Методическая разработка лекции «ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА СЕРДЕЧНОЙ МЫШЦЫ» План: 1. Элементы эволюции сердечно-сосудистой системы. 2. Структурно-функциональная характеристика сердечно-сосудистой системы. 3. Физиологические свойства сердечной мышцы: возбудимость, проводимость, сократимость, автоматия. 1 I. Эволюция сердечно-сосудистой системы. Эволюция центрального органа кровообращения - сердца а) пульсирующие сердца, в) трубкообразные сердца, с) ампулярные сердца (как добавочные в местах с высоким периферическим сопротивлением) d) камерные: двухкамерное – рыбы, трёхкамерное – амфибии, четырёхкамерное – позвоночные, высшие млекопитающие Эволюция сосудистой части системы кровообращения: I тип: незамкнутая циркуляторная система – сердце перекачивает кровь по сосудам в лакуны, где она смешивается с тканевой жидкостью, обратно – по сосудам к сердцу. II тип: замкнутая циркуляторная система – с кругами кровообращения: 1 круг – рыбы, 2 круга – остальные позвоночные. Возникает 2 вида внутренней среды: кровь и лимфа, которые соприкасаются только через стенку капиллярного русла. Конечный приспособительный результат: Полное разобщение артериальной и венозной крои при поступлении через сердце в сосудистую систему Таким образом, конечным этапом эволюции системы кровообращения является наличие у человека четырехкамерного сердца и двух кругов кровообращения – малого (легочного) и большого (системного) II. Структурно- функциональная характеристика сердечно-сосудистой системы. Система кровообращения состоит из сердца и системы кровеносных сосудов. Все функции крови могут осуществляться лишь при ее непрерывном движении в сосудах, т.е. при наличии кровообращения. Поэтому, с одной стороны центральный орган кровообращения – сердце – определяет движение крови по сердечно-сосудистой системе, а сосудистое русло – большой и малый круги кровообращения – обеспечивают направление движения крови в организме. При этом в малом круге кровообращения в капиллярах легких происходит газообмен между кровью и воздухом альвеол, а в капиллярах большого круга – газообмен между кровью и тканевой жидкостью. 2 II. ФУНКЦИОНАЛЬНАЯ СИСТЕМА КРОВООБРАЩЕНИЯ Обеспечивает Включает Транспорт объема циркулирующей крови, соответствующего потребностям организма Исполнительные органы Сердце Функции Нагнетательная Кровеносные сосуды Направление движения крови Аппарат регуляции Центральная регуляция Местная регуляция Нервная Нервная Гуморальная Гуморальная Местная Методы исследования Функций сердца Системного кровообращения Регионарного кровообращения Центральный орган кровообращения – сердце. Сердце представляет собой полый мышечный орган, принимающий кровь из вливающихся в него венозных стволов и прогоняющих кровь в артериальную систему. Полость сердца подразделяется на 4 камеры: 2 предсердия и 2 желудочка. Левое предсердие и левый желудочек составляют вместе «левое», или артериальное, сердце, правое предсердие и правый желудочек – «правое», или венозное, сердце. В сердце различают: верхушку, основание, передневерхнюю и нижнюю поверхности и два края – правый и левый, разделяющие эти поверхности. Рабочий миокард состоит из кардиомиоцитов, по строению близких к поперечно-полосатым мышечным волокнам. Они соединены между собой через десмосомы, или нексусы, которые обладают очень низким омическим сопротивлением, следовательно, повышенной возбудимостью и проводимостью, поэтому рабочий миокард работает как функциональный синцитий!!! 3 КЛАПАННЫЙ АППАРАТ СЕРДЦА: створчатые, предсердно- желудочковые и полулунные – аортальный и пульмональный. Функциональное значение: однонаправленный ток крови через сердце. Проводящая система сердца состоит из: 1) узлы – синоатриальный (SA) и атриовентрикулярный (AV) 2) пучки – Гиса, Бахмана, Тореля и Венкенбаха, 3) волокна Пуркинье. Они представляют собой атипические кардиомиоциты, которые утратили миофибриллы, и которым присуща спонтанная ритмическая активность. III. ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА СЕРДЕЧНОЙ МЫШЦЫ. 1. Автоматия – это способность клеток рабочего миокарда и проводящей системы сердца генерировать спонтанные процессы возбуждения. Автоматией обладают клетки специфической мускулатуры проводящей системы. Её клетки бедны миофибриллами и богаты саркоплазмой, напоминают по строению эмбриональную мышечную ткань. Кроме этого, автоматией обладают и клетки рабочего миокарда, но это свойство у них менее выражено. Теории, объясняющие данное явление в сердце, связывали автоматию со свойствами мышечной ткани сердца – миогенная теория. Подтверждением этой теории является следующее: а) у человеческого эмбриона на 18-20 неделе внутриутробного развития отмечается автоматизм кардиомиоцитов; б) в опытах in vitro автоматизм рабочего миокарда в условиях полной денервации наблюдается в течение 1 суток; в) сердечные клетки эмбриона в культуре ткани. ИОННЫЙ МЕХАНИЗМ АВТОМАТИИ. ПД пейсмейкерных клеток (т.