исследование энергетических характеристик индукционной

реклама
ɂɋɋɅȿȾɈȼȺɇɂȿ ɗɇȿɊȽȿɌɂɑȿɋɄɂɏ ɏȺɊȺɄɌȿɊɂɋɌɂɄ
ɂɇȾɍɄɐɂɈɇɇɈɃ ɋɂɋɌȿɆɕ ɋ ɏɈɅɈȾɇɕɆ ɌɂȽɅȿɆ
Ⱥ.ɇ. ɒɚɬɭɧɨɜ, ɂ.ȼ. ɉɨɡɧɹɤ, Ⱥ.ɘ. ɉɟɱɟɧɤɨɜ, Ⱥ.ɂ. Ɇɚɤɫɢɦɨɜ, ȼ.ȼ. Ʉɢɱɢɝɢɧ
*-0 5 ) «:)4!»
197376, *-0, . 0' 0, 5, %
[email protected]
: +7 (812) 346-44-87, ': +7 (812) 346-27-58
Ʉɥɸɱɟɜɵɟ ɫɥɨɜɚ: ɢɧɞɭɤɰɢɨɧɧɚɹ ɫɢɫɬɟɦɚ, ɯɨɥɨɞɧɵɣ ɬɢɝɟɥɶ, ɩɥɚɜɤɚ ɨɤɫɢɞɨɜ, ɩɨɜɟɪɯɧɨɫɬɧɵɣ
ɷɮɮɟɤɬ, ɦɚɬɟɦɚɬɢɱɟɫɤɨɟ ɦɨɞɟɥɢɪɨɜɚɧɢɟ
Abstract
Investigation of energetical parameters of the induction system with slitted water-cool copper
crucible for melting of oxide materials and present dependences of the powerlosses in the crucible’s section and efficiency of the induction system via characteristics of the melt. The results of
the calculation were received with using mathematical modeling in the package ANSYS.
ȼɜɟɞɟɧɢɟ
! " [1-3]. , . ( , , " .
( 1,76 5
201 . % ANSYS.
1 Ƚɟɨɦɟɬɪɢɹ
) . 1. % A , . 6
. & , . 1
, .
2 ɑɢɫɥɟɧɧɵɣ ɚɧɚɥɢɡ ɢɧɞɭɤɰɢɨɧɧɨɣ ɫɢɫɬɟɦɵ
1
. APDL [4] ANSYS v.11. [5]
100
ɪɚɫɩɥɚɜ
ɬɢɝɟɥɶ
ɞɧɨ
ɢɧɞɭɤɬɨɪ
ɯɨɦɭɬ
ɨɫɧɨɜɚɧɢɟ
Ɋɢɫɭɧɨɤ 1 – ɗɫɤɢɡ ɢɧɞɭɤɰɢɨɧɧɨɣ ɫɢɫɬɟɦɵ ɫ ɯɨɥɨɞɧɵɦ ɬɢɝɥɟɦ
ȼ ɫɬɚɬɶɟ ɩɪɢɜɨɞɹɬɫɹ ɪɟɡɭɥɶɬɚɬɵ ɢɫɫɥɟɞɨɜɚɧɢɣ ɫɢɫɬɟɦɵ, ɩɚɪɚɦɟɬɪɵ ɤɨɬɨɪɨɣ ɩɪɟɞɫɬɚɜɥɟɧɵ ɜ ɬɚɛɥɢɰɟ 1. ɉɨ ɫɪɚɜɧɟɧɢɸ ɫ ɪɢɫɭɧɤɨɦ 1 ɜ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɭɸ ɫɢɫɬɟɦɭ ɢɧɞɭɤɰɢɨɧɧɨɣ ɩɟɱɢ
ɛɵɥɢ ɜɧɟɫɟɧɵ ɫɥɟɞɭɸɳɢɟ ɞɨɩɭɳɟɧɢɹ:
• ɜ ɪɚɫɱɟɬɟ ɧɟ ɭɱɢɬɵɜɚɥɢɫɶ ɞɧɨ ɬɢɝɥɹ ɢ ɯɨɦɭɬ;
• ɢɧɞɭɤɬɨɪ ɨɞɧɨɜɢɬɤɨɜɵɣ;
