Риск и доходность 1. Оценка риска для активов, рассматриваемых изолированно. 2. Оценка риска для активов, входящих в портфель. 3. Модель САРМ 4. Модель APT Оценка риска для активов, рассматриваемых изолированно. Риск – • downside risk • upside risk Основа для измерения риска – распределение вероятностей. Риск по-китайски (Первый иероглиф означает опасность, второй – благоприятную возможность) Ожидаемое значение случайной величины, в данном случае ожидаемой доходности (expected rate of return), задается следующей формулой: n k̂ = k i pi i =1 ki - i-й возможный результат (доходность) pi - вероятность возникновения i -го результата n- число возможных исходов Пример 1: найти ожидаемую доходность Состояние экономики (на следующий год) Вероятность такого состояния pi Акции А T-Bill Спад 0.2 8% Нормальное 0.6 8% Подъем 0.2 8% 4% Акции В -2% 12% 22 % 18% 23 % Ценная бумага T-bill Акции A Акции В Можем ли сказать какая акция предпочтительнее для инвестора? Измерители риска Дисперсия – показатель разброса возможных исходов относительно величины ожидаемого значения. Чем больше дисперсия, тем больше разброс по сравнению с предполагаемой величиной. 2 n (k i k̂) 2 p i i =1 Среднее квадратичное отклонение - квадратный корень из дисперсии. Указывает, на сколько в среднем каждое значение доходности отличается от средней величины. Чем больше и стандартное отклонение, тем больше риск. 2 k i k̂ i =1 n 2 р i Найти дисперсию и среднее квадратическое отклонение Ценная бумага 2 T-bill Акции A Акции В Expected Return versus Risk Ценная бумага k̂ T-bill Акции A Акции В На практике ожидаемые доходы и дисперсия почти всегда оцениваются на основе прошлых данных, а не будущих доходов. Данный подход не применим, если характеристики сильно изменились со временем. «Предсказывать будущее по историческим данным - все равно, что вести автомобиль, глядя только в зеркало заднего вида» Коэффициент вариации – это отношение риска к ожидаемой доходности. CV kˆ Задача 1: Какое из следующих вложений выберет рациональный инвестор? 1. 2. 3. k̂ 14 % 15% k̂ 10 % 20% k̂ 15 % 15% Задача 2: 1. 2. k̂ 20 % k̂ 20 % 3. k̂ 22 % 30% 25% 27% Примечание 1: Рассуждения строились на том, что распределение вероятностей нормальное. Примечание 2: « Каждый уверен в справедливости нормального закона: экспериментаторы – потому что они думают, что это математическая теорема; математики – потому что они думают, что это экспериментальный факт» Пуанкаре 1912 г. 2. Оценка риска для активов, входящих в портфель • Комбинацию, набор активов или инвестиций называют портфелем (portfolio) • Целью портфельного анализа (portfolio analysis) является определение дохода и риска по любому набору активов • Родоначальником портфельного анализа является Гарри Марковиц (1959) Портфельная теория начинается с утверждения, что владельцы богатства должны заботиться о характеристиках портфеля в целом, а не о некоторых отдельных его компонентах или о каком-либо одном активе. Актив, который рискован сам по себе, может оказаться абсолютно надежным в портфеле с другими активами, которые компенсируют его риск. Макроэкономика. Глобальный подход", Джеффри Д.Сакс, Фелипе Ларрен Б Пример 2: Пусть портфель инвестора состоит на 40% из акций фирмы A и на 60% из акций фирмы B. Найти ожидаемую доходность и риск портфеля. Состояние экономики (на следующий год) Вероятность такого состояния pi Акции А Акции В 14% Спад 0.2 Нормальное 0.6 Подъем 0.2 26 % 16% 17 % 18% 13 % Риск и доходность портфеля k p Акции A Акции В Портфель Шаг 1 Найти ожидаемую доходность каждого актива. Шаг 2 Найти дисперсию (среднее квадратичное отклонение) каждого актива. Шаг 3. Доходность портфеля – это средневзвешенная ожидаемых значений доходности отдельных активов n k p W i kˆ i 1 i Шаг 4. Среднее квадратичное отклонение портфеля (риск портфеля) не равно средневзвешенной из среднеквадратичных отклонений отдельных активов Дисперсия и среднее квадратическое отклонение портфеля из двух активов p w w 2 p 2 2 2 2 A A B B w w 2 wA wB cov( A, B) 2 2 2 2 A A A B 2 wA wB cov( A, B) где cov( A, B) ( A, B) A B Ковариация – это мера, учитывающая дисперсию (разброс) индивидуальных значений доходности активов и силу связи между изменением доходности m активов cov( A, B) (k Ai kˆ Ai)( k Bi kˆ Bi) pi i 1 где k ,k Ai состоянии Bi доходность актива при i том экономики kˆ , kˆ ожидаемая доходность активов A и B p вероятность того, что экономика будет в i том Ai Bi i Вывод: состоянии • Поскольку между большинством активов не существует прямой функциональной связи, объединение активов в портфель снижает риск портфеля. Комбинируя рискованные активы с коэффициентом корреляции, не равным +1, можно построить эффективный портфель, который обеспечивает наибольшее значение ожидаемой доходности для фиксированного уровня риска или наименьший уровень риска для заданной ожидаемой доходности Г. Марковиц «Для меня предположение, что заботящаяся в первую очередь о безопасности стратегия состоит в том, чтобы вложить наугад малые доли в большое количество различных компаний, поражает, как пародия на инвестиционную