Ó ËÁÓ·‡ÊÂÌËfl fl‚ÎflÂÚÒfl Ò˙ÂÏ͇ Ô‡˚
‰‚ÛıÏÂÌ˚ı ËÁÓ·‡ÊÂÌËÈ Ò ÔÓÏÓ˘¸˛ ÒËÒÚÂÏ˚ ÒÔ‡ÂÌÌ˚ı ͇ÏÂ.
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û Í‡ÏÂ‡ÏË (ËÎË ‰ÎË̇ ·‡ÁËÒÌÓÈ ÎËÌËË, ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÓÍÛÎfl‡ÏË Í‡ÏÂ) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ͇ÏÂ‡ÏË, ‰Â·˛˘ËÏË ÒÌËÏÍË ‚ ÓÎË
ÎÂ‚Ó„Ó Ë Ô‡‚Ó„Ó „·Á.
ê‡ÒÒÚÓflÌË ÒıÓʉÂÌËfl – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚÓÏ ·‡ÁËÒÌÓÈ ÎËÌËË Í‡ÏÂ˚
‰Ó ÚÓ˜ÍË ÒıÓʉÂÌËfl, „‰Â ‰‚ ÎËÌÁ˚ ‰ÓÎÊÌ˚ ÒÓ‚ÏÂÒÚËÚ¸Òfl ‰Îfl ÔÓÎÛ˜ÂÌËfl ÒÚÂÂÓ-
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
413
ÒÍÓÔ˘ÂÒÍÓ„Ó ˝ÙÙÂÍÚ‡. ùÚÓ ‡ÒÒÚÓflÌË ‰ÓÎÊÌÓ ·˚Ú¸ ‚ 15–30 ‡Á ·Óθ¯Â ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û Í‡ÏÂ‡ÏË.
ê‡ÒÒÚÓflÌË ÔÎÓÒÍÓÒÚË ËÁÓ·‡ÊÂÌËfl – ‡ÒÒÚÓflÌËÂÏ, ̇ ÍÓÚÓÓÏ Ó·˙ÂÍÚ Í‡ÊÂÚÒfl
̇ıÓ‰fl˘ËÏÒfl ̇ (ÌÓ Ì ÔÓÁ‡‰Ë ËÎË ÔÂ‰) ÔÎÓÒÍÓÒÚË ËÁÓ·‡ÊÂÌËfl (͇ÊÛ˘ÂÈÒfl
ÔÓ‚ÂıÌÓÒÚË ËÁÓ·‡ÊÂÌËfl). ê‡Ï͇ – „‡Ìˈ‡ ͇¯ËÓ‚‡ÌËfl ‡ÏÍË ˝Í‡Ì‡ Ú‡ÍËÏ
Ó·‡ÁÓÏ, ˜ÚÓ·˚ ÔÓfl‚Îfl˛˘ËÂÒfl ̇ ÌÂÏ (Ì Á‡ Ë Ì ‚Ì „Ó) Ó·˙ÂÍÚ˚ ͇Á‡ÎËÒ¸ ̇ıÓ‰fl˘ËÏËÒfl ̇ ÚÓÏ Ê ‡ÒÒÚÓflÌËË ÓÚ ÁËÚÂÎfl, ˜ÚÓ Ë Ò‡Ï‡ ‡Ï͇. ÑÎfl ‚ËÁۇθÌÓ„Ó
‚ÓÒÔËflÚËfl ˜ÂÎÓ‚Â͇ ‡ÒÒÚÓflÌË ÔÎÓÒÍÓÒÚË ËÁÓ·‡ÊÂÌËfl ‡‚ÌÓ ÔËÏÂÌÓ 30 ‡ÒÒÚÓflÌËflÏ ÏÂÊ‰Û Í‡ÏÂ‡ÏË.
ê‡ÒÒÚÓflÌËfl ‰ÓÓÊÌÓÈ ‚ˉËÏÓÒÚË
чθÌÓÒÚ¸ ‚ˉËÏÓÒÚË (ËÎË ‡ÒÒÚÓflÌË ‚ˉËÏÓÒÚË) – ‰ÎË̇ Ó·ÓÁ‚‡ÂÏÓ„Ó
‚Ó‰ËÚÂÎÂÏ Û˜‡ÒÚ͇ ¯ÓÒÒÂ. ÅÂÁÓÔ‡Ò̇fl ‰‡Î¸ÌÓÒÚ¸ ‚ˉËÏÓÒÚË ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‰‡Î¸ÌÓÒÚ¸ ‚ˉËÏÓÒÚË, ÌÂÓ·ıÓ‰Ëχfl ‚Ó‰ËÚÂβ ‰Îfl ÚÓ„Ó, ˜ÚÓ·˚ ‚˚ÔÓÎÌËÚ¸ ÍÓÌÍÂÚÌÛ˛
Á‡‰‡˜Û; ÓÒÌÓ‚Ì˚ÏË ·ÂÁÓÔ‡ÒÌ˚ÏË ‡ÒÒÚÓflÌËflÏË, ËÒÔÓθÁÛÂÏ˚ÏË ÔË ÔÓÂÍÚËÓ‚‡ÌËË ‰ÓÓ„, fl‚Îfl˛ÚÒfl ÒÎÂ‰Û˛˘ËÂ:
– ‡ÒÒÚÓflÌË ÚÓÏÓÁÌÓ„Ó ÔÛÚË – ‰‡Î¸ÌÓÒÚ¸ ‚ˉËÏÓÒÚË, Ó·ÂÒÔ˜˂‡˛˘‡fl ÓÒÚ‡ÌÓ‚ÍÛ ‡‚ÚÓÏÓ·ËÎfl ÔÂ‰ ÌÂÓÊˉ‡ÌÌÓ ÔÓfl‚Ë‚¯ËÏÒfl ÔÂÔflÚÒÚ‚ËÂÏ;
– ·ÂÁÓÔ‡Ò̇fl ‰Îfl χÌ‚ËÓ‚‡ÌËfl ‚ˉËÏÓÒÚ¸ – ‡ÒÒÚÓflÌËÂ, Ó·ÂÒÔ˜˂‡˛˘ÂÂ
‚ÓÁÏÓÊÌÓÒÚ¸ Ó·˙ÂÁ‰‡ ÌÂÓÊˉ‡ÌÌÓ„Ó Ì·Óθ¯Ó„Ó ÔÂÔflÚÒÚ‚Ëfl ̇ ‰ÓÓ„Â;
– ·ÂÁÓÔ‡Ò̇fl ‰Îfl Ó·„Ó̇ ‚ˉËÏÓÒÚ¸ – ‡ÒÒÚÓflÌËÂ, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl ‚˚ÔÓÎÌÂÌËfl
·ÂÁÓÔ‡ÒÌÓ„Ó Ó·„Ó̇;
– ‚ˉËÏÓÒÚ¸ Ó·ÁÓ‡ ‰ÓÓ„Ë – ‡ÒÒÚÓflÌËÂ, ÔÓÁ‚ÓÎfl˛˘Â Ô‰‚ˉÂÚ¸ ËÁÏÂÌÂÌËÂ
ÓÒÂ‚Ó„Ó Ì‡Ô‡‚ÎÂÌËfl (Í‡Í ÔÓ‚ÓÓÚ˚, Ú‡Í Ë ÔÓ‰˙ÂÏ˚ Ë ÒÔÛÒÍË) ÔÓÎÓÚ̇ ‰ÓÓ„Ë
(̇ÔËÏÂ, ‰Îfl ‚˚·Ó‡ ÒÍÓÓÒÚÌÓ„Ó ÂÊËχ ‰‚ËÊÂÌËfl).
äÓÏ ÚÓ„Ó, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ‰‡Î¸ÌÓÒÚ¸ ‚ˉËÏÓÒÚË ÌÂÓ·ıÓ‰Ëχ Ë ‚ ÎÓ͇θÌÓÏ
χүڇ·Â: ‰Îfl ÓˆÂÌÍË ÒËÚÛ‡ˆËË Ì‡ ÔÂÂÍÂÒÚ͇ı Ë ‡„ËÓ‚‡ÌËfl ̇ Ò˄̇Î˚
Ò‚ÂÚÓÙÓÓ‚.
28.3. êÄëëíéüçàü éÅéêìÑéÇÄçàü
ê‡ÒÒÚÓflÌËfl, Ò‚flÁ‡ÌÌ˚Â Ò Ú‡ÌÒÔÓÚÌ˚ÏË Ò‰ÒÚ‚‡ÏË
íÓÏÓÁÌÓÈ ÔÛÚ¸ – ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ÔÓıÓ‰ËÚ ‡‚ÚÓÏÓ·Ëθ Ò ÏÓÏÂÌÚ‡ ̇ʇÚËfl
ÚÓÏÓÁÓ‚ ‰Ó ÔÓÎÌÓÈ ÓÒÚ‡ÌÓ‚ÍË.
ê‡ÒÒÚÓflÌË ‡„ËÓ‚‡ÌËfl – ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ‡‚ÚÓÏÓ·Ëθ ÔÓıÓ‰ËÚ Ò ÏÓÏÂÌÚ‡, ÍÓ„‰‡ ‚Ó‰ËÚÂθ ۂˉËÚ ÓÔ‡ÒÌÓÒÚ¸ ̇ ‰ÓÓ„Â, ‰Ó ÏÓÏÂÌÚ‡ ̇˜‡Î‡ ÚÓÏÓÊÂÌËfl
(ÒÍ·‰˚‚‡ÂÚÒfl ËÁ ‚ÂÏÂÌË ‚ÓÒÔËflÚËfl Ë ÒÍÓÓÒÚË ‡͈ËË ˜ÂÎÓ‚Â͇) (Ì ÔÛÚ‡Ú¸ Ò
‰ËÒڇ̈ËÂÈ ‡͈ËË ÊË‚ÓÚÌÓ„Ó).
ê‡ÒÒÚÓflÌË ÚÓÏÓÊÂÌËfl – ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ÔÓıÓ‰ËÚ ‡‚ÚÓÏÓ·Ëθ Ò ÚÓ„Ó ÏÓÏÂÌÚ‡, ÍÓ„‰‡ ‚Ó‰ËÚÂθ ¯‡ÂÚ Á‡ÚÓÏÓÁËÚ¸, ‰Ó ÏÓÏÂÌÚ‡ ÔÓÎÌÓÈ ÓÒÚ‡ÌÓ‚ÍË Ú‡ÌÒÔÓÚÌÓ„Ó Ò‰ÒÚ‚‡ (ÓÔ‰ÂÎflÂÚÒfl ÒÍÓÓÒÚ¸˛ ‡͈ËË ÒËÒÚÂÏ˚ ÚÓÏÓÊÂÌËfl Ë
˝ÙÙÂÍÚË‚ÌÓÒÚ¸˛ ÚÓÏÓÁÌ˚ı ÛÒÚÓÈÒÚ‚).
é·ÓÁ̇˜‡ÂÏ˚È ÔÓ ‡ÒÒÚÓflÌ˲ ÌÓÏÂ ‡Á‚flÁÍË ‰ÓÓ„ – ÌÓÏÂ, ÔËÒ‚‡Ë‚‡ÂÏ˚È
ÔÂÂÍÂÒÚÍÛ (Ó·˚˜ÌÓ ˝ÚÓ ‡Á‚flÁ͇ ̇ ‡‚ÚÓÒÚ‡‰Â), ÍÓÚÓ˚È ÓÚÓ·‡Ê‡ÂÚ ‚ ÏËÎflı
(ËÎË ÍËÎÓÏÂÚ‡ı) ‡ÒÒÚÓflÌË ÓÚ Ì‡˜‡Î‡ ‡‚ÚÓÒÚ‡‰˚ ‰Ó ‡Á‚flÁÍË. åËθÌ˚È Í‡ÏÂ̸
(ËÎË ÍËÎÓÏÂÚÓ‚˚È ÒÚÓη) fl‚ÎflÂÚÒfl ˝ÎÂÏÂÌÚÓÏ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÌÛÏÂÓ‚‡ÌÌ˚ı Û͇Á‡ÚÂÎÂÈ, ÛÒÚ‡ÌÓ‚ÎÂÌÌ˚ı Ò ‡‚Ì˚ÏË ËÌÚÂ‚‡Î‡ÏË ‚‰Óθ ‰ÓÓ„Ë. çÛ΂ÓÈ
ÒÚÓη ‚ ÒÚÓ΢ÌÓÏ Ç‡¯ËÌ„ÚÓÌ ҘËÚ‡ÂÚÒfl ̇˜‡ÎÓÏ ÓÚÒ˜ÂÚ‡ ‰Îfl ‚ÒÂı ‰ÓÓÊÌ˚ı
‡ÒÒÚÓflÌËÈ ‚ ëòÄ.
ê‡ÒÒÚÓflÌË ÔÂ‚‡ÌÌÓ„Ó ‚ÁÎÂÚ‡ – ‰ÎË̇ ‚ÁÎÂÚÌÓ-ÔÓÒ‡‰Ó˜ÌÓÈ ÔÓÎÓÒ˚ ÔÎ˛Ò ‰ÎË̇
ÍÓ̈‚ÓÈ ÔÓÎÓÒ˚ ·ÂÁÓÔ‡ÒÌÓÒÚË, ÍÓÚÓ‡fl Ô˄Ӊ̇ Ë ÍÓÚÓÛ˛ ‡Á¯ÂÌÓ ËÒÔÓθ-
414
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ÁÓ‚‡Ú¸ ‰Îfl ‡Á„Ó̇ ÔË ‚ÁÎÂÚÂ Ë ÚÓÏÓÊÂÌËfl Ò‡ÏÓÎÂÚ‡ ‚ ÒÎÛ˜‡Â ÔÂ˚‚‡ÌËfl
‚ÁÎÂÚ‡.
ê‡ÒÒÚÓflÌË ÒÓ͇ ‰ÂÈÒÚ‚Ëfl – Ó·˘Â ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ÔÓıÓ‰ËÚ Ò‡ÏÓ‰‚ËÊÛ˘ËÈÒfl ̇ÁÂÏÌ˚È ËÎË ÏÓÒÍÓÈ Ú‡ÌÒÔÓÚ Ò Á‡‰‡ÌÌÓÈ ˝ÍÓÌÓÏ˘ÌÓÈ ÒÍÓÓÒÚ¸˛
‰‚ËÊÂÌËfl.
î‡ÍÚ˘ÂÒÍË ÔÓȉÂÌÌÓ ‡ÒÒÚÓflÌË (ÏÓÒÍÓÈ ÚÂÏËÌ) – ‡ÒÒÚÓflÌËÂ, ÔÓȉÂÌÌÓÂ
ÔÓÒΠÍÓÂÍÚËÓ‚ÍË ÚÂÍÛ˘Ëı ÓÚÍÎÓÌÂÌËÈ ÓÚ ÍÛÒ‡, ·ÓÍÓ‚Ó„Ó ÒÌÓÒ‡ (‰ÂÈÙ‡
ÍÓ‡·Îfl ‚ ÔÓ‰‚ÂÚÂÌÌÛ˛ ÒÚÓÓÌÛ) Ë ÔÓ˜Ëı ӯ˷ÓÍ, ÍÓÚÓ˚ ÏÓ„ÎË ·˚Ú¸ Ì ۘÚÂÌ˚ ÔË Ì‡˜‡Î¸ÌÓÏ ËÁÏÂÂÌËË ‡ÒÒÚÓflÌËfl. ㇄ – ÔË·Ó ‰Îfl ÓÚÒ˜ÂÚ‡ ÔÓȉÂÌÌÓ„Ó
̇ ‚Ӊ ‡ÒÒÚÓflÌËfl, ÔÓ͇Á‡ÌËfl ÍÓÚÓÓ„Ó Á‡ÚÂÏ ÍÓÂÍÚËÛ˛ÚÒfl ‰Îfl ‚˚‚‰ÂÌË
fl Ù‡ÍÚ˘ÂÒÍË ÔÓȉÂÌÌÓ„Ó ‡ÒÒÚÓflÌËfl.
GM-‡ÒÒÚÓflÌË (ËÎË ÏÂÚ‡ˆËÍ΢ÂÒ͇fl ‚˚ÒÓÚ‡) Òۉ̇ – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚÓÏ Â„Ó ÚflÊÂÒÚË G Ë ÏÂÚ‡ˆÂÌÚÓÏ, Ú.Â. ÔÓÂ͈ËÂÈ ˆÂÌÚ‡ ‚Ó‰ÓËÁÏ¢ÂÌËfl („‡‚ËÚ‡ˆËÓÌÌÓ„Ó ˆÂÌÚ‡ ‚˚Ú‡ÎÍË‚‡ÂÏÓ„Ó ÍÓÔÛÒÓÏ Òۉ̇ Ó·˙Âχ ‚Ó‰˚) ̇ ‰Ë‡ÏÂÚ‡Î¸ÌÛ˛ ÎËÌ˲ Òۉ̇ ‚ ÏÓÏÂÌÚ ÍÂ̇. ùÚÓ ‡ÒÒÚÓflÌË (Ó·˚˜ÌÓ 1–2 Ï) ı‡‡ÍÚÂËÁÛÂÚ
ÓÒÚÓȘ˂ÓÒÚ¸ Òۉ̇ ̇ ‚Ó‰Â.
éÚÚflÊ͇ – ÔË ÔÓ„ÛÊÂÌËflı ÔÓ‰ ‚Ó‰Û fl‚ÎflÂÚÒfl ‚ÂÏÂÌÌ˚Ï Ï‡ÍÂÓÏ (Ó·˚˜ÌÓ
˝ÚÓ 50-ÏÂÚÓ‚‚˚È ÚÓÌÍËÈ ÔÓÎËÔÓÔËÎÂÌÓ‚˚È ÚÓÒ), Ó·ÓÁ̇˜‡˛˘ËÏ Í‡Ú˜‡È¯ËÈ
ÔÛÚ¸ ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË. é̇ Ô‰̇Á̇˜Â̇ ‰Îfl ÓËÂÌÚËÓ‚‡ÌËfl ‚ ÛÒÎÓ‚Ëflı
ÔÎÓıÓÈ ‚ˉËÏÓÒÚË ÔË ‚ÓÁ‚‡˘ÂÌËË ‚Ó‰Ó·Á‡ Í ÓÚÔ‡‚ÌÓÈ ÚÓ˜ÍÂ.
ê‡ÒÒÚÓflÌËfl ‚ ÒËÒÚÂχı ӷ̇ÛÊÂÌËfl
ê‡ÒÒÚÓflÌË Ì‚ˉËÏÓÒÚË (ËÎË ‡ÒÒÚÓflÌË ÔÂ‚ÓÈ Á‡Ò˜ÍË) – ‡ÒÒÚÓflÌËÂ, ÔÓȉÂÌÌÓ ‰‚ËÊÛ˘ËÏÒfl Ó·˙ÂÍÚÓÏ (̇Û¯ËÚÂÎÂÏ) ‰Ó ÏÓÏÂÌÚ‡ ÙËÍÒ‡ˆËË Â„Ó ‡ÍÚË‚Ì˚ÏË
Ò‰ÒÚ‚‡ÏË ÒËÒÚÂÏ˚ ӷ̇ÛÊÂÌËfl (ÒÏ. 䂇ÁË‡ÒÒÚÓflÌËfl ÍÓÌÚ‡ÍÚ‡, „Î. 19); ‚ÂÏfl
Ì‚ˉËÏÓÒÚË ı‡‡ÍÚÂËÁÛÂÚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ‚ÂÏÂÌÌ˚ ԇ‡ÏÂÚ˚.