• ɧɢɠɧɢɟ ɬɨɪɰɵ ɢɧɞɭɤɬɨɪɚ ɢ ɡɚɝɪɭɡɤɢ ɪɚɫɩɨɥɚɝɚɸɬɫɹ ɧɚ ɨɞɧɨɦ ɭɪɨɜɧɟ;
• ɫɟɪɟɞɢɧɚ ɜɵɫɨɬɵ ɢɧɞɭɤɬɨɪɚ ɫɨɜɩɚɞɚɟɬ ɫ ɫɟɪɟɞɢɧɨɣ ɜɵɫɨɬɵ ɬɪɭɛɤɢ ɬɢɝɥɹ;
• ɫɟɤɰɢɢ ɬɢɝɥɹ ɩɪɟɞɫɬɚɜɥɟɧɵ ɜ ɜɢɞɟ ɨɞɢɧɨɱɧɵɯ ɬɪɭɛɨɤ;
Ɍɚɛɥɢɰɚ 1 – ɉɚɪɚɦɟɬɪɵ ɢɫɫɥɟɞɭɟɦɨɣ ɫɢɫɬɟɦɵ
ɗɥɟɦɟɧɬ
ɫɢɫɬɟɦɵ
ɍɞɟɥɶɧɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ,
Ɉɦ·ɫɦ
Ɋɚɞɢɭɫ,
ɫɦ
ȼɵɫɨɬɚ,
ɫɦ
ɂɧɞɭɤɬɨɪ
2,0E-6
6,7 (ɜɧɭɬɪ.)
8,0
5,13E-4 ÷ 15,1
3,4 (ɜɧɟɲ.)
1,0; 2,0; 3,0;
4,0; 5,6; 7,0
2,0E-6
3,5 (ɜɧɭɬɪ.)
20,0
Ɂɚɝɪɭɡɤɚ
Ɍɢɝɟɥɶ
ɂɫɫɥɟɞɨɜɚɥɢɫɶ ɷɧɟɪɝɟɬɢɱɟɫɤɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɢɧɞɭɤɰɢɨɧɧɨɣ ɫɢɫɬɟɦɵ ɩɪɢ ɪɚɡɥɢɱɧɨɣ
ɫɬɟɩɟɧɢ ɡɚɩɨɥɧɟɧɢɹ ɬɢɝɥɹ. Ȼɵɥɨ ɢɫɫɥɟɞɨɜɚɧɨ ɲɟɫɬɶ ɜɚɪɢɚɧɬɨɜ ɜɵɫɨɬ ɡɚɝɪɭɡɤɢ ɨɬ 1 ɞɨ 8 ɫɦ (ɫɦ.
ɬɚɛɥɢɰɭ 1). Ɋɚɫɱɟɬɵ ɩɪɨɜɨɞɢɥɢɫɶ ɞɥɹ ɪɚɡɥɢɱɧɨɝɨ ɭɞɟɥɶɧɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɡɚɝɪɭɡɤɢ ɜ ɞɢɚɩɚɡɨɧɟ ɫɬɟɩɟɧɢ ɩɪɨɹɜɥɟɧɢɹ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɷɮɮɟɤɬɚ ɜ ɡɚɝɪɭɡɤɟ ɨɬ 0,1 ɞɨ 40.
ɂɧɞɭɤɰɢɨɧɧɚɹ ɫɢɫɬɟɦɚ ɫ ɯɨɥɨɞɧɵɦ ɬɢɝɥɟɦ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɤɪɭɝɨɜɨɣ ɫɢɦɦɟɬɪɢɟɣ, ɱɬɨ
ɭɱɢɬɵɜɚɥɨɫɶ ɩɪɢ ɩɨɫɬɪɨɟɧɢɢ ɬɜɟɪɞɨɬɟɥɶɧɨɣ ɦɨɞɟɥɢ. ɇɚ ɥɟɜɨɣ ɱɚɫɬɢ ɪɢɫɭɧɤɚ 2 ɩɨɤɚɡɚɧ ɫɟɤɬɨɪ
101
ɢɧɞɭɤɰɢɨɧɧɨɣ ɫɢɫɬɟɦɵ, ɨɯɜɚɬɵɜɚɸɳɢɣ ɨɞɧɭ ɬɪɭɛɤɭ ɯɨɥɨɞɧɨɝɨ ɬɢɝɥɹ ɢ ɩɨ ɩɨɥɨɜɢɧɟ ɜɨɡɞɭɲɧɨɝɨ ɡɚɡɨɪɚ ɦɟɠɞɭ ɬɪɭɛɤɚɦɢ. ɉɟɪɢɨɞɢɱɧɨɫɬɶ ɜ ɫɢɫɬɟɦɟ ɡɚɞɚɜɚɥɚɫɶ ɝɪɚɧɢɱɧɵɦɢ ɭɫɥɨɜɢɹɦɢ. ɇɚ
ɪɢɫɭɧɤɟ 2 ɫɩɪɚɜɚ ɩɪɟɞɫɬɚɜɥɟɧɚ ɨɩɬɢɦɚɥɶɧɚɹ ɤɨɧɟɱɧɨ-ɷɥɟɦɟɧɬɧɚɹ ɫɟɬɤɚ, ɤɨɬɨɪɚɹ ɫɨɞɟɪɠɚɥɚ 650
ɬɵɫɹɱ ɷɥɟɦɟɧɬɨɜ ɢ 460 ɬɵɫɹɱ ɭɡɥɨɜ.
