Источники ионизирующих излучений

реклама
1
Проф. Давыдов А.В.
ИСТОЧНИКИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ.
1. Общие сведения и терминология.
Ионизирующее излучение (ionizing radiation) – это поток элементарных частиц или квантов
электромагнитного излучения, который создается при радиоактивном распаде, ядерных
превращениях, торможении заряженных частиц в веществе, и прохождение которого через вещество
приводит к ионизации и возбуждению атомов или молекул среды.
Ионизацию среды могут производить только заряженные частицы - электроны, протоны и
другие элементарные частицы и ядра химических элементов. Процесс ионизации заключается в том,
что заряженная частица, кинетическая энергия которых достаточна для ионизации атомов, при своем
движении в среде взаимодействует с электрическим полем атомов и теряет часть своей энергии на
выбивание электронов с электронных оболочек атомов. Нейтральные частицы и электромагнитное
излучение не производят ионизацию, но ионизируют среду косвенно, через различные процессы
передачи своей энергии среде с порождением вторичного излучения в виде заряженных частиц
(электронов, протонов), которые и производят ионизацию среды.
Ионизирующие излучения разделяют на фотонные и корпускулярные.
Фотонное ионизирующее излучение - это все виды электромагнитного излучения,
возникающее при изменении энергетического состояния атомных ядер, электронов атомов или
аннигиляции частиц - ультрафиолетовое и характеристическое рентгеновское излучение, излучения,
возникающие при радиоактивном распаде и других ядерных реакциях и при торможении заряженных
частиц в электрическом или магнитном поле.
Корпускулярное ионизирующее излучение - потоки альфa- и бета-частиц, протонов,
ускоренных ионов и электронов, нейтронов и др. Корпускулярное излучение потока заряженных
частиц относится к классу непосредственно ионизирующего излучения. Корпускулярное излучение
потока незаряженных частиц называют косвенно ионизирующим излучением.
Источник ионизирующего излучения (ionizing radiation source) - объект, содержащий
радиоактивный материал (радионуклид), или техническое устройство, испускающее или способное в
определенных условиях испускать ионизирующее излучение. Предназначен для получения
(генерации, индуцирования) потока ионизирующих частиц с определенными свойствами.
Источники излучений применяются в таких приборах, как медицинские гамматерапевтические аппараты, гамма-дефектоскопы, плотномеры, толщиномеры, нейтрализаторы
статического электричества, радиоизотопные релейные приборы, измерители зольности угля,
сигнализаторы обледенения, дозиметрическая аппаратура со встроенными источниками и т.п.
По физической основе генерации излучения разделяют радионуклидные источники на основе
естественных и искусственных радиоактивных изотопов, и физико-технические источники
(нейтронные и рентгеновские трубки, ускорители заряженных частиц и пр.).
Для радионуклидных источников различают открытые и закрытые источники излучения.
Открытый источник ионизирующего излучения (unsealed source) - при использовании
которого возможно поступление содержащихся в нём радиоактивных веществ в окружающую среду.
Закрытый источник ионизирующего излучения (sealed source) - в котором радиоактивный
материал заключён в оболочку (ампула или защитное покрытие), предотвращающую контакт
персонала с радиоактивным материалом и его поступление в окружающую среду свыше допустимых
уровней в условиях применения и износа, на которые он рассчитан.
По видам излучения выделяют источники гамма-излучения, источники заряженных частиц и
источники нейтронов. Для радионуклидных источников такое разделение не является абсолютным,
т.к. при ядерных реакциях, индуцирующих излучение, основной вид излучения источника может
сопровождаться существенным вкладом сопутствующих видов излучения.
По назначению выделяют калибровочные (образцовые), контрольные (рабочие) и
промышленные (технологические) источники.
Промышленные источники излучения применяют в различных производственных процессах и
установках производственного назначения (ядерные методы каротажа, бесконтактные методы
контроля технологических процессов, методы анализа вещества, дефектоскопия и т.п.).
Контрольные источники используются для проверки и настройки ядерно-физических
приборов и установок (спектрометров, радиометров, дозиметров и пр.) путем контроля за
2
стабильностью и повторяемостью показаний приборов в определенной геометрии положения
источника относительно детектора излучения.
Калибровочные источники используются при калибровке и метрологической поверке ядернофизической аппаратуры.
Технические характеристики источников излучения:
1. Вид излучения (для радионуклидных – основной по назначению).
2. Геометрия источника (форма и размеры). Геометрически источники могут быть точечными и
протяженными. Протяженные источники могут быть линейными, поверхностными или объемными.
3. Активность (количество распадов в единицу времени) и ее распределение по источнику для
радионуклидных источников. Мощность или плотность потока излучения для физико-технических
источников.
4.
Энергетический
состав.
Энергетический
спектр
источников
может
быть
моноэнергетическим (испускаются частицы одной фиксированной энергии), дискретным
(испускаются моноэнергетические частицы нескольких энергий) или непрерывным (испускаются
частицы разных энергий в пределах некоторого энергетического диапазона).
5. Угловое распределение излучения. Среди многообразия угловых распределений излучений
источников для решения большинства практических задач обычно задаются изотропное,
косинусоидальное или мононаправленное.
ГОСТ Р 51873-2002 – Источники ионизирующего излучения радионуклидные закрытые.