ê‡ÒÒÚÓflÌË Á‡‰ÂÊÍË ‰‡ÌÌ˚ı ӷ̇ÛÊÂÌËfl – ‡ÒÒÚÓflÌËÂ, ÔÓȉÂÌÌÓ ‰‚ËÊÛ˘ËÏÒfl Ó·˙ÂÍÚÓÏ (̇Û¯ËÚÂÎÂÏ) ‰Ó ÏÓÏÂÌÚ‡ ÔÓÎÛ˜ÂÌËfl ÍÓÌÚÓθÌ˚Ï Ó„‡ÌÓÏ ‰‡ÌÌ˚ı ÓÚ ÒËÒÚÂÏ˚ ӷ̇ÛÊÂÌËfl.
é¯Ë·Í‡ ÔÓ ‰‡Î¸ÌÓÒÚË – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÎËÌËflÏË ÏÂÒÚ‡ ˆÂÎË, ÔÓÎÛ˜ÂÌÌ˚ÏË ÓÚ ‰‚Ûı ‡Á΢Ì˚ı Òڇ̈ËÈ Ó·Ì‡ÛÊÂÌËfl (ÒÏ. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔflÏ˚ÏË,
„Î. 4).
è‰Âθ̇fl ‰‡Î¸ÌÓÒÚ¸ ӷ̇ÛÊÂÌËfl – ‡ÒÒÚÓflÌËÂ, ‚ Ô‰Â·ı ÍÓÚÓÓ„Ó Ó¯Ë·ÍË
ÏÂÒÚÓÓÔ‰ÂÎÂÌËfl Ò˜ËÚ‡˛ÚÒfl ‰ÓÔÛÒÚËÏ˚ÏË ‰Îfl Ô‡ÍÚ˘ÂÒÍÓ„Ó ËÒÔÓθÁÓ‚‡ÌËfl ‰‡ÌÌ˚ı (ÒÏ. è‰Âθ̇fl ‰‡Î¸ÌÓÒÚ¸, „Î. 25).
ÑËÒڇ̈Ëfl ‚˚ÌÓÒ‡
Ç ‚ÓÈÌÂ Ò ÔËÏÂÌÂÌËÂÏ fl‰ÂÌÓ„Ó ÓÛÊËfl ‰ËÒڇ̈ËÂÈ ‚˚ÌÓÒ‡ ̇Á˚‚‡ÂÚÒfl ‚Â΢Ë̇, ̇ ÍÓÚÓÛ˛ ‡Ò˜ÂÚÌ˚È (ËÎË ‡θÌ˚È) ˝ÔˈÂÌÚ ‚Á˚‚‡ ÓÚÍÎÓÌËÎÒfl ÓÚ ˆÂÌÚ‡ ‡ÈÓ̇ (ËÎË ÚÓ˜ÍË) ˆÂÎË.
Ç ‚˚˜ËÒÎËÚÂθÌ˚ı ÓÔÂ‡ˆËflı ‚˚ÌÓÒÓÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ Ì‡˜‡Î‡ ÒÚÓÍ˚
‰Ó ÍÓ̈‡ Û˜‡ÒÚ͇ ÒÚÓÍË. ÑÎfl ‡‚ÚÓÏÓ·ËÎfl ‚˚ÌÓÒÓÏ ÍÓÎÂÒ‡ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂ
ÓÚ ÔÓ‚ÂıÌÓÒÚË ÒÚÛÔˈ˚ ‰Ó ÓÒ‚ÓÈ ÎËÌËË ÍÓÎÂÒ‡.
ê‡ÒÒÚÓflÌË ۉ‡ÎÂÌÌÓÒÚË
ê‡ÒÒÚÓflÌË ۉ‡ÎÂÌÌÓÒÚË – ‡ÒÒÚÓflÌË ӷ˙ÂÍÚ‡ ÓÚ ËÒÚÓ˜ÌË͇ ‚Á˚‚‡ (‚ ·Ó‚˚ı
‰ÂÈÒÚ‚Ëflı) ËÎË ÓÚ ÚÓ˜ÍË Ì‡‚‰ÂÌËfl ·ÁÂÌÓ„Ó ÎÛ˜‡ (‚ ÔÓËÁ‚Ó‰Òڂ ·ÁÂÌ˚ı χÚÂˇÎÓ‚). Ç ÏÂı‡ÌËÍÂ Ë ˝ÎÂÍÚÓÌËÍ ÓÌÓ fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ, ÓÚ‰ÂÎfl˛˘ËÏ Ó‰ÌÛ
˜‡ÒÚ¸ ÓÚ ‰Û„ÓÈ; ̇ÔËÏÂ, ËÁÓÎËÛ˛˘ËÏ ‡ÒÒÚÓflÌËÂÏ (ÒÏ. ·ÂÁÓÔ‡ÒÌÓ ‡ÒÒÚÓflÌËÂ)
ËÎË ‡ÒÒÚÓflÌËÂÏ ÓÚ ÌÂÍÓÌÚ‡ÍÚÌÓ„Ó ‰‡Ú˜Ë͇ ‰ÎËÌ˚ ‰Ó ËÁÏÂflÂÏÓÈ Ï‡ÚÂˇθÌÓÈ
ÔÓ‚ÂıÌÓÒÚË.
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
415
ê‡ÒÒÚÓflÌË Ó͇ÈÏÎÂÌËfl
é·˚˜ÌÓ ‡ÒÒÚÓflÌËÂÏ Ó͇ÈÏÎÂÌËfl ̇Á˚‚‡ÂÚÒfl ‰ÎË̇ ËÌÚÂ‚‡Î‡ ÏÂÊ‰Û Ó͇ÈÏÎÂÌËflÏË (̇ÔËÏÂ, ÚÂÏÌ˚Â Ë Ò‚ÂÚÎ˚ ӷ·ÒÚË Ì‡ ËÌÚÂÙÂÂ̈ËÓÌÌÓÏ ÛÁÓ ҂ÂÚÓ‚˚ı
ÎÛ˜ÂÈ; ÍÓÏÔÓÌÂÌÚ˚, ̇ ÍÓÚÓ˚ ‡ÒÔ‡‰‡ÂÚÒfl ÒÔÂÍÚ‡Î¸Ì‡fl ÎËÌËfl ÔÓ‰ ‚ÓÁ‰ÂÈÒÚ‚ËÂÏ
˝ÎÂÍÚ˘ÂÒÍÓ„Ó ËÎË Ï‡„ÌËÚÌÓ„Ó ÔÓÎfl – ˝ÙÙÂÍÚ˚ ëÚ‡͇ Ë áËχ̇ ‚ ÙËÁËÍÂ).
èË ˝ÚÓÏ, Ò͇ÊÂÏ, ‰Îfl ÌÂÍÓÌÚ‡ÍÚÌÓ„Ó ËÁÏÂËÚÂÎfl ‰ÎËÌ˚ ‡ÒÒÚÓflÌËÂÏ Ó͇ÈÏλ
ÎÂÌËfl fl‚ÎflÂÚÒfl ‚Â΢Ë̇
, „‰Â λ – ‰ÎË̇ ‚ÓÎÌ˚ ·ÁÂ‡ Ë α – Û„ÓÎ ÎÛ˜‡.
2 sin α
Ç Ó·Î‡ÒÚË ‡Ì‡ÎËÁ‡ ËÁÓ·‡ÊÂÌËÈ ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÊ ·ÓÛÌÓ‚ÒÍÓ ‡ÒÒÚÓflÌËÂ
Ó͇ÈÏÎÂÌËfl ÏÂÊ‰Û ·Ë̇Ì˚ÏË ËÁÓ·‡ÊÂÌËflÏË (ÒÏ. ê‡ÒÒÚÓflÌË ÔËÍÒÂÎfl, „Î. 21).
ÑËÒڇ̈ËÓÌÌ˚È ‚Á˚‚‡ÚÂθ
ÑËÒڇ̈ËÓÌÌ˚È ‚Á˚‚‡ÚÂθ ÓÒÛ˘ÂÒÚ‚ÎflÂÚ ÔÓ‰˚‚ ‚Á˚‚˜‡ÚÓ„Ó ‚¢ÂÒÚ‚‡ ‡‚ÚÓχÚ˘ÂÒÍË ÔË ‰ÓÒÚ‡ÚÓ˜ÌÓÏ Ò·ÎËÊÂÌËË Ò ˆÂθ˛.
чژËÍË ·ÎËÊÌÂÈ ÎÓ͇ˆËË
чژËÍË ·ÎËÊÌÂÈ ÎÓ͇ˆËË Ô‰ÒÚ‡‚Îfl˛Ú ÒÓ·ÓÈ ‡ÁÌÓÓ·‡ÁÌ˚ ÛθÚ‡Á‚ÛÍÓ‚˚Â,
·ÁÂÌ˚Â, ÙÓÚÓ˝ÎÂÍÚ˘ÂÒÍËÂ Ë ÓÔÚÓ‚ÓÎÓÍÓÌÌ˚ ‰‡Ú˜ËÍË, Ô‰̇Á̇˜ÂÌÌ˚ ‰Îfl
ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËfl ÓÚ Ò‡ÏÓ„Ó ‰‡Ú˜Ë͇ ‰Ó Ó·˙ÂÍÚ‡ (ˆÂÎË).
ë‡‚ÌËÚ ÒÓ ÒÎÂ‰Û˛˘ËÏ ÔÓÒÚ˚Ï ÒÔÓÒÓ·ÓÏ ÓˆÂÌÍË ‡ÒÒÚÓflÌËfl (‰Îfl ‡ÒÔÓÁ̇‚‡ÌËfl ‰Ó·˚˜Ë), ËÒÔÓθÁÛÂÏ˚Ï ÌÂÍÓÚÓ˚ÏË Ì‡ÒÂÍÓÏ˚ÏË: ÒÍÓÓÒÚ¸ ‰‚ËÊÂÌËÈ „ÓÎÓ‚˚
·Ó„ÓÏÓ· ‚ ÏÓÏÂÌÚ ‚ÒχÚË‚‡ÌËfl ÓÒÚ‡ÂÚÒfl ÔÓÒÚÓflÌÌÓÈ Ë, ÒΉӂ‡ÚÂθÌÓ, ‡ÒÒÚÓflÌË ‰Ó ˆÂÎË ·Û‰ÂÚ Ó·‡ÚÌÓ ÔÓÔÓˆËÓ̇θÌÓ ÒÍÓÓÒÚË ËÁÓ·‡ÊÂÌËfl ̇ ÒÂÚ˜‡ÚÍÂ.
íÓ˜ÌÓ ËÁÏÂÂÌË ‡ÒÒÚÓflÌËfl
ê‡Á¯ÂÌË íùå (ÔÓ҂˜˂‡˛˘Â„Ó ˝ÎÂÍÚÓÌÌÓ„Ó ÏËÍÓÒÍÓÔ‡) ÒÓÒÚ‡‚ÎflÂÚ ÓÍÓ–10
ÎÓ 0,2 ÌÏ (2 × 10 Ï), Ú.Â. ÚËÔÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ‡ÚÓχÏË ‚ Ú‚Â‰ÓÏ
ÚÂÎÂ. í‡ÍÓ ‡Á¯ÂÌË ‚ 1000 ‡Á ·Óθ¯Â, ˜ÂÏ Û ÓÔÚ˘ÂÒÍÓ„Ó ÏËÍÓÒÍÓÔ‡, Ë ÔÓ˜ÚË
‚ 500 Ú˚Ò. ‡Á ·Óθ¯Â, ˜ÂÏ Û ˜ÂÎӂ˜ÂÒÍÓ„Ó „·Á‡. é‰Ì‡ÍÓ ‚ ÔÓΠÁÂÌËfl ˝ÎÂÍÚÓÌÌÓ„Ó ÏËÍÓÒÍÓÔ‡ ÏÓ„ÛÚ ÔÓÔ‡ÒÚ¸ ÚÓθÍÓ Ì‡ÌÓ˜‡ÒÚˈ˚.
åÂÚÓ‰˚, ÓÒÌÓ‚‡ÌÌ˚ ̇ ËÁÏÂÂÌËË ‰ÎËÌ˚ ‚ÓÎÌ˚ ·ÁÂÌÓ„Ó ËÁÎÛ˜ÂÌËfl, ÔËÏÂÌfl˛ÚÒfl ‰Îfl ÓÔ‰ÂÎÂÌËfl χÍÓÒÍÓÔ˘ÂÒÍËı ‡ÒÒÚÓflÌËÈ, ÍÓÚÓ˚ ÌÂθÁfl ËÁÏÂËÚ¸
Ò ÔÓÏÓ˘¸˛ ˝ÎÂÍÚÓÌÌÓ„Ó ÏËÍÓÒÍÓÔ‡. çÂÚÓ˜ÌÓÒÚ¸ ËÁÏÂÂÌËÈ Ú‡ÍËÏË ÒÔÓÒÓ·‡ÏË
‡‚̇ ÏËÌËÏÛÏ ‰ÎËÌ ‚ÓÎÌ˚ Ò‚ÂÚ‡, Ú.Â. ÔÓfl‰Í‡ 633 ÌÏ.
ëÓ‚ÂÏÂÌ̇fl ‡‰‡ÔÚ‡ˆËfl ËÌÚÂÙÂÓÏÂÚ‡ Ë–èÂÓ (‰Îfl ËÁÏÂÂÌËfl ˜‡ÒÚÓÚ˚
Ò‚ÂÚ‡, Á‡Íβ˜ÂÌÌÓ„Ó ÏÂÊ‰Û ‰‚ÛÏfl ÁÂ͇·ÏË Ò ‚˚ÒÓÍÓÈ ÓÚ‡Ê‡ÚÂθÌÓÈ ÒÔÓÒÓ·ÌÓÒÚ¸˛) ‚ ‚ˉ ·ÁÂÌÓ„Ó ÛÒÚÓÈÒÚ‚‡ ÔÓÁ‚ÓÎflÂÚ ËÁÏÂflÚ¸ ÓÚÌÓÒËÚÂθÌÓ ·Óθ¯ËÂ
‡ÒÒÚÓflÌËfl (‰Ó 5 ÒÏ) Ò ÔÓ„¯ÌÓÒÚ¸˛ ‚ÒÂ„Ó 0,01 ÌÏ.
ꇉËÓËÁÏÂÂÌË ‡ÒÒÚÓflÌËfl
é·ÓÛ‰Ó‚‡ÌË ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ (DME) – ‡˝Ó̇‚Ë„‡ˆËÓÌ̇fl ‡ÔÔ‡‡ÚÛ‡ ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ Í‡Í ‚ÂÏÂÌË ÔÓıÓʉÂÌËfl ìäÇ Ò˄̇ÎÓ‚ ‰Ó ÓÚ‚ÂÚ˜Ë͇ (‡‰ËÓÎÓ͇ˆËÓÌÌÓ„Ó ÔËÂÏÓÓÚ‚ÂÚ˜Ë͇, „ÂÌÂËÛ˛˘Â„Ó ÓÚ‚ÂÚÌ˚È Ò˄̇Π̇
Ô‡‚ËθÌ˚È Á‡ÔÓÒ) Ë Ó·‡ÚÌÓ. ÄÔÔ‡‡ÚÛ‡ DME ÒÍÓ ‚ÒÂ„Ó ·Û‰ÂÚ ‚˚ÚÂÒÌÂ̇
„ÎÓ·‡Î¸Ì˚ÏË ÒÔÛÚÌËÍÓ‚˚ÏË Ì‡‚Ë„‡ˆËÓÌÌ˚ÏË ÒËÒÚÂχÏË: ÒËÒÚÂÏÓÈ GPS Ë Ô·ÌËÛÂÏ˚Ï ‚‚Ó‰ÓÏ ‚ ÒÚÓÈ ‚ 2009 „. ÒËÒÚÂÏ É‡ÎËÎÂÓ (ÒÚ‡Ì Ö‚ÓÔÂÈÒÍÓ„Ó ëÓ˛Á‡) Ë
ÉãéëçÄëë (êÓÒÒËfl/à̉Ëfl).
ëËÒÚÂχ GPS („ÎÓ·‡Î¸Ì‡fl ÒËÒÚÂχ ̇‚Ë„‡ˆËË Ë ÓÔ‰ÂÎÂÌËfl ÏÂÒÚÓÔÓÎÓÊÂÌËfl)
fl‚ÎflÂÚÒfl ‡‰ËÓ̇‚Ë„‡ˆËÓÌÌÓÈ ÒËÒÚÂÏÓÈ, ÔÓÁ‚ÓÎfl˛˘ÂÈ Í‡Ê‰ÓÏÛ ÓÔ‰ÂÎflÚ¸ „Ó
ÏÂÒÚÓÔÓÎÓÊÂÌË ̇ ÁÂÏÌÓÏ ¯‡ (‚ β·Ó ‚ÂÏfl Ë ‚ β·ÓÏ ÏÂÒÚÂ). Ç ÒÓÒÚ‡‚ ÒËÒÚÂÏ˚ ‚ıÓ‰flÚ 24 ÒÔÛÚÌË͇ Ë Ì‡ÁÂÏÌ˚ Ò‰ÒÚ‚‡ ÛÔ‡‚ÎÂÌËfl, ̇ıÓ‰fl˘ËÂÒfl ‚ ‚‰ÂÌËË
416
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ÏËÌËÒÚÂÒÚ‚‡ Ó·ÓÓÌ˚ ëòÄ. É‡Ê‰‡ÌÒÍË ÔÓθÁÓ‚‡ÚÂÎË ÔÓÎÛ˜‡˛Ú ‰ÓÒÚÛÔ Í ÒËÒÚÂÏÂ, ÔÓÍÛÔ‡fl ÒÔˆˇÎËÁËÓ‚‡ÌÌ˚È ÔËÂÏÌËÍ Ò˄̇ÎÓ‚ GPS, ÍÓÚÓ˚È Ó·ÂÒÔ˜˂‡ÂÚ
ÓÔ‰ÂÎÂÌË ÏÂÒÚÓÔÓÎÓÊÂÌËfl Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó 10 Ï.
èÒ‚‰Ó‡ÒÒÚÓflÌË GPS ÓÚ ÔËÂÏÌË͇ ‰Ó ÒÔÛÚÌË͇ – ˝ÚÓ ‚ÂÏfl ÔÓıÓʉÂÌËfl
‡‰ËÓÒ˄̇· ÏÂÚÓÍ ‚ÂÏÂÌË ÓÚ ÒÔÛÚÌË͇ ‰Ó ÔËÂÏÌË͇, ÛÏÌÓÊÂÌÌÓ ̇ ÒÍÓÓÒÚ¸
‡ÒÔÓÒÚ‡ÌÂÌËfl ‡‰ËÓ‚ÓÎÌ (ÓÍÓÎÓ ÒÍÓÓÒÚË Ò‚ÂÚ‡). éÌÓ Ì‡Á˚‚‡ÂÚÒfl ÔÒ‚‰Ó‡ÒÒÚÓflÌËÂÏ, Ò Û˜ÂÚÓÏ ÌÂËÁ·ÂÊÌÓÈ ÔÓ„¯ÌÓÒÚË ‚ ‡Ò˜ÂÚ‡ı: ˜‡Ò˚ ÔËÂÏÌË͇ ‰‡ÎÂÍÓ
ÌÂ Ú‡Í ÚÓ˜Ì˚, Í‡Í Ò‚ÂıÚÓ˜Ì˚ ˜‡Ò˚ ̇ ÒÔÛÚÌËÍÂ. èËÂÏÌËÍ GPS ‡ÒÒ˜ËÚ˚‚‡ÂÚ
Ò‚Ó ÏÂÒÚÓÔÓÎÓÊÂÌË (ÔÓ ¯ËÓÚÂ, ‰Ó΄ÓÚÂ, ‚˚ÒÓÚÂ Ë Ú.‰.) ÔÓÒ‰ÒÚ‚ÓÏ ¯ÂÌËfl
ÒËÒÚÂÏ˚ Û‡‚ÌÂÌËÈ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÔÒ‚‰Ó‡ÒÒÚÓflÌËÈ, ÔÓÎÛ˜‡ÂÏ˚ı ÏËÌËÏÛÏ ÓÚ
˜ÂÚ˚Âı ÒÔÛÚÌËÍÓ‚, ÏÂÒÚÓÔÓÎÓÊÂÌË ÍÓÚÓ˚ı Á‡‡Ì ËÁ‚ÂÒÚÌÓ (ÒÏ. ê‡ÒÒÚÓflÌËfl
‡‰ËÓÒ‚flÁË, „Î. 25).
