äÏËÕÍÅÎÔ Microsoft Office Wordx

реклама
Введение
Особую роль в математическом моделировании биомедицинских систем играют
динамические системы, в которых с течением времени происходят существенные изменения.
Динамической системой называют систему, изменяющую под действием сил свое состояние.
Одним из эффективных способов поддержания сложных динамических систем в
требуемом состоянии является совершенствование и развитие алгоритмического диагностического
контроля показателей их функционирования (системы гемостаза).
Биологические исследования являются важным источником идей для появления новых
алгоритмов в информатике. Исследования в области нейронных сетей и эволюционных и
иммунных алгоритмов которые могут применяться для решения задачи прогнозирование и
диагностирования динамических систем.
Нейронные сети
Математические модели, а также их программные или аппаратные реализации,
построенные по принципу организации и функционирования биологических нейронных сетей —
сетей нервных клеток живого организма. Это понятие возникло при изучении процессов,
протекающих в мозге, и при попытке смоделировать эти процессы.
С точки зрения машинного обучения, нейронная сеть представляет собой частный случай
методов распознавания образов, дискриминантного анализа, методов кластеризации
С математической точки зрения, обучение нейронных сетей — это многопараметрическая
задача нелинейной оптимизации.
Генетические алгоритмы
Генетические Алгоритмы - адаптивные методы поиска, которые в последнее время часто
используются для решения задач функциональной оптимизации. Они основаны на генетических
процессах биологических организмов: биологические популяции развиваются в течении
нескольких поколений, подчиняясь законам естественного отбора и по принципу "выживает
наиболее приспособленный" (survival of the fittest), открытому Чарльзом Дарвином.
ГА используют прямую аналогию с таким принципом. Они работают с совокупностью
"особей" - популяцией, каждая из которых представляет возможное решение данной проблемы.
Каждая особь оценивается мерой ее "приспособленности" согласно тому, насколько "хорошо"
соответствующее ей решение задачи.
В конечном итоге, популяция будет сходиться к оптимальному решению задачи.
Иммунные алгоритмы
Искусственная иммунная система (ИИС) - это адаптивная вычислительная система,
использующая модели, принципы, механизмы и функции, описанные в теоретической
иммунологии, которые применяются для решения прикладных задач.
Несмотря на то, что природные иммунные системы изучены далеко не полностью, на
сегодня существуют как минимум три теории, объясняющие функционирования иммунной
системы и описывают взаимодействие ее элементов, а именно: теория отрицательного отбора,
теория клональной селекции и теория иммунной сети. Они легли в основу создания трех
алгоритмов функционирования ИИС.
Проблемы Нейросетей
Выбор оптимальной архитектуры (Количество слоев, количество нейронов, выбор
активационной функции, метод обучения и д.р.)
Испоьзование генетических и иммунных алгоритмов позволит автоматизировать процесс
эмпирического подбора характеристик.
Проблемы ИИС
Первая заключается в том, что в настоящее время существует лишь небольшое число
вычислительных моделей, основанных на принципах работы иммунной системы. Это связывают с
тем, что сохраняется неопределенность в основных положениях, предложенных для ее описания.
Вторая проблема связана с самими исследователями - как утверждается в, некоторые
исследователи лишь поверхностно изучают механизмы работы иммунной системы, что порождает
публикации, ошибочно отнесенные к области ИИС. Это не означает, что подобные работы не
заслуживают должного внимания, часто там изложены интересные идеи, но они имеют лишь
косвенное отношение к ИИС.
В качестве следующей проблемы обозначим сложность реализации механизмов иммунной
системы, данная проблема существует во многих областях, где требуется моделирование сложных
биологических процессов организма.
Преимущества нейронных сетей
Все задачи, решаемые человеком, с позиций нейроинформационных технологий можно
условно классифицировать на две группы.
1.
Задачи, имеющие известный и определенный набор условий, на основании
которого необходимо получить четкий, точный, недвусмысленный ответ по известному и
определенному алгоритму.
2.
Задачи, в которых не представляется возможным учесть все реально имеющиеся
условия, от которых зависит ответ, а можно лишь выделить приблизительный набор наиболее
важных условий. Так как часть условий при этом не учитывается, ответ носит неточный,
приблизительный характер, а алгоритм нахождения ответа не может быть выписан точно.
Для решения задач первой группы с большим успехом можно использовать традиционные
компьютерные программы. Как бы ни был сложен алгоритм, ограниченность набора условий
(входных параметров) дает возможность составления алгоритма решения и написания конкретной
программы,
решающей
данную
задачу.
Нет
никакого
смысла
в
использовании
нейроинформационных технологий для решения таких задач, так как в этом случае нейросетевые
методы будут априорно хуже решать такие задачи. Единственным исключением является случай,
когда алгоритм вычисления ответа слишком большой и громоздкий и время на решение
конкретной задачи по этому алгоритму не удовлетворяет прак-тическим требованиям; кроме того,
при получении ответа не требуется абсолютная точность.
При решении задач второй группы применение нейротехнологии оправдывает себя по всем
параметрам, при выполнении, однако, двух условий: во-первых, наличия универсального типа
архитектуры и единого универсального алгоритма обучения (отсутствие необходимости в их
разработке для каждого типа задач), во-вторых, наличия примеров (предыстории, фиксированного
опыта), на основании которых производится обучение нейронных сетей. При выполнении этих
условий скорость создания экспертных систем возрастает в десятки раз, и соответственно
снижается их стоимость.
Практически вся медицинская и биологическая наука состоит именно из задач,
относящихся ко второй группе, и в большинстве этих задач достаточно легко набрать
необходимое количество примеров для выполнения второго условия. Это задачи диагностики,
дифференциальной диагностика, прогнозирования, выбора стратегии и тактики лечения и др.
Медицинские задачи практически всегда имеют несколько способов решения и “нечеткий”
характер ответа, совпадающий со способом выдачи результата нейронными сетями.
Прикладные области или первые шаги
Распознавание рукописных изображений.?????????????
Распознавание медицинских образов. Медицинская дигностика.
Направления исследований
Исследование бионических алгоритмов и нахождение способов их применения для
решения прикладных задач?
Скачать