Comsol Multiphysics simulation

реклама
Ministry of Education and Science of the Russian Federation
State Educational Institution of Higher Professional Education
National Research Tomsk Polytechnic University
Institute of Cybernetics
Department: Applied Mathematics
Specialization: Applied Mathematics and Informatics
COMSOL MULTIPHYSICS
SIMULATION OF MARANGONI
CONVECTION
Student: Ryabikina A.S.,
Group: 8b90,
Scientific advisor: Ogorodnikov A.S.,
Linguistic advisor: Kuznetsova I.N.
OVERVIEW
•
•
•
•
•
•
Introduction
Covering equations
Modeling
Results
Conclusion
References
2
INTRODUCTION
Features:
•Surface tension
•Liquid-air interface
Dependance:
•Species
concentration
•Temperature
distribution
Modeling
technique:
• Metals
• High temperatures
• Real system
substitution
• Silicone oil filling
• Known properties
3
COVERING EQUATIONS
Equations
Formulae
№
Features
(1)
velocity field,
pressure distribution
(2)
fluid heating
(3)
temperature
variations
(4)
4
MODELING
Performance:
• Diverse scientific
tasks
• Partial differential
equations
• Technique of finite
elements
5
MODELING
Modes:
• Incompressible
Navier-Stokes
• Convection and
Conduction
• Weak Form,
Boundary
Fig.1. Mode selection.
5
MODELING
Basic steps:
• Subdomain
settings
Fig.2 The vessel after mesh
generation.
• Boundary
conditions
• Mesh generation
Fig.3 Problem solving.
5
RESULTS
∆T = 10-3K:
NO temperature
& velocity field
correlation
Fig.4. Temperature and velocity,
∆T = 10-3K.
6
RESULTS
∆T = 2K:
DISTINCT
temperature &
velocity field
correlation
Fig.5. Temperature and velocity,
∆T = 2K.
6
CONCLUSION
• Experimental study difficulties
• Real system substitution
• Temperature difference range
calculation
• Comsol Multiphysics modeling
• Direct correlation of temperature and
velocity field
• Marangoni’s effect influence
7
REFERENCES
1.
2.
Levich V.G. Physicochemical Hydrodynamics. – New Jersey: Prentice-Hall, 1962.
Егоров В.И. Применение ЭВМ для решения задач теплопроводности. Учебное пособие.–
СПб: СПб ГУ ИТМО, 2006.- 4с.
3. Огородников А.С. Моделирование в среде Matlab – Comsol 3.5a. Часть 1: учебное
пособие. Томск: Изд-во Томского политехнического университета, 2012.
4. Batchelor G.K. An Introduction to Fluid Dynamics. – Cambridge: Cambridge University Press,
1967.
5. Space Science News Archive [Электронный ресурс] / Physical Simulation of Marangoni
Convection in Weld Pools . – Режим доступа: http://www.spacescience.spaceref.com/,
свободный. – Загл. с экрана. - Яз.англ.
6. Comsol Multiphysics [Электронный ресурс] / Model Gallery. – Режим доступа:
http://www.comsol.com/, свободный. – Загл. с экрана. – Яз.англ.
7. Wikipedia, the free encyclopedia [Электронный ресурс] / Navier-Stokes equations. – Режим
доступа: http://www.wikipedia.org/, свободный. – Загл. с экрана. – Яз.англ.
8. Physics Forums [Электронный ресурс] / Thermodynamics Energy balance Equation. – Режим
доступа: http://www.physicsforums.com/, свободный. – Загл. с экрана. – Яз.англ.
9. Thermopedia [Электронный ресурс] / Archimede’s Force. – Режим доступа:
http://www.thermopedia.com/, свободный. – Загл. с экрана. – Яз.англ.
10. Scholarpedia [Электронный ресурс] / Navier-Stokes Equations: Mathematical Properties. –
Режим доступа: http://www.scholarpedia.com/, свободный. – Загл. с экрана. – Яз.англ.
8
Ministry of Education and Science of the Russian Federation
State Educational Institution of Higher Professional Education
National Research Tomsk Polytechnic University
Institute of Cybernetics
Department: Applied Mathematics
Specialization: Applied Mathematics and Informatics
COMSOL MULTIPHYSICS
SIMULATION OF MARANGONI
CONVECTION
Student’s contacts:
[email protected],
[email protected],
[email protected]
Student: Ryabikina A.S.,
Group: 8b90,
Scientific advisor: Ogorodnikov A.S.,
Linguistic advisor: Kuznetsova I.N.
Скачать