13. 13.1. , , , ." ! ! ! ! . ! .$ , ! . , , - ! - , ! .% , ." , .& # . ! # " ' : , . , ! # , , .( , . , ! - ! $ , . $ , ! , . * # - .' - ! .) – , , ! , - # : x = {x1 , x2 , F (x ) , ! * : • ! • ! • : : j = 1,2, , ng ; hk ( x ) = 0 , k = 1,2, , nk ; ! F (x ) ! – .% , , , ! . ≤ xi ≤ xiu , .+ i = 1,2, , , . # . , , ." - ! g j (x) = 0 . ( , , ! , ! a=10 − 1. ! , , # – ! ! ,n . - j- ! , ! xil # , ! , , =0. ( . 13.1). a=10 3 2 1 a=10 . g j (x) ≤ 0 , xil , , xn } – u1 θ u2 P - . 13. 1. & . b1 , b2 , b3 ( # ) , ! . , ! - 13. , / , : F ( x ) = aρ( 2b1 + b2 + 2b3 ) , ρ – ! / # ! (13.1) . ! , ( b1 , b2 , b3 ), ! u1 ! E, ! {R} . u2 a, - # # " [ K ]{u} − {R} = 0 . (13.2) 0 , # : σ1 = E (u1 + u2 ) Eu2 E (u2 − u1 ) , σ2 = , σ3 = . 2a a 2a σia , ! , 0 E (u1 + u2 ) − σ1a ≤ 0 , 2a (13.3) g2 ≡ Eu2 − σa2 ≤ 0 , a (13.4) g3 ≡ E (u2 − u1 ) − σ3a ≤ 0 . 2a (13.5) : −b1 ≤ 0 , −b2 ≤ 0 , −b3 ≤ 0 . (13.6) , b1 , b2 , # - ( (13.1) u1 , ." . R = 20000 ! , - θ 2 = 3π / 4 . 2 ! 2 (13.2), (13.3)–(13.6). 1 ! u2 ! / : ! g1 ≡ # b3 , ! ! , ! , b1 = b3 . & , ! u1 = , 1 ! a σ = 20000 . ' . 3 , (13.2) σ P , a, b 5.1, , a g1 ≡ P b1 + 2b2 , , 2 , (13.7) (13.4): P P + − σa ≤ 0 , 2b1 2(b1 + 2b2 ) g2 ≡ - ! . aP aP , u2 = . b1E (b1 + 2b2 ) E (13.3) 2. : ! : ( θ1 = π / 4 ! (13.8) − σa ≤ 0 . (13.9) : −b1 ≤ 0 , −b2 ≤ 0 . ! aρ (13.1), , F ( x ) = 2 2b1 + b2 . (9.10) 13. - g1 = 0 Excel. / ! g2 = 0 b2 = f1 (b1 ) b2 = f 2 (b1 ) , 2b1 (1 − b1 ) , 1 − 2b1 b2 = 2 (1 − b1 ) . 2 b2 = , , ! ! ( ). % . ! g1 g 2 ( . 13.2). % , ! , , ! - Fk , - b2 0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 F(x)=2.8 0.3000 F(x)=2.4 F(x)=2.63 0.2000 g1=0 g2=0 0.1000 0.0000 0.700 0.750 0.800 0.850 F (x ) - . 13. 2. 2 b1 0.950 0.900 g1 ! g2 b2 b2 = Fk − 2 2b1 . Fk $ b1 {b1 > 0, b2 > 0} ! b2 = Fk − 2 2b1 b2 = f1 (b1 ) . $ ! , { b1 = 0.79 , b2 = 0.4045 }, # g1 = 0 , ! . - F ( x ) ≡ 2 2b1 + b2 = 2.639 . 13.2. , ! g1 – , g2 – . 4 , ." 5 ! " ! NASTRAN ! ! ! . , ! n . , . ! : # ! ! , ! .' , ! # ! $ . - ! 0 , ! .% , # : ! - , ! . , 13. F ( x + ∆x1 ) − F ( x ) ∆x1 ∂F ∂x1 ∂F ∂xi ∇F ({x}) = = ∂F ∂xn ∆xi ! ! n- F ( x + ∆xi ) − F ( x ) , ∆xi F ( x + ∆x n ) − F ( x ) ∆x n xi , ! . 2 , ! .% .5 ! ! ! - ! , . ( .. 13.3 . 0 x2 , x2 , ! ! - g1 ( x ) ! g 2(x) , ! , ! , . 13.3 F (x ) . ! , # . ! 5 ! - , .( # , g 2 ( x) g2(x) ∇F(x*) ∇F(x*) g1(x) g1(x) x* ∇g 2(x*) xO x1 ∇g1(x*) ∇g2(x*) ) - . 13. 3. ) 3 % ! -( ! ! {x ∗ } , ! , . 13.3 , , ∗ {x } , ,. $ : x1 ∇g1(x*) ) ! .$ ! x* , 3 # ! ∗ , {x } ! ." . - . 13.4 6! , ! , λ1 > 0 . - ! -( λ2 > 0 . & .1 - 13. ∇F(x*) λ1∇g1(x*) ∇g2(x*) λ2∇g2(x*) ∇g1(x*) −∇F(x*) - . 13. 4. {x ∗ } ( . ( . 13.3 , , . . , ! -( {x } , 3 ! $ , . .' , # # . 3 ! # - . , . 0 # , # , ! , ! , ! ! ! 50 # , . ! , . , ! . NASTRAN , ! .' ! # ' 8 ! ! , ! # .) ! ! # ! . - ! ! # .7 , ! .( , ! , ! , , & .* ! . # .' 100 , ! . # - , . . , , $ , .' ! " ! - ! , ! , .' . ! ! , , ! g2 ! g1 ! . , - 3 o ! , , ! .' , 3 -( ) -( 3 -