Контрольные задания 1. Подготовить описание функции F(x), заданной в соответствии с вариантом, вычислить значения этой функции при x1 и x2. Построить график функции F(x). 2. Требуется определить функцию, которая выполняет представленные в вариантах задания. Вариант 1 1. F 3y x 2z 8 x sin x 8 y , z , x 0; x x e y 0,8 x cos( x ), z 2x , x 0. sin x 3 x3 1 x1 = –2.34; x2 = 5.65. 2. Дана последовательность из n целых чисел. Найти количество элементов этой последовательности, кратных числу 2 и не кратных числу 3. Вариант 2 1. F xyz z 2 x sin 2 x 2 y , ln( x 2) 2 x 2 1,5 y , cos 2 x 4 z ln x 8, z e x , x 2ln x x 1,5; x 1,5. x1 = 0.564; x2 = 12.43. 2. Дана последовательность целых чисел. Найти количество четных элементов этой последовательности. Вариант 3 1. F (xy z ) 2 (x 2 π) 3 y , x 2 x ctg 2 ln 2 x 0,5 , y 15 z x sin 2 x , x 0; z x 1, 2 x cos3x x 0. x1 = –43.67; x2 = 5.09. 2. Дана последовательность целых чисел. Найти сумму минимального и максимального элементов в этой последовательности. 1 Вариант 4 ln( 2 x ) y 3x 2 , e 2,1x lg x , y 2 x 3 10 1. F ln( y z ) cos 2x cos 2 x sin 2x z x 3 z x 2,5; x 2,5. x1 = –100.87; x2 = 25.769. 2. Дана последовательность целых чисел. Найти максимальный элемент в этой последовательности. Вариант 5 arctg( x) y , 2 x2 2 x y , 3,1tg( x) y 1. F x 3 z z sin 2 x z e x 1 sin x 2cos 2 x x 1; x 1. x1 = 0.787; x2 = 76.091. 2. Дана последовательность целых чисел. Найти номер минимального элемента в этой последовательности. Вариант 6 tgx 2 1 , z , x 0; y 2 x x sin (x) 3 sin x z , x 0. y 3ctgx, 2 ,15 cos3 x 1. F e xy z x1 = –87.134; x2 = 12.454. 2 Дана последовательность целых чисел. Найти сумму элементов с нечетными номерами из этой последовательности. Вариант 7 1. F 2 x 3 y z x 2 3x ctgx 1,1 y , z , x 3,5; ln 3 x 2 cos x 2 sin 3 x sin 2 x y , z 5 2x 3 , x 3,5. 1 ln 2 x x1 = 0.0765; x2 = 543.87. 2. Дана последовательность целых чисел. Найти сумму нечетных элементов этой последовательности. 2 Вариант 8 1. F x2 2 x sin x , z x 0; y 3 cos x 1,2 3 x e x 1 cos x 1 y , z x 0. 3 2 x 2 x 3 3x 2 3 sin x cos 2 y z 4 x1 = –987.76; x2 = 43.78. 2. Дана последовательность целых чисел. Найти сумму элементов с четными номерами из этой последовательности. Вариант 9 1. F xyz 3 1 arctgx 1 sin x x 2 y , z , x 0,5; cos( x 1) 1 ctg(x ) 2 1 z , x 0,5. y x 3 2 x 2 5, tg x 1 x1 = 0.436; x2 = 21.677. 2. Дана последовательность из целых чисел. Найти сумму элементов с четными номерами из этой последовательности. Вариант 10 1. F x z2 (x y z ) 2 2x 2 5 y , z 3 3x 2 x 0; 2 x3 x4 3x 4 5 x 5x 2 , z x 0. y lg x 3 tg x 2 0,3 x1 = –564.876; x2 = 0.333. 2. Дана последовательность из целых чисел. Найти количество элементов этой последовательности, кратных числу К. 3 3. Решение системы линейных уравнений (Matchcad и Excel) Варианты заданий 1–10. Решите систему линейных уравнений и сделайте проверку. x 2 y z 5, 2 x 3 y 5 z 1, 1. 