Общие технические требования. Введен в действие в 2003 г. Стандарт распространяется на закрытые
радионуклидные источники альфа-, бета-, гамма-, рентгеновского и нейтронного излучений. Не
распространяется на образцовые и контрольные источники, а также на источники, активность
радионуклидов в которых не превышает минимально значимой, установленной «Нормами
радиационной безопасности».
Согласно стандарту источники должны быть герметичными, с установленными классами
прочности, допустимых климатических и механических воздействий по ГОСТ 25926 (но не ниже
диапазона от -50 до +50оС и влажности не менее 98% при +40оС). Срок службы источника должен
быть не менее:
— двух периодов полураспада - для источников с периодом полураспада менее 0,5 года;
— одного периода полураспада (но не менее 1 года) - с периодом полураспада от 0,5 до 5 лет;
— 5 лет - для источников гамма- и нейтронного излучений с периодом полураспада 5 и более
лет. Для источников альфа-, бета- и рентгеновского излучений с периодом полураспада 5 и более лет
срок службы устанавливают в нормативном документе на конкретный тип источника.
Источники относятся к невосстанавливаемым промышленным изделиям и не подлежат
ремонту. При сохранении радиационных параметров в пределах, удовлетворяющих пользователя,
сохранении герметичности и отсутствии дефектов допускается продление срока эксплуатации
источника. Порядок продления устанавливают органы государственного управления использованием
атомной энергией.
Единицы измерения радиоактивности и доз облучения.
Мерой радиоактивности радионуклида является его активность, которая измеряется в
Беккерелях (Бк). Один Бк равен 1 ядерному превращению в секунду. Несистемная единица - Кюри
(Ки), активность 1 г радия (Ra). 1 Кюри = 3.7*1010 Бк.
Доза ионизирующего излучения (radiation dose) - количество энергии ионизирующего
излучения, которое воспринимается некоторой средой за определенный промежуток времени.
Поглощённая доза - энергия, поглощённая единицей массы облучаемого вещества. За единицу
поглощённой дозы облучения принимается грей (Гр) = 1 джоуль на килограмм (Дж/кг).
Поглощённая доза различных видов излучения вызывает в единице массы биологической
ткани различное биологическое действие. Эквивалентная доза равна произведению поглощённой
дозы на средний коэффициент качества излучения по сравнению с гамма-излучением. Значения
коэффициента: рентгеновское излучение, электроны, позитроны, бета-излучение -1, нейтроны
тепловые – 3, протоны, нейтроны быстрые – 10, альфа-частицы и ядра отдачи – 20. В качестве
единицы измерения эквивалентной дозы принят зиверт (Зв) - доза любого излучения, поглощённая 1
кг биологической ткани и приносящая такой же биологический вред, как и поглощённая доза
фотонного излучения в 1 Гр. Внесистемная единица - бэр. 1 Зв = 100 бэр.
3
Экспозиционная доза (Дэксп) служит для характеристики фотонного излучения и определяет
меру ионизации воздуха под действием этих лучей. Она равна дозе излучения, при которой в 1 кг
атмосферного воздуха возникают ионы, несущие заряд электричества в 1 кулон (Кл). Дэксп = Кл/кг.
Внесистемная единица - рентген (Р). 1 Р = 2,58 · 10-4 Кл/кг.
Основные радионуклиды мониторинга среды. Ниже в таблице приведены краткие данные по
ядерно-физическим характеристикам радионуклидов, содержание которых в окружающей среде, в
строительных материалах, в рабочих и бытовых помещениях и, особенно, в пищевых продуктах
сельского хозяйства может быть значимым по радиационной опасности для здоровья человека.
Нуклид
Название
Период
ГаммаБета-частицы
полураспада
кванты, МэВ
Emax, МэВ
40
К
Калий-40
1.3 109 год
1.461
Естественные
226
206
Ряд урана
1620 год
Много, до 2.45 Много, до 3
нуклиды
Ra  Pb
10
232
208
Ряд
тория
1.4
10
год
Много,
до
2.62
Много,
до
3
Th  Pb
137
Cs
Цезий-137
30 год
0.662
1.17
Техногенные
90
Sr + 90Y Стронций-Иттрий 30 год, 3 сут.
0.55, 2.29
131
I
Йод-131
8 суток
0.365
0.606
Продукты
144
Ce + 144Pr Церий-Празеодим 285 сут, 17 мин.
0.133
0.318, 3
аварий
106
106
Ru + Rh Рутений-Родий 372 сут, 30 сек. 0.512, 0.622
0.04, 3.5
АЭС
Особого внимания заслуживает Радон-222, продукт распада Ra-226. Он является инертным
газом, и выделяется из любых сред и объектов (почвы, строительные материалы и пр.), которые
практически всегда содержат уран и продукты его распада. Средняя концентрация радона на уровне
земли вне помещений составляет 8 Бк/м3 . Период полураспада радона составляет 3.824 суток, и он
может накапливаться в закрытых и плохо вентилируемых помещениях.
Основную часть облучения население Земли получает от естественных источников радиации.
Это природные радионуклиды и космические лучи. Полная доза, обусловленная естественными
источниками радиации, составляет в среднем около 2,4 мЗв в год.
2. Источники заряженных частиц.