е. клеток водителей ритма) возникает как результат перезарядки их мембраны. Это обеспечивается селективной ионной проницаемостью для ионов Na+, а позже – для ионов Са2+. Как только уровень деполяризации достигнет 20 мВ (т.е. на 20 мВ уменьшается МПП), возникает распространяющийся ПД, фаза реполяризации связана с закрытием натриевых и кальциевых каналов. ПД, который возникает в пейсмейкерных клетках, вызывает деполяризацию соседних клеток рабочего миокарда, в результате чего возбуждение распространяется. 4 Уменьшение мембранного потенциала происходит в диастолу – медленная диастолическая деполяризация. Чем быстрее происходит развитие медленной диастолической деполяризации, тем чаще возникает возбуждение клетки – водителя ритма, и тем чаще будет происходить сокращение сердца. Впервые в сердце автоматически генерализованный ПД – процесс возбуждения – возникает в синоатриальном узле, описанном Кисом и Флеком. Это доказано в электрофизиологических исследованиях с применением микроэлектродов. Другим доказательством является опыт Гаскелла с применением местного охлаждения или согревания синоатриального узла. Ограниченное охлаждение узла вызывает резкое замедление сердечной деятельности, которое не воспроизводится при подобном охлаждении других областей сердца. Противоположный эффект – учащение работы сердца – возникает в условиях местного ограниченного согревания. Третье доказательство – изменение работы сердца при локальном повреждении или отравлении данного узла. Классическим доказательством подобного явления в синоатриальном узле являются лигатуры Станниуса, который в своих опытах на сердце холоднокровного животного (лягушки) не только доказал наличие в синусном узле (у теплокровных – синоатриальный узел) очага возбуждения, но и указал на наличие таких очагов в атриовентрикулярном узле, и даже в волокнах Пуркинье верхушки сердца. Лигатуры Станниуса: 1- отделяющая, 2 – раздражающая, 3 - отделяющая. Все эти эксперименты подтверждают наличие в синоатриальном узле водителя ритма 1-го порядка, а сам узел – центр автоматии первого порядка. От него возбуждение распространяется по специализированным мышечным волокнам: от синоатриального узла к атриовентрикулярному – по пучку, открытому в 1907 г. Кисом и Флеком, а по предсердиям – по пучку Бахмана (открыт автором в 1916 г.). Далее возбуждение распространяется через атриовентрикулярный узел по ножке Гиса и её разветвлениям – по желудочкам 5 сердца, а по волокнам Пуркинье – от верхушки сердца к их основанию. В результате возбуждение охватывает весь миокард. В здоровом сердце автоматия синоатриального узла подавляет возбуждение ниже расположенных участков проводящей системы сердца. Подобное явление описано как градиент автоматии В. Гаскелла, или закон градиента сердца: степень автоматии отделе проводящей системы тем выше, чем ближе он расположен к синоатриальному узлу. Так, автоматия синоатриального узла – 60-80 ПД/мин, атриовентрикулярного – 40-50ьПД/мин, пучка Гиса и волокон Пуркинье – 20 ПД/мин. В нормальных условиях наиболее выраженная автоматия SA-узла подавляет автоматию AV-узла и волокон Пуркинье. Если с помощью лигатуры разобщить функционально эти узлы, возникает атриовентрикулярный ритм сокращения желудочков, а предсердия сокращаются в прежнем частотном режиме. В нормальных физиологических условиях функционирует только один узел – синоатриальный, водители ритма, находящиеся в желудочках (атриовентрикулярный – II порядка и волокна Пуркинье – III порядка) «безмолствуют», их автоматия подавлена. После выключения синоатриального узла в эксперименте восстановление автоматии AV-узла происходит через некоторое время – от нескольких секунд до нескольких десятков секунд. В это время наблюдается асистолия, а пауза называется преавтоматическая пауза. Затем наблюдается ритм сокращения сердца, характерный для AV-узла – атриовентрикулярный ритм: предсердия и желудочки сокращаются практически одновременно, так как возбуждение из AV-узла к предсердиям и желудочкам распространяется почти одновременно, благодаря топографии AV-узла. Такое соподчиненное положение узлов – градиент автоматии, а также распространение возбуждения вдоль проводящей системы и невозможность его распространения ретроградно обеспечивает координацию, т.е. последовательность вовлечения в сократительный процесс сначала предсердий, затем – желудочков, что наряду с клапанным аппаратом сердца обеспечивает постоянный однонаправленный ток крови через сосудистую систему организма. 6 2. Возбудимость сердечной мышцы возникает при действии ряда раздражителей – механических, термических, химических. Однако сила раздражителя должна быть равной пороговой или быть сверхпороговой. При этом происходит следующее: при постепенном увеличении силы раздражителя в ответ на пороговое значение его возникает максимальная ответная реакция – сокращение максимальной силы, которую возможно развить. На допороговые раздражители ократительного ответного эффекта не наблюдается, на пороговое – сразу максимальное укорочение, на сверхпороговое – ответная сократительная реакция остается постоянной, прежней, как на пороговое раздражение. Т.