чθÌÓÒÚ¸ ÔÂ‰‡˜Ë
чθÌÓÒÚ¸ ÔÂ‰‡˜Ë – ÓÔ‰ÂÎÂÌÌÓ ‰Îfl ÍÓÌÍÂÚÌÓÈ (‚ÓÎÓÍÓÌÌÓ-ÓÔÚ˘ÂÒÍÓÈ,
ÔÓ‚Ó‰ÌÓÈ, ·ÂÒÔÓ‚Ó‰ÌÓÈ Ë Ú.Ô.) ÒËÒÚÂÏ˚ ÔÂ‰‡˜Ë ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ fl‚ÎflÂÚÒfl
χÍÒËχθÌ˚Ï ‚ ÒÏ˚ÒΠ‰ÓÔÛÒÚËÏÓÒÚË ÛÓ‚Ìfl ÔÓÚÂ¸ ‚ ÔÓÎÓÒ ÔÓÔÛÒ͇ÌËfl.
ÑÎfl ÍÓÌÍÂÚÌÓÈ ÒÂÚË ÍÓÌÚ‡ÍÚÓ‚, ÍÓÚÓ‡fl ÏÓÊÂÚ ÔÂ‰‡‚‡Ú¸ ËÌÙÂÍˆË˛ (ËÎË,
Ò͇ÊÂÏ, ˉ² ‚ ÒËÒÚÂÏ ۷ÂʉÂÌËÈ, ‡ÒÒχÚË‚‡ÂÏÓÈ Í‡Í ËÏÏÛÌ̇fl ÒËÒÚÂχ), ‰‡Î¸ÌÓÒÚ¸˛ ÔÂ‰‡˜Ë fl‚ÎflÂÚÒfl ÏÂÚË͇ ÔÛÚË „‡Ù‡ ·‡ ÍÓÚÓÓ„Ó ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú
ÒÓ·˚ÚËflÏ ËÌÙˈËÓ‚‡ÌËfl ˜ÂÂÁ ̇˷ÓΠ·ÎËÁÍÓ„Ó Ó·˘Â„Ó Ô‰͇ Ë ÏÂÊ‰Û Á‡‡ÊÂÌÌ˚ÏË Ë̉˂ˉÛÛχÏË.
àÌÒÚÛÏÂÌڇθÌ˚ ‡ÒÒÚÓflÌËfl
ê‡ÒÒÚÓflÌË „ÛÁ‡ – ‡ÒÒÚÓflÌË (̇ ˚˜‡„Â) ÓÚ ˆÂÌÚ‡ ‚‡˘ÂÌËfl ‰Ó „ÛÁ‡.
ê‡ÒÒÚÓflÌË ÔËÎÓÊÂÌÌÓÈ ÒËÎ˚ (ËÎË ‡ÒÒÚÓflÌË ÒÓÔÓÚË‚ÎÂÌËfl): ‡ÒÒÚÓflÌËÂ
(̇ ˚˜‡„Â) ÓÚ ˆÂÌÚ‡ ‚‡˘ÂÌËfl ‰Ó ÚÓ˜ÍË ÔËÎÓÊÂÌËfl ÒËÎ˚.
ä-‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÓÚ ‚̯ÌÂÈ ÌËÚÍË ÔÓ͇ÚÌÓ„Ó ÒڇθÌÓ„Ó ÔÛÚ‡ ‰Ó
¯ÂÈÍË „‡ÎÚÂÎË ÔÓ͇ÚÌÓ„Ó ÔÓÙËÎfl.
ê‡ÒÒÚÓflÌË ‰Ó Ó·ÂÁÌÓÈ ÍÓÏÍË – ‡ÒÒÚÓflÌË ÓÚ ·ÓÎÚ‡, ‚ËÌÚ‡ ËÎË „‚ÓÁ‰fl ‰Ó ÍÓ̈‡ (‰ÓÒÍË) ˝ÎÂÏÂÌÚ‡ ÍÓÌÒÚÛ͈ËË. ê‡ÒÒÚÓflÌË ‰Ó Í‡fl – ‡ÒÒÚÓflÌË ÓÚ ·ÓÎÚ‡, ‚ËÌÚ‡
ËÎË „‚ÓÁ‰fl ‰Ó Í‡fl (‰ÓÒÍË) ˝ÎÂÏÂÌÚ‡ ÍÓÌÒÚÛ͈ËË.
ê‡ÒÒÚÓflÌËfl ÁÛ·˜‡Ú˚ı ÔÂ‰‡˜
ÑÎfl ‰‚Ûı ¯ÂÒÚÂÌÂÈ ‚ Á‡ˆÂÔÎÂÌËË, ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ëı ˆÂÌÚ‡ÏË Ì‡Á˚‚‡ÂÚÒfl
ÏÂÊÓÒ‚˚Ï ‡ÒÒÚÓflÌËÂÏ. çËÊ ÔË‚Ó‰flÚÒfl ‰Û„Ë ‡ÒÒÚÓflÌËfl, ËÒÔÓθÁÛÂÏ˚ ‚
ÓÒÌÓ‚Ì˚ı ÙÓÏÛ·ı ÁÛ·˜‡Ú˚ı ÔÂ‰‡˜ (Ú‡ÍËı Í‡Í b = a + c).
Ç˚ÒÓÚ‡ „ÓÎÓ‚ÍË ÁÛ·‡ ¯ÂÒÚÂÌË (‡) – ‡‰Ë‡Î¸ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÓÍÛÊÌÓÒÚ¸˛ ˆÂÌÚÓ‚ ¯‡ÌËÓ‚ (ÓÍÛÊÌÓÒÚ¸˛, ‡‰ËÛÒ ÍÓÚÓÓÈ ‡‚ÂÌ ‡ÒÒÚÓflÌ˲ ÓÚ ÓÒË
¯ÂÒÚÂÌË ‰Ó ÔÓÎ˛Ò‡ Á‡ˆÂÔÎÂÌËfl) Ë ‚Â¯ËÌÓÈ ÁÛ·‡.
Ç˚ÒÓÚ‡ ÌÓÊÍË ÁÛ·‡ ÁÛ·˜‡ÚÓ„Ó ÍÓÎÂÒ‡ (b) – ‡‰Ë‡Î¸ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰ÌÓÏ
‚Ô‡‰ËÌ˚ ÏÂÊ‰Û ÁÛ·¸flÏË ¯ÂÒÚÂÌË Ë ‚Â¯ËÌÓÈ ÁÛ·‡.
á‡ÁÓ (Ò) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚Â¯ËÌÓÈ ÁÛ·‡ Ë ‰ÌÓÏ ‚Ô‡‰ËÌ˚ ‰Û„ÓÈ ¯ÂÒÚÂÌË
‚ Á‡ˆÂÔÎÂÌËË.
èÓÎ̇fl ‚˚ÒÓÚ‡ – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚Â¯ËÌÓÈ ÁÛ·‡ Ë ‰ÌÓÏ ‚Ô‡‰ËÌ˚ ÏÂʉÛ
ÁÛ·¸flÏË.
ã˛ÙÚ – Ò‚Ó·Ó‰Ì˚È ıÓ‰ (¯‡Ú‡ÌËÂ) ÏÂÊ‰Û ÒÓÔflÊÂÌÌ˚ÏË ÁÛ·¸flÏË ¯ÂÒÚÂÂÌ.
ê‡ÒÒÚÓflÌË ÛÚ˜ÍË
ê‡ÒÒÚÓflÌË ÛÚ˜ÍË – Í‡Ú˜‡È¯ËÈ ÔÛÚ¸ ÔÓ ÔÓ‚ÂıÌÓÒÚË ËÁÓÎflˆËÓÌÌÓ„Ó Ï‡ÚÂˇ·
ÏÂÊ‰Û ‰‚ÛÏfl ÚÓÍÓÔÓ‚Ó‰fl˘ËÏË ˝ÎÂÏÂÌÚ‡ÏË.
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
417
ÅÂÁÓÔ‡ÒÌÓ ‡ÒÒÚÓflÌË – Í‡Ú˜‡È¯Â (ÔÓ ÔflÏÓÈ ÎËÌËË) ‡ÒÒÚÓflÌË ÏÂʉÛ
‰‚ÛÏfl ÚÓÍÓÔÓ‚Ó‰fl˘ËÏË ˝ÎÂÏÂÌÚ‡ÏË.
ê‡ÒÒÚÓflÌË ÔÂÂÌÓÒ‡ ‡ÒÚ‚ÓËÚÂÎfl
Ç ıÓχÚÓ„‡ÙËË ‡ÒÒÚÓflÌËÂÏ ÔÂÂÌÓÒ‡ ‡ÒÚ‚ÓËÚÂÎfl ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂ,
ÔÓıÓ‰ËÏÓ ÙÓÌÚÓÏ ÊˉÍÓÒÚË ËÎË „‡Á‡, ÔÓ‰‡˛˘Â„ÓÒfl ‚ ıÓχÚÓ„‡Ù˘ÂÒÍÛ˛
ÛÒÚ‡ÌÓ‚ÍÛ ‰Îfl ˝Î˛ËÓ‚‡ÌËfl (ÔÓˆÂÒÒ‡, ËÒÔÓθÁÛ˛˘Â„Ó ‡ÒÚ‚Ófl˛˘Ë ‚¢ÂÒÚ‚‡
‰Îfl ËÁ‚ΘÂÌËfl ‡‰ÒÓ·ËÓ‚‡ÌÌÓ„Ó ˝ÎÂÏÂÌÚ‡ ËÁ Ú‚Â‰ÓÈ Ò‰˚).
ÑËÒڇ̈Ëfl ‡ÒÔ˚ÎÂÌËfl
ÑËÒڇ̈ËÂÈ ‡ÒÔ˚ÎÂÌËfl ̇Á˚‚‡ÂÚÒfl ÛÒÚ‡ÌÓ‚ÎÂÌÌÓ ÚÂıÌÓÎӄ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
ÏÂÊ‰Û ÓÍÓ̘ÌÓÒÚ¸˛ ÒÓÔ· ÏÂÚ‡ÎÎËÁ‡ˆËÓÌÌÓ„Ó ‡ÔÔ‡‡Ú‡ Ë Ì‡Ô˚ÎflÂÏÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛.
ÇÂÚË͇θÌÓ ˝¯ÂÎÓÌËÓ‚‡ÌËÂ
ÇÂÚË͇θÌ˚Ï ˝¯ÂÎÓÌËÓ‚‡ÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰ÌÓÏ ÔÓÎfl
ÙËθÚ‡ˆËË Í‡Ì‡ÎËÁ‡ˆËÓÌÌÓÈ Ó˜ËÒÚÌÓÈ ÒËÒÚÂÏ˚ Ë ÎÂʇ˘ËÏ ÌËÊ „ÓËÁÓÌÚÓÏ
„ÛÌÚÓ‚˚ı ‚Ó‰. ùÚÓ ˝¯ÂÎÓÌËÓ‚‡ÌË ÔÓÁ‚ÓÎflÂÚ Û‰‡ÎflÚ¸ Ô‡ÚÓ„ÂÌÌ˚ ÏËÍÓÓ„‡ÌËÁÏ˚ (‚ËÛÒ˚, ·ÓÎÂÁÌÂÚ‚ÓÌ˚ ·‡ÍÚÂËË Ë Ú.Ô.) ÔÓÒ‰ÒÚ‚ÓÏ ÙËθÚ‡ˆËË ÒÚÓ˜Ì˚ı
‚Ó‰ ˜ÂÂÁ ÔÓ˜‚Û, ÔÂʉ ˜ÂÏ ÓÌË ‰ÓÒÚË„ÌÛÚ „ÛÌÚÓ‚˚ı ‚Ó‰.
ê‡ÒÒÚÓflÌË Á‡˘ËÚÌ˚ı ÏÂÓÔËflÚËÈ
ê‡ÒÒÚÓflÌË Á‡˘ËÚÌ˚ı ÏÂÓÔËflÚËÈ – ‡ÒÒÚÓflÌË ‚ ̇Ô‡‚ÎÂÌËË ‚ÂÚ‡ ÓÚ ÏÂÒÚ‡
ÔÓËÒ¯ÂÒÚ‚Ëfl (ËÁÎË‚ ̇ ÔÓ‚ÂıÌÓÒÚ¸ ÓÔ‡ÒÌ˚ı ÔÓ‰ÛÍÚÓ‚, ‚˚Á˚‚‡˛˘Ëı ÓÚ‡‚ÎÂÌËÂ
ÔË ‚‰˚ı‡ÌËË), ‚ Ô‰Â·ı ÍÓÚÓÓ„Ó Î˛‰Ë ÏÓ„ÛÚ ÔÓÎÛ˜ËÚ¸ ÔÓ‡ÊÂÌËÂ.
28.4. èêéóàÖ êÄëëíéüçàü
ê‡ÒÒÚÓflÌËfl ‰‡Î¸ÌÓÒÚË
ê‡ÒÒÚÓflÌËflÏË ‰‡Î¸ÌÓÒÚË Ì‡Á˚‚‡˛ÚÒfl Ô‡ÍÚ˘ÂÒÍË ‡ÒÒÚÓflÌËfl, Û͇Á˚‚‡˛˘ËÂ
χÍÒËχθÌÓ ‡ÒÒÚÓflÌË ˝ÙÙÂÍÚË‚ÌÓ„Ó ‰ÂÈÒÚ‚Ëfl, ̇ÔËÏÂ, Ôӷ„ ‡‚ÚÓÏÓ·ËÎfl
·ÂÁ ‰ÓÁ‡Ô‡‚ÍË ÚÓÔÎË‚ÓÏ, ‰‡Î¸ÌÓÒÚ¸ ÔÓÎÂÚ‡ ÔÛÎË, ‚ˉËÏÓÒÚË, Ô‰ÂÎÓ‚ ‰‚ËÊÂÌËfl,
Û˜‡ÒÚ͇ Ó·ËÚ‡ÌËfl ÊË‚ÓÚÌÓ„Ó Ë Ú.Ô.
Ç ˜‡ÒÚÌÓÒÚË, ‡ÒÒÚÓflÌË ‡ÒÔÓÒÚ‡ÌËfl ‚ ·ËÓÎÓ„ËË ÏÓÊÂÚ ÓÚÌÓÒËÚ¸Òfl Í ‡Á·‡Ò˚‚‡Ì˲ ÒÂÏflÌ ÔÓÒ‰ÒÚ‚ÓÏ ÓÔ˚ÎÂÌËfl, ̇ڇθÌÓÏÛ ‡ÒÒÂÎÂÌ˲, ÔÎÂÏÂÌÌÓÏÛ
‡Á‚‰ÂÌ˲, ÏË„‡ˆËÓÌÌÓÏÛ ‡ÒÔÓÒÚ‡ÌÂÌ˲ Ë Ú.Ô.
чθÌÓÒÚ¸ ‚ÓÁ‰ÂÈÒÚ‚Ëfl Ù‡ÍÚÓÓ‚ ËÒ͇ (ÚÓÍÒ˘ÂÒÍËı ‚¢ÂÒÚ‚, ‚Á˚‚Ó‚ Ë Ú.Ô.)
Û͇Á˚‚‡ÂÚ ÏËÌËχθÌÓ ·ÂÁÓÔ‡ÒÌÓ ‰ËÒڇ̈ËÓ‚‡ÌËÂ. чθÌÓÒÚ¸ ‰ÂÈÒÚ‚Ëfl ͇ÍÓ„ÓÎË·Ó ÛÒÚÓÈÒÚ‚‡ (̇ÔËÏÂ, ÔÛθڇ ‰ËÒڇ̈ËÓÌÌÓ„Ó ÛÔ‡‚ÎÂÌËfl), Û͇Á‡Ì̇fl ‚ ÒÔˆËÙË͇ˆËË ÔÓËÁ‚Ó‰ËÚÂÎfl ‚ ͇˜ÂÒÚ‚Â ÓËÂÌÚËÓ‚ÍË ‰Îfl ÔÓÚ·ËÚÂÎfl, ̇Á˚‚‡ÂÚÒfl
‡·Ó˜ËÏ ‡ÒÒÚÓflÌËÂÏ (ÌÓÏË̇θÌÓÈ ‰‡Î¸ÌÓÒÚ¸˛ ËÁÏÂÂÌËfl ‰‡Ú˜Ë͇). å‡ÍÒËχθÌÓ ‡ÒÒÚÓflÌË ‡ÍÚË‚‡ˆËË ÒÂÌÒÓÌÓ„Ó ‚Íβ˜‡ÚÂÎfl ̇Á˚‚‡ÂÚÒfl ‰‡Î¸ÌÓÒÚ¸˛ ‚Íβ˜ÂÌËfl. ÑÎfl ÚÓ„Ó ˜ÚÓ·˚ ÔÓ‰˜ÂÍÌÛÚ¸ ·Óθ¯Û˛ ‰‡Î¸ÌÓÒÚ¸ ‰ÂÈÒÚ‚Ëfl, ÌÂÍÓÚÓ˚Â
ÔÓËÁ‚Ó‰ËÚÂÎË ‚˚ÌÓÒflÚ ˝ÚÛ ı‡‡ÍÚÂËÒÚËÍÛ ‚ ̇Á‚‡ÌË ÔÓ‰ÛÍÚ‡: ̇ÔËÏÂ, Ïfl˜ËÍË Ô‰ÂθÌÓÈ ‰‡Î¸ÌÓÒÚË ‰Îfl „Óθه (·ËÚ‡ ‰Îfl ÒÓÙÚ·Ó·, ÒÔËÌÌËÌ„Ë Ë Ú.Ô.).
ê‡ÒÒÚÓflÌË Á‡ÁÓ‡
ëÎÂ‰Û˛˘Ë ÔËÏÂ˚ ËÎβÒÚËÛ˛Ú Ó·¯ËÌ˚È Í·ÒÒ ËÒÔÓθÁÛÂÏ˚ı ̇ Ô‡ÍÚËÍ ‡ÒÒÚÓflÌËÈ, Û͇Á˚‚‡˛˘Ëı ̇ ÏËÌËχθÌÓ ‡ÒÒÂflÌË (ÒÏ. åËÌËχθÌÓ ‡ÒÒÚÓflÌË ‚ ÍÓ‰ËÓ‚‡ÌËË. ê‡ÒÒÚÓflÌË ÔÂ‚Ó„Ó ÒÓÒ‰‡ ‰Îfl ‡ÚÓÏÓ‚ ‚ Ú‚Â‰˚ı Ú·ı
Ë Ú.Ô.).
418
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ê‡ÒÒÚÓflÌË ÔÓ ÙÓÌÚÛ – ÛÒÚ‡ÌÓ‚ÎÂÌÌÓ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË ‚ ÏÓÒÍËı
ÏËÎflı ÏÂÊ‰Û Ò‡ÏÓÎÂÚ‡ÏË ‚ ‚ÓÁ‰ÛıÂ.