Известны десятки элементарных заряженных частиц, но время жизни большинства из них не
превышает микросекунд. К элементарным заряженным частицам, участвующим в ядерных реакциях,
относят бета-частицы (электроны и позитроны), протоны и альфа-частицы (ядра гелия 4Не, заряд +2,
масса 4).
Взаимодействие заряженных частиц с веществом. Заряженные частицы относятся к
малопроникающим видам ионизирующего излучения. При своем движении в веществе они
взаимодействуют с электрическими полями атомов среды. В результате взаимодействия электроны
атомов среды получает дополнительную энергию и переходит на более удаленные от ядра
энергетические уровни (процесс возбуждения) или совсем покидает атомы (процесс ионизации). При
прохождении вблизи атомного ядра частицы испытывает торможение в его электрическом поле,
которое сопровождается испусканием тормозного гамма-излучения.
Длина пробега частицы в веществе зависит от ее заряда, массы, начальной кинетической
энергии, и от свойств среды. Пробег увеличивается с возрастанием энергии частицы и уменьшением
плотности среды. Массивные частицы обладают меньшими скоростями, чем легкие, взаимодействуют с атомами более эффективно и быстрее теряют свою энергию.
Пробег бета-частиц в воздухе – до нескольких метров в зависимости от энергии. От потока
бета-частиц с максимальной энергией 2 МэВ полностью защищает слой алюминия толщиной 3,5 мм,
железа – 1,2 мм, свинца – 0,8 мм. Одежда поглощает до 50 % бета-частиц. При внешнем облучении
организма на глубину более 1 мм проникает 20—25 % бета-частиц.
Альфа-частицы, имеющие большую массу, при столкновениях с электронами атомных оболочек испытывают очень небольшие отклонения от своего первоначального направления и движутся
почти прямолинейно. Пробеги альфа-частиц в веществе очень малы. Например, у альфа-частицы с
энергией 4 МэВ длина пробега в воздухе примерно 2,5 см, в воде или в мягких тканях животных и
человека - сотые доли миллиметра.
Источники бета-излучения.
Бета-излучение (beta radiation) – корпускулярное ионизирующее излучение, поток
4
электронов или позитронов, возникающий при бета-распаде атомных ядер с выбросом из ядра
электрона или позитрона со скоростью, близкой к скорости света.
Бета-распад радионуклидов сопровождается излучением нейтрино, при этом разделение
энергия распада между электроном и нейтрино имеет случайный характер. Это приводит к тому, что
энергетическое распределение излучаемых бета-частиц является непрерывным от 0 до определенной
для каждого изотопа максимальной энергии Емах, мода распределения сдвинута в область низких
энергий, а среднее значение энергии частиц порядка (0,25-0,45)Емах. Пример энергетического
распределения бета-излучения приведен на рис. 1.
Чем меньше период полураспада
радионуклида, тем больше максимальная
энергия излучаемых бета-частиц. Интервал
значений Емах для различных радионуклидов
простирается от десятка кэВ до десятка МэВ,
но периоды полураспада нуклидов в
последнем случае очень малы, что затрудняет
их использование для технологических целей.
Характеристика
проникающей
способности излучения обычно дается по
средней величине поглощения энергии
излучения при прохождении излучения через
слой вещества с поверхностной плотностью 1 г/см2. Поглощение энергии бета-частиц при
прохождении через вещество составляет порядка 2 МэВ на 1 г/см2, и защита от излучения
радионуклидных источников не представляет проблем. Слой свинца толщиной 1 мм практически
полностью поглощает излучение с энергией до 2,5 МэВ.
Источники бета-излучения (дисковые и точечные) изготавливаются в тонкослойном варианте
на специальных подложках, от материала которых существенно зависит коэффициент отражения
бета-частиц от подложки (увеличивается с увеличением атомного номера материала, и может
достигать десятков процентов для тяжелых металлов). Толщина активного слоя и наличие на
активном слое защитного покрытия зависит от назначения источника и энергии излучения. При
спектрометрических измерениях поглощение энергии частиц в активном слое и защитном покрытии
не должно превышать 2-3%. Диапазон активности источников от 0,3 до 20 ГБк.
Мощные источники изготавливаются в виде герметических капсул из титана или
нержавеющей стали, имеющих специальное выходное окно для бета-излучения. Так, изотопная
установка «СИРИУС–3200» на смеси изотопов Sr-Y с активностью 3200 Ки обеспечивает выходную
плотность потока электронов до 108 электр·см–2 ·с–1.
В таблице 1 приведены наиболее распространенные радионуклидные источники бета-частиц.
Таблица 1. Радионуклидные источники бета-частиц.
Изотоп
Название
Период полураспада
Максимальная энергия, кэВ
3
H
Тритий
12.6 лет
18.6
35
S
Сера-35
87.2 суток
167
90
Sr 
Стронций-90,
28 лет
540
90
 Y
Иттрий-90
64.2 часа
2270
147
Pm
Прометий-147
2.6 лет
220
204
Tl
Таллий-204
3.9 лет
77
Бета-распад для большинства радионуклидов сопровождается сильным гамма-излучением.