е мышца сердца отвечает на раздражители согласно закону «всё или ничего», открытому Боудичем на препарата сердечной мышцы в опыте in vitro. Этот закон был открыт Боудичем при изучении сократимости рабочего миокарда верхушки сердца, а затем был применен для описания свойства возбудимости скелетной мускулатуры. Это произошло в силу того, что Боудич изучал возбуждение в миокарде по конечному результату существования этого свойства, т.е. по сокращению миокарда. Нет возбуждения, нет и сокращения. Но выявленная закономерность объективно характеризовала как возбудимость, так и сократимость именно миокарда. В скелетной же мускулатуре этот закон характеризует лишь свойство возбудимости. Сила же сокращений скелетной мускулатуры (эффект ее укорочения) градуально зависит от увеличения силы раздражителя, и не подчиняется закону «всё или ничего». В миокарде же максимальное укорочение на предъявление порогового раздражителя возможно из-за наличия в его структуре нексусов, поэтому наблюдается одновременное вовлечение в возбуждение рабочего миокарда предсердий, а затем желудочков. С другой стороны, очевидно, кардиомиоциты обладают возбудимостью одинаковой, отсюда для их возбуждения необходима равная сила порогового раздражителя. Физиологический смысл – в ответ на нервный импульс возбуждение, а затем сокращение охватывает весь миокард отдела сердца и достигается выброс необходимого систолического объема крови в сосудистое русло или в следующий отдел. 7 ОСОБЕННОСТИ ВОЗБУДИМОСТИ В МИОКАРДЕ СВЯЗАНЫ С ФОРМОЙ ПОТЕНЦИАЛА ДЕЙСТВИЯ – платообразный, а также с его длительностью и соответствием фаз возбуждения фазам потенциала действия. В миокарде длительность одиночного цикла возбуждения равна длительности одиночного цикла сокращения в одиночном мышечном волокне – 0,3 с. Из них 0,27 с приходится на фазу абсолютной рефрактерности. Отсюда: пока миокард отвечает сокращением на предшествующее раздражение не может вызвать новый процесс возбуждения, а следовательно, и дополнительное сокращение. Поэтому: A. В нормальных физиологических условиях отсутствуют экстрасистолы, т.е. дополнительные систолы миокарда; B. Невозможно вызвать тетаническое необходимо явление суммации, сокращение, основанное т.к. на для этого определенной длительности фаз возбудимости и соответствия этих фаз фазам одиночного мышечного сокращения – не может быть контрактуры сердца – остановки в систолею C. Нет кругового циклического движения процесса возбуждения по сердцу как целому органу. D. Поэтому осуществляется нагнетательная функция сердца на фоне ритмических сокращений и расслаблений миокарда предсердий и желудочков. Такая длительность фазы абсолютной рефрактерности является результатом наличия в миокарде платообразного ПД. Ионный механизм его формирования состоит в следующем: при нанесении раздражения возникает быстрая деполяризация за счет работы селективных ионных натриевых каналов. При достижении пика деполяризации (ПД в сердце составляет −90мВ) ионная проницаемость для натрия резко снижается и возникает избирательная проницаемость для ионов кальция, в результате фаза реполяризации во времени растягивается, что приводит к развитию длительной фазы абсолютной рефрактерности. 8 В эксперименте возможно вызвать дополнительное сокращение миокарда (желудочков) – желудочковую экстраситолию, в том случае, если следующий раздражитель нанести в момент расслабления миокарда. Такая экстрасистола сопровождается компенсаторной паузой. Ее механизм – в условиях экстрасистолы период абсолютной невозбудимости сердечной мышцы совпадает во времени с моментом поступления к миокарду желудочков (желудочковая экстрасистолия) очередного нервного импульса через проводящую систему. Поэтому на этот импульс миокард желудочков не может ответить сокращением. Эта систола «выпадает» и заменяется компенсаторной паузой, в течение которой возбудимость восстанавливается. 3. Проводимость – время, в течение которого все сердце как мышечный орган охватывается процессом возбуждения – 15 мсек. Возможность распространения возбуждения определяется проводимостью миокарда и его проводящей системы. Этот показатель изменяется в зависимости от субстрата: SA-узел 4,5 – 5 м/с AV-узел 0,02 – 0,05 м/с – атриовентрикулярная задержка Пучок Гиса и его ножки 1 – 1,5 м/с Волокна Пуркинье 3 м/с Миокард желудочков и предсердий 0,9 – 1 м/с Физиологическая функция 1) атриовентрикулярной задержки: обеспечивает последовательность сокращений предсердий и желудочков в сердечном цикле; 2) большой скорости проведения в волокнах Пуркинье – синхронное вовлечение в возбуждение, а потом – в сокращение всего миокарда желудочков. СОКРАТИМОСТЬ изложена в лекции «Нагнетательная функция сердца. Сердечный цикл» 9