ê‡ÒÒÚÓflÌË ËÁÓÎflˆËË –ÛÒÚ‡ÌÓ‚ÎÂÌÌÓ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ (Ò Û˜ÂÚÓÏ ‚ÓÁÏÓÊÌÓÒÚË ÓÔ˚ÎÂÌËfl) ‰ÓÎÊÌÓ ·˚Ú¸ ÏÂÊ‰Û ÔÓÒ‚‡ÏË ‡ÁÌӂˉÌÓÒÚÂÈ Ó‰ÌÓ„Ó
Ë ÚÓ„Ó Ê ‚ˉ‡ ÍÛθÚÛ, Ò ÚÂÏ ˜ÚÓ·˚ ÒÓı‡ÌËÚ¸ („ÂÌÂÚ˘ÂÒÍÛ˛) ˜ËÒÚÓÚÛ ÒÂÏflÌ
(̇ÔËÏÂ, ‰Îfl ËÒ‡ ÓÌÓ ÒÓÒÚ‡‚ÎflÂÚ ÓÍÓÎÓ 3 Ï).
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÓÒÚ‡Ìӂ͇ÏË – ËÌÚÂ‚‡Î˚ ÏÂÊ‰Û ÓÒÚ‡Ìӂ͇ÏË ‡‚ÚÓ·ÛÒ‡; Ò‰Ì ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÓÒÚ‡Ìӂ͇ÏË ‚ ëòÄ (‰Îfl ΄ÍÓ„Ó ÂθÒÓ‚Ó„Ó Ú‡ÌÒÔÓÚ‡)
ÍÓηÎÂÚÒfl ÓÚ 500 Ï (‚ îË·‰ÂθÙËË) ‰Ó 1742 Ï (‚ ãÓÒ-Ä̉ÊÂÎÂÒÂ).
àÌÚÂ‚‡Î ÏÂÊ‰Û Á͇̇ÏË – ‡ÒÒÚÓflÌË ÏÂÊ‰Û Á͇̇ÏË ÍÓÌÍÂÚÌÓ„Ó ÍÓÏÔ¸˛ÚÂÌÓ„Ó ¯ËÙÚ‡.
èÓÓ„ ‡Á΢ËÏÓÒÚË (JND) – ÏÂθ˜‡È¯Â ËÁÏÂÌÂÌË ÏÂ˚ (‡ÒÒÚÓflÌËfl, ÔÓÎÓÊÂÌËfl Ë Ú.Ô.), ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸ ‰ÓÒÚÓ‚ÂÌÓ ‚ÓÒÔËÌflÚÓ (ÒÏ. ÑÓÔÛÒ͇ÂÏÓ ‡ÒÒÚÓflÌËÂ, „Î. 25).
åÂÚËÍË Í‡˜ÂÒÚ‚‡
ùÚÓ Ó·¯ËÌÓ ÒÂÏÂÈÒÚ‚Ó ÏÂ (ËÎË Òڇ̉‡ÚÓ‚ ËÁÏÂÂÌËÈ) ı‡‡ÍÚÂËÁÛÂÚ ‡Á΢Ì˚ ҂ÓÈÒÚ‚‡ Ó·˙ÂÍÚÓ‚ (Ó·˚˜ÌÓ Ó·ÓÛ‰Ó‚‡ÌËfl). èÓ ˝ÚÓÈ ÚÂÏËÌÓÎÓ„ËË Ì‡¯Ë
‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË fl‚Îfl˛ÚÒfl "ÏÂÚË͇ÏË ÔÓ‰Ó·ÌÓÒÚË", Ú.Â. ÏÂÚË͇ÏË (ÏÂ‡ÏË), ı‡‡ÍÚÂËÁÛ˛˘ËÏË ÒÚÂÔÂ̸ Ò‚flÁ‡ÌÌÓÒÚË ÏÂÊ‰Û ‰‚ÛÏfl Ó·˙ÂÍÚ‡ÏË. çËÊ Ô˂‰ÂÌ˚ ÔËÏÂ˚ Ú‡ÍËı ÏÂÚËÍ, ÍÓÚÓ˚ Ì ҂flÁ‡Ì˚ Ò Ó·ÓÛ‰Ó‚‡ÌËÂÏ Ë ·ÓÎÂÂ
‡·ÒÚ‡ÍÚÌ˚ ‚ ÒÏ˚ÒΠ͇˜ÂÒÚ‚ÂÌÌ˚ı ÓˆÂÌÓÍ.
åÂÚË͇ ÒËÏÏÂÚËË (Åı‡Ì‰ÊË Ë ‰., 1995) ÒÎÛÊËÚ ‰Îfl ËÁÏÂÂÌËfl ˝ÒÚÂÚËÍË „‡m
∑ (a1i + a2i + a3i )
 a + a2 i + ni  , „‰Â a – ˜ËÒÎÓ
 1i
a
2 
i =1
‚ÒÂı ‰Û„, m – ˜ËÒÎÓ ÓÒÂÈ ÒËÏÏÂÚËË Ë n ‰Îfl Á‡‰‡ÌÌÓÈ ÓÒË i – ˜ËÒÎÓ ‚Â¯ËÌ, ÍÓÚÓ˚Â
ÁÂ͇θÌÓ ÓÚÓ·‡Ê‡˛ÚÒfl ÓÚ ‰Û„Ëı ‚Â¯ËÌ ÓÚÌÓÒËÚÂθÌÓ i, ÚÓ„‰‡ Í‡Í a1i , a2i Ë a 3i
fl‚Îfl˛ÚÒfl ˜ËÒÎÓÏ ‰Û„, ÍÓÚÓ˚Â, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‰ÂÎflÚÒfl ÔÓÔÓÎ‡Ï ÔÓ‰ ÔflÏ˚ÏË
ۄ·ÏË ÓÒ¸˛ i, ÁÂ͇θÌÓ ÓÚÓ·‡Ê‡˛ÚÒfl ÓÚ ‰Û„ÓÈ ‰Û„Ë ÓÚÌÓÒËÚÂθÌÓ i Ë ÔÓıÓ‰flÚ
‚‰Óθ i. Ç Í‡˜ÂÒÚ‚Â ÓÒÂÈ ÒËÏÏÂÚËË ·ÂÛÚÒfl ‚Ò ÔflÏ˚ i Ò ni , a1i , a2i ≥ 1.
ã‡Ì‰¯‡ÙÚÌ˚ ÏÂÚËÍË ËÒÔÓθÁÛ˛ÚÒfl, ̇ÔËÏÂ, ‰Îfl ÓˆÂÌÍË Û˜‡ÒÚÍÓ‚ ÓÁÂÎÂÌÂÌËfl ÍÓÌÍÂÚÌÓ„Ó Î‡Ì‰¯‡ÙÚ‡ Í‡Í ÔÎÓÚÌÓÒÚË Û˜‡ÒÚÍÓ‚ (ÍÓ΢ÂÒÚ‚‡ Ú‡ÍËı Û˜‡ÒÚÍÓ‚
̇ Í‚‡‰‡ÚÌ˚È ÍËÎÓÏÂÚ), ÔÎÓÚÌÓÒÚË Í‡Â‚ (Ó·˘ÂÈ ‰ÎËÌ˚ „‡Ìˈ Û˜‡ÒÚÍÓ‚ ̇ „ÂÍE
Ú‡), Ë̉ÂÍÒ‡ ÙÓÏ˚
(„‰Â Ä – Ó·˘‡fl ÔÎÓ˘‡‰¸ Ë Ö – Ó·˘‡fl ‰ÎË̇ Í‡Â‚),
4 A
Ò‚flÁÌÓÒÚË, ‡ÁÌÓÓ·‡ÁËfl Ë Ú.Ô.
ìÔ‡‚ÎÂ̘ÂÒÍË ÏÂÚËÍË ‚Íβ˜‡˛Ú ‚ Ò·fl Ó·ÁÓ˚ (Ò͇ÊÂÏ, ‰ÓÎË Ì‡ ˚ÌÍÂ, Û‚Â΢ÂÌËfl Ò·˚Ú‡, Û‰Ó‚ÎÂÚ‚ÓÂÌËfl Á‡ÔÓÒÓ‚ ÔÓÚ·ËÚÂÎÂÈ), ÔÓ„ÌÓÁ˚ (̇ÔËÏÂ, ‰ÓıÓ‰Ó‚, ÌÂÔ‰‚ˉÂÌÌ˚ı ÔÓ‰‡Ê, ËÌ‚ÂÒÚˈËÈ), ˝ÙÙÂÍÚË‚ÌÓÒÚË çàéäê, Òӷβ‰ÂÌËfl
‡·Ó˜ÂÈ ‰ËÒˆËÔÎËÌ˚ Ë Ú.Ô.
åÂÚËÍË ËÒ͇ ÔËÏÂÌfl˛ÚÒfl ‚ ÒÙÂ ÒÚ‡ıÓ‚‡ÌËfl Ë ‚ ÙË̇ÌÒÓ‚ÓÈ ÒÙÂ ‰Îfl
‡Ì‡ÎËÁ‡ ÔÓÚÙÂÎfl (̇ÔËÏÂ, Á‡Í‡ÁÓ‚ ËÎË ˆÂÌÌ˚ı ·Ûχ„).
äÓ˝ÙÙˈËÂÌÚ ‚ÓÁ‰ÂÈÒÚ‚Ëfl fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Í‡˜ÂÒÚ‚‡, ÍÓÚÓ‡fl ‡ÌÊËÛÂÚ
ÓÚÌÓÒËÚÂθÌÓ ‚ÎËflÌËÂ, ̇ÔËÏÂ, ‚ ÒÎÂ‰Û˛˘ÂÏ ÔÓfl‰ÍÂ:
– ‡Ì„ ÒÚ‡Ìˈ˚ (PageRank) ‚ ÔÓfl‰Í ‡ÌÊËÓ‚‡ÌËfl Web ÒÚ‡Ìˈ ‚ ÒËÒÚÂÏÂ
Google;
– ÍÓ˝ÙÙˈËÂÌÚ ‚ÓÁ‰ÂÈÒÚ‚Ëfl ÔÓ ÏÂÚÓ‰ËÍ ISI (ËÌÒÚËÚÛÚ ISI ÔÂÂËÏÂÌÓ‚‡Ì ‚
Thomson Scientific) ËÒÔÓθÁÛÂÚÒfl ‰Îfl ÓˆÂÌÍË ÔÓÔÛÎflÌÓÒÚË ÊÛ̇· Á‡ ‰‚ÛıÎÂÚÌËÈ
Ù˘ÂÒÍËı Ô‰ÒÚ‡‚ÎÂÌËÈ Í‡Í
i =1
m
×
∑
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
419
ÔÂËÓ‰, ÒÍÓθÍÓ ‡Á Ó·˚˜Ì‡fl ÒÚ‡Ú¸fl ‰‡ÌÌÓ„Ó ÊÛ̇· ÛÔÓÏË̇·Ҹ ‚ ͇ÍÓÈ-ÌË·Û‰¸
‰Û„ÓÈ ÒÚ‡Ú¸Â, ÔÛ·ÎËÍÓ‚‡‚¯ÂÈÒfl ‚ ÒÎÂ‰Û˛˘ÂÏ „Ó‰Û;
– h-Ë̉ÂÍÒ ÉË¯‡ ‰Îfl Û˜ÂÌÓ„Ó, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÈ Ï‡ÍÒËχθÌÓÏÛ ˜ËÒÎÛ ÔÛ·ÎË͇ˆËÈ Â„Ó ‡‚ÚÓÒÍËı ÒÚ‡ÚÂÈ, ͇ʉ‡fl ËÁ ÍÓÚÓ˚ı ·˚· ÒÚÓθÍÓ Ê ‡Á ÔÓˆËÚËÓ‚‡Ì‡ ‰Û„ËÏË ‡‚ÚÓ‡ÏË.
ì·˚‚‡ÌË ‡ÒÒÚÓflÌËfl
ì·˚‚‡ÌË ‡ÒÒÚÓflÌËfl (ËÎË ‚ÂÚË͇θÌ˚È „‡‰ËÂÌÚ ‡ÒÒÚÓflÌËfl) – ÓÒ··ÎÂÌËÂ
ı‡‡ÍÚÂËÒÚËÍË ËÎË ÔÓˆÂÒÒ‡ ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ‡ÒÒÚÓflÌËfl. Ç ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÏ
‚Á‡ËÏÓ‰ÂÈÒÚ‚ËË ÓÌÓ fl‚ÎflÂÚÒfl χÚÂχÚ˘ÂÒÍËÏ Ô‰ÒÚ‡‚ÎÂÌËÂÏ Ó·‡ÚÌÓ„Ó ÓÚÌÓ¯ÂÌËfl ÏÂÊ‰Û ÍÓ΢ÂÒÚ‚ÓÏ ÔÓÎÛ˜ÂÌÌÓ„Ó ‚¢ÂÒÚ‚‡ Ë Û‰‡ÎÂÌËÂÏ ÓÚ Â„Ó ËÒÚÓ˜ÌË͇.
í‡ÍÓ ۷˚‚‡ÌË ËÁÏÂflÂÚ ‚ÎËflÌË ‡ÒÒÚÓflÌËfl ̇ ‰ÓÒÚÛÔÌÓÒÚ¸: ÓÌÓ ÏÓÊÂÚ Ò‚Ë‰ÂÚÂθÒÚ‚Ó‚‡Ú¸ Ó ÒÓÍ‡˘ÂÌËË ÔÓÚ·ÌÓÒÚË ËÁ-Á‡ Û‚Â΢ÂÌËfl ÒÚÓËÏÓÒÚË ÔÓÂÁ‰‡. èËÏÂ‡ÏË ÍË‚˚ı Û·˚‚‡ÌËfl ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl: ÏÓ‰Âθ è‡ÂÚÓ ln Iij = a − b ln dij
1
Ë ÏÓ‰Âθ ln Iij = a − bdijp Ò p = , 1 ËÎË 2 (Á‰ÂÒ¸ Iij Ë dij fl‚Îfl˛ÚÒfl ‚Á‡ËÏÓ‰ÂÈÒÚ‚ËÂÏ
2
Ë ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÚӘ͇ÏË i Ë j, ÚÓ„‰‡ Í‡Í ‡ Ë b – Ô‡‡ÏÂÚ˚).
äË‚‡fl ‡ÒÒÚÓflÌËfl
äË‚‡fl ‡ÒÒÚÓflÌËfl – „‡ÙËÍ ‰‡ÌÌÓ„Ó Ô‡‡ÏÂÚ‡ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ‡ÒÒÚÓflÌ˲.
èËÏÂ‡ÏË ÍË‚˚ı ‡ÒÒÚÓflÌËfl, ‚ ÚÂÏË̇ı ‡ÒÒχÚË‚‡ÂÏÓ„Ó ÔÓˆÂÒÒ‡, fl‚Îfl˛ÚÒfl:
ÍË‚‡fl ‚ÂÏfl-‡ÒÒÚÓflÌË (‰Îfl ‚ÂÏÂÌË ‡ÒÔÓÒÚ‡ÌÂÌËfl ÒÂËË ‚ÓÎÌ, ÒÂÈÒÏ˘ÂÒÍËı
Ò˄̇ÎÓ‚ Ë Ú.Ô.), ÍË‚‡fl ‚˚ÒÓÚ‡-ÔÛÚ¸ (‰Îfl ‚˚ÒÓÚ˚ ‚ÓÎÌ˚ ˆÛ̇ÏË ÔÓ ÓÚÌÓ¯ÂÌ˲
Í ‡ÒÒÚÓflÌ˲ ‡ÒÔÓÒÚ‡ÌÂÌËfl ‚ÓÎÌ˚ ÓÚ ÚÓ˜ÍË Û‰‡‡), ÍË‚‡fl ‡ÒÒÚÓflÌËÂ-‰ÂÔÂÒÒËfl, ÍË‚‡fl ‡ÒÒÚÓflÌËÂ-Ú‡flÌËÂ Ë ÍË‚‡fl ‡ÒÒÚÓflÌËÂ-Ó·˙ÂÏ ËÁÌÓÒ‡.
äË‚‡fl ‡ÒÒÚÓflÌËÂ-ÒË· fl‚ÎflÂÚÒfl ‚ ÏËÍÓÒÍÓÔËË ÁÓÌ‰Ó‚Ó„Ó Ò͇ÌËÓ‚‡ÌËfl „‡ÙËÍÓÏ ‚ÂÚË͇θÌÓÈ ÒËÎ˚, ÔËÎÓÊÂÌÌÓÈ Ë„ÎÓÈ ËÁÏÂËÚÂθÌÓÈ „ÓÎÓ‚ÍË Í ÔÓ‚ÂıÌÓÒÚË Ó·‡Áˆ‡ ‚ ÏÓÏÂÌÚ, ÍÓ„‰‡ ÔÓËÁ‚Ó‰ËÚÒfl ÍÓÌÚ‡ÍÚ̇fl Ò˙ÂÏ͇ ËÁÓ·‡ÊÂÌËfl
‡ÚÓÏÌÓ-ÒËÎÓ‚˚Ï ÏËÍÓÒÍÓÔÓÏ (Äëå). äÓÏ ÚÓ„Ó, ‚ ÏËÍÓÒÍÓÔËË ÁÓÌ‰Ó‚Ó„Ó Ò͇ÌËÓ‚‡ÌËfl ËÒÔÓθÁÛ˛ÚÒfl ÍË‚˚ ˜‡ÒÚÓÚ‡-‡ÒÒÚÓflÌËÂ Ë ‡ÏÔÎËÚÛ‰‡-‡ÒÒÚÓflÌËÂ.
íÂÏËÌ ÍË‚‡fl ‡ÒÒÚÓflÌËfl ÔËÏÂÌflÂÚÒfl ‰Îfl ÒÓÒÚ‡‚ÎÂÌËfl ‰Ë‡„‡ÏÏ ÓÒÚ‡,
̇ÔËÏÂ, „ËÒÚ‡ˆËË ‰ÂÚÒÍÓ„Ó ÓÒÚ‡ ËÎË ‚ÂÒ‡ ‚ ͇ʉ˚È ‰Â̸ ÓʉÂÌËfl. É‡ÙËÍ
ÒÍÓÓÒÚË ÓÒÚ‡ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ‚ÓÁ‡ÒÚÛ Ì‡Á˚‚‡ÂÚÒfl ÍË‚ÓÈ ÒÍÓÓÒÚ¸-‡ÒÒÚÓflÌËÂ.
èÓÒΉÌËÈ ÚÂÏËÌ ËÒÔÓθÁÛÂÚÒfl Ë Í‡Í ÓÔ‰ÂÎÂÌË ÒÍÓÓÒÚË Ò‡ÏÓÎÂÚÓ‚.
îÛÌ͈Ëfl χÒÒ‡-‡ÒÒÚÓflÌËÂ
xy
.
d ( x, y)
Ö ̇Á˚‚‡˛Ú Ú‡ÍÊ ÙÛÌ͈ËÂÈ „‡‚ËÚ‡ˆËË, ÔÓÒÍÓθÍÛ Ó̇ ‚˚‡Ê‡ÂÚ „‡‚ËÚ‡ˆËÓÌÌÓ ÔËÚflÊÂÌË ÏÂÊ‰Û Ï‡ÒÒ‡ÏË ı Ë Û Ì‡ (‚ÍÎˉӂÓÏ) ‡ÒÒÚÓflÌËË d(x, y) (ÒÏ. á‡ÍÓÌ
Ó·‡ÚÌ˚ı Í‚‡‰‡ÚÓ‚, „Î. 24). èÓ‰Ó·Ì˚ ÙÛÌ͈ËË ˜‡˘Â ‚ÒÂ„Ó ÔËÏÂÌfl˛ÚÒfl ‚ ÒӈˇθÌ˚ı ̇Û͇ı, ̇ÔËÏÂ, ÓÌË ÏÓ„ÛÚ ‚˚‡Ê‡Ú¸ Ò‚flÁ¸ ÏÂÊ‰Û ı Ë Û, ÍÓÚÓ˚ ÏÓ„ÛÚ
‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í Ì‡ÒÂÎÂÌË ÓÚÔ‡‚Îfl˛˘ÂÈ Ë ÔËÌËχ˛˘ÂÈ ÒÚÓÓÌ, „‰Â d(x, y)
‚˚ÒÚÛÔ‡ÂÚ Í‡Í ÙËÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË.