ɡɚɝɪɭɡɤɚ
ɢɧɞɭɤɬɨɪ
ɬɢɝɟɥɶ
Ɋɢɫɭɧɨɤ 2 – Ɍɜɟɪɞɬɟɥɶɧɚɹ ɦɨɞɟɥɶ ɢ ɮɪɚɝɦɟɧɬ ɤɨɧɟɱɧɨ-ɷɥɟɦɟɧɬɧɨɣ
ɫɟɬɤɢ ɢɧɞɭɤɰɢɨɧɧɨɣ ɫɢɫɬɟɦɵ
3 Ɋɟɡɭɥɶɬɚɬɵ
ȼ ɪɟɡɭɥɶɬɚɬɟ ɪɚɫɱɟɬɨɜ ɛɵɥɢ ɩɨɥɭɱɟɧɵ ɦɨɳɧɨɫɬɢ ɷɥɟɤɬɪɢɱɟɫɤɢɯ ɩɨɬɟɪɶ ɜ ɢɧɞɭɤɬɨɪɟ, ɡɚɝɪɭɡɤɟ ɢ ɬɪɭɛɤɚɯ ɬɢɝɥɹ. ɋɬɟɩɟɧɶ ɡɚɝɪɭɠɟɧɧɨɫɬɢ ɩɟɱɢ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɨɬɧɨɲɟɧɢɟɦ ɜɵɫɨɬ ɡɚɝɪɭɡɤɢ ɢ ɢɧɞɭɤɬɨɪɚ Hɡɚɝɪ/Hɢɧɞ. ɋɬɟɩɟɧɶ ɩɪɨɹɜɥɟɧɢɹ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɷɮɮɟɤɬɚ ɜ ɡɚɝɪɭɡɤɟ – ɨɬɧɨɲɟɧɢɟɦ ɪɚɞɢɭɫɚ ɡɚɝɪɭɡɤɢ ɤ ɝɥɭɛɢɧɟ ɩɪɨɧɢɤɧɨɜɟɧɢɹ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ ɜ ɡɚɝɪɭɡɤɭ
Rɡɚɝɪ/ǻɡɚɝɪ.
ɉɨ ɪɟɡɭɥɶɬɚɬɚɦ ɪɚɫɱɟɬɨɜ ɩɨɫɬɪɨɟɧɵ ɡɚɜɢɫɢɦɨɫɬɢ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɢɟ ɩɨɬɟɪɢ ɜ ɫɟɤɰɢɹɯ ɯɨɥɨɞɧɨɝɨ ɬɢɝɥɹ. ɇɚ ɪɢɫɭɧɤɟ 3 ɩɪɢɜɟɞɟɧɵ ɡɚɜɢɫɢɦɨɫɬɢ ɩɨɬɟɪɶ ɜ ɫɟɤɰɢɹɯ ɬɢɝɥɹ ɞɥɹ ɤɚɠɞɨɣ ɢɡ
ɜɵɫɨɬ ɡɚɝɪɭɡɤɢ, ɩɪɢɜɟɞɟɧɧɵɟ ɤ ɩɨɬɟɪɹɦ ɜ ɬɢɝɥɟ ɛɟɡ ɡɚɝɪɭɡɤɢ. Ɋɚɫɱɟɬ ɩɪɨɜɨɞɢɥɫɹ ɩɪɢ ɨɞɢɧɚɤɨɜɨɦ ɬɨɤɟ ɢɧɞɭɤɬɨɪɚ. Ɇɨɠɧɨ ɜɢɞɟɬɶ, ɱɬɨ ɜ ɨɛɥɚɫɬɢ Rɡɚɝɪ/ǻɡɚɝɪ =0,1 ÷ 5 ɩɪɢ ɭɜɟɥɢɱɟɧɢɢ ɫɬɟɩɟɧɢ
ɩɪɨɹɜɥɟɧɢɹ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɷɮɮɟɤɬɚ ɜ ɡɚɝɪɭɡɤɟ ɧɚɛɥɸɞɚɟɬɫɹ ɪɟɡɤɨɟ ɩɚɞɟɧɢɟ ɩɨɬɟɪɶ ɜ ɬɢɝɥɟ.