политику» Keynes,1939 4. Модель САРМ Можно ли полностью свести риск к нулю, добавляя в портфель новые акции? Систематический (рыночный, недиверсифицируемый) риск обусловлен общеэкономическими факторами, присущ рынку в целом и возникает по независящим от компании причинам. Данный риск не поддается диверсификации. Несистематический (специфический, диверсифицируемый) риск обусловлен специфическими особенностями эмитента, который можно устранить путем включения в портфель ценных бумаг различных эмитентов. Общий риск включает в себя систематический и несистематический риски. Если специфического риска можно избежать, сформировав хорошо диверсифицируемый портфель, то рыночный риск присутствует всегда Таким образом, риск хорошо диверсифицированного портфеля зависит от систематического (рыночного) риска входящих в него ценных бумаг. Модель САPM Предпосылки модели: • Инвесторы максимизируют ожидаемую полезность их богатства на конец периода. • Все инвесторы могут брать и давать ссуды неограниченного размера по безрисковой ставке процента. Отсутствуют ограничения на короткие продажи. • Все инвесторы имеют одинаковые оценки ожидаемой доходности, стандартного отклонения и ковариации доходности всех активов. • Все активы делимы и совершенно ликвидны. • Отсутствуют трансакционные затраты по покупке и продаже активов. • Отсутствуют налоги. САРМ Capital Asset Pricing Model В соответствии с СAPM связь между риском и доходностью акции представлена уравнением k k j f (k M k f ) j Мерой систематического риска является коэффициент (бета-фактор), который показывает уровень изменчивости актива по отношению к рынку (усредненному активу). j cov( J , M ) 2 M где cov( J , M ) ковариация между доходностью акции j и рыночной доходностью; 2 M дисперсия рыночной доходности Значения беты Бета рыночного портфеля =1 Если акции компании имеют 1 , то они более чувствительны, т.е. имеют больший систематический риск. Если акции компании имеют коэффициент 1то они имеют меньший риск, чем рынок в целом. Для безрискового актива бета=0 рисунок уравнения САРМ Уравнение САРМ, представленное графически, носит название Линия рынка ценных бумаг. Если доходность в точке А больше требуемой данным инвестором, то он купит бумагу и другие тоже, что повысит цену, значит понизит доходность, значит все придет в равновесие. n w Бета портфеля р i 1 i i где wi вес актива в портфеле Пример: найти бета портфеля Активы Стоимость активов А В С Д 100 200 400 300 Итого 1000 βi 0,8 0,95 0,6 1,2 Методика расчета бета финансового актива (практический аспект) 50,0% Доходность акции 40,0% 30,0% 20,0% 10,0% -20,0% 0,0% -10,0% 0,0% -10,0% 10,0% 20,0% 30,0% 40,0% 50,0% -20,0% -30,0% Доходность рынка Уравнение регрессии 50,0% Доходность акции 40,0% 30,0% 20,0% 10,0% -20,0% 0,0% -10,0% 0,0% -10,0% -20,0% 10,0% 20,0% 30,0% 40,0% 50,0% y = 0,8308x + 0,0256 -30,0% Доходность рынка Вопрос: Верно ли утверждение: «Инвесторы предпочитают диверсифицированные компании, так как они подвержены меньшему риску» ? 5. Теория арбитражного ценообразования (Arbitrage pricing model - APT) Арбитраж (arbitrage) – получение безрисковой прибыли от сделок на разнице цен. Операции, как правило совершаются на разных рынках с одинаковыми товарами или финансовыми активами. CAPM и APT • Обе модели исходят из предположения, что риск делится на систематический и несистематический, но • CAPM: доходность акции является линейной функцией одного фактора – доходности рыночного портфеля. Систематический риск определяется риском рыночного портфеля. • APT: доходность акции зависит от нескольких факторов. Модель допускает множество источников систематического риска (факторов риска). • • • • • • • • • Трактовка Ролла, Чена и Росса: Темп прироста промышленного производства; Темп инфляции; Разница между краткосрочными и долгосрочными ставками; Разница в доходности высокорисковых и низкорисковых облигаций. Факторы, используемые Roll&Ross Asset Management Corporation (R&R) Бизнес-цикл; Процентные ставки; Доверие инвестора; Краткосрочная инфляция; Долгосрочные инфляционные ожидания. Агенство Salomon Brothers: • Уровень инфляции; • Темп роста ВНП; • Процентная ставка; • Индекс изменения цен на нефть; • Темп роста расходов на оборону Три группы факторов, обязательно включаемых в АРТ • Показатели общей экономической активности (темп роста промышленного производства, темп роста ВНП); • Показатели отражающие инфляцию; • Показатели процентной ставки. Примечание: АРТ не объясняет, какие факторы риска являются основными. АРТ – равновесная модель цен на финансовые активы В равновесии акции и портфели с одинаковой чувствительностью к факторам имеют одинаковые значения ожидаемой доходности Ожидаемая премия за риск инвестиций = r r f b1 (r фактор1 r f ) b2 (r фактор 2 r f ) .... Общие подходы для CAPM и ATM - Инвесторы требуют дополнительную доходность за принимаемый ими риск; - Инвесторов интересует, как правило, только риск, который они не могут устранить посредством диверсификации. Вопросы: В чем существенные различия APT и CAPM? Почему инвестору выгодно формировать арбитражный портфель?