2 x y 5 z 7, 2. 3 x 4 y 3 z 2, 5 x y 2 z 4. x 3 y 7 z 5. 5 x y 6 z 3, 5 x 3 y z 3, 4. 4 x 3 y z 2, 5. 3 x y 2 z 1, x 2 y 5 z 3. x 5 y z 1. 7 x 3 y z 5, 3. x 2 y z 4, 3x y z 3. 8 x 2 y 7 z 3, 6. x 3 y 5 z 3, 5 x 2 y 4 z 7. 3x 4 y z 5, 7 x y 2 z 5, x 4 y z 3, 7. 2 x y 3z 1, 8. 2 x y 3 z 7, 9. 3 x 7 y z 1, x 5 y z 3. x 5 y z 7. 2 x 3 y z 4. x y z 3, x 5 y z 1, 3 x 4 y 7 z 1, 10. 3 x 2 y z 2, 11. 3 x y 2 z 7, 12. x 7 y 2 z 0, 5 x 2 y 7 z 0. 2 x 7 y z 0. 2 x 3 y z 3. 4. Построить матрицу, описывающую таблицу умножения (1-10). (Matchcad или Excel) 5. Найдите интегралы и производные указанных функций. 1. f ( x) x3 9 x 2 24 x 15 . 2. f ( x) x3 12 x 2 45 x 51. 3. f ( x) x3 3 x 2 . 4. f ( x) x3 9 x 2 24 x 21. 5. f ( x) x3 3x 2 2 . 6. f ( x) x3 3x 2 1 . 7. f ( x) x3 9 x 2 24 x 12 . 8. f ( x) x3 9 x 2 24 x 15 . 9. f ( x) x3 12 x 2 45 x 45 . 10. f ( x) x3 3 x 7 . 4 6. Планирование производства (Matchcad, Excel) Вариант 1. Для изготовления двух видов продукции P1 и P2 используют четыре вида ресурсов S1, S2, S3 и S4. Запасы ресурсов, число единиц ресурсов, затрачиваемых на изготовление единицы продукции, прибыль, получаемая от единицы продукции, приведены в таблице: Число единиц ресурсов, затрачиваемых на изготовление единицы продукции Вид ресурса P1 P2 Запас ресурса S1 1 3 18 S2 2 1 16 S3 - 1 5 S4 3 - 21 Прибыль, получаемая от единицы продукции 2 3 Необходимо составить такой план производства продукции, при котором прибыль от ее реализации будет максимальной. Вариант 2. Для производства двух видов изделий А и В предприятие использует три вида сырья. Другие условия задачи приведены в таблице. Нормы расхода сырья на одно изделие, кг Вид сырья P1 P2 Общее количество сырья, кг I 12 4 300 II 4 4 120 III 3 12 252 Прибыль от реализации одного изделия, ден. ед. 30 40 Составить такой план выпуска продукции, при котором прибыль предприятия от реализации продукции будет максимальной при условии, что изделий В надо выпустить не менее чем изделий А. 5 7. Дана выборка случайной величины. Определить число значений, среднее, максимальное, минимальное значение, число значений, среднее квадратичное отклонение. (Excel) Таблица данных 483 482 483 486 485 484 484 483 484 493 483 485 482 485 484 486 484 Продолжение таблицы 485 486 480 492 484 483 482 482 486 485 485 486 8. Постройте график зависимости y(x). Найдите уравнение регрессии. Посчитайте коэффициент корреляции. Таблица данных x 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 y 5,55 7,23 9,02 11,21 13,98 17,25 21,1 25,2 29,5 35,3 41,02 47,05 54,1 61,2 68,8 Продолжение таблицы x 8,5 9 9,5 10 10,5 11 11,5 12 12,5 13 13,5 14 y 77 85,5 95,3 15,3 115 126,3 137,2 149,25 161,1 174,3 187,2 201,3 6