ì·˚‚‡˛˘‡fl ÍË‚‡fl χÒÒ‡-‡ÒÒÚÓflÌË – „‡ÙËÍ Û·˚‚‡ÌËfl "χÒÒ˚" ÔË Û‚Â΢ÂÌËË ‡ÒÒÚÓflÌËfl ‰Ó ˆÂÌÚ‡ "„‡‚ËÚ‡ˆËË". èÓ‰Ó·Ì˚ ÍË‚˚ ËÒÔÓθÁÛ˛ÚÒfl ‰Îfl ̇ıÓʉÂÌËfl ÏÂÒÚ‡ ÛÍ˚ÚËfl ÔÂÒÚÛÔÌË͇ (ËÒıÓ‰ÌÓÈ ÚÓ˜ÍË; ÒÏ. ê‡ÒÒÚÓflÌËfl ‚ ÍËÏËÌÓÎÓ„ËË), χÒÒ˚ „‡Î‡ÍÚËÍË ‚ Ô‰Â·ı Á‡‰‡ÌÌÓ„Ó ‡‰ËÛÒ‡ ÓÚ Â ˆÂÌÚ‡ (Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÍË‚˚ı ‚‡˘ÂÌËfl-‡ÒÒÚÓflÌËfl) Ë Ú.Ô.
îÛÌ͈ËÂÈ Ï‡ÒÒ‡-‡ÒÒÚÓflÌË ̇Á˚‚‡ÂÚÒfl ÙÛÌ͈Ëfl, ÔÓÔÓˆËÓ̇θ̇fl
420
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ᇂËÒËÏÓÒÚ¸ ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË
ëÚÓı‡ÒÚ˘ÂÒÍËÈ (ÒÚ‡ˆËÓ̇Ì˚È ‚ÚÓÓ„Ó ÔÓfl‰Í‡) ÔÓˆÂÒÒ Xk, k ∈ , ̇Á˚‚‡ÂÚÒfl
Á‡‚ËÒËÏ˚Ï ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË (ËÎË ‰Ó΄ÓÈ Ô‡ÏflÚË), ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍË ˜ËÒ·
α, 0 < α < 1 Ë cρ > 0, ˜ÚÓ lim cρ k α ρk = 1, „‰Â ρ(k) – ‡‚ÚÓÍÓÂÎflˆËÓÌ̇fl ÙÛÌ͈Ëfl.
k →∞
ëΉӂ‡ÚÂθÌÓ, ÍÓÂÎflˆËË Û·˚‚‡˛Ú Ó˜Â̸ ωÎÂÌÌÓ (ÔÓ ‡ÒËÏÔÚÓÚ˘ÂÒÍË „ËÔÂ·Ó΢ÂÒÍÓÏÛ ÚËÔÛ) ‰Ó ÌÛÎfl, ˜ÚÓ ‚ΘÂÚ Á‡ ÒÓ·ÓÈ
ρk = ∞ Ë ÍÓÂÎflˆË˛ ‰‡ÎÂÍÓ
∑
k ∈
ÓÚÒÚÓfl˘Ëı ‰Û„ ÓÚ ‰Û„‡ ÒÓ·˚ÚËÈ (‰Ó΄‡fl Ô‡ÏflÚ¸). ÖÒÎË ‚˚¯ÂÔ˂‰ÂÌ̇fl ÒÛÏχ
ÍÓ̘̇ Ë Û·˚‚‡ÌË ˉÂÚ ˝ÍÒÔÓÌÂ̈ˇθÌÓ, ÚÓ ÔÓˆÂÒÒ Ì‡Á˚‚‡ÂÚÒfl ÔÓˆÂÒÒÓÏ
χÎÓÈ ‰‡Î¸ÌÓÒÚË. èËÏÂ‡ÏË Ú‡ÍËı ÔÓˆÂÒÒÓ‚ fl‚Îfl˛ÚÒfl ˝ÍÒÔÓÌÂ̈ˇθÌ˚È, ÌÓχθÌ˚È Ë ÔÛ‡ÒÒÓÌÓ‚ÒÍËÈ ÔÓˆÂÒÒ˚, ÍÓÚÓ˚ Ì ËÏÂ˛Ú Ô‡ÏflÚË Ë, „Ó‚Ófl ÙËÁ˘ÂÒÍËÏ flÁ˚ÍÓÏ, fl‚Îfl˛ÚÒfl ÒËÒÚÂχÏË ‚ ÚÂÏÓ‰Ë̇Ï˘ÂÒÍÓÏ ‡‚ÌÓ‚ÂÒËË. ì͇Á‡ÌÌÓÂ
‚˚¯Â Û·˚‚‡ÌË ÒÚÂÔÂÌÌÓÈ Á‡‚ËÒËÏÓÒÚË ‰Îfl ÍÓÂÎflˆËÈ Í‡Í ÙÛÌ͈ËË ‚ÂÏÂÌË ÔÂÓ·‡ÁÛÂÚÒfl ‚ Û·˚‚‡ÌË ÒÚÂÔÂÌÌÓÈ Á‡‚ËÒËÏÓÒÚË ÒÔÂÍÚ‡ îÛ¸Â Í‡Í ÙÛÌ͈Ëfl ˜‡ÒÚÓÚ˚
1
¯ÛÏÓÏ.
f Ë Ì‡Á˚‚‡ÂÚÒfl
f
èÓˆÂÒÒ Ó·Î‡‰‡ÂÚ ˝ÍÒÔÓÌÂÌÚÓÈ Ò‡ÏÓÔÓ‰Ó·Ëfl (ËÎË Ô‡‡ÏÂÚÓÏ ï‡ÒÚ‡) ç, ÂÒÎË
Xk Ë t–H Xtk ËÏÂ˛Ú Ó‰Ë̇ÍÓ‚˚ ÍÓ̘ÌÓÏÂÌ˚ ‡ÒÔ‰ÂÎÂÌËfl ‰Îfl β·Ó„Ó ÔÓÎÓÊË1
ÚÂθÌÓ„Ó t. ëÎÛ˜‡Ë H =
Ë H = 1 ÓÚÌÓÒflÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Í ˜ËÒÚÓ ÒÎÛ˜‡ÈÌÓÏÛ
2
ÔÓˆÂÒÒÛ Ë ÚÓ˜ÌÓÏÛ Ò‡ÏÓÔӉӷ˲ Ó‰Ë̇ÍÓ‚Ó Ôӂ‰ÂÌË ̇ ‚ÒÂı ¯Í‡Î‡ı (ÒÏ. î‡Í1
Ú‡Î, „Î. 1 Ë ëÂÚË, ÌÂÁ‡‚ËÒËÏ˚ ÓÚ ¯Í‡Î, „Î. 22). èÓˆÂÒÒ˚ c
< H < 1 fl‚Îfl˛ÚÒfl
2
Á‡‚ËÒËÏ˚ÏË ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË Ò α = 2(1 – H).
ᇂËÒËÏÓÒÚ¸ ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÔ‰ÂÎÂÌËflÏ Ò ÚflÊÂÎ˚Ï
"ı‚ÓÒÚÓÏ" (ËÎË cÓ ÒÚÂÔÂÌÌ˚Ï Á‡ÍÓÌÓÏ). îÛÌ͈Ëfl ‡ÒÔ‰ÂÎÂÌËfl Ë "ı‚ÓÒÚ" ÌÂÓÚˈ‡ÚÂθÌÓÈ ÒÎÛ˜‡ÈÌÓÈ ÔÂÂÏÂÌÌÓÈ ï ‡‚Ì˚ F( x ) = P( X ≤ x ) Ë F( x ) = P( X > x ).
ê‡ÒÔ‰ÂÎÂÌË F( X ) ËÏÂÂÚ ÚflÊÂÎ˚È "ı‚ÓÒÚ", ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ ˜ËÒÎÓ α,
0 < α < 1, ˜ÚÓ lim x α F( x ) = 1. åÌÓ„Ë ڇÍË ‡ÒÔ‰ÂÎÂÌËfl ËÏÂ˛Ú ÏÂÒÚÓ ‚ ‡θÌÓÈ
x →∞
‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË (̇ÔËÏÂ, ‚ ÙËÁËÍÂ, ˝ÍÓÌÓÏËÍÂ, ‚ àÌÚÂÌÂÚÂ), ‡ Ú‡ÍÊ ‚ ÔÓÒÚ‡ÌÒÚ‚Â (‡ÒÒÚÓflÌËfl) Ë ‚Ó ‚ÂÏÂÌË (ÔÓ‰ÓÎÊËÚÂθÌÓÒÚË). íËÔÓ‚˚Ï ÔËÏÂÓÏ
fl‚ÎflÂÚÒfl ‡ÒÔ‰ÂÎÂÌË è‡ÂÚÓ F( x ) = x −α , x ≥ 1, „‰Â α > 0 – Ô‡‡ÏÂÚ (ÒÏ. ì·˚‚‡ÌË ‡ÒÒÚÓflÌËfl).
ê‡ÒÒÚÓflÌËfl ‚ ωˈËÌÂ
ê‡ÒÒÚÓflÌË ‚ÌÛÚÂÌÌÂ„Ó ÔËÍÛÒ‡: ‚ ÒÚÓχÚÓÎÓ„ËË ÏÂÊÓÍÍβÁËÓÌ̇fl ˘Âθ ÏÂÊ‰Û ÔÓ‚ÂıÌÓÒÚflÏË ‚Âı̘ÂβÒÚÌ˚ı Ë ÌËÊ̘ÂβÒÚÌ˚ı ÁÛ·Ó‚ ‚ ÏÓÏÂÌÚ Ì‡ıÓʉÂÌËfl ˜ÂβÒÚË ‚ ÒÓÒÚÓflÌËË ÔÓÍÓfl.
åÂÊÓÍÍβÁËÓÌ̇fl ‚˚ÒÓÚ‡: ‚ ÒÚÓχÚÓÎÓ„ËË ‡ÒÒÚÓflÌË ÔÓ ‚ÂÚË͇ÎË ÏÂʉÛ
‚Âı̘ÂβÒÚÌÓÈ Ë ÌËÊ̘ÂβÒÚÌÓÈ ‰Û„‡ÏË. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ‡Î¸‚ÂÓÎflÌ˚ÏË
ÓÚÓÒÚ͇ÏË – ‡ÒÒÚÓflÌË ÔÓ ‚ÂÚË͇ÎË ÏÂÊ‰Û ‚Âı̘ÂβÒÚÌ˚Ï Ë ÌËÊ̘ÂβÒÚÌ˚Ï ‡Î¸‚ÂÓÎflÌ˚ÏË ÓÚÓÒÚ͇ÏË.
åÂÊÁÛ·ÌÓÈ ÔÓÏÂÊÛÚÓÍ – ‡ÒÒÚÓflÌË Á‡ÁÓ‡ ÏÂÊ‰Û ÒÓÒ‰ÌËÏË ÁÛ·‡ÏË; Ô‡ÒÒË‚ÌÓ ÒÏ¢ÂÌË – ωÎÂÌÌÓ ‰‚ËÊÂÌË ÁÛ·Ó‚ Í ÔÂ‰ÌÂÈ ˜‡ÒÚË Ú‡ ÔÓ ÏÂ ÒÓÍ‡˘ÂÌËfl ÏÂÊÁÛ·ÌÓ„Ó ÔÓÏÂÊÛÚ͇ Ò ‚ÓÁ‡ÒÚÓÏ.
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
421
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÚ·Âθ͇ÏË – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚ÂÚ·‡Î¸Ì˚ÏË ÒÚ·Âθ͇ÏË, ËÁÏÂÂÌÌÓ ÔÓ ÂÌÚ„ÂÌÓ‚ÒÍÓÏÛ ÒÌËÏÍÛ.
ê‡ÒÒÚÓflÌË ËÒÚÓ˜ÌËÍ-ÍÓʇ – ‡ÒÒÚÓflÌË ÓÚ ÙÓÍÛÒÌÓ„Ó ÔflÚ̇ ̇ Ó·˙ÂÍÚ ÂÌÚ„ÂÌÓ‚ÒÍÓÈ ÚÛ·ÍË ‰Ó ÍÓÊË Ô‡ˆËÂÌÚ‡, ËÁÏÂÂÌÌÓ ÔÓ ˆÂÌÚ‡Î¸ÌÓÏÛ ÎÛ˜Û.
åÂʉÛÛ¯ÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÏÂÊ‰Û Û¯‡ÏË. åÂÊÓÍÛÎflÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÏÂÊ‰Û „·Á‡ÏË.
ÄÌÓ„ÂÌËڇθÌÓ ‡ÒÒÚÓflÌË – ‰ÎË̇ ÔÓÏÂÊÌÓÒÚË, Ú.Â. ‡Ì‡ÚÓÏ˘ÂÒÍÓÈ Ó·Î‡ÒÚË
ÏÂÊ‰Û ‡ÌÛÒÓÏ Ë Ó·Î‡ÒÚ¸˛ ÔÓÎÓ‚˚ı Ó„‡ÌÓ‚ (ÔÂ‰ÌËÏ ÓÒÌÓ‚‡ÌËÂÏ ÏÛÊÒÍÓ„Ó ÔÂÌËÒ‡). ì ÏÛʘËÌ ˝ÚÓ ‡ÒÒÚÓflÌË ӷ˚˜ÌÓ ‚ ‰‚‡ ‡Á‡ ·Óθ¯Â, ˜ÂÏ Û ÊÂÌ˘ËÌ; Ú‡ÍËÏ
Ó·‡ÁÓÏ, ˝ÚÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÏÂÓÈ ÙËÁ˘ÂÒÍÓ„Ó Ï‡ÒÍÛÎËÌËÁχ. ÑÛ„ËÏË
ÔÓ‰Ó·Ì˚ÏË ‡ÒÒÚÓflÌËflÏË fl‚Îfl˛ÚÒfl ÓÚÌÓ¯ÂÌË ‚ÚÓÓ„Ó Í ˜ÂÚ‚ÂÚÓÏÛ (Û͇Á‡ÚÂθÌÓ„Ó Í ·ÂÁ˚ÏflÌÌÓÏÛ) ԇθˆÛ, ÍÓÚÓÓ ÏÂ̸¯Â Û ÏÛʘËÌ Ó‰ÌÓÈ Ë ÚÓÈ Ê ÔÓÔÛÎflˆËË,
Ë ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ Ï˚¯ÎÂÌËÂ, ÍÓÚÓÓ ‚˚¯Â Û ÏÛʘËÌ.
ê‡ÒÒÚÓflÌË ÓÒ‰‡ÌËfl (ËÎË êéù, ‡͈Ëfl ÓÒ‰‡ÌËfl ˝ËÚÓˆËÚÓ‚) – ‡ÒÒÚÓflÌËÂ,
ÍÓÚÓÓ ÔÓıÓ‰flÚ Í‡ÒÌ˚ ÍÓ‚flÌ˚ ÚÂθˆ‡ Á‡ Ó‰ËÌ ˜‡Ò ÔË Ó҇ʉÂÌËË Ì‡ ‰ÌÓ
ÔÓ·ËÍË Ò ‚ÁflÚÓÈ Ì‡ ‡Ì‡ÎËÁ ÍÓ‚¸˛. êéù Û͇Á˚‚‡ÂÚ Ì‡ ‚ÓÒÔ‡ÎËÚÂθÌ˚ ÔÓˆÂÒÒ˚
Ë ‚ ÒÎÛ˜‡Â Á‡·Ó΂‡ÌËfl ÔÓ‚˚¯‡ÂÚÒfl.
éÒÌÓ‚Ì˚ÏË ‡ÒÒÚÓflÌËflÏË, ÔËÏÂÌflÂÏ˚ÏË ‚ ÛθÚ‡Á‚ÛÍÓ‚ÓÈ ·ËÓÏËÍÓÒÍÓÔËË
(ÓÒÓ·ÂÌÌÓ ÔË Î˜ÂÌËË „·ÛÍÓÏ˚) fl‚Îfl˛ÚÒfl ‡ÒÒÚÓflÌË ‡ÒÍ˚ÚËfl ۄ· (ÓÚ ӄӂ˘ÌÓ„Ó ˝Ì‰ÓÚÂÎËfl ‰Ó Ô‰ÒÚÓfl˘ÂÈ ‡‰ÛÊÌÓÈ Ó·ÓÎÓ˜ÍË „·Á‡) Ë ‡ÒÒÚÓflÌË Ú‡·ÂÍÛÎflÌÓ„Ó Ë ˆËΡÌÓ„Ó ÔÓˆÂÒÒÓ‚ (ÓÚ ÍÓÌÍÂÚÌÓÈ ÚÓ˜ÍË Ì‡ Ú‡·ÂÍÛÎflÌÓÈ ÒÂÚË
‰Ó ˆËΡÌÓ„Ó ÔÓˆÂÒÒ‡).
èËÏÂ‡ÏË ‡ÒÒÚÓflÌËÈ, ‡ÒÒχÚË‚‡ÂÏ˚ı ÔË ÒÌflÚËË ËÁÓ·‡ÊÂÌËÈ ÏÓÁ„‡ ÔÓ
ÏÂÚÓ‰ËÍ åêí (χ„ÌËÚÌÓ-ÂÁÓ̇ÌÒÌÓÈ ÚÓÏÓ„‡ÙËË) Ë ÔÓÎÛ˜ÂÌËË ÍÓÚË͇θÌ˚ı
͇Ú (Ú.Â. ‚ËÁÛ‡ÎËÁËÓ‚‡ÌÌ˚ı ӷ·ÒÚÂÈ ‚̯ÌÂÈ ÍÓÍË ÔÓÎÛ¯‡ËÈ „ÓÎÓ‚ÌÓ„Ó ÏÓÁ„‡, ÓÚÓ·‡Ê‡˛˘Ëı ‚ıÓ‰Ì˚ Ò˄̇Î˚ ÓÚ ‰‡Ú˜Ë͇ ËÎË ÏÓÚÓÌ˚ ÓÚÍÎËÍË) fl‚Îfl˛ÚÒfl:
͇Ú‡ ‡ÒÒÚÓflÌËÈ åêí ÓÚ „‡Ìˈ˚ ‡Á‰Â· ÒÂÓ„Ó/·ÂÎÓ„Ó ‚¢ÂÒÚ‚‡, ÍÓÚË͇θÌÓÂ
‡ÒÒÚÓflÌË (Ò͇ÊÂÏ, ÏÂÊ‰Û Û˜‡ÒÚ͇ÏË ‡ÍÚË‚‡ˆËË ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ ÒÏÂÊÌ˚ı ÒÚËÏÛÎÓ‚), ÍÓÚË͇θ̇fl ÚÓ΢Ë̇ Ë ÏÂÚËÍË Î‡ÚÂ‡ÎËÁ‡ˆËË.
ÑËÒڇθÌÓÒÚ¸
èË·„‡ÚÂθÌÓ ‰ËÒڇθÌ˚È (ËÎË ÔÂËÙÂËÈÌ˚È) ËÒÔÓθÁÛÂÚÒfl Í‡Í ‡Ì‡ÚÓÏ˘ÂÒÍËÈ ÚÂÏËÌ ÏÂÒÚÓÔÓÎÓÊÂÌËfl (̇ ÚÂÎÂ Ë ÓÚ‰ÂθÌ˚ı Â„Ó ˜‡ÒÚflı).