Это объясняется тем, что конечное ядро распада образуется в возбужденном состоянии, энергия
которого снимается испусканием гамма-квантов. Кроме того, при торможении бета-частиц в плотной
среде возникает тормозное гамма-излучение, а перестройка электронной оболочки нового атома
сопровождается появлением характеристического рентгеновского излучения.
Промышленные физико-технические источники заряженных частиц - ускорители
электронов (микротроны, бетатроны линейные волновые ускорители) используются для получения
высокоэнергетических потоков электронов (более 3-5 МэВ).
В отличие от изотопных источников с непрерывным спектром электронов, ускорители дают
пучок электронов фиксированной энергии, причём поток и энергия электронов могут варьироваться в
5
широких интервалах.
В России используются промышленные
ускорители серии ЭЛВ с энергией (0.2-2.5) МэВ,
мощностью до 400 кВт, и серии ИЛУ с энергией
(0.7-5) МэВ, мощностью до 50 кВт. Машины
рассчитаны
на
непрерывную
работу
в
промышленных
условиях,
снабжены
разнообразными системами развертки пучка
электронов для облучения различных продуктов.
Они применяются для радиационно-химических
технологий, используемых при производстве
кабельной продукции с термостойкой изоляцией,
полимерных труб горячего водоснабжения,
термоусаживаемых
труб,
хладостойких
Рис.2. Ускоритель ЭЛВ-8 (Новосибирск)
полимеров, полимерных рулонных композитных
материалов и т.п. Импульсный ускоритель РИУС-5 создает ток электронов в импульсах (0.02-2) мкс до
100 кА при энергии электронов до 14 МэВ. Малогабаритные импульсные бетатроны типа МИБ
используются для радиографического контроля качества материалов и изделий в нестационарных
условиях.
Источники альфа-излучения.
Альфа-излучение – это корпускулярное ионизирующее излучение, представляет собой поток
альфа-частиц (ядер атомов гелия) с энергией до 10 МэВ, начальная скорость около 20 тыс. км/с. Эти
частицы испускаются при распаде радионуклидов с большим атомным номером, в основном это
трансурановые элементы с атомными номерами более 92. Их ионизирующая способность огромна, а
проникающая способность незначительна. Длина пробега в воздухе составляет 3—11 см (примерно
равна энергии частиц в МэВ), в жидких и твердых средах — сотые доли миллиметра. Слой вещества
с поверхностной плотностью 0,01 г/см2 полностью поглощает излучение с энергией до 10 МэВ.
Внешнее альфа-излучение поглощается в роговом слое кожи человека.
В радионуклидных источниках альфа-излучения используется альфа-распад нестабильных
ядер как естественных изотопов, так и тяжелых искусственных изотопов. Основной диапазон энергий
альфа-частиц при распаде от 4 до 8 МэВ. Энергетическое распределение излучения дискретно и
представлено альфа-частицами нескольких групп энергий. Выход альфа-частиц с максимальной
энергией обычно максимален, ширина энергетических линий излучения очень мала. Для
изготовления радионуклидных альфа-источников используются изотопы с максимальным выходом
альфа-частиц и с минимальным сопутствующим гамма-излучением. Изготавливаются источники в
тонкослойном варианте на металлических подложках.
Таблица 2. Радионуклидные источники альфа-частиц.
Изотоп
Название
Период полураспада Энергии частиц, МэВ Выход/100 Бк
210
Po
Полоний-210
138 суток
5.3
100
226
Ra
Радий-226
1620 лет
4.78; 4.59
95; 5
238
Pu
Плутоний-238
86.4 года
5.49; 5.45
72; 28
239
Pu
Плутоний-239
24410 лет
5.15; 5.13; 5.1
72; 17; 11
242
Cm
Кюрий-242
163 суток
6.11; 6.07
74; 26
244
Cm
Кюрий-244
17.4 года
5.80; 5.76
77; 23
252
Cf
Калифорний-252
2.55 года
6.11; 6.07
85; 15
Практически чистые альфа-излучатели (например, полоний-210) являются великолепными
источниками энергии. Удельная мощность излучателя на базе Ро-210 составляет более 1200 Ватт на
кубический сантиметр. Полоний-210 послужил в качестве обогревателя «Лунохода-2», поддерживая
температурные условия, необходимые для работы аппаратуры. В качестве источников энергии
полоний-210 широко задействован в качестве источников питания удалённых маяков. Применяется
он также для удаления статического электричества на текстильных фабриках, ионизации воздуха для
лучшего горения топлива в мартеновских печах, и даже для удаления пыли с фотоплёнок.
6
Выпускаются и низкоактивные источники, используемые в качестве эталонов излучения для
калибровки радиометров, дозиметров и прочей измерительной аппаратуры. Образцовые источники
альфа-излучения изготавливаются на базе изотопов уран-234 и 238, плутоний-239.
К физико-техническим источникам пучков ионов гелия, протонов или тяжелых ионов
относится циклотрон. Это ускоритель протонов (или ионов), в котором частота ускоряющего
электрического поля и магнитное поле постоянны во времени. Частицы движутся в циклотроне по
плоской развертывающейся спирали. Максимальная энергия ускоренных протонов 20 МэВ.
3. Источники электромагнитного (фотонного) излучения.
Источники гамма-излучения.