ɋɤɨɪɨɫɬɶ ɩɚɞɟɧɢɹ ɪɚɫɬɟɬ ɩɪɢ ɭɜɟɥɢɱɟɧɢɢ ɜɵɫɨɬɵ ɡɚɝɪɭɡɤɢ. ɉɪɢ Rɡɚɝɪ/ǻɡɚɝɪ >5 ɢ ɦɚɤɫɢɦɚɥɶɧɨɣ
ɡɚɝɪɭɡɤɟ ɜɥɢɹɧɢɟ ɡɚɝɪɭɡɤɢ ɧɚ ɩɨɬɟɪɢ ɜ ɬɢɝɥɟ ɦɢɧɢɦɚɥɶɧɨ. Ɉɞɧɚɤɨ ɜ ɨɛɥɚɫɬɢ ɦɚɥɵɯ ɜɵɫɨɬ ɡɚɝɪɭɡɤɢ ɧɚɛɥɸɞɚɟɬɫɹ ɬɟɧɞɟɧɰɢɹ ɤ ɭɜɟɥɢɱɟɧɢɸ ɩɨɬɟɪɶ. Ɇɢɧɢɦɭɦ ɩɨɬɟɪɶ ɜ ɫɟɤɰɢɹɯ ɬɢɝɥɹ ɡɚɜɢɫɢɬ ɨɬ ɜɵɫɨɬɵ ɡɚɝɪɭɡɤɢ ɢ ɪɚɫɩɨɥɚɝɚɟɬɫɹ ɜ ɢɧɬɟɪɜɚɥɟ Rɡɚɝɪ/ǻɡɚɝɪ =5 ÷ 10. ɉɪɢ ɭɦɟɧɶɲɟɧɢɢ ɜɵɫɨɬɵ ɡɚɝɪɭɡɤɢ ɦɢɧɢɦɭɦ ɩɨɬɟɪɶ ɫɞɜɢɝɚɟɬɫɹ ɜ ɨɛɥɚɫɬɶ ɦɟɧɟɟ ɹɪɤɨɝɨ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɷɮɮɟɤɬɚ. ɉɪɢ
ɜɵɫɨɬɟ ɡɚɝɪɭɡɤɢ ɦɟɧɶɲɟ ɱɟɬɜɟɪɬɢ ɜɵɫɨɬɵ ɢɧɞɭɤɬɨɪɚ ɢ ɹɪɤɨɦ ɩɨɜɟɪɯɧɨɫɬɧɨɦ ɷɮɮɟɤɬɟ ɜ ɡɚɝɪɭɡɤɟ ɩɨɬɟɪɢ ɜ ɬɢɝɥɟ ɩɪɟɜɵɲɚɸɬ ɩɨɬɟɪɢ ɜ ɬɢɝɥɟ ɛɟɡ ɡɚɝɪɭɡɤɢ. ɉɪɢ ɜɵɫɨɬɟ ɡɚɝɪɭɡɤɢ ɛɥɢɡɤɨɣ ɤ
ɜɵɫɨɬɟ ɢɧɞɭɤɬɨɪɚ (Hɡɚɝɪ/Hɢɧɞ =0,88) ɩɨɬɟɪɢ ɧɚ 37% ɦɟɧɶɲɟ ɩɨɬɟɪɶ ɜ ɩɭɫɬɨɦ ɬɢɝɥɟ.