ä‡Í ÔÓÚË‚ÓÔÓÎÓÊÌÓÒÚ¸ ÔÓÍÒËχθÌÓÏÛ (ËÎË ˆÂÌÚ‡Î¸ÌÓÏÛ) ÓÌÓ ÓÁ̇˜‡ÂÚ ‡ÒÔÓÎÓÊÂÌË ‰‡ÎÂÍÓ ÓÚ, ̇ Û‰‡ÎÂÌËË ÓÚ ÚÓ˜ÍË ÓËÂÌÚËÓ‚‡ÌËfl (̇˜‡Î‡, ˆÂÌÚ‡, ÚÓ˜ÍË
ÔËÍÂÔÎÂÌËfl, ÚÓÒ‡). ä‡Í ÔÓÚË‚ÓÔÓÎÓÊÌÓÒÚ¸ Ò‰ËÌÌÓÏÛ ÓÌÓ ÓÁ̇˜‡ÂÚ ‡ÒÔÓÎÓÊÂÌË ËÎË Ì‡Ô‡‚ÎÂÌË ÓÚ Ò‰ÌÂÈ ÎËÌËË ËÎË Ï‰ˇθÌÓÈ ÔÎÓÒÍÓÒÚË Ú·.
àÌÓ„‰‡ ÚÂÏËÌ ‰ËÒڇθÌ˚È ËÒÔÓθÁÛÂÚÒfl ‚ ·ÓΠ‡·ÒÚ‡ÍÚÌÓÏ ÒÏ˚ÒÎÂ. í‡Í,
̇ÔËÏÂ, ÔÓÂÍÚ í-ÇËÊÌ (‚ËÁۇθÌÓ ÓÚÓ·‡ÊÂÌË áÂÏÎË) Ô‰ÔÓ·„‡ÂÚ ÙÓÏËÓ‚‡ÌË ‚ÓÒÔËflÚËfl áÂÏÎË Í‡Í ÓÚ‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡, ˜ÚÓ ‡Ì ·˚ÎÓ ÔÓÌflÚÌÓ
ÚÓθÍÓ ÍÓÒÏÓ̇‚Ú‡Ï.
ê‡ÒÒÚÓflÌËfl ËÁÏÂÂÌËfl Ú·
Ç ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò Ö‚ÓÔÂÈÒÍËÏ Â‰ËÌ˚Ï Òڇ̉‡ÚÓÏ ‡ÁÏÂÓ‚ Ó‰Âʉ˚ EN 13402
‚ ‡Á‰ÂΠEN 13402-1 ÓÔ‰ÂÎÂÌ ÔÂ˜Â̸ 13 ˝ÎÂÏÂÌÚÓ‚ ËÁÏÂÂÌËÈ Ë ÏÂÚÓ‰Ë͇ ˝ÚËı
ËÁÏÂÂÌËÈ Ì‡ ˜ÂÎÓ‚ÂÍÂ. Ç ÔÂ˜Â̸ ‚Íβ˜ÂÌ˚: χÒÒ‡ Ú·, ÓÒÚ, ‰ÎË̇ ÌÓ„Ë, ‰ÎË̇
ÛÍË, ‰ÎË̇ ÌÓ„Ë Ò ‚ÌÛÚÂÌÌÂÈ ÒÚÓÓÌ˚, Ó·˙ÂÏ „ÓÎÓ‚˚, ¯ÂË, „Û‰Ë, ·˛ÒÚ‡, Ó·˙ÂÏ
ÔÓ‰ „Û‰¸˛, Ó·ı‚‡Ú Ú‡ÎËË, ·Â‰Â, ÍËÒÚË ÛÍË. çËÊ ÒÎÂ‰Û˛Ú ÔËÏÂ˚ ˝ÚËı ÓÔ‰ÂÎÂÌËÈ.
ÑÎË̇ ÒÚÓÔ˚ – „ÓËÁÓÌڇθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÂÔẨËÍÛÎfl‡ÏË, ͇҇˛˘ËÏËÒfl ÍÓ̈‡ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó Ô‡Î¸ˆ‡ ÌÓ„Ë Ë Ì‡Ë·ÓΠ‚˚ÒÚÛÔ‡˛˘ÂÈ ˜‡ÒÚË ÔflÚÍË.
422
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ÑÎË̇ ÛÍË – ‡ÒÒÚÓflÌË ËÁÏÂÂÌÌÓ ÏÂÌÓÈ ÎÂÌÚÓÈ ÓÚ ÔÎÂ˜Â‚Ó„Ó ÒÛÒÚ‡‚‡
(‡ÍÓÏËÓ̇) ÔÓ ÎÓÍÚ˛ ‰Ó ÓÍÓ̘ÌÓÒÚË Á‡ÔflÒÚ¸fl (ÎÓÍÚ‚ÓÈ ÍÓÒÚË), ÔË ˝ÚÓÏ Ô‡‚‡fl
Û͇ ‰ÓÎÊ̇ ·˚Ú¸ Òʇڇ ‚ ÍÛÎ‡Í Ë ÎÂʇڸ ̇ ·Â‰ ‚ ̇ÔÓÎÓ‚ËÌÛ ÒÓ„ÌÛÚÓÏ
ÔÓÎÓÊÂÌËË.
ÑÎË̇ ‚ÌÛÚÂÌÌÂÈ ˜‡ÒÚË ÌÓ„Ë – ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ô‡ıÓÏ Ë ÔÓ‰Ó¯‚ÓÈ ÌÓ„Ë, ËÁÏÂÂÌÌÓ ÔÓ ‚ÂÚË͇ÎË, ÔË ˝ÚÓÏ ˜ÂÎÓ‚ÂÍ ‰ÓÎÊÂÌ ÒÚÓflÚ¸ ÔflÏÓ, Ò΄͇ ‡ÒÒÚ‡‚Ë‚
ÌÓ„Ë Ë ‡ÒÔ‰ÂÎË‚ ̇ ÌËı ÔÓÓ‚ÌÛ ‚ÂÒ Ú·.
èÓÒΉÌËÈ ‡Á‰ÂÎ EN 13402-4, ͇҇˛˘ËÈÒfl ÍÓ‰ËÓ‚‡ÌËfl ‡ÁÏÂÓ‚ Ó‰Âʉ˚, ‰ÓÎÊÂÌ ÒÚ‡Ú¸ Ó·flÁ‡ÚÂθÌ˚Ï ‚ Ö‚ÓÔ ÔÓÒΠ2007 „. éÊˉ‡ÂÚÒfl, ˜ÚÓ Ò ‚˚ıÓ‰ÓÏ ‚ Ò‚ÂÚ
˝ÚÓÈ ˜‡ÒÚË ·Û‰ÂÚ ÛÒÚ‡ÌÂ̇ ÒËÚÛ‡ˆËfl, ÍÓ„‰‡ Ò‰ÌËÈ ÚËÔÓ‚ÓÈ ‡ÁÏÂ (34–28–
37 ‰˛ÈÏÓ‚, Ú.Â. 88–72–96 ÒÏ ·˛ÒÚ–Ú‡ÎËfl–·Â‰‡) ‚ ëòÄ ÔÓıÓ‰ËÚ ÔÓ‰ ÌÓÏÂÓÏ 10,
‚ ÇÂÎËÍÓ·ËÚ‡ÌËË – 12, ‚ çÓ‚„ËË, ò‚ˆËË Ë îËÌÎfl̉ËË – ë38, ‚ ÉÂχÌËË Ë
çˉÂ·̉‡ı – 38, ‚ ÅÂθ„ËË Ë î‡ÌˆËË – 40, ‚ àÚ‡ÎËË – 44, ‚ èÓÚÛ„‡ÎËË Ë
àÒÔ‡ÌËË – 44/46.
Ä̇Îӄ˘Ì˚ ÏÌÓÊÂÒÚ‚‡ ‡ÒÒÚÓflÌËÈ ËÒÔÓθÁÛ˛ÚÒfl Ú‡ÍÊ (̇ÔËÏÂ, ‰Îfl ÒÍÂÎÂÚÌ˚ı ËÁÏÂÂÌËÈ) ‚ Òۉ·ÌÓÈ Ï‰ˈËÌÂ, ‡ÌÚÓÔÓÎÓ„ËË Ë Ú.Ô.
ê‡ÒÒÚÓflÌËfl ‚ ÍËÏËÌÓÎÓ„ËË
ëÓÒÚ‡‚ÎÂÌË „ÂÓ„‡Ù˘ÂÒÍÓ„Ó ÔÓÙËÎfl (ËÎË ‡Ì‡ÎËÁ „ÂÓ„‡Ù˘ÂÒÍÓÈ ÔË‚flÁÍË)
ËÏÂÂÚ ˆÂθ˛ Ò‚flÁ‡Ú¸ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ Ôӂ‰ÂÌË (‚˚·Ó ÊÂÚ‚ Ë ÓÒÓ·ÂÌÌÓ Ì‡Ë·ÓΠ‚ÂÓflÚÌÛ˛ ËÒıÓ‰ÌÛ˛ ÚÓ˜ÍÛ, Ú.Â. ÏÂÒÚÓ ÔÓÊË‚‡ÌËfl ËÎË ‡·ÓÚ˚) ÒÂËÈÌÓ„Ó
ÔÂÒÚÛÔÌË͇ Ò ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚Ï ‡ÒÔ‰ÂÎÂÌËÂÏ ÏÂÒÚ Â„Ó ÔÂÒÚÛÔÎÂÌËÈ.
ÅÛÙÂ̇fl ÁÓ̇ ÔÂÒÚÛÔÌË͇ (ËÎË ˝ÙÙÂÍÚ Û„ÓθÌÓ„Ó Ï¯͇) – ‡ÈÓÌ, ÓÍÛʇ˛˘ËÈ ÏÂÒÚÓ Ô·˚‚‡ÌËfl ÔÂÒÚÛÔÌË͇ (ËÒıÓ‰ÌÛ˛ ÚÓ˜ÍÛ), ‚ Ô‰Â·ı ÍÓÚÓÓ„Ó ÓÚϘ‡ÂÚÒfl ÌÂÁ̇˜ËÚÂθ̇fl ËÎË ‚ÓÓ·˘Â Ì ÓÚϘ‡ÂÚÒfl ÔÂÒÚÛÔ̇fl ‰ÂflÚÂθÌÓÒÚ¸;
‚ Ó·˚˜Ì˚ı ÒÎÛ˜‡flı ڇ͇fl ÁÓ̇ ı‡‡ÍÚÂ̇ ‰Îfl ÔÂÒÚÛÔÌËÍÓ‚, Á‡‡Ì ӷ‰ÛÏ˚‚‡˛˘Ëı Ò‚ÓË ‰ÂÈÒÚ‚Ëfl. éÒÌÓ‚Ì˚ ÛÎˈ˚ Ë Ï‡„ËÒÚ‡ÎË, ‚Â‰Û˘Ë ‚ ˝ÚÛ ÁÓÌÛ, ˜‡˘Â ‚Ò„Ó
ÔÂÂÒÂ͇˛ÚÒfl ‚·ÎËÁË Û·ÂÊˢ‡ ÔÂÒÚÛÔÌË͇. ÑÎfl ÒÂËÈÌ˚ı ̇ÒËθÌËÍÓ‚ ‚ ÇÂÎËÍÓ·ËÚ‡ÌËË ‚˚fl‚ÎÂ̇ ·ÛÙÂ̇fl ÁÓ̇, ÒÓÒÚ‡‚Îfl˛˘‡fl ÔÓfl‰Í‡ 1 ÍÏ. èË ˝ÚÓÏ
·Óθ¯ËÌÒÚ‚Ó ÔÂÒÚÛÔÎÂÌËÈ ÔÓÚË‚ ΢ÌÓÒÚË ÔÓËÒıÓ‰flÚ Ì‡ Û‰‡ÎÂÌËË ÓÍÓÎÓ 2 ÍÏ ÓÚ
Û·ÂÊˢ‡ ÔÂÒÚÛÔÌË͇, ÚÓ„‰‡ Í‡Í ‰Îfl Í‡Ê ËÏÛ˘ÂÒÚ‚‡ ı‡‡ÍÚÂÌÓ ·Óθ¯ÂÂ
Û‰‡ÎÂÌËÂ.
ì·˚‚‡˛˘‡fl ÙÛÌ͈Ëfl ÔÛÚË Í ÏÂÒÚÛ ÔÂÒÚÛÔÎÂÌËfl Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ „‡Ù˘ÂÒÍÛ˛ ÍË‚Û˛ ‡ÒÒÚÓflÌËfl, ÔÓ͇Á˚‚‡˛˘Û˛, Í‡Í ˜ËÒÎÓ ÒÓ‚Â¯ÂÌÌ˚ı ÔÂÒÚÛÔÎÂÌËÈ
ÔÓÒÚÂÔÂÌÌÓ ÒÓÍ‡˘‡ÂÚÒfl ÔÓ ÏÂ ۉ‡ÎÂÌËfl ÓÚ ÏÂÒÚ‡ ÔÓÊË‚‡ÌËfl ÔÂÒÚÛÔÌË͇. èÓ‰Ó·Ì˚ ÙÛÌ͈ËË fl‚Îfl˛ÚÒfl ‡ÁÌӂˉÌÓÒÚflÏË ÙÛÌ͈ËÈ ˆÂÌÚ‡ ÚflÊÂÒÚË, ÓÒÌÓ‚‡ÌÌ˚ı
̇ Á‡ÍÓÌ 縲ÚÓ̇ Ó ‚Á‡ËÏÌÓÏ ÔËÚflÊÂÌËË ‰‚Ûı ÚÂÎ.
ÖÒÎË ËÏÂÂÚÒfl ˜ËÒÎÓ n ÏÂÒÚ ÔÂÒÚÛÔÎÂÌËfl (xi , yi), 1 ≤ i ≤ n („‰Â xi Ë yi fl‚Îfl˛ÚÒfl
¯ËÓÚÓÈ Ë ‰Ó΄ÓÚÓÈ i-„Ó ÏÂÒÚ‡), ÚÓ Ò ÔÓÏÓ˘¸˛ ÏÓ‰ÂÎË ç¸˛ÚÓ̇–ë‚ÓÔ‡ ÏÂÒÚÓ Û·Â
xi
yi 
 i

Êˢ‡ ÔÂÒÚÛÔÌË͇ ÓÔ‰ÂÎflÂÚÒfl ‚ Ô‰Â·ı ÍÛ„‡ Ò ˆÂÌÚÓÏ ‚ ÚӘ͠
⋅ i
n
n 




Ò ‡‰ËÛÒÓÏ ÔÓËÒ͇ ‡‚Ì˚Ï
∑
max xi1 − xi 2 ⋅ max yi1 − yi 2
π(n − 1)2
∑
,
„‰Â χÍÒËÏÛÏ˚ Ô‰ÒÚ‡‚ÎÂÌ˚ Í‡Í (i1 , i2 ), 1 ≤ i1 < i2 ≤ n. äÛ„Ó‚‡fl ÏÓ‰Âθ ɇÌÚÂ‡–
É„ÓË ÔÓÁ‚ÓÎflÂÚ Ô‰ÔÓ·„‡Ú¸ ÏÂÒÚÓ Û·ÂÊˢ‡ ÔÂÒÚÛÔÌË͇ ‚ Ô‰Â·ı ÍÛ„‡,
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
423
ˆÂÌÚÓÏ ÍÓÚÓÓ„Ó fl‚ÎflÂÚÒfl ÏÂÒÚÓ ÔÂ‚Ó„Ó ÔÂÒÚÛÔÎÂÌËfl, ‡ ‰Ë‡ÏÂÚÓÏ – χÍÒËχθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÏÂÒÚ‡ÏË ÔÂÒÚÛÔÎÂÌËÈ.
ñÂÌÚÓ„‡Ù˘ÂÒÍË ÏÓ‰ÂÎË ‡ÒÒχÚË‚‡˛Ú ÏÂÒÚÓ Û·ÂÊˢ‡ ÔÂÒÚÛÔÌË͇ ͇Í
ˆÂÌÚ, Ú.Â. ÚÓ˜ÍÛ, ÓÚ ÍÓÚÓÓÈ ÍÓÌÍÂÚ̇fl ÙÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl ÔÛÚË ‰Ó β·˚ı ÏÂÒÚ
ÔÂÒÚÛÔÎÂÌËfl ËÏÂÂÚ ÏËÌËχθÌÛ˛ ‚Â΢ËÌÛ; ‡ÒÒÚÓflÌËflÏË ‚ ˝ÚÓÏ ÒÎÛ˜‡Â ·Û‰ÛÚ
‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ, ‡ÒÒÚÓflÌË å‡Ìı˝ÚÚÂ̇, ÍÓÎÂÒÌÓ ‡ÒÒÚÓflÌË (Ú.Â. ‡θÌ˚È
ÔÛÚ¸ Ôӷ„‡), ‚ÓÒÔËÌËχÂÏÓ ‚ÂÏfl ÔÛÚË Ë Ú.Ô. åÌÓ„Ë ËÁ ˝ÚËı ÏÓ‰ÂÎÂÈ fl‚Îfl˛ÚÒfl
‰ÂÈÒÚ‚Û˛˘ËÏË ‚ Ó·‡ÚÌÛ˛ ÒÚÓÓÌÛ ÏÓ‰ÂÎflÏË ÚÂÓËË ÏÂÒÚÓÔÓÎÓÊÂÌËfl, (ˆÂθ˛
ÍÓÚÓÓÈ fl‚ÎflÂÚÒfl χÍÒËχθÌÓ ̇‡˘Ë‚‡ÌË ‡ÒÔ‰ÂÎËÚÂθÌÓÈ ÒÂÚË ‚ ËÌÚÂÂÒ‡ı
ÒÓÍ‡˘ÂÌËfl ÔÛÚ‚˚ı ‡ÒıÓ‰Ó‚. ùÚË ÏÓ‰ÂÎË (ÏÌÓ„ÓÛ„ÓθÌËÍË ÇÓÓÌÓ„Ó Ë ‰.) ·‡ÁËÛ˛ÚÒfl ̇ ÔË̈ËÔ ·ÎËÁÓÒÚË (ÔË̈ËÔ ÏËÌËχθÌÓ„Ó ÛÒËÎËfl).
ÑÎfl ‚˚fl‚ÎÂÌËfl ÍËÏË̇θÌ˚ı, ÚÂÓËÒÚ˘ÂÒÍËı Ë ‰Û„Ëı ÒÍ˚Ú˚ı ÒÂÚÂÈ
ËÒÔÓθÁÛ˛ÚÒfl Ú‡ÍÊ ÏÌÓ„Ë ‰Û„Ë Ò‰ÒÚ‚‡ Ò·Ó‡ ‰‡ÌÌ˚ı, Ò ÔÓÏÓ˘¸˛ ÍÓÚÓ˚ı
ÔÓÎÛ˜‡˛Ú ҂‰ÂÌËfl Ó Î‡ÚÂÌÚÌ˚ı ‚Á‡ËÏÓÒ‚flÁflı (‡ÒÒÚÓflÌËflı Ë ÔÓ˜ÚË ÏÂÚË͇ı
ÏÂÊ‰Û Î˛‰¸ÏË), ËÒÒΉÛfl „‡Ù˚ ÔË·ÎËÊÂÌËfl Ëı ÒÓ‚ÏÂÒÚÌ˚ı ÔÓfl‚ÎÂÌËÈ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ‰ÓÍÛÏÂÌÚ‡ı, ÒÓ·˚ÚËflı Ë Ú.Ô.