Гамма-излучение (gamma radiation) - коротковолновое электромагнитное излучение с длиной
волны менее 0,1 нм, которое возникает при распаде радиоактивных ядер, переходе ядер из
возбужденного состояния в основное, при взаимодействии быстрых заряженных частиц с веществом,
аннигиляции электронно-позитронных пар и при других превращениях элементарных частиц. В виду
того, что ядра имеют только определенные разрешенные уровни энергетического состояния, спектр
гамма-излучения дискретен и состоит, как правило, из нескольких групп энергий в диапазоне от
нескольких кэВ до десятка МэВ. Для радионуклидов с большими атомными номерами количество
энергетических групп гамма-квантов может достигать нескольких десятков, но они резко
различаются по вероятности выхода и количество квантовых линий с наибольшим выходом обычно
невелико.
Поток гамма-квантов обладает волновыми и корпускулярными свойствами и распространяется
со скоростью света. Высокая проникающая способность гамма-излучения объясняется отсутствием
электрического заряда и значительным запасом энергии. Интенсивность облучения гамма-лучами
снижается обратно пропорционально квадрату расстояния от точечного источника.
Гамма-кванты взаимодействуют в основном с электронными оболочками атомов, передавая
часть своей энергии электронам в процессе фотоэффекта и эффекта Комптона. При фотоэффекте
фотон поглощается атомом среды с испусканием электрона, причем энергия фотона за вычетом
энергии связи электрона в атоме передается освобожденному электрону. Вероятность фотоэффекта
максимальна в области энергий квантов менее 200 кэВ, и быстро убывает с ростом энергии фотона. В
случае эффекта Комптона на выбивание электрона с атомной оболочки расходуется только часть
энергии фотона, а сам фотон изменяет направление движения. Комптоновское рассеяние преобладает
в области энергий (0.2-5) МэВ и пропорционально атомному номеру среды. При энергии фотона
выше 1,022 МэВ вблизи атомного ядра становится возможным образование пар электрон - позитрон,
вероятность этого процесса увеличивается с ростом энергии фотона.
Пути пробега гамма-квантов в воздухе измеряются сотнями метров, в твердом веществе —
десятками сантиметров. Проникающая способность гамма-излучения увеличивается с ростом
энергии гамма-квантов и уменьшается с увеличением плотности среды. Ослабление фотонного
ионизирующего излучения слоем вещества происходит по экспоненциальному закону. Для энергии
излучения 1 МэВ толщина слоя десятикратного ослабления составляет порядка 30 г/см2 (2,5 см
свинца, 4 см железа или 12-15 см бетона).
Радионуклидные источники гамма-квантов - естественные и искусственные бета-активные
изотопы (таблица 3), дешевые и удобные в эксплуатации. При бета-распаде нуклидов ядро - продукт
распада, образуется в возбужденном состоянии. Переход возбужденного ядра в основное состояние
происходит с испусканием одного или нескольких следующих друг за другом гамма-квантов,
снимающих энергию возбуждения. Радионуклидные источники представляют собой герметичные
ампулы из нержавеющей стали или алюминия, заполненные активным изотопом. Энергия гаммаквантов радионуклидных источников не превышает 3 МэВ.
Изотоп
24
Na
Fe
60
Co
65
Zn
59
Таблица 3. Радионуклидные источники гамма-излучения.
Название
Период
Энергия линий
Выход квантов
полураспада
излучения, кэВ
в % на Бк
Натрий-24
14,9 часа
1380; 2760
110
Железо-59
45 суток
1100; 1290
56; 44
Кобальт-60
5.27 года
1170; 1330
110
Цинк-65
245 суток
1120
45.5
7
Se
Селен-75
127 суток
120; 136; 265; (280; 400)
15; 54; 56; 36
85
Sr
Стронций-85
64 сутки
513
100
113
Sn
Олово-113
119 суток
393
69.4
124
Sb
Сурьма-124
60.8 суток
610; 640-1450; 1690; 2080
100; 35; 50; 6.5
131
I
Йод-131
8.1 суток
360; 630-720
78; 12
137
Cs
Цезий-137
26.6 года
661
92
141
Се
Церий-141
32.5 суток
145
67
192
Ir
Иридий-192
74 сутки
296-316
1.36
222
Rn
Радон-222
3.82 суток
241-2452
2.00
В настоящее время мощные источники гамма-излучения нашли применение в медицине
(радиотерапия, стерилизация инструментов и материалов), в геологии и горной промышленности
(плотнометрия, рудосортировка), в радиационной химии (радиационно-химическая модификация
материалов, синтез полимеров), и во многих других отраслях промышленного производства и
строительства (дефектоскопия, массометрия, толщинометрия материалов и многое другое).
В радиологических отделениях онкологических диспансеров эксплуатируются закрытые
радионуклидные источники с суммарной активностью до 5*1014 Бк. Переносные гамма-дефектоскопы
типа "Гаммарид" и "Стапель-5М" на основе иридия-192 имеют источники с активностью от 85 до 120 Бк.
Физико-технические источники излучения представляют собой ускорители электронов,
которые используются для генерации гамма-излучения. В этих ускорителях электронный поток
разгоняется до энергий в несколько МэВ и направляется на мишень (цирконий, барий, висмут и др.),
в которой возникает мощный поток гамма-квантов тормозного излучения с непрерывным спектром от
нуля до максимальной энергии электронов.