Ⱥɧɚɥɢɡ ɩɪɟɞɫɬɚɜɥɟɧɧɵɯ ɡɚɜɢɫɢɦɨɫɬɟɣ ɩɨɡɜɨɥɢɥ ɫɞɟɥɚɬɶ ɜɵɜɨɞ ɨ ɧɚɥɢɱɢɢ ɧɟɫɤɨɥɶɤɢɯ
ɮɚɤɬɨɪɨɜ, ɜɥɢɹɸɳɢɯ ɧɚ ɜɟɥɢɱɢɧɭ ɩɨɬɟɪɶ ɜ ɫɟɤɰɢɹɯ ɬɢɝɥɹ.
1) ɋɬɟɩɟɧɶ ɩɪɨɹɜɥɟɧɢɹ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɷɮɮɟɤɬɚ ɜ ɡɚɝɪɭɡɤɟ. ɇɚɱɢɧɚɟɬ ɞɟɣɫɬɜɨɜɚɬɶ ɩɪɢ
Rɡɚɝɪ/ǻɡɚɝɪ =1 ɜ ɜɢɞɟ ɪɟɡɤɨɝɨ ɩɚɞɟɧɢɹ ɩɨɬɟɪɶ ɜ ɬɪɭɛɤɚɯ ɬɢɝɥɹ. ɉɪɢ Rɡɚɝɪ/ǻɡɚɝɪ <1 ɬɨɤ ɫ ɜɧɟɲ-
102
ɧɟɣ ɫɬɨɪɨɧɵ ɬɪɭɛɤɢ ɤɨɧɰɟɧɬɪɢɪɭɟɬɫɹ ɩɨɞ ɢɧɞɭɤɬɨɪɨɦ, ɚ ɡɚɬɟɦ ɪɚɫɬɟɤɚɟɬɫɹ ɩɨ ɜɫɟɣ ɜɵɫɨɬɟ
ɬɪɭɛɤɢ. ɉɪɢ ɩɨɜɵɲɟɧɢɢ Rɡɚɝɪ/ǻɡɚɝɪ ɫ ɜɧɭɬɪɟɧɧɟɣ ɫɬɨɪɨɧɵ ɬɪɭɛɤɢ ɬɨɤ ɤɨɧɰɟɧɬɪɢɪɭɟɬɫɹ ɩɨ
ɜɵɫɨɬɟ ɡɚɝɪɭɡɤɢ. ɉɪɢ ɹɪɤɨ ɜɵɪɚɠɟɧɧɨɦ ɩɨɜɟɪɯɧɨɫɬɧɨɦ ɷɮɮɟɤɬɟ ɩɚɞɟɧɢɟ ɡɚɦɟɞɥɹɟɬɫɹ, ɬ.ɤ.
ɬɨɤ ɭɠɟ ɦɚɤɫɢɦɚɥɶɧɨ ɫɬɹɧɭɬ ɤ ɡɚɝɪɭɡɤɟ, ɩɨɷɬɨɦɭ ɧɚɛɥɸɞɚɟɬɫɹ ɦɢɧɢɦɭɦ ɩɨɬɟɪɶ. ɉɪɢ ɞɚɥɶɧɟɣɲɟɦ ɭɜɟɥɢɱɟɧɢɢ Rɡɚɝɪ/ǻɡɚɝɪ ɬɨɤ, ɫɤɨɧɰɟɧɬɪɢɪɨɜɚɧɧɵɣ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɡɚɝɪɭɡɤɢ ɫɥɚɛɟɟɬ,
ɚ ɬɨɤ ɜ ɬɪɭɛɤɟ ɬɢɝɥɹ ɫɧɨɜɚ ɧɚɱɢɧɚɟɬ ɪɚɫɬɟɤɚɬɶɫɹ ɩɨ ɜɵɫɨɬɟ ɬɪɭɛɤɢ, ɨɬɫɸɞɚ ɩɨɜɵɲɟɧɢɟ ɩɨɬɟɪɶ.