ê‡ÒÒÚÓflÌËfl ‚ ÏË ÊË‚ÓÚÌ˚ı
à̉˂ˉۇθÌÓ ‡ÒÒÚÓflÌË – Û‰‡ÎÂÌËÂ, ̇ ÍÓÚÓÓÏ Ó‰ÌÓ ÊË‚ÓÚÌÓ ÒÚÂÏËÚÒfl
‰ÂʇڸÒfl ÓÚ ‰Û„Ó„Ó.
ÉÛÔÔÓ‚Ó ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓÏ Ó‰Ì‡ „ÛÔÔ‡ ÊË‚ÓÚÌ˚ı
‰ÂÊËÚÒfl ÓÚ ‰Û„ÓÈ.
ê‡ÒÒÚÓflÌË ‡„ËÓ‚‡ÌËfl – ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓÏ ÊË‚ÓÚÌÓ ‡„ËÛÂÚ Ì‡ ÔÓfl‚ÎÂÌË ‰Ó·˚˜Ë; ‡ÒÒÚÓflÌË ‡Ú‡ÍË: ‡ÒÒÚÓflÌËÂ, ‚ Ô‰Â·ı ÍÓÚÓÓ„Ó ıˢÌËÍ ÏÓÊÂÚ Ì‡Ô‡ÒÚ¸ ̇ Ò‚Ó˛ ÊÂÚ‚Û.
ê‡ÒÒÚÓflÌË ·Â„ÒÚ‚‡ – ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓÏ ÊË‚ÓÚÌÓ ‡„ËÛÂÚ Ì‡ ÔÓfl‚ÎÂÌËÂ
ıˢÌË͇ ËÎË ‰ÓÏËÌËÛ˛˘Â„Ó ÊË‚ÓÚÌÓ„Ó ÚÓ„Ó Ê ‚ˉ‡.
ê‡ÒÒÚÓflÌË ·ÎËÊ‡È¯Â„Ó ÒÓÒ‰‡ – ·ÓΠËÎË ÏÂÌ ÔÓÒÚÓflÌÌÓ ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ„Ó ÔˉÂÊË‚‡˛ÚÒfl ÊË‚ÓÚÌ˚ ÏÂÊ‰Û ÒÓ·ÓÈ ÔË ‰‚ËÊÂÌËË ‚ Ó‰ÌÓÏ Ì‡Ô‡‚ÎÂÌËË
‚ ÒÓÒÚ‡‚ ·Óθ¯Ëı „ÛÔÔ (Ú‡ÍËı, Í‡Í ÍÓÒflÍË ˚·, ÒÚ‡Ë ÔÚˈ). åÂı‡ÌËÁÏ ‡ÎÎÂÎÓÏËÏÂÚ˘ÂÒÍÓ„Ó Ôӂ‰ÂÌËfl ("‰ÂÎ‡È Ú‡Í, Í‡Í ÒÓÒ‰") ÒÔÓÒÓ·ÒÚ‚ÛÂÚ ÒÓı‡ÌÂÌ˲ ˆÂÎÓÒÚÌÓÒÚË ÒÚÛÍÚÛ˚ „ÛÔÔ˚ Ë ÔÓÁ‚ÓÎflÂÚ ÓÒÛ˘ÂÒÚ‚ÎflÚ¸ ͇ÊÛ˘ËÂÒfl ‡ÁÛÏÌ˚ÏË „ÛÔÔÓ‚˚ χÌ‚˚ ÛÍÎÓÌÂÌËfl ÔË ÔÓfl‚ÎÂÌËË ıˢÌËÍÓ‚.
ê‡ÒÒÚÓflÌË ҂flÁË Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ Á‚ÛÍÓ‚ (‚Íβ˜‡fl ˜ÂÎӂ˜ÂÒÍÛ˛ ˜¸) –
χÍÒËχθÌÓ ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓÏ ÔËÌËχ˛˘ËÈ ÏÓÊÂÚ ÛÒÎ˚¯‡Ú¸ Ò˄̇Î; ÊË‚ÓÚÌ˚ ÏÓ„ÛÚ ÏÂÌflÚ¸ ‡ÏÔÎËÚÛ‰Û Ò˄̇· ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ Û‰‡ÎÂÌËfl ÔËÌËχ˛˘Â„Ó
‰Îfl Ó·ÂÒÔ˜ÂÌËfl ÔÂ‰‡˜Ë Ò˄̇·
ê‡ÒÒÚÓflÌË ‰Ó ·Â„‡ – ‡ÒÒÚÓflÌË ‰Ó ÔÓ·ÂÂʸfl, ËÒÔÓθÁÛÂÏÓÂ, ̇ÔËÏÂ, ‰Îfl
ËÁÛ˜ÂÌËfl ÒÓÒ‰ÓÚÓ˜ÂÌËÈ ÏÂÒÚ ‚˚·‡Ò˚‚‡ÌËfl ÍËÚÓ‚ ̇ ÏÂθ ËÁ-Á‡ ËÒ͇ÊÂÌÌÓÈ
˝ıÓÎÓ͇ˆËË, ‡ÌÓχÎËÈ Ï‡„ÌËÚÌÓ„Ó ÔÓÎfl Ë Ú.Ô.
ÑËÒڇ̈ËÓÌÌ˚È ÙÂÓÏÓÌ – ‡ÒÚ‚ÓËÏÓ (̇ÔËÏÂ, ‚ ÏÓ˜Â) Ë/ËÎË ËÒÔ‡flÂÏÓÂ
‚¢ÂÒÚ‚Ó, ËÒÔÛÒ͇ÂÏÓ ÊË‚ÓÚÌ˚Ï ‚ ͇˜ÂÒÚ‚Â ÓθهÍÚÓÌÓ„Ó ıËÏ˘ÂÒÍÓ„Ó ‡Á‰‡ÊËÚÂÎfl (ÏÂÚÍË) ‰Îfl ÔÓ‰‡˜Ë Ò˄̇ÎÓ‚ (Ú‚ӄË, ÒÂÍÒۇθÌ˚ı ̇ÏÂÂÌËÈ, ÔËχÌÍË
ÊÂÚ‚˚, ÛÁ̇‚‡ÌËfl Ë Ú.Ô.) ‰Û„ËÏ ÓÒÓ·flÏ ˝ÚÓ„Ó Ê ‚ˉ‡. Ç ÓÚ΢ˠÓÚ ÌÂ„Ó ÍÓÌÚ‡ÍÚÌ˚È ÙÂÓÏÓÌ fl‚ÎflÂÚÒfl ‚¢ÂÒÚ‚ÓÏ ÌÂ‡ÒÚ‚ÓËÏ˚Ï Ë ÌÂËÒÔ‡fl˛˘ËÏÒfl; ÓÌ ÔÓÍ˚‚‡ÂÚ ÚÂÎÓ ÊË‚ÓÚÌÓ„Ó Ë fl‚ÎflÂÚÒfl ÍÓÌÚ‡ÍÚÌÓÈ ÏÂÚÍÓÈ.
ê‡ÒÒÚÓflÌË ̇ ÎÓ¯‡‰ËÌ˚ı Ò͇˜Í‡ı
ç‡ ÎÓ¯‡‰ËÌ˚ı Ò͇˜Í‡ı ÍÓÔÛÒ fl‚ÎflÂÚÒfl ÛÒÎÓ‚ÌÓÈ Â‰ËÌˈÂÈ ‰ÎËÌ˚ ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÒÓÔÂÌË͇ÏË (̇ ÎÓ‰Ó˜Ì˚ı „ÓÌ͇ı ÏÂÓÈ ‰ÎËÌ˚ fl‚ÎflÂÚÒfl
ÍÓÔÛÒ ÎÓ‰ÍË).
424
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ê‡ÒÒÚÓflÌËfl ̇ Ò͇˜Í‡ı ËÁÏÂfl˛ÚÒfl ‚ ‰ÎË̇ı ÍÓÔÛÒ‡ ÎÓ¯‡‰Ë, Ú.Â. ÓÍÓÎÓ 8 ÙÛÚÓ‚
(2,44 Ï). èÂËÏÛ˘ÂÒÚ‚Ó Ì‡ ÙËÌ˯ ËÁÏÂflÂÚÒfl ‚ ÍÓÔÛÒ‡ı, ̇˜Ë̇fl ÓÚ ÔÓÎÓ‚ËÌ˚
ÍÓÔÛÒ‡ ‰Ó 20 ÍÓÔÛÒÓ‚; ÍÓÔÛÒ Ó·˚˜ÌÓ ÔË‡‚ÌË‚‡˛Ú Í ‚ÂÏÂÌÌÓÏÛ ËÌÚÂ‚‡ÎÛ
‚ 0,2 Ò. ÅÓΠÏÂÎÍËÏË ‰ÎË̇ÏË fl‚Îfl˛ÚÒfl ÍÓÓÚ͇fl „ÓÎÓ‚‡, „ÓÎÓ‚‡ ËÎË ¯  fl.
èËÏÂÌflÂÚÒfl Ú‡ÍÊ ÏÂ‡ Û͇, Ú.Â. 4 ‰˛Èχ (10,2 ÒÏ), ÍÓÚÓÛ˛ ËÒÔÓθÁÛ˛Ú ‰Îfl ËÁÏÂÂÌËfl ‚˚ÒÓÚ˚ ÎÓ¯‡‰ÂÈ.
ÑËÒڇ̈ËË ‚ ÚˇÚÎÓÌÂ
ëÓ‚ÌÓ‚‡ÌËfl ̇ ÊÂÎÂÁÌÛ˛ ‰ËÒÚ‡ÌˆË˛ (‚ÔÂ‚˚ Ôӂ‰ÂÌ˚ ̇ ɇ‚‡Èflı ‚ 1978 „.)
‚Íβ˜‡˛Ú 3,86 ÍÏ Ô·‚‡ÌËfl ÔÓ ÓÚÍ˚ÚÓÈ ‚Ó‰Â, 180 ÍÏ ‚ÂÎÓ„ÓÌÍË Ë 42,2 ÍÏ ·Â„‡
(χ‡ÙÓÌÒ͇fl ‰ËÒڇ̈Ëfl).
åÂʉÛ̇Ӊ̇fl ÓÎËÏÔËÈÒ͇fl ‰ËÒڇ̈Ëfl (ÔÂ‚˚ ÒÓ‚ÌÓ‚‡ÌËfl ÒÓÒÚÓflÎËÒ¸ ̇
éÎËÏÔËÈÒÍËı à„‡ı ‚ ëˉÌ ‚ 2000 „.) ‚Íβ˜‡ÂÚ 1,5 ÍÏ Ô·‚‡ÌËfl (ÏÂÚ˘ÂÒ͇fl
ÏËÎfl), 40 ÍÏ ‚ÂÎÓ„ÓÌÍË Ë 10 ÍÏ ·Â„‡.
ëÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÊ ÒÔËÌÚÂÒ͇fl ‰ËÒڇ̈Ëfl (750 Ï Ô·‚‡ÌËfl, 20 ÍÏ ‚ÂÎÓ„ÓÌÍË Ë
5 ÍÏ ·Â„‡) Ë ‰ÎËÌ̇fl ‰ËÒڇ̈Ëfl (3 ÍÏ Ô·‚‡ÌËfl, 80 ÍÏ ‚ÂÎÓ„ÓÌÍË Ë 20 ÍÏ ·Â„‡).
ê‡ÒÒÚÓflÌË ¯‡·‡Ú‡
ê‡ÒÒÚÓflÌËÂÏ ¯‡·‡Ú‡ (ËÎË ‡‚‚ËÌÒÍÓÈ ÏËÎÂÈ) ̇Á˚‚‡ÂÚÒfl ‰‡Î¸ÌÓÒÚ¸ ‚ 2000 Ú‡ÎÏۉ˘ÂÒÍËı ÍÛ·ËÚÓ‚ (1120,4 Ï), ‡Á¯ÂÌÌÓ ‡ÒÒÚÓflÌËÂ, Á‡ Ô‰ÂÎ˚ ÍÓÚÓÓ„Ó ‚ÂÛ˛˘ÂÏÛ Â‚² Á‡Ô¢‡ÂÚÒfl ‚˚ıÓ‰ËÚ¸ ‚ ‰Â̸ ¯‡·‡Ú‡.
ÑÛ„ËÏË Ú‡ÎÏۉ˘ÂÒÍËÏË ÏÂ‡ÏË ‰ÎËÌ˚ fl‚Îfl˛ÚÒfl: ÒÛÚÓ˜Ì˚È ÔÂÂıÓ‰, Ô‡Ò‡ Ë
ÒÚ‡‰Ëfl (40, 4 Ë 0,8 ‡‚‚ËÌÒÍÓÈ ÏËÎË ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ), ‡ Ú‡ÍÊ Ôfl‰¸, ı‡ÒËÚ, ·‰Ó̸,
1 1 1 1
1
1
·Óθ¯ÓÈ Ô‡Îˆ, Ò‰ÌËÈ Ô‡Îˆ, ÏËÁË̈ ( , , ,
,
,
ÓÚ Ú‡ÎÏۉ˘ÂÒÍÓ„Ó
2 3 6 24 30 36
ÍÛ·ËÚ‡ ÒÓÓÚ‚ÚÂÒÚ‚ÂÌÌÓ).
ɇ·ÍÚÓˆÂÌÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ
ɇ·ÍÚÓˆÂÌÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË Á‚ÂÁ‰˚ –  ۉ‡ÎÂÌÌÓÒÚ¸ ÓÚ „‡Î‡ÍÚ˘ÂÒÍÓ„Ó
ˆÂÌÚ‡. ɇ·ÍÚÓˆÂÌÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ëÓÎ̈‡ ÒÓÒÚ‡‚ÎflÂÚ ÓÍÓÎÓ 8,5 ÍÔÍ, Ú.Â.
27 700 Ò‚. ÎÂÚ.
äÓÒÏ˘ÂÒÍËÈ Ò‚ÂÚÓ‚ÓÈ „ÓËÁÓÌÚ
äÓÒÏ˘ÂÒÍËÈ Ò‚ÂÚÓ‚ÓÈ „ÓËÁÓÌÚ (ËÎË ‡ÒÒÚÓflÌË ·Î‡, ‚ÓÁ‡ÒÚ ‚ÒÂÎÂÌÌÓÈ)
ÂÒÚ¸ ÔÓÒÚÓflÌÌÓ Û‚Â΢˂‡˛˘ÂÂÒfl ‡ÒÒÚÓflÌË ‰‡Î¸ÌÓÒÚË: χÍÒËχθÌÓ ‡ÒÒÚÓflÌËÂ,
ÍÓÚÓÓ ҂ÂÚ ÔÓ¯ÂÎ Ò ÏÓÏÂÌÚ‡ ÅÓθ¯Ó„Ó ‚Á˚‚‡, ̇˜‡Î‡ ÒÛ˘ÂÒÚ‚Ó‚‡ÌËfl
60
‚ÒÂÎÂÌÌÓÈ. Ç Ì‡ÒÚÓfl˘Â ‚ÂÏfl ÓÌ ÒÓÒÚ‡‚ÎflÂÚ 13–14 Ò‚. ÎÂÚ, Ú.Â. ÓÍÓÎÓ 46 × 10 ‰ÎËÌ
è·Ì͇.
ãËÚÂ‡ÚÛ‡
[Abel91] Abels H. The Gallery Distance of Flags, Order, Vol. 8, pp. 77–92, 1991.
[AAH00] Aichholzer O., Aurenhammer F. and Hurtado F. Edge Operations on Non-crossing
Spanning Trees, Proc. 16-th European Workshop on Computational Geometry CG'2000, pp. 121–125,
2000.
[AACL98] Aichholzer O., Aurenhammer F., Chen D.Z., Lee D.T., Mukhopadhyay A. and Papadopoulou E. Voronoi Diagrams for Direction-sensitive Distances, Proc. 13-th Symposium on Computational Geometry, ACM Press, New York, 1997.
[Aker97] Akerlof G.A. Social Distance and Social Decisions, Econometrica, Vol. 65, Nr. 5,
pp. 1005–1027, 1997.
[Amar85] Amari S. Differential-geometrical Methods in Statistics, Lecture Notes in Statistics,
Springer-Verlag, 1985.
[Amba76] Ambartzumian R. A Note on Pseudo-metrics on the Plane, Z. Wahrsch. Verw. Gebiete,
Vol. 37, pp. 145–155, 1976.
[ArWe92] Arnold R. and Wellerding A. On the Sobolev Distance of Convex Bodies, Aeq.
Mathematicae, Vol. 44, pp. 72–83, 1992.
p
[Badd92] Baddeley A.J. Errors in Binary Images and an L Version of the Hausdorff Metric, Nieuw
Archief voor Wiskunde, Vol. 10, pp. 157–183, 1992.
[Bara01] Barabasi A.L. The Physics of the Web, Physics World, July 2001.
[Barb35] Barbilian D. Einordnung von Lobayschewskys Massenbestimmung in either Gewissen
Allgemeinen Metrik der Jordansche Bereiche, Casopis Mathematiky a Fysiky, Vol. 64, pp. 182–183,
1935.
[BLV05] Barcelo C., Liberati S. and Visser M. Analogue Gravity, arXiv: gr-qc/0505065, Vol. 2,
2005.
[BLMN05] Bartal Y., Linial N., Mendel M. and Naor A. Some Low Distorsion Metric Ramsey
Problems, Discrete and Computational Geometry, Vol. 33, pp. 27–41, 2005.
[Bata95] Batagelj V. Norms and Distances over Finite Groups, J. of Combinatorics, Information
and System Sci., Vol. 20, pp. 243–252, 1995.
[Beer99] Beer G. On Metric Boundeness Structures, Set-Valued Analysis, Vol. 7, pp. 195–208,
1999.
[BGLVZ98] Bennet C.H., Gacs P., Li M., Vitanai P.M.B. and Zurek W. Information Distance,
IEEE Transactions on Information Theory, Vol. 44, Nr. 4, pp. 1407–1423, 1998.
[BGT93] Berrou C., Glavieux A. and Thitimajshima P. Near Shannon Limit Error-correcting
Coding and Decoding: Turbo-codes, Proc. of IEEE Int. Conf. on Communication, pp. 1064–1070,
1993.
[BFK99] Blanchard F., Formenti E. and Kurka P. Cellular Automata in the Cantor, Besicovitch and
Weyl Topological Spaces, Complex Systems, Vol. 11, pp. 107–123, 1999.
[Bloc99] Bloch I. On fuzzy distances and their use in image processing under unprecision, Pattern
Recognition, Vol. 32 pp. 1873–1895, 1999.
[BCFS97] Block H.W., Chhetry D., Fang Z. and Sampson A.R. Metrics on Permutations Useful for
Positive Dependence, J. of Statistical Planning and Inference, Vol. 62, pp. 219–234, 1997.
[Blum70] Blumenthal L.M. Theory and Applications of Distance Geometry, Chelsea Publ., New
York, 1970.
[Borg86] Borgefors G. Distance Transformations in Digital Images, Comp. Vision, Graphic and
Image Processing, Vol. 34, pp. 344–371, 1986.
426
ãËÚÂ‡ÚÛ‡
[BrLi04] Bramble D.M. and Lieberman D.E. Endurance Running and the Evolution of Homo,
Nature, Vol. 432, pp. 345–352, 2004.
[BKMR00] Broder A.Z., Kumar S.R., Maaghoul F., Raghavan P., Rajagopalan S., Stata R.,
Tomkins A. and Wiener G. Graph Structure in the Web: Experiments and Models, Proc. 9-th WWW
Conf., Amsterdam, 2000.
[BGL95] Brualdi R.A., Graves J.S. and Lawrence K.M. Codes with a Poset Metric, Discrete Math.,
Vol. 147, pp. 57–72, 1995.
[Brya85] Bryant V. Metric Spaces: Iteration and Application, Cambridge Univ. Press, 1985.