Для создания мощных импульсных потоков тормозного гамма-излучения используются
установки ЛИУ–10, ЛИУ–15, УИН–10, РИУС–5. Импульсный ускоритель РИУС-5 создает ток
электронов в импульсах (0.02-2) мкс до 100 кА при энергии электронов до 14 МэВ, что позволяет
создавать мощность дозы тормозного излучения до 1013 Р/с со средней энергией гамма-квантов порядка 2
МэВ.
Малогабаритные импульсные бетатроны типа МИБ используются для радиографического
контроля качества материалов и изделий в нестационарных условиях: на монтажных и строительных
площадках, при контроле сварных соединений и запорной арматуры нефте- и газопроводов, контроле
опор мостов и других ответственных строительных конструкций, а также контроле литья и сварных
соединений больших толщин. Максимальная энергия тормозного излучения установок до 7.5 МэВ,
максимальная толщина просвечивания материалов до 300 мм.
75
Источники рентгеновского излучения.
Рентгеновское излучение по своим физическим свойствам аналогично гамма-излучению, но
природа его совсем другая. Это низкоэнергетическое (не более 100 кэВ) электромагнитное излучение.
Оно возникает при возбуждении атомов элементов потоком электронов, альфа-частиц или гаммаквантов, при котором происходит выброс электронов с электронных оболочек атома. Восстановление
электронных оболочек атома сопровождается излучением рентгеновских квантов и имеет линейчатый
спектр энергий связи электронов с ядром на электронных оболочках.
Рентгеновское излучение сопровождает также бета-распад радионуклидов, при котором ядро
элемента увеличивает свой заряд на +1, и происходит перестройка его электронной оболочки. Этот
процесс позволяет создавать достаточно мощные и дешевые радионуклидные источники
рентгеновского излучения (таблица 4). Естественно, что такие источники одновременно являются
источниками определенного бета- и гамма-излучения. Для изготовления источников используются
радионуклиды с минимальной энергией излучаемых бета-частиц и гамма-квантов.
Изотоп
55
Fe
57
Co
109
Cd
119
Sn
153
Gd
170
Tm
Таблица 4. Радионуклидные источники квантов низких энергий.
Название
Период полураспада Энергии излучения, кэВ
Выход, %/Бк
Железо-55
2,9 года
5.9
26
Кобальт-57
270 суток
6.4; 14.4; 122; 136
51; 9; 85; 11
Кадмий-109
470 суток
22.1; 88
107; 4
Олово-119
250 суток
25.2; 23.8
100; 100
Гадолиний-153
236 суток
41.5; 70; 97; 103
110; 3; 30; 20
Туллий-170
129 суток
52.3; 84
100; 3
8
Am
Америций-241
458 лет
14-18; 59.6; 26.4
37; 36; 3
Защита от рентгеновского излучения существенно проще защиты от гамма-излучения. Слой
свинца 1 мм обеспечивает десятикратное ослабление излучения с энергией 100 кэВ.
Физико-технические источники рентгеновского излучения - рентгеновские трубки, в
которых под воздействием потока электронов, разогнанных до нескольких десятков кэВ, в мишени
(аноде трубки) возбуждается излучение.
Рентгеновская трубка состоит из стеклянного вакуумного баллона с впаянными электродами –
катодом, нагреваемым до высокой температуры, и анодом. Электроны, испускаемые катодом,
ускоряются в пространстве между электродами сильным электрическим полем (до 500 кВ для
мощных трубок) и бомбардируют анод. При ударе электронов об анод их кинетическая энергия
частично преобразуется в энергию характеристического и тормозного излучения. КПД рентгеновских
трубок обычно не превышает 3%. Поскольку
большая часть кинетической энергии электронов
превращается в тепло, анод выполняется из металла
с высокой теплопроводностью, а на его
поверхность (под 45о к потоку электронов) в зоне
фокусировки потока наносится мишень из
материала с большим атомным номером, например
вольфрама. Для мощных рентгеновских трубок
применяется принудительное охлаждение анода
(водой или специальным раствором). Удельная
мощность, рассеиваемая анодом в современных
трубках, от 10 до 104 Вт/мм2 .
Типовой спектр излучения рентгеновской
трубки приведен на рис. 3. Он состоит из
непрерывного спектра тормозного излучения
Рис. 3. Спектр излучения рентгеновской трубки
электронного пучка и характеристических линий
рентгеновского излучения (острые пики) при возбуждении внутренних электронных оболочек атомов
мишени.
241
4. Источники нейтронов.
Нейтронное излучение - это поток нейтральных частиц, имеющих массу, примерно равную
массе протона. Эти частицы вылетают из ядер атомов при некоторых ядерных реакциях, в частности,
при реакциях деления ядер урана и плутония. Вследствие того, что нейтроны не имеют
электрического заряда, нейтронное излучение взаимодействует только с атомными ядрами среды и
обладает достаточно большой проникающей способностью. В зависимости от кинетической энергии
(в сравнении со средней энергией теплового движения Et ≈ 0.025 эВ) нейтроны условно подразделяют
на тепловые (Е ~ Et), медленные (Et < E < 1 кэВ), промежуточные (1 < E < 500 кэВ) и быстрые (E >
500 кэВ).