2) ɉɥɨɬɧɨɫɬɶ ɬɨɤɚ ɫ ɜɧɭɬɪɟɧɧɟɣ ɫɬɨɪɨɧɵ ɬɪɭɛɤɢ ɡɚɜɢɫɢɬ ɨɬ ɜɵɫɨɬɵ ɡɚɝɪɭɡɤɢ. ɉɪɨɹɜɥɹɟɬɫɹ
ɛɨɥɟɟ ɫɥɚɛɵɦ ɩɚɞɟɧɢɟɦ ɩɨɬɟɪɶ ɩɪɢ ɦɚɥɵɯ ɜɵɫɨɬɚɯ ɡɚɝɪɭɡɤɢ. ɉɟɪɟɬɟɤɚɸɳɢɣ ɫ ɜɧɟɲɧɟɣ
ɫɬɨɪɨɧɵ ɬɪɭɛɤɢ ɬɢɝɥɹ ɬɨɤ ɤɨɧɰɟɧɬɪɢɪɭɟɬɫɹ ɩɨ ɜɵɫɨɬɟ ɡɚɝɪɭɡɤɢ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɱɟɦ
ɦɟɧɶɲɟ ɜɵɫɨɬɚ ɡɚɝɪɭɡɤɢ, ɬɟɦ ɜɵɲɟ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɫ ɜɧɭɬɪɟɧɧɟɣ ɫɬɨɪɨɧɵ ɬɪɭɛɤɢ ɢ ɛɨɥɶɲɟ
ɩɨɬɟɪɢ.
ɋɭɦɦɚ ɞɜɭɯ ɮɚɤɬɨɪɨɜ ɨɩɪɟɞɟɥɹɟɬ, ɩɪɢ ɤɚɤɨɣ ɫɬɟɩɟɧɢ ɩɪɨɹɜɥɟɧɢɹ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɷɮɮɟɤɬɚ ɜ ɡɚɝɪɭɡɤɟ ɛɭɞɟɬ ɧɚɛɥɸɞɚɬɶɫɹ ɦɢɧɢɦɭɦ ɩɨɬɟɪɶ ɜ ɬɪɭɛɤɚɯ ɬɢɝɥɹ.
1,05
H/H=0,13
1,00
0,95
Pɬɢɝ/Pɬɢɝ_ɩɭɫɬ
0,90
0,25
0,85
0,38
0,80
0,50
0,75
0,71
0,70
0,88
0,65
0,60
0
5
10
15
20
Rɡɚɝɪ/D ɡɚɝɪ
25
30
35
40
Ɋɢɫɭɧɨɤ 3 – ɉɨɬɟɪɢ ɜ ɯɨɥɨɞɧɨɦ ɬɢɝɥɟ, ɩɪɢɜɟɞɺɧɧɵɟ ɤ ɩɨɬɟɪɹɦ ɜ ɬɢɝɥɟ ɛɟɡ ɡɚɝɪɭɡɤɢ
ɇɚ ɪɢɫɭɧɤɟ 4 ɩɪɢɜɟɞɟɧɵ ɡɚɜɢɫɢɦɨɫɬɢ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɄɉȾ ɢɧɞɭɤɰɢɨɧɧɨɣ ɫɢɫɬɟɦɵ ɫ ɯɨɥɨɞɧɵɦ ɬɢɝɥɟɦ, ɩɨɫɬɪɨɟɧɧɵɟ ɩɨ ɪɟɡɭɥɶɬɚɬɚɦ ɪɚɫɱɟɬɨɜ. ɂɯ ɚɧɚɥɢɡ ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ, ɜ ɨɬɥɢɱɢɟ
ɨɬ ɄɉȾ ɢɧɞɭɤɰɢɨɧɧɨɣ ɫɢɫɬɟɦɵ ɛɟɡ ɯɨɥɨɞɧɨɝɨ ɬɢɝɥɹ, ɄɉȾ ɢɦɟɟɬ ɦɚɤɫɢɦɭɦ. ɢ ɭɦɟɧɶɲɚɟɬɫɹ
ɩɪɢ ɩɨɜɵɲɟɧɢɢ ɩɪɨɹɜɥɟɧɢɹ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɷɮɮɟɤɬɚ ɜ ɡɚɝɪɭɡɤɟ. ɉɪɢ ɧɟɹɪɤɨɦ ɩɨɜɟɪɯɧɨɫɬɧɨɦ
ɷɮɮɟɤɬɟ ɄɉȾ ɦɚɥ. ȼ ɨɛɥɚɫɬɢ ɫ Rɡɚɝɪ/ǻɡɚɝɪ =2,5 ÷ 5 ɞɨɫɬɢɝɚɟɬɫɹ ɦɚɤɫɢɦɭɦ ɄɉȾ. ɉɪɢ ɩɨɧɢɠɟɧɢɢ
ɜɵɫɨɬɵ ɡɚɝɪɭɡɤɢ ɦɚɤɫɢɦɭɦ ɫɞɜɢɝɚɟɬɫɹ ɜ ɨɛɥɚɫɬɶ ɛɨɥɟɟ ɹɪɤɨɝɨ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɷɮɮɟɤɬɚ. Ɉɬ
ɜɵɫɨɬɵ ɡɚɝɪɭɡɤɢ ɄɉȾ ɡɚɜɢɫɢɬ ɫɥɚɛɨ. ȼ ɡɨɧɟ ɦɢɧɢɦɚɥɶɧɵɯ ɩɨɬɟɪɶ ɜ ɫɟɤɰɢɹɯ ɬɢɝɥɹ (ɩɪɢ
Rɡɚɝɪ/ǻɡɚɝɪ =5 ÷ 10) ɄɉȾ ɫɧɢɠɚɟɬɫɹ ɨɬ ɦɚɤɫɢɦɭɦɚ ɧɚ 2 ÷ 8% ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɜɵɫɨɬɵ ɡɚɝɪɭɡɤɢ.
