Корональное излучение закрученных звезд и рентгеновская светимость Sgr A* С. Сазонов, Р. Сюняев, М. Ревнивцев Институт космических исследований РАН MNRAS, 2011 Центр Галактики, Chandra Солнце, TRACE X-rays from the Galactic Center Chandra, exposure ~50 ksec At GC distance of 8 kpc, 1’’ = 0.04 pc Baganoff et al. 2003 Central X-ray source Spectrum (~250 counts) consistent with optically thermal emission, kT = 1-4 keV Source is extended, σ = 0.6’’ Baganoff et al. 2003 Hot diffuse gas? Prevailing idea (e.g., Quataert 2002; Baganoff et al. 2003; Yuan et al. 2003) Observed size ≈ Bondi radius: RB= GMBH/cs2 ~ 0.05 pc Gas possibly supplied by winds of hot stars (e.g. Quataert 2004; Cuadra 2006) Possibly ADAF/RIAF type flow within RB Alternative possibility: Superposition of weak point sources Nuclear stellar cluster SINFONI,NACO/VLT Genzel et al. 2010 Nuclear stellar cluster Detection limit Genzel et al. 2010 We are not yet probing late-type main-sequence stars! Nuclear stellar cluster Space density profile ρ* ~ r-γ Total counts of K<17 stars: γ~1.2 (r<0.25 pc) γ~1.75 (r>0.25 pc) Early type K<15.5 stars: γ~2.5 Late-type K<15.5 stars: γ ≤ 1 - collisional destruction of red giants? (e.g., Genzel et al. 1996; Dale et al. 2009) Bartko et al. 2010 (also Buchholz et al. 2009; Do et al. 2009) Nuclear stellar cluster Stellar luminosity function Except for the young stellar disk(s) at 0.8’’ < r < 12’’ (Paumard et al. 2006), the luminosity function in the GC is consistent with continuous star formation with usual IMF (Loeckmann et al. 2010) Bartko et al. 2010 Nuclear stellar cluster Diffuse K-light (summed light of K>17 stars) VLT/adaptive optics HST/NICMOS Schoedel et al. 2007 γ~1 at r<0.2 pc several x 104 Sun-like stars within 0.1 pc Yusef-Zadeh et al. 2011 Nuclear stellar cluster Dynamical constraints There are dynamical constraints on the total enclosed mass at r < 0.5-1 pc (Trippe et al. 2008; Schoedel et al. 2009) and at r <0.005-0.1 pc (Gillessen et al. 2009) Genzel et al. 2010 Nuclear stellar cluster Summary r * (r) A 0.25 pc 1.3 MSun pc 3 at r 0.25pc A≈1.5 x 106, with uncertainty ~ a factor of 2 (Genzel et al. 2010) The slope changes to Γ~1.8 at r > 0.25 pc Total number of low-mass (0.4-1.5 Msun) stars within 0.1 pc < 6 x 104 Tidal spin-up SPH simulation of a close collision of two MS stars Alexander & Kumar 2001 Tidal spin-up ΔE=ΔLΩp ΔL=IΔΩ Efficiency falls rapidly with periseparation Alexander & Kumar 2001 Tidal spin-up Spin ΔΩ reaches 0.1-0.3 of Ωb, star’s breakup speed (corresponds to 440 km/s, or a period of ~3 hours for the Sun) Alexander & Kumar 2001 Stellar rotation => Coronal activity Coronal activity reaches saturation at Rossby number R0~0.1, i.e., at Ω ~ 0.1 Ωb Guedel 2004 Magnetic braking Guedel 2004 Saturation regime lasts for tmb~ 100 Myr Afterwards Ω ~ t-1/2 (Skumanich 1972) Model r * 370 0.05 pc 1 / 2 km / s s bRSun / vp if Rp Rs if Rp Rs 0 Model Active binaries (RS CVn systems) X-ray light curves Average stellar properties 50% of total X-ray luminosity produced by faster rotators Surface brightness profile: data R=1.5’’ Chandra, 2-8 keV, ~ 620 ksec Flares are filtered out σ=0.6’’ Surface brightness profile: model There is ~20% uncertainty in conversion from unabsorbed flux to counts Surface brightness profile: model X-ray luminosity grows with density approximately as A1.6 X-ray spectrum: data 6.4 keV line? X-ray spectrum: produced by a few 103 stars? kT = 3.2±0.3 keV kT = 3.7±0.1 keV kT = 2.4±0.3 keV Stellar flares Superflare of RS CVn binary II Peg on Dec. 16, 2005 Swift, Osten et al. 2007 oDuration: ~ 2 hours oPeak luminosity: 1.3 1033 erg/s in 0.8-10 keV and 8 1032 erg/s in 10-200 keV This is ~40% of the binary’s bolometric luminosity (~5 1033 erg/s) oHard spectrum and significant 6.4 keV line Superflare of dMe star EV Lac on Apr. 25, 2008 Osten et al. 2010 oDuration: < 1 hour oPeak luminosity: 1.6 1032 erg/s in 0.3-100 keV This is 3.1 times the star’s bolometric luminosity (~5 1031 erg/s) oHard spectrum and strong 6.4 keV line 6.4 keV –fluorescent emission? Has been predicted (Bai 1979; Basko 1979) and observed (Culhane 1981) during solar flares Recently, has been observed in a few giant stellar flares Typically expected to be ≤50 eV, but can reach 200-300 eV, as during the superflare of dMe EV Lac Superflares: frequency few flares per object per year (e.g., Pye & McHardy 1983; Ostin et al. 2007) → ~1 flare per 1000 objects at any given moment MAXI on ISM seems to be confirming this: 14 superflares from RS CVns in the 1st year of operation (Tsuboi et al. 2011) - Lx = 5+4-2 ×1033 erg/s 1.5-10 keV Lx = 4±1 ×1033 erg/s Выводы Скоплением закрученных маломассивных звезд можно объяснить основные свойства ”спокойного” рентгеновского излучения Sgr A* Требуется несколько 104 звезд, из которых несколько 103 быстро вращаются, внутри ~0.1 пк – не противоречит инфракрасным наблюдениям и динамическим ограничениям - Можно обойтись и меньшим количеством звезд, если 1) вблизи Sgr A* есть много черных дыр – более эффективная закрутка, и/или 2) гигантские корональные вспышки доминируют в суммарном потоке излучения Данные Чандры накладывают верхний предел на количество звезд около Sgr A* Нельзя объяснить центральный радиоисточник и мощные вспышки Sgr A*. Однако более слабые вспышки могут быть связаны со звездами