Процесс ослабления нейтронного излучения при прохождении через вещество складывается
из процессов замедления быстрых и промежуточных нейтронов, диффузии тепловых нейтронов и их
захвата ядрами среды.
В процессах замедления быстрых и промежуточных нейтронов основную роль играет
передача нейтронами энергии ядрам среды при прямых столкновениях с ними (неупругое и упругое
рассеяние). При неупругом рассеянии часть энергии нейтронов расходуется на возбуждение ядра,
которое снимается гамма-излучением. При упругом рассеянии чем меньше масса ядра и больше угол
рассеяния, тем большую часть своей энергии передает нейтрон ядру. Вероятность упругого рассеяния
практически постоянна до энергий 200 кэВ, и уменьшается в 3-5 раз по мере роста энергии
нейтронов.
Радиационный захват нейтронов возможен на любых ядрах, за исключением ядер гелия. При
захвате образуется возбужденное ядро, которое переходит в основное состояние с испусканием
гамма-излучения, характерного для каждого нуклида, что широко используется для нейтронноактивационного анализа химического состава сред с высочайшей степенью точности (до 10-8%). На
легких ядрах наблюдаются ядерные реакции с вылетом протонов и альфа-частиц. Тяжелые ядра при
захвате нейтронов делятся на два более легких ядра с освобождением энергии до 200 МэВ, из
9
которых порядка 160 МэВ передается осколкам деления. Вероятность захвата имеет индивидуальную
для нуклидов зависимость от энергии нейтронов, с резонансными пиками и спадом к области
высоких энергий. Захват нейтронов преобладает для медленных и тепловых нейтронов.
Защита от нейтронов выполняется из смеси (слоев) тяжелых элементов (железо, свинец для
неупругого рассеяния), легких водородо- и углеродосодержащих веществ (вода, парафин, графит –
упругое рассеяние), и элементов захвата тепловых нейтронов (водород, бор). При среднем
соотношении 1:4 тяжелых и легких элементов ослабление потока нейтронов в 10:100:1000 раз
достигается в слоях примерно 20:32:40 см.
Из всех видов внешних воздействий на человека нейтронное излучение наиболее опасно, т.к.
интенсивно замедляется и поглощается водородосодержащей средой организма и вызывает ядерные
реакции в его внутренних органах.
Радионуклидные источники нейтронов (таблица 5) выполняются на основе возбуждения в
определенных химических элементах ядерных реакций типа (,n) - поглощение альфа-частицы 
испускание нейтрона, или (,n) - поглощение гамма-кванта  испускание нейтрона. Они
представляют собой, как правило, однородную спрессованную смесь элемента-излучателя альфачастиц или гамма-квантов и элемента-мишени, в котором возбуждается ядерная реакция. В качестве
альфа-излучателей используются полоний, радий, плутоний, америций, кюрий, в качестве гаммаизлучателей - сурьма, иттрий, радий, мезоторий. Элементы - мишени для альфа-излучателей бериллий, бор, для гамма-излучателей - бериллий, дейтерий. Смесь элементов запаивается в ампулы
из нержавеющей стали.
Наиболее известными ампульными источниками являются радиево-бериллиевый и полониевобериллиевый. Полоний-210 - практически чистый альфа-излучатель. Распад полония сопровождается
гамма-излучением слабой интенсивности. Основной недостаток - небольшой срок службы,
определяемый периодом полураспада полония.
В калифорниевом нейтронном источнике используется спонтанная ядерная реакция с
выбросом нейтрона из ядра, которая сопровождается сильным гамма-излучением. При каждом
делении ядра выделяется четыре нейтрона. 1 г источника в секунду выделяет 2,4*1012 нейтронов, что
соответствует нейтронному потоку среднего ядерного реактора. Источники имеют постоянный поток
нейтронов (не требуется мониторинг), “точечность” излучения, длительный ресурс (более трех лет),
сравнительно низкую стоимость.
Источники тепловых нейтронов выполняются аналогично и дополнительно содержат
графитовый чехол-замедлитель.
Таблица 5. Радионуклидные источники нейтронов.
Средняя
Состав
Название
Реакция Период полуВыход,
энергия,
МэВ
распада, лет
n/3.7 1010 Бк
210
9
Po-Be
Полоний, бериллий
0.39
4.3
1.8 106
Be(,n)
239
Pu-Be Плутоний-239, бериллий
24360
4.5
2 106
“
238
Pu-Be Плутоний-238, бериллий
86.4
4.5
2.8 106
“
226
“
Ra-Be
Радий, бериллий
1620
3.63
(1-1.7) 107
241
“
Am-Be
Америций, бериллий
458
4.3
(2.1-2.5) 106
227
“
Ac-Be
Актиний, бериллий
21.7
4.5
(1.7-2.5) 107
10
210
B(,n)
Po-B
Полоний, бор
0.39
2.7
2 105
9
124
Be(,n)
Sb-Be
Сурьма, бериллий
0.17
0.024
2 105
88
“
Y-Be
Иттрий, бериллий
0.29
0.158
105
“
MsTh-Be Мезоторий, бериллий
6.7
0.827
3.5 104
226
“
Ra-Be
Радий, бериллий
1620
0.1
3 104
88
D(,n)
Y-D
Иттрий, дейтерий
0.29
0.31
0.3 104
“
MsTh-D
Мезоторий, дейтерий
6.7
0.197
9.5 104
226
“
Ra-D
Радий, дейтерий
1620
0.12
103
252
252
Cf(n)
Cf
Калифорний
2.55
1.9
1.4 1011
Энергетические спектры альфа-нейтронных источников непрерывны, от тепловых до 6-8 МэВ,
гамма-нейтронных - приблизительно моноэнергетические, десятки или сотни кэВ. Выход гамманейтронных источников на 1-2 порядка меньше, чем альфа-нейтронных, и сопровождается сильным
10
гамма-излучением. У альфа-нейтронных источников сопровождающее гамма-излучение, как правило,
низкоэнергетическое и достаточно слабое, за исключением источников с радием (излучение радия и
продуктов его распада) и америцием (низкоэнергетическое излучение америция).
