Ministry of Education and Science of the Russian Federation State Educational Institution of Higher Professional Education National Research Tomsk Polytechnic University Institute of Cybernetics Department: Applied Mathematics Specialization: Applied Mathematics and Informatics COMSOL MULTIPHYSICS SIMULATION OF MARANGONI CONVECTION Student: Ryabikina A.S., Group: 8b90, Scientific advisor: Ogorodnikov A.S., Linguistic advisor: Kuznetsova I.N. OVERVIEW • • • • • • Introduction Covering equations Modeling Results Conclusion References 2 INTRODUCTION Features: •Surface tension •Liquid-air interface Dependance: •Species concentration •Temperature distribution Modeling technique: • Metals • High temperatures • Real system substitution • Silicone oil filling • Known properties 3 COVERING EQUATIONS Equations Formulae № Features (1) velocity field, pressure distribution (2) fluid heating (3) temperature variations (4) 4 MODELING Performance: • Diverse scientific tasks • Partial differential equations • Technique of finite elements 5 MODELING Modes: • Incompressible Navier-Stokes • Convection and Conduction • Weak Form, Boundary Fig.1. Mode selection. 5 MODELING Basic steps: • Subdomain settings Fig.2 The vessel after mesh generation. • Boundary conditions • Mesh generation Fig.3 Problem solving. 5 RESULTS ∆T = 10-3K: NO temperature & velocity field correlation Fig.4. Temperature and velocity, ∆T = 10-3K. 6 RESULTS ∆T = 2K: DISTINCT temperature & velocity field correlation Fig.5. Temperature and velocity, ∆T = 2K. 6 CONCLUSION • Experimental study difficulties • Real system substitution • Temperature difference range calculation • Comsol Multiphysics modeling • Direct correlation of temperature and velocity field • Marangoni’s effect influence 7 REFERENCES 1. 2. Levich V.G. Physicochemical Hydrodynamics. – New Jersey: Prentice-Hall, 1962. Егоров В.И. Применение ЭВМ для решения задач теплопроводности. Учебное пособие.– СПб: СПб ГУ ИТМО, 2006.- 4с. 3. Огородников А.С. Моделирование в среде Matlab – Comsol 3.5a. Часть 1: учебное пособие. Томск: Изд-во Томского политехнического университета, 2012. 4. Batchelor G.K. An Introduction to Fluid Dynamics. – Cambridge: Cambridge University Press, 1967. 5. Space Science News Archive [Электронный ресурс] / Physical Simulation of Marangoni Convection in Weld Pools . – Режим доступа: http://www.spacescience.spaceref.com/, свободный. – Загл. с экрана. - Яз.англ. 6. Comsol Multiphysics [Электронный ресурс] / Model Gallery. – Режим доступа: http://www.comsol.com/, свободный. – Загл. с экрана. – Яз.англ. 7. Wikipedia, the free encyclopedia [Электронный ресурс] / Navier-Stokes equations. – Режим доступа: http://www.wikipedia.org/, свободный. – Загл. с экрана. – Яз.англ. 8. Physics Forums [Электронный ресурс] / Thermodynamics Energy balance Equation. – Режим доступа: http://www.physicsforums.com/, свободный. – Загл. с экрана. – Яз.англ. 9. Thermopedia [Электронный ресурс] / Archimede’s Force. – Режим доступа: http://www.thermopedia.com/, свободный. – Загл. с экрана. – Яз.англ. 10. Scholarpedia [Электронный ресурс] / Navier-Stokes Equations: Mathematical Properties. – Режим доступа: http://www.scholarpedia.com/, свободный. – Загл. с экрана. – Яз.англ. 8 Ministry of Education and Science of the Russian Federation State Educational Institution of Higher Professional Education National Research Tomsk Polytechnic University Institute of Cybernetics Department: Applied Mathematics Specialization: Applied Mathematics and Informatics COMSOL MULTIPHYSICS SIMULATION OF MARANGONI CONVECTION Student’s contacts: [email protected], [email protected], [email protected] Student: Ryabikina A.S., Group: 8b90, Scientific advisor: Ogorodnikov A.S., Linguistic advisor: Kuznetsova I.N.