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɨɞɧɢɦ ɢɡ ɤɪɢɬɟɪɢɟɜ ɩɪɢ ɩɪɨɟɤɬɢɪɨɜɚɧɢɢ ɢɧɞɭɤɰɢɨɧɧɵɯ ɫɢɫɬɟɦ ɫ ɯɨɥɨɞɧɵɦ ɬɢɝɥɟɦ ɹɜɥɹɟɬɫɹ ɭɫɥɨɜɢɟ Rɡɚɝɪ/ǻɡɚɝɪ =5 ÷ 10. ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɫɢɫɬɟɦɚ ɢɦɟɟɬ ɛɥɢɡɤɢɣ ɤ ɦɚɤɫɢɦɚɥɶɧɨɦɭ ɷɥɟɤɬɪɢɱɟɫɤɢɣ ɄɉȾ. ȼ ɬɨ ɠɟ ɜɪɟɦɹ ɩɨɬɟɪɢ ɜ ɬɢɝɥɟ ɛɥɢɡɤɢ ɤ ɦɢɧɢɦɚɥɶɧɵɦ ɢ ɫɥɚɛɨ
ɡɚɜɢɫɹɬ ɨɬ Rɡɚɝɪ/ǻɡɚɝɪ, ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɦɟɧɶɲɟ ɜɫɟɝɨ ɜɥɢɹɸɬ ɧɚ ɪɟɠɢɦ ɢɧɞɭɤɰɢɨɧɧɨɣ ɫɢɫɬɟɦɵ.
103
1,0
0,9
0,8
0,7
ɄɉȾ
0,6
H/H=0,88
0,71
0,50
0,38
0,5
0,4
0,3
0,25
0,13
0,2
0,1
0,0
0
5
10
15
20
25
30
35
40
Rɡɚɝɪ/D ɡɚɝɪ
Ɋɢɫɭɧɨɤ 4 – ɗɥɟɤɬɪɢɱɟɫɤɢɣ ɄɉȾ ɢɧɞɭɤɰɢɨɧɧɨɣ ɫɢɫɬɟɦɵ
Ɂɚɤɥɸɱɟɧɢɟ
ɉɨɬɟɪɢ ɜ ɫɟɤɰɢɹɯ ɯɨɥɨɞɧɨɝɨ ɬɢɝɥɹ ɡɧɚɱɢɬɟɥɶɧɨ ɡɚɜɢɫɹɬ ɨɬ ɫɬɟɩɟɧɢ ɩɪɨɹɜɥɟɧɢɹ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɷɮɮɟɤɬɚ ɜ ɡɚɝɪɭɡɤɟ ɢ ɜɵɫɨɬɵ ɡɚɝɪɭɡɤɢ. ɋɨɨɬɧɨɲɟɧɢɟ ɦɨɳɧɨɫɬɢ ɜ ɡɚɝɪɭɡɤɟ ɢ ɦɨɳɧɨɫɬɢ
ɜ ɬɢɝɥɟ ɱɚɫɬɨ ɧɟ ɩɨɡɜɨɥɹɟɬ ɩɪɟɧɟɛɪɟɱɶ ɜɵɹɜɥɟɧɧɵɦ ɹɜɥɟɧɢɟɦ ɭɦɟɧɶɲɟɧɢɹ ɩɨɬɟɪɶ ɜ ɬɢɝɥɟ ɩɪɢ
ɧɚɥɢɱɢɢ ɡɚɝɪɭɡɤɢ. ɉɨɷɬɨɦɭ ɷɬɭ ɡɚɜɢɫɢɦɨɫɬɶ ɧɟɨɛɯɨɞɢɦɨ ɭɱɢɬɵɜɚɬɶ ɩɪɢ ɩɪɨɟɤɬɢɪɨɜɚɧɢɢ ɢɧɞɭɤɰɢɨɧɧɵɯ ɭɫɬɚɧɨɜɨɤ ɫ ɯɨɥɨɞɧɵɦ ɬɢɝɥɟɦ.