[Bull12] Bullough E. "Psychical Distance" as a Factor in Art and as an Aestetic Principle, British
J. of Psychology, Vol. 5, pp. 87–117, 1912.
[BuIv01] Burago D., Burago Y. and Ivanov S. A Course in Metric Geometry, Amer. Math. Soc.,
Graduate Studies in Math., Vol. 33, 2001.
[BuKe53] Busemann H. and Kelly P.J. Projective Geometry and Projective Metrics, Academic
Press, New York, 1953.
[Buse55] Busemann H. The Geometry of Geodesics, Academic Press, New York, 1955.
[BuPh87] Busemann H. and Phadke B.B. Spaces with Distinguished Geodesics, Marcel Dekker,
New York, 1987.
[Cair01] Cairncross F. The Death of Distance 2.0: How the Communication Revolution will Change
our Lives, Harvard Business School Press, 2-nd edition, 2001.
[CSY01] Calude C.S., Salomaa K. and Yu S. Metric Lexical Analysis, Springer-Verlag, 2001.
[CJT93] Chartrand G., Johns G.L. and Tian S. Detour Distance in Graphs, Ann. of Discrete Math.,
Vol. 55, pp. 127–136, 1993.
[ChLu85] Cheng Y.C. and Lu S.Y. Waveform Correlation by Tree Matching, IEEE Trans. Pattern
Anal. Machine Intell., Vol. 7, pp. 299–305, 1985.
[Chen72] Chentsov N.N. Statistical Decision Rules and Optimal Inferences, Nauka, Moscow, 1972.
[ChFi98] Chepoi V. and Fichet B. A Note on Circular Decomposable Metrics, Geom. Dedicata,
Vol. 69, pp. 237–240, 1998.
[ChSe00] Choi S.W. and Seidel H.-P. Hyperbolic Hausdorff Distance for Medial Axis Transform,
Research Report MPI-I-2000-4-003 of Max-Planck-Institute fur Infor-matik, 2000.
[COR05] Collado M.D., Ortuno-Ortin I. and Romeu A. Vertical Transmission of Consumption
Behavior and the Distribution of Surnames, http://www.econ.upf.es/docs/ seminars/collado.pdf
[Cops68] Copson E.T. Metric Spaces, Cambridge Univ. Press, 1968.
[Corm03] Cormode G. Sequence Distance Embedding, PhD Thesis, Univ. of Warwick, 2003.
[CPQ96] Critchlow D.E., Pearl D.K. and Qian ë The Triples Distance for Rooted Bifurcating
Phylogenetic Trees, Syst. Biology, Vol. 45, pp. 323–334, 1996.
[CCL01] Croft W.B., Cronon-Townsend S. and Lavrenko V. Relevance Feedback and Personalization: A Language Modeling Perspective, in DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries, pp. 49–54, 2001.
[DaCh88] Das P.P. and Chatterji B.N. Knight's Distance in Digital Geometry, Pattern Recognition
Letters, Vol. 7, pp. 215–226, 1988.
[Das90] Das P.P. Lattice of Octagonal Distances in Digital Geometry, Pattern Recognition Letters,
Vol. 11, pp. 663–667, 1990.
[DaMu90] Das P.P. and Mukherjee J. Metricity of Super-knight's Distance in Digital Geometry,
Pattern Recognition Letters, Vol. 11, pp. 601–604, 1990.
[Dau05] Dauphas N. The U/Th Production Ratio and the Age of the Milky Way from Meteorites and
Galactic Halo Stars, Nature, Vol. 435, pp. 1203–1205, 2005.
[Day81] Day W.H.E. The Complexity of Computing Metric Distances between Partitions, Math.
Social Sci., Vol. 1, pp. 269–287, 1981.
[DeDu03] Deza M.M. and Dutour M. Cones of Metrics, Hemi-metrics and Super-metrics, Ann. of
European Academy of Sci., pp. 141–162, 2003.
[DeHu98] Deza M. and Huang T. Metrics on Permutations, a Survey, J. of Combinatorics,
Information and System Sci., Vol. 23, Nrs. 1–4, pp. 173–185, 1998.
[DeLa97] Deza M.M. and Laurent M. Geometry of Cuts and Metrics, Springer-Verlag, 1997.
[Dzha01] Dzhafarov E.N. Multidimensional Fechnerian Scaling: Probability-Distance Hypothesis,
J. of Math. Psychology, Vol. 46, pp. 352–374, 2001.
ãËÚÂ‡ÚÛ‡
427
[EhHa88] Ehrenfeucht A. and Haussler D. A New Distance Metric on Strings Computable in Linear
Time, Discrete Applied Math., Vol. 20, pp. 191–203, 1988.
[EM98] Encyclopedia of Mathematics, Hazewinkel M. (ed.), Kluwer Academic Publ., 1998. Online
edition: http://eom.springer.de/default.htm
[Ernv85] Ernvall S. On the Modular Distance, IEEE Trans. Inf. Theory, Vol. IT-31, Nr. 4, pp. 521–
522, 1985.
[EMM85] Estabrook G.F., McMorris F.R. and Meacham C.A. Comparison of Undirected
Phylogenetic Trees Based on Subtrees of Four Evolutionary Units, Syst. Zool, Vol. 34, pp. 193–200,
1985.
[FaMu03] Farran J.N. and Munuera C. Goppa-like Bounds for the Generalized Feng-Rao
Distances, Discrete Applied Math., Vol. 128, pp. 145–156, 2003.
[Faze99] Fazekas A. Lattice of Distances Based on 3D-neighborhood Sequences, Acta Mathematica
Academiae Paedagogicae Nyiregyhaziensis, Vol. 15, pp. 55–60, 1999.
[Ferg03] Ferguson N. Empire: The Rise and Demise of the British World Order and Lessons for
Global Power, Basic Books, 2003.
[FoSC06] Foertsch T. and Schroeder V. Hyperbolicity, C AT (–1)-spaces and the Ptolemy
Inequality, arXiv:math.MG/0605418 v2 13 July 2006.
[Frie98] Frieden B.R. Physics from Fisher information, Cambrige Univ. Press, 1998.
[Gabi85] Gabidulin E.M. Theory of Codes with Maximum Rank Distance, Probl. Peredachi Inform.,
Vol. 21, Nr. 1, pp. 1–12, 1985.
[GaSi98] Gabidulin E.M. and Simonis J. Metrics Generated by Families of Subspaces, IEEE
Transactions on Information Theory, Vol. 44, Nr. 3, pp. 1136–1141, 1998.
[GiOn96] Gilbert E.G. and Ong C.J. Growth distances: New Measures for Object Separation and
Penetration, IEEE Transactions in Robotics, Vol. 12, Nr. 6, 1996.
[Gile87] Giles J.R. Introduction to the Analysis of Metric Spaces, Australian Math. Soc. Lecture
Series, Cambridge Univ. Press, 1987.
[GoMc80] Godsil C.D. and McKay B.D. The Dimension of a Graph, Quart. J. Math. Oxford Series
(2), Vol. 31, Nr. 124, pp. 423–427, 1980.
[GOJKK02] Goh K.I., Oh E.S., Jeong H., Kahng B. and Kim D. Classification of Scale Free
Networks, Proc. Nat. Acad. Sci. USA, Vol. 99, pp. 12583–12588, 2002.
[Gopp71] Goppa V.D. Rational Representation of Codes and (L,g)-codes, Probl. Peredachi Inform.,
Vol. 7, Nr. 3, pp. 41–49, 1971.
[Goto82] Gotoh O. An Improved Algorithm for Matching Biological Sequences, J. of Molecular
Biology, Vol. 162, pp. 705–708, 1982.
[GKC04] Grabowski R., Khosa P. and Choset H. Development and Deployment of a Line of Sight
Virtual Sensor for Heterogeneous Teams, Proc. IEEE Int. Conf. on Robotics and Automation, New
Orlean, 2004.
[Grub93] Gruber P.M. The space of Convex Bodies in Handbook of Convex Geometry, Gruber P.M.
and Wills J.M. (eds.), Elsevier Sci. Publ., 1993.
[HSEFN95] Hafner J., Sawhney H.S., Equitz W., Flickner M. and Niblack W. Efficient Color
Histogram Indexing for Quadratic Form Distance Functions, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 17, Nr. 7, pp. 729–736, 1995.
[Hall69] Hall E.T. The Hidden Dimension, Anchor Books, New York, 1969.
[Hami66] Hamilton W.R. Elements of Quaternions, 2-nd edition 1899–1901 enlarged by C.J. Joly,
reprinted by Chelsea Publ., New York, 1969.
[HeMa02] Head K. and Mayer T. Illusory Border Effects: Distance mismeasurement inflates
estimates of home bias in trade, ëÖêè Working Paper No 2002-01, 2002.
[Hemm02] Hemmerling A. Effective Metric Spaces and Representations of the Reals, Theoretical
Comp. Sci., Vol. 284, Nr. 2, pp. 347–372, 2002.
[Hofs80] Hofstede G. Culture's Consequences: International Differences in Work-related Values,
Sage Publ., California, 1980.
[Hube94] Huber K. Codes over Gaussian Integers, IEEE Trans. Inf. Theory, Vol. 40, Nr. 1,
pp. 207–216, 1994.
[Hube93] Huber K. Codes over Eisenstein-Jacobi Integers, Contemporary Math., Vol. 168,
pp. 165–179, 1994.
428
ãËÚÂ‡ÚÛ‡
[HFPMC02] Huffaker B., Fomenkov M., Plummer D.J., Moore D. and Claffy K. Distance Metrics
in the Internet, IEEE Int. Telecommunication Symposium (ITS-2002), September 2002,
http://www.caida.org/outreach/papers/2002/Distance
[InVe00] Indyk P. and Venkatasubramanian S. Approximate Congruence in Nearly Linear Time,
http://www.research.att.com/~suresh/papers/hallj/hallj.pdf
[Isbe64] Isbell J. Six Theorems about Metric Spaces, Comment. Math. Helv., Vol. 39, pp. 65–74,
1964.
[IsKuPe90] Isham C.J., Kubyshin Y. and Penteln P. Quantum Norm Teory and the Quantization of
Metric Topology, Class. Quantum Gravity, Vol. 7, pp. 1053–1074, 1990.
[IvSt95] Ivanova R. and Stanilov G. A Skew-symmetric Curvature Operator in Rieman-nian
Geometry, in Symposia Gaussiana, Conf. A, Behara M., Fritsch R. and Lintz R. (eds.), pp. 391–395,
1995.
[JWZ94] Jiang T., Wang L. and Zhang K. Alignment of Trees – an Alternative to Tree Edit, in
Combinatorial Pattern Matching, Lecture Notes in Computer Science, Vol. 807, Crochemore M. and
Gusfield D. (eds.), Springer-Verlag, 1994.
[Klei88] Klein R. Voronoi Diagrams in the Moscow Metric, Graph Theoretic Concepts in Comp.
Sci., Vol. 6, 1988.
[Klei89] Klein R. Concrete and Abstract Voronoi Diagrams, Lecture Notes in Comp. Sci.,
Springer-Verlag, 1989.
[KlRa93] Klein D.J. and Randic M. Resistance distance, J. of Math. Chemistry, Vol. 12, pp. 81–95,
1993.
[Koel00] Koella J.C. The Spatial Spread of Altruism Versus the Evolutionary Response of Egoists,
Proc. Royal Soc. London, Series B, Vol. 267, pp. 1979–1985, 2000.
[KoSi88] Kogut B. and Singh H. The Effect of National Culture on the Choice of Entry Mode, J. of
Int. Business Studies, Vol. 19, Nr. 3, pp. 411–432, 1988.
[KKN02] Kosheleva O., Kreinovich V. and Nguyen H.T. On the Optimal Choice of Quality Metric
in Image Compression, Fifth IEEE Southwest Symposium on Image Analysis and Interpretation, 7–
9 April 2002, Santa Fe. IEEE Comp. Soc. Digital Library, Electronic Edition, pp. 116–120, 2002.
[LaLi81] Larson R.C. and Li V.O.K. Finding Minimum Rectilinear Distance Paths in the Presence
of Bariers, Networks, Vol. 11, pp. 285–304, 1981.
[LCLM04] Li M., Chen X., Li X., Ma B. and Vitanyi P. The Similarity Metric, IEEE Trans. Inf.
Theory, Vol. 50–12, pp. 3250–3264, 2004.
[LuRo76] Luczak E. and Rosenfeld A. Distance on a Hexagonal Grid, IEEE Trans. on Computers,
Vol. 25, Nr. 5, pp. 532–533, 1976.
[MaMo95] Mak King-Tim and Morton A.J. Distances between Traveling Salesman Tours, Discrete
Applied Math., Vol. 58, pp. 281–291, 1995.
[MaSt99] Martin W.J. and Stinson D.R. Association Schemes for Ordered Orthogonal Arrays and
(T, M, S)-nets, Canad. J. Math., Vol. 51, pp. 326–346, 1999.
[McCa97] McCanna J.E. Multiply-sure Distances in Graphs, Congressus Numerantium, Vol. 97,
pp. 71–81, 1997.
[Melt91] Melter R.A. A Survey of Digital Metrics, Contemporary Math., Vol. 119, 1991.
[Monj98] Monjardet B. On the Comparaison of the Spearman and Kendall Metrics between Linear
Orders, Discrete Math., Vol. 192, pp. 281–292, 1998.
[Mura85] Murakami H. Some Metrics on Classical Knots, Math. Ann., Vol. 270, pp. 35–45, 1985.
[NeWu70] Needleman S.B. and Wunsh S.D. A general Method Applicable to the Search
of the Similarities in the Amino Acids Sequences of Two Proteins, J. of Molecular Biology, Vol. 48,
pp. 443–453, 1970.
[NiSu03] Nishida T. and Sugihara K. FEM-like Fast Marching Method for the Computation of the
Boat-Sail Distance and the Associated Voronoi Diagram, http://www. keisu.t.u-tokyo.ac.jp/Research/
METR/2003/METR03–45.pdf
[OBS92] Okabe A., Boots B. and Sugihara K. Spatial Tesselation: Concepts and Applications of
Voronoi Diagrams, Wiley, 1992.
[OSLM04] Oliva D., Samengo I., Leutgeb S. and Mizumori S. A Subgective Distance between
Stimuli: Quantifying the Metric Structure of Represantations, Neural Computation, Vol.17, Nr. 4,
pp. 969–990, 2005.
ãËÚÂ‡ÚÛ‡
429
[Orli32] Orlicz W. Uber eine Gewisse Klasse von Raumen vom Typus B', Bull. Int. Acad. Pol.
Series A, Vol. 8–9, pp. 207–220, 1932.
[OASM03] Ozer H., Avcibas I., Sankur B. and Memon N.D. Steganalysis of Audio Based on Audio
Quality Metrics, Security and Watermarking of Multimedia Contents V (Proc. of SPIEIS and T),
Vol. 5020, pp. 55–66, 2003.
[Page65] Page E.S. On Monte-Carlo Methods in Congestion Problem. 1. Searching for an Optimum
in Discrete Situations, J. Oper. Res., Vol. 13, Nr. 2, pp. 291–299, 1965.
[Petz96] Petz D. Monotone Metrics on Matrix Spaces, Linear Algebra Appl., Vol. 244, 1996.
[PM] PlanetMath.org, http://planetmath.org/encyclopedia/
[Rach91] Rachev S.T. Probability Metrics and the Stability of Stochastic Models, Wiley, New
York, 1991.
[ReRo01] Requardt M. and Roy S. (Quantum) Spacetime as a Statistical Geometry of Fuzzy Lumps
and the Connection with Random Metric Spaces, Class. Quantum Gravity, Vol. 18, pp. 3039–3057,
2001.
[RoTs96] Rosenbloom M.Y. and Tsfasman M.A. Codes for the m-metric, Problems of information
transmission, Vol. 33, Nr. 1, pp. 45–52, 1997.
[RoPf68] Rosenfeld A. and Pfaltz J. Distance Functions on Digital Pictures, Pattern Recognation,
Vol. 1, pp. 33–61, 1968.
[RTG00] Rubner Y., Tomasi C. and Guibas L.J. The Earth Mover's Distance as a Metric for Image
Retrieval, Int. J. of Comp. Vision, Vol. 40, Nr. 2, pp. 99–121, 2000.
[Rumm76] Rummel R.J. Understanding Conflict and War, Sage Publ., California, 1976. [ScSk83]
Schweizer B. and Sklar A. Probabilistic Metric Spaces, North-Holland, 1983.
[Selk77] Selkow S.M. The Tree-to-tree Editing Problem, Inform. Process. Lett., Vol. 6, Nr. 6,
pp. 184–186, 1977.
[ShKa97] Sharma B.D. and Kaushik M.L. Error-correcting Codes through a New Metric, 41-st
Annual Conf. Int. Stat. Inst., New Delhi, 1997.
[Tai79] Tai K.-C. The Tree-to-tree Correction Problem, J. of the Association for Comp. Machinery,
Vol. 26, pp. 422–433, 1979.
[Tail04] Tailor B. Introduction: How Far, How Near: Distance and Proximity in the Historical
Imagination, History Workshop J., Vol. 57, pp. 117–122, 2004.
[Tymo06] Tymoczko D. The Geometry of Musical Chords, Science, Vol. 313, Nr. 5783, pp.72–74,
2006.
[ToSa73] Tomimatsu A. and Sato H. New Exact Solution for the Gravitational Field of a Spinning
Mass, Phys. Rev. Letters, Vol. 29, pp. 1344–1345, 1972.
[Var04] Vardi Y. Metrics Useful in Network Tomography Studies, Signal Processing Letters,
Vol. 11, Nr. 3, pp. 353–355, 2004.
[VeHa01] Veltkamp R.C. and Hagendoorn M. State-of-the-Art in Shape Matching, in Principles of
Visual Information Retrieval, Lew M. (ed.), pp. 87–119, Springer-Verlag, 2001.
[Watt99] Watts D.J. Small Worlds: The Dynamics of Networks between Order and Randomness,
Princeton Univ. Press, 1999.
[Wein72] Weinberg S. Gravitation and Cosmology: Principles and Applications of the General
Theory of Relativity, Wiley, New York, 1972.
[Weis99] Weisstein E.W. CRC Concise Encyclopedia of Mathematics, CRC Press, 1999.
[Well86] Wellens R.A. Use of a Psychological Model to Assess Differences in Telecommunication
Media, in Teleconferencing and Electronic Communication, Parker L.A. and Olgren O.H. (eds.),
pp. 347–361, Univ. of Wisconsin Extension, 1986.
[WFE] Wikipedia, the Free Encyclopedia, http://en.wikipedia.org
[WiMa97] Wilson D.R. and Martinez T.R. Improved Heterogeneous Distance Functions, J. of
Artificial Intelligence Research, Vol. 6, p. 134, 1997.
[WoPi99] Wolf S. and Pinson M.H. Spatial-Temporal Distortion Metrics for In-Service Quality
Monitoring of Any Digital Video System, Proc. of SPIE Int. Symp. on Voice, Video, and Data
Commun., September 1999.
[Yian91] Yianilos P.N. Normalized Forms for Two Common Metrics, NEC Research Institute,
Report 91-082-9027-1, 1991.
430
ãËÚÂ‡ÚÛ‡
[Youn98] Young N. Some Function-Theoretic Issues in Feedback Stabilisation, Holomor-phic
Spaces, MSRI Publication, Vol. 33, 1998.
[YOI03] Yutaka M., Ohsawa Y. and Ishizuka M. Average-Clicks: A New Measure of Distance on
the World Wide Web, Journal of Intelligent Information Systems, Vol. 20, No. 1, pp. 51–62, 2003.
[Zeli75] Zelinka B. On a Certain Distance between Isomorphism Classes of Graphs, Ca-sopus.
Pest. Mat., Vol. 100, pp. 371–373, 1975.
Скачать