Альфа-нейтронные источники обычно ограничены по применению интервалом 5-10 лет, что
вызвано возможностью разгерметизации ампулы при накоплении в ней гелия и повышении
внутреннего давления.
Физико-техническим источником нейтронов является нейтронная трубка. Она
представляет собой малогабаритный электростатический ускоритель заряженных частиц - дейтонов
(ядер атомов дейтерия 2НD), которые разгоняются до энергии более 100 кэВ, и направляются на
тонкие мишени из дейтерия или трития (3НT), в которых индуцируются ядерные реакции:
d + D  3He + n + 3.3 МэВ, d + T  4He + n + 14.6 МэВ.
Большую часть выделяющейся энергии уносит нейтрон. Распределение энергии нейтронов
достаточно узкое и практически моноэнергетическое по углам вылета. Выход нейтронов порядка 108
на 1 микрокулон дейтонов. Работают нейтронные трубки, как правило, в импульсном режиме, при
этом мощность выхода может превышать 1012 n/с.
Портативные нейтронные генераторы практически не обладают радиационной опасностью в
выключенном состоянии, имеют возможность регулирования режима излучения нейтронов. К
недостаткам генераторов относятся ограниченный ресурс работы (100-300 часов) и нестабильность
выхода нейтронов от импульса к импульсу (до 50 %).
5. Инвентаризация и утилизация источников
Радионуклидные источники ионизирующего излучения представляют собой потенциальную
опасность для населения по следующим причинам:
1. Они распространены по многим организациям, и не везде осуществляется штатный
жизненный цикл источников (приобретение – учёт – контроль - использование – захоронение).
2. Источники ионизирующего излучения не могут быть обеспечены надёжной охраной.
3. Конструкция источников ионизирующего излучения такова, что при небрежном или
неумелом обращении они могут нанести вред здоровью человека.
В России на базе ФГУП Всероссийского научно-исследовательского института химической
технологии (ВНИИХТ) Росатома создан Центр государственного учета и контроля радиоактивных
веществ и отходов. В 2000-2001 гг., согласно решению Правительства РФ, проведена Государственная
инвентаризация радиоактивных материалов, радиоактивных отходов и источников ионизирующих
излучений. Созданы и функционируют региональные ведомственные информационно аналитические
центры. Они производят сбор, обработку и анализ информации об образовании, перемещении,
переработке и хранению РВ.
Масштабы и сфера использования радионуклидных источников имеют тенденцию к
увеличению, и проблема безопасности обращения с источниками на всех этапах их жизнедеятельного
цикла была и будет оставаться одной из важных. В России действует уголовная ответственность за
незаконное приобретение, хранение, использование, передачу или разрушение радиоактивных
материалов.
Высокоактивные источники утилизируются на "ПО "Маяк". Низкоактивные источники
захораниваются на региональных предприятиях НПО "Радон".
Радиофобия. Паническую боязнь любого ионизирующего излучения в любом количестве
называют радиофобией. Неразумно выбегать из комнаты, в которой работает счетчик Гейгера и
регистрирует естественный радиоактивный фон. Нужно понимать, что через каждый см2 вашей кожи
внутрь человека ежесекундно проходит порядка 10 ионизирующих частиц, а в теле человека
происходит примерно 105 распадов в минуту.
Радиофобия в настоящее время распространилась на телевизор, как источник рентгеновского
излучения, и на самолет, выносящий человека в верхние слои атмосферы, где более высок уровень
космического излучения. Телевизор действительно является источником рентгеновского излучения,
но при ежедневном просмотре телевизионных программ по три-четыре часа в день за год будет
получена доза в 100—200 раз меньше естественного фона. Полет в современном самолете на
расстояние 2000 км обусловливает получение примерно одной сотой долю среднего значения
естественного облучения в год. На Земле имеются области, где уровень радиации в сотни раз
11
превосходит средний (до 250 мЗв), однако неблагоприятных влияний на здоровье живущих там
людей не отмечено.
Уменьшение дозы излучения при необходимости работы с источником ионизирующего
излучения может быть осуществлено тремя путями: увеличением расстояния от источника, уменьшением времени пребывания около источника, установкой экрана, поглощающего излучение. При
удалении от точечного источника доза излучения убывает обратно пропорционально квадрату
расстояния.
А.В.Давыдов
16.11.09.
URL: http://www.prodav.narod.ru/other/radiators.htm
http://prodav.exponenta.ru/other/radiators.htm
Скачать