Ȼɥɚɝɨɞɚɪɧɨɫɬɢ
ɂɫɫɥɟɞɨɜɚɧɢɟ ɛɵɥɨ ɩɪɨɜɟɞɟɧɨ ɩɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɨɛɨɪɭɞɨɜɚɧɢɹ ɢ ɩɪɨɝɪɚɦɦɧɨɝɨ ɨɛɟɫɩɟɱɟɧɢɹ, ɩɪɢɨɛɪɟɬɟɧɧɨɝɨ ɜ ɪɚɦɤɚɯ ɂɧɧɨɜɚɰɢɨɧɧɨɝɨ ɨɛɪɚɡɨɜɚɬɟɥɶɧɨɝɨ ɩɪɨɟɤɬɚ ɋɚɧɤɬɉɟɬɟɪɛɭɪɝɫɤɨɝɨ ɝɨɫɭɞɚɪɫɬɜɟɧɧɨɝɨ ɷɥɟɤɬɪɨɬɟɯɧɢɱɟɫɤɨɝɨ ɭɧɢɜɟɪɫɢɬɟɬɚ "ɅɗɌɂ" – "ɉɪɨɝɪɚɦɦɚ
ɩɨɞɝɨɬɨɜɤɢ ɫɩɟɰɢɚɥɢɫɬɨɜ ɞɥɹ ɩɪɢɨɪɢɬɟɬɧɵɯ ɜɵɫɨɤɨɬɟɯɧɨɥɨɝɢɱɧɵɯ ɨɬɪɚɫɥɟɣ ɢɧɧɨɜɚɰɢɨɧɧɨɣ
ɷɤɨɧɨɦɢɤɢ ɫɬɪɚɧɵ" ɡɚ 2009 ɝɨɞ.
ɋɩɢɫɨɤ ɥɢɬɟɪɚɬɭɪɵ
[1] ɉɟɬɪɨɜ, ɘ.Ȼ. ɏɨɥɨɞɧɵɟ ɬɢɝɥɢ / ɘ.Ȼ.ɉɟɬɪɨɜ, Ⱦ.Ƚ.Ɋɚɬɧɢɤɨɜ. – Ɇ.: Ɇɟɬɚɥɥɭɪɝɢɹ, 1972.
[2] ɉɟɬɪɨɜ, ɘ.Ȼ. ɂɧɞɭɤɰɢɨɧɧɵɟ ɩɟɱɢ ɞɥɹ ɩɥɚɜɤɢ ɨɤɫɢɞɨɜ / ɘ.Ȼ.ɉɟɬɪɨɜ, ɂ.Ⱥ.Ʉɚɧɚɟɜ. – Ʌ.: ɉɨɥɢɬɟɯɧɢɤɚ, 1991.
[3] Ʉɭɡɶɦɢɧɨɜ, ɘ.ɋ. Ɍɭɝɨɩɥɚɜɤɢɟ ɦɚɬɟɪɢɚɥɵ ɢɡ ɯɨɥɨɞɧɨɝɨ ɬɢɝɥɹ / ɘ.ɋ.Ʉɭɡɶɦɢɧɨɜ, ȿ.ȿ.Ʌɨɦɨɧɨɜɚ,
ȼ.ȼ.Ɉɫɢɤɨ. – Ɇ.: ɇɚɭɤɚ, 2004.
[4] ANSYS parametric design language (APDL) guide. Release 11.0.
[5] ANSYS Basic Analysis Guide. ANSYS Release 11.0, Canonsburg, ANSYS Inc. Houston, 2007.
104
Скачать